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Abstract 
 
Using a novel exploratory technique for time series analysis, Single Spectrum Analysis 
(SSA), it was possible to develop a comprehensive study of the Portuguese 
pharmaceutical market. 
 
In the introductory chapter this technique is described in detail, for the decomposition 
step, homogeneity structure testing and forecasting. A bibliography review was 
conducted on the technique. To the best of our knowledge this was the first time that 
SSA was applied to any pharmaceutical market, so it was not possible to compare 
results with other published work. 
 
A detailed explanation on the Portuguese pharmaceutical market is provided in order to 
allow comprehensiveness of the work. The Portuguese pharmaceutical market is divided 
in 15 classes, which aggregates all drugs sold in the country. The technique was applied 
to those 15 time series plus the “Total Market” time series. 
 
Applying SSA, time series were decomposed in the respective components, which can 
be described as trend, cyclical movements and seasonality. The structure of all time 
series was tested for homogeneity. With those steps concluded, a monthly forecast, for 
the years 2008 and 2009 (with the respective confidence bounds) were produced for all 
the 16 time series. 
 
As a complex methodology, decisions need to be taken in several steps of the study. 
Even if not all possible choices are presented in the work, lengthy analyses were done to 
reach the best possible results. In fact, choosing between possible window lengths, 
Singular Value Decomposition (SVD) approaches, and eigentriples to be grouped 
together is sometimes more an “art” than a science; experience and previous knowledge 
of the actual phenomena can and should help. 
 
For confidentiality reasons the raw data is not provided in this work, but both forecast 
values and confidence bounds are presented. 
 
Key Words: SSA; Time series; Forecasting; Pharmaceutical Market; 
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Sumário 
 
Utilizando uma nova técnica exploratória para análise de séries temporais, Single 
Spectrum Analysis (SSA), foi possível desenvolver um estudo aprofundado do mercado 
farmacêutico Português.  
 
No capítulo introdutório é descrita, em detalhe, a técnica, para a fase de decomposição, 
o teste de homogeneidade da estrutura e a previsão. A revisão bibliográfica foi 
efectuada para a metodologia. Desconhecemos uma aplicação anterior desta técnica a 
qualquer mercado farmacêutico, pelo que, tendo em princípio sido esta a primeira vez 
que tal sucedeu, não foi possível comparar os resultados obtidos com outros trabalhos 
publicados.  
 
Para permitir uma melhor compreensão deste trabalho é apresentada uma explicação 
detalhada do mercado farmacêutico Português. Este mercado está dividido em 15 
classes que agrupam as vendas realizadas pela totalidade das especialidades 
farmacêuticas existentes. A técnica SSA, foi aplicada a todas as 15 classes, bem como à 
série temporal “Vendas Totais”.  
 
Aplicando a técnica SSA, as séries temporais foram decompostas nos seus respectivos 
componentes, que podem ser descritos como tendência, movimentos cíclicos e 
sazonalidade. Foi testada a homogeneidade da estrutura de cada série temporal. Após 
concluída esta fase, foram produzidas previsões de vendas por mês, para os anos de 
2008 e 2009 (com os respectivos intervalos de confiança) para todas as 16 séries 
temporais.  
 
Pelo facto de se tratar de uma metodologia complexa, é sempre necessário optar entre 
múltiplas alternativas nas diversas fases do estudo. Mesmo que todas as diferentes 
opções não estejam mencionadas no trabalho, uma análise aprofundada foi sempre 
realizada, para que os melhores resultados fossem atingidos. Na realidade, a escolha 
entre diversos “tamanhos de janela”, várias abordagens de Decomposição do Valor 
Singular (DVS), criação de diferentes agrupamentos com diversos “trio-próprio”, é por 
vezes mais uma “arte” do que uma ciência; a experiência e o conhecimento prévio do 
fenómeno podem e devem ajudar.  
 
Por razões de confidencialidade os valores das séries temporais não são disponibilizados 
no trabalho, no entanto, quer os valores de previsão quer os intervalos de confiança 
estão incluídos.  
 
Palavras-Chave: SSA; Séries temporais; Previsão; Mercado Farmacêutico; 
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1. Introduction 
 

1.1. Time series 
 
A time series is defined as a group of observations seen in points or periods in time for a 
definitive interval, beginning at a specific starting point. In some cases, the observations 
are equally spaced in time, for example, the data in study, where the time interval is the 
month. In other cases, the observations occur almost continuously and can be seen as 
evolving continuously over time, for example, ECG’s.  
 
Basically, a time series results from the observation during a determine period of time of 
a real situation with a stable structure. Consequently the observations are not 
independent and the temporal order a fundamental aspect to be taken in account.  
 
Usually all records which fall within the field of time series analysis are influenced, at 
least in part, by sources of random variation, which do not disappear as soon as they 
happen, but are incorporated in the future development of the phenomenon. Therefore 
we call the sequence of random variables in time{ } ZX tt ∈ , a stochastic process and its 
realization { } Zx tt ∈ is then a time series. 
 
The main motivators to study a time series are: 
 

• Description, the basic task to better understand the time series; 
• Explanation, to create the best fitting model; 
• Prediction, to predict the future behaviour of the time series; 
• Control, to constantly evaluate the stability of the time series. 

 
In all cases the purpose is to create a model that fits the time series adequately. One of 
the many fitting models is based on the decomposition of the stochastic 
process{ } ZX tt ∈ , into 4 distinct parts: ttttt NSCMX +++= . The 4 components of 
the model can be group in two parts, the “dynamical” part and the “random” part. The 
first 3 components, which represent the so called “dynamical” part, are: trend tM , 
cyclical movements tC  and seasonality tS . The last part is the random variation term, 
also known as random noise term or error term (noise) and describes random 
fluctuations of the series.  
 
The trend component of the decomposition has an intuitive meaning and can be 
described as the inertia of the series, the main pathway or the “average” variation 
throughout time. It comprehends the mild and consistent movements for long periods of 
time, and can be modelled by a low-order polynomial function.  
 
The cyclical component consists of quasi-periodic functions of varying amplitude and 
duration, so it is not modelled by simple periodic functions. 
 
The seasonal component explains the periodical behaviour terms and effects which 
occur regularly over a period with pronounced short-term fluctuations in time series. It 
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can be modelled by a simple periodic function with know period, for example, annual, 
quarterly, weekly… 
 
Statisticians usually try to explain time series processes from the point of view that there 
exists some relation (correlation) between successive observations.  
 

1.2. Singular Spectrum Analysis (SSA) and Multichannel 
Singular Spectrum Analysis (MSSA) 

 

1.2.1. Singular Spectrum Analysis (SSA) 
 
The singular-spectrum analysis (SSA) methodology is a novel exploratory technique of 
time series analysis incorporating the elements of classical time series analysis, 
multivariate statistics, multivariate geometry, dynamical systems, and signal processing. 
It is a nonparametric method. 
 
The main idea is to expand a single univariate or multivariate time series into 
orthogonal vectors and interpret them by the PCA point of view, using lag-correlation 
structures. The final purpose is to decompose, by data-adaptive filters, a time series into 
several components, which usually can be identified as been the trend, seasonality, 
cycling movements or noise. It generates statistical significance information on these 
components, and provides a reconstruction of those. 
 
This methodology had is “official” beginning with the publication of papers from 
Broomhead and King (1986) and further developed by Vautard and Ghil (1989).  
 
The basic version of SSA consists of 4 steps, which are performed as follows: 

• The construction of the trajectory matrix – the embedding step 
 
In this step the idea is to create a multidimensional series from a one-dimensional series.  
The dimension of the series is called the window length. This multidimensional time 
series forms the trajectory matrix.  
  
Let ( )1,10 ,, −= Nj ffffF K  be a time series of length N, and L be an integer, which is the 
“window length”, with nL pp1 . The choice of L is not obvious and further discussion 
around it will arise further ahead.  
 
After setting 1+−= LNK  and after defining the K L-lagged 
vectors ( ) KjjfX T

Ljjj KK ,2,1,, )21 == −+− , the trajectory matrix is: 
 

  ( ) [ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

===

+

+

=+

nll

k

k

K
KL
ji

xxx

xxx
xxx

XX

...
............

...

...

:...:f  X

1

132

21

1
,

1,2-ji

 

This trajectory matrix X is an Hankel matrix, meaning that all the elements along the 
diagonal i+j = constants and are equal.  
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• SVD (singular value decomposition) 
 
Using the PCA theory the singular value decomposition of a matrix X is done by 
calculating the eigenvalues and eigenvectors of the matrix S = XXT of size L x L. 
 
The basic SSA might also use the lag-covariance matrix KSC /= (the only difference 
is the magnitude of the corresponding eigenvalues which in S are K times larger).  
 
There are several versions to calculate the lag-covariance matrix, with both advantages 
and disadvantages for each. We will return later to this matter.  
 
The representation of X is then the sum of rank-one biorthogonal matrices Xi (i = 1, …, 
d), where d  (d≤ L) is the number of nonzero singular values of X.   
 
After doing that, a collection of L singular values will be found, represented by iλ , 
which are the square roots of the eigenvalues of the matrix S, and the corresponding left 
and right vectors, represented respectively by iU  and iV . 
 
The left singular vectors of X, iU , are the orthonormal eigenvectors of S, commonly 
called the “empirical orthogonal functions”.  
 
The right singular vectors, iV , can be seen as the eigenvectors of the matrix XTX.  
 

By considering that diUXV
i

i
T

i ,...,1, ==
λ

, the SVD of X can be written like 

dXXX ++= ...1  where T
iiii VUX λ= . The eigentriple of the SVD is then the 

collection of iii VUλ . 
 
These two steps form the reconstruction stage. The grouping stage corresponds to the 
following two steps. 
  

• Grouping of matrices 
 
This step corresponds to splitting the matrices, computed in the previous 
step dXXX ++= K1 , into d groups from { }d,,1K  and summing the matrices within m 
disjoints subsets mII ,,1 K . These matrices are computed for mIII ,,1 K=  and the 
previous decomposition leads to the following decomposition

mII XXX ++= K
1

. 
 
This process of choosing the group mII ,,1 K is called eigentriple grouping. The purpose 
of this step is to separate the additive components of the time series. The concept of 
separability will be further discussed later. 

• Diagonal averaging 
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This step transfers each resultant matrix, which is an additive component of the initial 
series, into a new time series with dimension n. It is a linear operation and maps the 
trajectory matrix of the initial series into the initial series itself.  
 
This is done by averaging (we will return later to the methodology to do this) over the 
diagonals i + j = const of the matrices kIX  obtaining the series ( ) ( ) ( )( )k

