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Resumo

Até há pouco tempo, os objectos distribuídos têm sido a tecnologia líder no desenho 

e  implementação  de  arquitecturas  baseadas  em  componentes  ou  serviços, 

normalmente  conhecidas  por  Arquitecturas  Orientadas  a  Serviços.  No  presente, 

devido ao seu alto desempenho, aspecto fundamental no contexto das plataformas, 

esta tecnologia continua a desempenhar uma função importante no desenvolvimento 

de sistemas distribuídos. No entanto, apesar de já estar estabelecida no mercado há 

mais  de  uma  década,  apresentando-se,  portanto,  mais  consistente,  falhou  na 

transposição do conceito de Arquitectura Orientada a Serviços para a Web.

Os Web services são uma tecnologia recente que tem amadurecido nos últimos anos. 

A sua aceitação no seio das empresas e organizações tem vindo a crescer, uma vez 

que ultrapassa os problemas dos objectos distribuídos, tais como a interoperabilidade 

e transposição para a Web. A interoperabilidade entre sistemas é o ponto forte desta 

tecnologia, uma vez que este é um aspecto crucial para a logística de negócio nos 

dias  de  hoje.  Além  disso,  a  utilização  de  serviços  trouxe  um  novo  conceito: 

composição  de  serviços,  uma  técnica  de  criação  de  novos  serviços.  Contudo, 

apresenta-se ainda muito vocacionada e dependente de  Web services,  não havendo 

ferramentas que suportem o conceito para outras tecnologias. 

Para que seja então possível usar a composição de serviços em plataformas baseadas 

em objectos distribuídos, é necessário expôr os seus serviços como  Web services,  

aparecendo assim o principal objectivo desta tese de mestrado: fornecer suporte para 

a  composição  de  serviços  originários  de  plataformas  baseadas  em  objectos 

distribuídos.  Uma  vez  que  estas  plataformas  são  normalmente  compostas  por 

bastantes  serviços,  a  ideia  deste  estudo  é  apresentar  uma  plataforma  como  um 

conjunto  de  Web  services, de  forma  a  possibilitar  a  aplicação  do  conceito  de 

composição de serviços, através da técnica específica de orquestração. 
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Abstract

Distributed  objects  was,  until  recently,  the  leading  technology in  the  design  and 

implementation  of  component-based  architectures,  such  as  the  ones  based  on 

services,  better  known  as  Service-Oriented  Architectures  (SOA).  Although 

established  in  the  market  for  more  than  a  decade,  and  therefore  mature,  these 

technologies have failed to overcome the porting of the SOA concept to the Web.

Web services are a recent technology that has been growing in the last few years. 

Their acceptance has increased over enterprises and organizations as they seem to 

overcome the Web and interoperability related problems of the Distributed Objects 

technology.  Web  services  provide  interoperability  between  systems  and  that  is 

undoubtedly a strength of this technology since this is a crucial aspect of nowadays 

business. Moreover, the widespread of services led to the recent introduction of the 

service composition concept, that although being a technology independent concept, 

is closely related to Web services and there is no tool support for other technologies. 

Nonetheless, distributed objects still  play an important role in the development of 

distributed systems, namely due to  performance issues that  are important when it 

comes to the internals of a platform. However,  the use of service composition in 

these distributed object-based platforms requires the exposure of their  composing 

services as Web services. 

The main objective of this masters thesis is improve the state-of-the-art in the support 

for the composition of services originating from distributed objects-based platforms. 

Bearing in mind that these kind of platforms are composed by several services, the 

idea is to present a platform as a set of Web services in order to be able to orchestrate 

them.
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1. Introduction

1.1. Motivation 

Distributed  objects  was,  until  recently,  the  leading  technology  in  the  design  and 

implementation of component-based architectures, such as the ones based on services, 

better known as Service-Oriented Architectures (SOA). Examples of such technologies 

are  the  Common  Object  Request  Broker  Architecture  (CORBA)  [2],  a  standard 

defined by the Object  Management  Group (OMG) and the Distributed Component 

Object  Model (DCOM)  [3] from Microsoft. Although established in the market for 

more than a decade,  and therefore mature, the distributed object technologies have 

failed  to  overcome  at  least  two  aspects  that  are  very important  to  the  nowadays' 

businesses: the porting of the SOA concept to the Web, mainly due to the inability to 

pass  through  firewalls,  and  the  support  for  interoperability  between  different 

technologies. Also, distributed object architectures follow a tightly coupled approach, 

fact that can be seen as a drawback, since it requires, in most cases, the definition of 

dependencies between the components of the system.

To tackle these issues, the Web services technology is being increasingly adopted by 

organizations  and enterprises.  This  is  mainly due to  the fact  that  having  the SOA 

concept  through  the  Web,  promotes  business  visibility,  and  the  interoperability 

provided between different  technologies,  is  a crucial  aspect  to  nowadays  business, 

particularly  in  business-to-business  transactions.  The  Web  services  technology has 

been around since the late nineties, but it was only in 2002 that W3C published its 

architecture  [25]. The  appearance  of  standards  and  of  the  Web  Services 
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Interoperability Organization (WS-I)1, that focuses and drives only on Web services, 

has contributed to the popularity increase of this technology.

Nevertheless, distributed objects are still a major player in the SOA realm. They are an 

established technology used in the development of many platforms, which results in a 

more mature and better performant support than Web services. 

Currently,  many SOA-based  software  is  built  on  top  of  distributed  objects,  which 

disables the possibility of Web integration. The porting of these software architectures 

to  the Web services  technology is  usually not  viable  due to the  cost  and effort  it 

represents.  Moreover,  most  of  the times,  the overhead introduced by platform and 

language independence provided by Web services is not desired when it comes to the 

internals of a platform. 

One  other  fundamental  aspect  is  that,  although  both  distributed  objects  and  Web 

services are distributed systems technologies, have a kind of definition interface, and 

provide similar resources for component registration and discovery, they use different 

programing paradigms. While distributed object technologies are object-oriented, Web 

services technology is document-oriented, since it is based on the exchanging of XML 

documents and does not have the concept of object. The truth is that the Web service 

technology was designed to support Web access and not to replace distributed object 

technologies. 

We have thus to conclude that porting existent distributed object-based platforms to 

the Web is, in fact, a costly and not trivial operation. But, on the other hand, moving to 

the Web services world opens a new range of prospects,  essentially motivated by: 

increased  visibility,  the  business  becomes  accessible  from  the  Web;  business-to-

business interaction based on XML standards; and the use of service composition to 

deploy new services by composing platform and other Web available services. In fact, 

the last two are closely related, since service composition plays a major role on the 

support of business-to-business and of enterprise application integration. The use of 

1 http://www.ws-i.org
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third-party services on the definition of a platform’s own business model is becoming 

a common solution.

However, service composition is essentially driven by interoperability, and therefore, 

it is only natural that existent solutions [18, 22] are restricted to Web services. Thus, in 

order to use this concept in the context of distributed object platforms, it is necessary 

to expose their composing services as Web services. This exposing process is also 

known as bridging.

1.2. Bridging Distributed Objects 

Bridging distributed objects is a process that consists on exposing a service provided 

by one of those technologies as a Web service. This makes the service available for the 

Web and enables its interaction with different technologies, since interoperability is 

one of the main arguments of the Web services. Moreover, a bridged service can be 

composed using the available Web services composition tools.

For a better understanding of this subject, Figure 1 portrays what we should expect 

from a bridging process. The main idea in this context is to allow a Web service client 

to  invoke  a  service  based  on  a  distributed  object  technology  in  a  completely 

transparent way, i. e., as if it was invoking a Web service. As it is demonstrated in the 

figure, a Web Service will act as a proxy between the server and the client. Both client 

and server interact each other with their own standards, leaving the conversion of the 

19
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messages for the proxy, fact that provides to the process a transparent nature.

1.3. Service Composition in Distributed Object Technologies

As  stated  previously,  technologies  like  CORBA,  DCOM  or  RMI  used  to  be  the 

distributed objects market leaders, but lost that position with increased importance of 

Web access, particularly in business-to-business interaction. So, if Web services are 

currently  more  attractive  than  these  technologies,  why  just  not  re-implement  the 

existing platforms? The answer lies in the associated cost, namely when it comes to 

widely used and accepted platforms. A Web service based re-implementation might 

represent an huge investment of both time and money. Moreover, the lack of Web 

services  support  for  some of  the  usual  distributed-objects'  features,  such as  event-

handling, may even force some architecture re-design instead of just code re-writing. 

One  other  factor  in  favor  of  distributed  object  technologies  is  performance.  Web 

services do not behave as good as distributed objects performance wise. This is mainly 

because of the overhead associated to the platform and language independence, one of 

the great advantages of this technology. Even when it comes to the design of a new 

distributed system, the trade off between the interoperability provided by Web services 

and the  higher  performance  provided  by distributed  object  technologies  should  be 

considered.

An attractive solution would be to integrate an existing distributed object platform 

with Web services, which is possible by exposing the services of the former as Web 

services. This solution protects the investments made in the past, while allowing the 

stepping in the Web world.

To the  best  of  our  knowledge,  there  are  no  solutions  to  address  the  bridging  and 

consequent composition of distributed objects platforms, and the current state-of-the-

art  of  bridging  distributed  objects  services  as  Web  services  is  very  limited.  All 

approaches [4, 14, 17, 32, 33] focus on the bridging of a single service, are designed to 

a single technology and require the posterior publishing of the Web service, thus not 
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providing a systematic and transparent procedure.

