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Stability Analysis of Nonlinear Power Electronic
Systems Utilizing Periodicity and Introducing

Auxiliary State Vector
Octavian Dranga, Balázs Buti, István Nagy, Fellow, IEEE, and Hirohito Funato, Member, IEEE

Abstract—Variable-structure piecewise-linear nonlinear dy-
namic feedback systems emerge frequently in power electronics.
This paper is concerned with the stability analysis of these sys-
tems. Although it applies the usual well-known and widely used
approach, namely, the eigenvalues of the Jacobian matrix of the
Poincaré map function belonging to a fixed point of the system
to ascertain the stability, this paper offers two contributions for
simplification as well that utilize the periodicity of the structure
or configuration sequence and apply an alternative simpler and
faster method for the determination of the Jacobian matrix. The
new method works with differences of state variables rather
than derivatives of the Poincaré map function (PMF) and offers
geometric interpretations for each step. The determination of the
derivates of PMF is not needed. A key element is the introduction
of the so-called auxiliary state vector for preserving the switching
instant belonging to the periodic steady-state unchanged even
after the small deviations of the system orbit around the fixed
point. In addition, the application of the method is illustrated on
a resonant dc–dc buck converter.

Index Terms—DC–DC power conversion, nonlinear systems, sta-
bility, variable-structure systems.

I. INTRODUCTION

LARGE numbers of converters in power electronics be-
long to the variable-structure, piecewise-linear nonlinear

dynamic feedback systems. They change their structure and
their configuration after each switching, and the sequence of
structures succeeds each other periodically in the periodic
steady state. Each structure of the converters can be modeled
with good approximation by linear circuitry, and therefore
they are piecewise linear. The overall systems are nonlinear
due to the dependence of switching instants on state variables
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stemming from the feedback control loop and due to saturation
or other nonlinearities.

The paper is concerned with the stability of such systems. Be-
sides the periodicity of the configuration sequence, the switch-
ings have to be controlled by pulse width modulation (PWM) in
the system. It must be emphasized that the stability study used
in the paper is based on the well-known and widely applied ap-
proach in which the eigenvalues of the Jacobian matrix of the
Poincaré map function are determined at a fixed point of the
system [1]–[12]. From a physical viewpoint, it is equivalent to
study the behavior of the trajectory of the system in state space
when it is forced to leave its periodic steady-state trajectory to
a new orbit by a small deviation from the original trajectory.

This paper offers new contributions, to the best of the authors’
knowledge, to the usual stability analysis in two points. The first
point is utilizing the periodicity of the structure sequence and
introducing subperiods. State equations have to be derived only
for one subperiod, which reduces the number of state equations
needed for the stability analysis. We do not consider it as major
contribution but it can be very useful. This method has already
been used once [13], but it has not been introduced in a generic
way. Second, and most important, we determine the Jacobian
matrix by using the small differences of state vectors compared
to their steady-state values at the start and end of subperiods
and at the switching instant. There is no need to determine the
derivates of the Poincaré map function at the fixed point. The
Jacobian matrix is obtained directly from the relations among
the small differences of state vectors. In addition, all steps are
interpreted graphically. Consequently, this method offers an al-
ternative way to derive the Jacobian matrix or, which is more
significant, a simpler and faster way to determine it. The key
element of this method is the introduction of the auxiliary state
vector for preserving constant switching instants for the switch-
ings depending on state variables even after the small excursion
of the state variables from the steady state, although they vary
in small extent.

The method is described in a generic way in Sections II–V.
The application of the method is illustrated with a dual channel
dc–dc resonant converter in Sections VI and VII and the
Appendix).