n
kk ffF 10

~~~
−++= K  

and the initial series is decomposed into a sum of m series: 

1,,0,~
1

)( −==∑
=

Nnff
m

k

k
nn K  

 
This equality only occurs when m=L. Where for each k the series )(k

nf  is the result of 
diagonal averaging of the matrix kIX . 
 
These m time series represent the m first principal components. 
 
The general purpose of the SSA analysis is to reach the 4th step with additive 
components )(k

nf  which are “independent” and “identifiable” time series. 
 
This new time series serves the only purpose of analyzing the structure of the time 
series. As a result we can then have a )(k

nf component that can be identified as the trend 
of the original series, an oscillatory series or noise. Figure 1 shows the trend 
identification in the time series B.  
 

Initial & Reconstructed Series
Dados p_software.xls [Sheet1];    Var:B;

DECOMP.-K=97,Cent.(No);    RECONSTR.-ET:(1); 

B
B(recon.)

Jan-99 Jun-99 Nov-99 Abr-00 Set-00 Fev-01 Jul-01 Dez-01 Mai-02 Out-02 Mar-03 Ago-03 Jan-04 Jun-04 Nov-04 Abr-05 Set-05 Fev-06 Jul-06 Dez-06 Mai-07 Out-07
402283 

461068 

519852 

578637 

637421 

696206 

754990 

813775 

872559 

931344 

 
Figure 1 - Time series B – Trend 

 
These components are produced by the series itself (no parametric model is fixed), so it 
can not be expected to get, in real life series, the components as exact harmonics or 
linear trend, even if these harmonic or linear trends are present in the series. This is both 
because of the presence of noise and the non-parametric nature of the method.  
 
The two most important moments in the SSA “world” are: 

• The choice of the “window length”; 

• The “separability” of the components.  
 
The “window length” is the main parameter of basic SSA, in the sense that its wrong 
choice would imply that no grouping activities could be performed to obtain a good 
SSA decomposition. 
Have an incorrect “window length” can mean that the separability of the components 
might not occur. This is a critical point since achieving “independence” of the 
components is of fundamental importance to the process.  
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There are several notions of separability, but the most important is weak separability, 
defined as: 
 
Provided that the original time series nf is a sum of m series )(k

nf  ( )mk ,,1K= , for a 
fixed window length L, weak L-separability means that any subseries of length L of the 
kth series )(k

nf  is orthogonal to any subseries of length L of the lth series )(l
nf with kl ≠ , 

and the same holds for their subseries of length K =  N – L + 1.  
 
The only problem is that exact separability rarely happens in practice. Therefore an 
approximate separability is more important and achievable. Several different 
characteristics are used to measure the degree of separability.  
 
In fact, if two or more of the singular values of the trajectory matrices ( )kX and ( )lX  
corresponding to two different components of ( )k

nf and ( )l
nf  of the original series are 

equal or close, then the SVD is not uniquely defined and those two series ( )k
nf and 

( )l
nf are mixed up, and an additional analysis is required to separate them. Several 

options exist for the additional analysis.   
 

1.2.2. SSA forecasting of time series 
 
A forecast can only be build if the model found fits appropriately the data, meaning that 
the structure of the data was found and is defined by a model. The model can derive 
from the data or at least can be checked against the data. In SSA forecasting, these 
models can be described with the help of the linear recurrent formulae (LRF).  
 
The series governed by LRF’s admits natural recurrent continuation since each term of 
such a series is equal to a linear combination of several preceding terms.  
 
So, if the original series nf  satisfies a linear recurrent formula dndnn fafaf −− ++= K11  
of some dimension d with some coefficients daa ,,1 K , then for any N and L there are at 
most d nonzero singular values in the SVD of the trajectory matrix X; therefore, even if 
the window length L and K = N – L + 1 are larger than d, we only need at most d 
matrices Xi to reconstruct the series.  
 
If we have a series satisfying a LRF then we can continue it for an arbitrary number of 
steps using the same LRF. 
 
But there is another way of forecasting with SSA. It is the vector forecasting algorithm. 
While the recurrent forecasting algorithm explained above performs a recurrent 
continuation of a one-dimensional series, the vector forecasting algorithm does that by 
the continuation of the vectors in an r-dimensional space and only then returns to the 
time-series representation. Apparently this option is better for long-term forecasting. 
 
Creating confidence intervals for this forecast is not only needed but is desirable to 
assess quality. Two methodologies can be used, one by using the recurrent forecast 
process to forecast the periods already known, and after that comparing the values 
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achieved with the real ones. Assuming that the residual series is stationary and ergodic, 
quantiles of the related marginal distribution can be estimated and therefore confidence 
bounds can be created. The second technique is the bootstrap, which uses Monte Carlo 
simulations to create the confidence intervals. 
 

1.2.3. Multichannel Singular Spectrum Analysis (MSSA) 
 
If instead of having one time series, we have p time series, it can be used a modified 
version of the SSA technique called MSSA (Multichannel SSA).  
 
This methodology allows to correlate not only observation but also to correlate variables 
(time series).  
 
MSSA is used in the same way that SSA is used, it analyses each time series with n 
observations (assuming that all time series has the same number of observations) until a 
specific lag l, which implies that the covariance matrix has information on interrelations 
between lagged versions of the original variables as well as between different variables.  
 
The technique can be described as follows.  
 
Consider an l-variate time series ( )l

nnn fff ,,1 K= , where n = 0,1,…,N-1. Then for a 
fixed window length L define the trajectory matrices ( ) ( )liX i ,,1K=  of the one-
dimensional time series ( )i

nf . The trajectory matrix X can be defined as: 
( )

( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
lX

X
X K

1

 

 
The lagged matrix pKxX ′ , where 1+−= LnK and Lpp =′  can be seen as: 
 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+++

npkpnknk

Lppll

LppLL

xxxxxx

xxxxxx
xxxxxx

,,,2,2,1,1

1,2,1,22,21,12,1

,1,,21,2,11,1

KKKK

MOMOMOMMOM

KKKK

KKKK

 

 
 
The generalization of SSA to a multivariate time series requires the construction of an 
augmented block-matrix SX, with the dimension pL x pL: 
 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

pppp

p

p

X

SSS

SSS
SSS

S

K

MOMM

K

K

21

22221

11211

 

Each Skl is the matrix that contains estimates of the lag covariance between k and l.  
 
All the following steps follow the same theory as in SSA. 
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1.2.4. Caterpillar SSA 
 
The caterpillar SSA, version 3.30, Professional M Edition, is the software used to 
develop the present work. All graphs and results presented are coming directly from the 
software.  
 
This software was developed by the Gista T Group, which is a group of 3 Russian 
scientists (Nina Golyandina, Vladimir Nekrutkin and Kirill Braulov) working in the 
University of St. Petersburg since the middle of 1990’s on the development of SSA and 
MSSA and the corresponding software. 
The program performs extended analysis, forecasting for both one-dimensional and 
multi-dimensional time series. The program also performs change-point detection for 
one-dimensional time series.  
 
There is another very active group of scientist working in UCLA (University of 
California) the Theoretical Climate Dynamics (TCD) group which developed also 
software for SSA. This software follows a slightly different approach especially on the 
forecasting part. 
 

1.3. Bibliography review 
 
This work will mainly follow the work of Golyandina et al. (2001) in the book 
“Analysis of Time Series Structure – SSA and related techniques”. The aim of this book 
is to explain the methodology and theory of SSA. The main topics are SSA analysis, 
SSA forecasting and SSA detection of structural changes. 
 
Broomhead and King (1986) and Broomhead et al. (1987) publications were the first 
ones related with this subject. In fact, Broomhead and King (1986) started by 
developing a singular system analysis based on the method of delays. The method of 
delays was introduced initially by Takens (1981). The singular system analysis was 
developed by Bertero, Pike and co-workers (1982). The method presented is therefore 
based on the Takens (1981) proof and on the ideas from Bertero, Pike and co-workers. 
After introducing: a) some of the relevant language of dynamical systems theory, b) the 
definition of qualitative dynamics, c) the concept of equivalence relations, d) the 
discussion of Whitney’s embedding theorem and e) the review of the method of delay, 
they developed a full theoretical approach and have applied it to a time series, 
obtained from the Lorenz model.  
 
The first step of the SSA method is called the embedding step. Embedding can be 
regarded as a mapping that transfers a one-dimensional time series to a 
multidimensional series. The theoretical justification of data embedding techniques used 
by experimentalists to reconstruct dynamical information from time series is provided in 
a paper of Sauer et al (1991), expanding on the work of Whitney (1936) and Takens 
(1981).  
 
Vautard and Ghil (1989) developed further the Singular-spectrum analysis (SSA). They 
refined certain aspects of its application, such as the influence of the window size, 
sampling interval, and length of the sample on the results of SSA. One of the objectives 
of this paper was to explore fully the potential of SSA in studying the dynamics 
recorded in the data. All the series considered here were zero-mean, continuous, 
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infinite and ergodic. In this article authors investigated the properties of SSA first for 
simple phenomena, such as pure oscillation, a red-noise process, or the Lorenz system. 
Next, they applied it to four paleoclimatic records from the Quaternary. They concluded 
that SSA is a powerful descriptive tool for nonlinear dynamics in general and climate 
dynamics in particular. 
 
A good example of the capabilities of the SSA method is given by Ghil and Vautard 
(1991) when they used it to analyze the time series of global surface air temperatures for 
the past 135 years, allowing a secular warming trend and a small number of oscillatory 
modes to be separated from the noise. 
 
Vautard et al. (1992) continued the work in this area and proved that SSA works well 
for short, noisy time series. In this article SSA is combined with advanced spectral-
analysis methods – the maximum entropy method (MEM) and the multi-taper method 
(MTM) – to refine the interpretation of oscillatory behavior. A combined SSA-MEM 
method is also used for the prediction of selected subsets of RC’s (Reconstructed 
components). They have proven that SSA extracts as much reliable information as 
possible from short and noisy time series without using prior knowledge about the 
underlying physics or biology of the system; based on this information, it also provides 
prediction models. The superiority of this method over classical spectral methods lies in 
the data-adaptive character of the eigenelements it is based on. They have also proved 
that SSA can provide useful physical insight and modest, but unprecedented, medium-
term predictive skills starting with the few hundred data points typically available for 
geophysical and other natural systems. All the work is based on the assumption that the 
process x under study is stationary in the weak sense, i.e., that the second order 
moments are invariant under translation. One of the results of this paper is the 
presentation of a particular method of estimating of the Toeplitz matrix shown to 
have little bias compared to other estimates.   
 
Plaut and Vautard (1994) used successfully not the SSA method but the Multichannel 
SSA - MSSA method to identify dynamically relevant space-time patterns and to 
provide an adaptive filtering technique. One of the aims of this paper is to provide a 
manual of MSSA; on Section 2 emphasis is put on the mathematical formulation of the 
method, with all the technical details being provided. In the multichannel case, the 
separation property acts both in time and space- MSSA is capable of distinguishing two 
oscillations with the same spatial patterns but with different periods, as well as 
oscillations with the same period and spatially orthogonal patterns. This method is 
mathematically equivalent to the extended EOF analysis of Weare and Nasstrom (1982). 
The spirit of extended EOF’s, however, is different and aims at including temporal 
information in the EOF’s, by adding a few lags in the state vectors. MSSA essentially 
differs by the use of large number of lags from which spectral properties can be drawn. 
For more information on EOF’s see also the work of Lau and Chan (1985) and Chen 
and Harr (1993).  
 
Allen and Smith (1996) showed how the basic formalism of SSA provides a natural test 
for modulated oscillations against an arbitrary “colored noise” null hypothesis. This test 
is called Monte Carlo SSA and the authors illustrate their use in 3 situations. A method 
of distinguishing signals from arbitrary noise processes via SSA, based on the notion of 
“surrogate data” (surrogate data is random data generated to have the same mean, 
variance, and autocorrelation function as the original data) is introduced. A Monte Carlo 
ensemble of surrogate data is generated using the null hypothesis as a model, and a test 
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is applied to establish whether it is possible to distinguish the data series from a member 
of the ensemble. The approach proposed is a method of fitting AR (1) parameters to the 
data such that the process tested is on some measure, that which is most likely to cause a 
failure to reject the null hypothesis. In this way, if the process is rejected, there is a 
reason to believe that all other AR (1) processes would also be rejected at the same or 
higher confidence level. The algorithm proposed makes unnecessary to preprocess data 
to remove a trend or annual cycle before the analysis. The basic principle of surrogate 
data testing is that both data and surrogates must be treated in exactly the same way. To 
achieve that, a variant of SSA is needed, because SSA selects the EOF basis that 
compresses the maximum possible variance in the data series into the highest-ranked 
EOF’s, implicitly assuming that none of the data is noise. Therefore a variant of SSA 
was introduced in order to assume that all of the data is noise except that which is 
established as signal. This method also provides a way to build confidence bounds for 
the forecast. Another way to construct confidence bounds is the bootstrap variant. This 
method is explained by Efron and Tibshirani (1986). 
 
Yiou et al. (1996) published a paper where several modern time series analysis 
methods were compared with each other. The methods compared are: Fourier 
techniques (Blackman-Tukey and Multi-Taper), Maximum Entropy technique, Singular-
spectrum techniques and Wavelet analysis. Their final recommendation is that all of 
those methods should be used in conjunction with each other for better results, because 
by confronting those methods, more information can be extracted from the system 
generating the analyzed signal, and the possibility of spurious results due to biases of 
one particular method is reduced. Nevertheless, they mentioned two major problems 
that can arise; a) when the time series are relatively short and b) the stationarity 
hypothesis which is implicitly made when classical methods are applied. For both 
problems SSA is mentioned as a robust method to be used. 
 
In Lisi (1996) a criterion to choose the number of components which leads to the best 
filtering is purposed. The selection is made by minimizing the prediction error. 
 
Elsner and Tsonis (1996) published a book called: “Singular Spectrum Analysis. A new 
tool in Time Series Analysis”, each provides elementary introduction to the subject. 
 
Varadi et al. (1999) proposed to generalize SSA from short and noisy time series to long 
and noisy time series. They called it Random-Lag SSA. SSA is based on a fixed 
sequence of lags, 1, 2, …, up to some maximum M. One then computes the eigenvalues-
eigenvector decomposition of a Toeplitz matrix of size MxM , consisting of the 
autocorrelations up to the lag 1−M . Random-lag SSA employs multiple random 
sequences of lags in which the average difference between consecutives lags is typically 
larger than the unit. The maximum lag can be large, while the number of lags can be 
kept small. The matrix to be decomposed in not Toeplitz, and it can incorporate a large 
number of autocorrelations at different lags. The randomness in the selection of lags is 
actually an advantage, since one can average the results of signal-noise decomposition 
over many sets of lags. This is, of course, important when the time series requires M 
larger than 2000-3000. 
Yiou et al. (2000) continued their work on this subject and published a paper with some 
developments. The idea is to extend the singular-spectrum analysis to the study of 
nonstationary time series, including the case where intermittency gives rise to the 
divergence of their variance. In SSA the largest scale at which the signal X is analyzed 
is approximately N (the length of the time series), and the largest period is M.  As a 
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consequence, the EOF’s pk contain information from the whole time series. The 
proposal is to extending global SSA analysis to a local one. In fact, they proposed to 
extend the SSA methodology by using a time-frequency analysis within a running time 
window whose size W is proportional to the order M of the correlation matrix. Varying 
M, and thus W in proportion, they obtain a multi-scale representation of the data. They 
perform local SSA on a time series by sliding windows of length NW ≤ , centered on 

times WNWb
2
1,...,

2
1

−= . When using this method, they assume that considerable 

information content resides in the local variance structure and the time series is locally 
the sum of a trend, statistically significant variability, and noise. The crucial difference 
between this local version and the global SSA is that the Reconstructed Components are 

obtained here from local lag-correlation matrices. As b varies from W
2
1 to WN

2
1

− , 

this implies that the RC’s will be truncated near the edges of the time series. Therefore 
with this new method, authors were able to reconstruct in an exact way the initial signal 
of the time series. The new method was also helpful in revealing key properties of a few 
irregular time series which conventional single-scale spectrum-analysis techniques 
would not reveal. Multi-scale SSA solves objectively the delicate problem of 
optimizing the analyzing wavelet in the time-frequency domain by a suitable 
localization of the signal’s correlation matrix.  
 
Ghil et al. (2002) published a review where they describe the connections between time 
series analysis and nonlinear dynamics, discuss signal-to-noise enhancement, and 
present some of the novel methods for spectral analysis. The various steps, as well as 
the advantages of these methods, are illustrated by their application to an important 
climatic time series, the Southern Oscillation Index. For enhancing the Signal-to-Noise 
Ratio they used SSA, Monte Carlo SSA and Multiscale SSA and wavelet analysis. As 
Spectral analysis methods they used the Classical spectral estimates, Maximum entropy 
method (MEM) and Multitaper method (MTM). As Multivariate methods they used 
Principal Oscillation patterns (POP’s) and Multichannel SSA. This is a good review 
because they not only provide the theory of the most recent developments in the spectral 
analysis but they also provide up-to-date information on the most refined and robust 
statistical significance tests available for each one of the three methods discussed in 
depth (SSA, MEM, and MTM). They also confirmed as a reliable way of forecasting 
(“relative high accuracy”) the combination of SSA-MEM.  
 
SSA has been widely used for several different purposes in the past few years. Here are 
only a few examples: 
 

• In providing a qualitative decomposition of the signal into significant and noise 
components of ultrasound biomedical echoes, by Maciel and Pereira (2000). 

• To reduce the effects of the possible discontinuity of the signal and to implement 
an efficient ensemble method to forecast individual rain-fall intensities series 
distributed in the Tiber basin, by Baratta et al (2003). 

• To denoising chaotic data, by Liu and Zhao (2005). 
• To smooth raw kinematic signals, by Alonso et al (2005). 
• To forecast chaotic time series that contains short time surges with high 

amplitudes, by Ivanov et al (2005).  
• To extrapolate time series, by Istomin et al (2005). 
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• To fill the gaps in several types of data sets, by Schoelhamer (2001) and by 
Kondrashov and Ghil (2006). 

• To forecast the number of monthly accidental deaths in the USA, and to 
compare the results with those obtained using Box-Jenkins SARIMA models, 
the ARAR algorithm and the Holt-Winter algorithm, by Hassani (2007). 

 
An important basis for this work was also the thesis presented for the degree of Doctor 
of Philosophy in Statistics at the University of Aberdeen by Oliveira (2003), each main 
theme is how to deal with PCA for non-independent observations. In this work and after 
the presentation of PCA and its relationship with time series datasets, the most 
important existing techniques in the field were presented: Singular Spectrum Analysis 
(SSA), Hilbert EOF, Extended EOF and Multichannel Singular Spectrum Analysis 
(MSSA), Principal Oscillation Pattern Analysis (POP Analysis). 
 
On the PCA field the main sources of information used were the book “Applied 
Multivariate Techniques” by Sharma (1996) and the manuscript by Gomes, “Análise em 
Componentes Principais” (in Portuguese) (2006).  
 
For basic Time Series analysis the main source of information was the book in 
Portuguese “Análise de Sucessões Cronológicas” published by Murteira et al (2000). 
 

1.4. Single-spectrum analysis – the methodology 
 
After the presentation of the model, done in section 1.2.1., some more details needs to 
be given in order to understand and implement this methodology. 
 
In fact, the method is complex, therefore a full in depth explanation can be found both 
in the book “Analysis of Time Series Structure – SSA and Related Techniques” by 
Golyandina et al. (2001), and in the Annex 1 of the present work. These explanations 
are needed in order to understand the coming chapters, where real time series are 
analyzed using SSA.  
 
In the Annex 2 can be found both the theoretical explanation of the method and the 
implications of those in the real world analysis, in what concerns the: 
 

a) Window length – having an improper window length can mean that 
the separability of the components will not be achieved and the 
grouping of the eigentriples will not be successful. The success of the 
method relies on a correct window length size. As basic rule it can be 
said that the window length should never be greater than 2/N . The 
dimension of the window length is determined by the problem in 
hand. A large L will provide separation results more stable (with 
respect to small perturbations), the information extracted will be larger 
and the components will be less mixed up. On another hand a small L 
will help on the proper definition of the noise floor. If the time series 
has a seasonal component the window length needs to be proportional 
to that period.  For more details see section 6.1. - The window length.   

b) SVD – several different matrices can be used to calculate the singular 
value decomposition, depending on the type of time series in study. 
Different methodologies will, of course, create different results. To 
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choose the most adequate matrix some theoretical questions needs to 
be evaluated. The Basic SSA will be the most used but others 
techniques including Single centering SSA (which should be used in 
cases of time series with a constant component and a component that 
oscillates around zero), Double centering SSA (which should be used 
to extract the linear component of the times series) and Toeplitz SSA 
(which can only be used in stationary time series), could be 
alternatives. Description of those can be found on section 6.2. – SVD. 

c) Separability – To decompose the time series in its additive 
components it is absolutely needed that those components be 
separable. There exist several types of separability and several ways to 
identify them. W-correlations are used as the best way to measure 
separability. In section 6.3. Separability, all definitions can be found. 

d) Grouping – After having the eigentriples identified, and proved 
separable, one need to group them as the second part of the process. 
There are several ways to identify the eigentriples that should be 
grouped together, namely the scatter plots for the eigenfunctions and 
the EVAL percents, and those are explained in section 6.4. – 
Grouping. 

e) The final step of the method is the diagonal averaging. There is need 
for a formal procedure to transform an arbitrary matrix into a Hankel 
matrix and therefore into a series. This formal procedure is provided 
in section 6.5. – Diagonal Averaging. 

 
The desired output of the above methodology is a reconstructed homogeneous time 
series governed by a linear recurrent formula, with a small dimension relative to N. To 
get to the point when the above can justifiably be said one need to evaluate several 
aspects. 
Structural changes can happen when transforming an homogeneous time series into an 
heterogeneous one, therefore a way to detect those changes is needed. The heterogeneity 
matrix is the way to solve this problem. More details about that matrix can be found in 
section 6.6.1 – Heterogeneity matrix and section 6.6.2. – Heterogeneity functions. 
Because the point where the change happens is important, especially for forecasting, the 
detection functions play a great role here. The detection functions determine the specific 
point where an homogeneous time series become an heterogeneous one. The theory of 
detection functions is provided in section 6.6.3. – Detection functions.  
The type of violations on the homogeneity of a time series and the linkage between the 
homogeneity of the time series and the separability of its components are described in 
the last two sections of the Annex 2. The general form of the H-matrix is presented and 
explained, being the “heterogeneity cross” the most helpful visual aspect on the 
detection of violation. 
