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Sumário 

A contaminação sedimentar é um factor de grande preocupação em estuários e outras massas 

de águas costeiras confinadas, muitas vezes submetidas a fontes antropogénicas de poluição. 

Com o objectivo de investigar os efeitos e respostas do berbigão comum (Cerastoderma 

edule) aos contaminantes no sedimento e avaliar o potencial da espécie como organismo 

indicador, o bivalve foi submetido a um ensaio de translocação com sedimentos colectados de 

diferentes locais do estuário do Sado (Portugal). Os berbigões foram recolhidos num local de 

maricultura do estuário do Sado (Portugal), identificado como local D, e foram expostos em 

ensaios de laboratório semi-estáticos, a sedimentos colectados noutros três locais do estuário 

(A, B e C) que revelaram diferentes níveis de metais, contaminantes orgânicos e distintas 

propriedades fisico-químicas, correspondendo a condições que vão desde ausência de impacte 

a impacte moderado quando comparados com os valores-guia de qualidade sedimentar 

disponíveis. Os bivalves foram analisados para bioacumulação de metais (Ni, Cu, Zn, As, Cd 

e Pb) e contaminantes orgânicos (PAHs, PCBs e DDTs). Empregaram-se dois conjuntos de 

biomarcadores para avaliar a toxicidade potencial: indução de metalotioninas (MT) e 

histopathologia da glândula digestiva. Estimaram-se o factor de bioacumulação (BAF) e o 

factor de acumulação biota-sedimento (BSAF) como índices ecológicos de exposição a metais 

e compostos orgânicos. Encontraram-se correlações significativas e positivas entre BSAF e 

MT para PHAs, e entre cada factor (BAF e BSAF) e MT para o Cd. Encontraram-se 

alterações histopatológicas nos berbigões expostos a todos os sedimentos para onde foram 

translocados, houve uma degradação da integridade da glândula digestiva principalmente nos 

organismos do sedimento B e C e no dia 28 do sedimento A. Os resultados permitiriam 

concluir que C. edule responde a sedimentos contaminados e é capaz de regular e eliminar 

contaminantes, sendo adequado para a biomonitorização. Ainda assim, os níveis de 

contaminação sedimentar não explicam a variação na bioacumulação e níveis de MT, que 

podem resultar de concentrações moderadas de contaminantes nos sedimentos e, mais 

importante, ainda não se conhecem os efeitos das interacções de xenobióticos. 
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Abstract 

Sediment–bound contamination is a major concern factor in estuaries and other confined 

coastal water bodies, frequently subjected to anthropogenic sources of pollution. In order to 

investigate the effects and responses of the common cockle (Cerastoderma edule, L. 1558, 

Bivalvia: Cardiidae) to sediment contaminants and to assess the species’ potential as an 

indicator organism, the bivalve was subjected to a laboratorial translocation assay with 

sediments collected from distinct sites of the Sado Estuary (Portugal). Cockles were collected 

from a mariculture site of the Sado estuary (Portugal), herewith identified as site A, and 

exposed through 28–day, semi–static laboratorial essays, to sediments collected from three 

other sites (B, C and D) of the estuary that revealed different levels of metals, organic 

contaminants and physico–chemical properties and that ranged from globally unimpacted to 

moderately impacted levels when compared to available sediment quality guidelines. The 

animals were surveyed for bioaccumulation of metals (Ni, Cu, Zn, As, Cd and Pb) and 

organic contaminants (PAHs, PCBs and DDTs). Two sets of potential biomarkers were 

employed to assess toxicity: whole–body metallothionein (MT) induction and digestive gland 

histopathology. The bioaccumulation factor (BAF) and the biota-to-soil accumulation factor 

(BSAF) were estimated as ecological indices of exposure to metals and organic compounds. 

Significant positive correlations between BSAF and MT were found for PHAs, and between 

each factor (BSAF and BAF) and MT were found for Cd. Histopathological alterations were 

found in cockles exposed to all sediments where they were translocated. The digestive gland 

integrity was found to be especially compromised in cockles from sediment B and C and at 

day 28 from sediment A. Results allowed concluding that C. edule responds to sediment–

bound contamination and is capable to regulate and eliminate both types of contaminants and 

might, therefore, be suitable for biomonitoring. Still, the sediment contamination levels do not 

explain the variation in bioaccumulation and MT levels, which may result from the moderate 

contaminant concentrations found in sediments and, more importantly, from yet unexplained 

xenobiotic interaction effects. 
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Symbology 

T0   sampling day 0 

T14   sampling day 14 

T28   sampling day 28 

ww   wet weight 

dw   sediment dry weight 

Eh   sediment redox potential 

TOM    total organic matter 

MT   metallothionein 

Ni   nickel 

Cu   copper 

Zn   zinc 

Cd   cadmium 

Pb   lead 

As   metalloid arsenic 

PAH   polycyclic aromatic hydrocarbon 

PCB   polychlorinated biphenyl 

DDT   dichloro-diphenyl-trichloroethane 

tPAH   total PAH (sum of all individual PAHs) 

tPCB   total PCB (sum of all congeners) 

tDDT   total DDT (pp'DDD+pp'DDD+pp'DDT) 

DDD   1,1-dichloro-2,2-bis(ρ-chlorophenyl)ethane 

DDE   1,1-dichloro-2,2-bis (ρ-chlorophenyl)ethylene 

DDT   1,1,1-trichloro2,2-bis (ρ-chlorophenyl)ethane 

GC–MS  gas chromatography–mass spectrometry 

ICP-MS  inductive coupled plasma atomic emission spectrometry 

TEL   threshold effects level 

PEL   probable effects level 

PEL-Q   PEL quotient 

SQG-Q  sediment quality guideline quotient indice 

BAF   bioaccumulation factor 

BSAF   biota-sediment accumulation factor 
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1 Introduction 

Marine bivalve molluscs are mainly filter-feeding organisms which due to their sedentary 

lifestyle, are characterised by their very high capability to bioaccumulate chemical substances 

dissolved in the water or bound to suspended particles (Machreki-Ajmi et al. 2008; Solé et al. 

2009). These substances can be organic compounds and trace metals (essential or not), both 

with potential to cause toxic effects. Bivalve filter-feeders are therefore considered good 

bioindicators for the assessment of environmental quality (Cajaraville et al. 2000; Hédouin et 

al. 2007). The assessment of polluted environments based only in chemical analyses is 

difficult, particularly the assessment of polluted sediments due to the complex nature of the 

sediment matrix and the potential for exposure of aquatic organisms to in-place contaminants 

via several routes (Del Valls et al. 1998). The use of biomarkers has been considered to be 

viable measures of impact of toxicity (Huggett et al. 1992; Peakall and Shugart 1993). In 

recent years, biomarkers that may provide information on the effects of xenobiotics in 

organisms have received considerable interest and many of them have been validated in 

bivalves (Geret et al. 2003; Bergayou et al. 2009). Mussels and oysters are the marine 

bivalves most used in pollution monitoring. However, other species have been intensively 

studied because of their importance for human consumption or their close contact with 

sediment (Amiard et al. 2006). Some of these species have been widely employed in toxicity 

test and biomarker techniques have already been validated (Table 1). 

Table 1 - Bivalve species in which Biomarkers have been shown to be induced by 
contaminant exposure. 

Biomarker Specie Tissue/Organ 
Exposure 
condition 

Studied 
contaminant Change Reference 

Lipid 
peroxidation 

a
 R. decussatus Digestive gland Lab Cu Increase 

Roméo and Gnassia-
Barelli 1997 

  Gill Lab Cu No change 
Roméo and Gnassia-
Barelli 1997 

 U. tumidus Digestive gland Field  
PAHs, PCBs, 
others Increase Cossu et al. 1997, 2000 

    Gill Field  
PAHs, PCBs, 
others No change Cossu et al. 1997, 2000 

Metallothionein 
b
 

Adamussium 
colbecki Gills  Lab Cu Increase Viarengo et al. 1997 
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Biomarker Specie Tissue/Organ 
Exposure 
condition 

Studied 
contaminant Change Reference 

 Anadara granosa Blood Lab  Cd Increase Chan et al. 2002 

 Anodonta anatina Kidney  Lab  Cd Increase Streit and Winter 1993 

 Anodonta cygnea Whole soft tissue Lab  Cu No change Tallandini et al. 1986 

  Whole soft tissue Lab Zn No change Tallandini et al. 1986 

 Anodonta grandis Gills  Field Cd Increase 
Couillard et al. 1993, 
Giguère et al. 2003 

  Digestive gland Field Cd Increase Couillard et al. 1993 

  

Remaining soft 
tissue Field Cd Increase Couillard et al. 1993 

 

(Anodonta) 
Pyganodon grandis Whole soft tissue Field Cd Increase Couillard et al. 1995a 

  Gills  Field Cd Increase Wang et al. 1999 

 Corbicula fluminea 
Gill, mantle and 
adductor muscle Lab Cd Increase Doherty et al. 1988 

