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Abstract

Using a novel exploratory technique for time series analysis, Single Spectrum Analysis
(SSA), it was possible to develop a comprehensive study of the Portuguese
pharmaceutical market.

In the introductory chapter this technique is described in detail, for the decomposition
step, homogeneity structure testing and forecasting. A bibliography review was
conducted on the technique. To the best of our knowledge this was the first time that
SSA was applied to any pharmaceutical market, so it was not possible to compare
results with other published work.

A detailed explanation on the Portuguese pharmaceutical market is provided in order to
allow comprehensiveness of the work. The Portuguese pharmaceutical market is divided
in 15 classes, which aggregates all drugs sold in the country. The technique was applied
to those 15 time series plus the “Total Market” time series.

Applying SSA, time series were decomposed in the respective components, which can
be described as trend, cyclical movements and seasonality. The structure of all time
series was tested for homogeneity. With those steps concluded, a monthly forecast, for
the years 2008 and 2009 (with the respective confidence bounds) were produced for all
the 16 time series.

As a complex methodology, decisions need to be taken in several steps of the study.
Even if not all possible choices are presented in the work, lengthy analyses were done to
reach the best possible results. In fact, choosing between possible window lengths,
Singular Value Decomposition (SVD) approaches, and eigentriples to be grouped
together is sometimes more an “art” than a science; experience and previous knowledge
of the actual phenomena can and should help.

For confidentiality reasons the raw data is not provided in this work, but both forecast
values and confidence bounds are presented.

Key Words: SSA; Time series; Forecasting; Pharmaceutical Market;



Sumario

Utilizando uma nova técnica exploratoria para analise de séries temporais, Single
Spectrum Analysis (SSA), foi possivel desenvolver um estudo aprofundado do mercado
farmacéutico Portugués.

No capitulo introdutorio € descrita, em detalhe, a técnica, para a fase de decomposicéo,
0 teste de homogeneidade da estrutura e a previsdao. A revisdo bibliografica foi
efectuada para a metodologia. Desconhecemos uma aplicacdo anterior desta técnica a
qualquer mercado farmacéutico, pelo que, tendo em principio sido esta a primeira vez
que tal sucedeu, ndo foi possivel comparar os resultados obtidos com outros trabalhos
publicados.

Para permitir uma melhor compreensdo deste trabalho é apresentada uma explicacdo
detalhada do mercado farmacéutico Portugués. Este mercado esta dividido em 15
classes que agrupam as vendas realizadas pela totalidade das especialidades
farmacéuticas existentes. A técnica SSA, foi aplicada a todas as 15 classes, bem como a
série temporal “Vendas Totais”.

Aplicando a técnica SSA, as séries temporais foram decompostas nos seus respectivos
componentes, que podem ser descritos como tendéncia, movimentos ciclicos e
sazonalidade. Foi testada a homogeneidade da estrutura de cada série temporal. Apos
concluida esta fase, foram produzidas previsGes de vendas por més, para 0s anos de
2008 e 2009 (com os respectivos intervalos de confianca) para todas as 16 séries
temporais.

Pelo facto de se tratar de uma metodologia complexa, € sempre necessario optar entre
multiplas alternativas nas diversas fases do estudo. Mesmo que todas as diferentes
opcdes ndo estejam mencionadas no trabalho, uma analise aprofundada foi sempre
realizada, para que os melhores resultados fossem atingidos. Na realidade, a escolha
entre diversos “tamanhos de janela”, varias abordagens de Decomposi¢do do Valor
Singular (DVS), criacdo de diferentes agrupamentos com diversos “trio-proprio”, é por
vezes mais uma “arte” do que uma ciéncia; a experiéncia e o conhecimento prévio do
fendmeno podem e devem ajudar.

Por razdes de confidencialidade os valores das séries temporais ndo sdo disponibilizados
no trabalho, no entanto, quer os valores de previsao quer os intervalos de confianca
estdo incluidos.

Palavras-Chave: SSA; Séries temporais; Previsdo; Mercado Farmacéutico;
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1. Introduction

1.1. Time series

A time series is defined as a group of observations seen in points or periods in time for a
definitive interval, beginning at a specific starting point. In some cases, the observations
are equally spaced in time, for example, the data in study, where the time interval is the
month. In other cases, the observations occur almost continuously and can be seen as
evolving continuously over time, for example, ECG’s.

Basically, a time series results from the observation during a determine period of time of
a real situation with a stable structure. Consequently the observations are not
independent and the temporal order a fundamental aspect to be taken in account.

Usually all records which fall within the field of time series analysis are influenced, at
least in part, by sources of random variation, which do not disappear as soon as they
happen, but are incorporated in the future development of the phenomenon. Therefore
we call the sequence of random variables in time {X,} e Z, a stochastic process and its

realization {x, | e Zis then a time series.

The main motivators to study a time series are:

Description, the basic task to better understand the time series;
Explanation, to create the best fitting model,

Prediction, to predict the future behaviour of the time series;
Control, to constantly evaluate the stability of the time series.

In all cases the purpose is to create a model that fits the time series adequately. One of
the many fitting models is based on the decomposition of the stochastic
process {X, }t e Z, into 4 distinct parts: X, =M, +C,+S,+N,. The 4 components of
the model can be group in two parts, the “dynamical” part and the “random” part. The
first 3 components, which represent the so called “dynamical” part, are: trend M, ,

cyclical movementsC, and seasonality S,. The last part is the random variation term,

also known as random noise term or error term (noise) and describes random
fluctuations of the series.

The trend component of the decomposition has an intuitive meaning and can be
described as the inertia of the series, the main pathway or the “average” variation
throughout time. It comprehends the mild and consistent movements for long periods of
time, and can be modelled by a low-order polynomial function.

The cyclical component consists of quasi-periodic functions of varying amplitude and
duration, so it is not modelled by simple periodic functions.

The seasonal component explains the periodical behaviour terms and effects which
occur regularly over a period with pronounced short-term fluctuations in time series. It

10



1. Introduction

can be modelled by a simple periodic function with know period, for example, annual,
quarterly, weekly...

Statisticians usually try to explain time series processes from the point of view that there
exists some relation (correlation) between successive observations.

1.2. Singular Spectrum Analysis (SSA) and Multichannel
Singular Spectrum Analysis (MSSA)

1.2.1.  Singular Spectrum Analysis (SSA)

The singular-spectrum analysis (SSA) methodology is a novel exploratory technique of
time series analysis incorporating the elements of classical time series analysis,
multivariate statistics, multivariate geometry, dynamical systems, and signal processing.
It is a nonparametric method.

The main idea is to expand a single univariate or multivariate time series into
orthogonal vectors and interpret them by the PCA point of view, using lag-correlation
structures. The final purpose is to decompose, by data-adaptive filters, a time series into
several components, which usually can be identified as been the trend, seasonality,
cycling movements or noise. It generates statistical significance information on these
components, and provides a reconstruction of those.

This methodology had is “official” beginning with the publication of papers from
Broomhead and King (1986) and further developed by Vautard and Ghil (1989).

The basic version of SSA consists of 4 steps, which are performed as follows:

e The construction of the trajectory matrix — the embedding step

In this step the idea is to create a multidimensional series from a one-dimensional series.
The dimension of the series is called the window length. This multidimensional time
series forms the trajectory matrix.

Let F = (fOl]pl""f/,fN—l) be a time series of length N, and L be an integer, which is the

“window length”, withl< L < n. The choice of L is not obvious and further discussion
around it will arise further ahead.

After  setting K=N-L+1 and after defining the K L-lagged
vectors X ; = (f.fl,...jﬁH) )T,j =12,...K, the trajectory matrix is:

J

X1 X2 X
x X X
L K _ 2 3 K+l
X (fi+j-2 ),3,»:1 [X1 X g ]—
X, X;q o e X

This trajectory matrix X is an Hankel matrix, meaning that all the elements along the
diagonal i+; = constants and are equal.

11



1. Introduction
e SVD (singular value decomposition)

Using the PCA theory the singular value decomposition of a matrix X is done by
calculating the eigenvalues and eigenvectors of the matrix S = XX of size L x L.

The basic SSA might also use the lag-covariance matrix C = S/ K (the only difference
is the magnitude of the corresponding eigenvalues which in S are K times larger).

There are several versions to calculate the lag-covariance matrix, with both advantages
and disadvantages for each. We will return later to this matter.

The representation of X is then the sum of rank-one biorthogonal matrices X; (i = 1, ...,
d), where d (d<L) is the number of nonzero singular values of X.

After doing that, a collection of L singular values will be found, represented by /2, ,

which are the square roots of the eigenvalues of the matrix S, and the corresponding left
and right vectors, represented respectively by U, and V.

The left singular vectors of X, U,, are the orthonormal eigenvectors of S, commonly
called the “empirical orthogonal functions”.

The right singular vectors, ¥, can be seen as the eigenvectors of the matrix XX,

X'U,
2
X=X, +..+X, whereX,=,4UV, . The eigentriple of the SVD is then the
collection of\/ZUiVi .

i=1..d, the SVD of X can be written like

By considering that ¥, =

These two steps form the reconstruction stage. The grouping stage corresponds to the
following two steps.

e Grouping of matrices

This step corresponds to splitting the matrices, computed in the previous

step X = X, +...+ X, into d groups from {L,...,d} and summing the matrices within m
disjoints subsets/,,...,/, . These matrices are computed for /=1,,...,1, and the

n

previous decomposition leads to the following decomposition X = X, +...+ X, .

This process of choosing the group 1,,...,1, is called eigentriple grouping. The purpose

of this step is to separate the additive components of the time series. The concept of
separability will be further discussed later.

e Diagonal averaging

12



1. Introduction

This step transfers each resultant matrix, which is an additive component of the initial
series, into a new time series with dimension #. It is a linear operation and maps the
trajectory matrix of the initial series into the initial series itself.

This is done by averaging (we will return later to the methodology to do this) over the
diagonals i + j = const of the matrices X,, obtaining the series F'*) = (fo(k) +...+fn(_"l))
and the initial series is decomposed into a sum of m series:

=X % n=0..,N-1
k=1

This equality only occurs when m=L. Where for each k the series £* is the result of
diagonal averaging of the matrix X, .

These m time series represent the m first principal components.

The general purpose of the SSA analysis is to reach the 4™ step with additive
components £* which are “independent” and “identifiable” time series.

This new time series serves the only purpose of analyzing the structure of the time
series. As a result we can then have a £, component that can be identified as the trend

of the original series, an oscillatory series or noise. Figure 1 shows the trend
identification in the time series B.

Initial & Reconstructed Series

Figure 1 - Time series B — Trend

These components are produced by the series itself (no parametric model is fixed), so it
can not be expected to get, in real life series, the components as exact harmonics or
linear trend, even if these harmonic or linear trends are present in the series. This is both
because of the presence of noise and the non-parametric nature of the method.

The two most important moments in the SSA “world” are:
e The choice of the “window length”;

e The “separability” of the components.

The “window length” is the main parameter of basic SSA, in the sense that its wrong
choice would imply that no grouping activities could be performed to obtain a good
SSA decomposition.

Have an incorrect “window length” can mean that the separability of the components
might not occur. This is a critical point since achieving “independence” of the
components is of fundamental importance to the process.

13



1. Introduction

There are several notions of separability, but the most important is weak separability,
defined as:

Provided that the original time series £, is a sum of m series £ (k=1,...,m), for a
fixed window length L, weak L-separability means that any subseries of length L of the
kth series 7% is orthogonal to any subseries of length L of the /th series £ with /= k,
and the same holds for their subseries of length K = N—L + 1.

The only problem is that exact separability rarely happens in practice. Therefore an
approximate separability is more important and achievable. Several different
characteristics are used to measure the degree of separability.

In fact, if two or more of the singular values of the trajectory matrices X*) and x
corresponding to two different components of fn(k) and fn(’) of the original series are

equal or close, then the SVD is not uniquely defined and those two series fn(")and

fn(”are mixed up, and an additional analysis is required to separate them. Several
options exist for the additional analysis.

1.2.2. SSA forecasting of time series

A forecast can only be build if the model found fits appropriately the data, meaning that
the structure of the data was found and is defined by a model. The model can derive
from the data or at least can be checked against the data. In SSA forecasting, these
models can be described with the help of the linear recurrent formulae (LRF).

The series governed by LRF’s admits natural recurrent continuation since each term of
such a series is equal to a linear combination of several preceding terms.

So, if the original series f, satisfies a linear recurrent formula f, =a,f, , +...+a,f, ,
of some dimension d with some coefficientsa,,...,a,, then for any N and L there are at

most d nonzero singular values in the SVD of the trajectory matrix X; therefore, even if
the window length L and K = N — L + 1 are larger than d, we only need at most d
matrices X to reconstruct the series.

If we have a series satisfying a LRF then we can continue it for an arbitrary number of
steps using the same LRF.

But there is another way of forecasting with SSA. It is the vector forecasting algorithm.
While the recurrent forecasting algorithm explained above performs a recurrent
continuation of a one-dimensional series, the vector forecasting algorithm does that by
the continuation of the vectors in an r-dimensional space and only then returns to the
time-series representation. Apparently this option is better for long-term forecasting.

Creating confidence intervals for this forecast is not only needed but is desirable to

assess quality. Two methodologies can be used, one by using the recurrent forecast
process to forecast the periods already known, and after that comparing the values
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achieved with the real ones. Assuming that the residual series is stationary and ergodic,
quantiles of the related marginal distribution can be estimated and therefore confidence
bounds can be created. The second technique is the bootstrap, which uses Monte Carlo
simulations to create the confidence intervals.

1.2.3.  Multichannel Singular Spectrum Analysis (MSSA)

If instead of having one time series, we have p time series, it can be used a modified
version of the SSA technique called MSSA (Multichannel SSA).

This methodology allows to correlate not only observation but also to correlate variables
(time series).

MSSA is used in the same way that SSA is used, it analyses each time series with »
observations (assuming that all time series has the same number of observations) until a
specific lag /, which implies that the covariance matrix has information on interrelations
between lagged versions of the original variables as well as between different variables.

The technique can be described as follows.

Consider an [-variate time series f, :(fnl,...,fnl), where n = 0,1,...,N-1. Then for a
fixed window length L define the trajectory matrices X(i=1,...,/) of the one-
dimensional time series 7). The trajectory matrix X can be defined as:

X ()

X(l)

The lagged matrix X, ., where K =n—L+1and p"= Lp can be seen as:

p.l p.L
X12 X1 o2 X141 X2 X141
X1k Xin Xou X Xk X

The generalization of SSA to a multivariate time series requires the construction of an
augmented block-matrix Sx, with the dimension pL x pL:

Sy Sp o Sy,
Sy Sy ... S
o
Sy S, .. S,

Each Sy is the matrix that contains estimates of the lag covariance between & and /.

All the following steps follow the same theory as in SSA.
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1.2.4. Caterpillar SSA

The caterpillar SSA, version 3.30, Professional M Edition, is the software used to
develop the present work. All graphs and results presented are coming directly from the
software.

This software was developed by the Gista T Group, which is a group of 3 Russian
scientists (Nina Golyandina, Vladimir Nekrutkin and Kirill Braulov) working in the
University of St. Petersburg since the middle of 1990’s on the development of SSA and
MSSA and the corresponding software.

The program performs extended analysis, forecasting for both one-dimensional and
multi-dimensional time series. The program also performs change-point detection for
one-dimensional time series.

There is another very active group of scientist working in UCLA (University of
California) the Theoretical Climate Dynamics (TCD) group which developed also
software for SSA. This software follows a slightly different approach especially on the
forecasting part.

1.3. Bibliography review

This work will mainly follow the work of Golyandina et al. (2001) in the book
“Analysis of Time Series Structure — SSA and related techniques”. The aim of this book
is to explain the methodology and theory of SSA. The main topics are SSA analysis,
SSA forecasting and SSA detection of structural changes.

Broomhead and King (1986) and Broomhead ez al. (1987) publications were the first
ones related with this subject. In fact, Broomhead and King (1986) started by
developing a singular system analysis based on the method of delays. The method of
delays was introduced initially by Takens (1981). The singular system analysis was
developed by Bertero, Pike and co-workers (1982). The method presented is therefore
based on the Takens (1981) proof and on the ideas from Bertero, Pike and co-workers.
After introducing: a) some of the relevant language of dynamical systems theory, b) the
definition of qualitative dynamics, c) the concept of equivalence relations, d) the
discussion of Whitney’s embedding theorem and e) the review of the method of delay,
they developed a full theoretical approach and have applied it to a time series,
obtained from the Lorenz model.

The first step of the SSA method is called the embedding step. Embedding can be
regarded as a mapping that transfers a one-dimensional time series to a
multidimensional series. The theoretical justification of data embedding techniques used
by experimentalists to reconstruct dynamical information from time series is provided in
a paper of Sauer et al (1991), expanding on the work of Whitney (1936) and Takens
(1981).

Vautard and Ghil (1989) developed further the Singular-spectrum analysis (SSA). They
refined certain aspects of its application, such as the influence of the window size,
sampling interval, and length of the sample on the results of SSA. One of the objectives
of this paper was to explore fully the potential of SSA in studying the dynamics
recorded in the data. All the series considered here were zero-mean, continuous,
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infinite and ergodic. In this article authors investigated the properties of SSA first for
simple phenomena, such as pure oscillation, a red-noise process, or the Lorenz system.
Next, they applied it to four paleoclimatic records from the Quaternary. They concluded
that SSA is a powerful descriptive tool for nonlinear dynamics in general and climate
dynamics in particular.

A good example of the capabilities of the SSA method is given by Ghil and Vautard
(1991) when they used it to analyze the time series of global surface air temperatures for
the past 135 years, allowing a secular warming trend and a small number of oscillatory
modes to be separated from the noise.

Vautard ef al. (1992) continued the work in this area and proved that SSA works well
for short, noisy time series. In this article SSA is combined with advanced spectral-
analysis methods — the maximum entropy method (MEM) and the multi-taper method
(MTM) — to refine the interpretation of oscillatory behavior. A combined SSA-MEM
method is also used for the prediction of selected subsets of RC’s (Reconstructed
components). They have proven that SSA extracts as much reliable information as
possible from short and noisy time series without using prior knowledge about the
underlying physics or biology of the system; based on this information, it also provides
prediction models. The superiority of this method over classical spectral methods lies in
the data-adaptive character of the eigenelements it is based on. They have also proved
that SSA can provide useful physical insight and modest, but unprecedented, medium-
term predictive skills starting with the few hundred data points typically available for
geophysical and other natural systems. All the work is based on the assumption that the
process x under study is stationary in the weak sense, i.e., that the second order
moments are invariant under translation. One of the results of this paper is the
presentation of a particular method of estimating of the Toeplitz matrix shown to
have little bias compared to other estimates.

Plaut and Vautard (1994) used successfully not the SSA method but the Multichannel
SSA - MSSA method to identify dynamically relevant space-time patterns and to
provide an adaptive filtering technique. One of the aims of this paper is to provide a
manual of MSSA; on Section 2 emphasis is put on the mathematical formulation of the
method, with all the technical details being provided. In the multichannel case, the
separation property acts both in time and space- MSSA is capable of distinguishing two
oscillations with the same spatial patterns but with different periods, as well as
oscillations with the same period and spatially orthogonal patterns. This method is
mathematically equivalent to the extended EOF analysis of Weare and Nasstrom (1982).
The spirit of extended EOF’s, however, is different and aims at including temporal
information in the EOF’s, by adding a few lags in the state vectors. MSSA essentially
differs by the use of large number of lags from which spectral properties can be drawn.
For more information on EOF’s see also the work of Lau and Chan (1985) and Chen
and Harr (1993).

Allen and Smith (1996) showed how the basic formalism of SSA provides a natural test
for modulated oscillations against an arbitrary “colored noise” null hypothesis. This test
is called Monte Carlo SSA and the authors illustrate their use in 3 situations. A method
of distinguishing signals from arbitrary noise processes via SSA, based on the notion of
“surrogate data” (surrogate data is random data generated to have the same mean,
variance, and autocorrelation function as the original data) is introduced. A Monte Carlo
ensemble of surrogate data is generated using the null hypothesis as a model, and a test
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is applied to establish whether it is possible to distinguish the data series from a member
of the ensemble. The approach proposed is a method of fitting AR (1) parameters to the
data such that the process tested is on some measure, that which is most likely to cause a
failure to reject the null hypothesis. In this way, if the process is rejected, there is a
reason to believe that all other AR (1) processes would also be rejected at the same or
higher confidence level. The algorithm proposed makes unnecessary to preprocess data
to remove a trend or annual cycle before the analysis. The basic principle of surrogate
data testing is that both data and surrogates must be treated in exactly the same way. To
achieve that, a variant of SSA is needed, because SSA selects the EOF basis that
compresses the maximum possible variance in the data series into the highest-ranked
EOF’s, implicitly assuming that none of the data is noise. Therefore a variant of SSA
was introduced in order to assume that all of the data is noise except that which is
established as signal. This method also provides a way to build confidence bounds for
the forecast. Another way to construct confidence bounds is the bootstrap variant. This
method is explained by Efron and Tibshirani (1986).

Yiou et al. (1996) published a paper where several modern time series analysis
methods were compared with each other. The methods compared are: Fourier
techniques (Blackman-Tukey and Multi-Taper), Maximum Entropy technique, Singular-
spectrum techniques and Wavelet analysis. Their final recommendation is that all of
those methods should be used in conjunction with each other for better results, because
by confronting those methods, more information can be extracted from the system
generating the analyzed signal, and the possibility of spurious results due to biases of
one particular method is reduced. Nevertheless, they mentioned two major problems
that can arise; a) when the time series are relatively short and b) the stationarity
hypothesis which is implicitly made when classical methods are applied. For both
problems SSA is mentioned as a robust method to be used.

In Lisi (1996) a criterion to choose the number of components which leads to the best
filtering is purposed. The selection is made by minimizing the prediction error.

Elsner and Tsonis (1996) published a book called: “Singular Spectrum Analysis. A new
tool in Time Series Analysis”, each provides elementary introduction to the subject.