One of the most important aspects when confirming homogeneity of a time series is the 
choice of the parameters, which will help to determine the number of change-points, 
their location and if violation is permanent or temporary. The renormalization of the 
heterogeneity matrix is also important in order to evaluate correctly the possible 
heterogeneities.    

1.5. Single-spectrum analysis - Forecasting 
 
An acceptable forecast can only be performed if the conditions that follow are met: 
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The series has a structure; 
A method or algorithm identifying this structure is found; 
A method of the time series continuation, based on the identified structure is available; 
The structure is preserved for the time period over which the forecast will be done. 
 
The structure mentioned is usually hard to find and definitively is not unique, since 
most of the series has a noise component. That creates the opportunity for existence of 
different and even contradictory forecasts. One of the most important tasks related with 
the structure of the series is not only found it but also to check its stability. 
The method that identifies the structure can derive from the series data or at least be 
checked against that data. In SSA forecasting these models are described with the help 
of the Linear Recurrent Formulae. 
 
The series governed by LRF’s admits natural recurrent continuation because each term 
of the time series is equal to a linear combination of several preceding terms. 
 
The idea behind the searching of the LRF’s is as follows: 
 
If d is the minimal dimension (or order) of all LRF’s governing F, it can be proved that 
if the window length L is larger than d, and the length of the series is sufficiently large, 
than the trajectory space for the series F is d-dimensional. The trajectory space 
determines a LRF of dimension L-1 that governs the series. When this LRF is applied to 
the last terms of the initial series F, a continuation of F is obtained.  
 
Usually what is obtained from the basic steps of SSA are additive components of the 
series F, for example ( ) ( )21 FFF +=   where ( )2F is residual series. If the component ( )1F  
is governed by a LRF and is strongly separable from ( )2F for the selected value of the 
window length L, then each of them must satisfy some LRF.  
 
In practice, and for a certain window length L, and assuming that the series components 

( )1F  and ( )2F  are approximately strong separable, the series ( )1F  is reconstructed with 
the help of a selected set of eigentriples and an approximation to the series ( )1F and his 
trajectory space is obtained. This basically means that a LRF, approximately 
governing ( )1F , and the initial data for this formula are found, providing the possibility 
to have a forecast.  
 
A theoretical description of the SSA recurrent forecasting algorithm is available both in 
the book “Analysis of Time Series Structure – SSA and Related Techniques” by 
Golyandina et al. (2001), and in the Annex 2 of the present work, in section 7.1 - SSA 
recurrent forecasting algorithm. Section 7.2 - Approximate continuation, introduces the 
concept of approximate continuation because the exact continuation is mainly 
methodological and theoretical.  
 
There exists another way to forecast with SSA, is the method V-Forecasting, in 
opposition to the above mentioned R-Forecasting. For R-Forecasting, diagonal 
averaging is used to obtain the reconstructed series, and continuation is performed by 
applying the LRF. In the V-Forecasting, these two stages are used in the reverse order.  
More details are provided in the section 7.3 – Modifications to basic SSA R-algorithm. 
V-forecasting tends to be more “conservative” in cases of rapid increase or decrease of 
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the R-forecasting values. V-forecasting tends to be better to forecast on the long-term 
than the R-forecasting. 
 
Forecast needs to be presented together with its confidence bounds. There are two 
variants to the construction of those. The empirical and the Bootstrap, both are 
explained it in the section 7.4 – Forecast confidence bounds and in its sub-sections. It 
needs to be said that the empirical variant can only be used for short-term forecasting.  
 
To assess the forecast stability and its reliability it can be said that: 
Different algorithms: If the results of V and R-forecasting coincide then forecasting is 
stable; 
Different initial data: Using different points of the reconstructed series as the base of the 
forecasting. Comparing results can give insights to the stability of the forecast; 
Different window lengths: If the separability characteristics are stable under a small 
variation in the window length L, than forecasts for different L can be compared; 
Forecast of truncated series: If the results of the forecast from the series truncated by 
removing the last few terms of it can be compared with the results of the forecast from 
the non truncated series than the forecast can be regarded as adequate and stable.
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2. Outline 
 
The present work can be divided in two different sections. Section 1, which could be 
called the “Theory part” is composed with chapter 1, and builds all the basic theoretical 
background for the remaining of the work. More detailed information is provided in 
Annex 1 and 2.  
Part two, which could be called the “Practical part” is the remaining of the work and 
condenses chapters 3 and 4. 
Chapter 1 is, in a short summary, the basis to understand what is a time series and what 
the methodology SSA stands for. It also contains explanations of the software used in 
the present work. The bibliography review intends to provide an overview of everything 
that has been published regarding SSA, since the beginning to nowadays.  
Section 1.4 together with Annex 1 are an in depth review of the theoretical fundaments 
of the methodology. Explained in detail, has the aim of providing enough information 
on how the methodology is developed in order to be adequately used in the real cases 
presented.  
In Section 1.5 and Annex 2 the same is done but now for the second part of the 
methodology – the forecasting. An in depth review of the several ways of forecasting is 
provided, including the different methodologies of calculating confidence bounds.  
The second part, in chapter 3 starts by providing all necessary information to understand 
the time series that will be studied. Background information on the pharmaceutical 
market in Portugal is provided because this information is needed to fully understand 
the evolution of the market, both past and future.  
At this time, three times series plus the sum of the available 15 were selected to be 
analyzed in detail and all steps of the process are conducted and explained. The final 
part of this chapter is dedicated to the forecast of the selected time series. By the end of 
the chapter all steps of the SSA method have been fully developed and presented. 
Chapter 4 is dedicated to the Discussion and Conclusions, providing the final comments 
and thoughts of the present work.  
All the 15+1 time series went through the same in depth analysis, each time series was 
decomposed, grouped, reconstructed and forecasted with the same level of attention and 
care. In order to do not transform this work in an endless list of justifications for each 
parameters choice, the results are presented in the Annex 3. There, all parameters and 
results are presented but no graphs or explanations are provided.
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3. Data analysis 

3.1. The Portuguese Pharmaceutical Market 
 
The WHO (World Health Organization) Collaborating Centre for Drug Statistics 
Methodology develops and maintains the ATC/DDD (Anatomical Therapeutic 
Chemical classification/Defined Daily Dose) classification system. By doing this it 
classifies all and every drug existing in the market in their respective ATC. This system 
is widely use and known by all players in the pharmaceutical market. They are 5 levels 
in the ATC system. 1st level represents the anatomical main group, 2nd level represents 
the therapeutic subgroup, 3rd level represents the pharmacological subgroup, 4th level 
represents the chemical subgroup and finally 5th level represents the chemical substance.  
 
The Portuguese pharmaceutical market works through two different channels, retail and 
hospital. The Retail market represents the sales of all drugs sold in a Retail Pharmacy 
with or without medical prescription. The Hospital channel represents the sales of all 
drugs sold directly by the Pharmaceutical Industry to the Hospital Pharmacies in order 
to be administered to inpatients. 
According to IMS Health and regarding size, the total Portuguese pharmaceutical 
market value was more than 3.5 billion Euro in the year 2007. From those three quarters 
are sold in the Retail Market and the remaining in the Hospital segment.  
 
From this point onwards, everything mentioned relates only to the retail Pharmaceutical 
Market.  
 
According to INFARMED (Autoridade Nacional do Medicamento e Produtos da Saúde 
I.P., The Portuguese Drugs Authority) from that market, 12% of the total number of 
packs sold in 2007 were of generic products (generics are products with the same active 
ingredient of those that have seen their patent protection expired). This is important to 
be mentioned once the market as been largely influenced during the last 3 years by 
several institutional campaigns run to increase the utilization of those products, 
increasing the percentage of packs sold of generics products from 5% in 2004 to the 
already mentioned 12% in 2007. 
 
IMS Health publishes monthly the sales in Portugal (continental and the islands), of all 
pharmaceutical products grouped in the above mentioned classes.  
 
There are 15 ATC1, and they represent the Portuguese retail pharmaceutical market, 
namely: 
 
A - Alimentary track and metabolism  
B - Blood and blood forming organs 
C - Cardiovascular system 
D - Dermatologicals 
G - Genito urinary system and sex hormones 
H - Systemic hormonal preparations, excl. sex hormones and insulins 
J - Antiinfectives for systemic use 
L - Antineoplastic and immunomodulating agents 
M - Musculo-skeletal system 
N - Nervous system 
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P - Antiparasitic products, insecticides and repellents 
R - Respiratory system 
S - Sensory organs 
T - Products to perform diagnosis 
V - Various 
 
All data that will be used in this work represents the total monthly packs sold per ATC1, 
in Portugal, from January 1999 until December 2007. 
 
As have already been said, total amount of drugs sold in Portugal for the year of 2007 in 
the retail segment was more than 2,5 billion Euro, and they represent less than 1% of the 
total drugs sold in the world. The market grew from 1999 to 2007 at a 7% CAGR 
(Compound Annual Growth Rate). Biggest ATC’s in 2007 are (in descending order): 
Cardiovascular system (28%), Nervous System (17%) and Alimentary track and 
metabolism (14%). First two grew above the market for the same period and the 3rd one 
grew slightly less (5%).  
 
For the Retail pharmaceutical market products the distribution channel is: 
Pharmaceutical Industry => Wholesalers => Pharmacies => Patients. All products 
follow this path. IMS Health provides the sales at the Wholesalers to Pharmacies point 
with coverage just over 96% of total market. The remaining is projected, in order to 
achieve the total market. Once the projection method is not the subject of this work we 
will not go further into its explanation. 
 
According to IMS Health, in 2007, there were 110 pharmaceutical companies selling 
above 1 billion Euro. According with INFARMED there were 334 Wholesalers and 
2,666 Pharmacies by the end of 2006, representing coverage per Pharmacy of 3,782 
Inhabitants.  
 
Before being sold in the country all products are approved by INFARMED. In this 
context “a product” represents all pack sizes, of all formulations, of all strengths. This 
means that, for example, the sales (considered in this work) for the well known product 
Aspirin will be the sum of the total packs sold for all presentations in the market, which 
will be for 2007: 
 
 Aspirin = 674731 units 

Aspirin 500 mg (500mg of active ingredient, acetylsalicylic acid) x 20 
pills = 661323 units 
Aspirin 500 mg (500mg of active ingredient, acetylsalicylic acid) x 10 
pills = 13408 units 

 
In Portugal and in 2006 were 11,984 products with an authorization to be marketed, 
with 38,481 different packs sizes.  
The data used represents, therefore, the total number of packs sold, as defined above, in 
a monthly basis nth in Portugal.  
 
The price of pharmaceutical products is defined in two steps. Firstly, the Minister of 
Economy defines the maximum public price for the pack. For the products that do not 
have a co-payment from the SNS (Serviço Nacional de Saúde, National Health Service) 
the process stops here. From this point onwards all products can be sold in a retail 
pharmacy. For the products that are a co-paid by the SNS another steps is needed. 
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INFARMED determines both the co-payment level and the final public price. This co-
payment only applies when the product is dispensed in a pharmacy with a medical 
prescription. In Portugal, in 2006, existed 4,176 products (8,117 different packs sizes) 
with a reimbursement granted. 
 
Together with the public prices also the margins for the wholesalers and pharmacies are 
defined by law. Nevertheless, those margins differ from product groups. Due to all this 
specificities and once the Portuguese government has full control on prices and margins 
increases and decreases, the unit used in this work is packs sold and not Euro sold. The 
purpose is to determine the market movements despite the price changes. At the end and 
after finding the total number of packs that are expected to be sold in 2009, some 
assumptions needs to be made regarding prices evolution, still this is not  the aim of this 
work. 
 
Is well known that once a drug, touches one of the most sacred area for humans, their 
health and well being, those should be used with extreme caution. Drugs have, as 
chemical entities, side effects and only after exhaustive study they can be widely used. 
It is then expected that sales of a specific drug will increase over time, after medical 
doctors have learnt how to use it in an efficacious and safe way. So, it is fair to say that 
the utilization of a drug today is the result of the accumulated experience over the past 
years. It is only of common sense to agree that there exists a correlation between 
successive observations.  
 
It is therefore easy to accept that we are in presence of time series and that those should 
be studied taking into account the temporal correlation between successive observations.  
Due to the above mentioned we can say that we have to study 16 time series, namely: 
 

• 1 time series that represents sales of the total market, meaning the sum of the 15 
ATC1; 

• 15 times series, each one representing the sum of the products grouped in each 
ATC1. 

 
The purpose of this work is to find the best fitting model for those series and to predict 
the future behaviour of each of them. 
 
We can not say that the behaviour of one of the 15 times series is completely not 
correlated with another one. In fact, these time series might even have high correlations 
among each other. There are several reasons that can lead to drug co-prescriptions. 
Concomitant diseases and population aging (leading to several diseases in the same 
person) are only two examples of co-prescription causes.  
PCA is a technique used as an exploratory multivariate technique to reduce the 
dimension of a large set of variables into a small set of principal components that 
synthesise the information of the original data set.  
 
Is true that in the present case we do have 15 variables, the ATC1 groups, and if our aim 
is to analyse the interrelationship among those variables, this technique would be 
perfect. The technique would project the data onto a lower dimension space in which the 
variability of the original data set would be as large as possible, and the new 
uncorrelated variables would be arranged in order of decreasing variance. 
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The problem with the use of the classical PCA in this case is that the study of the 
covariance ignores the fact that the observations may be correlated (which we believe 
they are, as already mentioned). If more than a weak dependence is present between 
observations than the standard inference procedures in PCA are invalid. There are 
existing techniques of PCA that are used to study data sets where time series are treated 
as variables as already described in the previous chapters. 

3.2. Preliminary Data Analysis 
 
The first step of a time series analysis should be a graph showing its development. 
Figure 2 shows all the 15 time series. Figure 3 show the time series resulting from the 
sum of the above 15 times series which is the total pharmaceutical market in Portugal. 
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Figure 2 – Time series All 15 – Initial 
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Figure 3 –Time series Total – Initial 

 
One of the most important analysis that needs to be done before the first step of SSA is 
the seasonality analysis. This is important due to the fact that the window length should 
be in line with this seasonality. This means that the window length should be 12 or 
multiples of 12, due to the monthly presentation of the data. Using a simple calculation 

of 12
1221 IIIIS jj K= , with ∑

=

=
12

1

1
j

jj n
N

I , being N the number of total years 

observed, one can analyze series seasonality. The values of jS are presented in Table 1. 
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1 2 3 4 5 6 7 8 9 10 11 12
A 1,07 0,94 1,04 0,95 1,03 0,98 1,04 0,93 1,03 1,08 1,00 0,93
B 1,01 0,88 1,02 0,94 1,04 1,01 1,05 0,98 1,04 1,06 1,01 0,98
C 1,02 0,89 1,02 0,95 1,06 1,02 1,08 0,94 1,03 1,05 1,00 0,97
D 1,02 0,92 1,01 0,94 1,04 1,06 1,17 1,08 1,04 1,03 0,93 0,82
G 1,08 0,91 1,00 0,94 1,02 0,98 1,07 0,97 1,03 1,06 0,99 0,95
H 1,13 0,98 1,06 0,96 1,04 0,96 1,00 0,87 0,95 1,06 1,01 0,99
J 1,25 1,07 1,03 0,84 0,85 0,78 0,80 0,86 1,51 1,40 0,98 0,93
L 1,04 0,93 1,03 0,92 1,00 0,96 1,01 0,87 1,17 1,18 1,01 0,93
M 1,12 0,97 1,05 0,94 1,01 0,94 0,99 0,93 1,00 1,08 1,03 0,97
N 1,14 0,98 1,06 0,94 1,00 0,95 0,97 0,86 1,01 1,10 1,03 0,98
P 1,04 0,97 1,12 1,03 1,04 0,92 0,92 0,73 1,30 1,28 1,01 0,78
R 1,61 1,32 1,17 0,91 0,90 0,73 0,67 0,60 0,98 1,20 1,19 1,20
S 1,01 0,93 1,06 0,98 1,09 1,05 1,09 0,96 1,00 1,02 0,96 0,88
T 0,93 0,82 0,96 0,91 1,03 1,00 1,09 0,98 1,05 1,14 1,09 1,02
V 1,37 1,25 1,23 0,89 0,94 0,85 0,78 0,73 0,84 1,18 1,12 1,04
Total 1,14 0,98 1,05 0,93 1,00 0,94 0,98 0,89 1,04 1,10 1,02 0,97  
Table 1 - Time series All - Table of seasonality 
 
Is easy to see that in the summer, comprehended between June (6) and August (8) is the 
period where more values below 1 are concentrated, therefore were less drugs are sold. 
The period between September (9) and January (1), with the exception of December 
(12) is when more drugs are sold. 
This seasonality is more relevant if the products are antibiotics (time series J) or 
products for the respiratory system (time series R).   
 

3.3. The time series selected 
 
In order to show the most significant aspects of the method three individual (B, R and 
V) plus the total time series were selected to be analyzed in this work. The remaining of 
the series was also analyzed and the results of that analysis are shown in the Annex 4. 

3.4. Change-point detection 

3.4.1. Time series B – Blood and Blood Forming Organs 
 
This time series represents the sales in packs of all products indicated mainly to treat 
and to prevent atherothrombotic events. In 1998 it was approved by EMEA (European 
medicines agency) a new product to this class, called Plavix, a trade mark of Bristol 
Myers Squibb, with the active ingredient clopidogrel. This product was only introduced 
reimbursed in Portugal in 2004. This product was considered revolutionary in the 
treatment and prevention of the above mentioned pathology. Therefore, the authorities, 
both the Ministry of Economy and the Ministry of Health approved a significant higher 
price than other products already in the class. Before clopidogrel the standard treatment 
was the well known Aspirin (acetylsalicylic acid) which costs per day around 22 cents 
of €. The clopidogrel cost is about 1.82€ a day, more than 8 times the Aspirin cost.  
Having all of this in mind and before starting to forecast this time series it was 
necessary to understand if there existed structural changes. 
 
The time series development is shown in the Figure 4: 
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Time series
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Figure 4 - Times series B - Initial 

 
It looks easy to identify the moment of clopidogrel entrance in the market. 
 
A window length of 12 was used, for two main reasons, a) the tendency seems quite 
“simple” which requires a smaller L, in order to easily identify the “noise floor”; b) the 
series has seasonality, so L should be proportional to that.  
The Decomposition stage, using the Basic SSA SVD (long time series nonstationary) 
produced very well defined eigentriples where the first one represents the leading 
tendency of the series and the followings ones the seasonality. In the Figure 5 the main 
tendency of the time series is shown. 
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Figure 5 - Time series B- Tendency 

 
In order to evaluate the structural changes after the entrance in the market of clopidogrel 
it was needed to define the base part of the series (the one to which the second part of 
the series will be compared with) to be from January 1999 to December 2003, which 
represents 60 months. 
Therefore B is defined as 61, in order to get the base space from 1 to 60. 
The base set of eigentriples (I) needs to be less than the minimum between L and K, 
when K=B-L+1, in this specific case I needs to be lower than the minimum between 12 
and 50. It was chosen 6. 
The T, meaning the test subseries of the time series, which needs to be at least equal to 
L, was chosen 12. 
By definition the number of vector for averaging is equal to K, which is, as already 
mentioned, 50. 
The row detection function is the most reliable one to identify the structural changes in 
the time series. 
The diagonal detection function is useful in detection abrupt structural changes against 
the background of slow structural changes and the symmetric functions is good to 
measure the quality of approximation of the base series by the chosen eigentriples.  
 
Therefore in Figure 6 all 3 functions are shown. 
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Detection Functions
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Figure 6 – Time Series B - Row, Symmetric and Diagonal Detection functions 

 
The heterogeneity matrix is shown in the Figure 7. 
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Figure 7 – Time series B - H-Matrix 

 
The values of the matrix are very, very small, showing a very homogeneous structure. 
The values of this matrix have been renormalized, because the time series is positive 
and monotone increasing, in order to avoid that the denominator of the row detection 
function increases just because of that. 
 
Based on the above results the study of the series can go on in order to achieve a stable 
forecast. The entrance of a “breakthrough” product did not seem to have an effect on the 
trajectory of the time series. Despite the fact that the value of this class increased 
immensely due to the launch of the new product, the number of patients treated 
increased accordingly with the previous tendency. 

3.4.2. Time series R – Respiratory System 
 
This time series represents the sales of products indicated in the treatment of respiratory 
system diseases, and includes well known products like Cegripe and Ilvico, and caught 
products like Bisolvon. Most of those products are sold without the need of a medical 
prescription and are mainly used during flow seasons but they are not antibiotics. The 
large majority of those products have more than 20 years in the market, so this is a very 
mature class of products without any new entrances.  
 
So, is easy to understand the seasonality of the class, presented at Table 1. The time 
series development is shown in Figure 8. 
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Time series
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Figure 8 - Time series R – Initial 

 
From the time series periodogram is possible to identify the following seasonalties: 6,12 
18 month periods. The Figure 9 shows the periodogram for the times series. 
It is easy to see that this series is most probably stationary and the main components 
will be related with the strong seasonality.  
The decomposition method used was the Basic SSA with a window length of 18. The 
fact that the time series is stationary could lead us to use the Toeplitz decomposition 
method, but due to the fact that the time series is long, the Basic SSA returns better 
results. 
Because there were no major events happening during the total period, like new product 
launches, the decision to evaluate the homogeneity of the structure of the series were to 
have the following sizes of the subseries: 
Base subseries: 1 to 54, the first half of the series; B: 55; T: 18; I: 11. 
The detection functions are shown in Figure 10 and the H-Matrix in Figure 11. 
There are no abrupt changes in any of the detection functions indicating that there are no 
structural changes points. Especially the diagonal detection function that is very helpful 
in detecting abrupt changes on a slow changing structure is not showing any change 
point. 
All values of the heterogeneity matrix are very small showing that the time series do not 
have significant structural changes which corroborates the very stable class of products. 
These values have been renormalized. 
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Figure 9 – Time series R – Periodogram 
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Detection Functions
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Figure 10 –Time series R - Detection functions 
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Figure 11 –Time series R - H- Matrix 

 

3.4.3. Time series V – Various 
 
For the V time series the approach is slightly different because this time series is not a 
real class of products. In fact this class, called Various, includes products that are not 
related to each other in any way. Therefore, this time series study will only happen to 
illustrate the homogeneity/heterogeneity of the time series structure. 
 
The time series evolution is depicted in Figure 12 below, where is easy to see that there 
are three different periods of time in this series of 3 years each. 
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Figure 12 - Time series V- Initial 

 
The time series has, as previously shown seasonality, therefore the window length L 
used is 12. 