From the current state-of-the-art, Apache Axis22, a Web services engine that provides 

a module that allows bridging CORBA services, is the solution that better suits our 

purpose. However, the bridging process is not platform-oriented, is bound to CORBA 

and it implies a manual procedure to bridge the services. A XML file has to be created, 

with some information regarding the service and together with the corresponding IDL 

interface, has to be stored in the directory where the module is installed. This process 

is repeated for each service to bridge.

This  state-of-the-art  lead us  to  develop OHMS (Orchestration  of  Heterogeneous 

Middleware Services), a platform for the systematic exposure of a distributed object-

based platform as a set of Web services. The main idea is to expose services from a 

distributed object-based platform in a systematic way, in order to allow the definition 

of new services composing them through orchestration. 

OHMS supports, thus, the orchestration of services from distinct distributed objects 

technologies. It is platform-oriented, meaning that it does not expose a single service, 

but rather a platform. These expose their set of services partially or completely by 

registering their name-servers in OHMS. No alterations on the original platform’s code 

are required. Transparency is one of our main premises. 

The OHMS platform is composed of two components (figure 2): the  Name Service 

Directory  module (or  simply  directory) and  the  Orchestration  module.  The 

directory provides an interface in order to accept registrations of logistics for bridging 

distributed objects  technologies and of the name-servers.  The orchestration module 

consists in the extension of an existing orchestration tool, the Eclipse BPEL plug-in3. 

Bridged services are registered in a UDDI repository embedded in the directory. This 

repository binds  both  components,  since  the  orchestration  module  will  be  able  to 

access and orchestrate the services it stores. The architecture of OHMS will be fully 

2 http://ws.apache.org/axis2
3 http://ww.eclipse.org/bpel/
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described in chapter 3. 

Services from the original platforms register in their name-servers as before. OHMS 

will be responsible for both their bridging and publishing (in the UDDI repository) 

making them visible to the orchestration module. To this module, bridged services are 

orchestrated as common Web services. The only difference lies in the that they these 

are selected by browsing a previously imported platform. This is a very useful and 

intuitive functionality to orchestrate services originating from different directories, in 

order to achieve platform interoperability.

1.4. Application to a Command and Control Platform

Another motivation for this work arose in the context of the Command and Control 

Platform (COMCOP) developed by Critical Software. COMCOP was developed on 

top of the CORBA technology and has the ambition of creating new services through 

orchestration, using the existing ones and also Web services available in the Web, thus 

providing a perfect test-bed for OHMS.

22
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Services in COMCOP's architecture are distributed in layers. The core layers include 

general, solution independent, services and solution specific layers include the services 

that specify the platform for a given assigned mission. Composing a new service by 

resorting to the existing ones is an attractive solution for this platform. A concrete 

example is a Mission Planning Service with the ability of defining a specific plan for 

each mission. This is an example of a service that would be composed entirely of other 

platform services. However, other examples may use services provided by an Web 

entity external to COMCOP, like the weather forecast for example.

For Command and Control solutions of the same kind of COMCOP, the concept of 

orchestration  is  certainly  very  attractive.  However,  the  state-of-the-art  does  not 

provide suitable support to the application of this concept to platforms developed on 

top of distributed object technologies. In this context, the solution to use OHMS to 

expose  these  distributed  objects  platforms  as  sets  of  Web  services  in  order  to 

orchestrate their services is, in our opinion, the best approach.

1.5. Contributions 

The main objective of this masters thesis is to provide support for the composition of 

services, originating from distributed objects-based platforms. Bearing in mind that 

these kind of platforms are  composed by several  services,  the idea is  to present a 

platform as a set of Web services. The contribution we envision are: 

1. The  design  and  implementation  of  a  platform that  provides  the  systematic 

exposing of services from distributed objects-based platforms as Web services.

2. The extension of the Eclipse BPEL plug-in to provide the possibility to connect 

to  distributed  object-based  platforms  and  include  those  exposed  services, 

referred in the previous point, in a BPEL Process. This include the possibility 

of connection to one or more repositories.

3. Application  of  the  OHMS platform to  the  world  of  command  and  control 

platforms, concretely to COMCOP. This requires the specification of OHMS to 

handle  the  bridging  of  CORBA  platforms,  which  can  also  be  seen  as  a 
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contribution.

1.6. Outline of the thesis

This remainder of this thesis is structured as follows. Chapter 2 presents a description 

of the state-of-the-art on the areas of distributed objects, describing the main features 

of some existing distributed objects technologies, and of Service-Oriented Computing, 

describing the concepts of component architectures and Web services. We also focus 

on the Service Composition concept and its available techniques: orchestration and 

choreography.  Finally  we  introduce  bridging  technologies  currently  available  for 

bridging distributed objects technologies and Web services.

Chapter 3 describes the core of the work developed in this thesis. We will start by 

focusing on the OHMS architecture and then we will present an extensive description 

of both directory module and orchestration module.

Chapter  4  introduces  the  concept  of  Command  and  Control  platforms,  presents 

COMCOP,  our  case  study,  and  the  procedure  required  to  use  OHMS  in  the 

orchestration of COMCOP services, namely the support for bridging CORBA-based 

systems.

Finally, Chapter 5 concludes the work developed and includes some suggestions for 

the future developments.

24



2. State-of-the-Art

This  chapter  presents  an  overview  of  the  subjects  of  distributed  objects,  service-

oriented computing, service composition, and the pf bridging distributed technologies. 

A good knowledge of them is necessary to fully understand the solution proposed in 

this thesis.

The chapter is divided into four major sections. The first section presents an overview 

of  the  distributed  object  concept  including  some  concrete  examples,  used  in  the 

software solutions crucial for this work. The second one introduces the concepts of 

Service Oriented Computing and Web services. These are the key concepts for service 

composition through Orchestration and Choreography, which is described in the third 

section. Last section, explains the concept of bridging Web services and distributed 

objects referred in the previous sections.

2.1. Distributed Objects4

A system is considered distributed when there are several components available over 

various machines and these components need to interact with each other. We have the 

notion of distributed objects when each one of these components is seen as an object.

Distributed  objects  are  software  modules  that  can  be  distributed  among  different 

machines with different platforms and can communicate in a transparent way, i. e., as 

if they were running in the same machine. Each of these modules is considered an 

4   This section is mostly based on the book Engineering Distributed Objects [5].
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object, and the communication is processed by a client and a server. Typically, the 

client object invokes a method from the server object that processes the request and 

sends the result back to the client.

To  handle  with  these  distributed  objects,  there  are  some  technologies,  like  the 

Common  Object  Request  Broker  Architecture  (CORBA)  [2] from  the  Object 

Management Group (OMG), the Component Object Model (COM) [4] from Microsoft 

Corporation,  and  the  JAVA  Remote  Method  Invocation  (RMI)  [43]  from  Sun 

Microsystems. These three will be focused in this overview. Currently, Web services 

are considered by some as an emerging technology for distributed objects over the 

web. We will focus on these later.

Figure  3  shows  the  steps  required  to  design  and  implement  a  distributed  objects 

solution. The first step consists in designing the server object taking into account the 

kind of client object that it will serve. Then, the Interface Definition concerning that 

26

Figure 3: Design and Implementation Process for Distributed Objects [taken from 
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server object design must be created. From this interface, client and server stubs will 

be generated. Respecting the generated server stub, the server programmer implements 

the object described by the interface. This object will then be registered in a directory 

or name-server, so the client can discover and instantiate the it. The client stubs will be 

used in the client implementation.  This diagram is the base for the model generally 

adopted by distributed objects technologies, each with its slight variations.

2.1.1. CORBA

The OMG is an international non-profitable consortium in activity since 1989. This 

group provides open membership of various types (Contributing, Domain, Platform, 

Influencing, Government, Trial,  Analyst,  University) and in the present has already 

several  members.  OMG  provides  some  specifications  to  allow  the  production  of 

applications  CORBA-compliant.  The  success  of  CORBA came  from  the  idea  of 

heterogeneity and interoperability between distributed objects once it provides support 

for it through the Object Request Broker (ORB) which provides basic communication 

mechanisms for distributed and heterogeneous objects.

The  first  CORBA specification  was  released  in  October  of  1991.  It  included  the 

CORBA Object model, the Interface Definition Language (IDL), and the core set of 

application  programming  interfaces  (API's)  for  dynamic  request  management  and 

invocation (DII)  and the Interface Repository.  Later,  OMG started to complete  the 

CORBA specification, with the introduction of CORBAservices specification which 

provides several features such as naming, locating objects, or controlling concurrent 

access to objects. OMG consider that these services provide the facility to construct a 

distributed  system. Later,  OMG  also  started  the  development  of  some  interface 

specifications but not  with the same relevance than the CORBAservices.  They are 

called CORBAfacilities  and their role is to help in the development of a distributed 

system.

It is very important to note that the specifications focused above also include language 

bindings for development of clients and servers in different programming languages. 
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This turns implementations in several languages possible.

In respect to the meta-object model, the main features are the fact that the objects are 

considered as remote objects, whatever their location is, and although the fact each 

object has an unique identifier, it can have multiple references.