II. POWER ELECTRONIC CIRCUITS AS

VARIABLE-STRUCTURE SYSTEMS

Fig. 1(a) presents the simplified block diagram of the type of
systems discussed. The controlled object is the variable-struc-
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Fig. 1. Time sequence of structure changes in the periodic steady state.

ture power part with controlled switches, incorporating period-
ically changing subcircuits, which are cyclically turned on and
off. The output voltage is controlled by PWM. The carrier
signal can be, e.g., a ramp function (saw-tooth wave-
form) [see Fig. 1(b)]. The output signal of the controller is
compared to the carrier signal . The state of the controlled
switches depends on the sign of . Having only
one switch in the controlled object in the simplest case, the pe-
riod of the ramp signal and the period of the state variables

are equal to each other as in a hard-switched buck, boost and
buck, and boost dc–dc converters [Fig. 1(b)]. When two con-
trolled switches are in the controlled object and they are turned
on and off alternately, as we will see in our example, .
Switching occurs in the controlled object at each transition in

from 0 to 1 or vice-versa. Two kinds of switching take
place: asynchronous A-switching and synchronous S-switching
[Fig. 1(b)].

In order to make as clear and simple as possible the descrip-
tion of the alternative method of deriving the Jacobian matrix
within the frame of stability study, which is the main target of
the paper, the simple proportional controller

(1)

will be assumed.
The controlled object is a variable-structure piecewise-linear

system. After each switch, another linear circuit emerges and
the sequence of linear circuits is repeated in the next period
[13].

Fig. 2 shows the time sequence of structure changes within
one period as a simple example. The dual-channel resonant
dc–dc converter has, in fact, this sequence of structure changes,
as will be shown later on. Here, one period has two subperiods

, where is the number of subperiods in one pe-
riod and each subperiod consists of two linear circuits called
structures . Suffixes , and
are used for counting the number of periods and subperiods

starting from the beginning of the transient process,
respectively.

Building up a linear circuit model on the basis of the actual
configuration of the power electronics converter corresponding
to the actual state of the switches, the model is the same for
structure 1 in subperiod I and for structure 1* in subperiod II.
The same statement holds for structures 2 and 2*. Therefore,
the sequence of models repeats itself in each subperiod. At the
same time, the actual energy storage components, resistances,
switches, and the associated state variables belonging to the

Fig. 2. (a) Block diagram of the variable-structure piecewise-linear feedback
system controlled by PWM. (b) Carrier signal is a saw-tooth wave. (c) Switching
signal v .

same successive structures (e.g., structures 1 and 1*) might be
partially or entirely different.

Due to the identical structures (1 and 1* as well as 2 and 2*)
in the two subperiods, the state equations in the two intervals
(and in the two intervals) have the same mathematical forms.
The state variables can be different in the same places of the
equations, but the values of the parameters are the same due
to symmetry. The identity of the form of state equations makes
it possible to calculate the dynamic processes in subperiod II
and, in general, in subperiod by using only the state equations
of subperiod I. The state vector at the end of subperiod I
has to be transformed back in an appropriate way to the starting
state vector of subperiod I (Section III). The state variables
of subperiod I are used for the calculation of state variables of
subperiod II. Their identification with the actual state variables
of subperiod II that they represent can easily be done. Applying
only the state equations of subperiod I together with the back
transformation, the whole period can be treated.

The method described in the paper can be extended for sys-
tems with a more sophisticated structure sequence if otherwise
the systems meet the other restrictions described.

III. MATHEMATICAL BACKGROUND

Everything in this section is well known except the concept
of back transformation. The aim of this section is mainly the
introduction of notations used later on.

The variable-structure system shown in Fig. 1(a) is nonau-
tonomous due to signal [1]–[3]. The controlled object
within structures 1 and 2 is linear, and it can be described by the
coupled first-order linear differential equation system or state
equation

(2)



170 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 1, JANUARY 2005

in the interval (Fig. 2) where is the velocity
vector, is the state vector, and is the excitation vector. Ma-
trices and depend on the configuration and parameters of
the respective structure in the controlled object. At the switching
instant, the velocity vector is suddenly changed, e.g., at
(Fig. 2) as follows:

(3)

where suffixes and stand for start and end, respectively.
acts upon the system as a “force,” and the direction of the system
trajectory is abruptly varied in the state space.