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The base subseries will be the first two years of the time series, in order to identify the 
two major changes on the time series evolution. So, the B is 25. 
It will be used a T of 12, and the only eigentriple used will be the first one, which 
represents the tendency of the series. The reason for that choice is that what is to be 
proven is the dramatic change on the tendency of the time series. So, I will be equal to 
1. 
The row, symmetric and diagonal detection functions are shown in the Figure 13. The 
values are significantly high; in fact the highest value is 0.96. The values of the 
heterogeneity matrix vary from 0, when the homogeneity of the time series structure 
exists and 1 when the structure of the time series is heterogeneous. 
Therefore, it can be said that this time series, reconstructed using only the first 
eigenvalue is very heterogeneous. 
Figure 14 shows the first row and the first column of the Heterogeneity matrix where is 
very easy to identify the two change points in the structure of the series by the two 
abrupt jumps on both lines. 
It is not a surprise that the H-matrix shows two different “heterogeneity crosses”. This 
matrix is shown in Figure 15. These two crosses identify clearly the two changing 
points in the time series structure.  
Based on these results if the objective was forecasting, one need to identify the part of 
the time series that have an homogeneous structure. If by the knowledge of the market is 
expected that the last 3 years of the time series will continue that only that part should 
be used for the forecast. 
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Figure 13 – Time series V - Row, symmetric and diagonal detection functions 

 
 

Row #1 of Heterogeneity Matrix
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Figure 14 –Time series V -  1st Row and 1st Column of the H-Matrix 
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Heterogeneity Matrix
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Figure 15 -Time series V - H – Matrix 

 

3.4.4. Time series Total – Sum of the 15 ATC’s 
 
This time series is the result of the sum of the 15 ATC’s, this means that it represents 
the evolution of the total retail pharmaceutical market in Portugal. So, it is expected that 
the time series has a quite homogeneous structure. In fact due to the size of the market is 
not expected that this time series suffer big changes in the structure. Nevertheless, due 
to the fact that the Health Authorities have initiated a campaign to increase the 
percentage of generics sold is a good idea to try to understand if that created changes in 
the structure of the series.  
The time series development is shown in the Figure 16. 
 

Time series
Dados p_software.xls [Sheet1];    Var:Total;

Total

Jan-99 Jun-99 Nov-99 Abr-00 Set-00 Fev-01 Jul-01 Dez-01 Mai-02 Out-02 Mar-03 Ago-03 Jan-04 Jun-04 Nov-04 Abr-05 Set-05 Fev-06 Jul-06 Dez-06 Mai-07 Out-07
16513496 

17000785 

17488074 

17975362 

18462651 

18949940 

19437229 

19924518 

20411807 

20899095 

21386384 

21873673 

22360962 

22848251 

23335540 

23822828 

24310117 

24797406 

25284695 

25771984 

26259273 

26746561 

27233850 

27721139 

 
Figure 16 - Time series Total – Initial 

 
For the decomposition stage, it was used a window length of 24, due to the seasonality 
existing in the time series. The series is not stationary, so it was used the Basic SSA 
SVD.  
In order to evaluate the structural changes after the generics campaigns implementation 
the base part of the series was defined (the one to which the second part of the series 
will be compared with) to be from January 1999 to December 2003, which represents 60 
months. 
Therefore the B is defined as 61, in order to get the base space from 1 to 60. 
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The base set of eigentriples needs to be less than the minimum between L and K, when 
K=B-L+1, in this specific case I needs to be lower than the minimum between 24 and 
48. It was chosen 8. 
The T, meaning the test subseries of the time series, which needs to be at least equal to 
L, was chosen to be 24. 
The row detection function is the most reliable one to identify the structural changes in 
the time series. 
The diagonal detection function is useful in detection abrupt structural changes against 
the background of slow structural changes and the symmetric functions is good to 
measure the quality of approximation of the base series by the chosen eigentriples. 
Therefore, in Figure 17 all 3 functions are shown.  
 

Detection Functions
Dados p_software.xls [Sheet1];    Var:Total;

DECOMP.-K=38,Cent.(No);    RECONSTR.-ET:(1-8); 

Symmetric (inc.)
Diagonal1 (inc.)
Row (inc.)

Jan-01 Mai-01 Set-01 Jan-02 Mai-02 Set-02 Jan-03 Mai-03 Set-03 Jan-04 Mai-04 Set-04 Jan-05 Mai-05 Set-05 Jan-06 Mai-06 Set-06 Jan-07 Mai-07 Set-07
0,00004 

0,00024 

0,00045 

0,00066 

0,00087 

0,00107 

0,00128 

0,00149 

0,00169 

0,00190 

0,00211 

0,00232 

0,00252 

0,00273 

0,00294 

0,00314 

0,00335 

0,00356 

0,00377 

0,00397 

0,00418 

0,00439 

0,00459 

 
Figure 17 - – Time series Total - Row, symmetric and diagonal detection functions 

 
The heterogeneity matrix is shown in the Figure 18. 
The values of the matrix are very, very small, showing a very homogeneous structure. 
The values of this matrix have been renormalized, because the time series is positive 
and monotone increasing in order to avoid that the denominator of the row detection 
function increases just because of that. 
 
Based on the above results the study of the series can go on in order to achieve a stable 
forecast. The campaign has not created an extra demand for pharmaceutical products. In 
fact, the market did not increase more than the expected tendency of the time series. 
  

Heterogeneity Matrix
Dados p_software.xls [Sheet1];    Var:Total;

DECOMP.-K=38,Cent.(No);    RECONSTR.-ET:(1-8);    

 - [0,00085 , 0,00091]
 - (0,00091 , 0,00096]
 - (0,00096 , 0,00101]
 - (0,00101 , 0,00106]
 - (0,00106 , 0,00111]
 - (0,00111 , 0,00117]
 - (0,00117 , 0,00122]
 - (0,00122 , 0,00127]
 - (0,00127 , 0,00132]
 - (0,00132 , 0,00138]
 - (0,00138 , 0,00143]
 - (0,00143 , 0,00148]
 - (0,00148 , 0,00153]
 - (0,00153 , 0,00159]
 - (0,00159 , 0,00164]
 - (0,00164 , 0,00169]
 - (0,00169 , 0,00174]
 - (0,00174 , 0,00180]
 - (0,00180 , 0,00185]
 - (0,00185 , 0,00190]
 - (0,00190 , 0,00195]
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Figure 18 – Time series Total - H – Matrix 

 



3. Data analysis 

 37

3.5. Decomposition and Reconstruction of the Time 
series 

 

3.5.1.  Time series B – Blood and Blood Forming Organs 
 
 
The four steps of the Basic SSA, applied to the Time series B, produced the following 
results. 
 
Embedding 
Window length – 12, as already explained in section 3.4. 
SVD 
The SVD used to decompose this time series is the basic SSA, as also already explained 
in section 3.4.  
As a result of this procedure the time series is now decomposed in several eigenvectors 
that identify the major components of the time series. 
In fact, it is clear that eigentriple 1 (Figure 19, left graph) corresponds to the trend of the 
time series, eigentriple 2 (Figure 19, right graph) corresponds to the fact that two 
months always alternate in a cyclical movement of increasing/decreasing, meaning that 
the average value sold in February is lower than the average value sold in January, and 
lower than the value sold in March, and so one, as shown in the Table 2. This movement 
does not happen in November and December what is also reflected in the eigentriple 2. 
 

January February March April May June July August September October November December
Average 601.896 519.831 608.347 559.686 616.184 596.884 625.051 580.235 615.698 626.186 601.274 580.214
Difference -82.066 88.517 -48.661 56.498 -19.300 28.168 -44.817 35.464 10.488 -24.912 -21.060  
Table 2 - Time series B - Monthly movements 
 
The eigentriple 3-6 (Figure 20) corresponds to the seasonality that exists in the time 
series, as already shown in Table 1. 
 

 

1(99,622%)

1,0 3,8 6,5 9,3 12,0 
0,278 

0,283 

0,287 

0,291 

0,296 

0,300 

         

2(0,126%)

1,0 3,2 5,4 7,6 9,8 12,0 
-0,31 

-0,19 

-0,06 

0,06 

0,18 

0,31 

 
Figure 19 - Time series B – Trend and Cyclical movement 
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3(0,045%)

1,0 3,2 5,4 7,6 9,8 12,0 
-0,45 

-0,26 

-0,06 

0,13 

0,33 

0,53 

          

4(0,041%)

1,0 3,2 5,4 7,6 9,8 12,0 
-0,53 

-0,32 

-0,11 

0,10 

0,30 

0,51 

 
5(0,038%)

1,0 3,2 5,4 7,6 9,8 12,0 
-0,42 

-0,23 

-0,04 

0,15 

0,35 

0,54 

          

6(0,037%)

1,0 3,2 5,4 7,6 9,8 12,0 
-0,46 

-0,26 

-0,07 

0,12 

0,32 

0,51 

 
Figure 20 - Time series B - Seasonality 
           
Grouping 
The decomposition of the time series is only successful if the resulting additive 
components of the series are approximately separable from each other.  
The first part of this step is to try to identify the components that should be aggregated 
to each other. 
The grouping was done by having eigentriple 1 and eigentriple 2 alone, and by 
summing eigentriples 3 to 6. 
To assess the quality of this grouping it was produced the w-correlations matrix. As 
already mentioned, the w-correlations between the groups should be close to zero, 
meaning that the correlations between rows and columns of the trajectory matrices are 
close to zero.  
In fact, as shown in Figure 21 the w-correlations of the above defined groups are close 
to zero.  
Group 1 represents the eigentriple 1, group 2 represents the eigentriple 2, group 3 the 
eigentriples 3-6. 
Therefore, it can be said that the groups are separable from each other.  
The remaining 6 were considered to be noise and were left out of the reconstruction 
part. 

w-Correlation matrix
Dados p_software.xls [Sheet1];    Var:B;

DECOMP.-K=97,Cent.(No);    GROUP.-[1],[2],[3-6];

 - [0,00 , 0,05]
 - (0,05 , 0,10]
 - (0,10 , 0,14]
 - (0,14 , 0,19]
 - (0,19 , 0,24]
 - (0,24 , 0,29]
 - (0,29 , 0,33]
 - (0,33 , 0,38]
 - (0,38 , 0,43]
 - (0,43 , 0,48]
 - (0,48 , 0,52]
 - (0,52 , 0,57]
 - (0,57 , 0,62]
 - (0,62 , 0,67]
 - (0,67 , 0,71]
 - (0,71 , 0,76]
 - (0,76 , 0,81]
 - (0,81 , 0,86]
 - (0,86 , 0,90]
 - (0,90 , 0,95]
 - (0,95 , 1,00]

(1) (2) (3-6)

(1)

(2)

(3-6)

 
Figure 21 - Time series B - W-Correlations 
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Reconstruction 
Using the above identified components it is possible to reconstruct the initial time 
series. In Figure 1 is possible to see the reconstruction of the trend of the time series. In 
Figure 22 is possible to see the good reconstruction of the time series using the above 
mentioned eigentriples. Figure 22 represents the initial and the reconstructed series. 
Figure 23 represents (top plot) the relative errors of reconstructing averaging, and in the 
same figure (bottom plot) the absolute errors are shown. It can be seen that the errors are 
relatively small, never going above 3.3%. 
 
 

Initial & Reconstructed Series
Dados p_software.xls [Sheet1];    Var:B;

DECOMP.-K=97,Cent.(No);    RECONSTR.-ET:(1-6); 

B
B(recon.)

Jan-99 Jun-99 Nov-99 Abr-00 Set-00 Fev-01 Jul-01 Dez-01 Mai-02 Out-02 Mar-03 Ago-03 Jan-04 Jun-04 Nov-04 Abr-05 Set-05 Fev-06 Jul-06 Dez-06 Mai-07 Out-07
402283 

426331 

450379 

474428 

498476 

522524 

546572 

570621 

594669 

618717 

642765 

666814 

690862 

714910 

738958 

763006 

787055 

811103 

835151 

859199 

883248 

907296 

931344 

 
Figure 22 - Time series B - Initial and reconstructed Time Series 

 
Relative Errors of Reconstruction Averaging

Dados p_software.xls [Sheet1];    Var:B;

DECOMP.-K=97,Cent.(No);    RECONSTR.-ET:(1-6); 
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100 103 106

0 

0,004 

0,007 

0,011 

0,015 

0,019 

0,022 

0,026 

0,030 

0,033 

Absolute Errors of Reconstruction Averaging
Dados p_software.xls [Sheet1];    Var:B;

DECOMP.-K=97,Cent.(No);    RECONSTR.-ET:(1-6); 
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100 103 106

0 

2233 

4466 

6699 

8931 

11164 

13397 

15630 

17863 

20096 

 
Figure 23 - Time series B - Relative and Absolute errors of reconstruction averaging 

3.5.2. Time series R – Respiratory System 
 
The four steps of the Basic SSA, applied to the Time series R, produced the following 
results. 
 
Embedding 
Window length – 18, as already explained in section 3.4. 
SVD 
The SVD used to decompose this time series is the Basic SSA, as also already explained 
in section 3.4.  
As a result of this procedure the time series is now decomposed in several eigenvectors 
that identify the major components of the time series. 
Despite the fact that the time series is almost stationary the first eigentriple corresponds 
to the small increasing pattern that can be found in the last part of the time series. The 
following 2 and 3 eigentriples correspond clearly to the seasonality of the series. 
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Figure 24 shows the eigentriples 2 and 3 where this seasonality can be found. 
  

EigenFunctions
Dados p_software.xls [Sheet1];    Var:R;

DECOMP.-K=91,Cent.(No); 

2(2,940%)

1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0 
-0,33 

-0,26 

-0,18 

-0,11 

-0,04 

0,04 

0,11 

0,18 

0,26 

0,33 

3(2,634%)

1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0 
-0,27 

-0,19 

-0,11 

-0,04 

0,04 

0,11 

0,19 

0,27 

0,34 

0,42 

 
Figure 24 - Time series R - Seasonality 

 
Grouping 
This complex time series will need a high number of eigentriples groupings in order to 
get to a “good” reconstruction.  
Looking to the scatter plots of the eigentriples is easy to identify the ones that should be 
grouped together. Figure 25 represents the scatter plot of eigentriples 2 and 3, where a 
perfect match between them can be seen. 
 

2(2,940%) - 3(2,634%)

 
Figure 25 - Time series R - Scatter plot of eigentriples 2 and 3 

 
By analyzing scatter plots, singular values closeness and w-correlations it is possible to 
get to the best grouping possible that in this case is the one shown in Figure 26, with the 
w-correlations matrix.  
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w-Correlation matrix
Dados p_software.xls [Sheet1];    Var:R;

DECOMP.-K=91,Cent.(No);    GROUP.-[1],[2,3],[4,5],[6-8],[9-11];

 - [0,00 , 0,05]
 - (0,05 , 0,10]
 - (0,10 , 0,14]
 - (0,14 , 0,19]
 - (0,19 , 0,24]
 - (0,24 , 0,29]
 - (0,29 , 0,33]
 - (0,33 , 0,38]
 - (0,38 , 0,43]
 - (0,43 , 0,48]
 - (0,48 , 0,52]
 - (0,52 , 0,57]
 - (0,57 , 0,62]
 - (0,62 , 0,67]
 - (0,67 , 0,71]
 - (0,71 , 0,76]
 - (0,76 , 0,81]
 - (0,81 , 0,86]
 - (0,86 , 0,90]
 - (0,90 , 0,95]
 - (0,95 , 1,00]

(1) (2,3) (4,5) (6-8) (9-11)

(1)

(2,3)

(4,5)

(6-8)

(9-11)

 
Figure 26 - Time series R - W-Correlations Matrix 

Reconstruction 
The reconstruction of this time series will be done with the above mentioned groups 
which include the first 11 eigentriples of the SVD. The remaining 7 were considered 
noise and were not included. Figure 27 shows the initial and the reconstructed series. 
The reconstruction seems quite close to the initial series, nevertheless and due to the fact 
that there exists a large variability in this times series, the errors of the averaging 
reconstruction, which can be seen in Figure 28 can reach levels above the 5.7%. 
 

Initial & Reconstructed Series
Dados p_software.xls [Sheet1];    Var:R;

DECOMP.-K=91,Cent.(No);    RECONSTR.-ET:(1-11); 

R
R(recon.)

Jan-99 Jun-99 Nov-99 Abr-00 Set-00 Fev-01 Jul-01 Dez-01 Mai-02 Out-02 Mar-03 Ago-03 Jan-04 Jun-04 Nov-04 Abr-05 Set-05 Fev-06 Jul -06 Dez-06 Mai-07 Out-07
1147735 

1270635 

1393535 

1516436 

1639336 

1762236 

1885136 

2008036 

2130936 

2253837 

2376737 

2499637 

2622537 

2745437 

2868338 

2991238 

3114138 

3237038 

3359938 

3482838 

3605739 

3728639 

3851539 

 
Figure 27 - Time series R - Initial and reconstructed time series 

 
Relative Errors of Reconstruction Averaging

Dados p_software.xls [Sheet1];    Var:R;

DECOMP.-K=91,Cent.(No);    RECONSTR.-ET:(1-11); 
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100 103 106

0 

0,006 

0,013 

0,019 

0,025 

0,032 

0,038 

0,044 

0,051 

0,057 

Absolute Errors of Reconstruction Averaging
Dados p_software.xls [Sheet1];    Var:R;

DECOMP.-K=91,Cent.(No);    RECONSTR.-ET:(1-11); 
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100 103 106

0 

18308 

36616 

54925 

73233 

91541 

109849 

128157 

146466 

164774 

 
Figure 28 - Time series R - Relative and Absolute errors 
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3.5.3. Time series V – Various 
 
As mentioned in section 3.4 the time series V does not have an homogenous structure 
when the first eigentriple is used to reconstruct the time series. Nevertheless, if the 
decomposition and reconstruction steps are repeated again, without ignoring all 
eigentriple except the first one, the results could be different. So, the study was 
conducted changing some of the parameters. 
 
The four steps of the Basic SSA, applied to the Time series V, produced therefore the 
following results. 
 
Embedding 
Window length – 36, different from the one mentioned in section 3.4. The window 
length should be as large as possible in order to be stable in presence of small changes. 
This time series is very irregular, so the window length should be as large as possible, 
maintaining the seasonality proportion. 
 
SVD 
The SVD methodology used to decompose this times series was the basic SSA.  
The leading singular values shown in Figure 29 led us to conclude that all eigentriples 
from 1 to 8 should be kept as important components of the time series. 
 

EVAL Percents
Dados p_software.xls [Sheet1];    Var:V;

DECOMP.-K=73,Cent.(No); 

EVAL percents

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
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3 
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10 

14 
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24 
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34 
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41 

44 

48 

51 

55 

58 

62 

65 

68 

72 

75 

 
Figure 29 - Time series V - Singular values in percentage 

 
Grouping 
The w-correlations matrix of these 8 eigentriples provides significant help for the 
grouping stage of this time series study. 
The Figure 30 shows the w-correlations between the 8 selected eigentriples. After 
evaluating the values obtained it was decided to group the eigentriples in the following 
way: eigentriple 1, eigentriple 2, eigentriple 3, eigentriple 4-5, eigentriple 6 and 
eigentriple 7-8. 
 
Reconstructing 
The reconstruction results are (as expected) quite weak and the errors are significant. 
Reconstructed times series and the residuals are shown in Figure 31. With such high 
residuals a forecast would never be accurate enough to be reliable. 
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w-Correlation matrix
Dados p_software.xls [Sheet1];    Var:V;

DECOMP.-K=73,Cent.(No);    GROUP.-[1],[2],[3],[4],[5],[6],[7],[8];

 - [0,00 , 0,05]
 - (0,05 , 0,10]
 - (0,10 , 0,14]
 - (0,14 , 0,19]
 - (0,19 , 0,24]
 - (0,24 , 0,29]
 - (0,29 , 0,33]
 - (0,33 , 0,38]
 - (0,38 , 0,43]
 - (0,43 , 0,48]
 - (0,48 , 0,52]
 - (0,52 , 0,57]
 - (0,57 , 0,62]
 - (0,62 , 0,67]
 - (0,67 , 0,71]
 - (0,71 , 0,76]
 - (0,76 , 0,81]
 - (0,81 , 0,86]
 - (0,86 , 0,90]
 - (0,90 , 0,95]
 - (0,95 , 1,00]

(1) (2) (3) (4) (5) (6) (7) (8)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

 
Figure 30 - Time series V - H-matrix 

 
Initial & Reconstructed Series
Dados p_software.xls [Sheet1];    Var:V;

DECOMP.-K=73,Cent.(No);    RECONSTR.-ET:(1-8); 

V
V(recon.)

Jan-99 Jun-99 Nov-99 Abr-00 Set-00 Fev-01 Jul-01 Dez-01 Mai-02 Out-02 Mar-03 Ago-03 Jan-04 Jun-04 Nov-04 Abr-05 Set-05 Fev-06 Jul-06 Dez-06 Mai-07 Out-07
-6817 

14750 

36317 

57884 

79451 

101017 

122584 

144151 

165718 

187285 

Residuals
Dados p_software.xls [Sheet1];    Var:V;

DECOMP.-K=73,Cent.(No);    RECONSTR.-ET:(1-8); 

V(resid.)

Jan-99 Jun-99 Nov-99 Abr-00 Set-00 Fev-01 Jul-01 Dez-01 Mai-02 Out-02 Mar-03 Ago-03 Jan-04 Jun-04 Nov-04 Abr-05 Set-05 Fev-06 Jul-06 Dez-06 Mai-07 Out-07
-59947 

-45817 

-31687 

-17557 

-3427 

10703 

24832 

38962 

53092 

67222 

 
Figure 31 - Time series V - Reconstructed series and residuals 

  

3.5.4. Time series Total – Sum of the 15 ATC’s 
 
As already said the time series Total is the result of the summing of the 15 time series 
that represents sales of all pharmaceutical products in Portugal. 
 
The 4 steps of the SSA methodology were also applied to this time series and the results 
are the following. 
 
Embedding 
Window length – 24, as already explained in section 3.4. 
 
SVD 
The series is not stationary, so it was used the Basic SSA SVD, as already mentioned in 
section 3.4 
The SVD produced a first distinct eigentriple which corresponds to the trend of the time 
series, as shown in Figure 32.  
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1(99,416%)

1,0 2,4 3,7 5,1 6,4 7,8 9,1 10,5 11,8 13,2 14,5 15,9 17,2 18,6 19,9 21,3 22,6 24,0 
0,2003 

0,2012 

0,2021 

0,2030 

0,2038 

0,2047 

0,2056 

0,2065 

0,2074 

0,2082 

 
Figure 32 - Time series Total - eigentriple 1 - Trend 

 
Eigentriple 2 corresponds to the monthly movements of up and down also seen in time 
series B which can be again seen in Table 3.  
 

January February March April May June July August September October November December
Average 23.709.429 20.442.009 21.790.560 19.359.943 20.840.981 19.634.333 20.390.931 18.482.954 21.770.370 22.956.094 21.200.456 20.166.460
Difference -3.267.419 1.348.550 -2.430.617 1.481.038 -1.206.648 756.598 -1.907.977 3.287.417 1.185.724 -1.755.638 -1.033.996  
Table 3 - Time series Total - Monthly movements 
 
The fact that between October and December the movements are not the same is well 
seen in the representation of the second eigentriple where the last points representing 
those periods show different amplitudes (Figure 33).  
 

2(0,125%)

1,0 2,4 3,7 5,1 6,4 7,8 9,1 10,5 11,8 13,2 14,5 15,9 17,2 18,6 19,9 21,3 22,6 24,0 
-0,23 

-0,18 

-0,13 

-0,08 

-0,03 

0,02 

0,07 

0,12 

0,17 

0,22 

 
Figure 33 - Time series Total - Eigentriple 2 

 
The following eigentriples corresponds to the seasonality that exists in the time series. 
In Figure 34 is well seen the “lower period” of summer. The following eigentriples 
corresponds to the refined seasonality of the time series. 
 

3(0,066%)

1,0 2,4 3,7 5,1 6,4 7,8 9,1 10,5 11,8 13,2 14,5 15,9 17,2 18,6 19,9 21,3 22,6 24,0 
-0,29 

-0,22 

-0,16 

-0,09 

-0,02 

0,04 

0,11 

0,18 

0,24 

0,31 

 
Figure 34 - Time series Total - Eigentriple 3 

 
Grouping 
In order to get the right grouping it was created the w-correlations matrix of all 24 
eigentriples, which is represented in Figure 35. 
It was also analyzed the scatter plots of the eigentriples, and the following groupings 
seems evident: eigentriple 1, eigentriple 2, eigentriple 3-4, eigentriple 5-6, eigentriple 7-
8. The remaining were considered noise and left out of the reconstruction. Figure 36 
shows eigentriple 3 and 4, and eigentriple 7 and 8 scatter plots. 
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w-Correlation matrix
Dados p_software.xls [Sheet1];    Var:Total;

DECOMP.-K=85,Cent.(No);    GROUP.-[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16],[17],[18],[19],[20],[21],[22],[23],[24];

 - [0,00 , 0,05]
 - (0,05 , 0,10]
 - (0,10 , 0,14]
 - (0,14 , 0,19]
 - (0,19 , 0,24]
 - (0,24 , 0,29]
 - (0,29 , 0,33]
 - (0,33 , 0,38]
 - (0,38 , 0,43]
 - (0,43 , 0,48]
 - (0,48 , 0,52]
 - (0,52 , 0,57]
 - (0,57 , 0,62]
 - (0,62 , 0,67]
 - (0,67 , 0,71]
 - (0,71 , 0,76]
 - (0,76 , 0,81]
 - (0,81 , 0,86]
 - (0,86 , 0,90]
 - (0,90 , 0,95]
 - (0,95 , 1,00]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

 
Figure 35 - Time series Total - W-Correlations Matrix 

 
3(0,066%) - 4(0,063%)

   

7(0,043%) - 8(0,041%)

 
Figure 36 - Time series Total - Scatter plots 

    
Reconstruction 
 
Reconstruction of the time series was done with the 8 major eigentriples (the ones that 
in section 3.4 proved to have an homogeneous structure) and the result of that 
reconstruction is shown in Figure 37. 
 

Initial & Reconstructed Series
Dados p_software.xls [Sheet1];    Var:Total ;

DECOMP.-K=85,Cent.(No);    RECONSTR.-ET:(1-8); 

Total
Total(recon.)

Jan-99 Jun-99 Nov-99 Abr-00 Set-00 Fev-01 Jul-01 Dez-01 Mai-02 Out-02 Mar-03 Ago-03 Jan-04 Jun-04 Nov-04 Abr-05 Set-05 Fev-06 Jul-06 Dez-06 Mai-07 Out-07
16471745 

17721678 

18971610 

20221543 

21471476 

22721408 

23971341 

25221274 

26471206 

27721139 

 
Figure 37 - Time series Total - Initial and Reconstructed time series 

 
The relative and absolute errors of the averaging reconstruction are quite small, with the 
highest being below 2.9%, as shown Figure 38(top). 
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Relative Errors of Reconstruction Averaging
Dados p_software.xls [Sheet1];    Var:Total ;

DECOMP.-K=85,Cent.(No);    RECONSTR.-ET:(1-8); 
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100 103 106

0 

0,0032 

0,0064 

0,0097 

0,0129 

0,0161 

0,0193 

0,0226 

0,0258 

0,0290 

Absolute Errors of Reconstruction Averaging
Dados p_software.xls [Sheet1];    Var:Total ;

DECOMP.-K=85,Cent.(No);    RECONSTR.-ET:(1-8); 
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100 103 106

0 

75785 

151571 

227356 

303141 

378927 

454712 

530498 

606283 

682068 

 
Figure 38 - Time series Total - Relative and Absolute errors 

 
 

3.6. Forecast for the Time series 
 
As explained in Chapter 1, there are two different methodologies to calculate the 
forecast of a time series, and two different types of forecast confidence bounds 
calculation.  
In the coming part, the process of choosing the “best forecast” will be developed; by 
presenting the several steps run to achieve the most apparently stable forecast.  

3.6.1.  Time series B – Blood and Blood Forming Organs 
As presented before the following decisions were taken to decompose and reconstruct 
the Time series B: 
L = 12 
SVD = Basic SSA 
Grouping and reconstructing: Eigentriple 1; Eigentriple 2; Eigentriple 3-6. 
The structure homogeneity of this decomposition and reconstruction was test and 
proved real. 
 
The verticality coefficient, 2v , which represents the squared cosine of the angle between 
the space rL  and the vector Le , is presented in Figure 39. The condition that 12 pv is 
necessary to forecasting. If the expected behavior of the forecast does not suggest a 
rapid increase or decrease, then a large value of the verticality coefficient indicates a 
possible difficulty with the forecast. In this case the time series development suggests 
that an increase is expected which corroborates the coefficient value near 0.5. The 
verticality coefficient is at eigentriple 4 quite high. 
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Verticality Characteristics
Dados p_software.xls [Sheet1];    Var:B;

DECOMP.-K=97,Cent.(No); 

Vert. coeff.

1 2 3 4 5 6 7 8 9 10 11 12
0,046 

0,067 

0,088 

0,110 

0,131 

0,152 

0,173 

0,194 

0,215 

0,236 

0,257 

0,279 

0,300 

0,321 

0,342 

0,363 

0,384 

0,405 

0,426 

0,448 

0,469 

0,490 

0,511 

 
Figure 39 - Time Series B - Verticality coefficient 

 
As already mentioned the SSA V-forecasting tends to be better for long-term 
forecasting and the empirical confidence intervals should not be used for long-term 
forecasting. These two rules proved true in the forecasting for the time series B. Figure 