As shown in Figure 4, the CORBA architecture includes seven main components. The 

most  important,  ORB  core,  provides  the  communication  between  the  other 

components.  It  forwards  the  client  request  transparently  to  the  server  object.  The 

Interface Definition Language Compiler generates client stubs and server skeletons, 

which  are  the  CORBA server  stubs.  These  two  components,  together  with  the 

Dynamic  Invocation Interface (DII),  execute  the marshalling and unmarshalling of 

request  parameters.  This  last  component,  the  DII,  also  support  the  definition  of 

requests  at  run-time.  The  CORBA specification  always  supported  several  object 

adapters, but the last one is the Portable Object Adapter (POA), which defines the 

object activation and deactivation when needed. 
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2.1.2. COM

COM is a middleware technology developed by Microsoft  in 1993. Like CORBA, 

COM enables the communication between processes but also supports the creation of 

objects  in  some programming languages,  which  are  Visual  Basic,  Visual  C++ and 

Visual J++. Since inheritance is a feature of the object-oriented paradigm, is important 

to refer that COM does  not include it. This is however overcame with the fact that 

COM objects can have multiple different interfaces. COM includes some technologies 

like ActiveX and the Object Linking & Embedding (OLE). 

Two main features of COM are the binary encapsulation and compatibility support. 

The first one means that the coding representation of the server objects can evolve 

independently from its clients, and in the case of any change in the server code it is 

only necessary to compile the client code again. The second one stands for the fact that 

is  possible to use the binary code of the implementation of an object  in a certain 

programming environment, while developing in another environment.

As this topic refers to distributed objects, it is fundamental to refer that COM does not 

support  communication  between  components  spread  over  a  net.  Because  of  this, 

Microsoft introduced an extension to COM, the Distributed Component Object Model 

(DCOM).  This  was  possible,  because  Microsoft  started  to  use  the  Distributed 

Computing Environment/Remote Procedure Calls (DCE/RPC), which is a system that 

provides the facility of the software running in computers distributed over a network, 

as if it were all running on the same machine. Later, an extension to the COM was 

released by Microsoft,  the COM+. The meta-object model of COM has three main 

entities, classes, implementations and interfaces, and it is important to note that COM 

interfaces have a Universally Unique Identifier (UUID).

The  architecture  of  the  DCOM system,  in  figure  5,  is  composed  of  three  layers: 

application, presentation and session. In the first one, the client has a pointer to an 

interface proxy and the server has the implementation of the object and a COM class. 
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In presentation layer, the client and server hosts have only one component in common, 

the COM library. Moreover, the client host has an object proxy and an interface proxy, 

while the server has an object and an interface stub. The aim of the object proxy is to 

marshall and unmarshall pointers and to create an interface proxy for the particular 

interface through which the request is sent. This interface proxy will then marshall or 

unmarshall the parameters of all the operations contained in the interface with which it 

is associated. The object stub in the server host marshalls the object references and 

creates the interface stub. Each stub is capable of marshalling and unmarshalling the 

operation  parameters  for  the  interfaces  it  is  associated  with  and  of  calling  the 

requested operation.  These  components  of  the  presentation layer,  except  the COM 

libraries,  are  generated  by  the  Microsoft  Interface  Definition  Language  (MIDL) 

compiler.  The  activation  and  deactivation  of  remote  objects  is  controlled  by  the 

Service Control Manager (SCM).

2.1.3. Java RMI

Remote Method Invocation  (RMI) is  an API that  extends  the Java object-oriented 
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programming  language.  This  solution  was  developed  by  Sun  Microsystems  and 

defines  the  procedure for invoking a method from a server object hosted in a Java 

Virtual Machine other than the one running the client.

In this  model,  there are  no heterogeneity issues,  since Java RMI does not support 

client and server objects written in other programming languages than Java. They must 

be written in Java language. 

Java RMI meta-object model does not include an IDL, since Java already includes a 

distinction between interfaces and classes, but also because, as said before, it does not 

suffer from heterogeneity issues.

Like CORBA and DCOM, RMI provides a mechanism to generate stubs and skeletons 

from the  interface  definition  in  a  fully  automatic  way.  These  generated  stubs  and 

skeletons  perform the  marshalling  and  unmarshalling  of  the  parameters.  The  RMI 

runtime  architecture  (figure  6)  is  simpler  than  CORBA's  or  DCOM's.The  remote 

method invocation is  started by the client,  when it  calls  a local method to  a stub. 

Clients obtain the references of the remote objects which are on the server side by 

means of a registry. The server has previously registered its object references in the 

registry so that the clients can locate and access them. 
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Server  objects  can  be  activated  in  two  different  manners.  Explicitly  by  some 

administrator or implicitly when a remote method invocation is made for that object. 

In this case, the object has to be able to be activated and use activation interfaces to 

register itself.

2.2. Service-Oriented Computing (SOC)

SOC  [8]  is  an  emerging  computing  paradigm  or  concept.  It  consists  on  the 

development of a system architecture, a Service Oriented Architecture (SOA), where 

flexibility, scalability and fault tolerance are the key principles. These principles apply 

mostly to large distributed systems, since these systems usually suffer from the issue 

of heterogeneity. 

With the growth and demanding of the global markets, enterprises and organizations 

feel  the need of  improve their  business  processes.  Therefore,  these companies  are 

starting to use SOA since this architecture model brings several benefits in promoting 

interoperability  between their  services,  and  allows a  collaborating  and cooperative 

environment between different companies.

Although  the  term  SOA  was  firstly  associated  to  component-based  software 

technologies such as CORBA or J2EE, Bichier and Lin state in [6] state the idea that 

SOA is now more focused on Web services, and that it has turned into a major research 

topic. 

There are  three fundamental  technical  concepts  that  support  the development  of  a 

distributed application using SOA:

Service – A set of features that allow the building business processes in the context of 

SOA.

Interoperability  – Although this  term was not introduced by SOA, SOA provides 

interoperability between the components of a system, and because usually SOA brings 

heterogeneous  systems,  it  provides  the  Enterprise  Service  Bus  (ESB)  that  is  an 
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Information  Technology (IT)  bus  which  provides  the  communication  between  the 

different components of the SOA.

Loose Coupling – The principal  aim of this  concept  is  to  minimize dependencies 

between the components of a system. This is because there is the need to minimize the 

impact of modifications on the system and its failures. Loose coupling deals with the 

requirements of scalability, flexibility and fault tolerance.

2.2.1. Component Architectures

A Service Component Architecture (SCA) is a set of specifications that represent a 

model compatible with the development of applications based on SOA. These kind of 

architectures where in the past associated to technologies such as JAVA, DCOM and 

CORBA.  They were  in  use  for  several  years,  but  at  this  moment  they  are  being 

replaced by the emergent Web services technology. This replacement is mainly due to 

older technologies limitations, like interoperability issues or availability over the Web 

caused by the types of connections used to transmit data, which are incompatible with 

the  usual  firewall  rules.  These  were  some  of  the  motivations  for  Web  services 

appearance,  since this  technology seems to  solve some of the issues stated above. 

Despite of the disadvantages referred, the distributed objects technologies present high 

levels of performance and they still be used by some organizations or enterprises who 

do not need a Web component in their processes.

Component programming in the Java world is mainly done by resorting two different 

technologies which are Jini  and Java Enterprise Edition (J2EE) through Enterprise 

Java Beans (EJB). In this last case the J2EE can be seen as the server which allows the 

use  of  EJB,  a  component-based  development  model.  Although Java  technology is 

platform  independent,  it  is  not  language  independent  and  that  can  lead  to 

interoperability  problems  when  integrating  a  large  system.  Another  issue  is  their 

application development complexity.

In the case of CORBA and DCOM, the issues of interoperability and complexity do 

not arise, since they can interact with different programming languages and there are 
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many  developed  systems  with  high-levels  of  performance.  However  they  do  not 

deliver a good Web support for the reasons explained in chapter 1. Thus, they are not a 

good choice for those who need to put their business applications over the Internet. 

From  this,  at  the  time  of  developing  a  new  system,the  choice  is  between  the 

interoperability that Web services provide or the performance obtained with the use of 

distributed objects technologies.

2.2.2. Web Services

Web services  is  a  technology that  appeared  a  few years  ago,  and  since  then  has 

increasingly gain the interest of the community. This interest is mainly due to the fact 

that Web services provide its operations over the web, without the need to build new 

applications. The main motivation behind Web services was to build a platform and 

programming language-independent distributed invocation system out of existing Web 

standards.

An important thing to note then is that the Web Service concept is not the same as that 

of SOA or SOC. Although they are often confused, Web services just correspond to a 

technology that is  often used to design and implement SOA. This is because Web 

services can provide a high level of interoperability between systems. Louridas states 

in  [7],  that  the  idea  of  inter-operation  in  a  completely  transparent  manner  when 

running  different  applications  in  different  platforms  and  even  written  in  different 

programming  languages  motivated  the  appearance  of  Web  services. This 

interoperability  is  possible  through  the  use  of  the  eXtensible  Markup  Language 

(XML) standard, which allows the mapping of different programming languages to a 

widely  accepted  one.  From  here,  Web  services  allow  inter-operation  between 

heterogeneous systems and business processes.

Compared to the distributed objects technologies, Web services have a loosely coupled 

approach, i. e., the degree of dependency among the components of a system must be 

minimized. This is because the integrity of the all system might be compromised by 
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possible modifications or failures, so their effects must be minimized.