The solution of (2) is well known, and its expression is

(4)

where suffix has been dropped, and is the time elapsed from
the switching instant. The weighting matrix

(5)

and the particular solution from (2) is
Having two structures within a subperiod (Fig. 2), (4) has to

be applied twice, always with the respective values pertaining
to the actual structure.

In the steady state, the periodicity or transfer matrix con-
nects the values of the state vector at the start and the end of the
subperiod I

(6)

or

(7)

where the elements in matrix are , or 0 (cf. the example
in Section VI and in the Appendix) and

(Fig. 2). Suffixes 1 and 2 stand for structures 1 and 2, re-
spectively. Knowing the operation of the respective power elec-
tronics configuration, the determination of is a simple task, as
will be seen later on. Equation (7) can be interpreted as follows.
After calculating , the operation is a back trans-
formation of to the start of subperiod I in order to apply

as the initial value in the same state equations (that were
used in subperiod I) for the calculations of the state variables in
subperiod II.

The interval (and ) can be determined from
the rule of PWM switching (1) and Fig. 1(b)

(8)

Although the equations of the controlled object (2) and (7) are
linear, the last relation (8) is nonlinear due to the dependence of

on the state variable [and because can be higher than
or lower than ; see Fig. 1(b)], resulting in no switching

in one or more consecutive subperiods). In general, the cal-
culation of from the nonlinear equation leads to an iteration
procedure.

IV. SMALL CHANGES AROUND THE PERIODIC STATE

AND AUXILIARY STATE VECTOR

The system trajectory keeps circulating along the same closed
loop in state space in the periodic state. As an example, Fig. 3

Fig. 3. Back transformation of x to the start of the next subperiod I.
Trajectory in the steady state (heavy solid line). Trajectory after small deviation
from the steady state (dashed line).

shows the trajectory of state vector and its start and end
positions in subperiod I in the steady state in three-dimen-

sional (3-D) state space (heavy solid line). In the periodic steady
state, the trajectory pierces through the Poincaré plane at point

where the state vector is , which is the fixed point. After
subperiod I, the state vector is (point ). Transforming
back to the start of subperiod I by matrix , the original state
vector is reobtained: [(7)]. The system trajec-
tory starts from the fixed point again.

Due to a small deviation of the trajectory from point , the
small change in the state vector at the start of the th subperiod
I is and the state vector is in Fig. 3. At the end of
the th subperiod I, the state vector is . Suffixes 1 and 2
refer to structures 1 and 2, respectively (Fig. 2). Transforming
back to the start of the th subperiod, we obtain

(9)

As a result of the small deviation around the periodic state,
remains unchanged but, in general, is changed in

the th subperiod by due to its dependence on the changing
state variable [Fig. 1(b) and (8)]. varies from subperiod
to subperiod. (It is assumed that holds.) The
stability calculation or, more precisely, the calculation of the
Jacobian matrix is greatly simplified by introducing an auxiliary
state vector at the structure change from 1 to 2 at
(Fig. 2) and its change in place of the actual state
vector change (Fig. 4). This permits us to
take into account the effect of the change but at the same
time keep and, consequently, unchanged. The rewards of
this method are as follows.

1) To determine the Jacobian matrix, we do not have to
calculate the derivatives of the Poincaré map function
(PMF).
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Fig. 4. Auxiliary state vector change �x (� ) (see Fig. 3).

2) The Jacobian matrix is directly obtained from the re-
lations among the small changes of the state vectors
written on the basis of Figs. 3 and 4 and from (8)
rewritten for small changes. The equations have graph-
ical interpretation.

3) Weighting matrices and can be ap-
plied for small changes as well.

has to be calculated by an iteration process only once for
the periodic steady state. The description of the iteration process
for the calculation of is straightforward and beyond the scope
of this paper. we refer the reader to [13].