Varadi et al. (1999) proposed to generalize SSA from short and noisy time series to long
and noisy time series. They called it Random-Lag SSA. SSA is based on a fixed
sequence of lags, 1, 2, ..., up to some maximum M. One then computes the eigenvalues-
eigenvector decomposition of a Toeplitz matrix of size MxM , consisting of the
autocorrelations up to the lagM —1. Random-lag SSA employs multiple random
sequences of lags in which the average difference between consecutives lags is typically
larger than the unit. The maximum lag can be large, while the number of lags can be
kept small. The matrix to be decomposed in not Toeplitz, and it can incorporate a large
number of autocorrelations at different lags. The randomness in the selection of lags is
actually an advantage, since one can average the results of signal-noise decomposition
over many sets of lags. This is, of course, important when the time series requires M
larger than 2000-3000.

Yiou et al. (2000) continued their work on this subject and published a paper with some
developments. The idea is to extend the singular-spectrum analysis to the study of
nonstationary time series, including the case where intermittency gives rise to the
divergence of their variance. In SSA the largest scale at which the signal X is analyzed
is approximately N (the length of the time series), and the largest period is M. As a
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consequence, the EOF’s p; contain information from the whole time series. The
proposal is to extending global SSA analysis to a local one. In fact, they proposed to
extend the SSA methodology by using a time-frequency analysis within a running time
window whose size W is proportional to the order A of the correlation matrix. Varying
M, and thus W in proportion, they obtain a multi-scale representation of the data. They
perform local SSA on a time series by sliding windows of length ' < N, centered on

times bzéW,...,N—%W. When using this method, they assume that considerable

information content resides in the local variance structure and the time series is locally
the sum of a trend, statistically significant variability, and noise. The crucial difference
between this local version and the global SSA is that the Reconstructed Components are

obtained here from local lag-correlation matrices. As b varies from %Wto N—%W,

this implies that the RC’s will be truncated near the edges of the time series. Therefore
with this new method, authors were able to reconstruct in an exact way the initial signal
of the time series. The new method was also helpful in revealing key properties of a few
irregular time series which conventional single-scale spectrum-analysis techniques
would not reveal. Multi-scale SSA solves objectively the delicate problem of
optimizing the analyzing wavelet in the time-frequency domain by a suitable
localization of the signal’s correlation matrix.

Ghil et al. (2002) published a review where they describe the connections between time
series analysis and nonlinear dynamics, discuss signal-to-noise enhancement, and
present some of the novel methods for spectral analysis. The various steps, as well as
the advantages of these methods, are illustrated by their application to an important
climatic time series, the Southern Oscillation Index. For enhancing the Signal-to-Noise
Ratio they used SSA, Monte Carlo SSA and Multiscale SSA and wavelet analysis. As
Spectral analysis methods they used the Classical spectral estimates, Maximum entropy
method (MEM) and Multitaper method (MTM). As Multivariate methods they used
Principal Oscillation patterns (POP’s) and Multichannel SSA. This is a good review
because they not only provide the theory of the most recent developments in the spectral
analysis but they also provide up-to-date information on the most refined and robust
statistical significance tests available for each one of the three methods discussed in
depth (SSA, MEM, and MTM). They also confirmed as a reliable way of forecasting
(“relative high accuracy™) the combination of SSA-MEM.

SSA has been widely used for several different purposes in the past few years. Here are
only a few examples:

e In providing a qualitative decomposition of the signal into significant and noise
components of ultrasound biomedical echoes, by Maciel and Pereira (2000).

e To reduce the effects of the possible discontinuity of the signal and to implement
an efficient ensemble method to forecast individual rain-fall intensities series
distributed in the Tiber basin, by Baratta ez a/ (2003).

e To denoising chaotic data, by Liu and Zhao (2005).

e To smooth raw kinematic signals, by Alonso et al (2005).

e To forecast chaotic time series that contains short time surges with high
amplitudes, by Ivanov et a/ (2005).

e To extrapolate time series, by Istomin ez a/ (2005).
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e To fill the gaps in several types of data sets, by Schoelhamer (2001) and by
Kondrashov and Ghil (2006).

e To forecast the number of monthly accidental deaths in the USA, and to
compare the results with those obtained using Box-Jenkins SARIMA models,
the ARAR algorithm and the Holt-Winter algorithm, by Hassani (2007).

An important basis for this work was also the thesis presented for the degree of Doctor
of Philosophy in Statistics at the University of Aberdeen by Oliveira (2003), each main
theme is how to deal with PCA for non-independent observations. In this work and after
the presentation of PCA and its relationship with time series datasets, the most
important existing techniques in the field were presented: Singular Spectrum Analysis
(SSA), Hilbert EOF, Extended EOF and Multichannel Singular Spectrum Analysis
(MSSA), Principal Oscillation Pattern Analysis (POP Analysis).

On the PCA field the main sources of information used were the book “Applied
Multivariate Techniques” by Sharma (1996) and the manuscript by Gomes, “Anélise em
Componentes Principais” (in Portuguese) (2006).

For basic Time Series analysis the main source of information was the book in
Portuguese “Analise de Sucessdes Cronologicas” published by Murteira et al (2000).

1.4. Single-spectrum analysis —the methodology

After the presentation of the model, done in section 1.2.1., some more details needs to
be given in order to understand and implement this methodology.

In fact, the method is complex, therefore a full in depth explanation can be found both
in the book “Analysis of Time Series Structure — SSA and Related Techniques” by
Golyandina et al. (2001), and in the Annex 1 of the present work. These explanations
are needed in order to understand the coming chapters, where real time series are
analyzed using SSA.

In the Annex 2 can be found both the theoretical explanation of the method and the
implications of those in the real world analysis, in what concerns the:

a) Window length — having an improper window length can mean that
the separability of the components will not be achieved and the
grouping of the eigentriples will not be successful. The success of the
method relies on a correct window length size. As basic rule it can be
said that the window length should never be greater than N/2. The
dimension of the window length is determined by the problem in
hand. A large L will provide separation results more stable (with
respect to small perturbations), the information extracted will be larger
and the components will be less mixed up. On another hand a small L
will help on the proper definition of the noise floor. If the time series
has a seasonal component the window length needs to be proportional
to that period. For more details see section 6.1. - The window length.

b) SVD - several different matrices can be used to calculate the singular
value decomposition, depending on the type of time series in study.
Different methodologies will, of course, create different results. To
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choose the most adequate matrix some theoretical questions needs to
be evaluated. The Basic SSA will be the most used but others
techniques including Single centering SSA (which should be used in
cases of time series with a constant component and a component that
oscillates around zero), Double centering SSA (which should be used
to extract the linear component of the times series) and Toeplitz SSA
(which can only be used in stationary time series), could be
alternatives. Description of those can be found on section 6.2. — SVD.

C) Separability — To decompose the time series in its additive
components it is absolutely needed that those components be
separable. There exist several types of separability and several ways to
identify them. W-correlations are used as the best way to measure
separability. In section 6.3. Separability, all definitions can be found.

d) Grouping — After having the eigentriples identified, and proved
separable, one need to group them as the second part of the process.
There are several ways to identify the eigentriples that should be
grouped together, namely the scatter plots for the eigenfunctions and
the EVAL percents, and those are explained in section 6.4. —
Grouping.

e) The final step of the method is the diagonal averaging. There is need
for a formal procedure to transform an arbitrary matrix into a Hankel
matrix and therefore into a series. This formal procedure is provided
in section 6.5. — Diagonal Averaging.

The desired output of the above methodology is a reconstructed homogeneous time
series governed by a linear recurrent formula, with a small dimension relative to N. To
get to the point when the above can justifiably be said one need to evaluate several
aspects.

Structural changes can happen when transforming an homogeneous time series into an
heterogeneous one, therefore a way to detect those changes is needed. The heterogeneity
matrix is the way to solve this problem. More details about that matrix can be found in
section 6.6.1 — Heterogeneity matrix and section 6.6.2. — Heterogeneity functions.
Because the point where the change happens is important, especially for forecasting, the
detection functions play a great role here. The detection functions determine the specific
point where an homogeneous time series become an heterogeneous one. The theory of
detection functions is provided in section 6.6.3. — Detection functions.

The type of violations on the homogeneity of a time series and the linkage between the
homogeneity of the time series and the separability of its components are described in
the last two sections of the Annex 2. The general form of the H-matrix is presented and
explained, being the “heterogeneity cross” the most helpful visual aspect on the
detection of violation.

One of the most important aspects when confirming homogeneity of a time series is the
choice of the parameters, which will help to determine the number of change-points,
their location and if violation is permanent or temporary. The renormalization of the
heterogeneity matrix is also important in order to evaluate correctly the possible
heterogeneities.

1.5. Single-spectrum analysis - Forecasting

An acceptable forecast can only be performed if the conditions that follow are met:
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The series has a structure;

A method or algorithm identifying this structure is found;

A method of the time series continuation, based on the identified structure is available;
The structure is preserved for the time period over which the forecast will be done.

The structure mentioned is usually hard to find and definitively is not unique, since
most of the series has a noise component. That creates the opportunity for existence of
different and even contradictory forecasts. One of the most important tasks related with
the structure of the series is not only found it but also to check its stability.

The method that identifies the structure can derive from the series data or at least be
checked against that data. In SSA forecasting these models are described with the help
of the Linear Recurrent Formulae.

The series governed by LRF’s admits natural recurrent continuation because each term
of the time series is equal to a linear combination of several preceding terms.

The idea behind the searching of the LRF’s is as follows:

If 4 is the minimal dimension (or order) of all LRF’s governing F, it can be proved that
if the window length L is larger than d, and the length of the series is sufficiently large,
than the trajectory space for the series F' is d-dimensional. The trajectory space
determines a LRF of dimension L-1 that governs the series. When this LRF is applied to
the last terms of the initial series F, a continuation of F'is obtained.

Usually what is obtained from the basic steps of SSA are additive components of the
series F, for example F = FY + F® where F?is residual series. If the component 7%

is governed by a LRF and is strongly separable from F @ for the selected value of the
window length L, then each of them must satisfy some LRF.

In practice, and for a certain window length L, and assuming that the series components
FY and F® are approximately strong separable, the series 7 is reconstructed with
the help of a selected set of eigentriples and an approximation to the series #®and his
trajectory space is obtained. This basically means that a LRF, approximately

governing FY_ and the initial data for this formula are found, providing the possibility
to have a forecast.

A theoretical description of the SSA recurrent forecasting algorithm is available both in
the book “Analysis of Time Series Structure — SSA and Related Techniques” by
Golyandina et al. (2001), and in the Annex 2 of the present work, in section 7.1 - SSA
recurrent forecasting algorithm. Section 7.2 - Approximate continuation, introduces the
concept of approximate continuation because the exact continuation is mainly
methodological and theoretical.

There exists another way to forecast with SSA, is the method V-Forecasting, in
opposition to the above mentioned R-Forecasting. For R-Forecasting, diagonal
averaging is used to obtain the reconstructed series, and continuation is performed by
applying the LRF. In the V-Forecasting, these two stages are used in the reverse order.
More details are provided in the section 7.3 — Modifications to basic SSA R-algorithm.
V-forecasting tends to be more “conservative” in cases of rapid increase or decrease of
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the R-forecasting values. V-forecasting tends to be better to forecast on the long-term
than the R-forecasting.

Forecast needs to be presented together with its confidence bounds. There are two
variants to the construction of those. The empirical and the Bootstrap, both are
explained it in the section 7.4 — Forecast confidence bounds and in its sub-sections. It
needs to be said that the empirical variant can only be used for short-term forecasting.

To assess the forecast stability and its reliability it can be said that:

Different algorithms: If the results of V and R-forecasting coincide then forecasting is
stable;

Different initial data: Using different points of the reconstructed series as the base of the
forecasting. Comparing results can give insights to the stability of the forecast;

Different window lengths: If the separability characteristics are stable under a small
variation in the window length L, than forecasts for different L can be compared,
Forecast of truncated series: If the results of the forecast from the series truncated by
removing the last few terms of it can be compared with the results of the forecast from
the non truncated series than the forecast can be regarded as adequate and stable.
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2. Outline

The present work can be divided in two different sections. Section 1, which could be
called the “Theory part” is composed with chapter 1, and builds all the basic theoretical
background for the remaining of the work. More detailed information is provided in
Annex 1 and 2.

Part two, which could be called the “Practical part” is the remaining of the work and
condenses chapters 3 and 4.

Chapter 1 is, in a short summary, the basis to understand what is a time series and what
the methodology SSA stands for. It also contains explanations of the software used in
the present work. The bibliography review intends to provide an overview of everything
that has been published regarding SSA, since the beginning to nowadays.

Section 1.4 together with Annex 1 are an in depth review of the theoretical fundaments
of the methodology. Explained in detail, has the aim of providing enough information
on how the methodology is developed in order to be adequately used in the real cases
presented.

In Section 1.5 and Annex 2 the same is done but now for the second part of the
methodology — the forecasting. An in depth review of the several ways of forecasting is
provided, including the different methodologies of calculating confidence bounds.

The second part, in chapter 3 starts by providing all necessary information to understand
the time series that will be studied. Background information on the pharmaceutical
market in Portugal is provided because this information is needed to fully understand
the evolution of the market, both past and future.

At this time, three times series plus the sum of the available 15 were selected to be
analyzed in detail and all steps of the process are conducted and explained. The final
part of this chapter is dedicated to the forecast of the selected time series. By the end of
the chapter all steps of the SSA method have been fully developed and presented.
Chapter 4 is dedicated to the Discussion and Conclusions, providing the final comments
and thoughts of the present work.

All the 15+1 time series went through the same in depth analysis, each time series was
decomposed, grouped, reconstructed and forecasted with the same level of attention and
care. In order to do not transform this work in an endless list of justifications for each
parameters choice, the results are presented in the Annex 3. There, all parameters and
results are presented but no graphs or explanations are provided.
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3.1. The Portuguese Pharmaceutical Market

The WHO (World Health Organization) Collaborating Centre for Drug Statistics
Methodology develops and maintains the ATC/DDD (Anatomical Therapeutic
Chemical classification/Defined Daily Dose) classification system. By doing this it
classifies all and every drug existing in the market in their respective ATC. This system
is widely use and known by all players in the pharmaceutical market. They are 5 levels
in the ATC system. 1% level represents the anatomical main group, 2" Jevel represents
the therapeutic subgroup, 3" level represents the pharmacological subgroup, 4™ level
represents the chemical subgroup and finally 5™ level represents the chemical substance.

The Portuguese pharmaceutical market works through two different channels, retail and
hospital. The Retail market represents the sales of all drugs sold in a Retail Pharmacy
with or without medical prescription. The Hospital channel represents the sales of all
drugs sold directly by the Pharmaceutical Industry to the Hospital Pharmacies in order
to be administered to inpatients.

According to IMS Health and regarding size, the total Portuguese pharmaceutical
market value was more than 3.5 billion Euro in the year 2007. From those three quarters
are sold in the Retail Market and the remaining in the Hospital segment.

From this point onwards, everything mentioned relates only to the retail Pharmaceutical
Market.

According to INFARMED (Autoridade Nacional do Medicamento e Produtos da Salde
I.P., The Portuguese Drugs Authority) from that market, 12% of the total number of
packs sold in 2007 were of generic products (generics are products with the same active
ingredient of those that have seen their patent protection expired). This is important to
be mentioned once the market as been largely influenced during the last 3 years by
several institutional campaigns run to increase the utilization of those products,
increasing the percentage of packs sold of generics products from 5% in 2004 to the
already mentioned 12% in 2007.

IMS Health publishes monthly the sales in Portugal (continental and the islands), of all
pharmaceutical products grouped in the above mentioned classes.

There are 15 ATCL, and they represent the Portuguese retail pharmaceutical market,
namely:

A - Alimentary track and metabolism

B - Blood and blood forming organs

C - Cardiovascular system

D - Dermatologicals

G - Genito urinary system and sex hormones

H - Systemic hormonal preparations, excl. sex hormones and insulins
J - Antiinfectives for systemic use

L - Antineoplastic and immunomodulating agents

M - Musculo-skeletal system

N - Nervous system
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P - Antiparasitic products, insecticides and repellents
R - Respiratory system

S - Sensory organs

T - Products to perform diagnosis

V - Various

All data that will be used in this work represents the total monthly packs sold per ATCL,
in Portugal, from January 1999 until December 2007.

As have already been said, total amount of drugs sold in Portugal for the year of 2007 in
the retail segment was more than 2,5 billion Euro, and they represent less than 1% of the
total drugs sold in the world. The market grew from 1999 to 2007 at a 7% CAGR
(Compound Annual Growth Rate). Biggest ATC’s in 2007 are (in descending order):
Cardiovascular system (28%), Nervous System (17%) and Alimentary track and
metabolism (14%). First two grew above the market for the same period and the 3" one
grew slightly less (5%).

For the Retail pharmaceutical market products the distribution channel is:
Pharmaceutical Industry => Wholesalers => Pharmacies => Patients. All products
follow this path. IMS Health provides the sales at the Wholesalers to Pharmacies point
with coverage just over 96% of total market. The remaining is projected, in order to
achieve the total market. Once the projection method is not the subject of this work we
will not go further into its explanation.

According to IMS Health, in 2007, there were 110 pharmaceutical companies selling
above 1 billion Euro. According with INFARMED there were 334 Wholesalers and
2,666 Pharmacies by the end of 2006, representing coverage per Pharmacy of 3,782
Inhabitants.

Before being sold in the country all products are approved by INFARMED. In this
context “a product” represents all pack sizes, of all formulations, of all strengths. This
means that, for example, the sales (considered in this work) for the well known product
Aspirin will be the sum of the total packs sold for all presentations in the market, which
will be for 2007:

Aspirin = 674731 units
Aspirin 500 mg (500mg of active ingredient, acetylsalicylic acid) x 20
pills = 661323 units
Aspirin 500 mg (500mg of active ingredient, acetylsalicylic acid) x 10
pills = 13408 units

In Portugal and in 2006 were 11,984 products with an authorization to be marketed,
with 38,481 different packs sizes.

The data used represents, therefore, the total number of packs sold, as defined above, in
a monthly basis nth in Portugal.

The price of pharmaceutical products is defined in two steps. Firstly, the Minister of
Economy defines the maximum public price for the pack. For the products that do not
have a co-payment from the SNS (Servico Nacional de Saude, National Health Service)
the process stops here. From this point onwards all products can be sold in a retail
pharmacy. For the products that are a co-paid by the SNS another steps is needed.
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3. Data analysis

INFARMED determines both the co-payment level and the final public price. This co-
payment only applies when the product is dispensed in a pharmacy with a medical
prescription. In Portugal, in 2006, existed 4,176 products (8,117 different packs sizes)
with a reimbursement granted.

Together with the public prices also the margins for the wholesalers and pharmacies are
defined by law. Nevertheless, those margins differ from product groups. Due to all this
specificities and once the Portuguese government has full control on prices and margins
increases and decreases, the unit used in this work is packs sold and not Euro sold. The
purpose is to determine the market movements despite the price changes. At the end and
after finding the total number of packs that are expected to be sold in 2009, some
assumptions needs to be made regarding prices evolution, still this is not the aim of this
work.

Is well known that once a drug, touches one of the most sacred area for humans, their
health and well being, those should be used with extreme caution. Drugs have, as
chemical entities, side effects and only after exhaustive study they can be widely used.
It is then expected that sales of a specific drug will increase over time, after medical
doctors have learnt how to use it in an efficacious and safe way. So, it is fair to say that
the utilization of a drug today is the result of the accumulated experience over the past
years. It is only of common sense to agree that there exists a correlation between
successive observations.

It is therefore easy to accept that we are in presence of time series and that those should
be studied taking into account the temporal correlation between successive observations.
Due to the above mentioned we can say that we have to study 16 time series, namely:

e 1 time series that represents sales of the total market, meaning the sum of the 15
ATC1,;

e 15 times series, each one representing the sum of the products grouped in each
ATC1.

The purpose of this work is to find the best fitting model for those series and to predict
the future behaviour of each of them.

We can not say that the behaviour of one of the 15 times series is completely not
correlated with another one. In fact, these time series might even have high correlations
among each other. There are several reasons that can lead to drug co-prescriptions.
Concomitant diseases and population aging (leading to several diseases in the same
person) are only two examples of co-prescription causes.

PCA is a technique used as an exploratory multivariate technique to reduce the
dimension of a large set of variables into a small set of principal components that
synthesise the information of the original data set.

Is true that in the present case we do have 15 variables, the ATC1 groups, and if our aim
is to analyse the interrelationship among those variables, this technique would be
perfect. The technique would project the data onto a lower dimension space in which the
variability of the original data set would be as large as possible, and the new
uncorrelated variables would be arranged in order of decreasing variance.
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3. Data analysis

The problem with the use of the classical PCA in this case is that the study of the
covariance ignores the fact that the observations may be correlated (which we believe
they are, as already mentioned). If more than a weak dependence is present between
observations than the standard inference procedures in PCA are invalid. There are
existing techniques of PCA that are used to study data sets where time series are treated
as variables as already described in the previous chapters.