  Visceral mass  Lab Cd Increase Doherty et al. 1988 

  Whole soft tissue  Field Cd Increase Baudrimont et al. 1999 

  Whole soft tissue  Field Zn Increase Baudrimont et al. 1999 

 Macoma balthica Whole soft tissue  Lab Cu Increase Johansson et al. 1986 

  Whole soft tissue  Field Cu Increase Ag Johansson et al. 1986 

  Whole soft tissue  Field Zn Increase Ag Johansson et al. 1986 

  Whole soft tissue  Field Ag Increase Ag Johansson et al. 1986 

  Whole soft tissue  Lab Cd Increase Bordin et al. 1994, 1997 

  Whole soft tissue  Lab Cu Increase Bordin et al. 1994, 1997 

  Whole soft tissue  Lab Zn Increase Bordin et al. 1994, 1997 

  Whole soft tissue  Field  Cd Increase Bordin et al. 1997 

  Whole soft tissue  Field  Cu Increase Bordin et al. 1997 

  Whole soft tissue  Field  Zn Increase Bordin et al. 1997 

  Whole soft tissue  Lab  Cd Increase Mouneyrac et al. 2000 

  Whole soft tissue  Lab  Ag Increase Mouneyrac et al. 2000 

  Whole soft tissue  Lab  Hg Increase Mouneyrac et al. 2000 

  Whole soft tissue  Field  Cu Increase Bray et al. 1983 

  Whole soft tissue  Field  Ag Increase Bray et al. 1983 

 
Mercenaria 
mercenaria Kidneys Lab Cd Increase Robinson et al. 1985 

 
Mizuhopecten 
yessoensis Gills  Lab  Cd Increase Evtushenko et al. 1986 

  Hepatopancreas  Lab  Cd Increase Evtushenko et al. 1986 

 
Protothaca 
straminea 

Viscera and 
Kidney  Lab Cd Increase Roesijadi 1980 

  
Viscera and 
Kidney  Lab Cu Increase Roesijadi 1980 

  
Viscera and 
Kidney  Lab Zn Increase Roesijadi 1980 

 Rangia cuneata Whole soft tissue  Field Cu Increase Bray et al. 1983 

  Whole soft tissue  Field Ag Increase Bray et al. 1983 

 
Ruditapes 
decussatus Whole soft tissue  Lab Cd Increase Bebianno et al. 1993 

  Digestive gland  Lab Cd Increase Bebianno et al. 1993 

  Gills  Lab Cd Increase Bebianno et al. 1993 

  Digestive gland  Lab Cu Increase 
Hamza-Chaffai et al. 
1998 

  Gills  Lab Cu Increase 
Roméo and Gnassia-
Barelli 1995 

  Gills  Lab Cd Increase 
Bebianno and Serafim 
1998 

 
(=Ruditapes) Tapes 
philippinarum Gills  Field Cu Increase Irato et al. 2003 
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Biomarker Specie Tissue/Organ 
Exposure 
condition 

Studied 
contaminant Change Reference 

  Digestive gland  Lab Cd Increase Ng and Wang 2004 

  Digestive gland  Lab Zn No change Ng and Wang 2004 

  Digestive gland  Lab Ag Increase Ng and Wang 2004 

  Whole soft tissue  Lab Cd Increase Ishiguro et al. 1982 

 
Scapharca 
inoequivalis  Lab  Cd Increase Serra et al. 1995 

AchE
 

Scrobicularia plana Digestive gland Field 
metals/organics 
(PCB, PAH) Change Solé et al. 2009 

a Adapted from Livingstone 2001 
b Adapted from Amiard et al. 2006 

The common cockle (Cerastoderma edule, Bivalvia: Cardiidae) is a filter-feeding bivalve 

common in the North Sea and north-east Atlantic, being widely distributed from north-east 

Norway to West Africa. It lives buried in the upper few centimetres of the sediment, 

frequently forming high populational densities, in marine and estuarine environments. High 

inter-individual variability of reproduction stage, parasite load, metallothionein (MT) 

concentration, etc. is generally observed in C. edule populations (Baudrimont et al. 2006). It is 

highly tolerant to environmental variations of physico-chemical parameters such as sediment 

grain size and salinity, and may thus be employed as an indicator organism along an estuarine 

gradient. In Sado estuary, i.e. this cockle colonizes all intertidal sediments, from the sand 

beach of Tróia Peninsula close to the estuarine mouth to the mudflats in the channel of Águas 

de Moura. C. edule has been tested in recent studies (Jung et al. 2006) but despite its 

characteristics, there are very few ecotoxicological studies with this bivalve. 

The response to sediment–bound contamination and the capacity to regulate and eliminate 

both organic and metallic contaminants are reflected in biomarkers. Biomarkers are defined as 

indicators of normal biological processes, pathogenic processes or pharmacological responses 

to a therapeutic intervention (Biomarkers Definitions Working Group 2001) Biomarkers can 

be indicators of either exposure or effects. Biomarkers of exposure indicate that exposure to a 

chemical or class of chemical has occurred, but do not provide knowledge of toxic effects at 

the level of the organisms, and the biomarkers of effect reflect a deteriorating condition 

(Koeman et al. 1993). MT induction and histopathology are two biomarkers usually 



 12 

employed. MT is a protein involved in metal (essential or not) accumulation and elimination 

strategies and, in many bivalves MT response has been found revealing higher sensitivity with 

increase of pollution (Marie et al. 2006; Serafim and Bebianno 2009). However, metals are 

not the only factor in the MT induction, also other factors can interfere: in C. edule the 

possible impact of the period of reproduction, the infection of digenean parasites as well as 

other factors related with the metabolic state of each specimen supposed to be important 

contributors to fluctuations in MT concentration (Baudrimont et al. 2006). Most of the 

histopathological lesions could be related to environmental stressors, as soft-tissue 

concentrations of contaminants (Gold-Bouchot et al. 1995). Gills and digestive gland in 

molluscs appear to be good survey organs for pollution studies (Gold-Bouchot et al. 1995; 

Syasina et al. 1997; Zaldibar et al. 2007, 2008), but the histopathology in C. edule has 

received little or no focus at all. 

The Sado estuary, located on the west coast, is the second largest in Portugal with an area of 

approximately 24,000 ha. The estuary comprises the Northern and the Southern Channels, 

partially separated by intertidal sandbanks. Water exchange is conducted mainly through the 

Southern Channel, which reaches a depth of 25 meters, whereas the maximal depth of the 

Northern Channel is generally 10 meters. Most of the estuary is classified as a natural reserve, 

with a weighty ecological and landscape value. The region equally plays an important role for 

the leisure and recreation, and therefore, is important in the local and national economy. The 

city of Setúbal located in the North edge of Sado estuary, has a large resident population and 

an important heavy-industry in the adjacent area. The estuary is an important fishing area and 

many aquaculture facilities have been settled here along the past few years. The southernmost 

section of the estuary is mainly characterized by an important tourism-based economy. The 

major sources of anthropogenic contaminant input are mainly the pyrite mines in the river 

basin, the industries that involving pulp and paper, pesticides, fertilizers, yeast, food and 

shipyards (Catarino et al. 1987) along the North shore of the lower estuary and the runoffs 
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from extensive agriculture grounds located upstream. The results of previous studies indicate 

that anthropogenic sources play a major role on the elemental composition of the Sado 

estuarine sediments (Cortesão and Vale 1995) and, this estuary has a low contamination level 

with some local hotspots and a moderate potential for observing adverse biological effects 

(Caeiro et al. 2005). 

Translocation of bivalves between areas with different levels of water and sediment 

contamination has long been employed for standard biomonitoring of aquatic ecosystems. 

These procedures have been proved to provide valuable information on the molluscs’ 

responses and defences to contamination, with especial respect to the kinetics of xenobiotic 

uptake and elimination (see De Kock and Kramer 1994 for a thorough review). 

The present work intends to recreate a translocation assay with C. edule, under controlled 

laboratorial conditions in order to determine the species’ potential as an indicator organism 

for contaminated estuarine sediments and to assess the effects and responses of exposure to 

metallic and organic toxicants. 
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2 Materials and methods 

2.1 Experimental assay 

The sediments were collected from four different sites (designated as sites A, B, C and D) of 

the Sado estuary (Fig. 1) on November 2006, selected by their different levels of metallic and 

organic contamination. Site A is located near an environmentally protected area, the Sado 

estuary Natural Reserve, and is the most distant from sources of direct contamination. Due to 

its location in the south channel of estuary, this site has a greater influence of oceanic 

hydrodynamics and a lower residence time than the others. Site B is located near the port of 

Setúbal and site C in the industrial zone near factories for the production of fertilizers, 

pesticides and others (such as paper mills, thermoelectric, shipyards, etc), having been 

identified as potentially contaminated. They are both located in the North Channel, an area of 

low hydrodynamics which facilitate the retention of contaminants and fine particles of 

sediment coming from the upper estuary. Site D, located near aquaculture and small-scale 

fishery grounds consist of a lower hydrodynamics, relatively confined, area. Site D is the only 

one located in the intertidal zone, and the other sites (A, B and C) are located in the subtidal 

zone. 
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Fig. 1 - Map of the study area. 

Cockles [28 ± 1.6 mm shell length, 8.0 ± 1.4 g wet weight (ww)] were collected on November 

2006 from site D of the Sado estuary and acclimatized to test conditions (temperature of 18ºC 

and salinity of 34) in clean sand and seawater for 48h. The bivalves were exposed to the 

sediments (A, B and C) for 28 days through a static arrangement of bioassays (performed in 

duplicate). Each replicate consisted of a tank (24x11x39 cm) in which were allocated 2 L of 

sediment and 5 L of clean seawater. Forty animals were distributed per tank, exposed to 

continuous aeration and fed with commercial fish food (Avipar Lda., Portugal) during assay. 

Each week, 50% of the seawater was changed and the following parameters monitored: 

salinity, dissolved oxygen, ammonia, pH and temperature. The animals were collected and 

sacrificed for analysis on day 0 (T0), 14 (T14) and 28 (T28) in order to determine 

bioaccumulation of metallic and organic contaminants, metallothionein induction and 
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histopathological alterations of the digestive gland. For each test and sampling time, 20 

individuals were used to determine the organic contaminants, 10 individuals to determine the 

metals and metallothioneins and 10 to examine the histopathology. Animals collected at T0 

consisted of 15 individuals collected directly from the acclimatization tanks. 

 

2.2 Sediments analyses 

2.2.1 Physico chemical characterization 

Sediment redox potential (Eh) was measured immediately after collection, using an Orion 

model 20A meter with a H3131 Ag/AgCl reference electrode (Orion Research Inc., USA). 