It is also important to state that Web services are not without defects, since they inherit 

the good and the bad things of the Web, i. e., they are scalable, simple and distributed 

but on the other hand, they do not support centralized management and are not high 

performance tailored.  Moreover they do not handle events, as, for instance, CORBA 

does.  Because of this,  Web services are  indicated to applications that  do not have 

severe restrictions on reliability and speed.

In the present there are three standardization organizations for Web services:

1. WS-I – Web Services Interoperability Organization5

2. W3C – World Wide Web Consortium6

3. OASIS  –  Organization  for  the  Advancement  of  Structured  Information 

Standards7

From this three organizations, only WS-I has the improvement of Web services as a 

goal.  It  was founded by companies  from the IT world in  response to  the need of 

standardization of several specifications. This was in 2002. In the present, WS-I has 

more than a hundred members. The other two, OASIS and W3C are widely known for 

the standards they represent.

2.2.2.1. Web Services Standards and Specifications

Web services are based on standards. HyperText Transfer Protocol (HTTP)  [44]  and 

XML [29] are two of them. These are considered Internet protocols and were available 

before the notion of Web services, although they were an important factor in their 

acceptance and use.

In the present, there are several Web service standards from different standardization 

5 http://www.ws-i.org
6 http://www.w3.org/
7 http://www.oasis-open.org/
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organizations, which may lead to interoperability problems. The purpose of the WS-I 

organization is to solve these issues.

Next,  we  briefly  describe  the  Web  services  standards  for  service  description, 

publication and interaction.

Web  Services  Description  Language  (WSDL)  [1] is  recommended  by  W3C since 

2007. WSDL is another XML based language and its role is to describe a Web Service 

and how it should be used or invoked providing the necessary data to build a SOAP 

message. In terms of comparison, WSDL is equivalent to the CORBA IDL or to a Java 

Interface.

UDDI [24, 28] stands for Universal Description, Discovery and Integration and is an 

OASIS standard. It defines a model to publish and discover components of a network, 

and  in  this  case,  of  each  Web  Service.  UDDI  registry  is  composed  by  three 

components. The White Pages which contain basic information about the providing 

company like the address or contacts  and its known identifiers. The Yellow Pages, 

which organize the services by industry, service type or geography according to the 

standard taxonomies and the Green Pages that provide the technical information, such 

as  interfaces  and URL location,  about  how to  find  and execute  a  published  Web 

Service.

SOAP [45] stood for Simple Object Access Protocol before the release of the version 

1.2  which became a W3C recommendation in 2003. In the present, SOAP is not an 

acronym also because, as referred in [9], this protocol has nothing to do with accessing 

objects. Many think that SOAP is a transport protocol, but this is a wrong idea. SOAP 

is a XML-based protocol that has the shape of a message which will be sent over a net 

using a transport mechanism such as HTTP, which is the one mostly used, but there 

are others like the Simple Mail Transfer Protocol (SMTP) [46]. A SOAP message can 

also be considered as an envelope which can be composed of two elements, the header 

which  contains  system  information  and  the  body  which  contains  the  XML data 

necessary to the Web Service processes. 

36



Beyond  these  three  standards,  there  are  a  lot  of  specifications  associated  to  Web 

services. All of them have the prefix “WS-*”. As example, there is the WS-Security 

[31], WS-Coordination [35] or WS-TX [38]. The aim of these specifications vary a lot, 

since they can complement each other or even compete. It is not much relevant to 

focus them in the scope of this work, moreover when they are in different degrees of 

maturity and acceptance, and are supported by various standards entities. 

Figure  7  portrays  a  general  Web services  architecture,  including  its  key elements. 

Firstly, the Service Provider must create and deploy the Web Service. Then it should 

publish the respective WSDL file to an UDDI registry. The service broker provides a 

search service that should be used by a client or service requester to discover a desired 

service described in a WSDL file.  In this  case,  the UDDI Registry will  act  as the 

service broker. After this process, the client can invoke the service from the service 

provider  and  the  communication  will  be  through  SOAP messages  supported  by a 

transport protocol like HTTP.

J2EE and .NET are two promising platforms for the development of Web services, but 

there is not a conclusion of which is better  [41]. Each of them has advantages and 

disadvantages. J2EE is a multi-platform and Java-only technology. .NET used to be 
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only available for Windows platform, but in the present there are solutions, like Mono8 

to provide the development of cross platform applications, once it is an open source 

implementation of .NET framework.

2.3. Service Composition - Orchestration and Choreography

One of  the main features  of  the service oriented architectures is  the possibility of 

building high-level or complex services and processes. The idea behind this scenario is 

the integration or composition of multiple  services  that  can be done in  two ways, 

Orchestration and  Choreography. The main difference between these two models is 

that in orchestration there is the idea of a centralized service that coordinates the other 

services. The result can be another single service and it can be used further as a basic 

service or  even in  other  service  composition.  On other  hand,  in  choreography the 

principle is peer-to-peer collaboration between services, i. e.,  choreography defines a 

model  where exists  collaboration between different  services and it  is  possible  that 

none of them understands the whole process.

Web  Service  Business  Process  Execution  Language  (WS-BPEL)  [18] is  used  to 

specify business processes behaviour, and it is, at this moment, used to represent the 

orchestration  model,  while  the  Web  Service  Choreography  Description  Language 

(WS-CDL) [22] represents the choreography model. The next two topics will describe 

these two languages respectively.

2.3.1. Business Process Execution Language

WS-BPEL  [18,  19] is  commonly named only BPEL. In the past  it  was  known as 

BPEL4WS. Currently,  it  is  an OASIS standard,  WS-BPEL version 2.0 since April 

2007. BPEL appeared from the earlier  work of Microsoft  with the XML Business 

Process Language (XLANG)  [20] and IBM with the Web Services Flow Language 

(WSFL)  [21].  BPEL took the best  features  of  these  two approaches,  adding  some 

other.

8 http://www.mono-project.org
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The  main  feature  of  this  XML-based  programming  language  is  to  facilitate  the 

composition  of  Web  services.  A  composition  of  Web  services  consists  on  the 

integration of some Services within or across enterprises which allow the creation of 

higher  function  and  more  complex  services.  These  services  are  then  considered 

business processes. Thus, BPEL may be considered an orchestrating language, because 

it defines how the services interact or cooperate in order to create a business process.

Processes in BPEL export and import functionality by using Web services interfaces, 

the WSDL. In the present, BPEL is also considered as a Web services standard, thus it 

has  a  relationship  with  the  others  standards  which  were  referred  in  the  document 

previously. As said, BPEL uses the WSDL of a service to know how to invoke it, and 

because the result of a BPEL process can be also a service, it can be described by 

another  WSDL.  To  invoke  the  services  BPEL uses  SOAP,  and  UDDI  is  used  do 

discover and publish services. Thus, BPEL has a tight relationship with the other WS 

standards.  The  current  version  of  BPEL supports  the  following  versions  of  XML 

specifications: WSDL 1.1, XML Schema 1.0, XPath 1.0 and XSLT 1.0. The current 

version of WSDL is 2.0, but it is not yet supported by BPEL 2.0, but is possible that a 

future version support another standards.

Although  BPEL syntax  is  defined  in  XML language,  most  of  the  BPEL process 

development is made by using BPEL graphical editors, which allow the description of 

the process as a diagram and then provide the generation of the corresponding BPEL 

code. In the present, there are several IDE's which provide this tool, like NetBeans, 

Eclipse or WebSphere among others. This is a great help for one who develop BPEL 

processes, because the BPEL format might be complex and error-prone.

When defining a business process in a BPEL document, there are four fundamental 

sections that must be included. Despite this, other elements can be added in a process 

definition. The first of the four sections is partnerLinks, that include the services that 

integrate the choreography. The variables include the data structures or variables used 

in the business process. The definition of these variables is made by WSDL message 
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types and XML Schema Definition (XSD) elements and types. The fault handlers or 

procedures  that  should  be  invoked  in  case  of  error  are  within  the  faultHandlers  

section.  At  last,  the  sequence  encompasses  the  definition  of  the  process  once  it 

describes  the  behaviour  of  the  whole process  with  the  activities  described  in  next 

paragraph.

Other two important elements of BPEL are the basic activities and structures activities. 

Their role is the creation of the logic of a business process. The basic activities are 

used for describing the basic steps of the process behaviour, or just to perform a single 

action.  Examples  of  these are  the sending or  receiving  of  messages  from services 

(invoke, reply and receive).

The  structured  activities  define  in  which  order  the  activities  of  the  process  are 

executed  making  their  composition.  They  can  contain  basic  or  other  structured 

activities.  The  widely  known loops  while,  repeatUntil  or  forEach  are examples  or 

structured activities.

2.3.2. WS-CDL (Web Services Choreography Description Language)

Although not directly related with our work, we briefly introduce WS-CDL [22, 23], a 

novel  approach  to  Web  service  composition  developed  by  the  Web  Services 

Choreography Working Group which belongs to the W3C Architecture Domain.  In 

June  2006 it  was  released  the  Web Services  Choreography Description  Language: 

Primer, which is a tutorial of how to use the features of WS-CDL specification.