3.2. Preliminary Data Analysis

The first step of a time series analysis should be a graph showing its development.
Figure 2 shows all the 15 time series. Figure 3 show the time series resulting from the
sum of the above 15 times series which is the total pharmaceutical market in Portugal.
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Figure 3 —Time series Total — Initial

One of the most important analysis that needs to be done before the first step of SSA is
the seasonality analysis. This is important due to the fact that the window length should
be in line with this seasonality. This means that the window length should be 12 or
multiples of 12, due to the monthly presentation of the data. Using a simple calculation

12
of S, =1,/%L1,...1,,, with I, =%an, being N the number of total years
j=1

observed, one can analyze series seasonality. The values of S’ are presented in Table 1.
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3. Data analysis

1 2 3 4 5 6 7 8 9 10 1 12
A 1,07 0,94 1,04 0,95 1,03 0,98 104 0,93 1,03 1,08 1,00 0,93
B 1,01 0,88 1,02 0,94 104 1,01 1,05 0,98 1,04 1,06 1,01 0,98
4 1,02 0,89 1,02 0,95 106 1,02 1,08 0,94 1,03 1,05 1,00 0,97
D 1,02 0,92 1,01 0,94 1,04 106 117 1,08 1,04 1,03 0,93 0,82
G 1,08 0,91 1,00 0,94 1,02 0,98 1,07 0,97 1,03 1,06 0,99 0,95
H 113 0,98 1,06 0,96 1,04 0,96 1,00 0,87 0,95 1,06 1,01 0,99
J 1,25 1,07 1,03 0,84 0,85 0,78 0,80 0,86 151 1,40 0,98 0,93
L 1,04 0,93 1,03 0,92 1,00 0,96 1,01 0,87 117 1,18 1,01 0,93
M 112 0,97 1,05 0,94 1,01 0,94 0,99 0,93 1,00 1,08 1,03 0,97
N 114 0,98 1,06 0,94 1,00 0,95 0,97 0,86 1,01 110 1,03 0,98
P 1,04 0,97 112 1,03 104 0,92 0,92 0,73 1,30 1,28 1,01 0,78
R 161 132 117 0,91 0,90 0,73 0,67 0,60 0,98 1,20 119 1,20
S 1,01 0,93 1,06 0,98 1,09 1,05 1,09 0,96 1,00 1,02 0,96 0,88
T 0,93 0,82 0,96 0,91 1,03 1,00 1,09 0,98 1,05 114 1,09 1,02
v 137 1,25 123 0,89 0,94 0,85 0,78 0,73 0,84 118 112 1,04
Total 114 0,98 1,05 0,93 1,00 0,94 0,98 0,89 1,04 110 1,02 0,97

Table 1 - Time series All - Table of seasonality

Is easy to see that in the summer, comprehended between June (6) and August (8) is the
period where more values below 1 are concentrated, therefore were less drugs are sold.
The period between September (9) and January (1), with the exception of December
(12) is when more drugs are sold.

This seasonality is more relevant if the products are antibiotics (time series J) or
products for the respiratory system (time series R).

3.3. The time series selected

In order to show the most significant aspects of the method three individual (B, R and
V) plus the total time series were selected to be analyzed in this work. The remaining of
the series was also analyzed and the results of that analysis are shown in the Annex 4.

3.4. Change-point detection

3.4.1. Time series B — Blood and Blood Forming Organs

This time series represents the sales in packs of all products indicated mainly to treat
and to prevent atherothrombotic events. In 1998 it was approved by EMEA (European
medicines agency) a new product to this class, called Plavix, a trade mark of Bristol
Myers Squibb, with the active ingredient clopidogrel. This product was only introduced
reimbursed in Portugal in 2004. This product was considered revolutionary in the
treatment and prevention of the above mentioned pathology. Therefore, the authorities,
both the Ministry of Economy and the Ministry of Health approved a significant higher
price than other products already in the class. Before clopidogrel the standard treatment
was the well known Aspirin (acetylsalicylic acid) which costs per day around 22 cents
of €. The clopidogrel cost is about 1.82€ a day, more than 8 times the Aspirin cost.
Having all of this in mind and before starting to forecast this time series it was
necessary to understand if there existed structural changes.

The time series development is shown in the Figure 4:
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Figure 4 - Times series B - Initial
It looks easy to identify the moment of clopidogrel entrance in the market.

A window length of 12 was used, for two main reasons, a) the tendency seems quite
“simple” which requires a smaller L, in order to easily identify the “noise floor”; b) the
series has seasonality, so Z should be proportional to that.

The Decomposition stage, using the Basic SSA SVD (long time series nonstationary)
produced very well defined eigentriples where the first one represents the leading
tendency of the series and the followings ones the seasonality. In the Figure 5 the main
tendency of the time series is shown.
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Figure 5 - Time series B- Tendency

In order to evaluate the structural changes after the entrance in the market of clopidogrel
it was needed to define the base part of the series (the one to which the second part of
the series will be compared with) to be from January 1999 to December 2003, which
represents 60 months.

Therefore B is defined as 61, in order to get the base space from 1 to 60.

The base set of eigentriples (/) needs to be less than the minimum between L and K,
when K=B-L+1, in this specific case / needs to be lower than the minimum between 12
and 50. It was chosen 6.

The T, meaning the test subseries of the time series, which needs to be at least equal to
L, was chosen 12.

By definition the number of vector for averaging is equal to K, which is, as already
mentioned, 50.

The row detection function is the most reliable one to identify the structural changes in
the time series.

The diagonal detection function is useful in detection abrupt structural changes against
the background of slow structural changes and the symmetric functions is good to
measure the quality of approximation of the base series by the chosen eigentriples.

Therefore in Figure 6 all 3 functions are shown.
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The heterogeneity matrix is shown in the Fi

ure 7.
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Figure 7 — Time series B - H-Matrix

The values of the matrix are very, very small, showing a very homogeneous structure.
The values of this matrix have been renormalized, because the time series is positive
and monotone increasing, in order to avoid that the denominator of the row detection
function increases just because of that.

Based on the above results the study of the series can go on in order to achieve a stable
forecast. The entrance of a “breakthrough” product did not seem to have an effect on the
trajectory of the time series. Despite the fact that the value of this class increased
immensely due to the launch of the new product, the number of patients treated
increased accordingly with the previous tendency.

3.4.2. Time series R — Respiratory System

This time series represents the sales of products indicated in the treatment of respiratory
system diseases, and includes well known products like Cegripe and Ilvico, and caught
products like Bisolvon. Most of those products are sold without the need of a medical
prescription and are mainly used during flow seasons but they are not antibiotics. The
large majority of those products have more than 20 years in the market, so this is a very
mature class of products without any new entrances.

So, is easy to understand the seasonality of the class, presented at Table 1. The time
series development is shown in Figure 8.

31



3. Data analysis

Time series
— e
e Nt
F4—#4—%—Fﬂ—+—k%—+—ﬁﬁ—+—k4—ﬂﬂ—+
PA—#—F#%F4—+—F%—+—\ﬂ—+—%4—%4—4
PA—#—FJVF4—+—F%—+—qg—+—%4—$4—4
PA—#—Fﬁrk4—+—k4—+—jH—+—P4—H4—4
p47#7pjrp47+7p47+7\H7+7p47f474
— =4 — + —I— [p47+7pw7+—ﬁH—+fp472474
p47#7F%Lp47+7HH7+7PM7+ﬂP47¢W74
p47;7pj p47¢7mﬂ747%M7¢ﬂp47+hp\
p47“7p }pq%}74ﬂ7+7wmf¢ﬁb47 -4\
‘*J*W*VH¥L4+F*HJHL*J¢*HEGJ*£%Vf\
4L44¥—MH+L7H97QAg¢7H¢7%7&47€%p#

b — 4p4Jx7um4L4y47u4444p¢7¢7%4iw#pf

JJ,fJLJ“Q7q4JL$7{7QJJLJLJ7l7%J¥LM7ﬁ

JJ%LJLJ%A,\44L¢,A,%4JL%LJ,+,HJLL#,ﬁ

*P | JJA,HJ4Lﬂ,¢¥%44LTL4,¢,%pLL%,H

bl Wid 2 Q#,i%LJ,ﬁ#LJ%&,%H‘L,Lu

b 2 %gfifﬁJ,%pLJ}%,quL,FP
7§ X it tub v WA
\ - e R i
\J,LQ,LSLJ,EFLJ4p,LiLLJjJ
[\ ISR ANTIN ERTR BN OL ) VNN IR
| I I |

Figure 8 - Time series R — Initial

From the time series periodogram is possible to identify the following seasonalties: 6,12
18 month periods. The Figure 9 shows the periodogram for the times series.

It is easy to see that this series is most probably stationary and the main components
will be related with the strong seasonality.

The decomposition method used was the Basic SSA with a window length of 18. The
fact that the time series is stationary could lead us to use the Toeplitz decomposition
method, but due to the fact that the time series is long, the Basic SSA returns better
results.

Because there were no major events happening during the total period, like new product
launches, the decision to evaluate the homogeneity of the structure of the series were to
have the following sizes of the subseries:

Base subseries: 1 to 54, the first half of the series; B: 55; T: 18; I: 11.

The detection functions are shown in Figure 10 and the H-Matrix in Figure 11.

There are no abrupt changes in any of the detection functions indicating that there are no
structural changes points. Especially the diagonal detection function that is very helpful
in detecting abrupt changes on a slow changing structure is not showing any change
point.

All values of the heterogeneity matrix are very small showing that the time series do not
have significant structural changes which corroborates the very stable class of products.
These values have been renormalized.

Figure 9 — Time series R — Periodogram
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Figure 10 —Time series R - Detection functions
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Figure 11 —Time series R - H- Matrix

3.4.3.

Time series V — Various

For the V time series the approach is slightly different because this time series is not a
real class of products. In fact this class, called Various, includes products that are not
related to each other in any way. Therefore, this time series study will only happen to
illustrate the homogeneity/heterogeneity of the time series structure.

The time series evolution is depicted in Figure 12 below, where is easy to see that there
are three different periods of time in this series of 3 years each.

os
a4

P
1

1

1

IR
T
L

L8
IR
il e b
T

ISR

A R R A |
R AR R I I R
RN
S
| T

R R e S

7
2
2
§
2
g

o0z Now04_Abros

Figure 12 - Time series V- Initial

The time series has, as previously shown seasonality, therefore the window length L

used is 12.
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The base subseries will be the first two years of the time series, in order to identify the
two major changes on the time series evolution. So, the B is 25.

It will be used a T of 12, and the only eigentriple used will be the first one, which
represents the tendency of the series. The reason for that choice is that what is to be
proven is the dramatic change on the tendency of the time series. So, 7 will be equal to
1.

The row, symmetric and diagonal detection functions are shown in the Figure 13. The
values are significantly high; in fact the highest value is 0.96. The values of the
heterogeneity matrix vary from 0, when the homogeneity of the time series structure
exists and 1 when the structure of the time series is heterogeneous.

Therefore, it can be said that this time series, reconstructed using only the first
eigenvalue is very heterogeneous.

Figure 14 shows the first row and the first column of the Heterogeneity matrix where is
very easy to identify the two change points in the structure of the series by the two
abrupt jJumps on both lines.

It is not a surprise that the H-matrix shows two different “heterogeneity crosses”. This
matrix is shown in Figure 15. These two crosses identify clearly the two changing
points in the time series structure.

Based on these results if the objective was forecasting, one need to identify the part of
the time series that have an homogeneous structure. If by the knowledge of the market is
expected that the last 3 years of the time series will continue that only that part should
be used for the forecast.

| e
oy recoN

Figure 13 — Time series V - Row, symmetric and diagonal detection functions
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Figure 14 —Time series V - 1st Row and 1st Column of the H-Matrix
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3.4.4. Time series Total — Sum of the 15 ATC’s

This time series is the result of the sum of the 15 ATC’s, this means that it represents
the evolution of the total retail pharmaceutical market in Portugal. So, it is expected that
the time series has a quite homogeneous structure. In fact due to the size of the market is
not expected that this time series suffer big changes in the structure. Nevertheless, due
to the fact that the Health Authorities have initiated a campaign to increase the
percentage of generics sold is a good idea to try to understand if that created changes in
the structure of the series.

The time series development is shown in the Figure 16.
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For the decomposition stage, it was used a window length of 24, due to the seasonality
existing in the time series. The series is not stationary, so it was used the Basic SSA
SVD.

In order to evaluate the structural changes after the generics campaigns implementation
the base part of the series was defined (the one to which the second part of the series
will be compared with) to be from January 1999 to December 2003, which represents 60
months.

Therefore the B is defined as 61, in order to get the base space from 1 to 60.
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3. Data analysis

The base set of eigentriples needs to be less than the minimum between L and K, when
K=B-L+1, in this specific case I needs to be lower than the minimum between 24 and
48. 1t was chosen 8.

The T, meaning the test subseries of the time series, which needs to be at least equal to
L, was chosen to be 24.

The row detection function is the most reliable one to identify the structural changes in
the time series.

The diagonal detection function is useful in detection abrupt structural changes against
the background of slow structural changes and the symmetric functions is good to
measure the quality of approximation of the base series by the chosen eigentriples.
Therefore, in Figure 17 all 3 functions are shown.

Figure 17 - — Time series Total - Row, symmetric and diagonal detection functions

The heterogeneity matrix is shown in the Figure 18.

The values of the matrix are very, very small, showing a very homogeneous structure.
The values of this matrix have been renormalized, because the time series is positive
and monotone increasing in order to avoid that the denominator of the row detection
function increases just because of that.

Based on the above results the study of the series can go on in order to achieve a stable
forecast. The campaign has not created an extra demand for pharmaceutical products. In
fact, the market did not increase more than the expected tendency of the time series.
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3. Data analysis

3.5. Decomposition and Reconstruction of the Time
series

3.5.1. Time series B — Blood and Blood Forming Organs

The four steps of the Basic SSA, applied to the Time series B, produced the following
results.

Embedding

Window length — 12, as already explained in section 3.4.

SVvD

The SVD used to decompose this time series is the basic SSA, as also already explained
in section 3.4.

As a result of this procedure the time series is now decomposed in several eigenvectors
that identify the major components of the time series.

In fact, it is clear that eigentriple 1 (Figure 19, left graph) corresponds to the trend of the
time series, eigentriple 2 (Figure 19, right graph) corresponds to the fact that two
months always alternate in a cyclical movement of increasing/decreasing, meaning that
the average value sold in February is lower than the average value sold in January, and
lower than the value sold in March, and so one, as shown in the Table 2. This movement
does not happen in November and December what is also reflected in the eigentriple 2.

January

February

March

April

May

June

July

August

September

October

November

December

Average

601.896

519.831

608.347

559.686

616.184

596.884

625.051

580.235

615.698

626.186

601.274

580.214

Difference

-82.066

88.517

-48.661

56.498

-19.300

28.168

-44.817

35.464

10.488

-24.912

-21.060

Table 2 - Time series B - Monthly movements

The eigentriple 3-6 (Figure 20) corresponds to the seasonality that exists in the time
series, as already shown in Table 1.

1(99,622%)

0,300

0,296

0,291

0,287

0,283

0,278

1,0

12,0

0,31

0,18

0,06

-0,06

-0,19

-0,31

2(0,126%)

Figure 19 - Time series B — Trend and Cyclical movement
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3. Data analysis

3(0,045%) 4(0,041%)

0,53
0,33 -

013/ -\ -t f\-a -

006 ff ——\ f ¥

0,26 - -

-0,45

0,54

T
|
|
035 F -
|
015 /- —+-—of--bL--—-A- N --

-0,04 7

-0,23

-0,42

1,0

Figure 20 - Time series B - Seasonality

Grouping

The decomposition of the time series is only successful if the resulting additive
components of the series are approximately separable from each other.

The first part of this step is to try to identify the components that should be aggregated
to each other.

The grouping was done by having eigentriple 1 and eigentriple 2 alone, and by
summing eigentriples 3 to 6.

To assess the quality of this grouping it was produced the w-correlations matrix. As
already mentioned, the w-correlations between the groups should be close to zero,
meaning that the correlations between rows and columns of the trajectory matrices are
close to zero.

In fact, as shown in Figure 21 the w-correlations of the above defined groups are close
to zero.

Group 1 represents the eigentriple 1, group 2 represents the eigentriple 2, group 3 the
eigentriples 3-6.

Therefore, it can be said that the groups are separable from each other.

The remaining 6 were considered to be noise and were left out of the reconstruction
part.

W-Corelation maix

O -10.00, 0,05
O - (.05, 0,10
0-©.10,014
O -0.14,019
O -(0.19,024
O -0.24, 029
O -(0.29,033
O -(.33,038
O -0.38,043
O - 0.43, 0,48
O - 48,052
O -052,057
O - 057,062
O -0.62,067]
@ -067.07
@-©71.076
M -0.76,081]
B - (0.81,086)
& - (0.86, 0,90
M - (0.9, 0,95
M - (0,95, 1,00

@) @ (36)

COMP.K=97,Cent.(No); _GROUP-{1],(2},(3::

Figure 21 - Time series B - W-Correlations
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3. Data analysis

Reconstruction

Using the above identified components it is possible to reconstruct the initial time
series. In Figure 1 is possible to see the reconstruction of the trend of the time series. In
Figure 22 is possible to see the good reconstruction of the time series using the above
mentioned eigentriples. Figure 22 represents the initial and the reconstructed series.
Figure 23 represents (top plot) the relative errors of reconstructing averaging, and in the
same figure (bottom plot) the absolute errors are shown. It can be seen that the errors are
relatively small, never going above 3.3%.

T Ty
T e S,
— 4t Al —F—+—A - —t -4~ —t -+ - A~ — —
e e B B e e i B Bl ol At Rl el el Mt Il [ ol ol
S S St s M Bt St et S S St St s S Bt |

1V G R R B
| P S R

e ConsTR £T:0-6)

Figure 22 - Time series B - Initial and reconstructed Time Series

o 55 55 61 64 67
K=07,Cont (No), RECONSTR-ET:(16);

Figure 23 - Time series B - Relative and Absolute errors of reconstruction averaging

3.5.2. Time series R — Respiratory System

The four steps of the Basic SSA, applied to the Time series R, produced the following
results.

Embedding

Window length — 18, as already explained in section 3.4.

SVvD

The SVD used to decompose this time series is the Basic SSA, as also already explained
in section 3.4.

As a result of this procedure the time series is now decomposed in several eigenvectors
that identify the major components of the time series.

Despite the fact that the time series is almost stationary the first eigentriple corresponds
to the small increasing pattern that can be found in the last part of the time series. The
following 2 and 3 eigentriples correspond clearly to the seasonality of the series.
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3. Data analysis

Figure 24 shows the eigentriples 2 and 3 where this seasonality can be found.

EigenFunctions
Dados p_software xis [Sheetl]; _VarR;
2(2,940%)

DECOMP.-K=91,Cent.(No);

Figure 24 - Time series R - Seasonality

Grouping

This complex time series will need a high number of eigentriples groupings in order to
get to a “good” reconstruction.

Looking to the scatter plots of the eigentriples is easy to identify the ones that should be
grouped together. Figure 25 represents the scatter plot of eigentriples 2 and 3, where a
perfect match between them can be seen.

2(2,940%) - 3(2,634%)

Figure 25 - Time series R - Scatter plot of eigentriples 2 and 3
By analyzing scatter plots, singular values closeness and w-correlations it is possible to

get to the best grouping possible that in this case is the one shown in Figure 26, with the
w-correlations matrix.
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3. Data analysis

41

- Relative and Absolute errors

40 43 46 49 52 55 58 61 64 67
DECOMP.-K=91,Cent(No): RECONSTR-ET:(1-11);

Figure 28 - Time series R
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3. Data analysis
3.5.3. Time series V — Various

As mentioned in section 3.4 the time series V does not have an homogenous structure
when the first eigentriple is used to reconstruct the time series. Nevertheless, if the
decomposition and reconstruction steps are repeated again, without ignoring all
eigentriple except the first one, the results could be different. So, the study was
conducted changing some of the parameters.

The four steps of the Basic SSA, applied to the Time series V, produced therefore the
following results.

Embedding

Window length — 36, different from the one mentioned in section 3.4. The window
length should be as large as possible in order to be stable in presence of small changes.
This time series is very irregular, so the window length should be as large as possible,
maintaining the seasonality proportion.

SVvD

The SVD methodology used to decompose this times series was the basic SSA.

The leading singular values shown in Figure 29 led us to conclude that all eigentriples
from 1 to 8 should be kept as important components of the time series.

2 2
DECOMP.K=73 Cent (Vo)

Figure 29 - Time series V - Singulér values in percentage

Grouping

The w-correlations matrix of these 8 eigentriples provides significant help for the
grouping stage of this time series study.

The Figure 30 shows the w-correlations between the 8 selected eigentriples. After
evaluating the values obtained it was decided to group the eigentriples in the following
way: eigentriple 1, eigentriple 2, eigentriple 3, eigentriple 4-5, eigentriple 6 and
eigentriple 7-8.

Reconstructing

The reconstruction results are (as expected) quite weak and the errors are significant.
Reconstructed times series and the residuals are shown in Figure 31. With such high
residuals a forecast would never be accurate enough to be reliable.
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3. Data analysis

W-Conelation matrix
Sheel

[J -[0,00, 0,05]
[ - (0,05, 0,10]
0-0.10,0,14
-0.14,019
O-019,024)
- 024,029
[J-(0,29,0,33]
- (0,33, 0,38]
O-(038,043
- (043, 0,48
- (048,052
O- 52,057
- (0,57, 062]
- 062,067
- 067,071
@ -(,71,0,76]
E-076, 081
@ - (081, 0,86]
M - (0,86, 0,90]
- 090,095
[ - 0,95, 1,00]

)] @ @) @ ©) ©) @ ®)
DECOMP -K=73,Cent (No); GROUP.-{1],[2],3},[4]15}6] (7] (8]

Figure 30 - Time series V - H-matrix

Initial & Reconstructed Series.
Dadosp_software.xis Sheetl]; VarV;

| ‘ | ):x‘.em )‘

187285

165718

144151

122584

101017

79451

57884

36317

14750

ss1r Y Y S A R I~
Jan99 Jun99 Nov9s A0 Set00 FevOl 0L DezOL Mai02 OUL0Z Mar03 Ago03 Jan04 Jun0d NovO4 ADIOS Set05 Fev06 Jul06 Dez0s Mai07 Out07
DECOMP.-K=73,Cent.(No); RECONSTR.-ET:(1-8);

Residuals
Dadosp_softvare xis[Sheett], VarV:
61220 )

53002 — —

38062 | —

| | |
el il By e el Tl Rl e et Bl Bt el il i i *ﬁ*r*;\ﬂ**]&’
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B e e e Sl ol Bt el it e M el Bl el | Rt Bt B Bl el el it |
59047 | | | | | | | | | | | | | | | | |
Jan99 Kn99 Nows9 ADrOD Set00 Fev-0l Jul0L DezOl Mai0Z Out0Z Mar03 AGoO3 Jan0d Jund4 NovO4 ADrOS Sotds Fev0b Jul06 DezOb Mai07 Outdr
DECOMP.K=73,Cent (No), RECONSTR.ET:(1-9);

Figure 31 - Time series V - Reconstructed series and residuals

3.5.4. Time series Total — Sum of the 15 ATC’s

As already said the time series Total is the result of the summing of the 15 time series
that represents sales of all pharmaceutical products in Portugal.