For the analysis of organic matter, the sediment was previously dried in stove at 60-80 °C in a 

and then combusted in oven at 500 ± 25 °C for 4 hours. The content of organic matter 

(extrapolated from total combustible carbon, TOM) is given in percent (%) sediment dry 

weight (dw). Fine fraction (particle size < 63 µm) was determined by sieving after treating the 

samples with hydrogen peroxide and disaggregation with pyrophosphate. 

 

2.2.2 Contaminant determination 

The sediments were analysed for the metals nickel (Ni), copper (Cu), zinc (Zn), cadmium 

(Cd) and lead (Pb), and the metalloid arsenic (As). Sediment samples (≈100 mg dw) were 

mineralized completely with 6 cm3 of HF (40%) and 1 cm3 of Aqua Regia (HCl-36%: HNO3-

60%; 3:1) in closed Teflon vials in a water bath at 100 °C during 1 h. Contents were 

evaporated to near dryness redissolved in HNO3 and Milli-Q water, heated for 20 min at 75 

°C and diluted to 50 mL with Milli-Q grade ultrapure water (Caetano et al. 2007). The metal 
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concentrations were determined in the same samples but in separate runs using a quadropole 

ICP-MS (Inductive coupled plasma atomic emission spectrometry) (Thermo Elemental, 

Xseries, USA) equipped with a Peltier Impact bead spray chamber and a concentric Meinhard 

nebulizer. MESS-2 (NRC, Canada), PACS-2 (NRC, Canada) and MAG-1 (USGS, USA) were 

the references materials used to validate the procedure and were found within the certified 

range. Results are given in mg kg-1 sediment dw. 

The determination of PAHs (polycyclic aromatic hydrocarbons) was performed on a GCQ 

Trace Finnigan gas chromatography–mass spectrometry (GC-MS) system with a 30 m · 0.25 

mm · 0.25 lm film thickness DB-5 MS column (Argilent, USA) in selected ion mode (SIM) 

(Martins et al. 2008). Seventeeen three- to six-ring PAHs were quantified. For PCB 

(polychlorinated biphenyls) and DDT (dichloro-diphenyl-trichloroethane) analysis, dry 

sediment samples and glass-fibre filters with suspended particulate matter were Soxhlet 

extracted with n-hexane for 16 h. The extracts were cleaned up with Florisil and sulfuric acid 

(Ferreira et al. 2003). Eighteen PCB congeners and pp’DDD, pp’DDE and pp’DDT as total 

DDT were analysed. The SMR 1941b reference sediment (NIST, USA) was used to validate 

of the analysis and were found within the certified range. The detection limit was 0.01 ng.g-1. 

All concentrations are expressed in ng g−1.sediment dw. 

The PEL quotient (PEL-Q) was calculated to evaluate the impact potential for observing 

adverse biological effects of the tested sediments. This quotient is based on the published 

guideline values for coastal waters, namely the threshold effects level (TEL) and the probable 

effects level (PEL) (MacDonald et al. 1996). These guidelines have been largely used in 

estuarine sediment ecological risk assessment studies. This index was calculated for all 

contaminants of each sediment as given by the formula (Long and MacDonald 1998): 

---------- 
Note: the quantification of organic conaminants in sediments (PAHs, PCBs and DDTs) by 
GC-MS was performed by the Instituto Nacional dos Recursos Biológicos 
(IPIMAR_INRB) 
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PEL − Qi = Ci

PEL
      [1] 

where PEL is the guideline value for the contaminant i and Ci the measured concentration of 

the contaminant in the surveyed sediment. The sediment quality guideline quotient indice 

(SQG-Q) was calculated to compare the four sites impacted by mixtures as described by Long 

and MacDonald (1998): 

     [2] 

where PEL-Qi is the indice deriving from [1] for the contaminant i and n the number of 

contaminants under analysis. Stations were scored according to their overall potential of 

observing adverse biological effects, as proposed by MacDonald et al. (2004): SQG-Q < 0.1 - 

unimpacted; 0.1 ≤ SQG-Q < 1 - moderately impacted; SQG ≥ 1 - highly impacted. 

 

2.3 Organism analysis 

2.3.1 Bioaccumulation 

For the analysis of metals, whole-body individual samples were dried (0.025 ± 0.003 g dw) in 

borosilicate, lead free, glass vials at 60 ºC during 5 days and then transferred to Teflon vessels 

adding 5 ml nitric acid (65%) to digest for 24 hours at room temperature. They were placed in 

a water bath at 95 ºC during 4 hours, then 1 ml hydrogen peroxide (30% v/v) was added and 

Teflons were placed in the water bath for another hour (Clesceri et al. 1999). Finally, the 

samples are stored in HDPE plastic bottles (25 ml) after elution with Mili-Q water and were 

kept at 4 ºC until reading. The quantification of the concentrations of metals (Ni, Cu, Zn, Cd 

SQG − Q = 

− Q i 
i = 1 

n 
∑ 

n 

PEL 
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and Pb) and metalloid (As) was determined using ICP-MS. The organic contaminants were 

determined in the same sample by GC-MS after soxhlet extraction (3- to 6 ring PAH, 18 PCB 

congeners plus pp’DDD, pp’DDE and pp’DDT as total DDT). Quantification was carried out 

similarly to the procedure described in the sediments, adapted to biological tissue (Martins et 

al. 2008).  

 

2.3.2 Metallothionein induction 

Metallothionein induction was determined by quantification of thiols in whole soft tissue 

samples according to Costa et al. (2008). In brief: samples were homogenized in Tris-HCl 

0.02 M buffer (pH 8.6). Homogenates were centrifuged at 17,000 rpm at 4 ° C for one hour. 

The supernatant was heated in a water bath at 80 °C for 10 minutes to destroy the proteins 

with less thermal stability, and were centrifuged as previously described. Finally, the 

metallothioneins were quantified from heat-treated cytosols by differential-pulse 

polarography with a static mercury-drop electrode (DPP-SMDE) using a 693 VA processor 

and a 694 VA stand (Metrohm, Herisau, Switzerland). In absence of a commercial form of 

bivalve MT, Rabbit MT isoforms I & II (Sigma, St Louis, MO, USA) was used for the 

standard addition method. 

 

2.3.3 Histopathology 

Cockles were fixed in Bouin-Holland’s solution (27% formaldehyde, 7% acetic acid, and 

picric acid until saturation) for approximately 48 hours at room temperature. Afterwards, the 

samples were washed with water for 24 hours to remove the excess picric acid, dehydrated in 

---------- 
Note: the quantification of organic conaminants in organisms (PAHs, PCBs and DDTs) by 
GC-MS was performed by the Instituto Nacional dos Recursos Biológicos 
(IPIMAR_INRB) 
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a progressive series of ethanol, an intermediate embedding with xylene (≈ 100%) was carried 

out. Samples were then embedded in paraffin for about 12 hours. The blocks were cut in 

sections of 5 µm and then stained with haematoxylin and eosin (H & E) (Martoja and Martoja 

1967) and mounted with DPX resin (BDH). 

 

2.4 Bioaccumulation and biota-sediment accumulation factors 

The bioaccumulation factor (BAF) and the biota-to-sediment accumulation factor (BSAF) 

were measured regarding the metals (Ni, Cu, Zn, Cd and Pb), metalloid (As ) and organic 

contaminants (PAHs, PCBs and DDTs). The BAF was calculated after 14 and 28 days of 

exposure according to the formula (Lee 1992): 

s

o

C

C
BAF =       [3] 

The BSAF after 14 and 28 of exposure = BAF normalized to the organic carbon content in the 

sediment (adapted from formula of USEPA 1995): 

    [4] 

where Co was contaminant concentration in organism expressed in mg.kg-1 dry weight of 

tissue, Cs was contaminant concentration in sediment expressed in mg.kg-1 dry weight of 

sediment, and TOM was expressed in % Total Organic Matter of sediment on a dry weight 

basis. 

 

  
BSAF = C o 

C s   
  (    ) 

  
TOC 
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2.5 Statistical analysis 

The non-parametric tests Kruskall-Wallis H and Mann-Whitney U were employed to 

assess global and pairwise statistical differences, respectively. The Chi-square predicted x 

observed test was applied to assess significant differences between the concentrations of 

organic contaminants (in sediment and bioaccumulation) of all tests and sampling points. The 

non-parametric Spearman’s Rank Order Correlation ρ statistic was used to assess the 

correlation between BAFs/BSAFs and metallothioneins. A significance level of 5% was set 

for all analyses. All the statistical results were obtained using Statistical Package for Social 

Sciences (SPSS Inc., Chicago, IL, USA), version 15.0.1. 
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3 Results 

The values obtained of the parameters monitored each week were under standard conditions. 

Values were the following: salinity = 34 ± 1, dissolved oxygen = 42 ± 2 %, ammonia < 0,5 

mg L-1, pH = 7.8 ± 0.1, and temperature = 18 ± 1 ºC. 

 

3.1 Physical characterization of sediments 

There is a linear relation between FF and TOM content in sediments from the 4 sites (Fig. 2). 

 

Fig. 2 - Linear relation between FF and TOM for all sediments tested. 

The sediment A has less FF and TOM. The other sediments have high FF and TOM, the grain 

size of B and D is almost entirely FF (97,9 and 94,1 % respectively) and have a high organic 

matter content (11,8 and 12,4 % respectively). 

Redox potential is negative for all sites, being C the most reduced sediment. D is the only 

intertidal sediment and it is the less reduced (Table 2). 
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Table 2 - Characterization of sediments from sites D, A, B, and C. 