The main focus of the WSCDL, a XML-based language just like BPEL, is to describe 

the cooperation or collaboration behaviour between different kinds of participants of a 

business process. The description of this process is defined in an XML document. The 

behaviour  is  seen  in  a  general  way,  in  contrast  with  the  centralized  view  like  in 

orchestration, and that is the major difference between the models. The mechanism 

behind this scenario is message exchanging. Thus, the result of a choreography model 
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should be  a  successful  achievement  of  a  goal.  Each participant  should provide its 

services and the way they all interact must be in a contract. This contract is nothing 

more  than  the  description  of  the  choreography.  It  is  important  to  note  that  the 

choreography only includes the interactions of the participating services that may have 

influence to the choreography's objective or goal.

Unlike BPEL, WS-CDL was developed to allow the composition of services by means 

of choreography, and then it can not be considered as an executable business process 

language.  It  is  purpose  is  to  provide  collaboration  between  different  types  of 

participants  promoting  then  interoperability  because  these  participants,  which  are 

services, can be developed in any programming model and running in any platform. 

Several factors motivated the Web Services Choreography Working Group to develop 

the WS-CDL specification:

• Re-usability: a single choreography can be used within several contexts;

• Cooperation: the message exchanging between the participating services;

• Multi-party collaboration: support for combining already existing choreographies; 

• Modularity:  support  for  defining a  choreography  with  parts  of  others 

choreographies;

• Exception handling: handling for errors and exceptions;

• Transactionality: ability  of  coordination  of  the  results  from  the  collaboration 

between the multiple participants; 

• Specification composability: ability to work together or complementing other WS's 

specifications.

2.4. Bridging Web Services and other Distributed Object technologies

In this topic we will focus the mapping between Web services and other distributed 

technologies. We will state the motivations that justify the necessity of this bridging 

and the solutions that were found by some organizations or enterprises to fill this gap.
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The main idea of the bridging process is the invocation from a Web service client of a 

service from a given distributed object technology in a transparent way, i. e., without 

noticing that it is invoking a service from a different technology. The client and the 

server will still use their own standards, but because these standards do not match, a 

proxy will be used. The goal of this proxy is to translate the messages sent, giving a 

transparent nature to this process.

2.4.1. Motivation

Bridging  Web  services  and  a  distributed  objects  technology  simply  consists  on 

exposing a service provided by a some technology as a Web Service, e. g., to put a 

CORBA service over the Web or make it interoperable with a different technology is 

possible by exposing the service as a Web Service. However this is not the only reason 

that motivates the use of bridging.

As  stated  previously,  technologies  like  CORBA,  DCOM  or  RMI  used  to  be  the 

distributed objects market leaders, but lost that position with the porting of services to 

the  Web.  So,  if  Web  services  are  currently  more  attractive  than  these  three 

technologies, why just not replace them? This can be answered in different ways, but 

the truth is that it is very difficult and costly to re-implement existent platforms. That 

is because an organization or enterprise that has a successful solution developed in 

distributed objects technology, if wants to replace it with Web services, has to expend 

a huge investment and it may not be profitable. However, it  might be attractive to 

integrate their developed solution with Web services, and it turns out to be possible by 

exposing the services as Web services so they could interact. This solution will then 

protect the investments made in the past.  Beyond this reason, it is known that Web 

services  have  performance  issues,  which  have  been  reduced  with  current 

implementations, so it is acceptable that one may prefer a distributed object solution. 

On the other hand, Web services have their benefits, so, at the time of designing a 

distributed  system,  the  advantages  of  Web  services  in  respect  to  interoperability 

provided and the higher performance that the distributed object technologies provide, 

have to be considered.
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2.4.2. Existing solutions

The state-of-the-art in this area is limited to a few proposals that focus on the idea of 

bridging CORBA and Jini as Web Services.

2.4.2.1. Web Services and CORBA

By  the  year  of  2000,  OMG  published  was  a  Request  for  Proposal  (RFP)  for 

CORBA/SOAP Interworking [10]. The response for this RFP [11], established OMG's 

the  foundations  of  what  would  become  WSDL/SOAP  to  CORBA  [12] and  the 

CORBA to WSDL/SOAP [13] Interworking Specifications, providing a framework for 

the  exposing  of  CORBA services  as  Web  services.  These  releases  provided  the 

possibility of exposing CORBA as Web services, and drove the development of the 

concrete solutions.

In document [14], a Generic Bridge Generator is described, although it is not available 
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as solution. It only describes the Java classes that are needed and how to use them. It 

also refers a performance analysis  between a CORBA solution using Pontifex,  the 

Generic Bridge Generator and a pure Web Service.  The test  consisted in a simple 

application where a client transmitted a sequence of randomly generated elements of 

type  long to  the  server,  which  had  to  calculate  the  mean  average  value  of  those 

elements. The results are shown in table 1 and as it  is demonstrated, the overhead 

introduced by Pontifex,  and bridging in  general,  is  acceptable  and that  should not 

undertakes the performance.

It is important to refer that a bridge generator has to translate the CORBA interface 

definitions to Web services descriptions, i. e., translate the IDL file from CORBA to 

WSDL and generate a program to provide the mapping of a Web Service invocation to 

the equivalent in CORBA. Thus, the main functionality of the bridge is to translate the 

message received from the Web Service to the equivalent CORBA method invocation 

and then do the reverse operation, that is mapping the result to a Web Service message 

[14].

In tables 2 and 3 the main differences between these two technologies can be found.

CORBA stack Web Services stack
IDL WSDL

CORBA Services UDDI
CORBA Stubs/Skeletons SOAP Message

CDR binary encoding XML Unicode encoding
GIOP/IIOP HTTP

TCP/IP TCP/IP

Table 2: CORBA and Web services technology stacks (taken from [15])
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Aspect CORBA Web services

Data model Object model
SOAP  message  exchange 

model
Client-Server 

coupling
Tight Loose

Location 

transparency
Object references URL

Type system IDL XML schemas
static + runtime checks runtime checks only

Error handling IDL exception SOAP fault messages
Serialization built into the ORB can be chosen by the user
Parameter 

passing
by reference by value (no notion of objects)

by value (valuetype)
Transfer 

syntax
CDR used on the wire XML used on the wire

binary format Unicode
State stateful stateless
Request 

semantics
at-most-once defined by SOAP

Runtime 

composition
DII UDDI/WSDL

Registry Interface Repository UDDI/WSDL
Implementation repository

Service 

discovery

CORBA  naming/trading 

service
UDDI

RMI registry
Language 

support

any  language  with  an  IDL 

binding
any language

Security CORBA security service HTTP/SSL, XML signature
Firewall 

Traversal
work in progress uses HTTP port 80

Events CORBA event service N/A

Table 3: Comparison between CORBA and Web services (taken from [15])

Apache provides another solution for bridging CORBA services. Apache Axis2 is an 
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open source Web Service engine developed by the Apache Software Foundation, that 

includes  a feature  for  bridging  CORBA services,  that  is  a  CORBA module.  This 

module  allows  a  Web  Service  client  to  invoke  CORBA services  in  a  completely 

transparent way. The main idea is that the client can invoke a CORBA service without 

noting that it is a CORBA service. In the present, this solution seems to be the one that 

best suits for one who wants to expose a CORBA service as a Web Service.

Figure 8 shows how the CORBA module works.  A Web Service Client  invokes  a 

method from the CORBA service in a totally transparent way. The CORBA module 

maps the SOAP message to an IIOP one and then sends the invocation for the CORBA 

Server, which processes the request and sends the result back to the module. Apache 

Axis2 does another conversion, but this time from IIOP to SOAP, and then finally 

sends the response to the Web Service Client.

Three other solutions were found: IONA Orbix [33] and Borland Visibroker [32]. The 

enterprises responsible for both products were involved in the response to the RFP 
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from OMG, but unlike the solutions above, since they are both commercial solutions, 

they lack on design and implementation information.

2.4.2.2. Web Services and Jini

General brOkering Architecture Layer (GOAL) [16] is a service architecture. GOAL 

was initially thought for the development and management of highly flexible, scalable 

and self-configurable distributed, and service-oriented applications over the Internet.

This architecture runs on the top of Sun Microsystems' Jini technology, and relies on it 

for the dynamic registration, service look-up, notification of remote events, distributed 

object access and platform-independence enabled by Java technology. This lead to the 

obligation  of  having  service  clients  and  providers  implemented  in  Java,  since  the 

communication between services is based on the exchanging of Java-objects.

GOAL itself is not relevant for this work, but is important to refer that later, its authors 

extended it  to  promote  interoperability  between GOAL services  and Web services 

[17].

The interoperability provided by GOAL is  of the responsibility of two new added 

meta-services: the GOAL2WS and the WS2GOAL services.

The GOAL2WS meta-service has  the responsibility of generating and deploying a 

GOAL2WSBridge  which  makes  a  Jini  service  accessible  as  a  WS.  A 

GOAL2WSBridge is at the same time a WS and a Jini client: it receives SOAP calls 

from a WS client, transforms them in method on the bridged service and then returns 

the relevant Java results as SOAP objects (Figure 9).
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Figure 9: Communication details between a WS-Client and a GOAL-Provider (taken 

from [17])



The  WS2GOAL  meta-service  generates  and  deploys  a  WS2GOALBridge  which 

makes a WS accessible as a Jini service. This WS2GOALBridge is nothing more than 

a Jini Service which behaves as a WS Client. It receives method calls from a Jini client 

and returns the SOAP results as Java objects (Figure 10). It is very important to note 

that each one of the two bridges related is specific to a single service. Each time one 

wants to make GOAL interoperable with WS's has to create a new bridge. On the other 

hand, by using these two services briefly described, an already deployed and working 

service can easily be cast respectively in the WS or GOAL domain.
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Figure 10: Communication details between a GOAL-Client and a WS-Provider  

(taken from [17])



3. The OHMS Platform 

The scope of this masters thesis is to develop a platform, that we call  OHMS,  that 

provides  support  to  create  new  services  through  composition,  in  the  context  of 

distributed objects-based platforms. 