40 shows the V-forecast with the empirical confidence intervals and Figure 41 shows 
the same forecasting but using the bootstrap methodology to create the confidence 
intervals, with 1000 interactions. Graphs have been truncated for the clearness of the 
work. 
As it can be easily seen in the graph of Figure 40, the confidence intervals are growing 
through out the forecast points. In fact, the last points of the forecast are varying 
between +11% of forecast and -14% of forecast. This implies that the value in 
December 2009 can vary between 1.122.469 packs sold and 870.889 packs sold. When 
using the bootstrap methodology, those intervals are significantly reduced and the 
forecast of December 2009 only varies between +4% and -6%. Therefore, December 
forecast range between 1.056.005 and 952.700.  
In fact, bootstrap methodology seems to be more stable in this case even on the short-
term forecast.  
 

Forecast
Dados p_software.xls [Sheet1];    Var:B;   DECOMP.-K=97,Cent.(No);    RECONSTR.-ET:(1-6); 

FORECAST - start:109, #pnt.:24, base:1, method:1;  CONF.INT.(95%) - method:1, model:1, pts in use:1-108;

B
Forecast base
B(forecast)
B(upper conf. bound)
B(lower conf. bound)
Forecast start point

Mai -07 Jul-07 Set-07 Nov-07
402283 

435708 

469133 

502558 

535983 

569408 

602833 

636258 

669683 

703108 

736532 

769957 

803382 

836807 

870232 

903657 

937082 

970507 

1003932 

1037357 

1070782 

1104207 

1137632 

 
Figure 40 - Time Series B - V forecast with empirical confidence intervals 
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Forecast
Dados p_software.xls [Sheet1];    Var:B;   DECOMP.-K=97,Cent.(No);    RECONSTR.-ET:(1-6); 

FORECAST - start:109, #pnt.:24, base:1, method:1;  CONF.INT.(95%) - method:2, model:1, Sigma:15574,50, Repeat:1000;

B
Forecast base
B(forecast)
B(upper conf. bound)
B(lower conf. bound)
Average by bootstrap
Forecast start point

Mai -07 Jul-07 Set-07 Nov-07
388751 

420602 

452454 

484306 

516157 

548009 

579860 

611712 

643564 

675415 

707267 

739119 

770970 

802822 

834674 

866525 

898377 

930229 

962080 

993932 

1025783 

1057635 

1089487 

 
Figure 41 - Time Series B - V forecast with Bootstrap confidence intervals 

 
Nevertheless, the SSA R-forecasting was also tested but results were quite weak with 
very large confidence intervals on the last forecasting points reaching values of more 
than 50% difference.  Figure 42 shows R-forecasting with empirical confidence 
intervals for illustration purposes only.  
 

Forecast
Dados p_software.xls [Sheet1];    Var:B;   DECOMP.-K=97,Cent.(No);    RECONSTR.-ET:(1-6); 

FORECAST - start:109, #pnt.:24, base:3, method:2;  CONF.INT.(95%) - method:1, model:1, pts in use:1-108;

B
Forecast base
B(forecast)
B(upper conf. bound)
B(lower conf. bound)
Forecast start point

Mai -07 Jul-07 Set-07 Nov-07
402283 

458070 

513857 

569644 

625431 

681217 

737004 

792791 

848578 

904365 

960152 

1015939 

1071726 

1127512 

1183299 

1239086 

1294873 

1350660 

1406447 

1462234 

1518021 

1573808 

1629594 

 
Figure 42 - Time series B – R forecast with empirical confidence intervals 

3.6.2. Time series R – Respiratory System 
 
As presented before the following decisions were taken to decompose and reconstruct 
the Time series R: 
L = 18 
SVD = Basic SSA 
Grouping and reconstructing: Eigentriple 1; Eigentriple 2-3; Eigentriple 4-5; Eigentriple 
6-8; Eigentriple 9-11. 
 
The structure homogeneity of this decomposition and reconstruction was test and 
proved real. 
 
The verticality coefficient is quite low, which is good because the time series do not 
have a strong increasing or decreasing tendency. Figure 43 shows the verticality 
coefficient. 
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Verticality Characteristics
Dados p_software.xls [Sheet1];    Var:R;

DECOMP.-K=91,Cent.(No); 

Vert. coeff.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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0,067 
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0,104 
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0,159 
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0,270 

0,289 

0,307 

0,326 

0,344 

0,363 

0,381 

0,400 

0,418 

0,436 

 
Figure 43 - Time series R - Verticality coefficient 

 
The highest value of the verticality coefficient is reached at eigentriple 14, which is not 
included in the reconstruction. The highest 2v included in the reconstruction is the one 
of eigentriple 2 with 0,301.  
 
The reconstruction tested was the one used for forecasting, and due to the same reasons 
presented at Time Series B section, the forecast which shows more stability was the 
obtained with the V-methodology with confidence intervals calculated with the 
bootstrap method, with 1000 interactions.  
 
Figure 44 shows the results of this forecast. Nevertheless, this is a time series with large 
variability which makes the forecasting exercise very, very difficult. The confidence 
intervals are quite large and become larger for the long-term forecast. It is needed to be 
extra careful with this numbers. The graph has been truncated to start at point 100 in 
other to make the forecast points more visible.  
This forecast is also less stable in the long-term. Forecast values for the end of the 
period, December 2009, ranges from +15% to -12%. In fact, there are periods like 
August 2008 that can range between +27% and -22%. In order to obtain accuracy it was 
needed to increase the confidence bounds. 
 
 

Forecast
Dados p_software.xls [Sheet1];    Var:R;   DECOMP.-K=91,Cent.(No);    RECONSTR.-ET:(1-11); 

FORECAST - start:109, #pnt.:24, base:3, method:1;  CONF.INT.(95%) - method:2, model:1, Sigma:102739,39, Repeat:1000;

R
Forecast base
R(forecast)
R(upper conf. bound)
R(lower conf. bound)
Average by bootstrap
Forecast start point

Mai-07 Jul-07 Set-07 Nov-07
1037899 

1165792 

1293685 

1421577 

1549470 

1677363 

1805255 

1933148 

2061041 

2188934 

2316826 

2444719 

2572612 

2700505 

2828397 

2956290 

3084183 

3212075 

3339968 

3467861 

3595754 

3723646 

3851539 

 
Figure 44 - Time series R - V forecast with Bootstrap confidence intervals   
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3.6.3. Time series V – Various 
 
As already mentioned this time series do not have an homogeneous structure and 
therefore forecast can not be done using the totality of the time series. Therefore, there 
is no forecast prepared for this time series, due to the fact that the continuity of the time 
series is expected to be the same as the followed in the last 3 years, but this would only 
provide 36 points, which is quite small for forecasting. Indeed, forecast was tested and 
confidence intervals range from 36% and -30%. 
 

3.6.4. Time series Total – Sum of the 15 ATC’s 
 
As presented before the following decisions were taken to decompose and reconstruct 
the Time series Total: 
L = 24 
SVD = Basic SSA 
Grouping and reconstructing: Eigentriple 1; Eigentriple 2; Eigentriple 3-4; Eigentriple 
5-6; Eigentriple 7-8; 
 
The structure homogeneity of this decomposition and reconstruction was test and 
proved real. 
 
The highest verticality coefficient is seen in eigentriple 5, and is around 0.34. As already 
mentioned the time series shows an increasing trend, therefore this level of verticality 
coefficient is expected. Figure 45 shows the verticality coefficient.  
 
Both the V-forecast and the R-forecast were tested and both with empirical and 
bootstrap confidence intervals were tested. 
In fact, both forecast values are very close to each other, which is a very good indicator 
of the stability of the forecast.  
Also, empirical confidence bounds provided stable but higher intervals both on short 
and long-term. 
 

Verticality Characteristics
Dados p_software.xls [Sheet1];    Var:Total;

DECOMP.-K=85,Cent.(No); 

Vert. coeff.
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0,301 

0,316 
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Figure 45 - Time series Total - Verticality coefficient 

 
Therefore, the chosen methodology was the V-forecast with bootstrap confidence 
intervals, shown in Figure 46, again the graph was truncated to show only the last part 
of the time series to increase visibility and bootstrap interactions were of 1000.  
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Forecast
Dados p_software.xls [Sheet1];    Var:Total;   DECOMP.-K=85,Cent.(No);    RECONSTR.-ET:(1-8); 

FORECAST - start:109, #pnt.:24, base:3, method:1;  CONF.INT.(95%) - method:2, model:1, Sigma:709010,84, Repeat:1000;

Total
Forecast base
Total (forecast)
Total (upper conf. bound)
Total (lower conf. bound)
Average by bootstrap
Forecast start point

Mai-07 Jul-07 Set-07 Nov-07
15673764 

16254740 

16835715 

17416691 

17997666 

18578641 

19159617 

19740592 

20321567 

20902543 

21483518 

22064493 

22645469 

23226444 

23807419 

24388395 

24969370 

25550345 

26131321 

26712296 

27293271 

27874247 

28455222 

 
Figure 46 - Time series Total - V forecast with bootstrap intervals 
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4. Discussion and Conclusions 
 
As proved in many other published papers SSA is a reliable nonparametric method to 
forecast Time Series. 
Along the past years several time series have been forecasted using SSA method with 
strong and accurate outcomes.  
As far as we know, the present work is the first one to deal with time series which 
evolution depends significantly on direct actions of economic players. 
As shown in the bibliography review, SSA was been mainly used in time series like: 
paleoclimate records of deap-sea cores; global surface air temperature – IPCC; 
geopotential heights at 700hPa covering the Northern Hemisphere extratropics; tropical 
Pacific Ocean surface temperatures; and other climate data. Some other time series like: 
ultrasound biomedical echoes, monthly accidental deaths in USA; Births; etc, were also 
explained and forecasted with the help of SSA. 
The common point on those series relies on the fact that there is very little intervention 
of men on the series evolution. Most of them are naturally occurring phenomena. 
The challenge here is to try to prove that despite the fact that there is an enormous 
number of factors that can change the evolution of the, here studied, time series, SSA 
method still applies and the forecast is reliable. 
In fact, things like new product launches, governmental cuts on health expenditures; 
price and reimbursement laws changes; can transform the shape of the time series 
evolution. Still, has not all of the previous already happened in the past? Can not the 
method incorporate that information in the results? Unless the paradigm changes in the 
future, there is no reason to expect that the method will fail on forecasting the coming 
two years of the retail pharmaceutical market in Portugal. 
Time will confirm or not the reliability of the forecast. 
Nevertheless, there is no need to wait till 2010 to find out that as an analysis tool, SSA 
has proven reliable to decompose and reconstruct the present time series. The present 
work has provided the composition of time series structure, and now is possible to 
identify trends, oscillations, seasonalities on all of them.  
Understand the past is, also here, needed to predict the future.  
By the obtained results it can be said that the Portuguese retail pharmaceutical market 
will growth at a rate of 1% in 2008 [ ]%6%,3 +− and a rate of 2% in 2009 [ ]%8%,4 +− . 
 This means that the Portuguese pharmaceutical market is not a fast growing market as 
seen in other parts of the globe. It is a mature and stable market. 
To grow, pharmaceutical companies will have to develop their marketing strategies 
based on cannibalization objectives, because the natural growth of the market is going 
to be small. The fastest growing products classes will be the ATC B and the ATC C, 
which will grow respectively 9% [ ]%9%,3 ++ and 10% [ ]%10%,0 +  in 2008 and 2% 
[ ]%9%,2 ++ and 11% [ ]%11%,1 +− in 2009.  
In what relates to the composition of the market, classes C, N, M and R will increase 
theirs percentage and mainly class J will decrease. This is also expected because all 
drugs related with the cardiovascular (C) and muscular (M) pathologies are expected to 
grow due to the aging of the population and drugs related with the central nervous 
system (N) are expected to grow due to the increased stress of life style. 
The decrease of the class J is not only expected but already seen in more developed 
countries, antibiotics are less and less prescribed because they are less and less effective 
due to increase on bacterial resistance.  
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By the end of the decade the Portuguese retail pharmaceutical market will be built 
almost in the same way that it was in the beginning of the decade, in percentage of total 
units sold and by descending order, ATC N will maintain leadership with 23% in 2009 
vs. 21% in 2000; the ATC C will be second larger with 19% in 2009 vs. 15% in 2000; 
the ATC A will have be third with 13% in 2009 vs. 16% (second position) in 2000. In 
fact, by the end of the decade it will be sold more than 280 million packs of 
pharmaceutical products in a year timeframe. This will represent a CAGR (2009/2000) 
of only 2.2% [ ]%8.2%,5.1 . These results imply that the average number of packs sold 
per inhabitant in Portugal will increase from 23 packs/year, in 2000, to 27 
[ ]28,25 packs/year in 2009 (the source for the both total inhabitants in Portugal, in 2000, 
and the estimation of the total inhabitants in Portugal in 2010 is of INE, the Portuguese 
Statistical Institute).  
 
The methodology, as already mentioned, proved to be quite powerful on the 
decomposition of the time series. All time series were successfully decomposed as 
initially proposed. The forecast part of the method, in the other hand, proved to be stable 
on the short-term but less stable on the long-term, especially in some of the time series. 
In fact, all series show an increase on the confidence bounds in year two (2009) vs. year 
one (2008) of the forecast. Due to this phenomenon it seems reasonable to purpose that 
if more complete years needed to be forecasted a different set of data would need to be 
obtained. A good approach would be to collect data from previous years before 1999 
and forecast with that data, instead of using monthly data.   
The decision to take monthly data and not yearly data was taken based on two aspects, 
first because it is the lowest level of granulation available, second because it is stable 
enough to be analyzed and to build a forecast. The main idea was to provide both 
monthly and yearly (by the sum of the monthly results) forecast to the years of 2008 and 
2009. The results proved that the method can be applied to the available monthly data 
with a good level of confidence. In fact the relative error on reconstruction on all time 
series is quite low. The method also proved to be able to maintain the trend, cyclical 
movements and seasonality of the several time series. Comparing the jS values found in 
the period of 1999 to 2007 with the jS values found in the period 1999 to 2009 leads us 
to the conclusion that the seasonalities were kept by the model, the months with 
higher/lower values are the same in both periods. This helps to prove that the monthly 
forecast is valid and reliable.  
 
As a conclusion if the pricing strategies of the government are well thought out, it will 
not be because of the unit growth that the expenditures of the National Health Service 
will increase significantly. 
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6. Annex 1 – Single-Spectrum analysis – the 
methodology theory 

6.1. The window length 
 
SSA consists of two complementary stages: decomposition and reconstruction. 
 
There are two different steps on the decomposition stage: embedding and 
reconstruction. Considering now the Embedding step: 
 
Considering a real-valued time series ( )110 ,,, −= NfffF K of length N with 2fN . 
Assuming that F is a nonzero series, meaning that there exists at least one i such that 

0≠if . 
 
The embedding step maps the original time series to a sequence of multidimensional 
lagged vectors.  
 
Embedding techniques are used to reconstruct dynamical information from time series. 
The dimension of the embedding space is called the embedding dimension or the 
window length, which make visible L elements of the time series. At any stage the 
elements visible in the L- window constitute the components of a vector in the 
embedding space. As the time series is advanced step-wise through the window, a 
sequence of vectors in the embedding space is generated. These form a discrete 
trajectory.  
The above sequence can be used to construct a trajectory matrix, X, which contains the 
complete record of patterns which have occurred within the window. 
 
Let L be an integer (window length), NL pp1 . The embedding procedure forms 

1+−= LNK  lagged vectors, 
 

( ) ( )( ) KiffX T
Liii ≤≤= −+− 1,,, 21 K  

 
which have dimension L. 
 
The L-trajectory matrix of the series F: 
 

[ ]KXXX ::1 K=  
 
has lagged vectors as its columns. The trajectory matrix can also be: 
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The trajectory matrix is an Hankel matrix, because has equal elements on the 
‘diagonals’ .constji =+ . As N and L are fixed, then there is a one-to-one 
correspondence between the trajectory matrix and the time series.  
 
The most important parameter of this step is obviously the window length. The choice 
of L, corresponds to a compromise between the amount of significant information that 
needs to be retained - the larger the L the better, and the statistical confidence that needs 
to be achieved – the smallest the L the better.  
 
When choosing the window length several aspects need to be taken in consideration. 
One of the most important is the problem in hand, meaning that it depends on the 
purpose of the exercise and the nature of the time series. Nevertheless, some ‘rules’ 
needs to be considered always: 
 
The window length L should be sufficiently large so that each L-lagged vector 
incorporates an essential part of the behavior of the initial series ( )10 ,, −= NffF K . 
If what is needed is to analyzed the time series structure so it is meaningless to take the 
window length larger than half of the time series length. This is due to the fact that the 
SVD’s of the trajectory matrices, corresponding to the window lengths L 
and 1+−= LNK , are equivalent (up to the symmetry: left singular vectors ↔ right 
singular vectors). 
If what is needed is a very must detailed decomposition of the time series than the larger 
the L the better, close to 2/NL ≈  (there are some exceptions which will be mentioned 
later), as long as statistical errors do not dominate the last values of the autocovariance 

function. Therefore to prevent this, is advisable to not exceed NL
3
1

=  .  

As it will be seen in the further ahead, the second step of SSA is to find the components 
of the time series. These components need to be separable. The larger the window 
length (having in mind the previous comments) the better because: 
A small window length could mix up interpretable components, meaning that some 
components would not be separated from each other, providing the needed information 
to understand the structure of the time series; on the other hand a small window length 
will make that the separation results will not be stable to small perturbations in L.  
If what is needed is to properly define the noise floor, than a large window is not 
advisable. A large window will create an entire spectrum much flatter, and may exhibit 
a smooth transition to the noise floor, making it much more difficult to identify the 
noise floor.  
 
If what is needed is to extract trend let ( ) ( )21 FFF +=  where ( )1F is a trend and ( )2F is 
the residual. If the series ( )1F  is ‘simple’, meaning that (a) ( )1F  is well approximated by 
a series with finite and small rank d (for example it looks like an exponential, 1=d , a 
linear function, 2=d , etc); (b) the general tendency is the only one of interest; (c) in 
terms of SSA decomposition, the first few eigentriples of the decomposition of the 
trajectory matrix are enough for a reasonable good approximation of it; and the series 

( )1F is much ‘larger’ than the series ( )2F , than the window length L should not be very 
large. 
 
However if we need to extract refined trend ( )1F , when the residual ( )2F has a complex 
structure, then a large L can cause not only mixing of the ordinal numbers of the 
eigentriples corresponding to ( )1F and ( )2F , but also closeness of the corresponding 
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singular values, and therefore a lack of strong separability, even though a larger L is 
needed due to the complexity of the trend. This is the most difficult case and needs to be 
treated with caution. 
 
If the interest lies in a periodic component ( )1F  out of the sum ( ) ( )21 FFF +=  than 
some care is needed between the window length and the period. If the time series has a 
periodic component with an integer period T, than it is better to take the window length 
L proportional to that period.  
 
In cases where there are more than one periodicity, for example time series with weekly 
and annual periodicities, the window length should be multiple of the larger periodicity, 
in this case the annual one.  
 
In summary, the window length should be as small as possible keeping the separability 
of the components. A control of the correct choice of the window length is made at the 
grouping stage; the possibility of a successful grouping of the eigentriples means that 
the window length has been properly selected.  
 
As a summary: 

L > N/2 
Meaningless because SVD of matrices L and K=N-L+1 are equivalent 
(up to the symmetry). 

L = N/2 Gives the most detailed information. 

L > N/3 SSA does not resolve periods longer than the window length. So, the 
larger the L the better as long as statistical errors do not dominate the 
last values of the autocovariance functions. 

 
 

The separation results are stable with respect to small perturbations. 
More quantity of information extracted. Large L 
Will not mix up interpretable components. 

 

Small L 
Helps on proper definition of the noise floor (with large window the 
entire spectrum is much flatter and may exhibit a smooth transition to 
the noise floor). 

 
If the time series has a seasonal component it is advisable to take the 
window length proportional to that period. 

Comments: The window length has to be chosen between the period of the 
oscillation and the average time of its spells; SSA is typically successful 
at analyzing periods in the range (L/5, L). 

 

6.2. SVD 
 
The second step of the first stage is the SVD, Singular Value Decomposition. For the 
Basic SSA the matrix used to calculate the SVD of the trajectory matrix X is the matrix 
S, defined as follows: 
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TXXS =  

 
It can also be used the lag-covariance matrix C, where C=S/K, with exactly the same 
results. The only difference is the magnitude of the corresponding eigenvalues (for S 
they are K times larger), the singular vectors of both matrices are the same.  
 
Therefore the SVD of an arbitrary nonzero LxK  matrix [ ]KXXX K:1= is a 
decomposition of the matrix X in the form: 
 

∑
=

=
d

i

T
iii VUX

1
λ  

 
Where ( )Lii ,,1K=λ  are eigenvalues of the matrix S, arranged in decreasing order of 
magnitude. 
 
From the above expression d is the rank of the matrix X and is the maximum value of i, 
such that 0fiλ . 
 
At the same time, { }dUU ,,1 K  is the corresponding orthonormal system of the 

eigenvectors of the matrix S, and ii
T

i UXV λ/= . 
 
From the standard terminology of SVD, the iλ are the singular values; the iU the left 
singular vectors; the iU the right singular vectors of the matrix X. And therefore the 

( )iii VU ,,λ  is called the ith eigentriple of the matrix X.  
 
Sometimes is needed to use transformations of the above matrices to work with specific 
classes of time series and with time series of a complex structure. 
Several techniques can be used to overcome these problems, namely the single and 
double centring SSA, and the Toeplitz SSA. 
 
Centring means to introduce a new matrix A, of dimension LxK  and pass from the 
trajectory matrix X of the time series F to the matrix X* = X – A. The decomposition 
obtain is therefore: 

∑
=

+=
d

i
iXAX

1

*  where T
iiii VUX λ=*  

• Single centring SSA 
 
Single centring is shifting the center of gravity of the lagged vectors and then uses the 
SVD of the obtained matrix.  
It means that A (above) is equal to ( ) ( ) ( )[ ]XXXA 11 : εε K=Α= . 
It is the row centring of the trajectory matrix by having ( ) ( )XXX i

c
i 1ε−=  with the 

vector ( )X1ε  ( )Li K,1= equal to the average of the ith components of the lagged vector 

KXX ,,1 K . 
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The advantage of using the Single centring is easy to understand if the series F can be 
expressed in the form of ( ) ( )21 FFF += , where ( )1F is a constant series and 

( )2F oscillates around zero. 
If the series length N is large enough, its additive constant component will definitively 
be extracted by Basic SSA (which do not use any centring), but, for short series, single 
centring SSA can work better.  

• Double centring SSA 
In double centring the trajectory matrix X suffers the following change: to each element 
is subtracted the corresponding row and column averages and is added the total matrix 
average.  
This means that A (above) is equal to ( ) ( )XXA Β+Α= where A(X) is defined above e 
B(X) = ( ) ( )[ ]TXX 1212 :: εε K where the jth component of the vector ( )X12ε  
( )Kj ,,1K=  is equal to the average of all components of the vector ( )c

jX . 
Double centring leads to an asymptotic extraction of the linear component of the series, 
if the initial series is a linear one. In fact, taking X as the trajectory matrix and A 
defined as before, then for ( ) ( )21 FFF += with linear ( )1F , the matrix A contains the 
entire linear part of the series F.  
This extraction of the linear component can not be compared with the linear regression 
method. While the linear regression is a linear approximation by the least-squares 
method and gives a linear function of time for any series, even if the series does not 
have a linear tendency at all, the double centring SSA estimates the values of a linear 
function at each point, and only if strong linear tendency is really present.  
Again, these two methods produce quite similar results on long series. When the time 
series is short is best to use double centring SSA.  
 
Centring is more appropriated to short time series. Single centring is more appropriate 
to series F that can be expressed in the form ( ) ( )21 FFF += , where ( )1F is a constant 
series and ( )2F oscillates around zero. Double centring is more appropriate for the linear 
component extraction, meaning that for linear-like tendency, this approach is better than 
Basic SSA.  

• Stationary series and Toeplitz SSA 
 
If the time series is not sufficiently large and the series is assumed to be stationary, then 
the Basic SSA should be replaced by the Toeplitz version of the lag co-variance matrix 
C=S/K.  
 