The 4 steps of the SSA methodology were also applied to this time series and the results
are the following.

Embedding
Window length — 24, as already explained in section 3.4.

SVvD

The series is not stationary, so it was used the Basic SSA SVD, as already mentioned in
section 3.4

The SVD produced a first distinct eigentriple which corresponds to the trend of the time
series, as shown in Figure 32.
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3. Data analysis

Figure 32 - Time series Total - eigentriple 1 - Trend

Eigentriple 2 corresponds to the monthly movements of up and down also seen in time
series B which can be again seen in Table 3.

January February |March April May June July August September |October November [December
Average 23.709.429(20.442.009| 21.790.560| 19.359.943|20.840.981|19.634.333| 20.390.931| 18.482.954|21.770.370 22.956.094( 21.200.456|20.166.460
Difference -3.267.419| 1348550 -2.430.617| 1.481.038|-1.206.648| 756.598| -1.907.977| 3.287.417 1.185.724| -1.755.638| -1.033.996

Table 3 - Time series Total - Monthly movements

The fact that between October and December the movements are not the same is well
seen in the representation of the second eigentriple where the last points representing
those periods show different amplitudes (Figure 33).

20.125%)

91 105 18 132 145

tal - Eigentriple 2

1.0 24 3, 51 6.4 7.8

Figure 33 - Time series To

The following eigentriples corresponds to the seasonality that exists in the time series.
In Figure 34 is well seen the “lower period” of summer. The following eigentriples
corresponds to the refined seasonality of the time series.

3(0,066%)

10 24 37 51 .4 7.8 91 105 118 13.2 145

Figure 34 - Time series Total - Eigentriple 3

Grouping

In order to get the right grouping it was created the w-correlations matrix of all 24
eigentriples, which is represented in Figure 35.

It was also analyzed the scatter plots of the eigentriples, and the following groupings
seems evident: eigentriple 1, eigentriple 2, eigentriple 3-4, eigentriple 5-6, eigentriple 7-
8. The remaining were considered noise and left out of the reconstruction. Figure 36
shows eigentriple 3 and 4, and eigentriple 7 and 8 scatter plots.
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3. Data analysis

w-Correlation matrix
Dados p_software.xis [Sheet1]; VarTotal;

(24

(23)

-[0.00,, 0,08]
- (0,05, 0,10]
-(0,10,0,14]
-(0,14,0,19]
-(0,19,0,29]
-(0.24,0,29]
-(0.29,0,33]
-(0.33,0,38]
-(0.38,0,43]
- (0,43, 0,48]
- (0,48, 0,52]
-(0.52,0,57]
-(0.57,0,62]
-(0.62,0,67)
-(0.67,0,71]
-(0.71,0,76)
-(0.76,0,81]
-(0.81,0,86]
- (0,86, 0,90]
- (0,90, 0,95]
- (0,95, 1,00]

(22)
(1)
(20)

as)
s

"
ey

"

as [

@a3)
@a2)

(20);
©)

5 oo

@ @ @ @ 6 © (7 6 © (10) (1) (12) (13) 14) 15) 16) (17) (18) (19) (20) (21) (22) (23) (24)
DECOMP.-K=85,Cent.(No), GROUP.A{1],(2],(3][4],(51.(6].(7}.(81,(9].(10},[11],12] [13].[14], (15, (16],(17] [18],[19),(20],(21].(22] [23].24]

Figure 35 - Time series Total - W-Correlations Matrix

3(0,066%) - 4(0,063%) 7(0,043%) - 8(0,041%)

Figure 36 - Time series Total - Scatter plots
Reconstruction

Reconstruction of the time series was done with the 8 major eigentriples (the ones that
in section 3.4 proved to have an homogeneous structure) and the result of that
reconstruction is shown in Figure 37.

Initial & Reconstructed Series
Dados p_softwarexis [Sheet1];  VarTotal;

27721139

26471206

25221274

23071341

22721408

21471476

20221543

18971610

17721678

16471745
Jan-99 Jun-99 Nov99 ADr00 Set00 Fev0l Jul01 DezOl Mai-02 Out02 Mar03 Ago-03 Jan04 Jun-04 Nov-D4 AbrOS Set05 Fev06 Jul-06 Dez06 Mai-07 Oul07
DECOMP.-K=85,Cent (No); RECONSTR-ET:(1-8);

Figure 37 - Time series Total - Initial and Reconstructed time series

The relative and absolute errors of the averaging reconstruction are quite small, with the
highest being below 2.9%, as shown Figure 38(top).
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3. Data analysis

Relative Errors of Reconstruction Averaging
Dados p_software.xis [Sheet1]; VarTotal;
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Absolute Errors of Reconstruction Averaging
Dados p_software xis [Sheetl]; VarTotal;

682068

606283

530498

454712

378927

303141

227356

151571

75785

0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 8 88 91 94 97 100 103 106

DECOMP.K=85,Cent (No); RECONSTR-ET:(18);

Figure 38 - Time series Total - Relative and Absolute errors

3.6. Forecast for the Time series

As explained in Chapter 1, there are two different methodologies to calculate the
forecast of a time series, and two different types of forecast confidence bounds
calculation.

In the coming part, the process of choosing the “best forecast” will be developed; by
presenting the several steps run to achieve the most apparently stable forecast.

3.6.1. Time series B — Blood and Blood Forming Organs

As presented before the following decisions were taken to decompose and reconstruct
the Time series B:

L=12

SVD = Basic SSA

Grouping and reconstructing: Eigentriple 1; Eigentriple 2; Eigentriple 3-6.

The structure homogeneity of this decomposition and reconstruction was test and
proved real.

The verticality coefficient,v*, which represents the squared cosine of the angle between
the space L, and the vector e, , is presented in Figure 39. The condition that v* <1is
necessary to forecasting. If the expected behavior of the forecast does not suggest a
rapid increase or decrease, then a large value of the verticality coefficient indicates a
possible difficulty with the forecast. In this case the time series development suggests
that an increase is expected which corroborates the coefficient value near 0.5. The
verticality coefficient is at eigentriple 4 quite high.
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3. Data analysis

Verticality Characteristics
Dadosp_sitware xis [Sheett]; Var:

7
MP.K=97.Cent.(No)

Figure 39 - Time Series B - Verticality coefficient

As already mentioned the SSA V-forecasting tends to be better for long-term
forecasting and the empirical confidence intervals should not be used for long-term
forecasting. These two rules proved true in the forecasting for the time series B. Figure
40 shows the V-forecast with the empirical confidence intervals and Figure 41 shows
the same forecasting but using the bootstrap methodology to create the confidence
intervals, with 1000 interactions. Graphs have been truncated for the clearness of the
work.

As it can be easily seen in the graph of Figure 40, the confidence intervals are growing
through out the forecast points. In fact, the last points of the forecast are varying
between +11% of forecast and -14% of forecast. This implies that the value in
December 2009 can vary between 1.122.469 packs sold and 870.889 packs sold. When
using the bootstrap methodology, those intervals are significantly reduced and the
forecast of December 2009 only varies between +4% and -6%. Therefore, December
forecast range between 1.056.005 and 952.700.

In fact, bootstrap methodology seems to be more stable in this case even on the short-
term forecast.

ECAST - san 105 1 CONF.INT (95%)- method:1.

Figure 40 - Time Series B - V forecast with empirical confidence intervals
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3. Data analysis

1. method:1; CONE.INT (85%) - method:2,

Figure 41 - Time Series B - V forecast with Bootstrap confidence intervals

Nevertheless, the SSA R-forecasting was also tested but results were quite weak with
very large confidence intervals on the last forecasting points reaching values of more
than 50% difference. Figure 42 shows R-forecasting with empirical confidence
intervals for illustration purposes only.

thod2; CONE.INT (959% - method1

Figure 42 - Time series B — R forecast with empirical confidence intervals

3.6.2. Time series R — Respiratory System

As presented before the following decisions were taken to decompose and reconstruct
the Time series R:

L=18

SVD = Basic SSA

Grouping and reconstructing: Eigentriple 1; Eigentriple 2-3; Eigentriple 4-5; Eigentriple
6-8; Eigentriple 9-11.

The structure homogeneity of this decomposition and reconstruction was test and
proved real.

The verticality coefficient is quite low, which is good because the time series do not

have a strong increasing or decreasing tendency. Figure 43 shows the verticality
coefficient.
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3. Data analysis

et

Figure 43 - Time series R - Verticality coefficient

The highest value of the verticality coefficient is reached at eigentriple 14, which is not

included in the reconstruction. The highest v*included in the reconstruction is the one
of eigentriple 2 with 0,301.

The reconstruction tested was the one used for forecasting, and due to the same reasons
presented at Time Series B section, the forecast which shows more stability was the
obtained with the V-methodology with confidence intervals calculated with the
bootstrap method, with 1000 interactions.

Figure 44 shows the results of this forecast. Nevertheless, this is a time series with large
variability which makes the forecasting exercise very, very difficult. The confidence
intervals are quite large and become larger for the long-term forecast. It is needed to be
extra careful with this numbers. The graph has been truncated to start at point 100 in
other to make the forecast points more visible.

This forecast is also less stable in the long-term. Forecast values for the end of the
period, December 2009, ranges from +15% to -12%. In fact, there are periods like
August 2008 that can range between +27% and -22%. In order to obtain accuracy it was
needed to increase the confidence bounds.

2956290

2828307

zzzzzzz

2061041
1933148
sssssss

5555555

1111111

sssssss

1111111

1037899

Nov-07
FORECAST - star:109, #pnt.:24, base:3, method:1; CONF.INT (95%) - method:2, model:1, Sigma:102739,39, Repeat:1000;

Figure 44 - Time series R - V forecast with Bootstrap confidence intervals
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3. Data analysis
3.6.3. Time series V — Various

As already mentioned this time series do not have an homogeneous structure and
therefore forecast can not be done using the totality of the time series. Therefore, there
is no forecast prepared for this time series, due to the fact that the continuity of the time
series is expected to be the same as the followed in the last 3 years, but this would only
provide 36 points, which is quite small for forecasting. Indeed, forecast was tested and
confidence intervals range from 36% and -30%.

3.6.4. Time series Total — Sum of the 15 ATC’s

As presented before the following decisions were taken to decompose and reconstruct
the Time series Total:

L=24

SVD = Basic SSA

Grouping and reconstructing: Eigentriple 1; Eigentriple 2; Eigentriple 3-4; Eigentriple
5-6; Eigentriple 7-8;

The structure homogeneity of this decomposition and reconstruction was test and
proved real.

The highest verticality coefficient is seen in eigentriple 5, and is around 0.34. As already
mentioned the time series shows an increasing trend, therefore this level of verticality
coefficient is expected. Figure 45 shows the verticality coefficient.

Both the V-forecast and the R-forecast were tested and both with empirical and
bootstrap confidence intervals were tested.

In fact, both forecast values are very close to each other, which is a very good indicator
of the stability of the forecast.

Also, empirical confidence bounds provided stable but higher intervals both on short
and long-term.

F=ver e

rrrrrrrrrrrrrrrr

Therefore, the chosen methodology was the V-forecast with bootstrap confidence
intervals, shown in Figure 46, again the graph was truncated to show only the last part
of the time series to increase visibility and bootstrap interactions were of 1000.

50



3. Data analysis
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Figure 46 - Time series Total - V forecast with bootstrap intervals
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4. Discussion and Conclusions

As proved in many other published papers SSA is a reliable nonparametric method to
forecast Time Series.

Along the past years several time series have been forecasted using SSA method with
strong and accurate outcomes.

As far as we know, the present work is the first one to deal with time series which
evolution depends significantly on direct actions of economic players.

As shown in the bibliography review, SSA was been mainly used in time series like:
paleoclimate records of deap-sea cores; global surface air temperature — IPCC;
geopotential heights at 700hPa covering the Northern Hemisphere extratropics; tropical
Pacific Ocean surface temperatures; and other climate data. Some other time series like:
ultrasound biomedical echoes, monthly accidental deaths in USA; Births; etc, were also
explained and forecasted with the help of SSA.

The common point on those series relies on the fact that there is very little intervention
of men on the series evolution. Most of them are naturally occurring phenomena.

The challenge here is to try to prove that despite the fact that there is an enormous
number of factors that can change the evolution of the, here studied, time series, SSA
method still applies and the forecast is reliable.

In fact, things like new product launches, governmental cuts on health expenditures;
price and reimbursement laws changes; can transform the shape of the time series
evolution. Still, has not all of the previous already happened in the past? Can not the
method incorporate that information in the results? Unless the paradigm changes in the
future, there is no reason to expect that the method will fail on forecasting the coming
two years of the retail pharmaceutical market in Portugal.

Time will confirm or not the reliability of the forecast.

Nevertheless, there is no need to wait till 2010 to find out that as an analysis tool, SSA
has proven reliable to decompose and reconstruct the present time series. The present
work has provided the composition of time series structure, and now is possible to
identify trends, oscillations, seasonalities on all of them.

Understand the past is, also here, needed to predict the future.

By the obtained results it can be said that the Portuguese retail pharmaceutical market
will growth at a rate of 1% in 2008 [-3%,+6%)]and a rate of 2% in 2009 [ 4%,+8%).

This means that the Portuguese pharmaceutical market is not a fast growing market as
seen in other parts of the globe. It is a mature and stable market.

To grow, pharmaceutical companies will have to develop their marketing strategies
based on cannibalization objectives, because the natural growth of the market is going
to be small. The fastest growing products classes will be the ATC B and the ATC C,
which will grow respectively 9% [+3%,+9%]and 10% [0%,+10%] in 2008 and 2%
[+ 29%,+9%]and 11% [-1%,+11%]in 2009.

In what relates to the composition of the market, classes C, N, M and R will increase
theirs percentage and mainly class J will decrease. This is also expected because all
drugs related with the cardiovascular (C) and muscular (M) pathologies are expected to
grow due to the aging of the population and drugs related with the central nervous
system (N) are expected to grow due to the increased stress of life style.

The decrease of the class J is not only expected but already seen in more developed
countries, antibiotics are less and less prescribed because they are less and less effective
due to increase on bacterial resistance.
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4. Discussion and Conclusions

By the end of the decade the Portuguese retail pharmaceutical market will be built
almost in the same way that it was in the beginning of the decade, in percentage of total
units sold and by descending order, ATC N will maintain leadership with 23% in 2009
vs. 21% in 2000; the ATC C will be second larger with 19% in 2009 vs. 15% in 2000;
the ATC A will have be third with 13% in 2009 vs. 16% (second position) in 2000. In
fact, by the end of the decade it will be sold more than 280 million packs of
pharmaceutical products in a year timeframe. This will represent a CAGR (2009/2000)
of only 2.2%[1.5%,2.8%]. These results imply that the average number of packs sold
per inhabitant in Portugal will increase from 23 packs/year, in 2000, to 27
[25,28] packs/year in 2009 (the source for the both total inhabitants in Portugal, in 2000,

and the estimation of the total inhabitants in Portugal in 2010 is of INE, the Portuguese
Statistical Institute).

The methodology, as already mentioned, proved to be quite powerful on the
decomposition of the time series. All time series were successfully decomposed as
initially proposed. The forecast part of the method, in the other hand, proved to be stable
on the short-term but less stable on the long-term, especially in some of the time series.
In fact, all series show an increase on the confidence bounds in year two (2009) vs. year
one (2008) of the forecast. Due to this phenomenon it seems reasonable to purpose that
if more complete years needed to be forecasted a different set of data would need to be
obtained. A good approach would be to collect data from previous years before 1999
and forecast with that data, instead of using monthly data.

The decision to take monthly data and not yearly data was taken based on two aspects,
first because it is the lowest level of granulation available, second because it is stable
enough to be analyzed and to build a forecast. The main idea was to provide both
monthly and yearly (by the sum of the monthly results) forecast to the years of 2008 and
2009. The results proved that the method can be applied to the available monthly data
with a good level of confidence. In fact the relative error on reconstruction on all time
series is quite low. The method also proved to be able to maintain the trend, cyclical

movements and seasonality of the several time series. Comparing the §;values found in
the period of 1999 to 2007 with the §;values found in the period 1999 to 2009 leads us

to the conclusion that the seasonalities were kept by the model, the months with
higher/lower values are the same in both periods. This helps to prove that the monthly
forecast is valid and reliable.

As a conclusion if the pricing strategies of the government are well thought out, it will

not be because of the unit growth that the expenditures of the National Health Service
will increase significantly.
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6. Annex 1 — Single-Spectrum analysis — the
methodology theory

6.1. The window length

SSA consists of two complementary stages: decomposition and reconstruction.

There are two different steps on the decomposition stage: embedding and
reconstruction. Considering now the Embedding step:

Considering a real-valued time series F =(f, f,,..., fy)of length N with N >~ 2.
Assuming that F is a nonzero series, meaning that there exists at least one i such that
/. #0.

The embedding step maps the original time series to a sequence of multidimensional
lagged vectors.

Embedding techniques are used to reconstruct dynamical information from time series.
The dimension of the embedding space is called the embedding dimension or the
window length, which make visible L elements of the time series. At any stage the
elements visible in the L- window constitute the components of a vector in the
embedding space. As the time series is advanced step-wise through the window, a
sequence of vectors in the embedding space is generated. These form a discrete
trajectory.

The above sequence can be used to construct a trajectory matrix, X, which contains the
complete record of patterns which have occurred within the window.

Let L be an integer (window length), 1< L < N. The embedding procedure forms
K =N - L+1 lagged vectors,

X, =(fignr frnnf ASi<K
which have dimension L.
The L-trajectory matrix of the series F:
X=[x,:...0 X, ]
has lagged vectors as its columns. The trajectory matrix can also be:

Jo o fo oo Jra
Lo fo fso S
P o A

ij=1

Jia o Jra e Sy

57



Annex

The trajectory matrix is an Hankel matrix, because has equal elements on the
‘diagonals’i+ j =const.. As N and L are fixed, then there is a one-to-one

correspondence between the trajectory matrix and the time series.

The most important parameter of this step is obviously the window length. The choice
of L, corresponds to a compromise between the amount of significant information that
needs to be retained - the larger the L the better, and the statistical confidence that needs
to be achieved — the smallest the L the better.

When choosing the window length several aspects need to be taken in consideration.
One of the most important is the problem in hand, meaning that it depends on the
purpose of the exercise and the nature of the time series. Nevertheless, some ‘rules’
needs to be considered always:

The window length L should be sufficiently large so that each L-lagged vector
incorporates an essential part of the behavior of the initial series F' = (fo,...,fol).

If what is needed is to analyzed the time series structure so it is meaningless to take the
window length larger than half of the time series length. This is due to the fact that the
SVD’s of the trajectory matrices, corresponding to the window lengths L
andK = N —L+1, are equivalent (up to the symmetry: left singular vectors <> right
singular vectors).

If what is needed is a very must detailed decomposition of the time series than the larger
the L the better, close to L ~ N /2 (there are some exceptions which will be mentioned
later), as long as statistical errors do not dominate the last values of the autocovariance

function. Therefore to prevent this, is advisable to not exceed L = %N :

As it will be seen in the further ahead, the second step of SSA is to find the components
of the time series. These components need to be separable. The larger the window
length (having in mind the previous comments) the better because:

A small window length could mix up interpretable components, meaning that some
components would not be separated from each other, providing the needed information
to understand the structure of the time series; on the other hand a small window length
will make that the separation results will not be stable to small perturbations in L.

If what is needed is to properly define the noise floor, than a large window is not
advisable. A large window will create an entire spectrum much flatter, and may exhibit
a smooth transition to the noise floor, making it much more difficult to identify the
noise floor.

If what is needed is to extract trend let £ = F® + F? where FWis a trend and F@is
the residual. If the series F® is ‘simple’, meaning that (a) ¥ is well approximated by
a series with finite and small rank 4 (for example it looks like an exponential, d =1, a
linear function, d =2, etc); (b) the general tendency is the only one of interest; (c) in
terms of SSA decomposition, the first few eigentriples of the decomposition of the
trajectory matrix are enough for a reasonable good approximation of it; and the series
F®is much ‘larger’ than the series F@ | than the window length L should not be very
large.

However if we need to extract refined trend 7, when the residual 7® has a complex

structure, then a large L can cause not only mixing of the ordinal numbers of the
eigentriples corresponding to FWand F®, but also closeness of the corresponding
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singular values, and therefore a lack of strong separability, even though a larger L is
needed due to the complexity of the trend. This is the most difficult case and needs to be
treated with caution.

If the interest lies in a periodic component F“' out of the sum F = FY + F® than
some care is needed between the window length and the period. If the time series has a
periodic component with an integer period 7, than it is better to take the window length
L proportional to that period.

In cases where there are more than one periodicity, for example time series with weekly
and annual periodicities, the window length should be multiple of the larger periodicity,
in this case the annual one.

In summary, the window length should be as small as possible keeping the separability
of the components. A control of the correct choice of the window length is made at the
grouping stage; the possibility of a successful grouping of the eigentriples means that
the window length has been properly selected.

As a summary:

Meaningless because SVD of matrices L and K=N-L+1 are equivalent
L > N/2 (up to the symmetry).

L=N/2 Gives the most detailed information.

SSA does not resolve periods longer than the window length. So, the
larger the L the better as long as statistical errors do not dominate the
last values of the autocovariance functions.

L>N/3

The separation results are stable with respect to small perturbations.

Large L More quantity of information extracted.

Will not mix up interpretable components.

Helps on proper definition of the noise floor (with large window the
Small L entire spectrum is much flatter and may exhibit a smooth transition to
the noise floor).

If the time series has a seasonal component it is advisable to take the
window length proportional to that period.