On the basis of (4), the relation between the small changes of
the state vector in structures 1 and 2 are as follows (Fig. 4):

(10)

(11)

where is the small change in the state vector at , that
is, in advance by before the end of the th subperiod I. By
knowing structures 1 and 2, we know and ; therefore, the
determination of and is straightforward.

All small changes are real values, but the fictitious auxiliary
state vector change can be determined from

(12)

where matrix can be derived from Fig. 4, as will be shown
later.

The starting point is the periodic trajectory or limit cycle of
the system. A small section of the trajectory in the neighbor-
hood of the switching from structure 1 to structure 2 is shown
by the heavy solid line in Fig. 4, which is a blow up around
point in Fig. 3. The trajectory reaches the switching hy-
persurface at point in the periodic steady state where
the velocity vector is abruptly changed [(3)]. After deviating
the system from its limit cycle by a tiny change, the dashed
line illustrates the corresponding section of the new trajectory
around point , where the switching hypersurface
is reached by this new trajectory at The “distance” be-
tween and is , where is the velocity vector
at point still in structure 1. The alteration of the state vector
on the hypersurface is . After the switching,
the velocity vector at the start of structure 2 is at point

. The determination of and will be discussed soon.
Due to the linearity of the structures, the new trajectory can be
projected “backward in time” from time to . In
other words, the trajectory will start from point rather
than point by extending the new trajectory at the
start of structure 2 toward “negative time” in the direction of
the velocity vector . Point is reached this way at
distance from The auxiliary state vector change

is obtained between points and . This math-
ematical abstraction is useful since, by applying in
place of , the trajectory will start in structure
2 at the same instant as in the case of the periodic trajectory.

Turning to the determination of the relation between the real
state vector change and the auxiliary one ,
the following relationship is obtained from triangles
and :

(13)

By introducing the auxiliary state vector
directed to point and the auxiliary state vector change

, the application of as the unchanged interval for
structure 1 is still permitted in the relations among the small
deviations.

V. DETERMINATION OF THE JACOBIAN MATRIX ON

THE BASIS OF THE AUXILIARY STATE VECTOR

The aim is the determination of , the Jacobian matrix of
the subperiods belonging to the fixed point . The relation
among the consecutive small deviations of the state vector
around the fixed point is

(14)

where is the initial deviation of state vector at
fixed point .

At the start of the th subperiod, we have

(15)

where is the Jacobian matrix of the whole switching period
. Therefore

(16)

The eigenvalues of Jacobian matrix equals the square of
those of Jacobian matrix . The stability of the fixed point
can be concluded either from or . When the eigenvalues
of are within the unit circle, those of are inside the unit
circle as well, and vice-versa.

After determining from (10), the next step is the
calculation of the auxiliary state vector change from
(12). We have to know matrix at this step. can be derived
from (13) if can be expressed by .

To determine with , the rule of PWM switching
has to be used [see (8)]. Assuming that the output voltage of the
controlled object [Fig. 1(a)] is a state variable, is one element
of state vector and can be expressed by , that is,

where . All elements
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Fig. 5. Calculation sequence of the Jacobian matrix J .

of constant vector are zero except one (or two, see later1)
belonging to . The transposition of vector is denoted by .

The relation for is [Fig. 1(b)]

(17)

Equation (8) can be rewritten at as

(18)

and at as

(19)

Subtracting (19) from (18) yields

(20)

From triangle , we have

(21)

Substituting (21) into (20) yields

(22)

and from here

(23)

Substituting from (23) into (13) results in the following
relationship for which we are looking:

(24)

where is the auxiliary state vector change at the start
of structure 2 and is the identity or unit matrix. Equation (24)
determines matrix introduced in (12). The auxiliary state
vector change permitting us to calculate with the
constant switching interval can be determined by matrix
from state vector change .

Applying (10)–(12) in cascade for the entire th subperiod I
yields

(25)

1In the example, in Section VI v = v + v and both v and v are
state variables [(A1)].