The Basic SSA matrix C where the elements are: 
 

 ∑
−

=
−+−+=

1

0

1 K

m
qjmqimij ff

K
c , .,1 Lji ≤≤  

To get a Toeplitz lag-covariance matrix there are several ways, but the most common is 
the one that use the standard estimate of the covariance function of the series and to 
transform it into an L x L matrix. So, for the time series ( )10 ,, −= NffF K and a fixed 

window length L, the matrix is then C~  with the elements 
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∑
−−−

=
−+−

=
1

0
,

.
1~

jiN

m
jimmij ff

jiN
c .,1 Lji ≤≤  

 
The main idea is to put equal values ijc~ in each matrix diagonal kji =− . 

Having obtained the Toeplitz lag-covariance matrix C~ the orthonormal eigenvectors are 
calculated and they are LHH ,,1 K . The decomposition of the trajectory matrix is then: 
 

∑
=

=
L

i

T
ii ZHX

1

 being i
T

i HXZ = . 

 
If the initial series is a sum of a constant series with the general term oc  and a stationary 
series, then centring seems to be a convenient procedure. One way is to centre the entire 
series before calculating the matrix C~  mentioned above. 
The other possible method is to apply the single centring. This means that for the matrix 
described above C~  the following product is extracted: 
 

( )
( )

( )
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

−

=
−+

−

=

1,

0

1,

0 ,
1

,
1 jin

m
jim

jin

m
mij f

jin
f

jin
M  being ( ) jiNjin −−=, from ijc~ . 

 
The basic problem with this approach is that is not designed for non stationary series, so 
if the series has a strong nonstationary component Basis SSA should be used.  
Toeplitz produces a non optimal orthogonal decomposition of the trajectory matrix. 
Nevertheless for stationary, short and noisy series Toeplitz SSA can be advantageous. 
 
As a summary:  
 
 
 Time series 

 Short Long Stationary
Linear 
Trend Noisy

Single 
centring X         
Double 
centring X     X   
Toeplitz X   X   X 
Basic   X       

 
 

6.3. Separability 
 
The main purpose of the SSA is a decomposition of the original series into a sum of 
components, so that each component in this sum can be identified as either a trend, or a 
periodic or quasi-periodic component or noise. 
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Each additive component of the series F needs to be separable from each other in order 
to have a successful SSA decomposition.  
 
There are two different types of separability, the weak and the strong separability. 
 
For a fixed window length L, let’s consider a certain SVD of the L-trajectory matrix X 
of the initial series F of length N, and assume that the series F is a sum of two series 

( )1F and ( )2F , that is, ( ) ( )21 FFF += . 
 
Separability of the series ( )1F  and ( )2F  means that the matrix terms of the SVD of the 
trajectory matrix X can be split into two different groups, so that the terms within the 
groups give the trajectory matrices ( )1X and ( )2X of the series ( )1F  and ( )2F , 
respectively. 
 
The separability implies that both for the rows and the columns of the trajectory matrix 

( )1X of the first series are orthogonal to each row and column of the trajectory matrix 
( )2X of the second series, if this orthogonality holds, then the series ( )1F  and ( )2F  are 

weakly separable.  
 
Another condition for separability (necessary but not sufficient condition) is the w-
orthogonality: 
 
Let L* = min (L,K) and K* = max (L,K). Let: 
 

for 1*0 +≤≤ Li , 
for *,* KiL ≤≤  
for .1* −≤≤ NiK  
 

be a set of weights. 
 
Define the inner product of series ( )1F  and ( )2F  of length N as  
 

( ) ( )( ) ( ) ( )2
1

0

121 , i

N

i
iiw ffwdefFF ∑

−

=

 

 
and call the series ( )1F  and ( )2F  w-orthogonal if  
 

( ) ( )( ) 0, 21 =wFF  
 
The exact separability does not happen for real-life series and in practice only 
approximate separability is possible.  
 
In case of exact separability, the orthogonality of rows and columns of the trajectory 
matrices ( )1X and ( )2X means that all pairwise inner products of their rows and columns 
are zero. This implies that a characteristic of separability of two series ( )1F  and ( )2F  is 
the maximum correlation coefficient ( )KL.ρ . So, ( )1F  and ( )2F  are approximately 
separable if all correlations between the rows and the columns of the trajectory matrices 

( )1X and ( )2X are close to zero.  

⎪
⎩

⎪
⎨

⎧

−

+
=

iN
L
i

wi *
1
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Weighted correlation or w-correlation, is a natural measure of deviation of two series 

( )1F  and ( )2F from w-orthogonality and is: 
 

( )
( ) ( )( )

( ) ( ) ,
,

21

21

12

ww

ww

FF
FF

=ρ  where ( ) ( ) ( )( ) 2,1,, == iFFF w
ii

w

i  

 
If the absolute value of the w-correlation is small, then the two series are almost w-
orthogonal, and therefore separable. Figure 47 shows a W-correlations matrix for the 
time series B, as an example. The darkness of the squares indicates the values of the W-
correlations. 
 

w-Correlation matrix
Dados p_software.xls [Sheet1];    Var:B;

DECOMP.-K=97,Cent.(No);    GROUP.-[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12];

 - [0,00 , 0,05]
 - (0,05 , 0,10]
 - (0,10 , 0,14]
 - (0,14 , 0,19]
 - (0,19 , 0,24]
 - (0,24 , 0,29]
 - (0,29 , 0,33]
 - (0,33 , 0,38]
 - (0,38 , 0,43]
 - (0,43 , 0,48]
 - (0,48 , 0,52]
 - (0,52 , 0,57]
 - (0,57 , 0,62]
 - (0,62 , 0,67]
 - (0,67 , 0,71]
 - (0,71 , 0,76]
 - (0,76 , 0,81]
 - (0,81 , 0,86]
 - (0,86 , 0,90]
 - (0,90 , 0,95]
 - (0,95 , 1,00]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

 
Figure 47 - Time series B - W-Correlations 

Asymptotically separable series are the series that the maximum ( )KL.ρ  of the absolute 
values of the correlation coefficients between the rows/columns of the trajectory 
matrices of the series ( )1F  and ( )2F  tends to zero, as ∞→N . 
 
If ( )1F  and ( )2F are weakly separable and all the singular values of the trajectory matrix 
X are different, then strong separability exists as well.  
 
If two series ( )1F  and ( )2F fulfill the following two conditions than strong separability 
exists: (a) the series ( )1F  and ( )2F  are weakly separable and (b) the collection of the 
singular values of the trajectory matrices ( )1X and ( )2X  are disjoint. 
Let ( ) ( ) ( ) ( )∑∑ ==

m
m

k
k XXXX 2211 ,  are the SVD’s of the trajectory matrices ( )1X and 

( )2X  of the series ( )1F  and ( )2F , respectively. If the series are weakly separable, then 
( ) ( )∑∑ +=

m
m

k
k XXX 21  is the SVD of the trajectory matrix X of the 

series ( ) ( )21 FFF += . 
 
If the singular values corresponding to the elementary matrices ( )1X and ( )2X  coincide, 
this means that the terms ( )1

1X and ( )2
1X in the sum ( ) ( )2

1
1

1 XX + are not uniquely 
identified, since these two matrices correspond to the same eigenvalues of the 
matrix TXX . If the series ( )1F and ( )2F  are weakly separable, then a constant oc ≠ can 
always be found such that the series ( )1F  and ( )2cF  are strongly separable. 
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6.4. Grouping 
 
One of the two only parameters of SSA is the way of grouping in the second stage of the 
process. 
 
For a general series F it can be typically assumed that its trend component ( )1F  is 
approximately strongly separable from all other components. Therefore for extracting a 
trend of a series, all the elementary matrices related to slowly varying singular vectors 
needs to be collected. This is because a trend is a slowly varying component of a time 
series which do not contain oscillatory components.  
 
If the time series F has a strong tendency ( )1F  and a relatively small oscillatory-and-
noise component ( )2F  then most of the trend eigentriples will have the leading positions 
in the SVD of the whole series F. This does not mean that the singular values are large, 
in case that the trend is refined, the singular values can be small. 
 
On the other hand if the time series has high oscillations on the background of a small 
and slow general tendency, the leading elementary matrices describe oscillations, while 
the trend eigentriples can have small singular values and can be far from the top in the 
ordered list of eigentriples.  
 
To identify the harmonic components of the series, an analysis of the scatter plots of the 
singular values allows identification of those eigentriples that correspond to these 
components, provided these are separable from the residual component. In practice the 
singular values of the two eigentriples of an harmonic series are often close to each 
other, and the corresponding eigentriples are, as a rule, consecutive in the SVD order. 
This occurs when both L and K are several times greater than ω/1 , being ω the 
frequency of the harmonic component. If the harmonic period is comparable to N, the 
above will not happen and therefore the two eigentriples may not be consecutive and the 
two singular values are small and comparable to the singular values of the component 
noise. Figure 48 shows a scatter of two eigenvalues for a time series. 
 

3(0,044%) - 4(0,042%)

 
Figure 48 - Time series A - scatter plot for eigenfunctions 3 and 4 

 
If N, L and K are sufficiently large than each harmonic different from the saw-tooth one, 
produces two eigentriples with close singular values. Also, a pure noise series produces 
a slowly decreasing sequence of singular values. If such a noise is added to a signal, 
described by a few eigentriples with large singular values, then a break in the 
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eigenvalues spectrum can distinguish signal eigentriples from the noise ones. Figure 49 
shows this effect. 
 

EVAL Percents
Dados p_software.xls [Sheet1];    Var:V;

DECOMP.-K=97,Cent.(No); 
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Figure 49 - Time series V - EVAL Percents 

 
A word of caution, for complex signals and large noise: the signal and noise eigentriples 
can be mixed up with respect to the order of their singular values.  
 
As already mentioned in the section dedicated to separability, a necessary condition for 
the approximate separability of two series is the approximate zero w-correlation of the 
reconstructed components. On the other hand, the eigentriples entering the same group 
correspond to highly correlated components of the series.  
 
Therefore a natural help for grouping is the matrix of the absolute values of the w-
correlations, corresponding to the full decomposition, where each group corresponds to 
only one matrix component of the SVD. 
 

6.5. Diagonal averaging 
 
The final step of the final stage of SSA is the diagonal averaging.  
 
If the components of the series are separable and the indices are being split up 
accordingly, then all the matrices in the expansion 

mII XXX ++= K
1

are Hankel 
matrices and therefore the initial series 1,, −No ff K  is decomposed into the sum of m 

series: ( )∑
=

=
m

k

k
nn ff

1

~ , and for every k and n, ( )k
nf~  is equal to all entries ( )k

ijx along the 

secondary diagonal ( ){ ji,  such that }2+=+ nji  of the matrix 
kIX . 

 
In practice, however, this situation never happens. In general no secondary diagonal 
exists of equal elements. Therefore a formal procedure of transforming an arbitrary 
matrix into a Hankel matrix and therefore into a series is needed. Is exactly here that the 
diagonal averaging enters, defining the values of the time series ( )KF~ as averages of the 
corresponding diagonals of the matrices

kIX . 
 



Annex 

 67

Assuming that the Hankelization operator, H; the ( )LxK matrix ( )ijyY = , KL ≤ ; 
sji =+  and 1−+= KLN ; the elements ijy~  of the matrix HY be: 

 
 

for 12 −≤≤ Ls , 
 
 
for  1+≤≤ KsL , 
 
 
for  LKsK +≤≤+ 2  
 

For KL f the expression for the elements of the matrix HY is analogous, the changes 
are the substitution KL ↔ and the use of the transposition of the original matrix Y. 
 
Applying this procedure to all matrix components the following expansion is obtained: 
 

mII XXX ~~
1

++= K , where
ll II HXX =~ . 

 
The procedure of computing the time series ( )kF~  is called the reconstruction of a series 
component ( )kF~ by the eigentriples with indices in kI . 
 

6.6. Detection of Structural changes 
 
The result of the embedding procedure in a real-valued sequence 
series ( )10 ,, −= NN ffF K , with 3≥N and fix window length ( )NLL pp1  is a sequence 
of L-lagged vectors of the series NF : 
 

( ) ( ) ,,, 21
T

Liii
L

i ffXX −+−== K  .,,1 Ki K=  
 

If we denote ( ) ( ) ( )K

def

N
L XXspanFL ,,1 K= the trajectory space of the series NF and if 

( ) dL L =dim , with Ld ≤≤0 , then it can be said that the series NF  has L-rank d and 
write this as ( ) dFrank NL = , assuming that 0≠d which means that not all the nf are 
zero. 
 
The equality ( ) dFrank NL = is true only if ( )KLd ,min≤ . If this is true to all the 
appropriate L, then the series NF  has rank d. 
 
Is also true that ( )NL Frank is the order of the SVD decomposition of the trajectory 
matrix X.  
 
It can also be said that NF  has difference dimension not larger than d (fdim ( NF )≤d) if 

11 −≤ Nd p  and there are numbers daa ,,1 K such that  
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∑
=

−++ =
d

k
kdikdi faf

1

,  10 −−≤≤ dNi , 0≠da  

 
The above formula is called the linear recurrent formula (LRF). The LRF with d = 
fdim(FN) is the minimal LRF. 
 
If the above formula is valid that it can be said that the series NF  is governed by that 
LRF. 
 
A time series NF is homogeneous if it is governed by some linear recurrent formula 
whose dimension is small relative to N.  
 
A violation in the homogeneity of the series will force the lagged vectors to leave the 
space ( )LL . This will make the homogeneous series to transform in an heterogeneous 
series. The detection of the structural changes is crucial.  
 
There are two possibilities: 

• In a determined point in time the series stops following the original LRF, and 
after a certain time period it again becomes governed by an LRF equal to the 
previous one. 

• In a determined point in time the series stops following the original LRF, and 
after a certain time period it again becomes governed by an LRF, which is not 
equal to the previous one. 

 
It really does not matter each one happens, because in both cases the series as a whole 
stops being homogeneous and the problem of studying this heterogeneity arises. 
 
To detect this changes a heterogeneity matrix is build and heterogeneity functions are 
studied. 
 

6.6.1. Heterogeneity matrix 
 
This matrix characterizes the discrepancy between the series ( )2F  and the structure of 
the series ( )1F . Let’s define the mentioned series: 
Let’s consider two time series ( ) ( )11

1NFF = and ( ) ( )22
2NFF =  and take an integer L with 

( )21 ,1min2 NNL −≤≤ . The linear space spanned by the L-lagged vectors of the series 
( )1F  is ( )1,LL .  

The eigenvectors of the SVD of the trajectory matrix of the series ( )1F  are 
( ) ),,1(1 LlU l K= , for ( )1,dim L

def
Ldl =f , we take vectors from any orthonormal basis of 

the space orthogonal to ( )1,LL  as the eigenvectors ( )1
lU . 

 

With { }riiI ,,1 K= as a subset of { }L,,1K and ( ) ( )( )IlUspanL l

def

r ∈= ,11 . The lagged vectors 
of the time series ( )2F  are ( ) ( )22

1 2
,, KXX K  ( )122 +−= LNK . 

 
The matrix is therefore:  
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( ) ( )

( ) ( )( )
( )∑

∑

=

==
2

2

1

22

12

1

2

21
,

);( K

l
l

rl

k

l

X

LXdist
FFg  

where ( )LXdist , is the Euclidean distance between the vector LX ℜ∈ and the linear 
space LL ℜ⊂ .  
The index g is the relative error of the optimal approximation of the L-lagged vectors of 
the time series ( )2F  by vectors from the space ( )1

rL .  
The values of g belong to the interval [ ]1,0 . 
To define the heterogeneity matrix (H matrix) of a time series FN, where the elements 
are values of the heterogeneity index g for different pairs of subseries of the series FN, is 
needed to introduce the following objects: 
 

• The initial series ( ) 2,,,: 10 fK NffFF NNN −= ; 
• The subseries (intervals) jiF , of the time series ( )11, ,: −−= jijiN ffFF K  

for Nji ≤≤≤1 ; 
• The window length NLL pp1: ; 
• The length B of the base subseries of the series LBF N f: ; 
• The length T of the test subseries of the series LTF N ≥: ; 
• The collection I of different positive integers { }rjjI ,,1 K= ; assuming that I is 

such that ( )1,min +− LBLj p for each Ij∈ ; 
• The base spaces ( )1,,1 +−= BNi K are spanned by the eigenvectors with the 

indices I, obtained by the SVD of the trajectory matrices ( )BiX ,  of the series 
1, −+BiiF with the window length L. The corresponding set of eigentriples is called 

the base set of eigentriples. 
 
In these terms the elements jig , of the heterogeneity matrix G = GB,T 

are ( )1,1,, ; −+−+= TjjBiiji FFgg , with 1,,1 +−= BNi K and 1,,1 +−= TNj K . The series 

1, −+BiiF  is the base subseries of the series NF  and 1, −+TjjF is the test subseries.  

6.6.2. Heterogeneity functions 
 
Based on the H-matrix there are several heterogeneity functions: 
 
 
Row heterogeneity functions 
It is a series ( )ir

TNH ,
1+− for fixed [ ]1,1 +−∈ BNi , which corresponds to the ith row of the 

matrix G, with the general term ( ) ( )1,1,
,
1 ; −+−+− == TnnBiiin

def
ir

n FFggh , 1,,1 +−= TNn K , and 
reflects the homogeneity of the series NF (of its test subseries 1, −+TnnF ) relative to a fixed 

base subseries 1, −+BiiF  (relative to the base space ( )iL
BIL ,

, ).  
 
Column heterogeneity functions 
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Corresponds to the jth column of the matrix G which for fixed [ ]1,1 +−∈ TNj the 
column heterogeneity function ( )jr

BNH ,
1+−  with the general term 

( ) ( )1,1,
,
1 ; −+−+− == TjjBnnnj

def
jc

n FFggh , , and reflects the homogeneity of the series NF (the 

base space ( )nL
BIL ,

, ) relative to its fixed test subseries 1, −+TnnF . 
 
Diagonal heterogeneity functions 
Is a time series ( )δ

δ
,

1
d

TNH +−− with the parameter TN −≤≤ δ0 , for 1,,1 ++−= δTNn K , 
where δ+= ij corresponds to the diagonal of the matrix G. The general term is 

( ) ( )1,1,,
,
1 ; −+++−++− == TnnBnnnn

def
d

n FFggh δδδ
δ .  

This series reflects the local heterogeneity of the series, since both the base and the test 
subseries of the series NF  vary at the same time.  
 
Symmetric heterogeneity functions 
When 0=δ and BT = the base subseries of the series coincide with the test subseries. 

The matrix G becomes a square matrix and the series ( ) ( )0,
11

d
BN

def
s

BN HH +−+− = corresponds to 

its principal diagonal. The general term ( ) ( ) );( 1,1,
0,

11 −+−+−− == BnnBnn
d

n

def
s

n FFggh of the series 

( )s
BNH 1+−  is equal to the eigenvalues share ( )

( )

( )∑
∑
∈

− −=

l

n
l

Il

n
l

s
nh

λ

λ
11 where ( )n

lλ are the eigenvalues 

of the SVD of the trajectory matrix of the series 1, −+BnnF with window length L. 

Therefore the series ( )s
BNH 1+−  is the symmetric heterogeneity function. 

 

6.6.3. Detection functions 
 
There are two types of change detection, the ‘forward’ change detection and the 
‘backward’ change detection. 
When the first one is applied what is being tested is the homogeneity of the series 
relatively to the initial part of the series. By definition the ‘backward’ change is the test 
of the homogeneity of the series relatively to the terminal part of the series. 
This last option is important specially on forecasting, when finding the original part of 
the series that can be used for forecast.  
Nevertheless, the ‘forward’ change detection problem can easily be transformed into the 

‘backward’ problem by inverting the time; this is, by considering the series 1−−=′ iN

def

i ff . 
 
There are also 4 types of detection functions which differ from the heterogeneity 
functions in several aspects, which are: a) assuming only ‘forward’ changes so only the 
series BF ,1  should be used as the base part of the series for both row and column 
heterogeneity functions; b) for the diagonal (but not symmetric) heterogeneity functions 
should be assumed that B=δ , meaning that there is no gap between the base and the 
test intervals, or that what is being compared are neighboring parts of the time series; c) 
the domain is different, the interest is almost only in the first ‘forward’ change in the 
series.  
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Row detection function 

Is the series ( )r
NTD , with the terms ( ) ( ) ( )nTnB

r
Tn

def
r

n FFghd ,1,1
1,

1 ; +−−− ==  with NnT ≤≤ . This 
corresponds to the detection of changes with respect to the initial part of the series, to its 
first B terms. 
 
Column detection function 

Is the series ( )c
NBD , with the terms ( ) ( ) ( )TBn

c
Bn

def
c

n FFghd ,11
,1

1 ;+−−− ==  with NnB ≤≤ .  
 
Diagonal detection function 

Is the series ( )d
NBTD ,+ with the terms ( ) ( ) ( )nTnTnBTn

Bd
BTn

def
d

n FFghd ,11,1
,

1 ; +−+−+−−−−− ==  
with NnBT ≤≤+ . As mentioned in the beginning of this part there is no gap between 
the base and test intervals, therefore this function can be used to detect abrupt structural 
changes against the background of slow structural changes.   
 
 
 
 
Symmetric detection function 

If T=B, then the terms of the series ( )s
NBD , are defined by ( ) ( ) ( )nBnnBn

s
Bn

def
s

n FFghd ,1,11 ; +−+−−− ==  
with NnB ≤≤ . This function measures the quality of approximation of the bases series 
by the chosen eigentriples. 
 
 

6.6.4. Homogeneity and Heterogeneity  
 
For a time series NF  homogenous, and governed by a LRF of dimension d, with L and 
r, so that dL ≥ and ( )1,min +−≤≤ LNLrd ; and { }rI ,,2,1 K= ,then the heterogeneity 
matrix is the zero matrix, since LB ≥ , then for any i , ( ) ( ) ( ) ( )N

L
Bji

L FF ℑ=ℑ −+ 1, , and 
therefore all the L-lagged vectors of the series 1, −+TjjF belong to the space 

( ) ( )1, −+Bii
L FL for all i, j.  

Conclusion: Any homogeneous series NF  gives rise to a zero heterogeneity matrix, and 
the presence of nonzero elements jig ,  in this matrix is an indication of a violation of 
homogeneity. 
 
The types of violations are two: 
 

• If the same LRF is restored, after the perturbation as taken place, then the 
violations are temporary. 

• If a different LRF from the original one appears after the perturbation then the 
violations are permanent.  
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The moment of perturbation is called the change-point Q and it is the maximal moment 
of time such the series 1,1 −QF is homogenous, d = fdim ( )1,1 −QF . If after some time S 
( )0≥S , the time series becomes homogeneous again, meaning that the series NSQF ,+ is 
homogeneous, and let d1 = fdim ( )NsQF ,+ then the time interval [ ]SQQ +, is the transition 
interval.  
Assuming that ( )1,max ddL ≥  and that 1−≤ QL and 1+−−≤ SQNL , then if the L-
lagged vectors of the series NF span the original subspace ( ) ( )1,1 −Q

L FL after they have left 
the transition interval [ ]SQQ +, , then both homogeneous parts of the time series are 
governed by the same minimal LRF, and this is a case of temporary homogeneity. 
Examples of those are changes in the phase of one of the harmonic components, and a 
change in the slope of a linear additive component of the series.  
 
Examples of permanent homogeneity are a change in the period of the harmonic 
components of the series and a change in the number of harmonic components. 
 
The Figure 50 represents the general form of the heterogeneity matrix of a locally 
perturbed homogeneous series, assuming that the lengths of both the base and the test 
intervals satisfy the condition ( ) QTB p,max . 
 

 
Figure 50 - General form of the H-matrix 

First note: in case of temporary heterogeneity all four regions A, B, C, and D are zero 
regions. 
 
Region A corresponds to the elements jig , of the H-matrix where the series 1, −+BiiF and 

1, −+TjjF are subseries of the homogeneous series 1,1 −QF . Therefore all jig ,  are equal to 
zero.  
 
In region D both series 1, −+BiiF  and 1, −+TjjF  are intervals of the series NSQF ,+ , if the 
dimension 1d of the series NSQF ,+ is not larger than the dimension d of the series 1,1 −QF , 
then this region is also zero. 
 
‘The heterogeneity cross’ is the region of the elements jig ,  of the H-matrix with indices 
( )ji, such that 11 −+≤≤+− SQiBQ , 11 −+≤≤+− sQjTQ . It corresponds to those 
( )ji,  where either the base or the test interval has a nonempty intersection with the 
transition interval.  
The width of the vertical strip of the cross is equal to 1−+ ST , and the height of its 
horizontal strip is 1−+ SB . 
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In the case of permanent violations, and because the dimension of the LRF reflects the 
complexity of the related series, the main classification of this cases will be done in 
terms of the correspondence between the dimension d = fdim ( )1,1 −QF  and the dimension 
d1 = fdim ( )NsQF ,+ . The various cases can be: 
 

• Preservation of dimension, meaning that the fdim ( )1,1 −QF  =  fdim ( )NsQF ,+ . In this 
case the blocks A and D are zero blocks and the blocks B and C are generally 
not.  

• Reduction of dimension, meaning that the fdim ( )1,1 −QF  >  fdim ( )NsQF ,+ , but 
( ) ( ) ( ) ( )1,1, −⊄ Q

L
NQ

L FLFL . Also in this case the blocks A and D are zero blocks 
and the blocks B and C are generally not.  

• Reduction of dimension (in the specific case when this reduction is caused by 
the disappearance of one of the series components), in this case the blocks A, C, 
and D are zero blocks.   

• Increase of dimension, meaning that the fdim ( )1,1 −QF  < fdim ( )NsQF ,+  and 
( ) ( ) ( ) ( )1,1, −⊄ Q

L
NQ

L FLFL . In this case only the block A is a zero block. 
• Increase of dimension (in the specific case when this increase is caused by the 

adding of one of the series components), in this case the blocks A and B are zero 
blocks.  

 
When the violation is temporary then all four blocks of the H-matrix are zero blocks, 
hence the pictorial representation of this matrix has the form of a cross. The horizontal 
strip reflects the transition interval, and the vertical strip shows what kind of influence 
the heterogeneity has on the lagged vectors of the series. 
 
Up to now only single heterogeneity has been considered, but multiple heterogeneities 
can happen. That means that there are several local regions of heterogeneity in the time 
series. The heterogeneity matrix contains submatrices corresponding to matrices 
represented in Figure 5. When this happens, H-matrix has more than one cross.  
 

6.6.5. Heterogeneity and separability 
 
Up to now a series NF  as been considered, but realistically what happens is 

( ) ( )21
NNN FFF += , where the additive component ( )1

NF  is subject to a perturbation and the 
series ( )2

NF  has a sense of nuisance (for example, ( )2
NF is noise). To describe the various 

forms of the ‘background’ H-matrices for the problem of detection of structural changes 
in the series components is needed that firstly the case of an homogeneous series ( )1

NF  
whose subseries are (approximately) separable from the corresponding subseries of the 
series ( )2

NF  is studied.  
 
The case of stably separable series will be specified now. Assuming that: 
 

( ) ( )21
NNN FFF +=  and ( )1

NF  are homogeneous; 
d = fdim ( )( )1

NF . 
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For all 1,,1 +−= BNi K the subseries ( )1
1, −+BiiF and ( )2

1, −+BiiF are strongly separable for 