Comments: The window length has to be chosen between the period of the
oscillation and the average time of its spells; SSA is typically successful
at analyzing periods in the range (L/5, L).
6.2. SVD

The second step of the first stage is the SVD, Singular Value Decomposition. For the
Basic SSA the matrix used to calculate the SVD of the trajectory matrix X is the matrix
S, defined as follows:
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S=xx"

It can also be used the lag-covariance matrix C, where C=S/K, with exactly the same
results. The only difference is the magnitude of the corresponding eigenvalues (for S
they are K times larger), the singular vectors of both matrices are the same.

Therefore the SVD of an arbitrary nonzero LxK matrix X =[X,:.. X, ]is a
decomposition of the matrix X in the form:

X = i\/ﬂ_iU[Vl.T
i1

Where /Il.(i =1,...,L) are eigenvalues of the matrix S, arranged in decreasing order of
magnitude.

From the above expression d is the rank of the matrix X and is the maximum value of i,
such that 4, >~ 0.

At the same time, {Ul,...,Ud} is the corresponding orthonormal system of the
eigenvectors of the matrix S, and ¥, = XU, /\/7

From the standard terminology of SVD, the \//’t_ are the singular values; the U, the left
singular vectors; the U, the right singular vectors of the matrix X. And therefore the
(,//li,Ul. V. ) is called the ith eigentriple of the matrix X,

Sometimes is needed to use transformations of the above matrices to work with specific
classes of time series and with time series of a complex structure.

Several techniques can be used to overcome these problems, namely the single and
double centring SSA, and the Toeplitz SSA.

Centring means to introduce a new matrix A, of dimension LxK and pass from the
trajectory matrix X of the time series F to the matrix X* = X — A. The decomposition
obtain is therefore:

X:A+§Xl.* where X = J2U Y
i1

e Single centring SSA

Single centring is shifting the center of gravity of the lagged vectors and then uses the
SVD of the obtained matrix.

It means that A (above) is equal to 4= A(X)=[g,(X):...&(X)].

It is the row centring of the trajectory matrix by having Xl.(”) =X, —gl(X) with the
vector &,(X) (i =1,...L)equal to the average of the ith components of the lagged vector
X X o
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The advantage of using the Single centring is easy to understand if the series F can be
expressed in the form of F=FY+F® where FYis a constant series and
F@oscillates around zero.

If the series length N is large enough, its additive constant component will definitively
be extracted by Basic SSA (which do not use any centring), but, for short series, single
centring SSA can work better.

e Double centring SSA
In double centring the trajectory matrix X suffers the following change: to each element
is subtracted the corresponding row and column averages and is added the total matrix
average.
This means that A (above) is equal to 4 = A(X)+B(X )where A(X) is defined above e
B(X) = [e,(X):...:6,(X)] where the jth component of the vector &,(X)
(j =1..., K) is equal to the average of all components of the vector Xj(.”).
Double centring leads to an asymptotic extraction of the linear component of the series,
if the initial series is a linear one. In fact, taking X as the trajectory matrix and A
defined as before, then for F = FY + F@with linear FY, the matrix 4 contains the
entire linear part of the series F.
This extraction of the linear component can not be compared with the linear regression
method. While the linear regression is a linear approximation by the least-squares
method and gives a linear function of time for any series, even if the series does not
have a linear tendency at all, the double centring SSA estimates the values of a linear
function at each point, and only if strong linear tendency is really present.
Again, these two methods produce quite similar results on long series. When the time
series is short is best to use double centring SSA.

Centring is more appropriated to short time series. Single centring is more appropriate
to series F that can be expressed in the form F = FY + F® where FYis a constant

series and F® oscillates around zero. Double centring is more appropriate for the linear
component extraction, meaning that for linear-like tendency, this approach is better than
Basic SSA.

e Stationary series and Toeplitz SSA

If the time series is not sufficiently large and the series is assumed to be stationary, then
the Basic SSA should be replaced by the Toeplitz version of the lag co-variance matrix
C=S/K.

The Basic SSA matrix C where the elements are:

1 K-1
cij :Ezofmﬂ'—quf/fq ! lSl’] SL

To get a Toeplitz lag-covariance matrix there are several ways, but the most common is
the one that use the standard estimate of the covariance function of the series and to
transform it into an Z x L matrix. So, for the time series F =(f;,..., f_, )and a fixed

window length L, the matrix is then C with the elements
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1 N‘lj‘l

Zf Sosicp L6 T < L

)
I

=

N-lij] £

The main idea is to put equal values El.j in each matrix diagonal |i —j| =

Having obtained the Toeplitz lag-covariance matrix C the orthonormal eigenvectors are
calculated and they are H,,...,H, . The decomposition of the trajectory matrix is then:

L
X=)HZ being Z,=X"H,.

i=1

If the initial series is a sum of a constant series with the general term ¢, and a stationary
series, then centring seems to be a convenient procedure. One way is to centre the entire

series before calculating the matrix C mentioned above.
The other possible method is to apply the single centring. This means that for the matrix

described above C the following product is extracted:

1 n(i,j)-1 1 n( ) ] -
M, = o > 7 mew ;1 | being n(i, j)= N —|i- j|from €.

m=0 n( y] m=0

The basic problem with this approach is that is not designed for non stationary series, so
if the series has a strong nonstationary component Basis SSA should be used.

Toeplitz produces a non optimal orthogonal decomposition of the trajectory matrix.
Nevertheless for stationary, short and noisy series Toeplitz SSA can be advantageous.

As a summary:

Time series
Linear

Short | Long | Stationary | Trend Noisy
Single
centring X
Double
centring X X
Toeplitz X X X
Basic X

6.3. Separability

The main purpose of the SSA is a decomposition of the original series into a sum of
components, so that each component in this sum can be identified as either a trend, or a
periodic or quasi-periodic component or noise.
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Each additive component of the series F' needs to be separable from each other in order
to have a successful SSA decomposition.

There are two different types of separability, the weak and the strong separability.

For a fixed window length L, let’s consider a certain SVD of the L-trajectory matrix X
of the initial series F of length N, and assume that the series F is a sum of two series

FWYand F@ thatis, F=FY + F@,

Separability of the series F® and £ means that the matrix terms of the SVD of the
trajectory matrix X can be split into two different groups, so that the terms within the

groups give the trajectory matrices X%Wand X®@of the series F® and F®@,
respectively.

The separability implies that both for the rows and the columns of the trajectory matrix
X Wof the first series are orthogonal to each row and column of the trajectory matrix

X @of the second series, if this orthogonality holds, then the series % and F©@ are
weakly separable.

Another condition for separability (necessary but not sufficient condition) is the w-
orthogonality:

Let L* = min (L,K) and K* = max (L,K). Let:

i+1 for0<i<L*+1,
I* for L*<i< K*,

*< i< N-—
N for K*<i< N-1.

be a set of weights.

Define the inner product of series F% and F? of length N as

and call the series FY and F® w-orthogonal if
(F(l),F(Z)) =0

The exact separability does not happen for real-life series and in practice only
approximate separability is possible.

In case of exact separability, the orthogonality of rows and columns of the trajectory
matrices X @and X ®means that all pairwise inner products of their rows and columns
are zero. This implies that a characteristic of separability of two series FY and F® is
the maximum correlation coefficient p**). So, FY and F® are approximately
separable if all correlations between the rows and the columns of the trajectory matrices
XWand x®are close to zero.
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Weighted correlatz‘on or w-correlation, is a natural measure of deviation of two series
Y and F®from w- orthogonality and is:

(W) (F(l),F(z))

T S FOFD) =12
L

, Where HF

If the absolute value of the w-correlation is small, then the two series are almost w-
orthogonal, and therefore separable. Figure 47 shows a W-correlations matrix for the
time series B, as an example. The darkness of the squares indicates the values of the W-
correlations.

-[0,00, 0,09
-(0,05, 0,10]
- (0,10, 0,14
-(0.14, 0,19]
-(0.19, 0,24
- (0,24, 0,29]
-(0.29, 0,33]
- (0,33, 0,39]
-(0,38, 0,43]
- (0,43, 0,48
- (048, 0,52
O - 52,057

00000000000

M@ -©71,076
) [ - (0,76, 0.81]]
@ - (0,81, 0,86
& - (0,86, 0,90],
©) B - (0,90, 0,95],
B - (0,95, 1,00]]

©)
Nt (o) GRO! HHH[![][![![HH 01111,(12]

Figure 47 - Time serlesMB W- Correlatlons
Asymptotically separable series are the series that the maximum p ) of the absolute
values of the correlatlon coeff|C|ents between the rows/columns of the trajectory
matrices of the series £* and F® tends to zero, as N — .

If F© and F@are weakly separable and all the singular values of the trajectory matrix
X are different, then strong separability exists as well.

If two series ' and F Julfill the following two conditions than strong separability
exists: (a) the series F“' and F® are weakly separable and (b) the collection of the
smgular values of the trajectory matrices X Wand X ? are disjoint.

Let x© ZX x®@ :ZX,(f) are the SVD’s of the trajectory matrices X “and

) of the series FY andF , respectively. If the series are weakly separable, then
X = ZXk +> X% is the SVD of the trajectory matrix X of the
k m

seriesF = FY 4 @,

If the singular values corresponding to the elementary matrices XWand x®@ coincide,
this means that the terms X®”and X®in the sum X® +xPare not uniquely
identified, since these two matrices correspond to the same eigenvalues of the
matrix XX . If the series FYand F©@ are weakly separable, then a constant ¢ # o can
always be found such that the series #® and cF? are strongly separable.
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6.4. Grouping

One of the two only parameters of SSA is the way of grouping in the second stage of the
process.

For a general series F it can be typically assumed that its trend component FY is
approximately strongly separable from all other components. Therefore for extracting a
trend of a series, all the elementary matrices related to slowly varying singular vectors
needs to be collected. This is because a trend is a slowly varying component of a time
series which do not contain oscillatory components.

If the time series F has a strong tendency F® and a relatively small oscillatory-and-

noise component F@ then most of the trend eigentriples will have the leading positions
in the SVD of the whole series F. This does not mean that the singular values are large,
in case that the trend is refined, the singular values can be small.

On the other hand if the time series has high oscillations on the background of a small
and slow general tendency, the leading elementary matrices describe oscillations, while
the trend eigentriples can have small singular values and can be far from the top in the
ordered list of eigentriples.

To identify the harmonic components of the series, an analysis of the scatter plots of the
singular values allows identification of those eigentriples that correspond to these
components, provided these are separable from the residual component. In practice the
singular values of the two eigentriples of an harmonic series are often close to each
other, and the corresponding eigentriples are, as a rule, consecutive in the SVD order.
This occurs when both L and K are several times greater thanl/w, being wthe
frequency of the harmonic component. If the harmonic period is comparable to N, the
above will not happen and therefore the two eigentriples may not be consecutive and the
two singular values are small and comparable to the singular values of the component
noise. Figure 48 shows a scatter of two eigenvalues for a time series.

3(0,044%) - 4(0,042%)

%,

Figure 48 - Time series A - scatter plot for eigenfunctions 3 and 4

If N, L and K are sufficiently large than each harmonic different from the saw-tooth one,
produces two eigentriples with close singular values. Also, a pure noise series produces
a slowly decreasing sequence of singular values. If such a noise is added to a signal,
described by a few eigentriples with large singular values, then a break in the
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eigenvalues spectrum can distinguish signal eigentriples from the noise ones. Figure 49
shows this effect.
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Figure 49 - Time series V - EVAL Percents

A word of caution, for complex signals and large noise: the signal and noise eigentriples
can be mixed up with respect to the order of their singular values.

As already mentioned in the section dedicated to separability, a necessary condition for
the approximate separability of two series is the approximate zero w-correlation of the
reconstructed components. On the other hand, the eigentriples entering the same group
correspond to highly correlated components of the series.

Therefore a natural help for grouping is the matrix of the absolute values of the w-
correlations, corresponding to the full decomposition, where each group corresponds to
only one matrix component of the SVD.

6.5. Diagonal averaging

The final step of the final stage of SSA is the diagonal averaging.

If the components of the series are separable and the indices are being split up
accordingly, then all the matrices in the expansion X =X, +...+X, are Hankel

matrices and therefore the initial series £ ,..., f,, is decomposed into the sum of m
series: f, = f.*), and for every k and n, f*) is equal to all entries x'along the
k=1

secondary diagonal {(i, j) such that i + j = n + 2} of the matrix X, .

In practice, however, this situation never happens. In general no secondary diagonal
exists of equal elements. Therefore a formal procedure of transforming an arbitrary
matrix into a Hankel matrix and therefore into a series is needed. Is exactly here that the
diagonal averaging enters, defining the values of the time series F®)as averages of the
corresponding diagonals of the matrices X, .
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Assuming that the Hankelization operator, H; the (LxK)matrixY =(y,), L<K;
i+j=s and N=L+K-1;theelements y, of the matrix /Y be:

1 i for 2<s<L-1,
s_1& Yis-i
~ 1<
y; = Zzyl“"’ for L<s<K+1,
=1
1 L
——— 2 f K+2<s<K+L
K+L-s+1,4 o tesssK+

For L > K the expression for the elements of the matrix HY is analogous, the changes
are the substitution L <> K and the use of the transposition of the original matrix Y.

Applying this procedure to all matrix components the following expansion is obtained:

X:)?,1 +...+)?,m,where)?,1 =HX, .

The procedure of computing the time series F% is called the reconstruction of a series
component F (")by the eigentriples with indices in/, .

6.6. Detection of Structural changes

The result of the embedding procedure in a real-valued sequence
series Fy, = (f,..., fy), with N >3and fix window length L(1< L < N) is a sequence

of L-lagged vectors of the series F), :

Xl-(L)=X,-=(fi_1:~--vfi+L—2)T’ i=1...,K.

def
If we denote L*)(F,, )= span(X,,..., X, )the trajectory space of the series F,and if
dimZ\?) =4 , with 0<d <L, then it can be said that the series F, has L-rank d and

write this as rank, (F,)=d , assuming that d = 0which means that not all the £, are
zero.

The equality rank,(F,)=dis true only ifd <min(L,K). If this is true to all the
appropriate L, then the series F,, has rank d.

Is also true that rank,(F,)is the order of the SVD decomposition of the trajectory
matrix X.

It can also be said that F,, has difference dimension not larger than d (fdim (F, ) <d) if
1<d < N -1 and there are numbers a,,...,a,such that
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d
froa =2, fras» 0SiSN-d-1,  a,#0
k=1

The above formula is called the linear recurrent formula (LRF). The LRF with d =
fdim(Fy) is the minimal LRF.

If the above formula is valid that it can be said that the series F, is governed by that
LRF.

A time series F, iS homogeneous if it is governed by some linear recurrent formula
whose dimension is small relative to M.

A violation in the homogeneity of the series will force the lagged vectors to leave the

space L*). This will make the homogeneous series to transform in an heterogeneous
series. The detection of the structural changes is crucial.

There are two possibilities:

e In a determined point in time the series stops following the original LRF, and
after a certain time period it again becomes governed by an LRF equal to the
previous one.

e In a determined point in time the series stops following the original LRF, and
after a certain time period it again becomes governed by an LRF, which is not
equal to the previous one.

It really does not matter each one happens, because in both cases the series as a whole
stops being homogeneous and the problem of studying this heterogeneity arises.

To detect this changes a heterogeneity matrix is build and heterogeneity functions are
studied.

6.6.1. Heterogeneity matrix

This matrix characterizes the discrepancy between the series 2 and the structure of
the series FY . Let’s define the mentioned series:
Let’s consider two time series £ = F{and F*' = F?) and take an integer L with

2<L< min(Nl -1 N, ) The linear space spanned by the L-lagged vectors of the series
FYis £tY,

The eigenvectors of the SVD of the trajectory matrix of the series FY are
uY(=1,...L), for [~ 42 dim LY we take vectors from any orthonormal basis of
the space orthogonal to Z*¥) as the eigenvectors U™ .

With 7 ={i,,...,i, }as a subset of {1,...,L}and L d_ifspan(U,(l),l e I). The lagged vectors
of the time series F® are x?,..., X% (K, =N, —L+1).

1 K2

The matrix is therefore:
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ky
S dist?(x @, 1Y)
=1

KZ

> e

=1
where dist(X,L)is the Euclidean distance between the vector X e %*and the linear
space L — R”.
The index g is the relative error of the optimal approximation of the L-lagged vectors of
the time series #® by vectors from the space L.

The values of g belong to the interval [0,1].

To define the heterogeneity matrix (H matrix) of a time series Fy, where the elements
are values of the heterogeneity index g for different pairs of subseries of the series Fy, is
needed to introduce the following objects:

g(FY F?) =

o Theinitial series 7y, : F\, = (fy,..., fy ) N = 2;

e The subseries (intervals) F, of the time series Fy :F,, = (ﬁ_l,...fj_l)
forl<i<j<N;

e Thewindow lengthL:1<L < N,

e The length B of the base subseries of the series F ,: B > L ;

e The length T of the test subseries of the series F,: T > L ;

e The collection | of different positive integers/ = {jl,...,j,}; assuming that I is
such that j < min(Z,B—L+1)foreach jeI;

e The base spaces (i =1...,.N —B+1)are spanned by the eigenvectors with the

indices /, obtained by the SVD of the trajectory matrices X (:2) of the series
F,,, ., with the window length L. The corresponding set of eigentriples is called

1

the base set of eigentriples.

In these terms the elements g, of the heterogeneity matrix G = Ggr
areg, ; :g(E,i+B—l;Fj,j+T—l)’ with i=1...,N-B+1land j=1...,N-T+1. The series
F, ;.5 isthe base subseries of the series F, and F, ;, , , is the test subseries.

6.6.2. Heterogeneity functions

Based on the H-matrix there are several heterogeneity functions:

Row heterogeneity functions

It is a series H](V"_"}ﬂfor fixedi € [L, N — B +1], which corresponds to the ith row of the

\ def
matrix G, with the general term ") = g, = g(F,,., .\ F

i n,n+T-1

),n =1...,N-T+1, and
reflects the homogeneity of the series F, (of its test subseries F, , ) relative to a fixed
base subseries F;,, ., (relative to the base space L(,f;)).

Column heterogeneity functions
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Corresponds to the jth column of the matrix G which for fixed j e[l N -7 +1]the
column  heterogeneity  function H) with  the  general  term

def
hled) = =g, = g(Fn Y L l), , and reflects the homogeneity of the series F, (the
base space L 1)) relative to its fixed test subseries F, v

Diagonal heterogeneity functions
Is a time series H'\%9) . with the parameter0< o< N-T, for n=1,.... N-T+6 +1,

NT¢>+1

where ]=z+5corresponds to the diagonal of the matrix G. The general term is
def

= gn n+o = g(Fn,nJrBfl; Fn+¢5,n+§+T—l)'
This series reflects the local heterogeneity of the series, since both the base and the test
subseries of the series F, vary at the same time.

h(d 5)

Symmetric heterogeneity functions
When 6 =0and T = Bthe base subseries of the series coincide With the test subseries.

The matrix G becomes a square matrix and the series HJ(QM = H](Vd o corresponds to

its principal diagonal. The general term h()1 = g,(l 0 = g, .51 F,,.p4)Of the series

z (n)

lel

A

i
of the SVD of the trajectory matrix of the series F, ., with window length L.

HY),.. is equal to the eigenvalues share 4"} =1 where A" are the eigenvalues

Therefore the series H](V*‘ZM is the symmetric heterogeneity function.

6.6.3. Detection functions

There are two types of change detection, the “forward’ change detection and the
‘backward’ change detection.

When the first one is applied what is being tested is the homogeneity of the series
relatively to the initial part of the series. By definition the ‘backward’ change is the test
of the homogeneity of the series relatively to the terminal part of the series.

This last option is important specially on forecasting, when finding the original part of
the series that can be used for forecast.

Nevertheless, the ‘forward’ change detection problem can easily be transformed into the
def
‘backward’ problem by inverting the time; this is, by considering the series f = f,,_,, .

There are also 4 types of detection functions which differ from the heterogeneity
functions in several aspects, which are: a) assuming only ‘forward’ changes so only the
series F,, should be used as the base part of the series for both row and column

heterogeneity functions; b) for the diagonal (but not symmetric) heterogeneity functions
should be assumed that 6 = B, meaning that there is no gap between the base and the
test intervals, or that what is being compared are neighboring parts of the time series; c)
the domain is different, the interest is almost only in the first ‘forward’ change in the
series.
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Row detection function

def
Is the series Dﬁf}v with the terms 4} = A"Y = g(ﬂyB;kaﬁ) withT <n < N. This

corresponds to the detection of changes with respect to the initial part of the series, to its
first B terms.

Column detection function
def
Is the series Df;}v with the terms 4'<) = p%<) = g(F,FM; FLT) withB<n<N.

Diagonal detection function

H H a de/ a .
Is the series DY) with the terms d')=h\? —g(F, , 0 s iiForis)

withT + B <n < N. As mentioned in the beginning of this part there is no gap between
the base and test intervals, therefore this function can be used to detect abrupt structural
changes against the background of slow structural changes.

Symmetric detection function
H S H S de/ S
If T=B, then the terms of the series D\), are defined byd) = 1), = g(F, ;.1 F, yiis)

with B <n < N. This function measures the quality of approximation of the bases series
by the chosen eigentriples.

6.6.4. Homogeneity and Heterogeneity

For a time series F,, homogenous, and governed by a LRF of dimension 4, with L and
r,sothat L>dand d <r<min(L,N-L+1); and I ={L,2,...,r},then the heterogeneity
matrix is the zero matrix, since B> L, then for any i , SV(F,, )= 3"(F, ), and
therefore all the L-lagged vectors of the series F, ., belong to the space
L(L)(Eyi%l)for all 4, j.