Note that (25) is the same in each subperiod. Due to the period-
icity, has to be transformed back to the start of subperiod
I [see Figs. 2 and 3 and (9)] to yield

(26)

Comparing (14) and (26), the Jacobian matrix is

(27)

A. Speed Vectors

To determine the speed vectors and , first we have to
know the state vector at the fixed point. Assuming that we
know and applying (4), the state vector at

(28)

and at the end of subperiod I

(29)

where is assumed.
In steady state

(30)

From the last equations, we have

(31)

By knowing from (28), the velocity vector
from (2) yields

(32)

(33)

On the basis of (28)–(30), the PMF is

(34)
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Fig. 6. (a) General configuration of the converters. (b), (c) Basic building
blocks.

TABLE I
SETUP OF THE CONVERTERS

We did not apply the derivative of in the derivation of the
Jacobian matrix .

Now that we know all terms in matrix , its eigenvalues
and, similarly, the eigenvalues of the Jacobian matrix can
be calculated, that is, the stability of the periodic state can be
ascertained.

Fig. 5 summarizes the calculation sequence of the Jacobian
matrix . It can be concluded that the derivatives of the PMF
are not needed for the determination of the Jacobian matrix. Ref-
erence [13] discusses the determination of the Jacobian matrix
for exactly the same type of power electronics systems using the
traditional approach, that is, from the derivatives of the PMF.
The comparison shows clearly how much simpler and faster the
direct method is than the traditional one (see [13, Secs. VI-B
and C] and compare it with Section V of this paper); of course,
the results are the same. Compare (24) and (27) to [13, eqs. (37)
and (38)].

VI. EXAMPLE: DC–DC CONVERTER

CONFIGURATION AND OPERATION

As an example, a dual-channel resonant buck configuration is
chosen. The converter is a member of a converter family. A com-
prehensive study of the family has been published earlier [26].
Here, only a short description of the configurations and the op-
eration of the members of the family is given. It was previously
studied in [13] and [25] by using the traditional approach for
determining the Jacobian matrix.

The general configuration of the family shown in Fig. 6(a)
has a positive (suffix ) and a negative (suffix ) channel,
two switched capacitors , two basic building blocks

and , two filter capacitors and , and the loads
and . Suffixes and refer to input and output, respec-

tively. The configurations of the basic building blocks can be

Fig. 7. Time functions of input and output (inductor) currents (! = 1=
p
LC).

Fig. 8. Bifurcation diagram: I—periodic range; II—quasi-periodic and
subharmonic range; III—chaotic and subharmonic range.

Fig. 9. Loci of eigenvalues (R = 6 
) as the controller gain K varies.
Arrows indicate increasing gain.

either or with two controlled switches and and
inductance [see Fig. 6(b) and (c)]. The controlled switches
(IGBTs, MOSFETs, or other switches) conduct current in the
direction of the arrow.

Using the general configuration, any one of the buck, buck
and boost, or boost converters can be built by connecting the

, and terminals of the basic building blocks in the way
shown in Table I to terminals , and .

We have selected as an example the buck converter when ter-
minals and 0’ are shorted and assumed complete
symmetry both in the setup
and in the supply ( and smooth).
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Fig. 10. Stroboscopic maps in (a) quasi-periodic (K = 8), (b) subharmonic (K = 23), and (c) chaotic (K = 35) operation.

A. Operation

Symmetrical, periodic, steady-state operation is summa-
rized. The controlled switches within one channel are always
in complementary states (that is, when is on, is off, and
vice-versa). The commutation times between and are
neglected. The operation of the positive channel is described.

By turning on switch , a sinusoidal current pulse
is developed from to in circuit ,

and (Fig. 7). The capacitor voltage swings from to
. By turning on switch at , the choke

current commutes from to and is clamped on .
The energy stored in the choke at is depleting in the
interval . Continuous-conduction mode
(CCM) of operation is assumed, that is, the inductor current
flows continuously (Fig. 7). To give an insight into
the operation, first constant and smooth output voltages and

are assumed, although this assumption is dropped in the
mathematical description. The inductor current decreases in
a linear fashion.