some window length L such that BLd pp . 
As B>d, the subseries ( )1

1, −+BiiF  are governed by the same LRF that governs the series ( )1
NF , 

and therefore fdim( ( )1
1, −+BiiF ) = d. 

r = d. 
For any i, the subseries ( )1

1, −+BiiF is described in the SVD of the L-trajectory matrix of the 

series 1, −+BiiF  by the eigentriples indexed by the numbers in { }riiI K,1= , which are the 

same as for the series ( )1
,1 BF .  

 
Then the series ( )1

NF  and ( )2
NF  can be called stably separable, and for all 

11 +−≤≤ BNi , the jig , elements are 

( )

∑

∑
+−

=

+−

== 1

1

2

,

1

1

22
,

, LT

l
jl

LT

l
jl

ji

X

X
g  where jlX , and ( )2

, jlX are the l-

lagged vectors of the time series 1, −+TjjF and ( )2
1, −+TjjF , respectively. 

 
There are two possible cases of stable separable series, the case of nonperiodic series 
and the case of periodic series: 
nonperiodic series: stable separability of the components leads only to the equality of all 
row heterogeneity functions.  
periodic series: will guarantee the constancy of the jig , . 
 
Still assuming homogeneity, there are different kinds of deviation to the stable 
separability possible. Deviations from weak separability, not related to the ordering of 
the eigenvalues, and the effects of coincidence and rearrangements of the eigenvalues, 
which have influence on both strong separability and the constancy of the sets of iI .  
 
Examples: 
 
Approximate weak separability - nonperiodic series: The H-matrix will be the same as 
above, but the row heterogeneity functions are no longer equal. 
Approximate weak separability - periodic series: In these case there exists a dependence 
of the H-matrix on T. The smaller T (and therefore T – L + 1), the larger fluctuations the 
elements of the matrix H-matrix may have.  
 
Asymptotic separability: when the time series is large asymptotic weak separability is 
more natural than approximate weak separability. As a rule, asymptotic separability 
implies that there are small fluctuations around the limiting H-matrices, which are either 
constant or have the form of the stable separation with nonperiodic series. Natural cases 
of asymptotic separability are the noisy series, meaning the series is corrupted by noise. 
Asymptotically, the values of the H-matrix have a constant limit: 
 

( )
( )02

02
lim 2

ε

ε

Rc
R

gij +
=   
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In practice, the closeness of the elements of the H-matrix to the constant value 
mentioned above is achieved due to the large value of the series length N and the small 
(relative to C2) value of the variance ( )0εR . 
 
Rearrangement of the eigentriples: it can occur either by the increase of dimension of 
the I , for example a series that is described by only one eigentriple and starts in a 
defined point to be defined by the two leading eigentriples, or by maintaining the 
dimension but the eigentriples that describes the series change. 
 
Nevertheless, it is important to identify, when they exists, the intervals of heterogeneity. 
The series  ( )1

NF  and ( )2
NF  themselves can be either stably separable on the homogeneity 

intervals or have discrepancies from this ideal situation. As always the heterogeneity 
matrix G gives the best description of the entire situation.  
 
The most important is the choice of the detection parameters. The idea is to determine if 
a violation of homogeneity did occur and if it did when is needed to know: the number 
of change-points; their location; and if the violation is permanent or temporary. 
Let’s divide this subject in two possible situations, a single heterogeneity and a multiple 
one. 

• Single heterogeneity 
a) The ‘ideal’ detection - It happens when the series ( )2

NF  is the zero series. 
The series ( )

NN FF =1  and assuming that exists NQ p′ such that the series 1,1 −′QF is a 
homogeneous series, and the dimension d of its minimal LRF is less than 2/Q′ . By 
definition, the maximal Q′coincides withQ .  
B and L should be chosen accordingly with the knowledge that any dB 2f and L such 
that )1,min( +− LBLd p . 
Any subseries 1, −+BiiF , such that BQi −≤ , and considering the SVD of its trajectory L-

trajectory matrix, then for some r all the eigenvalues ( )i
sλ  with rs f  are equal to zero. 

Therefore, [ ]rI K,2,1=  and dr = . All the nonzero elements of the matrix indicate the 
existence of some heterogeneity in the series.  
 
b) Nonzero ( )2

NF : identification – To solve this problem, is better to assume that 
( ) ( )21

NNN FFF +=  holds but the addends are unknown. In this way what will be studied is 
the entire series NF . Some assumptions needs to be taken: i) ( )1

1,1 −′QF  is homogeneous; ii) 

the chosen set I of eigentriples correspond to the subseries ( )1
1, −+BiiF  for all 

BQi −′= ,,1K (as a rule it is a set of several eigentriples); iii) the heterogeneity under 
detection is happening at the series ( )1

NF .  
By the above assumptions, for the selected B and L it exist certain eigentriples of the 
trajectory matrices of the subseries )(1, BQif Bii −′≤−+ stably interpretable as 
(approximately) describing subseries of the same homogeneous series.  Until the 
momentQ′  the series ( )1

NF  is (approximately) identified by the obtained set I of the 
eigentriples, and thus have the detection parameters r and I. In some case the 
identification procedure is easy to perform in others can not be done.  
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c) Small noisy-like ( )2
NF  - This case is similar to the ‘ideal’ detection case.  

To obtain (approximate) separability of the series ( )1
1, −+BiiF and ( )2

1, −+BiiF up to the change-
point, a relatively large B needs to be taken (it can not be larger than the expected value 
of Q). L should be chosen to be approximately equal to B/2.  
Since the series ( )2

NF  is small enough and in view of the (approximate) separability 
obtained, several r leading singular values produced by the series 1, −+BiiF , must be large 

enough and describe the series ( )1
1, −+BiiF , while the other singular values are expected to be 

small. Therefore and abrupt decrease of the singular values, placed in decreasing order 
of their magnitudes, may help finding the number r and the set [ ]rI ,,2,1 K= .  
If all the parameters were chosen correctly, then the corresponding heterogeneity matrix 
will have small elements in the block A.  
If ( )1

1,1 −QF is harmonic with amplitude C and ( )2
NF  is a white noise with variance 2σ , then 

asymptotically in N and other parameters, the elements of the block A are close to 
( )222 5.0/ σσ +C . If 22 Cppσ , the block A is zero-like.  

 
d) General ( )2

NF  - The goal of obtaining Q′as large as possible it may contradict in the 
case of general ( )2

NF .  
The detection problem is complicated in view of the possibility that the detection 
background (the block A) may contain large elements in certain columns. If separability 
is approximate, then the equal-row background is perturbed, and it is difficult to 
recognize a possible heterogeneity on the non-constant background.  
The same applies when the entire series is generally increasing and decreasing, when 
the detection background varies in a monotone way, and the heterogeneity recognition is 
even more complicated.  
 
However, there are no general rules for the choice of B and L in all ‘simple’ situations. 
As a result, if the detection is performed in a situation close to ‘ideal’, then large values 
of the heterogeneity index indicate heterogeneity, and the general form of the H-matrix 
can help to identify both the change-point and the type of the heterogeneity.  

• Multiple heterogeneity 
It is useful to search sequentially for the change-points and heterogeneities. This is done 
by producing sequential H-matrices until the end of the series is reached. The collection 
of H-matrices obtained in this way would give the entire description of the situation.  
 
Detection functions 
The row detection function is the best way to detect the first change-point of the series. 
The change-point coincides with the first point of sharp increase of this function; 
The diagonal detection function indicates more clearly change-points if the series has a 
slowly varying structure. It needs to be taken with care because a single heterogeneity 
may give rise to several sharp peaks on the plot of this detection function. 
The symmetric detection function can only be used to characterize the local description 
of the series NF  by a fixed set of eigentriples. 
The column detection function despite the fact that is weak in detecting heterogeneities 
is often informative when the idea is to distinguish the heterogeneity from the 
eigentriple rearrangement. 
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The difference between the row and the column detection function is a good indicator of 
the true heterogeneity. If the column function has a sharp increase and the row function 
is slowly varying, then is must certain that there is an eigentriple rearrangement. 

• Heterogeneity in trends 
The trend of the series is associated with its low frequency component. To separate it 
from the other components of all series 1, −+BiiF with the help of a stable set of 
eigentriples, a small B must be taken. A sufficiently large trend is described by the 
single leading eigentriple of the SVD of the trajectory matrix of the series 1, −+BiiF . 

Therefore the series 1,
~

−+BiiF , reconstructed from the leading eigentriple must be similar 

to the exponential series with some rate iα , that is for the series of the form n
in

iecg α=  
with some ic  and 2,1 −+= Bin K . On time intervals where the trend changes its 
behavior, the rates also change, and is the case of (approximate) permanent violations in 
the piecewise exponential series. Therefore, sharp changes in the trend behavior will be 
detected via the increase of the detection functions.  
The H-matrix will have small values of the heterogeneity index in block A and D, and in 
all the rectangles along the main diagonal. Other blocks of homogeneity can also have 
small elements. Despite the fact that the heterogeneity under consideration is of a 
permanent type, the heterogeneity matrix is going to be ‘cross-structured’. 

• Heterogeneity in periodicities 
In view of the periodic feature of the signal, the detection parameters B, L and T should 
be proportional to the period of the series.  
At any rate, at least the block A of the heterogeneity matrix will consist of 
approximately equal elements. 
 

• The role of the parameter T 
Small values of T imply both a large contrast in the detection and a high sensitivity to 
small perturbations of the series. By enlarging T, the contrast between small and large 
values of the detection function is reduced and these functions are smoother. 
The minimal T values is T = L. 
When dealing with periodic series, T must be proportional to the period of the series. 
 

• Detection Characteristics  
There are various additional detection characteristics which can help to identify and 
interpret heterogeneities in time series. They can be divided in three major groups: 
 
Renormalized heterogeneity matrices. By definition the heterogeneity index is 
normalized, because when pure homogeneity exists all values are zero, and in pure 
heterogeneity all values are one. When the series is positive and monotone increasing 
the denominator of the row detection function increases as well. Therefore, the 
heterogeneity index of the last part of the series is generally smaller than the analogous 
index of the initial interval of the series only because of the increase of the entire series. 
This makes that the background is non-constant and two ‘equivalent’ heterogeneities 
occur at the beginning and at the end of the series producing different increases of the 
heterogeneity characteristics. To avoid all these the heterogeneity index should be 
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denormalized, by omitting the denominator of formula, which creates the following 
formula: 

( )
( )( )

∑

∑
−

=

+−

=+−
1

0

2

,
,,

1

1

2

1

,
1

1
~

N

k
k

iL
BIjl

LT

l
ij

f
N

LXdist
LTdefg   

where B, L, T, r and I are fixed detection parameters and jlX , are the L-lagged vectors of 
the series 1, −+TjjF . In this definition is used the squared sum of all the elements of the 
series NF as the denominator and take averaging coefficients in agreement with the total 
number of the terms of the series in all the sums. 
 
This new heterogeneity index may also be very helpful in the detection of change-points 
in the variance of the noise. 
 
The Roots of characteristics polynomials is related with the variations in linear 
spaces ( )iL

BIL ,
, . 

The root functions of the characteristics polynomial seem to be preferable for the 
purpose of monitoring the homogeneity of the series.  
Characteristics related with moving periodograms which describes the changes in the 
spectral structure of the initial series in time. 
 
 
 
 

7. Annex 2 – Single-spectrum analysis – 
Forecasting theory 

 

7.1. SSA recurrent forecasting algorithm  
 
Some of the algorithm inputs, notations, comments and properties: 
 
Time series ( ) 2,

1,,0 fK NfF
NfN −

= . 
Window length  L, 1 < L < N. 
Linear space L

rL ℜ⊂ of dimension r < L. It is assumed that rL Le ∉ , 

where ( ) LT
Le ℜ∈= 1,0,,0,0 K . In other terms, Lr is not a ‘vertical’ space but is defined 

by its certain orthonormal basis (the forecast result do not depend on this concrete 
basis). 
Number M of points to forecast for. 

[ ]KXXX ::1 K= (where K = N – L + 1) is the trajectory matrix of the time series NF . 

rPP ,,1 K  is an orthonormal basis in Lr. 

[ ] ∑= XPPXXdefX T
iiK

ˆ::ˆˆ
1 K . The vector iX̂ is the orthogonal projection of iX onto 

the space Lr. 
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[ ]KXXXX ~::~ˆ~
1 K=Η= is the result of the Hankelization of the matrix X̂ . The matrix 

X~ is the trajectory matrix of some time series ( )10
~,,~~

−= NN ffF K . 
For any vector LY ℜ∈ , 1−

Δ ℜ∈ LY  is the vector consisting of the last L – 1 components 
of the vector Y, while 1−

∇ ℜ∈ LY is the vector consisting of the first L – 1 components of 
Y.  

22
1

2
rv ππ ++= K , where iπ is the last component of the vector ( )LiPi ,,1K= . Since 

2v is the squared cosine of the angle between the vector Le and the linear space Lr, it 
should be called the verticality coefficient of Lr. 
As have already been said rL Le ∉  so 12 pv . In this case the last component Ly of any 
vector ( )TLyyY ,,1 K= is a linear combination of the first components 11 ,, −Lyy K : 

112211 Yayayay LLLL −−− +++= K  
 

Vector ( )TL aaR 11 ,,K−= can be expressed as ∑
=

∇

−
=

r

i
ii Pv

R
1

21
1 π and does not depend 

on the choice of a basis rPP ,,1 K in the linear space rL . 
The series ( )10 , −++ = MNMN ggG K  is the result of: 

 
for i = 0, … , N – 1 
 
for i = N, … , N + M - 1 
 

where the numbers 1,, −+MNN gg K  form the M terms of the SSA recurrent forecast (or 
only SSA R-forecasting algorithm).   
 

If ( ) L
r

r LP ℜ→: is defined as a linear operator by the formula ( )
rT

r LY
YR

Y
YP ∈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

Δ

Δ , , 

and setting  
for i = 0, … , K 
 
for i = K +1, … , K + M 

The matrix [ ]MKZZZ += ::1 K is the trajectory matrix of the series MNG + . 
It is evident that the initial points 11 ,, −+− NLN gg K of the forecasting recurrent formula 
coincide with the last L-1 terms of the series F.  
The series NF admits a continuation in rL  if there is an uniquely defined Nf~ such that all 

L-lagged vectors of the series ( )NNoN fffF ~,,,~
11 −+ = K  belong to ( )LL . In this case the 

series 1
~

+NF will be called the one-step L-continuation of the series NF . 
If rL Le ∈ , then NF  does not admit L-continuation. Consequently if Ld = , then the 
series cannot be L-continued since the uniqueness condition does not apply. 
If KLd ≤p and rL Le ∉ , then the series NF admits L-continuation. 

The one step continuation formula is: ∑
−

=
−=

1

1

~ L

k
kNkN faf where the vector 

( )TL aaR 11 ,,K−=  which was identified above.  
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The series NF is governed by the LRF: ∑
−

=
−++ =

1

1

L

k
kLikLi faf , 10 −−≤≤ LNi . 

If the series NF admits a one-step L-continuation, then it can be L-continued for an 
arbitrary number of steps. 

If a series NF satisfy a LRF: ∑
=

−++ =
0

1

d

k
kdikdi fbf

o
, 10 −−≤≤ odNi and 

( )KLd ,1min0 −≤ , then ( )L
Lo Ledd ∉≤ , and the series will admit L-continuation, 

produced by the above formula. 
 
The concepts of recurrent continuation and L-continuation are equivalent. 
 
Nevertheless, it is not realistic to believe that the series are governed by some LRF of 
relatively small dimension; the exact continuation is mainly methodological and 
theoretical. Therefore, the concept of approximate continuation is more realistic and 
helpful. 

7.2. Approximate continuation 
 
Assuming that the following conditions hold: 
 
The series of length N and window length L provide approximate strong separability of 
the series ( )1

NF  and ( )2
NF ; 

∑=
i

T
iii VUX λ is the SVD of the trajectory matrix X of the series NF . The choice of 

the eigentriples{ }
Ii

T
iii VU

∈
λ , ( )riiI ,,1 K= associated with ( )1

NF  allows achieving 
approximate separability; 

( )( ) KLrFfdefd N ≤≤≤1dim ; 

( )IiUspane iL ∈∉ , , meaning that 12 p∑ ∈ iLIi u , where iLu is the last component of the 
eigenvector iU . 
 
Than the Basic SSA R-forecasting algorithm can be applied, and the result 

1, −+MNN gg K is called the approximate recurrent continuation of the series NF . 
 
Usually and due to the fact that forecasting errors occur the forecast series Ng  do not 
coincide with recurrent continuation of the series ( )1

NF . The errors can be of two types, 
first it happens because the LRF is produced by the vector R which is strongly related to 
the space rL , and the discrepancy with this space and the space ( )1,LL  produces the error, 
in particular because the finite-difference dimension of the forecast series ( )Nng N ≥ is 
generally greater than d. Secondly, the error can be produced by the initial data for the 
forecast. For recurrent continuation, the initial data is ( ) ( )1

1
1

1 ,, −+− NLN ff K , where ( )1
nf is the 

nth term of the series ( )1
NF . In the Basic R-forecasting algorithm the initial data are the 

last L-1 terms 11 ,, −+− NLN gg K of the reconstructed series. Since ( )
nn gf ≠1 , the initial 

series produces its own error. 
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When the quality of the approximate separability is “good” is expected that the SSA R-
forecasting produces a reasonable approximation to recurrent continuation of ( )1

NF . 
 

7.3. Modifications to Basic SSA R-algorithm 
 
There are some specific situations when some modifications to the Basic SSA R-
algorithm can be helpful in forecasting more accurately. 
 
SSA V-forecasting: Both V and R forecasting works with two general stages, diagonal 
averaging and continuation. For R-forecasting, diagonal averaging is used to obtain the 
reconstructed series, and continuation is performed by applying the LRF. In the V-
forecasting, these two stages are used in the reverse order, first vector continuation in 

rL is performed and then diagonal averaging gives the forecast values. When a series 
admit recurrent continuation, both forecast methods provide the same results. In case of 
only approximate continuation than the results differ. As poor as the approximations is 
as large the difference between forecast values will be. The forecast stability can be 
“proved” if the two forecasting values are close. In cases of rapid increase or decrease 
of the R-forecasting values, V-forecasting tends to be more “conservative”. 
Toeplitz SSA forecasting: both V and R-forecasting can be applied to a series which 
have been decomposed using Toeplitz SSA. Therefore, for stationary time series 
Toeplitz SSA forecasting may give more stable results. 
 Centring in SSA forecasting: When reconstructing a component of a time series with 
the help of the single centring variant of the Basic or Toeplitz SSA, the average triple 
can be either included into the list of the eigentriples selected for reconstruction or not. 
In the case when the average triple is not taken for reconstruction everything holds the 
same for both V and R-forecasting, except the matrix X̂ , which is modified 

for: [ ] ( )∑
=

−==
r

i

T
iiK AXPPXXX

1
1

ˆ:ˆˆ K , where [ ]εε K:=A and the vector ε has the 

form ( ) KXX K /1 ++= Kε . In the case that the average triple is included in the 
reconstructing than the matrix X̂ takes the following 

definition: [ ] ( ) AAXPPXXX
r

i

T
iiK +−== ∑

=1
1

ˆ:ˆˆ K , with the same notation as above. 

Some of the formulas for both V and R-forecasting are also changed to include the 
centring. 
 
Also, very important is to mention that double centring can not be used for forecasting. 
The main reason for that is that the double centring is applied to both the rows and the 
columns of the trajectory matrix, while the SSA forecasting algorithm and all its 
modifications and variants are based on the linear space rL , which is associated only 
with the columns of the trajectory matrix. 

7.4. Forecast Confidence Bounds 
 
There are two different problems when constructing confidence bounds for the forecast. 
The first is to construct confidence interval for the entire series ( ) ( )21 FFF +=  at some 
future point in time N+M. The second is to construct confidence intervals for the signal 

( )1F  at the same future point in time.  
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The first problem will be solved by using the information about the forecast errors 
obtained by processing the series. This can be called the empirical variant.  
The second problem needs some additional information about the model governing the 
series ( )2~

NF to apply a bootstrap simulation of the series NF . 

7.4.1. Empirical variant 
The multistart M-step recurrent continuation procedure stats that: taking a relatively 
small integer M and apply M steps of recurrent continuation produced by the forecasting 
LRF modifying the initial data from ( ) ( )( )1

2
1 ~,,~

−Lo ff K to ( ) ( )( ) 1,~,,~ 1
1

1 +−=−−− LNKff MNMK K . 
The last points 1−++ LMjg of these continuations can be compared with the values 

1−++ LMjf of the initial series NF . A multistrat M-step residual series 1+−MKH  with 
( ) MKjgfh LMjLMj
M

j −=−= −++−++ ,,0,22 K . 

If the reconstructed series ( )1~
NF coincides with ( )1

NF and the forecasting LRF governs it, 
than ( )1

kk fg = and the multistrat M-step residual series coincides with the last K – M +1 
terms of the stationary noise series ( )2

NF . If this is not true, but assuming that the 
multistrat series is stationary and ergodic in the sense that its empirical cumulative 
function tends to the theoretical empirical cumulative function of the series 
as ∞→N .Then, having the series 1+−MKH  means that certain of its quantiles can be 
estimated.  
Because the terms 2−++ LMjg are obtained through the same number of steps with the 

same LRF as the forecast values ( )1
1

~
−+MNf , and their initial data is taken from the same 

reconstructed series, and because the forecasting requires the assumption that the series 
structure is kept in the future, the obtained empirical cumulative distribution function of 
the multistrat M-step residual series can be used to construct the empirical confidence 
interval for 1−+MNf . 

The empirical confidence interval is: ( ) ( )( )+
−+

−
−+ ++ 2/

1
12/

1
1

~,~
αα cfcf MNMN , with the confidence 

level ( )10 pp γγ , and γα −= 1 , −
2/αc and +

2/αc the lower and upper 2/α - quantiles.  
If the multistrat M-step residual series can be regarded as white noise, then the other 
variant of empirical confidence intervals is meaningful.   
This type of confidence intervals can only be used for short-term forecasting.  
These confidence intervals are constructed for the entire series NF . 

7.4.2. Bootstrap confidence bounds for the forecast of a 
signal 

If it could be assumed (unrealistically) that the rules of the eigentriples selection are 
fixed, S independent copies ( )2

,iNF  of the process ( )2
NF  could be simulated. The 

forecasting procedure would then be applied to the S independent time 
series ( ) ( )21

, NNiN FFdefF + . The forecasting results would form a 

sample ( ) ( )Sif iMN ≤≤−+ 1~ 1
,1 , which should be compared against ( )1

1−+MNf . In this way the 
Monte Carlo confidence bounds for the forecast could be built up.  
Since in practice the signal ( )1

NF is not known, this procedure can not be applied.  
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But, under a suitable choice of the window length L and the corresponding eigentriples, 
the representation ( ) ( )21 ~~

NNN FFF += is known, where ( )1~
NF  approximates ( )1

NF , and ( )2~
NF is 

the residual series. If a stochastic model of the residuals ( )2~
NF  exists, for instance, a 

model can be postulated, and since ( ) ( )11~
NN FF ≈ , the same model can be applied to ( )2~

NF  
with the estimated parameters.  
After these steps simulating S independent copies ( )2

,
~

iNF  of the series ( )2
NF , it will be 

obtained S series ( ) ( )21
,

~~
NNiN FFdefF + , and S forecasting results ( )1

1
~

−+MNf are produced as in 

the Monte Carlo simulation variant.  
As soon as the sample ( ) ( )Sif iMN ≤≤−+ 1~ 1

,1 of the forecasting results is obtained, the lower 
and upper quantiles for a fixed level γ can be calculated and confidence intervals for the 
forecast can be obtained. The interval, called bootstrap confidence interval, can be 
compared with the forecast value ( )1

1
~

−+MNf  obtained from the initial forecasting 
procedure, being the discrepancies between this value and the obtained confidence 
interval caused by the inaccuracy of the stochastic model for ( )2~

NF . 
The average of the bootstrap forecast sample estimates the mean value of the forecast 
and the mean square deviation of the sample shows the accuracy of the estimate. 
The Monte Carlo forecast of the signal ( )1

NF is useful in at least two respects: its average 
(Monte Carlo average forecast) shows the bias produced by the corresponding 
forecasting procedure, while the upper and lower quantiles indicate the role of the 
random component in the forecasting error.  
The Bootstrap confidence intervals are built for the continuation of the signal ( )1

NF . 
 

8. Annex 3 – Data analysis – All series 
 

8.1. Time series A 
N = 108; L = 12; B = 55; T = 12; K = 44; I = { }6,5,4,3,2,1  
Decomposition method: Basic SSA 
Maximum 2v = 0,46 
Eigentriples for reconstruction = 1, 2, 3-4, 5-6 
Maximum Relative error of reconstruction = 2,76% 
Forecast Type = V forecast 
Confidence bounds type = Bootstrap 
Interactions = 1000 
Forecast – Table 4, with Absolute Forecast, Absolute Upper confidence bound, 
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and 
Relative Lower confidence bound vs. Forecast. 
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Fcst Upper Lower Medium Upper % Lower %
Jan-08 3.409.517 3.531.010 3.243.807 3.387.408 104% 95%

Fev-08 2.906.143 3.042.636 2.758.036 2.900.336 105% 95%
Mar-08 3.062.599 3.162.111 2.874.348 3.018.230 103% 94%
Abr-08 3.044.405 3.179.702 2.879.154 3.029.428 104% 95%
Mai-08 3.057.247 3.237.298 2.921.419 3.079.358 106% 96%