Site FFa (%) TOMb (%) Ehc (mV) 

D 94.1 12.4 -187 

A 37.3 3.2 -233 

B 97.9 11.8 -290 

C 76.8 7.7 -316 

a Particle size < 63 µm 
b Total organic matter 
c Redox Potential 

 

3.2 Contaminants in sediments 

The results of the metal and organic concentrations on sediments from the 4 sites are 

presented in Annex I. The sediments B and D present higher concentrations of metals and 

metalloid (As), with values above TEL for all metals and metalloid except Cd, highlighting 

concentrations of Zn and Cu above PEL in sediment B. As, Cu and Zn present values above 

TEL on sediment A and As, Cu and Pb present values above TEL on sediment C (Fig. 3). 

Values of tPAHs obtained decreased in the following order on sediments: C>B>D>>>A. 

Concentrations of 4- and 5-ring PAHs were higher on all sediments. Values above TEL were 

not found in the sediment A, and only a few compounds of 3-, 4- and 5-ring PAHs had 

concentrations above TEL on sediments B, C and D (Fig. 4 and 5). Values of tPCBs obtained, 

decreased in the following order on sediments: C>>B>D>A, with any value above TEL (Fig. 

6). The levels of the organic contaminants analysed were irrelevant in the sediment A 

compared with other sediments; PCB-26 (tri-chlorinated) was the congener with higher 

concentration on sediment D; penta-, hexa- and hepta-chlorinated were the higher 

concentrations on sediment B; and penta- and hexa-chlorinated on sediment C. Congeners 
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with the highest concentration on the sediment C were PCB-101 and PCB- 118 (penta-

chlorinated), and PCB-138, PCB-151 and PCB-153. The values of tDDTs obtained decreased 

in the following order on sediments: B>C>A>D. Sediment D presents very low 

concentrations of tDDTs, pp’DDE was the only above detection limit. pp’DDT were the 

forms with the highest concentrations on sediments A, B and C, particularly on sediment B 

(Fig. 6), being the major metabolite of tDDTs. Value obtained of SQG-Q for the 4 sediments 

follow the sequence (from worst to best sediment quality): B>D>C>A. Due to the weight of 

SQG-Q is mainly metallic for all sediments, SQG-Q discriminated calculated for metals 

follow the same sequence as for the total, but those calculated for organics: B>C>D>A. 

Fig. 3 - Metal concentrations of sediments from sites D, A, B and C and TEL and PEL for 
each metal and metalloid. 
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Fig. 4 - Concentrations of 3- ring PAHs of sediments from sites D, A, B and C and TEL and 
PEL for each compound. 

 
Fig. 5 - Concentrations of 4- and 5- ring PAHs of sediments from sites D, A, B and C and 
TEL and PEL for each compound. 
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Fig. 6 - tPCB and PAH (pp’DDD, pp’DDE and pp’DDT) concentrations of sediments from 
sites D, A, B and C and TEL and PEL for each compound. 

 

3.3 Bioaccumulation and metallothioneins in C. edule 

The results of metallothioneins and bioaccumulation in C. edule are present in Annex II. 

Significant decrease of metallothioneins over time stands out in organisms of the sediment C 

(Fig. 7). 

 

Fig. 7 - Concentration of metallothioneins in C. edule after 14 and 28 days of exposure to all 
sediments. 

* indicates significant differences (ρ<0,05) between tests and D (Mann–Whitney U test) 
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There is a great variability of the bioaccumulation of metals in each individual and over time. 

Main rates of bioaccumulation are found in organisms of sediment B, with statistically 

significant differences in As (p  < 0,01), Pb (p < 0,05) and Zn (p < 0,01) (Fig. 8 and 9). 
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Fig. 8 - Bioaccumulation of Cu, As, Cd and Pb after 14 and 28 days of exposure to all 
sediments. 

* and ** indicate significant differences (p < 0,05 and p < 0,01, respectively) between tests 
and D (Mann–Whitney U test) 
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Fig. 9 - Bioaccumulation of Ni and Zn after 14 and 28 days of exposure to all sediments. 

* and ** indicate significant differences (p < 0,05 and p  < 0,01, respectively) between tests 
and D (Mann–Whitney U test) 
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sediment C, and penta-chlorinated in T14 in the sediment C. DDTs were only bioaccumulated 

in T28 in the sediment B with statistically significant differences (p < 0,05). pp’DDT had the 

main weigh in tDDTs (Fig. 10). 
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Fig. 10 - Bioaccumulation of organic contaminants after 14 and 28 days of exposure to all 
sediments. 

* and ** indicate significant differences (ρ<0,05 and ρ<0,01, respectively) between tests and 
D (chi-square test) 

 

3.4 BAFs and BSAFs 

The bioaccumulation factor and the biota-sediment accumulation factor are presented in the 

Annex III. On sediment A, BAFs for all contaminants (except DDTs) were higher than in the 

sediment D. On sediment C, BAFs for all metals (except Pb) were higher than in sediment D 

and BAFs for PCBs were extremely lower than in the other sediments.  

BSAFs were lower for organic contaminants on sediments A, B and C than in D. In general, 

they were lower also for metals, except Cd, and PAHs for sediment A, Cd and PCBs for 

sediment B, and As, Cd, Ni and Zn for sediment C. Both factors for Cd and BSAF for PAHs 
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were highly correlated to MT induction (ρ = 0.943, p < 0.01 and ρ = 0.886, p < 0.05 

respectively) (Fig. 11 and 12), revealing a positive interaction between the contaminants. 

 

Fig. 11 – MT (mg.g-1 whole soft tissue dry weight) and BAFs and BSAFs for Cd after 14 and 
28 days of exposure to all sediments. 

 
Fig. 12 - MT (mg.g-1 whole soft tissue dry weight) and BAFs and BSAFs for tPAHs after 14 
and 28 days of exposure to all sediments. 
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3.5 Histopathology 

The Fig. 13 shows the digestive gland in cockles from sediment D in T0. The digestive gland 

apparently seems normal, without alterations. In comparison with the sediment D, the 

digestive gland of cockles from other sediments showed significant differences. Degradation 

in the digestive gland tubule integrity is shown in the organisms from all sediments, except 

the sediment D. The histological damages are present in most organisms and varied 

depending on sediment and time of exposure. In general, there is a decrease of connective 

tissue (Fig. 14C, D, Fig. 15A-D, Fig. 16A-D). The excretory cells increased slightly in 

sediment A (Fig. 14A, B) and highly in sediment C (Fig. 16A). The cells of tubules detached 

from epithelium are identified in the cockles from sediment B, that is the most contaminated 

(Fig. 15A-D) and at day 28 from sediment A (Fig. 14C, D) and C (Fig. 16C, D), where the 

level of contaminants are lower. Increase of lumen size of the tubules of digestive gland is 

observed in cockles from sediment C (Fig. 16B). Occasionally, hyperplasia of epithelial cells 

was found in sediment B (Fig. 14A). 

  

Fig. 13 - Histological sections stained with haematoxylin and eosin of digestive gland of C. 
edule. Scale bar: 50 µm. 

Image A: cockles collected from site D. they show the digestive gland without obvious 
alterations, high connective tissue content (ct), and lumen (L), digestive cells (dc), excretory 
cells (arrows), epithelium and cells of digestive gland tubules intact. Image B: is an 
enlargement of image A. It shows a digestive gland tubule, where the lumen (L) and 
connective tissue (ct) are intact, and the digestive cells (dc) and excretory cells (arrows) are 
easily distinguished.
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Fig. 14 - Histological sections stained with haematoxylin and eosin of digestive gland of C. 
edule. 

Images A and B: from site A on day14. The number of excretory cells (arrows) increased 
slightly but the digestive glands seem still in good condition. Images C and D: from site A on 
day 28. It shows intact epithelium and significant damages: disaggregation and 
undifferentiated cells (arrowheads), decreased in connective tissue. Scale bar: 50 µm. 
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Fig. 15 - Histological sections stained with haematoxylin and eosin of digestive gland of C. 
edule. 

Images A and B: from site B on day 14. There is an obvious degradation in the digestive 
gland integrity, cells of tubules detached from epithelium (arrowheads), slight decrease of 
connective tissue and occasionally hyperplasia of epithelial cells (arrowcurves). Images C and 
D: from site B on day 28. Slight decrease of connective tissue and cells of tubules detached 
from epithelium (arrowheads). Scale bar: 50 µm. 
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Fig. 16 - Histological sections stained with haematoxylin and eosin of digestive gland of C. 
edule. 

Images A and B: from site C on day 14. Image A shows epithelium of tubules intact but 
almost no connective tissue and high increase of excretory cells (arrows). Image B shows the 
number of excretory cells (arrows) increased slightly and the lumen size of the tubules 
increased significantly. Images C and D: from site C on day 28. The histological damages are 
very obvious: degradation in the digestive gland tubule integrity, in which may be observed 
loss of the connective tissue and epithelial tissue structure and epithelial lifting from tubule 
basal laminae (arrowheads). Scale bar: 50 µm. 
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4 Discussion 

In our study, BAF values generally presented a similar evolution, decreasing when sediment 

TOM increased. A similar results was observed in a study of bioaccumulation of atrazine and 

chlorpyrifos in the land worm Lumbriculus variegatus (Jantunen et al. 2008). An exception, 

however, was observed regarding the organic contaminants. BAF of PCBs in the sediment C 

is much lower than in other sediments, this may be due to the existence of a higher 

concentration of PCBs in the sediment and cockles maintain the same capacity for 

assimilation of PCBs, regardless of the initial concentration in the sediment. On the other 

hand, the opposite was observed with PAHs and DDTs. The concentration of PAHs in the 

sediment A was lower than in the other sediments and therefore, BAF of PAHs was much 

higher. BAF of DDTs in sediment D was observed to be higher although the concentration of 

DDTs in this sediment was very low. BAFs were more elevated in Cd and Ni (>> 1) and 

DDTs (almost always > 1). For metals, BSAF value was always lower in sediment A (except 

for Cd) and for organics it was always lower in sediment C. Theoretically, if the 

bioavailability of contaminants depends only on the existence of a perfect correlation between 

contaminant concentration and TOM, BSAF should be constant, but for the other sediments, 

the BSAF values obtained were very variable. The large variability found in BSAF values 

may be explained by the different quality of organic matter contents, sorption behavior and 

other physico-chemical parameters affecting to the bioavailability of contaminants. Variable 

values of BSAF have also been found in the bioaccumulation to Lumbriculus variegatus 

(Jantunen et al. 2008) and on the bioaccumulation of cadmium and BDE-99 by Baltic Sea 

benthic invertebrates (Thorsson et al. 2008). Significant positive correlations were found 

between BAF and BSAF of Cd and MT. This indicates that cockles respond not only to the 

concentration of Cd bioaccumulated but also to the relationship between the concentration of 

Cd in the organism and in the sediment, i.e. the concentration at which they are exposed. This 

was also verified in a study with the metalloid arsenic in the bivalve Corbicula fluminea 
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(Costa et al. 2009). Significant positive correlations were found between BSAF of PAHs and 

MT, being this response probably related with oxidative stress in cockles. 