The same process takes place at the negative side, resulting in
a negative current pulse and condenser voltage swing after
turning on in channel at the beginning of the next half cycle
at (Fig. 7). (For interested readers, the time functions of

, and can be found in [13, Fig. 2].)
Note that there are two subperiods in one period and each

subperiod has two structures (Figs. 2 and 7). Due to the sym-
metrical setup of the two channels, structures 1 and 2 in the two
subperiods are the same, and only the active and passive ele-
ments might be different, e.g., in place of (in channel

), , and , the corresponding components are (in
channel ), , and . Similarly, the state variable belonging

to the elements might change, e.g., replaces in the in-
ductor. However, the element and its state variable can be the
same in the two subperiods, e.g., switched capacitance and
its state variable .

The state equations for structures 1 and 2 of subperiod I are
derived in the Appendix. The result in per unit for structure1 [cf.
(A2)] is

(35)

and for structure 2 [cf. (A4)] is

(36)

where ,

and .
By utilizing the periodicity of the structure series, the values

of the five state variables at the end of subperiod , can be
transformed back to structure 1 used in subperiod I by the peri-
odicity or transfer matrix [Fig. 3]:
[see (9)] Now the same structures (structures 1 and 2) and
the same state variables are used even in subperiod II as in
subperiod I.

provides the initial condition of the state variables
in structure 1 for subperiod II. The result of the back transfor-
mation is

(37)

where in the first bracket suffix and in the second
bracket suffix are omitted. The message of (37) is as fol-
lows. At the start of subperiod II, the value of takes the
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Fig. 11. Oscilloscope trace of (a) the condenser voltage and (b) choke current. (A) Period-1 operation, K = 3. (B) Quasi-periodic operation, K = 8.
(C) Period-2 operation, K = 13. (D) Chaotic operation, K = 35.

value belonging to at the end of subperiod I (Fig. 7), that
is, . Similar statements hold for the other
four state variables. We use the same configuration, equations,
and state variables in subperiod II as we used in subperiod I
but now , and represent the state variables

, and .
The output voltages and currents are exchanged and the sign

of is changed in (37). This result can easily be understood
from the periodicity of the time functions and from the operation
showing that the corresponding time functions in the two chan-
nels are the same only they are shifted by to each other.
(Fig. 7.) (See the periodicity matrix (A6) in the Appendix.)

VII. RESULTS OF STABILITY ANALYSIS OF

FEEDBACK-CONTROLLED RESONANT DC–DC CONVERTER

A. Simulation and Calculation Results

Simulations performed in the MATLAB and Simulink envi-
ronments revealed the complex behavior of the feedback-con-
trolled converter as a result of the variation of the proportional
gain [Fig. 1(a)]. Similar but other results were presented in
[13] and [25] for the converter at different loads. An overall
picture of this behavior is offered by the bifurcation diagram
(Fig. 8), which shows the various states and the sudden changes
or bifurcations of the system due to the variation of bifurcation
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parameter . The bifurcation diagram is obtained by sampling
the switched condenser voltage of the converter at the start
of every switching period in the steady state and plotting these
sampled values as a function of the bifurcation
parameter . The data used are as follows: 125 H;
100 nF; 100 F; 6 8 V;

6 V; 6 V; 6 V. All states have been calcu-
lated from the neighboring previous state instead of starting the
system from zero initial conditions. On the left side of the bi-
furcation diagram, there is just one single sampled value

for a given gain , i.e., the condenser voltage re-
peats itself in each switching period and this corresponds to
the stable period-1 range (Fig. 8). By increasing , the first
bifurcation takes place between and , and it was ana-
lyzed with the stability study just presented. However, only the
first bifurcation was analyzed in the present paper. Figs. 8, 10,
and 11 show further bifurcations and system states contributing
significant information about the system behavior in the range
of higher values.