The architecture of the OHMS platform was designed bearing in mind our desire on a 

platform that would provide support for the orchestration of distributed objects-based 

services in the context of their platforms. This lead to another aspect that is having a 

general solution and not only for a specific technology, i. e., OHMS should accept all 

kinds of distributed-objects technologies that support a bridging process.  Finally, we 

wanted to avoid at all cost the need for a change in the platform's implementation in 

order  to  be  suitable  for  orchestration,  i.  e.,  a  platform  should  not  have  to  be 

reimplemented or redesigned in order to be compatible with OHMS. This property 

allows the use of OHMS by systems whose code is not public or no longer available 

(such as legacy systems).

In  order  to  meet  our  requirements,  we designed an  architecture  composed  of  two 

independent  modules:  the  name-service  directory  module  (or  directory)  and  the 

orchestration module. 

This  chapter  describes  the  architecture  of  OHMS and  of  its  composing  modules, 

including the approaches thought to design and implement each module, their inherent 

issues and the possible solutions.
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3.1. Architecture of OHMS

The orchestration of services from distributed-objects platforms will be possible from 

the moment  that  a  platform registers  its  name-server  in  the OHMS platform.  This 

registration allows the platform to choose between the complete or the partial bridging 

of its composing services. 

As referred in the introduction to this chapter, the architecture of OHMS is composed 

of  two  modules.  The  first  module,  the  directory,  was  implemented  in  the  Java 

programming language and is the core of OHMS. It is this module that turns possible 

to bridge services from platforms, by storing information of their name-servers and the 

logistic to expose their services registry, thus providing platform interoperability. 

The second module, the orchestration module, is a platform-oriented extension to the 

BPEL plug-in from Eclipse. A plug-in created by BPEL Project to provide support for 

the definition of BPEL processes. Our extension provides a simpler way to access and 

use BPEL to orchestrate the previously registered and bridged services.

Figure 11 portrays the architecture of the whole platform and the interaction of its 

modules.  These  are  completely  independent  and  connected  through  an  UDDI 

Repository embedded in the directory, where the exposed services are published. The 

directory also embeds a Web Server to provide Web access to those bridged services.

The directory provides a registration peer to accept registrations of both Technologies, 

that includes the bridging logistics, and Name-Servers, that includes the information of 

platforms' name-servers. Both technology and name-server concepts are described in 

detail in the next section.
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3.2. The Name Service Directory module

The directory is the core of OHMS. Its general nature turns possible to provide full 

interoperability in a technology independent way, since it is not attached to a single 

technology. The directory acts as a server that accepts requests from both technology 

and name-server clients. 

From  the  directory  point  of  view,  a  technology  is  a  Java  class  (or  classes)  that 

encapsulates  all  the  logistics  necessary  to  expose  a  registered  service  as  a  Web 

Service. By logistic  we mean the  definition  of  the  logic  necessary to  perform the 

following three steps:
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1. inspect the registry of a technology's name-server, in order to extract the new 

registered services to bridge;

2. generate the bridge for each of these services; and

3. publish the resulting bridges in the UDDI repository, turning them visible to 

the orchestration module.

The platform-oriented  nature  of  OHMS leads  to  the  storing  the  registry  of  name-

servers from the platforms to bridge instead of their services. The registry of those 

name-servers requires the identifier of an available technology and a Java properties 

file  holding  all  the  name-server  specific  information. The  complexity  required  to 

bridge services from a given technology may differ greatly from one technology to 

another.

In order to make the directory available in a network, our initial idea was to use Web 

services, but our closer familiarity with CORBA and its respective CORBA naming 

service  droves  us  to  use  this  technology  to  rapidly  prototype.  A  Web  service 

implementation is left for future work.

The directory starts  and registers  itself  in a CORBA naming service.  Thus,  before 

running the directory's main class, the user has to ensure that there is an ORB running 

at  a  specific  port,  which  has  to  be  available  to  the  technologies  and name-server 

clients, in order to be discovered by those clients.

The directory provides to the clients the following CORBA IDL interface to support 

the registration, update and remove of both technologies and name-servers. These six 

operations  return  an  ErrorCode  that  allow  the  user  to  know  what  went  wrong, 

whenever a process fails.
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module ServiceDirectory{

typedef sequence<octet> bytecode;
typedef sequence<classDefinition> classesDefinition;
typedef sequence<string> techs;

enum ErrorCode{
     UNKNOWN_ERROR,
     ALREADY_EXISTS,
     NO_EXITS,
     FILE_DOWNLOAD_FAIL,
     NO_ERROR};

valuetype Technology{
     void run();
     ErrorCode register(bytecode props);
     ErrorCode update(bytecode props);
     ErrorCode remove();};

struct classDefinition{
     string className;
     string packPath;
    bytecode classCode;};

interface IRegister{
        

ErrorCode registerTech(in string ID,in classesDefinition 
classesDef, in classDefinition mainClass); 

ErrorCode updateTech(in string ID,in classesDefinition 
classesDef, in classDefinition mainClass);

ErrorCode removeTech(in string ID);
ErrorCode registerNS(in string tech, in string NS_ID, 

in bytecode properties);
ErrorCode updateNS(in string tech, in string NS_ID,in 

bytecode properties);
ErrorCode removeNS(in string tech, in string NS_ID);
techs getTechnologies();
string getWebServerLocation();};

};
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The interface also defines a  classDefinition struct. In Java terms, this corresponds to 

an object and is composed by two strings, className with the name of the class file 

and  packPath with the path of the package of the corresponding class. The last one, 

classCode, corresponds to an array of bytes that will contain the code of the class. One 

technology is defined by one or more instances of  classDefinition  and these are the 

classes  needed  to  implement  the  bridging  logistic  we  referred  previously  in  this 

chapter.

The presented interface also provides one more method: getWebServerLocation. This 

operation provides the correct location of the Web Server. The used Web Server has 

some features available, such as a CORBA module, and this location may be useful for 

some technology or name-server that will be registered in the directory.

3.2.1 Handling a technology

Technologies are manipulated by registerTech, updateTech and removeTech methods. 

In order to register a technology, an user just as to use the registerTech method with 

the three correct parameters: ID, the technology identifier; an array of classDefinition  

type, that will include all the classes of the Technology that is registering, except one, 

that is the main class which will be the third parameter. This distinction is made so the 

directory is able to know which class should be run to enable a technology. Classes are 

sent to allow the directory to store them in its own file system, and run the technology 

when necessary.

At  the  time  of  the  registration,  a  new  entry  will  be  added  to  the  registered 

technologies' map, an HashMap that associates the received identifier to an instance of 

the  received  main  class.  This  identifier  should  have  something  to  do  with  the 

technology it represents, since it will be provided to those who want to register name-

servers. Figure 12 demonstrates an incoming technology.
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In  order  to  be  compliant  with  the  directory,  a  technology must  be  an  instance  of 

valuetype Technology.  This valuetype provides the methods to manipulate incoming 

name-servers. Although this restriction is not directly imposed by the IDL interface, 

non-compliance will result in a registration failure.

The updating process, through updateTech simply replaces the classes associated to a 

given technology, causing it to restart

Removing  a  technology  with  removeTech only  requires  its  identifier  in  order  to 

discovery which entry to remove from the HashMap.

The way a technology interacts  with name-servers registrations  is  delegated in  the 

technology. However, for each registered technology,  the directory keeps a counter 
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with the number of name-servers associated. When it is zero, technology is stopped, 

ensuring that only technologies with name-servers associated consume CPU resources.

The directory only supports the bridging of platforms from the technologies currently 

registered and available,  thus providing technology and version independence. The 

directory  accepts  registrations  from  different  technologies,  such  as  CORBA  or 

DCOM, and also registrations for the same technology, e. g., “CORBA version 1” and 

“CORBA version 2”.

3.2.2. Handling a Name-Server
 

Operations  with  name-servers  are  performed  using  registerNS,  updateNS  and 

removeTech methods.  Registering  a  name-server  is  done  by  using  the  registerNS 

method and includes three parameters: string tech that corresponds to the technology 

that the name-server will be associated; string NS_ID, indicating the identifier of the 

registering name-server, and an array of bytes that includes the Java properties file. 

That properties file includes information such as the name-server's location or which 

are the services to bridge.

When a new register of a name-server incomes, the directory relays its registry to the 

associated technology by invoking method register from valuetype Technology,  with 

the received properties file as argument.

The process for method updateNS is similar to the above described, but this time the 

update method from valuetype Technology is invoked.