Conclusion: Any homogeneous series F,, gives rise to a zero heterogeneity matrix, and
the presence of nonzero elements g, . in this matrix is an indication of a violation of

homogeneity.
The types of violations are two:
e |If the same LRF is restored, after the perturbation as taken place, then the
violations are temporary.

e |f a different LRF from the original one appears after the perturbation then the
violations are permanent.
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The moment of perturbation is called the change-point QO and it is the maximal moment
of time such the series £, ,is homogenous, d = fdim(Flvgfl). If after some time S

(S >0), the time series becomes homogeneous again, meaning that the series FysniS
homogeneous, and let d; = fdim (F,,, , )then the time interval [0, 0 + S]is the transition

interval.
Assuming that L > max(d,d,) and that L<Q-1and L <N -Q-S+1, then if the L-

'Q,l)after they have left

the transition interval [Q,Q+S], then both homogeneous parts of the time series are

governed by the same minimal LRF, and this is a case of temporary homogeneity.
Examples of those are changes in the phase of one of the harmonic components, and a
change in the slope of a linear additive component of the series.

lagged vectors of the series F), span the original subspace L(L)(Fl

Examples of permanent homogeneity are a change in the period of the harmonic
components of the series and a change in the number of harmonic components.

The Figure 50 represents the general form of the heterogeneity matrix of a locally
perturbed homogeneous series, assuming that the lengths of both the base and the test
intervals satisfy the condition max(B,7)< Q.

MN-B+1
@5

J-B=1

1

1 G-T+1  Q+5 M-T+1
Figure 50 - General form of the H-matrix
First note: in case of temporary heterogeneity all four regions A, B, C, and D are zero
regions.

Region A corresponds to the elements g, . of the H-matrix where the series F;,, , ,and
F

Jj+T-1
ZEero.

are subseries of the homogeneous series F, , , . Therefore all g, are equal to

In region D both series F,, ., and F, ., are intervals of the seriesF,, ; ., if the
dimension d, of the series F,,_; . is not larger than the dimension d of the series F;
then this region is also zero.

01

“The heterogeneity cross’ is the region of the elements g, ; of the H-matrix with indices

(i,j)such that Q- B+1<i<Q+S-1, 0-T+1< j<Q+s-1. It corresponds to those
(i,j) where either the base or the test interval has a nonempty intersection with the
transition interval.

The width of the vertical strip of the cross is equal to 7+ S —1, and the height of its
horizontal strip is B+.S5 —1.
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In the case of permanent violations, and because the dimension of the LRF reflects the
complexity of the related series, the main classification of this cases will be done in

terms of the correspondence between the dimension d = fdim (%, ., ) and the dimension
d; = fdim(£,,, , ). The various cases can be:

e Preservation of dimension, meaning that the fdim(Fl,Q_l) = fdim(FQH'N). In this
case the blocks A and D are zero blocks and the blocks B and C are generally

not.
e Reduction of dimension, meaning that the fdim(Fl,Q_l) > fdim(FQH'N), but
1W(F, )& I(F,, ). Also in this case the blocks A and D are zero blocks

and the blocks B and C are generally not.

e Reduction of dimension (in the specific case when this reduction is caused by
the disappearance of one of the series components), in this case the blocks A, C,
and D are zero blocks.

e Increase of dimension, meaning that the fdim(Flygfl) < fdim(FQﬂN) and

L(L)(FVQN)(Z L(L)(F;L,Q—l
e Increase of dimension (in the specific case when this increase is caused by the
adding of one of the series components), in this case the blocks A and B are zero

blocks.

). In this case only the block A is a zero block.

When the violation is temporary then all four blocks of the H-matrix are zero blocks,
hence the pictorial representation of this matrix has the form of a cross. The horizontal
strip reflects the transition interval, and the vertical strip shows what kind of influence
the heterogeneity has on the lagged vectors of the series.

Up to now only single heterogeneity has been considered, but multiple heterogeneities
can happen. That means that there are several local regions of heterogeneity in the time
series. The heterogeneity matrix contains submatrices corresponding to matrices
represented in Figure 5. When this happens, H-matrix has more than one cross.

6.6.5. Heterogeneity and separability

Up to now a series F, as been considered, but realistically what happens is
F, = F! + F{?) where the additive component F is subject to a perturbation and the

series F,&Z) has a sense of nuisance (for example, Fjsz) is noise). To describe the various
forms of the ‘background’ H-matrices for the problem of detection of structural changes
in the series components is needed that firstly the case of an homogeneous series FIS)
whose subseries are (approximately) separable from the corresponding subseries of the
series F?) is studied.

The case of stably separable series will be specified now. Assuming that:

F, =FY+F? and FY are homogeneous;
d = fdim (F2).
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For all i=1,...,N—B+1the subseries F¥,  and F?,

some window length L suchthat d < L < B.
As B>d, the subseries F,”, , are governed by the same LRF that governs the series 7",

and therefore fdim( 7", ;) =d.
r=d.

For any i, the subseries F(ll 54 1S described in the SVD of the L-trajectory matrix of the

are strongly separable for

series F;,,,, by the eigentriples indexed by the numbers in / = {i,,...i.}, which are the

same as for the series Fl(lg)

Then the series F{ and F{?' can be called stably separable, and for all

T-L+1 ( ) 2
2

2 [

=1

T-L+1

> x|
I=1

lagged vectors of the time series F, ., , and F_/(YZJLH, respectively.

1<i< N-B+l,the g, elementsare g, . = where X, ;and X,(Yzj)are the /-

There are two possible cases of stable separable series, the case of nonperiodic series
and the case of periodic series:

nonperiodic series: stable separability of the components leads only to the equality of all
row heterogeneity functions.

periodic series: will guarantee the constancy of the g, ; .

Still assuming homogeneity, there are different kinds of deviation to the stable
separability possible. Deviations from weak separability, not related to the ordering of
the eigenvalues, and the effects of coincidence and rearrangements of the eigenvalues,
which have influence on both strong separability and the constancy of the sets of /..

Examples:

Approximate weak separability - nonperiodic series: The H-matrix will be the same as
above, but the row heterogeneity functions are no longer equal.

Approximate weak separability - periodic series: In these case there exists a dependence
of the H-matrix on T. The smaller T (and therefore T — L + 1), the larger fluctuations the
elements of the matrix H-matrix may have.

Asymptotic separability: when the time series is large asymptotic weak separability is
more natural than approximate weak separability. As a rule, asymptotic separability
implies that there are small fluctuations around the limiting H-matrices, which are either
constant or have the form of the stable separation with nonperiodic series. Natural cases
of asymptotic separability are the noisy series, meaning the series is corrupted by noise.
Asymptotically, the values of the H-matrix have a constant limit:

2R, (0)

limg, =289
M&r =2 2R (0)
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In practice, the closeness of the elements of the H-matrix to the constant value
mentioned above is achieved due to the large value of the series length N and the small

(relative to C?) value of the variance R (0).

Rearrangement of the eigentriples: it can occur either by the increase of dimension of
the 1 , for example a series that is described by only one eigentriple and starts in a
defined point to be defined by the two leading eigentriples, or by maintaining the
dimension but the eigentriples that describes the series change.

Nevertheless, it is important to identify, when they exists, the intervals of heterogeneity.
The series F,sl) and Fjsz) themselves can be either stably separable on the homogeneity

intervals or have discrepancies from this ideal situation. As always the heterogeneity
matrix G gives the best description of the entire situation.

The most important is the choice of the detection parameters. The idea is to determine if
a violation of homogeneity did occur and if it did when is needed to know: the number
of change-points; their location; and if the violation is permanent or temporary.

Let’s divide this subject in two possible situations, a single heterogeneity and a multiple
one.

e Single heterogeneity
a) The “ideal’ detection - It happens when the series FJSZ) is the zero series.
The series F\Y = F,, and assuming that exists Q' < N such that the series Fy,ls a

homogeneous series, and the dimension d of its minimal LRF is less thanQ'/2. By
definition, the maximal Q' coincides withQ.

B and L should be chosen accordingly with the knowledge that any B > 2d and L such
thatd <min(L,B—L+1).

Any subseries F, , , , such that i < Q- B, and considering the SVD of its trajectory L-
trajectory matrix, then for some r all the eigenvalues /18) with s > » are equal to zero.

Therefore, 7 =[12,...r] andr =d . All the nonzero elements of the matrix indicate the
existence of some heterogeneity in the series.

b) NonzeroF,&z): identification — To solve this problem, is better to assume that
F, = FY + F'? holds but the addends are unknown. In this way what will be studied is
the entire series F,,. Some assumptions needs to be taken: i) Iflflg),_l iIs homogeneous; ii)

the chosen set / of eigentriples correspond to the subseries Fl.v(ﬂgfl for all
i=1...,0" —B(as arule it is a set of several eigentriples); iii) the heterogeneity under
detection is happening at the series FA(}).

By the above assumptions, for the selected B and L it exist certain eigentriples of the
trajectory matrices of the subseries f;. ,,(i<Q'—B)stably interpretable as
(approximately) describing subseries of the same homogeneous series. Until the
momentQ’ the series Fjsl) is (approximately) identified by the obtained set 7 of the

eigentriples, and thus have the detection parameters » and /. In some case the
identification procedure is easy to perform in others can not be done.
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c) Small noisy-like F? - This case is similar to the ‘ideal’ detection case.
To obtain (approximate) separability of the series Fl.v(ﬂgfl and Ey(ffgflup to the change-

point, a relatively large B needs to be taken (it can not be larger than the expected value
of Q). L should be chosen to be approximately equal to B/2.

Since the series F,sz) is small enough and in view of the (approximate) separability
obtained, several r leading singular values produced by the series F; , , , , must be large

enough and describe the series E.v(ﬂgfl, while the other singular values are expected to be

small. Therefore and abrupt decrease of the singular values, placed in decreasing order
of their magnitudes, may help finding the number » and the set/ = [l,2,...,r].

If all the parameters were chosen correctly, then the corresponding heterogeneity matrix
will have small elements in the block 4.

If 7%, is harmonic with amplitude C and £’ is a white noise with variance &2, then

asymptotically in N and other parameters, the elements of the block 4 are close to
o2 1(0.5C% + 62). If 62 << C?, the block 4 is zero-like.

d) General F\? - The goal of obtaining Q’as large as possible it may contradict in the

case of general F?).

The detection problem is complicated in view of the possibility that the detection
background (the block 4) may contain large elements in certain columns. If separability
is approximate, then the equal-row background is perturbed, and it is difficult to
recognize a possible heterogeneity on the non-constant background.

The same applies when the entire series is generally increasing and decreasing, when
the detection background varies in a monotone way, and the heterogeneity recognition is
even more complicated.

However, there are no general rules for the choice of B and L in all ‘simple’ situations.
As a result, if the detection is performed in a situation close to ‘ideal’, then large values
of the heterogeneity index indicate heterogeneity, and the general form of the H-matrix
can help to identify both the change-point and the type of the heterogeneity.

e Multiple heterogeneity

It is useful to search sequentially for the change-points and heterogeneities. This is done
by producing sequential H-matrices until the end of the series is reached. The collection
of H-matrices obtained in this way would give the entire description of the situation.

Detection functions

The row detection function is the best way to detect the first change-point of the series.
The change-point coincides with the first point of sharp increase of this function;

The diagonal detection function indicates more clearly change-points if the series has a
slowly varying structure. It needs to be taken with care because a single heterogeneity
may give rise to several sharp peaks on the plot of this detection function.

The symmetric detection function can only be used to characterize the local description

of the series F,, by a fixed set of eigentriples.

The column detection function despite the fact that is weak in detecting heterogeneities
is often informative when the idea is to distinguish the heterogeneity from the
eigentriple rearrangement.
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The difference between the row and the column detection function is a good indicator of
the true heterogeneity. If the column function has a sharp increase and the row function
is slowly varying, then is must certain that there is an eigentriple rearrangement.

e Heterogeneity in trends
The trend of the series is associated with its low frequency component. To separate it
from the other components of all series F,, ., with the help of a stable set of

eigentriples, a small B must be taken. A sufficiently large trend is described by the
single leading eigentriple of the SVD of the trajectory matrix of the seriesF;, .

Therefore the series 1313143-11 reconstructed from the leading eigentriple must be similar

n

to the exponential series with some rate ¢, , that is for the series of the form g, =c,e”
with some ¢, andn=1,...i+B—-2. On time intervals where the trend changes its

behavior, the rates also change, and is the case of (approximate) permanent violations in
the piecewise exponential series. Therefore, sharp changes in the trend behavior will be
detected via the increase of the detection functions.

The H-matrix will have small values of the heterogeneity index in block 4 and D, and in
all the rectangles along the main diagonal. Other blocks of homogeneity can also have
small elements. Despite the fact that the heterogeneity under consideration is of a
permanent type, the heterogeneity matrix is going to be ‘cross-structured’.

e Heterogeneity in periodicities
In view of the periodic feature of the signal, the detection parameters B, L and 7 should
be proportional to the period of the series.
At any rate, at least the block A of the heterogeneity matrix will consist of
approximately equal elements.

e The role of the parameter T

Small values of T imply both a large contrast in the detection and a high sensitivity to
small perturbations of the series. By enlarging 7, the contrast between small and large
values of the detection function is reduced and these functions are smoother.

The minimal 7 values is 7'= L.

When dealing with periodic series, T must be proportional to the period of the series.

e Detection Characteristics

There are various additional detection characteristics which can help to identify and
interpret heterogeneities in time series. They can be divided in three major groups:

Renormalized heterogeneity matrices. By definition the heterogeneity index is
normalized, because when pure homogeneity exists all values are zero, and in pure
heterogeneity all values are one. When the series is positive and monotone increasing
the denominator of the row detection function increases as well. Therefore, the
heterogeneity index of the last part of the series is generally smaller than the analogous
index of the initial interval of the series only because of the increase of the entire series.
This makes that the background is non-constant and two ‘equivalent’ heterogeneities
occur at the beginning and at the end of the series producing different increases of the
heterogeneity characteristics. To avoid all these the heterogeneity index should be
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denormalized, by omitting the denominator of formula, which creates the following
formula:

S dist?(x, L))
gijﬁ 1 N-1

k=0
where B, L, T, r and I are fixed detection parameters and X, ;are the L-lagged vectors of

the series F; ;. In this definition is used the squared sum of all the elements of the

series F, as the denominator and take averaging coefficients in agreement with the total
number of the terms of the series in all the sums.

This new heterogeneity index may also be very helpful in the detection of change-points
in the variance of the noise.

The Roots of characteristics polynomials is related with the variations in linear
spaces L'}

The root functions of the characteristics polynomial seem to be preferable for the
purpose of monitoring the homogeneity of the series.

Characteristics related with moving periodograms which describes the changes in the
spectral structure of the initial series in time.

7. Annex 2 - Single-spectrum analysis -
Forecasting theory

7.1. SSA recurrent forecasting algorithm

Some of the algorithm inputs, notations, comments and properties:

Time series F,, = (fo,...,fN,l ),N >~ 2.

Window length L, 1 <L <N.

Linear spacel, c R“of dimension » < L. It is assumed thate, ¢ L, ,
wheree, =(0,0,...,01)" € R". In other terms, L, is not a *vertical’ space but is defined

by its certain orthonormal basis (the forecast result do not depend on this concrete
basis).

Number M of points to forecast for.

X = [Xl . ¢ ] (where K = N— L + I) is the trajectory matrix of the time series F, .

P,...,P. is an orthonormal basis in L,.
)?def[f(l Lo )A(K]: ZR.R.TX. The vector)A(l. is the orthogonal projection of X, onto

the space L.
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X =HX = [)?1 Lo )?K]is the result of the Hankelization of the matrix X . The matrix
X is the trajectory matrix of some time series fN = (]70 ooy fol).
For any vectorY e R", Y, e R*™" is the vector consisting of the last L — 7 components

of the vector Y, while Y, e R*"is the vector consisting of the first L — 7 components of
Y.
vZ=xl+...+ 7%, where r,is the last component of the vector P(i=1,...,L). Since

v?is the squared cosine of the angle between the vector e, and the linear space L,, it
should be called the verticality coefficient of L,.
As have already been said e, ¢ L, sov’ <1. In this case the last component y, of any

vector ¥ =(y,,...,y, )" is a linear combination of the first components y,,...,, ,:

Vo =a4y,  +a,y, ,+.ta Y

Vector R =(a, ,,...,a,)" can be expressed as R =

I ! ~> 7, P¥ and does not depend
-V A

on the choice of a basis ..., P.in the linear space L, .
The series G,,,,, =(g,-..gy..) is the result of:

Ji fori=0,..., N=-1
g =1L
;"fgf—f fori=N,... N+M-1

where the numbers g, ,...,g ... form the M terms of the SSA recurrent forecast (or
only SSA R-forecasting algorithm).

If P*):L — R*is defined as a linear operator by the formula P")y = [RTY ] YelL,
A

and setting
)}i fori=0,...,K
£=9 p0)
PYZy for i = K +, .. , K + M
The matrix Z =[Z, :...: Z,.,, |is the trajectory matrix of the series G,,,, .

It is evident that the initial points g, ,.,,...,g_,Of the forecasting recurrent formula
coincide with the last L-1 terms of the series F.
The series F,, admits a continuation in L, if there is an uniquely defined £, such that all

L-lagged vectors of the series fNﬂ = (fo,...,fol,fN) belong to Z'*). In this case the

series fmlwill be called the one-step L-continuation of the series F), .
If e, €L, , then F, does not admit L-continuation. Consequently if d =L, then the

series cannot be L-continued since the uniqueness condition does not apply.
If d <L<Kand e, ¢L,,then the series F, admits L-continuation.

- L-1
The one step continuation formula is: fN:Zakafk where the vector
k=1

R=(a,,,...,a,)" which was identified above.
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L-1
The series F), is governed by the LRF: f,,, => a,f,,, ,, 0<i<N-L-1.

k=1
If the series F, admits a one-step L-continuation, then it can be L-continued for an
arbitrary number of steps.

dy
If a  series Fysatisfy a LRFf,, = ZbkaH ,0<i<N-d, -1land
k=1

dy <min(L-1K), then d<d, e, ¢ LW and the series will admit L-continuation,
produced by the above formula.

The concepts of recurrent continuation and L-continuation are equivalent.

Nevertheless, it is not realistic to believe that the series are governed by some LRF of
relatively small dimension; the exact continuation is mainly methodological and
theoretical. Therefore, the concept of approximate continuation is more realistic and
helpful.

7.2. Approximate continuation

Assuming that the following conditions hold:

The series of length N and window length L provide approximate strong separability of
the series F! and F?);

X = Z\/ZUZ.VZ.T Is the SVD of the trajectory matrix X of the series F,,. The choice of

the eigentriples{\/ZUiViT}iel, 1=(i,...,i, )associated with F!" allows achieving
approximate separability;
ddef fdim(FY)<r<L<K;

e,  span(U,,i € I), meaning that ) . uZ <1, where u, is the last component of the

eigenvector U, .

Than the Basic SSA R-forecasting algorithm can be applied, and the result
Sns--- &y 1S Called the approximate recurrent continuation of the series F, .

Usually and due to the fact that forecasting errors occur the forecast series g, do not

coincide with recurrent continuation of the seriestsl). The errors can be of two types,
first it happens because the LRF is produced by the vector R which is strongly related to
the space L, , and the discrepancy with this space and the space L&Y produces the error,
in particular because the finite-difference dimension of the forecast series g, (n > N)is
generally greater than 4. Secondly, the error can be produced by the initial data for the
forecast. For recurrent continuation, the initial data is /Y, ..., /., where fWis the
nth term of the series Fjsl). In the Basic R-forecasting algorithm the initial data are the

last L-1 terms g, ,,,...,gy,0f the reconstructed series. Sincefn(l) # g, , the initial
series produces its own error.
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When the quality of the approximate separability is “good” is expected that the SSA R-
forecasting produces a reasonable approximation to recurrent continuation ofFjsl).

7.3. Modifications to Basic SSA R-algorithm

There are some specific situations when some modifications to the Basic SSA R-
algorithm can be helpful in forecasting more accurately.

SSA V-forecasting: Both V and R forecasting works with two general stages, diagonal
averaging and continuation. For R-forecasting, diagonal averaging is used to obtain the
reconstructed series, and continuation is performed by applying the LRF. In the V-
forecasting, these two stages are used in the reverse order, first vector continuation in
L. is performed and then diagonal averaging gives the forecast values. When a series

admit recurrent continuation, both forecast methods provide the same results. In case of
only approximate continuation than the results differ. As poor as the approximations is
as large the difference between forecast values will be. The forecast stability can be
“proved” if the two forecasting values are close. In cases of rapid increase or decrease
of the R-forecasting values, V-forecasting tends to be more “conservative”.

Toeplitz SSA forecasting: both V and R-forecasting can be applied to a series which
have been decomposed using Toeplitz SSA. Therefore, for stationary time series
Toeplitz SSA forecasting may give more stable results.

Centring in SSA forecasting: When reconstructing a component of a time series with
the help of the single centring variant of the Basic or Toeplitz SSA, the average triple
can be either included into the list of the eigentriples selected for reconstruction or not.
In the case when the average triple is not taken for reconstruction everything holds the

same for both V and R-forecasting, except the matrix X, which is modified

for:f(:[f(l:...)A(K]:ZVZRET(X—A), where 4=[¢:...c]and the vector chas the
i1

form &=(X,+...+ X, )/K. In the case that the average triple is included in the
reconstructing than the matrix X takes the following

definition:)A(:[)A(1 :...)?K]:ZRRT(X—A)+A, with the same notation as above.
i-1

Some of the formulas for both V and R-forecasting are also changed to include the
centring.

Also, very important is to mention that double centring can not be used for forecasting.
The main reason for that is that the double centring is applied to both the rows and the
columns of the trajectory matrix, while the SSA forecasting algorithm and all its
modifications and variants are based on the linear space L,, which is associated only

with the columns of the trajectory matrix.

7.4. Forecast Confidence Bounds

There are two different problems when constructing confidence bounds for the forecast.

The first is to construct confidence interval for the entire series F = F® + F@ at some
future point in time N+M. The second is to construct confidence intervals for the signal

FY at the same future point in time.
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The first problem will be solved by using the information about the forecast errors
obtained by processing the series. This can be called the empirical variant.
The second problem needs some additional information about the model governing the

series 7?'to apply a bootstrap simulation of the series F, .