Fig. 9 shows the loci of the eigenvalues for the following
values of the controller gain: (indicated by ),

(indicated by o), and (indicated by x).
The stable periodic steady-state solution (all of the eigenvalues
lie inside the unit circle) loses stability as the controller gain
is increased and generate a quasi-periodic solution, since a
complex-conjugate pair of eigenvalues passes through the unit
circle at . The eigenvalues were calculated by using
the expression of the Jacobian matrix in (27). The pair of
eigenvalues at the unit circle is . Note that
there are altogether five eigenvalues corresponding to the five
energy storage components.

The stroboscopic map of the feedback-controlled converter
shows the sequence of discrete samples of its arbitrary two state
variables taken once in every switching cycle at the interval
in the steady state and plotted in the plane of the two variables.
Fig. 10 presents the stroboscopic map in quasi-periodic opera-
tion [Fig. 10(a), ], in subharmonic operation in period-8
[Fig. 10(b), ], and in chaotic operation [Fig. 10(c),

] in the plane of condenser voltage
versus output voltage . Quasi-periodic opera-
tion appears like a closed curve, subharmonic operation is rep-
resented by eight points, whereas ten chaotic state appears as a
set of organized points, reflecting a multilayered structure and
order.

B. Test Results

Tests were performed in order to verify the complex dynam-
ical behavior revealed by computer simulations and stability
study. The presentation includes oscilloscope traces of the con-
denser voltage and choke current , for the parameter values
specified at the beginning of Section VII. The time function
of period-1 operation [Fig. 11(A), ], the quasi-peri-
odic operation [Fig. 11(B), ], the subharmonic (pe-
riod-2) operation [Fig. 11(C), ] and the chaotic oper-
ation [Fig. 11(D), ] are presented. Qualitatively, the
measurement results are in good agreement with the simula-
tion ones. Quantitatively, there are deviations due to the pres-
ence of parasitic elements in the practical circuit (ideal compo-

nents were assumed in simulations and in the stability analysis).
These discrepancies do not influence the detected phenomena;
they only shift the bifurcation points (e.g., the Hopf bifurcation
in the experimental circuit occurs at a higher controller gain,
about ).

VIII. CONCLUSION

The paper applied conventional tools for the stability anal-
ysis of variable-structure piecewise-linear nonlinear feedback
systems, namely, the eigenvalues of the Jacobian matrix of the
PMF belonging to a fixed point of the system. The paper intro-
duced two contributions; the first one is less significant, while
the second one is the major contribution. First, it utilized the
periodicity of the variable structure and this way it permits the
application of the same equations written only for one part of
the entire configuration which is continuously repeated after
switching actions.

Second, and most important, it determined the Jacobian ma-
trix by using the small differences of the state vectors compared
to their steady-state values at the start and end of subperiods
and at the switching instant. There was no need to determine the
derivatives of the PMF at the fixed point. The Jacobian matrix
was obtained directly from the relations among the small differ-
ences of the state vectors. In addition, all steps were interpreted
graphically in Figs. 3 and 4. Consequently, this method offered
an alternative way to derive the Jacobian matrix or, which is
more significant, a simpler and faster way to determine it. The
key element of this method was the introduction of the auxil-
iary state vector for preserving constant switching instants for
the switchings depending on state variables even after the small
excursion of the state variables from the steady state, although
in reality it varies a small extent.

In addition, the application of the method was presented in
the example of a feedback-controlled resonant dc–dc converter.
Simulations, calculations, and test results illustrated the theoret-
ical considerations.

APPENDIX

DERIVATION OF STATE EQUATIONS

The linear state equations of the structures in subperiod I are
as follows (Figs. 5 and 6). For structure 1, we have

(A1)

where

Rewriting (A1) in per unit (
, we have

(A2)
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where

and

For structure 2, we have

(A3)

where

Rewriting (A3) in per unit yields

(A4)

Utilizing the symmetry and periodicity of the converter on the
basis of Figs. 6 and 7, the transfer matrix is

(A5)
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