Concerning method  removeNS,  the directory receives the ID of the technology the 

name-server is associated and its own identifier. When a name-server is removed, the 

counter associated to the technology decrements and if it is zero, the technology will 

stop.
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As  illustrated  in  figure  13,  the  name-server  will  be  associated  to  the  technology 

chosen, but at the moment of registration of a name-server, the user should ensure that 

the desired technology is already available. This can be done by using the operation 

getTechnologies. Although this is optional, it is recommended to an user that wants to 

register a name-server. 

3.2.3. Service – bridging and un-bridging: 

Once a name-server registers in the directory the bridging begins. The services already 

registered in a name-server will be bridged if they match any of services included in 

the properties file. The same is valid for the services that will register in the future.

Note that services are registered directly in the name-server and not in the directory 
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that only accepts technologies and name-servers. However, as illustrated in figure 14, 

the  service  registration  triggers  an  interaction  between  the  name-server  and  the 

technology. Technology will discover the newly registered service and will bridge it as 

a Web service, publishing the on-the-fly generated WSDL interface in the UDDI, thus 

making it suitable for orchestration. This bridging process depends on the technology 

implementation. 

The initialization  of  the directory starts  an embedded instance of  Apache  Tomcat, 

version 5.5., developed by the Apache Software Foundation. Tomcat is an open-source 

servlet container that supports the deployment of web applications. Tomcat is used to 

deploy the Web Server, Apache Axis2, and the UDDI repository, jUDDI, both from 

the Apache Software Foundation.
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3.3. The Orchestration module 

The orchestration module is a platform-oriented extension to the Eclipse BPEL plug-

in. It provides support for an user to connect and import services from a distributed-

objects platform using the UDDI Repository as intermediate.  Once imported,  these 

services can be treated as common partner links in the construction of a BPEL process.

This extension was possible through the use of Eclipse Rich Client Platform (RCP)9, 

which is a software that allows the building of Java-based applications on existing 

platforms or even build those kind of applications from scratch.

The requirement for this module was to show to the user the services available in a 

given platform. In order to meet that requirement, some solutions were thought, like 

creating a  pallette with the available services permanently at sight, creating another 

view  with  the  same  function,  or  just  fill  the  existing  pallette  with  that  option. 

However,  the  BPEL  plug-in  has  already  a  strong  graphical  environment,  so  we 

decided not to fill it with more information. The final solution focused on the creation 

of a new wizard with three wizard pages accessed by a new button.

Currently,  jUDDI  is  the  sole  implementation  available  in  our  extension,  mostly 

because it was already used in the directory module, but for achieving implementation 

independence,  some  other  UDDI  implementations  can  be  inserted  and  then  made 

available.  UDDI interaction is disciplined by an interface, IUddi.  This provides the 

support  for  including  any  other  UDDI  implementation. In  order  to  make  a  new 

implementation  available  for  users  it  is  necessary to  insert  that  information  in  the 

repositories available in the orchestration tool (see last field of figure 17). Thus, it is 

worthless to create a new implementation of an UDDI repository if it is not include in 

the  available  repositories  shown  in  that  figure.  Moreover,  for  each  new  UDDI 

implementation  it  is  necessary  to  implement  interface  IUddi.  The  definition  and 

description of the interface follows:

9 http://www.eclipse.org/home/categories/rcp.php
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public interface IUddi {

Object[] getUDDIInfo(UDDIData data);
String getWSDL(UDDIData data, String service);
boolean testUDDI(UDDIData data);
void setName(String implName);
String getName();

}

• getUDDIInfo – Retrieves the services by returning an array of Objects, where each 

is a service stored in the  UDDI repository.  This operation is used to present the 

services in the corresponding wizard (see figure 19).

• getWSDL – Returns the WSDL of a specific service. It is used to create new partner 

links associated to that WSDL interface.

• TestUDDI – Test if the UDDI repository is reachable for the plug-in.

• SetName and getName – Set and get the abstract name of the implementation, for 

which it is known in the orchestration tool.

In a BPEL process, a partner link is defined by the partner link type that represents the 

interaction between a BPEL process and the involved parties. These are divided in two 

categories: the  Web  services  invoked  by  BPEL  processes  and  BPEL  processes 

invoked by Web clients.

In the scope of our extension to the BPEL plug-in, we created a new button to add new 

partner links (figure 15). This button, that is next to the Add Partner Link button (the 

cross on the middle), is the one spotted by the arrow. We have chosen to put it right 

next to the  add Partner Link button, because as mentioned, it also relies on adding 

new partner  links.  Using  the  middle  cross,  it  is  only possible  to  create  an  empty 

partner link and it had to be configured manually, including the association to a Web 

service through its WSDL.
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The added button provides support to add new partner links by browsing and selecting 

the services available from a platform using its UDDI repository as intermediate. This 

operation requires the selection of the platform to browse, a process that is guided by a 

wizard,  whose behaviour  is  illustrated  on the diagram of figure 16,  and is  detaily 

described below.

 

• First step: Push the created button to browse a platform.;

◦ If  no  UDDI  repositories  are  available,  the  wizard  from  figure  17  will  be 

presented. The user can then insert data about a new UDDI repository and add 

the partner links concerning the services available;
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Figure 16: Diagram of wizards interaction

Figure 15: New button: Add a new UDDI Repository



◦ If UDDI repositories are available, the user will be presented with the wizard 

illustrated in figure 18 to choose between two options:

▪ Use an already available UDDI repository (wizard from figure 19);

▪ Insert a new UDDI repository (wizard from figure 17 as described in the 

first item);

• The addition of a new service is guided by the wizard from figure 21, native to the 

BPEL plug-in.

The wizard illustrated in figure 17 is the one that allows a user to insert data, that is 

subsequently stored, about a new UDDI repository. Firstly, it must select the UDDI 

implementation to use from the ones available. However, at this time, the plug-in only 

supports jUDDI. After this step, some data about the UDDI is asked. In the referred 

case,  only the field  spotted with * symbol  is required,  but perhaps in others more 

information will be necessary. After the required information is collected, the user has 

to push the Test button, in order to ensure that the plug-in can acquire a connection to 

the UDDI repository. A positive response leads the user to follow to the next step, that 

is adding partner links from the services available in the repository. 

Figure 18 presents the wizard where the user can choose between retrieving services 

from an already available platform or entering data for a new UDDI implementation. 

User can also remove an available platforms that are no longer necessary. 

The choice of creating a new repository results in the presentation of wizard from the 

previous figure (17) and its associated behaviour.
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Figure 19 presents the last wizard we created. This is the one that shows the available 

services from a given platform and that  allows the user to add a new partner link 

associated to a service.  Several partner links can be added, but only one at a time 

because when the user press the mentioned button, will be guided through another 

wizard, but this time is a native wizard from the BPEL plug-in.
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Figure 17: Entering UDDI Repository data



Once a service is selected, user must press the  Add as Partner Link  button. Then, a 

confirmation  dialog  is  presented  to  the  user  and  the  WSDL file  respective  to  the 

service  will  be copied  to  a  specified  folder,  within  the  BPEL process  project  file 

system, and will be always available for the BPEL process. However, if the selected 

service does not provide a valid WSDL interface, an error window will be shown and 

user has to select a different service.
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Figure 18: Choosing from existing repository or creating a new repository



By pressing  OK in the confirmation dialog, user will be guided through the  Create  

Partner Link Type  wizard. Although included in the developed tool, the wizard was 

not developed in the scope of this work. Because of fact, we only illustrate the first 

page of the wizard in Figure 20. This is the wizard used to configure the type of the 

partner link that the user needs, making it available to the BPEL process.
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Figure 19: Choosing services from an UDDI Repository
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Figure 20: Create Partner Link Type wizard

Figure 21: Added partner links



Figure  21  portrays  the  partner  links  added,  created  from  services  loaded  from  a 

platform.  This is  the final  result  from the process described in  this  section.  These 

partner links will enter a BPEL process in the same way as those that correspond to 

native Web services.
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4. On the application to Command and Control Platforms

This chapter describes how OHMS can be applied in a concrete scenario, namely the 

COMCOP Command and Control platform developed by Critical Software.

We will begin by giving a brief overview of what are Command and Control platforms 

and  on  the  particular  architecture  of  COMCOP.  Those  will  be  followed  by  how 

OHMS can be used to expose COMCOP as a Web service-based platform in order to 

create, by means of orchestration, a couple of new services.

4.1. Command and Control Platforms

Command and control platforms or C2, as they are frequently named, provide the 

facility of monitoring and controlling assets (either moving or stationary). They used 

to  be associated to  military operations,  but with the evolution of technologies this 

situation changed. In the present, this kind of platforms can be assigned to several 

purposes. One example of this is the Cybercare [26], a command and control system 

developed to give a quick response in case of medical disasters. This is a concrete 

example, but these platforms are also used in ground, space or maritime missions. 

Command and Control  includes  all  the  operations,  decisions  or  actions  needed to 

achieve an objective, and this can be performed in several ways. It can take the format 

of a regular procedure, like an airplane in the time of landing, or an action which has 

to  be  taken  in  a  matter  of  seconds  or  milliseconds  and  has  to  be  executed  by a 

computer, like the controlling  of an unmaned air vehicle. In other cases a command 

and control mission has to be operated by a skilled person, like the management of a 
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fire fighting team. More precisely, in document [27] are the fundamental features that 

command and control can handle: 

• Establishing intent (the goal or objective)

• Determining roles, responsibilities, and relationships

• Establishing rules and constraints (schedules, etc.)