The time-of-exposure factor is known crucial for the bioaccumulation of contaminants (see 

Luoma and Rainbow 2005). Cockles may need an adaptation period to reach the limit of 

accumulation in relation to the concentration in the sediment. This is reflected in the total 

values of BAFs for all sediments. The sediment A is the least polluted (SQG-Q = 0.082) and 

has a total BAFs higher, and the sediment B is the most contaminated (SQG-Q = 0.313) and 

has a total BAFs lower than the others. The sediment D is the second more contaminated 

(SQG-Q = 0.181) but has BAF slightly below to sediment A. The cockles came from 

sediment D, where they were exposed to local contamination throughout their lifes and it is 

possible that a steady state could be attained between the levels of contaminants in the 

districts compartments of the ecosystem. 

Translocation from one site to another caused significant damages to the cockles’ digestive 

gland. The histological analysis identified different responses of the organisms from different 

stations. In a study of histopathological effects of petroleum hydrocarbons and heavy metals 

on the American oyster, they related the histopathological lesions to certain contaminants but 

also to salinity (Gold-Bouchot et al. 1995), this can be verified in our study because the 

histopathological damages were found in the cockles from all sediments where they were 

translocated, as the sediment A and C have less contamination that the sediment D according 

to the SQG-Q calculated. Early lesions (day 14) and higher intensity are presented in the 

cockles from sediment B and C; these sediment have higher contamination that the sediment 

A, where the lesions are present only at day 28. This could indicate a greater effect caused by 

contaminants than by other factors. The sediment A has a SQG-Q below 0.1, so that 

contamination should not cause impact (MacDonald et al. 2004). However in several studies it 

is verified that stress in molluscs provokes enhanced excretory activity in digestive cells and 
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due to this, the cell-type composition of the digestive gland epithelium may result severely 

altered (Zaldibar et al. 2008). 

The slight increase in the number of excretory cells in cockles from sediment A at day 14 

(Fig. 14A, B) could be due to the low level of contaminants (SQG-Q < 0.1) but at day 28 the 

excretory cells are rarely identified due to the presence of severe lesions. Decrease of 

connective tissue and dissagregation and unidentified cells were presented (Fig. 14C, D). 

These damages do not appear to be caused by the contaminants, since they are in relatively 

small quantities, unless non analysed chemicals were present in this sediment or due to the 

local low TOM and FF, the bioavailability was higher. The highly increased of the number of 

excretory cells in cockles from sediment C at day 14 (Fig. 16A, B) seems to be caused by 

contaminants. This sediment has SQG-Q > 0.1, and according to MacDonald et al.(2004) this 

could have a moderate impact in organisms. At day 28, the damages presented were loss of 

epithelial tissue structure and epithelial lifting from tubule basal laminae (Fig. 16C, D), there 

is an evident degradation in the digestive gland tubule integrity, so the excretory cells are 

hardly identified. In cockles from sediment B, histological damages were very pronounced at 

day 14 and 28. There is an early degradation in the digestive gland integrity, cells of tubules 

detached from epithelium and slight decrease of connective tissue (Fig. 15A-D) and 

occasionally hyperplasia of epithelial cells (Fig. 15A). This could be due to the sediment 

which has SQG-Q higher than the other sediments but below 1, so that contaminants would 

have a moderate impact. 

Induction of MT is usually related with the metal concentrations. However, metals are not the 

only factor in the MT induction, also other factors can interfere. In a study with Corbicula 

fluminea, MT transcripts were higher in the digestive gland and the gills of bivalves collected 

in July, where the result could be linked to the increasing metabolic activity related to the 

seasonal temperature elevations (Bigot et al. 2009). Additionally, in a study with C. edule, it 
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is suggested that parasite infection in cockles can modulate MT synthesis that could 

consequently interfere with the response of these protective proteins in case of metal 

contamination. They monitored MT concentrations in cockles and they demonstrated that MT 

levels were higher in parasitized individuals (Baudrimont et al. 2006). Cockles were dying 

after a few months in systems of acclimatization, probably due to the development of 

parasites found in these animals (Fig. 17). Therefore, MT induction is related to 

environmental stressors. In our study, there was a decrease of MT levels in cockles from all 

sediments and, the most significant decrease was been observed in organisms exposed to 

sediment C. However, significant positive correlations between BSAF and MT were found for 

PHAs, and between both BSAF and BAF and MT for Cd, which is in general accordance with 

the known high inducibility of MT by this metal. For instance, in a study of Cd and Zn 

bioaccumulation, C. fluminea revealed variations in MT concentrations strongly correlated to 

progressive Cd and Zn bioaccumulation (Marie et al. 2006). On the other hand, the positive 

correlation between Cd BSAFs and BAFs to MT suggests MT induction is dependent of the 

availability of strong MT inducers, which adds up to yet another factor contributing to the 

variability in MT responses as suggested by other surveys (Costa et al. 2008). The reduction 

in MT contents, conversely, may be, at least partially, explained by the complex effects of 

contaminant interactions. PAHs, for instance, found in the tested sediments, have been found 

to suppress MT synthesis in prevence of strong metal inducers (Risso–De Faverney et al., 

2000). 
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Fig. 17 – Diversity of organisms found within C. edule in systems of acclimatization after a 
few months. Many of these organisms were probably parasites. 

Note that the images are not scale drawings and this figure just shows the variety of parasites 
found in the cockles. 

 

This study revealed notable responses in cockles to different levels of contamination, hence, it 

is suggested that C. edule responds to sediment–bound contamination, since this cockle 

bioaccumulated and regulated (eliminated) both types of contaminants (Fig. 8, 9 and 10). For 

some contaminants the concentration decreased, and this can be due to degradation of the 

tissue or elimination for this way. Therefore, this cockle might be suitable for biomonitoring, 

even though it is clear that the effects of contaminant interactions on biomarkers and 
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indicators of exposure need yet much research. In addition, the exposure of C. edule to other 

types of sediments, particularly from more contaminated sites, can be used for the validation 

of this bivalve as test species. This work shows the potential of the use of translocated cockle 

methodologies within ecological risk assessment studies and/or ecosystems rehabilitation. 
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Annex I - Metal and organic concentrations of sediments from sites D, A, B and C. 

   Sites 
   D A B C 

 TELa PELb  
PEL-
Qc  

PEL-
Q  

PEL-
Q  

PEL-
Q 

Metallic (mg.kg-1 sediment dry 
weight) ±γ           

As 7.24 41.6 20,55 ± 0,41* 0.49 7.25 ± 0.15* 0.17 27.43 ± 0.55* 0.66 12.38 ± 0.25* 0.30 
Cd 0.68 4.21 0,23 ± 0,00 0.05 0.04 ± 0.00 0.01 0.22 ± 0.00 0.05 0.15 ± 0.00 0.04 
Cu 18.7 108 63,67 ± 1,27* 0.59 22.57 ± 0.45* 0.21 167.32 ± 3.35** 1.55 41.18 ± 0.82* 0.38 
Ni 15.9 42.8 26,12 ± 0,52* 0.61 12.97 ± 0.26 0.30 33.67 ± 0.67* 0.79 9.03 ± 0.18 0.21 
Pb 30.2 112 30,92 ± 0,62* 0.28 23.70 ± 0.47 0.21 66.49 ± 1.33* 0.59 45.17 ± 0.90* 0.40 
Zn 124 271 232,99 ± 4,66* 0.86 147.48 ± 2.95* 0.54 312.23 ± 6.24** 1.15 87.75 ± 1.76 0.32 

Organic (µg.kg-1 sediment dry 
weight) ±γ  

 
        

PAHs           
3 – ring           

Acenaphthene 6.71 88.9 2,09 ± 0,36 0.02 1.41 ± 0.24 0.02 9.42 ± 1.60* 0.11 4.19 ± 0.71 0.05 
Acenaphthylene 5.87 128 4,64 ± 0,79 0.04 0.24 ± 0.04 0.00 1.83 ± 0.31 0.01 1.95 ± 0.33 0.02 
Anthracene 46.9 245 5,72 ± 0,97 0.02 1.03 ± 0.17 0.00 10.60 ± 1. 0.04 15.34 ± 2.61 0.06 
Fluorene 21.2 144 3,56 ± 0,61 0.02 1.32 ± 0.22 0.01 8.70 ± 1.48 0.06 8.03 ± 1.37 0.06 
Phenanthrene 86.7 544 18,67 ± 3,17 0.03 7.96 ± 1.35 0.01 50.77 ± 8.63 0.09 54.09 ± 9.20 0.10 