Jun-08 3.003.294 3.076.413 2.768.276 2.922.345 102% 92%
Jul-08 3.313.474 3.446.246 3.145.521 3.295.884 104% 95%

Ago-08 2.673.698 2.871.474 2.551.439 2.711.457 107% 95%
Set-08 3.174.304 3.269.992 2.950.480 3.110.236 103% 93%
Out-08 3.249.273 3.362.523 3.042.063 3.202.293 103% 94%
Nov-08 2.934.847 3.142.857 2.795.665 2.969.261 107% 95%
Dez-08 2.806.821 2.913.583 2.576.519 2.745.051 104% 92%
Jan-09 3.404.381 3.592.500 3.199.452 3.395.976 106% 94%
Fev-09 2.867.914 3.066.446 2.671.256 2.868.851 107% 93%
Mar-09 3.094.365 3.213.770 2.798.422 3.006.096 104% 90%
Abr-09 3.015.249 3.232.349 2.827.688 3.030.019 107% 94%
Mai-09 3.011.277 3.281.344 2.840.379 3.060.862 109% 94%
Jun-09 3.058.391 3.129.385 2.690.641 2.910.013 102% 88%
Jul-09 3.290.284 3.492.351 3.087.014 3.289.682 106% 94%

Ago-09 2.607.008 2.910.950 2.464.676 2.687.813 112% 95%
Set-09 3.222.270 3.341.547 2.882.387 3.111.967 104% 89%
Out-09 3.244.972 3.406.616 2.977.733 3.192.174 105% 92%
Nov-09 2.879.132 3.187.991 2.692.396 2.940.193 111% 94%
Dez-09 2.833.833 2.983.913 2.502.895 2.743.404 105% 88%  

Table 4 - Times series A-Forecast 

8.2. Time series B 
N = 108; L = 12; B = 61; T = 12; K = 50; I = { }6,5,4,3,2,1  
Decomposition method: Basic SSA 
Maximum 2v = 0,51 
Eigentriples for reconstruction = 1, 2, 3-6 
Maximum Relative error of reconstruction = 3,30% 
Forecast Type = V forecast 
Confidence bounds type = Bootstrap 
Interactions = 1000 
Forecast – Table 5, with Absolute Forecast, Absolute Upper confidence bound, 
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and 
Relative Lower confidence bound vs. Forecast. 
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Fcst Upper Lower Medium Upper % Lower %
Jan-08 898.204 990.261 869.974 930.117 110% 97%
Fev-08 844.510 867.178 733.326 800.252 103% 87%
Mar-08 899.055 985.422 878.262 931.842 110% 98%
Abr-08 878.137 898.779 820.339 859.559 102% 93%
Mai-08 897.790 940.171 868.541 904.356 105% 97%
Jun-08 891.675 915.780 848.884 882.332 103% 95%
Jul-08 918.805 961.000 886.392 923.696 105% 96%

Ago-08 896.241 936.702 865.053 900.877 105% 97%
Set-08 934.699 944.974 869.042 907.008 101% 93%
Out-08 912.434 997.738 895.685 946.712 109% 98%
Nov-08 942.825 963.589 871.815 917.702 102% 92%
Dez-08 929.055 954.794 881.073 917.933 103% 95%
Jan-09 956.412 1.068.352 922.437 995.394 112% 96%
Fev-09 940.275 978.687 791.742 885.214 104% 84%
Mar-09 972.292 1.089.487 930.834 1.010.160 112% 96%
Abr-09 953.438 990.107 878.254 934.181 104% 92%
Mai-09 985.073 1.031.091 935.552 983.322 105% 95%
Jun-09 969.015 1.018.713 916.707 967.710 105% 95%
Jul-09 998.051 1.048.085 946.599 997.342 105% 95%

Ago-09 983.240 1.030.863 933.075 981.969 105% 95%
Set-09 1.012.861 1.045.621 945.213 995.417 103% 93%
Out-09 997.049 1.082.931 955.623 1.019.277 109% 96%
Nov-09 1.027.388 1.068.504 940.130 1.004.317 104% 92%
Dez-09 1.012.008 1.056.005 952.700 1.004.353 104% 94%  

Table 5 - Times series B-Forecast 

8.3. Time series C 
N = 108; L = 36; B = 55; T = 36; K = 20; I = { }7,6,5,4,3,2,1  
Decomposition method: Basic SSA 
Maximum 2v = 0,48 
Eigentriples for reconstruction = 1, 2, 3-4, 5-7 
Maximum Relative error of reconstruction = 3,05% 
Forecast Type = V forecast 
Confidence bounds type = Bootstrap 
Interactions = 1000 
Forecast – Table 6, with Absolute Forecast, Absolute Upper confidence bound, 
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and 
Relative Lower confidence bound vs. Forecast. 

8.4. Time series D 
N = 108; L = 12; B = 73; T = 12; K = 62; I = { }6,5,4,3,2,1  
Decomposition method: Basic SSA 
Maximum 2v = 0,42 
Eigentriples for reconstruction = 1, 2-3, 4, 5-6 
Maximum Relative error of reconstruction = 2,45% 
Forecast Type = V forecast 
Confidence bounds type = Bootstrap 
Interactions = 1000 
Forecast – Table 7, with Absolute Forecast, Absolute Upper confidence bound, 
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and 
Relative Lower confidence bound vs. Forecast. 
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Fcst Upper Lower Medium Upper % Lower %
Jan-08 4.376.902 4.519.128 4.056.711 4.287.920 103% 93%
Fev-08 3.985.470 4.165.960 3.762.529 3.964.244 105% 94%
Mar-08 4.382.484 4.588.268 4.138.361 4.363.314 105% 94%
Abr-08 4.160.313 4.348.975 3.944.139 4.146.557 105% 95%
Mai-08 4.320.681 4.480.931 4.111.700 4.296.315 104% 95%
Jun-08 4.160.235 4.429.058 4.048.085 4.238.571 106% 97%
Jul-08 4.494.295 4.632.367 4.230.895 4.431.631 103% 94%

Ago-08 4.088.656 4.374.097 3.935.711 4.154.904 107% 96%
Set-08 4.504.906 4.669.631 4.261.792 4.465.711 104% 95%
Out-08 4.258.408 4.462.133 4.060.351 4.261.242 105% 95%
Nov-08 4.432.441 4.563.233 4.151.479 4.357.356 103% 94%
Dez-08 4.274.501 4.494.843 4.084.004 4.289.423 105% 96%
Jan-09 4.602.865 4.785.558 4.205.271 4.495.415 104% 91%
Fev-09 4.195.910 4.461.817 3.928.549 4.195.183 106% 94%
Mar-09 4.628.591 4.862.637 4.304.744 4.583.690 105% 93%
Abr-09 4.361.980 4.609.821 4.102.701 4.356.261 106% 94%
Mai-09 4.548.221 4.744.066 4.273.131 4.508.599 104% 94%
Jun-09 4.393.285 4.712.124 4.220.369 4.466.247 107% 96%
Jul-09 4.713.633 4.899.039 4.360.847 4.629.943 104% 93%

Ago-09 4.307.548 4.667.296 4.094.810 4.381.053 108% 95%
Set-09 4.754.460 4.961.851 4.424.123 4.692.987 104% 93%
Out-09 4.468.178 4.740.646 4.204.082 4.472.364 106% 94%
Nov-09 4.667.472 4.873.340 4.317.818 4.595.579 104% 93%
Dez-09 4.514.764 4.799.292 4.245.697 4.522.495 106% 94%  

Table 6 - Times series C-Forecast 
 
 

Fcst Upper Lower Medium Upper % Lower %
Jan-08 1.122.424 1.181.647 991.205 1.086.426 105% 88%
Fev-08 1.066.946 1.127.509 948.171 1.037.840 106% 89%
Mar-08 1.176.240 1.282.821 1.106.648 1.194.734 109% 94%
Abr-08 1.087.623 1.211.464 1.028.062 1.119.763 111% 95%
Mai-08 1.223.808 1.334.142 1.158.655 1.246.398 109% 95%
Jun-08 1.197.741 1.258.804 1.078.602 1.168.703 105% 90%
Jul-08 1.348.199 1.398.964 1.217.257 1.308.111 104% 90%

Ago-08 1.238.546 1.306.870 1.121.951 1.214.410 106% 91%
Set-08 1.252.679 1.374.211 1.198.458 1.286.334 110% 96%
Out-08 1.054.788 1.191.876 1.004.994 1.098.435 113% 95%
Nov-08 1.089.992 1.202.543 1.022.568 1.112.556 110% 94%
Dez-08 989.257 1.038.031 856.078 947.055 105% 87%
Jan-09 1.110.793 1.166.057 946.602 1.056.330 105% 85%
Fev-09 1.032.777 1.112.210 886.352 999.281 108% 86%
Mar-09 1.139.109 1.282.525 1.062.929 1.172.727 113% 93%
Abr-09 1.069.412 1.227.585 1.002.512 1.115.049 115% 94%
Mai-09 1.227.957 1.365.275 1.141.034 1.253.155 111% 93%
Jun-09 1.205.597 1.276.992 1.049.859 1.163.426 106% 87%
Jul-09 1.340.559 1.400.252 1.177.986 1.289.119 104% 88%

Ago-09 1.213.851 1.300.961 1.067.243 1.184.102 107% 88%
Set-09 1.228.288 1.378.959 1.157.037 1.267.998 112% 94%
Out-09 1.045.809 1.210.032 978.960 1.094.496 116% 94%
Nov-09 1.094.020 1.240.521 1.005.535 1.123.028 113% 92%
Dez-09 987.808 1.059.459 835.479 947.469 107% 85%  

Table 7 - Times series D-Forecast 

8.5. Time series G 
 
N = 108; L = 36; B = 55; T = 36; K = 20; I = { }4,3,2,1  
Decomposition method: Basic SSA 
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Maximum 2v = 0,23 
Eigentriples for reconstruction = 1, 2, 3-4 
Maximum Relative error of reconstruction = 2,30% 
Forecast Type = V forecast 
Confidence bounds type = Bootstrap 
Interactions = 1000 
Forecast – Table 8, with Absolute Forecast, Absolute Upper confidence bound, 
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and 
Relative Lower confidence bound vs. Forecast. 
 

Fcst Upper Lower Medium Upper % Lower %
Jan-08 1.511.720 1.545.081 1.438.758 1.491.920 102% 95%
Fev-08 1.333.471 1.371.264 1.261.807 1.316.536 103% 95%
Mar-08 1.443.303 1.505.825 1.397.928 1.451.877 104% 97%
Abr-08 1.425.315 1.445.282 1.333.525 1.389.404 101% 94%
Mai-08 1.435.460 1.489.937 1.376.204 1.433.071 104% 96%
Jun-08 1.356.345 1.404.571 1.293.661 1.349.116 104% 95%
Jul-08 1.528.542 1.564.361 1.448.511 1.506.436 102% 95%

Ago-08 1.347.457 1.388.776 1.269.126 1.328.951 103% 94%
Set-08 1.459.908 1.527.349 1.409.184 1.468.266 105% 97%
Out-08 1.440.891 1.461.341 1.339.531 1.400.436 101% 93%
Nov-08 1.450.860 1.511.077 1.387.172 1.449.124 104% 96%
Dez-08 1.371.705 1.422.823 1.301.153 1.361.988 104% 95%
Jan-09 1.545.544 1.584.447 1.457.889 1.521.168 103% 94%
Fev-09 1.361.592 1.406.581 1.276.155 1.341.368 103% 94%
Mar-09 1.476.709 1.549.807 1.420.191 1.484.999 105% 96%
Abr-09 1.456.629 1.477.890 1.344.868 1.411.379 101% 92%
Mai-09 1.466.427 1.533.127 1.397.882 1.465.505 105% 95%
Jun-09 1.387.245 1.441.681 1.308.086 1.374.884 104% 94%
Jul-09 1.562.728 1.605.259 1.466.923 1.536.091 103% 94%

Ago-09 1.375.877 1.425.109 1.282.677 1.353.893 104% 93%
Set-09 1.493.709 1.572.909 1.430.967 1.501.938 105% 96%
Out-09 1.472.531 1.494.991 1.349.638 1.422.314 102% 92%
Nov-09 1.482.165 1.556.186 1.408.319 1.482.253 105% 95%
Dez-09 1.402.964 1.460.781 1.314.565 1.387.673 104% 94%  

Table 8 - Times series G-Forecast 

8.6. Time series H 
 
N = 108; L = 12; B = 73; T = 12; K = 62; I = { }4,3,2,1  
Decomposition method: Basic SSA 
Maximum 2v = 0,42 
Eigentriples for reconstruction = 1, 2, 3-4 
Maximum Relative error of reconstruction = 2,02% 
Forecast Type = V forecast 
Confidence bounds type = Bootstrap 
Interactions = 1000 
Forecast – Table 9, with Absolute Forecast, Absolute Upper confidence bound, 
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and 
Relative Lower confidence bound vs. Forecast. 
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Fcst Upper Lower Medium Upper % Lower %
Jan-08 280.335 298.508 261.977 280.243 106% 93%

Fev-08 264.607 279.143 243.431 261.287 105% 92%
Mar-08 275.383 294.445 258.617 276.531 107% 94%
Abr-08 255.552 271.081 234.774 252.927 106% 92%
Mai-08 263.846 283.457 247.848 265.653 107% 94%
Jun-08 244.812 261.205 222.955 242.080 107% 91%
Jul-08 255.731 275.167 239.700 257.434 108% 94%

Ago-08 241.603 256.849 219.616 238.232 106% 91%
Set-08 257.382 275.904 241.725 258.814 107% 94%
Out-08 248.058 262.462 226.001 244.231 106% 91%
Nov-08 266.400 286.693 249.198 267.946 108% 94%
Dez-08 257.974 273.803 234.377 254.090 106% 91%
Jan-09 274.343 297.016 255.568 276.292 108% 93%
Fev-09 262.695 279.521 238.152 258.837 106% 91%
Mar-09 274.334 298.122 254.980 276.551 109% 93%
Abr-09 258.623 276.783 232.261 254.522 107% 90%
Mai-09 266.750 291.941 246.043 268.992 109% 92%
Jun-09 249.871 269.284 221.554 245.419 108% 89%
Jul-09 258.348 283.278 238.131 260.704 110% 92%

Ago-09 244.188 262.470 216.851 239.660 107% 89%
Set-09 256.059 279.794 238.040 258.917 109% 93%
Out-09 246.130 264.396 219.326 241.861 107% 89%
Nov-09 261.111 287.098 242.120 264.609 110% 93%
Dez-09 253.450 273.733 224.859 249.296 108% 89%  

Table 9 - Times series H-Forecast 

8.7. Time series J 
 
N = 108; L = 48; B = 55; T = 48; K = 8; I = { }7,6,5,4,3,2,1  
Decomposition method: Basic SSA 
Maximum 2v = 0,27 
Eigentriples for reconstruction = 1, 2-3, 4-5, 6-7 
Maximum Relative error of reconstruction = 4,90% 
Forecast Type = V forecast 
Confidence bounds type = Bootstrap 
Interactions = 1000 
Forecast – Table 10, with Absolute Forecast, Absolute Upper confidence bound, 
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and 
Relative Lower confidence bound vs. Forecast. 
 

8.8. Time series L 
N = 108; L = 12; B = 73; T = 12; K = 62; I = { }8,7,6,5,4,3,2,1  
Decomposition method: Basic SSA 
Maximum 2v = 0,40 
Eigentriples for reconstruction = 1, 2, 3-4, 5-6, 7-8 
Maximum Relative error of reconstruction = 5,20% 
Forecast Type = V forecast 
Confidence bounds type = Bootstrap 
Interactions = 1000 
Forecast – Table 11, with Absolute Forecast, Absolute Upper confidence bound, 
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and 
Relative Lower confidence bound vs. Forecast. 
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Fcst Upper Lower Medium Upper % Lower %

Jan-08 1.198.595 1.406.746 929.491 1.168.118 117% 78%
Fev-08 1.346.430 1.583.802 1.081.127 1.332.465 118% 80%
Mar-08 1.092.729 1.359.783 867.424 1.113.603 124% 79%
Abr-08 968.042 1.227.976 735.354 981.665 127% 76%
Mai-08 1.096.528 1.343.113 835.140 1.089.127 122% 76%
Jun-08 981.435 1.228.419 732.221 980.320 125% 75%
Jul-08 738.692 983.340 488.659 735.999 133% 66%

Ago-08 1.078.766 1.298.001 790.687 1.044.344 120% 73%
Set-08 1.832.131 2.039.546 1.554.976 1.797.261 111% 85%
Out-08 1.966.164 2.242.645 1.733.159 1.987.902 114% 88%
Nov-08 1.326.370 1.613.571 1.142.282 1.377.927 122% 86%
Dez-08 904.490 1.166.763 654.750 910.757 129% 72%
Jan-09 1.117.499 1.375.088 794.382 1.084.735 123% 71%
Fev-09 1.280.428 1.586.004 968.209 1.277.107 124% 76%
Mar-09 1.054.657 1.385.469 781.991 1.083.730 131% 74%
Abr-09 948.913 1.260.585 653.287 956.936 133% 69%
Mai-09 1.093.696 1.395.002 768.500 1.081.751 128% 70%
Jun-09 980.904 1.295.495 675.573 985.534 132% 69%
Jul-09 711.394 1.011.889 402.742 707.316 142% 57%

Ago-09 1.028.248 1.292.964 659.533 976.248 126% 64%
Set-09 1.804.710 2.056.028 1.460.611 1.758.319 114% 81%
Out-09 1.980.274 2.326.278 1.698.417 2.012.348 117% 86%
Nov-09 1.334.074 1.689.761 1.107.868 1.398.814 127% 83%
Dez-09 858.610 1.176.031 549.361 862.696 137% 64%  

Table 10 - Times series J-Forecast 
 

Fcst Upper Lower Medium Upper % Lower %
Jan-08 30.078 33.834 29.324 31.579 112% 97%
Fev-08 29.820 30.090 25.660 27.875 101% 86%
Mar-08 28.888 30.613 26.238 28.425 106% 91%
Abr-08 25.963 29.292 24.904 27.098 113% 96%
Mai-08 29.615 31.454 27.032 29.243 106% 91%
Jun-08 30.693 31.221 26.807 29.014 102% 87%
Jul-08 30.816 33.839 29.531 31.685 110% 96%

Ago-08 27.680 29.796 25.230 27.513 108% 91%
Set-08 30.795 33.802 29.175 31.488 110% 95%
Out-08 31.482 34.053 29.568 31.811 108% 94%
Nov-08 30.818 32.555 27.971 30.263 106% 91%
Dez-08 26.570 28.964 24.481 26.722 109% 92%
Jan-09 28.907 33.577 28.477 31.027 116% 99%
Fev-09 29.589 30.405 25.398 27.902 103% 86%
Mar-09 29.410 30.507 25.682 28.094 104% 87%
Abr-09 25.695 28.916 24.250 26.583 113% 94%
Mai-09 28.644 31.520 26.582 29.051 110% 93%
Jun-09 30.282 30.914 26.080 28.497 102% 86%
Jul-09 30.918 33.467 28.614 31.041 108% 93%

Ago-09 27.242 29.826 24.834 27.330 109% 91%
Set-09 29.649 33.456 28.363 30.909 113% 96%
Out-09 30.807 33.575 28.728 31.151 109% 93%
Nov-09 30.924 32.765 27.614 30.190 106% 89%
Dez-09 26.389 28.876 24.008 26.442 109% 91%  

Table 11 - Times series L-Forecast 

8.9. Time series M 
N = 108; L = 12; B = 73; T = 12; K = 62; I = { }4,3,2,1  
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Decomposition method: Basic SSA 
Maximum 2v = 0,42 
Eigentriples for reconstruction = 1, 2, 3-4 
Maximum Relative error of reconstruction = 2,30% 
Forecast Type = V forecast 
Confidence bounds type = Bootstrap 
Interactions = 1000 
Forecast – Table 12, with Absolute Forecast, Absolute Upper confidence bound, 
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and 
Relative Lower confidence bound vs. Forecast. 
 

8.10. Time series N 
N = 108; L = 12; B = 37; T = 12; K = 72; I = { }8,7,6,5,4,3,2,1  
Decomposition method: Basic SSA 
Maximum 2v = 0,49 
Eigentriples for reconstruction = 1, 2, 3-4, 5-6, 7-8 
Maximum Relative error of reconstruction = 3,03% 
Forecast Type = V forecast 
Confidence bounds type = Bootstrap 
Interactions = 1000 
Forecast – Table 13, with Absolute Forecast, Absolute Upper confidence bound, 
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and 
Relative Lower confidence bound vs. Forecast. 
 

Fcst Upper Lower Medium Upper % Lower %
Jan-08 2.362.430 2.498.997 2.221.637 2.360.317 106% 94%
Fev-08 2.230.350 2.333.788 2.055.443 2.194.615 105% 92%
Mar-08 2.339.547 2.470.398 2.181.292 2.325.845 106% 93%
Abr-08 2.184.888 2.289.268 1.997.937 2.143.602 105% 91%
Mai-08 2.282.168 2.417.238 2.132.377 2.274.807 106% 93%
Jun-08 2.130.877 2.250.798 1.959.214 2.105.006 106% 92%
Jul-08 2.242.919 2.394.878 2.126.314 2.260.596 107% 95%

Ago-08 2.116.998 2.256.658 1.979.031 2.117.844 107% 93%
Set-08 2.256.896 2.430.949 2.170.437 2.300.693 108% 96%
Out-08 2.158.226 2.313.826 2.037.254 2.175.540 107% 94%
Nov-08 2.316.719 2.504.455 2.227.999 2.366.227 108% 96%
Dez-08 2.227.177 2.379.185 2.089.036 2.234.111 107% 94%
Jan-09 2.381.281 2.562.100 2.256.763 2.409.432 108% 95%
Fev-09 2.277.821 2.413.490 2.093.324 2.253.407 106% 92%
Mar-09 2.409.080 2.580.092 2.233.000 2.406.546 107% 93%
Abr-09 2.281.356 2.411.019 2.051.137 2.231.078 106% 90%
Mai-09 2.389.318 2.561.967 2.190.280 2.376.124 107% 92%
Jun-09 2.246.465 2.386.047 2.014.253 2.200.150 106% 90%
Jul-09 2.347.656 2.534.959 2.178.129 2.356.544 108% 93%

Ago-09 2.209.968 2.372.225 2.019.542 2.195.884 107% 91%
Set-09 2.324.237 2.537.385 2.208.034 2.372.709 109% 95%
Out-09 2.207.127 2.401.481 2.053.320 2.227.400 109% 93%
Nov-09 2.342.536 2.585.636 2.247.443 2.416.540 110% 96%
Dez-09 2.245.365 2.459.978 2.085.115 2.272.546 110% 93%  

Table 12 - Times series M-Forecast 
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Fcst Upper Lower Medium Upper % Lower %
Jan-08 6.387.041 6.827.045 6.210.575 6.518.810 107% 97%
Fev-08 5.210.657 5.574.149 5.019.435 5.296.792 107% 96%
Mar-08 5.162.685 5.389.445 4.813.360 5.101.403 104% 93%
Abr-08 4.942.242 5.386.408 4.765.593 5.076.001 109% 96%
Mai-08 5.117.353 5.614.021 4.994.096 5.304.058 110% 98%
Jun-08 4.921.537 5.036.315 4.353.960 4.695.137 102% 88%
Jul-08 5.444.423 5.777.264 5.166.965 5.472.115 106% 95%

Ago-08 4.164.002 4.587.500 3.919.051 4.253.276 110% 94%
Set-08 5.621.669 5.813.226 5.139.282 5.476.254 103% 91%
Out-08 5.977.483 6.310.196 5.613.871 5.962.034 106% 94%
Nov-08 5.277.353 5.735.606 5.023.817 5.379.711 109% 95%
Dez-08 4.916.328 5.143.070 4.440.203 4.791.636 105% 90%
Jan-09 6.473.061 7.292.746 6.329.687 6.811.216 113% 98%
Fev-09 5.303.598 5.854.921 4.999.756 5.427.338 110% 94%
Mar-09 5.363.115 5.630.384 4.715.008 5.172.696 105% 88%
Abr-09 4.954.894 5.736.144 4.787.553 5.261.848 116% 97%
Mai-09 5.225.382 6.044.630 5.047.957 5.546.293 116% 97%
Jun-09 5.225.061 5.305.169 4.204.955 4.755.062 102% 80%
Jul-09 5.566.268 6.117.015 5.200.655 5.658.835 110% 93%

Ago-09 4.171.878 4.863.300 3.801.346 4.332.323 117% 91%
Set-09 5.869.534 6.133.438 5.089.534 5.611.486 104% 87%
Out-09 6.123.121 6.651.683 5.597.002 6.124.342 109% 91%
Nov-09 5.337.416 6.047.941 4.910.308 5.479.124 113% 92%
Dez-09 5.011.631 5.351.185 4.248.751 4.799.968 107% 85%  

Table 13 - Times series N-Forecast 

8.11. Time series P 
N = 108; L = 36; B = 55; T = 36; K = 20; I = { }8,7,6,5,4,3,2,1  
Decomposition method: Basic SSA 
Maximum 2v = 0,24 
Eigentriples for reconstruction = 1, 2-3, 4-5, 6, 7-8 
Maximum Relative error of reconstruction = 4,10% 
Forecast Type = V forecast 
Confidence bounds type = Bootstrap 
Interactions = 1000 
Forecast – Table 14, with Absolute Forecast, Absolute Upper confidence bound, 
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and 
Relative Lower confidence bound vs. Forecast. 

8.12. Time series R 
N = 108; L = 18; B = 55; T = 18; K = 38; I = { }11,10,9,8,7,6,5,4,3,2,1  
Decomposition method: Basic SSA 
Maximum 2v = 0,31 
Eigentriples for reconstruction = 1, 2-3, 4-5, 6-8, 9-11 
Maximum Relative error of reconstruction = 5,70% 
Forecast Type = V forecast 
Confidence bounds type = Bootstrap 
Interactions = 1000 
Forecast – Table 15, with Absolute Forecast, Absolute Upper confidence bound, 
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and 
Relative Lower confidence bound vs. Forecast. 
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Fcst Upper Lower Medium Upper % Lower %
Jan-08 120.136 128.336 103.865 116.101 107% 86%
Fev-08 104.938 111.744 87.547 99.645 106% 83%
Mar-08 124.752 135.865 112.243 124.054 109% 90%
Abr-08 139.915 149.064 124.992 137.028 107% 89%
Mai-08 127.641 135.249 110.382 122.816 106% 86%
Jun-08 102.598 112.727 89.565 101.146 110% 87%
Jul-08 108.725 115.184 89.933 102.559 106% 83%

Ago-08 91.012 99.039 74.756 86.897 109% 82%
Set-08 129.619 143.395 118.636 131.016 111% 92%
Out-08 149.479 156.863 132.654 144.758 105% 89%
Nov-08 116.977 122.400 97.374 109.887 105% 83%
Dez-08 88.338 101.195 76.488 88.841 115% 87%
Jan-09 115.525 124.282 97.240 110.761 108% 84%
Fev-09 100.863 107.755 80.731 94.243 107% 80%
Mar-09 116.426 129.802 103.421 116.611 111% 89%
Abr-09 135.817 146.545 119.618 133.081 108% 88%
Mai-09 124.520 132.164 104.379 118.272 106% 84%
Jun-09 96.820 108.403 82.404 95.404 112% 85%
Jul-09 104.264 112.027 84.014 98.021 107% 81%

Ago-09 88.619 97.005 69.843 83.424 109% 79%
Set-09 121.324 136.831 109.284 123.057 113% 90%
Out-09 143.822 152.518 125.643 139.080 106% 87%
Nov-09 114.248 120.195 92.240 106.218 105% 81%
Dez-09 84.112 98.692 71.104 84.898 117% 85%  

Table 14 - Times series P-Forecast 
 

Fcst Upper Lower Medium Upper % Lower %
Jan-08 3.049.752 3.398.982 2.895.370 3.147.176 111% 95%
Fev-08 2.903.029 3.120.067 2.631.606 2.875.836 107% 91%
Mar-08 2.387.810 2.706.920 2.218.770 2.462.845 113% 93%
Abr-08 1.944.610 2.198.776 1.709.384 1.954.080 113% 88%
Mai-08 2.238.562 2.597.253 2.119.516 2.358.385 116% 95%
Jun-08 2.022.104 2.288.622 1.814.022 2.051.322 113% 90%
Jul-08 1.566.867 1.880.578 1.411.853 1.646.216 120% 90%

Ago-08 1.389.706 1.516.631 1.048.240 1.282.435 109% 75%
Set-08 2.147.086 2.370.881 1.848.972 2.109.926 110% 86%
Out-08 2.470.662 2.707.185 2.179.495 2.443.340 110% 88%
Nov-08 2.406.419 2.904.410 2.313.008 2.608.709 121% 96%
Dez-08 2.397.462 2.798.961 2.216.947 2.507.954 117% 92%
Jan-09 3.113.598 3.567.997 2.965.548 3.266.773 115% 95%
Fev-09 3.209.053 3.546.269 2.998.512 3.272.390 111% 93%
Mar-09 2.667.014 3.152.819 2.605.080 2.878.949 118% 98%
Abr-09 2.018.128 2.350.712 1.768.125 2.059.419 116% 88%
Mai-09 2.160.988 2.519.754 1.800.539 2.160.146 117% 83%
Jun-09 2.012.835 2.186.555 1.514.540 1.850.548 109% 75%
Jul-09 1.606.076 1.982.158 1.287.808 1.634.983 123% 80%

Ago-09 1.396.658 1.770.602 1.085.594 1.428.098 127% 78%
Set-09 2.121.926 2.692.580 1.988.188 2.340.384 127% 94%
Out-09 2.555.161 3.052.928 2.383.196 2.718.062 119% 93%
Nov-09 2.555.226 3.145.074 2.488.402 2.816.738 123% 97%
Dez-09 2.499.112 2.876.841 2.195.172 2.536.007 115% 88%  

Table 15 - Times series R-Forecast 

8.13. Time series S 
N = 108; L = 12; B = 73; T = 12; K = 62; I = { }4,3,2,1  
Decomposition method: Basic SSA 
Maximum 2v = 0,42 
Eigentriples for reconstruction = 1, 2, 3-4 
Maximum Relative error of reconstruction = 1,77% 
Forecast Type = V forecast 
Confidence bounds type = Bootstrap 
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Interactions = 1000 
Forecast – Table 16, with Absolute Forecast, Absolute Upper confidence bound, 
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and 
Relative Lower confidence bound vs. Forecast. 

8.14. Time series T 
N = 96; L = 24; B = 49; T = 24; K = 26; I = { }5,4,3,2,1  
Decomposition method: Basic SSA 
Maximum 2v = 0,35 
Eigentriples for reconstruction = 1, 2, 3, 4-5 
Maximum Relative error of reconstruction = 5,80% 
Forecast Type = V forecast 
Confidence bounds type = Bootstrap 
Interactions = 1000 
Forecast – Table 17, with Absolute Forecast, Absolute Upper confidence bound, 
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and 
Relative Lower confidence bound vs. Forecast. 
 

8.15. Time series V 
N = 108; L = 12; B = 25; T = 12; K = 14; I = { }1  
Decomposition method: Basic SSA 
No reconstruction and Forecast was performed for this Time series because it could not 
be proven that there was a homogenous structure. 
 
 

Fcst Upper Lower Medium Upper % Lower %
Jan-08 717.499 768.765 689.638 729.201 107% 96%
Fev-08 671.995 709.501 631.292 670.396 106% 94%
Mar-08 750.752 799.464 719.596 759.530 106% 96%
Abr-08 713.224 746.325 664.520 705.423 105% 93%
Mai-08 789.632 832.600 752.554 792.577 105% 95%
Jun-08 739.364 769.159 683.064 726.111 104% 92%
Jul-08 796.622 839.437 756.994 798.216 105% 95%

Ago-08 725.320 757.936 669.300 713.618 104% 92%
Set-08 765.972 817.068 730.563 773.816 107% 95%
Out-08 686.425 726.699 637.519 682.109 106% 93%
Nov-08 730.124 792.033 700.885 746.459 108% 96%
Dez-08 663.576 709.984 618.607 664.295 107% 93%
Jan-09 727.404 793.865 697.663 745.764 109% 96%
Fev-09 682.095 727.652 630.073 678.862 107% 92%
Mar-09 763.136 824.136 725.090 774.613 108% 95%
Abr-09 725.683 763.580 660.916 712.248 105% 91%
Mai-09 803.628 855.784 757.691 806.738 106% 94%
Jun-09 752.246 785.449 679.653 732.551 104% 90%
Jul-09 809.737 863.998 762.239 813.118 107% 94%

Ago-09 736.248 776.688 665.919 721.303 105% 90%
Set-09 776.593 845.681 735.606 790.644 109% 95%
Out-09 694.994 747.556 635.305 691.430 108% 91%
Nov-09 739.176 822.048 707.359 764.703 111% 96%
Dez-09 671.800 730.858 617.008 673.933 109% 92%  

Table 16 - Times series S-Forecast 
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Fcst Upper Lower Medium Upper % Lower %
Jan-08 210.440 212.660 196.916 204.788 101% 94%
Fev-08 186.323 195.819 181.816 188.817 105% 98%
Mar-08 214.551 215.319 200.798 208.059 100% 94%
Abr-08 201.858 206.485 190.472 198.479 102% 94%
Mai-08 212.344 221.100 205.391 213.246 104% 97%
Jun-08 208.489 209.391 194.172 201.782 100% 93%
Jul-08 227.183 233.584 214.022 223.803 103% 94%

Ago-08 204.848 215.270 197.244 206.257 105% 96%
Set-08 237.518 238.008 218.830 228.419 100% 92%
Out-08 217.130 226.385 206.181 216.283 104% 95%
Nov-08 234.575 243.693 223.406 233.549 104% 95%
Dez-08 229.501 230.918 210.830 220.874 101% 92%
Jan-09 245.308 256.741 232.180 244.461 105% 95%
Fev-09 226.648 236.574 213.982 225.278 104% 94%
Mar-09 260.659 263.019 238.092 250.555 101% 91%
Abr-09 234.199 248.247 222.808 235.528 106% 95%
Mai-09 260.123 268.786 242.989 255.888 103% 93%
Jun-09 250.388 254.288 228.647 241.468 102% 91%
Jul-09 266.083 282.255 251.825 267.040 106% 95%

Ago-09 251.219 260.275 231.917 246.096 104% 92%
Set-09 284.006 290.460 258.838 274.649 102% 91%
Out-09 254.202 272.313 240.448 256.380 107% 95%
Nov-09 288.337 296.852 264.102 280.477 103% 92%
Dez-09 271.430 279.899 247.462 263.680 103% 91%  

Table 17 - Times series T-Forecast 

8.16. Time series Total 
N = 108; L = 24; B = 61; T = 24; K = 38; I = { }8,7,6,5,4,3,2,1  
Decomposition method: Basic SSA 
Maximum 2v = 0,34 
Eigentriples for reconstruction = 1, 2, 3-4, 5-6, 7-8 
Maximum Relative error of reconstruction = 2,90% 
Forecast Type = V forecast 
Confidence bounds type = Bootstrap 
Interactions = 1000 
Forecast – Table 18, with Absolute Forecast, Absolute Upper confidence bound, 
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and 
Relative Lower confidence bound vs. Forecast. 
 

Fcst Upper Lower Medium Upper % Lower %
Jan-08 26.708.564 27.549.146 25.363.986 26.456.566 103% 95%
Fev-08 22.985.122 24.437.447 22.323.443 23.380.445 106% 97%
Mar-08 23.328.536 24.607.161 22.589.688 23.598.425 105% 97%
Abr-08 21.533.099 22.594.734 20.325.469 21.460.102 105% 94%
Mai-08 22.891.845 24.232.987 22.059.548 23.146.267 106% 96%
Jun-08 22.245.942 23.134.334 20.927.687 22.031.010 104% 94%
Jul-08 23.729.058 24.525.799 22.367.226 23.446.512 103% 94%

Ago-08 19.364.793 20.758.185 18.539.000 19.648.593 107% 96%
Set-08 24.895.115 25.584.899 23.266.405 24.425.652 103% 93%
Out-08 25.266.268 25.948.427 23.608.850 24.778.639 103% 93%
Nov-08 23.555.642 25.295.658 22.955.769 24.125.714 107% 97%
Dez-08 22.222.550 23.421.225 21.075.042 22.248.133 105% 95%
Jan-09 27.344.911 28.455.222 25.710.302 27.082.762 104% 94%
Fev-09 23.225.494 25.146.499 22.532.430 23.839.464 108% 97%
Mar-09 23.974.835 25.439.560 22.885.057 24.162.308 106% 95%
Abr-09 21.872.195 23.316.996 20.492.391 21.904.693 107% 94%
Mai-09 23.323.930 25.017.006 22.305.905 23.661.456 107% 96%
Jun-09 22.973.985 23.892.703 21.086.988 22.489.846 104% 92%
Jul-09 24.194.781 25.322.784 22.652.753 23.987.769 105% 94%

Ago-09 19.551.998 21.400.278 18.635.707 20.017.993 109% 95%
Set-09 25.835.551 26.472.262 23.543.360 25.007.811 102% 91%
Out-09 25.755.590 26.732.310 23.835.522 25.283.916 104% 93%
Nov-09 23.815.184 26.121.567 23.210.514 24.666.040 110% 97%
Dez-09 22.839.725 24.194.983 21.246.572 22.720.778 106% 93%  

Table 18 - Times series Total-Forecast 