7.4.1.  Empirical variant

The multistart M-step recurrent continuation procedure stats that: taking a relatively
small integer M and apply M steps of recurrent continuation produced by the forecasting

LRF modifying the initial data from (fa(l),...,fﬁ)z)to (f,?_)Mf,él_)M_l)K =N-L+1.
The last points g, ., ,0f these continuations can be compared with the values
Siimer20F the initial series F . A multistrat M-step residual series H ,, With

hJ(M) = fj+M+L—2 _gj+M+L—2'j = 0""’K_M'

If the reconstructed series <" coincides with FVand the forecasting LRF governs it,
than g, = /Yand the multistrat M-step residual series coincides with the last K — M +1

terms of the stationary noise seriestsz). If this is not true, but assuming that the

multistrat series is stationary and ergodic in the sense that its empirical cumulative
function tends to the theoretical empirical cumulative function of the series

as N — «.Then, having the series H, ,,., means that certain of its quantiles can be
estimated.
Because the terms g, ,are obtained through the same number of steps with the

same LRF as the forecast values E&)mp and their initial data is taken from the same

reconstructed series, and because the forecasting requires the assumption that the series
structure is kept in the future, the obtained empirical cumulative distribution function of
the multistrat A-step residual series can be used to construct the empirical confidence
interval for f,,, ;.

The empirical confidence interval is: (f,&)M_l +c;,2,f]§1+)M_l +c;,2), with the confidence
level (0 <y <1),and ¢ =1-y, c,,,and c;,,the lower and upper /2 - quantiles.

If the multistrat A/-step residual series can be regarded as white noise, then the other
variant of empirical confidence intervals is meaningful.

This type of confidence intervals can only be used for short-term forecasting.

These confidence intervals are constructed for the entire series ), .

7.4.2. Bootstrap confidence bounds for the forecast of a

signal
If it could be assumed (unrealistically) that the rules of the eigentriples selection are
fixed, S independent copies F?' of the process F\?' could be simulated. The

forecasting procedure would then be applied to the S independent time
series F defF{! + FY.  The  forecasting  results  would form a

samplefﬁMflyi(lgz‘SS), which should be compared against /¥, ,. In this way the
Monte Carlo confidence bounds for the forecast could be built up.
Since in practice the signal F"is not known, this procedure can not be applied.
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But, under a suitable choice of the window length L and the corresponding eigentriples,
the representation F,, = F" + F?is known, where F\" approximates 7", and F?is

the residual series. If a stochastic model of the residuals 17“,52) exists, for instance, a

model can be postulated, and since 7" ~ F¥, the same model can be applied to 7%
with the estimated parameters.

After these steps simulating S independent copies }7,5?) of the series /2, it will be

i N !
obtained S series F, ,defF\" + F\?, and S forecasting results £, ,are produced as in

the Monte Carlo simulation variant.
As soon as the sample fJ\SIJr)M—l,i (1< i< S)of the forecasting results is obtained, the lower

and upper quantiles for a fixed level y can be calculated and confidence intervals for the
forecast can be obtained. The interval, called bootstrap confidence interval, can be
compared with the forecast value £, , obtained from the initial forecasting
procedure, being the discrepancies between this value and the obtained confidence
interval caused by the inaccuracy of the stochastic model forf,sz).

The average of the bootstrap forecast sample estimates the mean value of the forecast
and the mean square deviation of the sample shows the accuracy of the estimate.

The Monte Carlo forecast of the signal F,sl) is useful in at least two respects: its average
(Monte Carlo average forecast) shows the bias produced by the corresponding

forecasting procedure, while the upper and lower quantiles indicate the role of the
random component in the forecasting error.

The Bootstrap confidence intervals are built for the continuation of the signal Fjsl).

8. Annex 3 — Data analysis — All series

8.1. Time series A
N =108; L=12;B=55T=12; K=44; | = {1,2,3,4,5,6}
Decomposition method: Basic SSA
Maximum v*= 0,46
Eigentriples for reconstruction =1, 2, 3-4, 5-6
Maximum Relative error of reconstruction = 2,76%
Forecast Type =V forecast
Confidence bounds type = Bootstrap
Interactions = 1000
Forecast — Table 4, with Absolute Forecast, Absolute Upper confidence bound,
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and
Relative Lower confidence bound vs. Forecast.
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Fest Upper Lower Medium  [Upper % |Lower %
Jan-08| 3.409.517| 3.531.010| 3.243.807| 3.387.408 104% 95%
Fev-08| 2.906.143| 3.042.636| 2.758.036| 2.900.336 105% 95%
Mar-08( 3.062.599| 3.162.111| 2.874.348| 3.018.230 103% 94%
Abr-08| 3.044.405| 3.179.702| 2.879.154| 3.029.428 104% 95%
Mai-08( 3.057.247| 3.237.298| 2.921.419| 3.079.358 106% 96%
Jun-08| 3.003.294| 3.076.413| 2.768.276| 2.922.345 102% 92%
Jul-08| 3.313.474| 3.446.246| 3.145.521| 3.295.884 104% 95%
Ago-08| 2.673.698| 2.871.474| 2.551.439| 2.711.457 107% 95%
Set-08| 3.174.304| 3.269.992| 2.950.480| 3.110.236 103% 93%
Out-08( 3.249.273| 3.362.523| 3.042.063] 3.202.293 103% 94%
Nov-08| 2.934.847| 3.142.857| 2.795.665| 2.969.261 107% 95%
Dez-08| 2.806.821| 2.913.583| 2.576.519| 2.745.051 104% 92%
Jan-09| 3.404.381| 3.592.500| 3.199.452| 3.395.976 106% 94%
Fev-09| 2.867.914| 3.066.446| 2.671.256| 2.868.851 107% 93%
Mar-09( 3.094.365| 3.213.770| 2.798.422] 3.006.096 104% 90%
Abr-09| 3.015.249| 3.232.349| 2.827.688| 3.030.019 107% 94%
Mai-09( 3.011.277| 3.281.344| 2.840.379]| 3.060.862 109% 94%
Jun-09| 3.058.391| 3.129.385| 2.690.641| 2.910.013 102% 88%
Jul-09| 3.290.284| 3.492.351| 3.087.014( 3.289.682 106% 94%
Ago-09| 2.607.008| 2.910.950| 2.464.676| 2.687.813 112% 95%
Set-09] 3.222.270| 3.341547| 2.882.387| 3.111.967 104% 89%
Out-09( 3.244.972| 3.406.616| 2.977.733| 3.192.174 105% 92%
Nov-09| 2.879.132| 3.187.991] 2.692.396| 2.940.193 111% 94%
Dez-09| 2.833.833| 2.983.913| 2.502.895( 2.743.404 105% 88%
Table 4 - Times series A-Forecast
8.2. Time series B

N=108;L=12;B=61; T=12; K=50; | = {1,2,3,4,5,6}

Decomposition method: Basic SSA

Maximum v*= 0,51

Eigentriples for reconstruction =1, 2, 3-6

Maximum Relative error of reconstruction = 3,30%

Forecast Type = V forecast
Confidence bounds type = Bootstrap

Interactions = 1000

Annex

Forecast — Table 5, with Absolute Forecast, Absolute Upper confidence bound,
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and

Relative Lower confidence bound vs. Forecast.
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Fest Upper Lower Medium  |Upper % |Lower %

Jan-08[ 898.204| 990.261| 869.974| 930.117 110% 97%
Fev-08| 844510 867.178| 733.326] 800.252 103% 87%
Mar-08| 899.055| 985.422( 878.262| 931.842 110% 98%
Abr-08| 878.137| 898.779| 820.339| 859.559 102% 93%
Mai-08| 897.790 940.171] 868.541] 904.356 105% 97%
Jun-08 891.675| 915780 848.884| 882.332 103% 95%
Jul-08| 918.805| 961.000| 886.392| 923.696 105% 96%
Ago-08| 896.241] 936.702| 865.053| 900.877 105% 97%
Set-08| 934.699| 944.974| 869.042| 907.008 101% 93%
Out-08| 912.434] 997.738 895.685| 946.712 109% 98%
Nov-08| 942.825| 963.589 871.815] 917.702 102% 92%
Dez-08| 929.055| 954794 881.073|] 917.933 103% 95%
Jan-09[ 956.412| 1.068.352 922.437| 995.394 112% 96%
Fev-09| 940.275| 978.687| 791.742| 885.214 104% 84%
Mar-09| 972.292| 1.089.487| 930.834| 1.010.160 112% 96%
Abr-09| 953.438| 990.107| 878.254 934.181 104% 92%
Mai-09| 985.073| 1.031.091f 935.552| 983.322 105% 95%
Jun-09| 969.015| 1.018.713] 916.707| 967.710 105% 95%
Jul-09| 998.051| 1.048.085| 946.599| 997.342 105% 95%
Ago-09| 983.240| 1.030.863| 933.075] 981.969 105% 95%
Set-09[ 1.012.861| 1.045.621| 945213 995.417 103% 93%
Out-09| 997.049| 1.082.931|] 955.623| 1.019.277 109% 96%
Nov-09| 1.027.388| 1.068.504| 940.130| 1.004.317 104% 92%
Dez-09| 1.012.008]| 1.056.005( 952.700| 1.004.353 104% 94%

Table 5 - Times series B-Forecast

8.3. Time series C
N =108; L =36; B=55T=36;K=20; = {1,2,3456,7}
Decomposition method: Basic SSA
Maximum v*= 0,48
Eigentriples for reconstruction = 1, 2, 3-4, 5-7
Maximum Relative error of reconstruction = 3,05%
Forecast Type =V forecast
Confidence bounds type = Bootstrap
Interactions = 1000
Forecast — Table 6, with Absolute Forecast, Absolute Upper confidence bound,
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and
Relative Lower confidence bound vs. Forecast.

8.4. Time series D
N=108;L=12;B=73; T=12; K=62; | = {1,2,3,4,5,6}
Decomposition method: Basic SSA
Maximum v*= 0,42
Eigentriples for reconstruction = 1, 2-3, 4, 5-6
Maximum Relative error of reconstruction = 2,45%
Forecast Type =V forecast
Confidence bounds type = Bootstrap
Interactions = 1000
Forecast — Table 7, with Absolute Forecast, Absolute Upper confidence bound,
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and
Relative Lower confidence bound vs. Forecast.
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Fest Upper Lower Medium  |Upper % |Lower %
Jan-08| 4.376.902| 4.519.128| 4.056.711| 4.287.920 103% 93%
Fev-08| 3.985.470| 4.165.960| 3.762.529| 3.964.244 105% 94%
Mar-08| 4.382.484| 4.588.268| 4.138.361| 4.363.314 105% 94%
Abr-08| 4.160.313| 4.348.975| 3.944.139| 4.146.557 105% 95%
Mai-08| 4.320.681| 4.480.931| 4.111.700| 4.296.315 104% 95%
Jun-08| 4.160.235| 4.429.058( 4.048.085| 4.238.571 106% 97%
Jul-08| 4.494.295| 4.632.367| 4.230.895| 4.431.631 103% 94%
Ago-08| 4.088.656( 4.374.097| 3.935.711| 4.154.904 107% 96%
Set-08| 4.504.906| 4.669.631| 4.261.792| 4.465.711 104% 95%
Out-08| 4.258.408| 4.462.133| 4.060.351| 4.261.242 105% 95%
Nov-08| 4.432.441| 4563.233| 4.151.479| 4.357.356 103% 94%
Dez-08| 4.274.501| 4.494.843| 4.084.004| 4.289.423 105% 96%
Jan-09( 4.602.865( 4.785.558| 4.205.271| 4.495.415 104% 91%
Fev-09| 4.195.910| 4.461.817| 3.928.549| 4.195.183 106% 94%
Mar-09| 4.628.591| 4.862.637| 4.304.744| 4.583.690 105% 93%
Abr-09| 4.361.980( 4.609.821| 4.102.701| 4.356.261 106% 94%
Mai-09| 4.548.221| 4.744.066| 4.273.131| 4508.599 104% 94%
Jun-09| 4.393.285| 4.712.124| 4.220.369| 4.466.247 107% 96%
Jul-09| 4.713.633| 4.899.039| 4.360.847| 4.629.943 104% 93%
Ago-09| 4.307.548( 4.667.296| 4.094.810| 4.381.053 108% 95%
Set-09| 4.754.460| 4.961.851| 4.424.123| 4.692.987 104% 93%
Out-09| 4.468.178| 4.740.646| 4.204.082| 4.472.364 106% 94%
Nov-09| 4.667.472( 4.873.340| 4.317.818| 4.595.579 104% 93%
Dez-09| 4.514.764| 4.799.292| 4.245.697| 4.522.495 106% 94%
Table 6 - Times series C-Forecast
Fest Upper Lower Medium  [Upper % |Lower %
Jan-08( 1.122.424| 1.181.647| 991.205( 1.086.426 105% 88%
Fev-08| 1.066.946| 1.127.509| 948.171| 1.037.840 106% 89%
Mar-08| 1.176.240| 1.282.821| 1.106.648| 1.194.734 109% 94%
Abr-08| 1.087.623| 1.211.464( 1.028.062| 1.119.763 111% 95%
Mai-08( 1.223.808| 1.334.142| 1.158.655| 1.246.398 109% 95%
Jun-08| 1.197.741| 1.258.804| 1.078.602| 1.168.703 105% 90%
Jul-08( 1.348.199| 1.398.964| 1.217.257( 1.308.111 104% 90%
Ago-08| 1.238.546| 1.306.870| 1.121.951| 1214.410 106% 91%
Set-08| 1.252.679| 1.374.211| 1.198.458| 1.286.334 110% 96%
Out-08| 1.054.788| 1.191.876| 1.004.994| 1.098.435 113% 95%
Nov-08( 1.089.992| 1.202.543| 1.022.568| 1.112.556 110% 94%
Dez-08| 989.257| 1.038.031] 856.078| 947.055 105% 87%
Jan-09( 1.110.793| 1.166.057| 946.602( 1.056.330 105% 85%
Fev-09| 1.032.777| 1.112.210| 886.352| 999.281 108% 86%
Mar-09| 1.139.109| 1.282.525| 1.062.929| 1.172.727 113% 93%
Abr-09| 1.069.412| 1.227.585| 1.002.512( 1.115.049 115% 94%
Mai-09| 1.227.957| 1.365.275| 1.141.034| 1.253.155 111% 93%
Jun-09( 1.205.597| 1.276.992| 1.049.859( 1.163.426 106% 87%
Jul-09| 1.340.559| 1.400.252| 1.177.986| 1.289.119 104% 88%
Ago-09| 1.213.851| 1.300.961| 1.067.243| 1.184.102 107% 88%
Set-09( 1.228.288| 1.378.959| 1.157.037| 1.267.998 112% 94%
Out-09| 1.045.809| 1.210.032| 978.960| 1.094.496 116% 94%
Nov-09| 1.094.020| 1.240.521| 1.005.535( 1.123.028 113% 92%
Dez-09| 987.808| 1.059.459| 835.479| 947.469 107% 85%

Table 7 - Times series D-Forecast

8.5. Time series G

N =108; L =36; B =55 T=36; K=20; 1= {1,2,34}
Decomposition method: Basic SSA

Annex
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Maximum v>=0,23

Eigentriples for reconstruction =1, 2, 3-4

Maximum Relative error of reconstruction = 2,30%
Forecast Type =V forecast
Confidence bounds type = Bootstrap

Interactions = 1000

Annex

Forecast — Table 8, with Absolute Forecast, Absolute Upper confidence bound,
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and
Relative Lower confidence bound vs. Forecast.

Fest Upper Lower Medium  |Upper % |Lower %
Jan-08| 1511.720| 1545.081| 1.438.758| 1.491.920 102% 95%
Fev-08( 1.333.471| 1.371.264| 1.261.807| 1.316.536 103% 95%
Mar-08| 1.443.303| 1.505.825| 1.397.928| 1.451.877 104% 97%
Abr-08| 1.425.315( 1.445.282| 1.333.525| 1.389.404 101% 94%
Mai-08| 1.435.460| 1.489.937| 1.376.204| 1.433.071 104% 96%
Jun-08| 1.356.345| 1.404.571| 1.293.661 1.349.116 104% 95%
Jul-08| 1.528.542| 1.564.361| 1.448.511| 1.506.436 102% 95%
Ago-08| 1.347.457| 1.388.776| 1.269.126| 1.328.951 103% 94%
Set-08| 1.459.908| 1.527.349( 1.409.184| 1.468.266 105% 97%
Out-08| 1.440.891| 1.461.341| 1.339.531| 1.400.436 101% 93%
Nov-08| 1.450.860( 1511.077| 1.387.172| 1.449.124 104% 96%
Dez-08]| 1.371.705| 1.422.823| 1.301.153| 1.361.988 104% 95%
Jan-09| 1.545.544| 1.584.447| 1.457.889| 1.521.168 103% 94%
Fev-09( 1.361.592| 1.406.581| 1.276.155| 1.341.368 103% 94%
Mar-09| 1.476.709| 1.549.807| 1.420.191| 1.484.999 105% 96%
Abr-09| 1.456.629( 1.477.890( 1.344.868| 1.411.379 101% 92%
Mai-09| 1.466.427| 1533.127| 1.397.882| 1.465.505 105% 95%
Jun-09| 1.387.245| 1.441.681| 1.308.086| 1.374.884 104% 94%
Jul-09| 1.562.728| 1.605.259| 1.466.923| 1.536.091 103% 94%
Ago-09| 1.375.877| 1.425.109| 1.282.677| 1.353.893 104% 93%
Set-09| 1.493.709| 1.572.909( 1.430.967| 1.501.938 105% 96%
Out-09| 1.472.531| 1.494.991| 1.349.638| 1.422.314 102% 92%
Nov-09| 1.482.165| 1556.186| 1.408.319| 1.482.253 105% 95%
Dez-09| 1.402.964| 1.460.781| 1.314.565| 1.387.673 104% 94%

Table 8 - Times series G-Forecast

8.6. Time series H

N=108;L=12;B=73; T=12; K=62; 1= {1,2,34}
Decomposition method: Basic SSA

Maximum v>= 0,42

Eigentriples for reconstruction = 1, 2, 3-4

Maximum Relative error of reconstruction = 2,02%
Forecast Type =V forecast
Confidence bounds type = Bootstrap

Interactions = 1000

Forecast — Table 9, with Absolute Forecast, Absolute Upper confidence bound,
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and
Relative Lower confidence bound vs. Forecast.
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Fest Upper Lower Medium  |Upper % |Lower %

Jan-08| 280.335| 298.508| 261977 280.243 106% 93%
Fev-08 264.607| 279.143| 243.431| 261.287 105% 92%
Mar-08| 275.383| 294.445| 258.617| 276.531 107% 94%
Abr-08| 255552 271.081| 234.774| 252.927 106% 92%
Mai-08| 263.846| 283.457| 247.848| 265.653 107% 94%
Jun-08| 244.812| 261.205| 222955 242.080 107% 91%
Jul-08| 255.731| 275.167| 239.700 257.434 108% 94%
Ago-08( 241.603| 256.849| 219.616| 238.232 106% 91%
Set-08| 257.382| 275.904| 241725 258.814 107% 94%
Out-08( 248.058| 262.462| 226.001| 244.231 106% 91%
Nov-08| 266.400 286.693 249.198 267.946 108% 94%
Dez-08| 257.974| 273.803| 234.377| 254.090 106% 91%
Jan-09| 274.343| 297.016| 255.568( 276.292 108% 93%
Fev-09| 262.695| 279.521] 238.152| 258.837 106% 91%
Mar-09| 274.334| 298.122( 254.980| 276.551 109% 93%
Abr-09| 258.623| 276.783| 232.261| 254522 107% 90%
Mai-09| 266.750 291941 246.043| 268.992 109% 92%
Jun-09| 249.871| 269.284| 221554 245419 108% 89%
Jul-09 258.348| 283.278 238.131| 260.704 110% 92%
Ago-09| 244.188| 262.470| 216.851| 239.660 107% 89%
Set-09| 256.059| 279.794| 238.040| 258917 109% 93%
Out-09| 246.130| 264.396| 219.326| 241.861 107% 89%
Nov-09 261111 287.098| 242.120| 264.609 110% 93%
Dez-09| 253.450| 273.733| 224.859| 249.296 108% 89%

Table 9 - Times series H-Forecast

8.7. Time series J

N=108; L=48;B=55T=48K=8;1={,23456,7}

Decomposition method: Basic SSA

Maximum v*= 0,27

Eigentriples for reconstruction = 1, 2-3, 4-5, 6-7

Maximum Relative error of reconstruction = 4,90%

Forecast Type =V forecast

Confidence bounds type = Bootstrap

Interactions = 1000

Forecast — Table 10, with Absolute Forecast, Absolute Upper confidence bound,
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and
Relative Lower confidence bound vs. Forecast.