4 – ring           
Benz(a)anthracene 74.8 693 1,04 ± 0,18 0.00 4.53 ± 0.77 0.01 64.60 ± 10.98 0.09 86.52 ± 14.71* 0.12 
Chrysene 108 846 3,49 ± 0,59 0.00 2.20 ± 0.37 0.00 28.31 ± 4.81 0.03 37.19 ± 6.32 0.04 
Fluoranthene 113 1494 185,54 ± 31,54* 0.12 18.05 ± 3.07 0.01 170.80 ± 29.04* 0.11 184.30 ± 31.30* 0.12 
Pyrene 153 1398 171,67 ± 29,18* 0.12 14.66 ± 2.49 0.01 131.74 ± 22.40 0.09 171.39 ± 29.14* 0.12 

5 – ring           
Benzo(a)pyrene 88.8 793 74,94 ± 12,74 0.09 7.56 ± 1.28 0.01 69.81 ± 11.87 0.09 85.88 ± 14.60 0.11 
Benzo(b)fluoranthene   56.53 9.61  6.77 ± 1.15  60.86 ± 10.35  70.25 ± 11.94  
Benzo(e)pyrene   46.64 7.93  5.12 ± 0.87  56.73 ± 9.64  62.76 ± 10.67  
Benzo(k)fluoranthene   25.04 4.26  4.16 ± 0.71  32.21 ± 5.48  40.18 ± 6.83  
Dibenzo(a,h)anthracene 6.22 135 7,06 ± 1,20* 0.05 0.74 ± 0.13 0.01 7.45 ± 1.27* 0.06 6.99 ± 1.19* 0.05 
Perylene   40.06 ± 6.81  4.69 ± 0.80  86.97 ± 14.78  209.16 ± 35.56  

6 – ring           
Indene(1,2,3-cd)pyrene   54.43 ± 9.25  4.87 ± 0.83  52.44 ± 8.91  51.82 ± 8.81  
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   Sites 
   D A B C 

 TELa PELb  
PEL-
Qc  

PEL-
Q  

PEL-
Q  

PEL-
Q 

Benzo(g,h,I)perylene   34.78 ± 4.21  1.12 ± 0.19  39.12 ± 6.65  10.44 ± 1.77  
3-ring   34.69 ± 5.90  11.95 ± 2.03  81.32 ± 13.82  83.60 ± 14.21  
4-ring   361.74 ± 61.50  39.43 ± 6.70  395.46 ± 67.23  479.40 ± 81.50  
5-ring   250.28 ± 42.55  29.04 ± 4.94  314.04 ± 53.39  475.22 ± 80.79  
6-ring   89.21 ± 15.17  5.99 ± 1.02  91.55 ± 15.56  62.26 ± 10.58  
tPAHs   735.92 ± 125.11  86.42 ± 14.69  882.37 ± 150.00  1100.48 ± 187.08  

PCBs           
Trichlorinated           

PCB-18   0.21 ± 0.04  < d.l.  0.08 ± 0.01  0.09 ± 0.02  
PCB-26   1.79 ± 0.30  < d.l.  0.06 ± 0.01  0.09 ± 0.02  
PCB-31   0.13 ± 0.02  0.64 ± 0.11  0.19 ± 0.03  < d.l.  

Tetra-chlorinated           
PCB-44   0.05 ± 0.01  < d.l.  0.38 ± 0.06  < d.l.  
PCB-49   0.05 ± 0.01  < d.l.  0.08 ± 0.01  0.36 ± 0.06  
PCB-52   0.08 ± 0.01  < d.l.  0.12 ± 0.02  0.45 ± 0.08  

Penta-chlorinated           
PCB-101   0.06 ± 0.01  < d.l.  0.23 ± 0.04  1.18 ± 0.20  
PCB-105   < d.l.  < d.l.  0.22 ± 0.04  0.66 ± 0.11  
PCB-118   0.08 ± 0.01  < d.l.  1.04 ± 0.18  4.92 ± 0.84  

Hexa-chlorinated           
PCB-128   0.05 ± 0.01  < d.l.  0.08 ± 0.01  < d.l.  
PCB-138   0.21 ± 0.04  0.12 ± 0.02  0.68 ± 0.12  2.68 ± 0.46  
PCB-149   0.13 ± 0.02  0.11 ± 0.02  < d.l.  < d.l.  
PCB-151   0.09 ± 0.02  0.05 ± 0.01  0.17 ± 0.03  1.15 ± 0.20  
PCB-153   0.19 ± 0.03  0.14 ± 0.02  0.64 ± 0.11  3.39 ± 0.58  

Hepta-chlorinated           
PCB-170   0.03 ± 0.00  0.07 ± 0.01  0.27 ± 0.05  < d.l.  
PCB-180   0.11 ± 0.02  0.21 ± 0.04  0.61 ± 0.10  < d.l.  
PCB-187   0.22 ± 0.04  0.20 ± 0.03  0.72 ± 0.12  < d.l.  
PCB-194   0.03 ± 0.00  < d.l.  0.07 ± 0.01  0.38 ± 0.06  

Tri-chlorinated   2.13 ± 0.36  0.64 ± 0.11  0.33 ± 0.06  0.17 ± 0.03  
Tetra-chlorinated   0.17 ± 0.03  < d.l.  0.58 ± 0.10  0.81 ± 0.14  
Penta-chlorinated   0.14 ± 0.02  < d.l.  1.49 ± 0.25  6.76 ± 1.15  
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   Sites 
   D A B C 

 TELa PELb  
PEL-
Qc  

PEL-
Q  

PEL-
Q  

PEL-
Q 

Hexa-chlorinated   0.68 ± 0.12  0.42 ± 0.07  1.57 ± 0.27  7.22 ± 1.23  
Hepta-chlorinated   0.39 ± 0.07  0.48 ± 0.08  1.67 ± 0.28  0.38 ± 0.06  
tPCBs 21.6 189 3.49 ± 0.59 0.02 1.54 ± 0.26 0.01 5.64 ± 0.96 0.03 15.34 ± 2.61 0.08 

DDTs           
pp'DDD 1.22 7.81 < d.l. < d.l. 0.10 ± 0.02 0.01 0.28 ± 0.05 0.04 0.60 ± 0.10 0.08 
pp'DDE 2.07 374 0.09 ± 0.02 0.00 0.05 ± 0.01 0.00 0.27 ± 0.05 0.00 0.65 ± 0.11 0.00 
pp'DDT 1.19 4.77 < d.l. < d.l. 0.70 ± 0.12 0.15 4.39 ± 0.75* 0.92 1.18 ± 0.20 0.25 
tDDTs   0.09 ± 0.02   0.85 ± 0.14   4.94 ± 0.84   2.43 ± 0.41   

SQG-Qd    0.181  0.082  0.313  0.139 
SQG-Q metallic    0.481  0.242  0.799  0.275 
SQG-Q organic    0.043  0.017  0.119  0.084 

a Threshold effects level, b Probable effects level; c PEL quocient [1]; d sediment quality guideline quocient [2]; * concentrations above TEL; ** concentrations 

above PEL; < d.l., below detection limit; tPAH, total PAH (sum of all individualPAHs); tPCB, total PCB (sum of all congeners); DDD, 1,1-dichloro-2,2-

bis(ρ-chlorophenyl)ethane; DDE, 1,1-dichloro-2,2-bis (ρ-chlorophenyl)ethylene; DDT, 1,1,1-trichloro2,2-bis (ρ-chlorophenyl)ethane; tDDT, total DDT 

(pp'DDD+pp'DDD+pp'DDT). Ranges indicate standard error.  
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Annex II - Metallothionein and bioaccumulation of metal and organic contaminants in Cardium edule from sites D, A, B and C. 

 Site 
 D A B C 
 T0 T14 T28 T14 T28 T14 T28 
Metallothioneins (mg.g-1 whole soft 
tissue dry weight) ± standard deviation 3.46 ± 1.69 3.80 ± 1.21 2.39 ± 0.70 2.72 ± 0.59 2.70 ± 1.38 2.05 ± 0.84* 1.70 ± 0.66* 
Metallic (mg.kg-1 whole soft tissue dry 
weight) ± standard deviation        

As 17.16 ± 3.29 17.00 ± 2.45 22.39 ± 4.33* 23.85 ± 7.40* 23.00 ± 2.71** 22.94 ± 6.58** 21.56 ± 6.79* 
Cd 1.32 ± 1.62 1.99 ± 1.62 1.59 ± 1.32 1.39 ± 1.22 2.19 ± 2.01 2.83 ± 2.93 1.03 ± 1.03 
Cu 21.02 ± 8.62 14.73 ± 9.42* 12.37 ± 3.75** 14.01 ± 3.30* 33.61 ± 15.46* 15.88 ± 5.96 22.48 ± 12.85 
Ni 91.02 ± 32.08  84.37 ± 16.98 96.45 ± 15.72 106.54 ± 44.98 106.54 ± 40.40 117.15 ± 36.99* 83.80 ± 60.86 
Pb 5.34 ± 2.89 6.08 ± 6.33 2.98 ± 1.23* 8.16 ± 8.15 6.22 ± 4.28 6.29 ± 3.17 4.47 ± 2.77 
Zn 85.10 ± 28.93 67.66 ± 10.06 97.40 ± 20.98 112.43 ± 41.15 130.36 ± 43.98** 159.86 ± 75.73** 112.85 ± 56.63 

Organic (µg.kg-1 whole soft tissue dry 
weight) ± standard error        

PAHs        
3-ring        

Acenaphthene 0.67 ± 0.11 0.82 ± 0.14 0.73 ± 0.12 1.45 ± 0.25 1.52 ± 0.26 2.27 ± 0.39 1.56 ± 0.27 
Acenaphthylene 0.33 ± 0.06 0.36 ± 0.06 0.36 ± 0.06 0.66 ± 0.11 0.71 ± 0.12 0.82 ± 0.14 0.67 ± 0.11 
Anthracene 1.13 ± 0.19 1.06 ± 0.18 1.12 ± 0.19 0.34 ± 0.06 0.37 ± 0.06 0.38 ± 0.07 0.33 ± 0.06 
Fluorene 2.63 ± 0.45 2.61 ± 0.44 2.71 ± 0.46 1.30 ± 0.22 1.65 ± 0.28 1.76 ± 0.30 1.59 ± 0.27 
Phenanthrene 5.11 ± 0.87 6.75 ± 1.15 6.66 ± 1.13 4.12 ± 0.70 4.87 ± 0.83 5.93 ± 1.01 4.71 ± 0.80 

4-ring        
Benz(a)anthracene 0.20 ± 0.03 0.33 ± 0.06 0.29 ± 0.05 0.64 ± 0.11 0.72 ± 0.12 1.17 ± 0.20 1.40 ± 0.24 
Chrysene 0.90 ± 0.15 0.67 ± 0.11 0.66 ± 0.11 0.90 ± 0.15 1.93 ± 0.33 1.89 ± 0.32 1.11 ± 0.19 
Fluoranthene 5.77 ± 0.98 5.83 ± 0.99 5.91 ± 1.00 4.46 ± 0.76 4.55 ± 0.77 6.16 ± 1.05 4.99 ± 0.85 
Pyrene 8.44 ± 1.43 6.95 ± 1.18 7.03 ± 1.20 4.56 ± 0.78 5.21 ± 0.89 8.04 ± 1.37 6.83 ± 1.16 

5-ring        
Benzo(a)pyrene 3.00 ± 0.51 2.74 ± 0.47 2.83 ± 0.48 0.59 ± 0.10 0.63 ± 0.11 1.21 ± 0.21 1.33 ± 0.23 
benzo(b)fluoranthene 1.18 ± 0.20 1.26 ± 0.21 1.24 ± 0.21 1.05 ± 0.18 1.19 ± 0.20 1.44 ± 0.25 1.46 ± 0.25 
benzo(e)pyrene 0.51 ± 0.09 0.61 ± 0.10 0.55 ± 0.09 0.74 ± 0.13 0.70 ± 0.12 1.22 ± 0.21 1.20 ± 0.20 
benzo(k)fluoranthene 0.19 ± 0.03 0.23 ± 0.04 0.21 ± 0.04 0.59 ± 0.10 0.64 ± 0.11 0.72 ± 0.12 0.85 ± 0.14 
Dibenzo(a,h)anthracene < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. 
Perylene 0.95 ± 0.16 0.70 ± 0.12 0.41 ± 0.07 1.65 ± 0.28 1.67 ± 0.28 6.04 ± 1.03 6.87 ± 1.17 

6-ring        
Indene(1,2,3-cd)pyrene < d.l. < d.l. 4.38 ± 0.74 0.61 ± 0.10 0.56 ± 0.10 0.74 ± 0.13 0.65 ± 0.11 
benzo(g,h,I)perylene < d.l. < d.l. 3.65 ± 0.62 0.54 ± 0.09 0.78 ± 0.13 0.84 ± 0.14 0.83 ± 0.14 

3-ring 9.87 ± 1.68 11.60 ± 1.97 11.58 ± 1.97 7.88 ± 1.34 9.11 ± 1.55 11.17 ± 1.90 8.87 ± 1.51 
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 Site 
 D A B C 
 T0 T14 T28 T14 T28 T14 T28 

4-ring 15.30 ± 2.60 13.78 ± 2.34 13.90 ± 2.36 10.56 ± 1.80 12.41 ± 2.11 17.26 ± 2.93 14.33 ± 2.44 
5-ring 5.83 ± 0.99 5.55 ± 0.94 5.24 ± 0.89 4.61 ± 0.78 4.83 ± 0.82 10.63 ± 1.81 11.71 ± 1.99 
6-ring < d.l. < d.l. 8.02 ± 1.36 1.15 ± 0.19 1.34 ± 0.23 1.58 ± 0.27 1.48 ± 0.25 
tPAHs 31.00 ± 5.27 30.92 ± 5.26 38.73 ± 6.58 24.20 ± 4.11  27.70 ± 4.71 40.64 ± 6.91ΨΨ 36.39 ± 6.19ΨΨ 

PCBs        
Trichlorinated        

CB-18 0.02 ± 0.00 < d.l. 0.03 ± 0.00 0.03 ± 0.01 0.06 ± 0.01 0.01 ± 0.00 0.02 ± 0.00 
CB-26 0.02 ± 0.00 < d.l. < d.l. 0.01 ± 0.00 0.02 ± 0.00 < d.l. 0.01 ± 0.00 
CB-31 < d.l. < d.l. 0.18 ± 0.03 0.44 ± 0.07 0.46 ± 0.08 < d.l. 0.52 ± 0.09 

Tetra-chlorinated        
CB-44 0.04 ± 0.01 0.06 ± 0.01 0.04 ± 0.01 0.07 ± 0.01 0.09 ± 0.01 0.02 ± 0.00 0.03 ± 0.01 
CB-49 0.06 ± 0.01 0.10 ± 0.02 0.13 ± 0.02 0.06 ± 0.01 0.08 ± 0.01 0.02 ± 0.00 0.03 ± 0.01 
CB-52 0.03 ± 0.00 0.08 ± 0.01 0.03 ± 0.00 0.06 ± 0.01 0.08 ± 0.01 0.02 ± 0.00 0.01 ± 0.00 

Penta-chlorinated        
CB-101 0.03 ± 0.00 0.09 ± 0.01 0.02 ± 0.00 0.05 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 0.03 ± 0.00 
CB-105 0.03 ± 0.01 < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. 
CB-118 0.15 ± 0.03 0.30 ± 0.05 0.23 ± 0.04 0.20 ± 0.03 0.18 ± 0.03 0.11 ± 0.02 0.14 ± 0.02 

Hexa-chlorinated        
CB-128 < d.l. < d.l. < d.l. 0.01 ± 0.00 < d.l. < d.l. < d.l. 
CB-138 0.08 ± 0.01 0.13 ± 0.02 0.09 ± 0.01 0.11 ± 0.02 0.05 ± 0.01 0.05 ± 0.01 0.08 ± 0.01 
CB-149 < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. 
CB-151 < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. 
CB-153 0.03 ± 0.01 0.06 ± 0.01 < d.l. 0.02 ± 0.00 < d.l. < d.l. 0.02 ± 0.00 

Hepta-chlorinated        
CB-170 < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. 
CB-180 < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. 
CB-187 < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. 
CB-194 < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. 

Tri-chlorinated 0.05 ± 0.01 < d.l. 0.21 ± 0.04 0.48 ± 0.08 0.54 ± 0.09 0.01 ± 0.00 0.55 ± 0.09 
Tetra-chlorinated 0.12 ± 0.02 0.24 ± 0.04 0.20 ± 0.03 0.18 ± 0.03 0.24 ± 0.04 0.06 ± 0.01 0.08 ± 0.01 
Penta-chlorinated 0.21 ± 0.04 0.39 ± 0.07 0.25 ± 0.04 0.25 ± 0.04 0.25 ± 0.04 0.16 ± 0.03 0.17 ± 0.03 
Hexa-chlorinated 0.12 ± 0.02 0.19 ± 0.03 0.09 ± 0.01 0.15 ± 0.02 0.05 ± 0.01 0.05 ± 0.01 0.09 ± 0.02 
Hepta-chlorinated < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. < d.l. 
tPCBs 0.49 ± 0.08 0.82 ± 0.14 0.74 ± 0.13 1.06 ± 0.18 1.07 ± 0.18 0.28 ± 0.05 0.88 ± 0.15 

DDTs        
pp'DDD 2.2 ± 0.37 0.51 ± 0.09 0.59 ± 0.10 0.22 ± 0.04 1.32 ± 0.22 0.22 ± 0.04 0.28 ± 0.05 
pp'DDE 0.12 ± 0.02 0.21 ± 0.04 0.13 ± 0.02 0.10 ± 0.02 0.17 ± 0.03 0.08 ± 0.01 0.10 ± 0.02 
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 Site 
 D A B C 
 T0 T14 T28 T14 T28 T14 T28 

pp'DDT 1.13 ± 0.19 1.04 ± 0.18 1.42 ± 0.24 1.08 ± 0.18 4.10 ± 0.70 0.52 ± 0.09 0.64 ± 0.11 
tDDts 3.45 ± 0.59 1.76 ± 0.30 2.14 ± 0.36 1.40 ± 0.24 5.59 ± 0.95Ψ 0.82 ± 0.14 1.02 ± 0.17 

* and ** indicate significant differences (p < 0.05 and p < 0.01, respectively) between tests and D (Mann–Whitney U test); Ψ and ΨΨ indicate significant differences (p < 0.05 

and p < 0.01, respectively) between tests and D (chi-square test); < d.l., below detection limit; tPAH, total PAH (sum of all individual PAHs); tPCB, total PCB (sum of all 

congeners); DDD, 1,1-dichloro-2,2-bis(ρ-chlorophenyl)ethane; DDE, 1,1-dichloro-2,2-bis (ρ-chlorophenyl)ethylene; DDT, 1,1,1-trichloro2,2-bis (ρ-chlorophenyl)ethane; 

tDDT, total DDT (pp'DDD+pp'DDD+pp'DDT) 
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Annex III - BAFs and BSAFs of metallic and organic contaminants in C. edule. 