8.8. Time series L
N=108;L=12;B=73; T=12; K=62; 1 = {1,2,3,4,5,6,7,8}
Decomposition method: Basic SSA
Maximum v*= 0,40
Eigentriples for reconstruction = 1, 2, 3-4, 5-6, 7-8
Maximum Relative error of reconstruction = 5,20%
Forecast Type = V forecast
Confidence bounds type = Bootstrap
Interactions = 1000
Forecast — Table 11, with Absolute Forecast, Absolute Upper confidence bound,
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and
Relative Lower confidence bound vs. Forecast.
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Fest Upper Lower Medium  [Upper % |Lower %
Jan-08| 1.198.595| 1.406.746| 929.491| 1.168.118 117% 78%
Fev-08| 1.346.430( 1.583.802| 1.081.127| 1.332.465 118% 80%
Mar-08| 1.092.729( 1.359.783( 867.424| 1.113.603 124% 79%
Abr-08| 968.042| 1.227.976| 735.354| 981.665 127% 76%
Mai-08] 1.096.528| 1.343.113| 835.140( 1.089.127 122% 76%
Jun-08| 981.435| 1.228.419| 732.221| 980.320 125% 75%
Jul-08| 738.692| 983.340| 488.659| 735.999 133% 66%
Ago-08| 1.078.766( 1.298.001| 790.687| 1.044.344 120% 73%
Set-08| 1.832.131| 2.039.546( 1.554.976| 1.797.261 111% 85%
Out-08| 1.966.164| 2.242.645( 1.733.159| 1.987.902 114% 88%
Nov-08| 1.326.370| 1.613.571| 1.142.282| 1.377.927 122% 86%
Dez-08| 904.490| 1.166.763| 654.750( 910.757 129% 72%
Jan-09| 1.117.499| 1.375.088| 794.382( 1.084.735 123% 71%
Fev-09| 1.280.428( 1.586.004| 968.209| 1.277.107 124% 76%
Mar-09| 1.054.657| 1.385.469| 781.991| 1.083.730 131% 74%
Abr-09 948913| 1.260.585| 653.287| 956.936 133% 69%
Mai-09| 1.093.696| 1.395.002| 768.500( 1.081.751 128% 70%
Jun-09| 980.904| 1.295.495| 675573 985.534 132% 69%
Jul-09| 711.394| 1011.889| 402.742| 707.316 142% 57%
Ago-09| 1.028.248| 1.292.964| 659.533| 976.248 126% 64%
Set-09| 1.804.710( 2.056.028| 1.460.611| 1.758.319 114% 81%
Out-09| 1.980.274( 2.326.278( 1.698.417| 2.012.348 117% 86%
Nov-09( 1.334.074| 1.689.761| 1.107.868| 1.398.814 127% 83%
Dez-09| 858.610| 1.176.031] 549.361| 862.696 137% 64%
Table 10 - Times series J-Forecast
Fest Upper Lower Medium  |Upper % |Lower %

Jan-08 30.078 33.834 29.324 31579 112% 97%
Fev-08 29.820 30.090 25.660 27.875 101% 86%
Mar-08 28.888 30.613 26.238 28.425 106% 91%
Abr-08 25963 29.292 24.904 27.098 113% 96%
Mai-08 29.615 31.454 27.032 29.243 106% 91%
Jun-08 30.693 31.221 26.807 29.014 102% 87%
Jul-08 30.816 33.839 29.531 31.685 110% 96%
Ago-08 27.680 29.796 25.230 27513 108% 91%
Set-08 30.795 33.802 29.175 31.488 110% 95%
Out-08 31.482 34.053 29.568 31.811 108% 94%
Nov-08 30.818 32.555 27.971 30.263 106% 91%
Dez-08 26.570 28.964 24.481 26.722 109% 92%
Jan-09 28.907 33.577 28.477 31.027 116% 99%
Fev-09 29.589 30.405 25.398 27.902 103% 86%
Mar-09 29.410 30.507 25.682 28.094 104% 87%
Abr-09 25.695 28.916 24.250 26.583 113% 94%
Mai-09 28.644 31520 26.582 29.051 110% 93%
Jun-09 30.282 30.914 26.080 28.497 102% 86%
Jul-09 30.918 33.467 28.614 31.041 108% 93%
Ago-09 27.242 29.826 24.834 27.330 109% 91%
Set-09 29.649 33.456 28.363 30.909 113% 96%
Out-09 30.807 33.575 28.728 31.151 109% 93%
Nov-09 30.924 32.765 27.614 30.190 106% 89%
Dez-09 26.389 28.876 24.008 26.442 109% 91%

Table 11 - Times series L-Forecast

8.9. Time series M
N=108;L=12;B=73; T=12; K=62; 1 = {1,2,3 4}
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Decomposition method: Basic SSA

Maximum v*= 0,42

Eigentriples for reconstruction = 1, 2, 3-4

Maximum Relative error of reconstruction = 2,30%

Forecast Type =V forecast

Confidence bounds type = Bootstrap

Interactions = 1000

Forecast — Table 12, with Absolute Forecast, Absolute Upper confidence bound,
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and
Relative Lower confidence bound vs. Forecast.

8.10. Time series N
N=108;L=12;B=37; T=12; K=72; 1 = {1,2,3,4,5,6,7,8}
Decomposition method: Basic SSA
Maximum v*= 0,49
Eigentriples for reconstruction = 1, 2, 3-4, 5-6, 7-8
Maximum Relative error of reconstruction = 3,03%
Forecast Type =V forecast
Confidence bounds type = Bootstrap
Interactions = 1000
Forecast — Table 13, with Absolute Forecast, Absolute Upper confidence bound,
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and
Relative Lower confidence bound vs. Forecast.

Fest Upper Lower Medium  |Upper % |Lower %
Jan-08| 2.362.430| 2.498.997| 2.221.637| 2.360.317 106% 94%
Fev-08| 2.230.350| 2.333.788( 2.055.443| 2.194.615 105% 92%
Mar-08( 2.339.547( 2.470.398| 2.181.292| 2.325.845 106% 93%
Abr-08| 2.184.888| 2.289.268| 1.997.937| 2.143.602 105% 91%
Mai-08| 2.282.168| 2.417.238| 2.132.377| 2.274.807 106% 93%
Jun-08( 2.130.877| 2.250.798| 1.959.214| 2.105.006 106% 92%
Jul-08| 2.242.919| 2.394.878| 2.126.314| 2.260.596 107% 95%
Ago-08| 2.116.998| 2.256.658| 1.979.031| 2.117.844 107% 93%
Set-08| 2.256.896| 2.430.949| 2.170.437| 2.300.693 108% 96%
Out-08| 2.158.226| 2.313.826| 2.037.254| 2.175.540 107% 94%
Nov-08( 2.316.719| 2.504.455| 2.227.999| 2.366.227 108% 96%
Dez-08| 2.227.177| 2.379.185| 2.089.036| 2.234.111 107% 94%
Jan-09( 2.381.281| 2.562.100| 2.256.763| 2.409.432 108% 95%
Fev-09| 2.277.821| 2.413.490( 2.093.324| 2.253.407 106% 92%
Mar-09( 2.409.080( 2.580.092| 2.233.000| 2.406.546 107% 93%
Abr-09( 2.281.356| 2.411.019| 2.051.137| 2.231.078 106% 90%
Mai-09| 2.389.318| 2.561.967| 2.190.280| 2.376.124 107% 92%
Jun-09| 2.246.465| 2.386.047| 2.014.253| 2.200.150 106% 90%
Jul-09| 2.347.656| 2.534.959| 2.178.129| 2.356.544 108% 93%
Ago-09( 2.209.968| 2.372.225| 2.019.542| 2.195.884 107% 91%
Set-09| 2.324.237| 2.537.385| 2.208.034| 2.372.709 109% 95%
Out-09| 2.207.127| 2.401.481| 2.053.320| 2.227.400 109% 93%
Nov-09| 2.342.536| 2.585.636| 2.247.443| 2.416.540 110% 96%
Dez-09| 2.245.365| 2.459.978| 2.085.115| 2.272.546 110% 93%

Table 12 - Times series M-Forecast
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Fest Upper Lower Medium  |Upper % |Lower %
Jan-08| 6.387.041| 6.827.045| 6.210.575( 6.518.810 107% 97%
Fev-08| 5.210.657| 5.574.149| 5.019.435| 5.296.792 107% 96%
Mar-08( 5.162.685( 5.389.445( 4.813.360| 5.101.403 104% 93%
Abr-08| 4.942.242( 5.386.408| 4.765.593| 5.076.001 109% 96%
Mai-08| 5.117.353| 5.614.021| 4.994.096| 5.304.058 110% 98%
Jun-08| 4.921.537| 5.036.315| 4.353.960( 4.695.137 102% 88%
Jul-08| 5.444.423( 5.777.264| 5.166.965| 5.472.115 106% 95%
Ago-08| 4.164.002| 4.587.500| 3.919.051| 4.253.276 110% 94%
Set-08| 5.621.669| 5.813.226( 5.139.282| 5.476.254 103% 91%
Out-08| 5.977.483| 6.310.196| 5.613.871| 5.962.034 106% 94%
Nov-08| 5.277.353| 5.735.606| 5.023.817| 5.379.711 109% 95%
Dez-08| 4.916.328| 5.143.070| 4.440.203| 4.791.636 105% 90%
Jan-09| 6.473.061| 7.292.746| 6.329.687| 6.811.216 113% 98%
Fev-09| 5.303.598| 5.854.921| 4.999.756| 5.427.338 110% 94%
Mar-09| 5.363.115| 5.630.384| 4.715.008| 5.172.696 105% 88%
Abr-09| 4.954.894| 5.736.144| 4.787.553| 5.261.848 116% 97%
Mai-09] 5.225.382| 6.044.630| 5.047.957| 5.546.293 116% 97%
Jun-09| 5.225.061| 5.305.169| 4.204.955| 4.755.062 102% 80%
Jul-09] 5.566.268( 6.117.015| 5.200.655| 5.658.835 110% 93%
Ago-09| 4.171.878| 4.863.300| 3.801.346| 4.332.323 117% 91%
Set-09| 5.869.534| 6.133.438| 5.089.534| 5.611.486 104% 87%
Out-09( 6.123.121| 6.651.683| 5.597.002| 6.124.342 109% 91%
Nov-09| 5.337.416( 6.047.941| 4.910.308( 5.479.124 113% 92%
Dez-09( 5.011.631| 5.351.185| 4.248.751| 4.799.968 107% 85%

Table 13 - Times series N-Forecast

8.11. Time series P
N =108; L =36; B =55 T=36; K=20; I = {1,2,3,4,5,6,7,8}
Decomposition method: Basic SSA
Maximum v*= 0,24
Eigentriples for reconstruction = 1, 2-3, 4-5, 6, 7-8
Maximum Relative error of reconstruction = 4,10%
Forecast Type =V forecast
Confidence bounds type = Bootstrap
Interactions = 1000
Forecast — Table 14, with Absolute Forecast, Absolute Upper confidence bound,
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and
Relative Lower confidence bound vs. Forecast.

8.12. Time series R
N=108;L=18;B=55T=18;K=38;I= {,2,3456,7,891011}
Decomposition method: Basic SSA
Maximum v*=0,31
Eigentriples for reconstruction = 1, 2-3, 4-5, 6-8, 9-11
Maximum Relative error of reconstruction = 5,70%
Forecast Type =V forecast
Confidence bounds type = Bootstrap
Interactions = 1000
Forecast — Table 15, with Absolute Forecast, Absolute Upper confidence bound,
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and
Relative Lower confidence bound vs. Forecast.
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Fest Upper Lower Medium  |Upper % |Lower %
Jan-08 120.136 128.336| 103.865 116.101 107% 86%
Fev-08 104.938 111.744 87.547 99.645 106% 83%
Mar-08| 124752 135.865| 112.243| 124.054 109% 90%
Abr-08 139915 149.064| 124.992| 137.028 107% 89%
Mai-08 127.641| 135.249| 110.382 122.816 106% 86%
Jun-08 102.598 112.727 89.565 101.146 110% 87%
Jul-08| 108.725 115.184 89.933| 102559 106% 83%
Ago-08 91.012 99.039 74.756 86.897 109% 82%
Set-08 129.619( 143.395 118.636 131.016 111% 92%
Out-08| 149479 156.863| 132.654| 144.758 105% 89%
Nov-08 116977 122.400 97.374 109.887 105% 83%
Dez-08 88.338 101.195 76.488 88.841 115% 87%
Jan-09 115525 124.282 97.240 110.761 108% 84%
Fev-09| 100.863| 107.755 80.731 94.243 107% 80%
Mar-09 116.426( 129.802 103.421 116.611 111% 89%
Abr-09 135.817| 146.545 119.618 133.081 108% 88%
Mai-09| 124520 132.164 104.379| 118.272 106% 84%
Jun-09 96.820( 108.403 82.404 95.404 112% 85%
Jul-09 104.264 112.027 84.014 98.021 107% 81%
Ago-09 88.619 97.005 69.843 83.424 109% 79%
Set-09 121.324 136.831| 109.284| 123.057 113% 90%
Out-09| 143.822 152518 125.643| 139.080 106% 87%
Nov-09 114.248 120.195 92.240 106.218 105% 81%
Dez-09 84.112 98.692 71.104 84.898 117% 85%

Table 14 - Times series P-Forecast

Fcst Upper Lower Medium  |Upper % [Lower %
Jan-08| 3.049.752| 3.398.982| 2.895.370| 3.147.176 111% 95%
Fev-08| 2.903.029| 3.120.067| 2.631.606| 2.875.836 107% 91%
Mar-08| 2.387.810( 2.706.920| 2.218.770| 2.462.845 113% 93%
Abr-08| 1.944.610( 2.198.776| 1.709.384| 1.954.080 113% 88%
Mai-08| 2.238.562| 2.597.253| 2.119.516| 2.358.385 116% 95%
Jun-08| 2.022.104| 2.288.622| 1.814.022| 2.051.322 113% 90%

Jul-08| 1.566.867| 1.880.578| 1.411.853| 1.646.216 120% 90%
Ago-08| 1.389.706| 1516.631| 1.048.240| 1.282.435 109% 75%
Set-08| 2.147.086| 2.370.881| 1.848.972| 2.109.926 110% 86%
Out-08| 2.470.662| 2.707.185| 2.179.495| 2.443.340 110% 88%
Nov-08| 2.406.419( 2.904.410| 2.313.008( 2.608.709 121% 96%
Dez-08( 2.397.462| 2.798.961| 2.216.947| 2.507.954 117% 92%
Jan-09| 3.113.598| 3.567.997| 2.965.548| 3.266.773 115% 95%
Fev-09| 3.209.053| 3.546.269| 2.998.512| 3.272.390 111% 93%
Mar-09| 2.667.014( 3.152.819| 2.605.080| 2.878.949 118% 98%
Abr-09| 2.018.128| 2.350.712| 1.768.125| 2.059.419 116% 88%
Mai-09| 2.160.988| 2.519.754| 1.800.539| 2.160.146 117% 83%
Jun-09| 2.012.835| 2.186.555| 1.514.540| 1.850.548 109% 75%
Jul-09| 1.606.076| 1.982.158| 1.287.808| 1.634.983 123% 80%
Ago-09| 1.396.658| 1.770.602| 1.085.594| 1.428.098 127% 78%
Set-09| 2.121.926| 2.692.580| 1.988.188| 2.340.384 127% 94%
Out-09| 2.555.161| 3.052.928| 2.383.196| 2.718.062 119% 93%
Nov-09| 2.555.226| 3.145.074| 2.488.402| 2.816.738 123% 97%
Dez-09| 2.499.112| 2.876.841| 2.195.172| 2.536.007 115% 88%

Table 15 - Times series R-Forecast

8.13. Time series S
N=108;L=12;B=73; T=12; K=62; 1= {1,2,34}
Decomposition method: Basic SSA

Maximum v>= 0,42

Eigentriples for reconstruction =1, 2, 3-4
Maximum Relative error of reconstruction = 1,77%
Forecast Type =V forecast
Confidence bounds type = Bootstrap
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Interactions = 1000

Forecast — Table 16, with Absolute Forecast, Absolute Upper confidence bound,
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and
Relative Lower confidence bound vs. Forecast.

8.14. Time series T
N =96; L=24;B=49; T=24;,K=26; 1= {1,2,345}
Decomposition method: Basic SSA
Maximum v*=0,35
Eigentriples for reconstruction =1, 2, 3, 4-5
Maximum Relative error of reconstruction = 5,80%
Forecast Type =V forecast
Confidence bounds type = Bootstrap
Interactions = 1000
Forecast — Table 17, with Absolute Forecast, Absolute Upper confidence bound,
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and
Relative Lower confidence bound vs. Forecast.

8.15. Time series V
N=108;L=12;B=25T=12;K=14; 1= {I}
Decomposition method: Basic SSA

No reconstruction and Forecast was performed for this Time series because it could not
be proven that there was a homogenous structure.

Fest Upper Lower Medium  |Upper % |Lower %

Jan-08| 717.499 768.765| 689.638| 729.201 107% 96%
Fev-08| 671.995| 709501 631.292| 670.396 106% 94%
Mar-08| 750.752 799.464| 719.596( 759.530 106% 96%
Abr-08( 713.224| 746.325| 664.520| 705.423 105% 93%
Mai-08| 789.632| 832.600| 752.554 792.577 105% 95%
Jun-08| 739.364| 769.159| 683.064 726.111 104% 92%
Jul-08| 796.622| 839.437| 756.994| 798.216 105% 95%
Ago-08| 725320 757.936| 669.300[ 713.618 104% 92%
Set-08| 765.972| 817.068| 730563| 773.816 107% 95%
Out-08| 686.425 726.699| 637519 682.109 106% 93%
Nov-08| 730.124| 792.033] 700.885| 746.459 108% 96%
Dez-08| 663.576] 709.984| 618.607| 664.295 107% 93%
Jan-09| 727.404 793.865| 697.663| 745.764 109% 96%
Fev-09| 682.095| 727.652| 630.073| 678.862 107% 92%
Mar-09| 763.136( 824.136] 725.090( 774.613 108% 95%
Abr-09| 725.683| 763.580| 660.916| 712.248 105% 91%
Mai-09| 803.628| 855.784| 757.691| 806.738 106% 94%
Jun-09| 752.246 785.449| 679.653| 732551 104% 90%
Jul-09| 809.737| 863.998| 762.239 813.118 107% 94%
Ago-09| 736.248| 776.688| 665.919| 721.303 105% 90%
Set-09| 776.593| 845681 735.606| 790.644 109% 95%
Out-09| 694994 747556| 635305 691.430 108% 91%
Nov-09| 739.176 822.048| 707.359| 764.703 111% 96%
Dez-09| 671.800] 730.858| 617.008( 673.933 109% 92%

Table 16 - Times series S-Forecast
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Fest Upper Lower Medium  |Upper % |Lower %

Jan-08| 210440 212.660( 196.916| 204.788 101% 94%
Fev-08| 186.323 195.819 181.816 188.817 105% 98%
Mar-08| 214551 215.319| 200.798| 208.059 100% 94%
Abr-08| 201858 206.485| 190.472| 198479 102% 94%
Mai-08| 212.344 221.100| 205.391] 213.246 104% 97%
Jun-08| 208.489( 209.391| 194.172| 201.782 100% 93%
Jul-08| 227.183| 233584 214.022| 223.803 103% 94%
Ago-08| 204.848| 215.270| 197.244| 206.257 105% 96%
Set-08| 237518 238.008| 218.830| 228.419 100% 92%
Out-08 217.130| 226.385 206.181] 216.283 104% 95%
Nov-08| 234.575| 243.693| 223.406| 233549 104% 95%
Dez-08| 229.501| 230.918| 210.830| 220.874 101% 92%
Jan-09| 245.308| 256.741| 232.180| 244.461 105% 95%
Fev-09| 226.648| 236.574| 213.982| 225.278 104% 94%
Mar-09| 260.659| 263.019| 238.092| 250555 101% 91%
Abr-09| 234.199| 248.247| 222.808| 235528 106% 95%
Mai-09| 260.123| 268.786| 242.989| 255.888 103% 93%
Jun-09| 250.388| 254.288| 228.647| 241.468 102% 91%
Jul-09| 266.083| 282255 251.825| 267.040 106% 95%
Ago-09| 251.219| 260.275| 231.917| 246.096 104% 92%
Set-09| 284.006| 290.460( 258.838| 274.649 102% 91%
Out-09| 254202 272.313| 240.448| 256.380 107% 95%
Nov-09| 288.337| 296.852| 264.102| 280.477 103% 92%
Dez-09| 271430 279.899| 247.462| 263.680 103% 91%

Table 17 - Times series T-Forecast

8.16. Time series Total
N=108;L=24,B=61;T=24,K=38; | = {1,2,3,4,5,6,7,8}
Decomposition method: Basic SSA

Maximum v>=0,34

Eigentriples for reconstruction =1, 2, 3-4, 5-6, 7-8

Maximum Relative error of reconstruction = 2,90%
Forecast Type =V forecast
Confidence bounds type = Bootstrap

Interactions = 1000

Annex

Forecast — Table 18, with Absolute Forecast, Absolute Upper confidence bound,
Absolute Lower confidence bound, Relative Upper confidence bound vs. Forecast, and
Relative Lower confidence bound vs. Forecast.

Fest Upper Lower Medium Upper % Lower %
Jan-08|26.708.564| 27.549.146|25.363.986[26.456.566 103% 95%
Fev-08|22.985.122(24.437.447|22.323.443(23.380.445 106% 97%
Mar-08(23.328.536| 24.607.161{22.589.688(23.598.425 105% 97%
Abr-08]21.533.099{22.594.734|20.325.469| 21.460.102 105% 94%
Mai-08(22.891.845|24.232.987|22.059.548|23.146.267 106% 96%
Jun-08|22.245.942| 23.134.334|20.927.687( 22.031.010 104% 94%
Jul-08|23.729.058] 24.525.799| 22.367.226| 23.446.512 103% 94%
Ago-08[19.364.793| 20.758.185( 18.539.000(19.648.593 107% 96%
Set-08| 24.895.115| 25.584.899|23.266.405|24.425.652 103% 93%
Out-08|25.266.268(25.948.427|23.608.850(24.778.639 103% 93%
Nov-08|23.555.642(25.295.658|22.955.769| 24.125.714 107% 97%
Dez-08(22.222.550| 23.421.225( 21.075.042(22.248.133 105% 95%
Jan-09| 27.344.911| 28.455.222| 25.710.302|27.082.762 104% 94%
Fev-09|23.225.494| 25.146.499|22.532.430(23.839.464 108% 97%
Mar-09(23.974.835| 25.439.560(22.885.057(24.162.308 106% 95%
Abr-09| 21.872.195{ 23.316.996| 20.492.391|21.904.693 107% 94%
Mai-09(23.323.930| 25.017.006|22.305.905| 23.661.456 107% 96%
Jun-09|22.973.985(23.892.703| 21.086.988(22.489.846 104% 92%
Jul-09| 24.194.781| 25.322.784| 22.652.753|23.987.769 105% 94%
Ago-09| 19.551.998| 21.400.278| 18.635.707(20.017.993 109% 95%
Set-09(25.835.551|26.472.262|23.543.360| 25.007.811 102% 91%
Out-09|25.755.590( 26.732.310|23.835.52225.283.916 104% 93%
Nov-09| 23.815.184| 26.121.567| 23.210.514(24.666.040 110% 97%
Dez-09(22.839.725| 24.194.983| 21.246.572(22.720.778 106% 93%

Table 18 - Times series Total-Forecast
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