 Sites 
 D A B C 
 T0 T14 T28 T14 T28 T14 T28 
 BAF BSAF BAF BSAF BAF BSAF BAF BSAF BAF BSAF BAF BSAF BAF BSAF 
Metals               

As 0.8350 0.1039 2.3455 0.0751 3.0886 0.0988 0.8695 0.1026 0.8386 0.0990 1.8533 0.1427 1.7414 0.1341 
Cd** 5.7450 0.7151 49.8196 1.5942 39.7112 1.2708 6.3206 0.7458 9.9683 1.1763 18.8752 1.4534 6.8516 0.5276 
Cu 0.3302 0.0411 0.6525 0.0209 0.5479 0.0175 0.0838 0.0099 0.2009 0.0237 0.3855 0.0297 0.5459 0.0420 
Ni 3.4846 0.4337 6.5054 0.2082 7.4363 0.2380 3.1643 0.3734 3.1643 0.3734 12.9738 0.9990 9.2800 0.7146 
Pb 0.1728 0.0215 0.2566 0.0082 0.1258 0.0040 0.1228 0.0145 0.0936 0.0110 0.1393 0.0107 0.0990 0.0076 
Zn 0.3653 0.0455 0.4588 0.0147 0.6604 0.0211 0.3601 0.0425 0.4175 0.0493 1.8218 0.1403 1.2860 0.0990 

Organics               
PAHs               

3-ring               
Acenaphthene 0.3201 0.0398 0.5830 0.0187 0.5203 0.0166 0.1541 0.0182 0.1612 0.0190 0.5422 0.0417 0.3734 0.0288 
Acenaphthylene 0.0701 0.0087 1.5095 0.0483 1.4804 0.0474 0.3620 0.0427 0.3874 0.0457 0.4221 0.0325 0.3437 0.0265 
Anthracene 0.1976 0.0246 1.0256 0.0328 1.0863 0.0348 0.0319 0.0038 0.0345 0.0041 0.0251 0.0019 0.0214 0.0016 
Fluorene 0.7395 0.0920 1.9737 0.0632 2.0542 0.0657 0.1499 0.0177 0.1899 0.0224 0.2190 0.0169 0.1985 0.0153 
Phenanthrene 0.2738 0.0341 0.8480 0.0271 0.8363 0.0268 0.0812 0.0096 0.0959 0.0113 0.1097 0.0084 0.0872 0.0067 

4-ring               
Benz(a)anthracene 0.1923 0.0239 0.0721 0.0023 0.0648 0.0021 0.0099 0.0012 0.0111 0.0013 0.0135 0.0010 0.0162 0.0012 
Chrysene 0.2579 0.0321 0.3047 0.0097 0.2995 0.0096 0.0319 0.0038 0.0683 0.0081 0.0508 0.0039 0.0300 0.0023 
Fluoranthene 0.0311 0.0039 0.3230 0.0103 0.3275 0.0105 0.0261 0.0031 0.0266 0.0031 0.0334 0.0026 0.0271 0.0021 
Pyrene 0.0491 0.0061 0.4741 0.0152 0.4796 0.0153 0.0346 0.0041 0.0396 0.0047 0.0469 0.0036 0.0398 0.0031 

5-ring               
Benzo(a)pyrene 0.0401 0.0050 0.3628 0.0116 0.3743 0.0120 0.0084 0.0010 0.0090 0.0011 0.0141 0.0011 0.0155 0.0012 
benzo(b)fluoranthene 0.0209 0.0026 0.1855 0.0059 0.1832 0.0059 0.0172 0.0020 0.0196 0.0023 0.0205 0.0016 0.0207 0.0016 
benzo(e)pyrene 0.0110 0.0014 0.1201 0.0038 0.1065 0.0034 0.0130 0.0015 0.0124 0.0015 0.0194 0.0015 0.0192 0.0015 
benzo(k)fluoranthene 0.0074 0.0009 0.0556 0.0018 0.0503 0.0016 0.0184 0.0022 0.0197 0.0023 0.0179 0.0014 0.0211 0.0016 
Dibenzo(a,h)anthracene               
Perylene 0.0236 0.0029 0.1497 0.0048 0.0878 0.0028 0.0190 0.0022 0.0192 0.0023 0.0289 0.0022 0.0328 0.0025 

6-ring               
Indene(1,2,3-cd)pyrene     0.8984 0.0287 0.0116 0.0014 0.0108 0.0013 0.0143 0.0011 0.0126 0.0010 
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 Sites 
 D A B C 
 T0 T14 T28 T14 T28 T14 T28 
 BAF BSAF BAF BSAF BAF BSAF BAF BSAF BAF BSAF BAF BSAF BAF BSAF 

benzo(g,h,I)perylene     3.2570 0.1042 0.0138 0.0016 0.0199 0.0024 0.0803 0.0062 0.0794 0.0061 
3-ring 0.2845 0.0354 0.9704 0.0311 0.9687 0.0310 0.0969 0.0114 0.1121 0.0132 0.1336 0.0103 0.1061 0.0082 
4-ring 0.0423 0.0053 0.3494 0.0112 0.3524 0.0113 0.0267 0.0032 0.0314 0.0037 0.0360 0.0028 0.0299 0.0023 
5-ring 0.0233 0.0029 0.1910 0.0061 0.1803 0.0058 0.0147 0.0017 0.0154 0.0018 0.0224 0.0017 0.0246 0.0019 
6-ring - - - - 1.3394 0.0429 0.0125 0.0015 0.0147 0.0017 0.0253 0.0020 0.0238 0.0018 
tPAHs* 0.0421 0.0052 0.3578 0.0114 0.4482 0.0143 0.0274 0.0032 0.0314 0.0037 0.0369 0.0028 0.0331 0.0025 

PCBs               
Trichlorinated               

PCB-18 0.1143 0.0142     0.3875 0.0457 0.7250 0.0856 0.0833 0.0064 0.1778 0.0137 
PCB-26 0.0134 0.0017     0.2000 0.0236 0.3167 0.0374   0.1111 0.0086 
PCB-31     0.2813 0.0090 2.3158 0.2733 2.4211 0.2857     

Tetra-chlorinated               
PCB-44 0.8222 0.1023     0.1842 0.0217 0.2289 0.0270     
PCB-49 1.1667 0.1452     0.7250 0.0856 0.9625 0.1136 0.0639 0.0049 0.0889 0.0068 
PCB-52 0.3506 0.0436     0.4417 0.0521 0.6500 0.0767 0.0356 0.0027 0.0267 0.0021 

Penta-chlorinated               
PCB-101 0.4909 0.0611     0.2261 0.0267 0.2870 0.0339 0.0441 0.0034 0.0220 0.0017 
PCB-105 32.0000 3.9831             
PCB-118 1.8987 0.2363     0.1923 0.0227 0.1731 0.0204 0.0224 0.0017 0.0285 0.0022 

Hexa-chlorinated               
PCB-128       0.1200 0.0142       
PCB-138 0.3962 0.0493 1.0833 0.0347 0.7083 0.0227 0.1618 0.0191 0.0691 0.0082 0.0198 0.0015 0.0284 0.0022 
PCB-149               
PCB-151       0.0282 0.0033       
PCB-153 0.1606 0.0200 0.4571 0.0146   0.0359 0.0042     0.0044 0.0003 

Hepta-chlorinated               
PCB-170               
PCB-180               
PCB-187               
PCB-194               

Tri-chlorinated 0.0226 0.0028   0.3250 0.0104 1.4636 0.1727 1.6273 0.1920 0.0441 0.0034 3.2118 0.2473 
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 Sites 
 D A B C 
 T0 T14 T28 T14 T28 T14 T28 
 BAF BSAF BAF BSAF BAF BSAF BAF BSAF BAF BSAF BAF BSAF BAF BSAF 

Tetra-chlorinated 0.7059 0.0879     0.3121 0.0368 0.4172 0.0492 0.0691 0.0053 0.0951 0.0073 
Penta-chlorinated 1.5481 0.1927     0.1691 0.0200 0.1651 0.0195 0.0240 0.0018 0.0246 0.0019 
Hexa-chlorinated 0.1701 0.0212 0.4619 0.0148 0.2024 0.0065 0.0939 0.0111 0.0299 0.0035 0.0073 0.0006 0.0126 0.0010 
Hepta-chlorinated               
tPCBs 0.1408 0.0175 0.5299 0.0170 0.4779 0.0153 0.1885 0.0222 0.1901 0.0224 0.0182 0.0014 0.0574 0.0044 

DDTs               
pp'DDD   5.1000 0.1632 5.9000 0.1888 0.7857 0.0927 4.7143 0.5563 0.3600 0.0277 0.4667 0.0359 
pp'DDE 1.2889 0.1604 4.2600 0.1363 2.6400 0.0845 0.3815 0.0450 0.6370 0.0752 0.1246 0.0096 0.1600 0.0123 
pp'DDT   1.4857 0.0475 2.0286 0.0649 0.2460 0.0290 0.9339 0.1102 0.4407 0.0339 0.5390 0.0415 
tDDts 38.2889 4.7659 2.0741 0.0664 2.5200 0.0806 0.2840 0.0335 1.1320 0.1336 0.3362 0.0259 0.4198 0.0323 

* indicate significant positive correlations (ρ = 0.886, p < 0.05) between BSAF and metallothioneins (Spearman’s rank order correlation); ** indicate significant positive correlations 

(ρ = 0.943, p < 0.01) between each factor and metallothioneins (Spearman’s rank order correlation); tPAH, total PAH (sum of all individualPAHs); tPCB, total PCB (sum of all 

congeners); DDD, 1,1-dichloro-2,2-bis(ρ-chlorophenyl)ethane; DDE, 1,1-dichloro-2,2-bis (ρ-chlorophenyl)ethylene; DDT, 1,1,1-trichloro2,2-bis (ρ-chlorophenyl)ethane; tDDT, 

total DDT (pp'DDD+pp'DDD+pp'DDT) 

 



 