• Monitoring and assessing the situation and progress

With the advance in technology, not everything were benefits, like the higher costs of 

development and of performing missions, lack of standards for data or several project-

specific research that was not really necessary. This promoted the formation of the 

Consultative Committee for Space Data Systems (CCSDS)10.

4.1.1. Consultative Committee for Space Data Systems

In the year of 1982, the Consultative Committee for Space Data Systems or CCSDS 

was formed.  As  said  above,  Command and Control  started  to  suffer  from lack  of 

standards and interoperability issues, and the major space agencies of the world found 

the need for the creation of an entity able to tackle them. The result was CCDSDS and 

it  became  the  proper  place  for  their  members  to  discuss  the  issues  related  with 

development and operation of space data systems with a multi-national forum. 

CCSDS develops the blue books as their recommended standards. These standards are 

mostly driven by space mission interoperability and cross support, thus both enabling 

cross support and reducing the cost of performing space missions.

4.1.2. Command and Control Platform (COMCOP)

COMCOP is a Command and Control platform  suitable for aerospace, defence and 

civil markets. developed by Critical Software in 2006. [39]

10 http://www.ccsds.org
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Currently, this platform follows a service-oriented architecture and is compliant to one 

of the CCSDS standards, the Spacecraft Monitoring & Control (SM&C)  [42]. Next, 

we will focus the architecture of COMCOP. 

In the figure 22, it is possible to see the architecture of the Command and Control 

Platform and the corresponding layers. Starting with the Asset that is the element that 

will be monitored and controlled by the Core which in turn processes the requests sent 

from the User Interface and the data provided by the Data Link. The User Interface is 
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Figure 22: Architecture of the C&C Platform (taken from Critical's Reference 
Architecture)
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responsible  for  the  interaction  between the  Platform User  and  the  Core  providing 

monitoring and controlling displays.  The Data Link is a layer that will be integrated 

with the core through a tailored adapter (Wrapper). The Data Link is represented by 

any protocol implemented by the Assets being managed.

The Simulator has the facility of simulating the behaviour of the Assets, Data Link or 

even the entire Core. An External Application is seen as an extension of the Core. This 

allows the registry of new services that become available to other external or User 

Interface applications, and the use of the Core Services to provide new capabilities to 

the system.

A more detailed description of the core services follow, since these will be the subjects 
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Figure 23: High level concept of the Command and Control Core (taken from 
Critical's Reference Architecture)
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of the bridging and orchestration processes.

 

Figure 23 represents a high level concept of the  Command and Control Core. The 

Core has three layers that can interact with each other. Besides these three layers, there 

is the Data Link Wrapper whose objective is to map the messages received, from both 

the  Data  Link  and Core,  to  messages  the  receiver  can  interpret.  The  three  layers 

include the  Mission Specific  Services, Monitor  and Control  Services and  Common 

Services. The services from Mission Specific layer, include those that extend the Core 

for a specific application or mission. The Services from Monitor and Control provide 

operations for generic monitoring and control of a remote asset. At last, the Common 

Services provide a standard model for services to extend, allowing the specification of 

standard  operations  that  further  simplify  the  specification  of  mission  services.  It 

provides infrastructure services to support the mission operation services.

4.2. OHMS Platform and COMCOP

This section describes how OHMS can be used to expose a CORBA-based platform as 

Web-services, and applies it to the concrete context of the COMCOP, populating its 

Mission Specific Services layer with new services resultant from orchestration.

To meet that requirement, we will have to expose COMCOP services as Web services, 

creating a bridging logistic for CORBA and registering COMCOP's name-server in the 

directory  module,  and  then  orchestrate  those  bridged  services  in  the  orchestration 

module by means of BPEL processes.

4.2.1. Bridging CORBA Platforms

In the point of view of OHMS, a technology consists in a bridging logistic that follows 

the three step process indicated in the section 3.2 of this document and is mapped on 

the three subsections of this section. Since COMCOP is built on top of CORBA, we 
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had to create a bridging logistic for this technology.

4.2.1.1. Inspecting the registry of a CORBA name-server

This step consists in discovering new registered CORBA services. On a first approach 

we thought that the better solution was to poll the name-server to obtain the already 

registered services and, from that point, intercept any new registration. But to put this 

feature working, we would have to use the Portable Interceptors mechanism [40] from 

OMG.  However,  this  mechanism  is  not  included  in  all  the  available  CORBA 

implementations, and we wanted a portable solution that would allow the use of many, 

if not all, CORBA naming services. For instance, omniNames,  the CORBA naming 

service used by COMCOP does not provide this feature [30].

In order to achieve the required portability, we chose to resort to a polling method, that 

consists in a task that will connect to the name-server in an interval of time that is 

determined by the registering name-server in its properties file. This might not be a 

consensual solution, because this technique usually introduces overhead. However, the 

interval of time can be decreased to zero, updating the properties file, disabling the 

connections to the naming service and eliminating the overhead. This may be useful in 

the case of a platform that do not expect any more service registrations.

The inspection to the CORBA naming service and consequently retrieval of services is 

done  by  querying  the  abstract  name  bound  to  the  service.  However,  not  all  the 

retrieved services will be bridged. Only those that have a match in the services listed 

in the properties file.

4.2.1.2. Generating a bridge for each service to expose

To generate a bridge for each single service, we resort to the Apache Axis2 CORBA 

module.  This module requires two files  to generate  the bridge:  an IDL file  of the 

service to bridge and a configuration file. Note that each interface of an IDL file must 

be associated to a different  XML file,  so we could have two, three,  or even more 
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configuration files corresponding to just one IDL file. The configuration file consists 

on a XML file that contains metadata about the service:

 The file name ( the new Web Service will be recognized by that name);

 The description of the service;

 The name and path of the IDL file;

 The location of the CORBA service;

 The object name by which was registered in the naming service;

 The interface name, i. e., the modules of the IDL file.

 

Having both files in the CORBA module directory, Axis2 generates the corresponding 

WSDL  interface  for  the  bridged  service,  and  the  proxy  required  to  relay  the 

invocations. 

Both the IDL file and the meta-data information, cannot be retrieved directly from the 

name-server.  Although  some  CORBA  implementations  provide  the  Interface  

Repository  feature  [58], that provides means to obtain information about a service's 

interface, once again it is not available in all implementations including omniNames 

[58].

Thus, we decided to follow another approach,closer to the one found in Axis2, that 

consists in the deposit of both files in a directory within the directory folder tree, that 

we call repository. With both files available in the repository, the logistic created for 

CORBA will copy the files, when necessary to the CORBA module folder, and the 

bridge is generated and the WSDL interface becomes available.

4.2.1.3. Registering the Web service proxy in the UDDI repository

Once the bridging process in concluded the WSDL interface is available in a specific 

link,  e.g.,  http://192.168.1.136:8080/axis2/services/Service?wsdl. The  developed 

implementation will collect that link of the interface, provided by Axis2, in order to 

use it in the publishing of the recently created Web service in the UDDI repository. 
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Once this process in concluded, the service is available for service orchestration.

4.2.2. Registering a CORBA Name-Server

For  the  purpose  of  registering  a  CORBA  name-server  in  the  directory,  we 

implemented a client, that collects the ID of the technology that will be associated if 

the registration process is successful. Moreover, the client sends a Java properties file 

with information regarding the naming service used.

Follows a partial properties file:

#Naming service properties

naming-service.id omninames
naming-service.omninames.port 2900
naming-service.omninames.host 192.168.1.316
naming-service.omninames.period 5000

#properties file location

props.dir D:\\CorbaClient\\omniNames.properties

#Services to bridge

services.num 5
services.1 ReportingDataService
services.2 LoginService
services.3 ArchiveService
services.4 ActivityService
services.5 ConfigurationService
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As is represented above, a properties file contains information about the location of the 

naming service location, including the host and port that will receive connection, the 

period for the polling mechanism, the path of the file location,  and the services to 

bridge. Note that this information depends on the necessity of the technology to bridge 

a service, i. e., a bridging logistic can require more information to bridge services.

 

Registered name-servers are kept in a map that associate them with their concerning 

technology. 

4.2.3. Bridging and un-bridging CORBA services

The service registration process in the CORBA name service naming service is not 

altered. The service only needs to know the host and the port where the naming service 

is running. Thus, the service bridging process will happen every time a new service 

registration is detected by the bridging logistic developed, in this case, by polling the 

naming service.  After  that  process,  the  service  is  available  as  Web service  and is 

published in the UDDI repository.

However, the reverse process may also happens, i. e., the service may suffer the un-

bridging process, that can be lead by two factors. The first is its removal from the set 

of services to bridge, in an update of the properties file of the name-server. The second 

is the detection, from the polling mechanism, that the service has been un-registered 

from the name-server.

In both cases, the service will be un-bridged, which includes the deletion of the service 

configuration  file  from  the  Axis2  CORBA  module  folder  disabling  the  bridge. 

Moreover, the concerning IDL file will also be deleted if it is no longer associated to a 

configuration file. Without the existence of a bridge, the service registry in the UDDI 

repository  is  also  removed.  However,  those  files  will  not  be  removed  from  the 

directory.
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4.3. Orchestrating Services in the COMCOP Platform

As we stated before, COMCOP is a Command and Control Platform from Critical 

Software developed on top of distributed objects, namely CORBA. Also, it follows a 

service  oriented  architecture  as  desired  for  validating  OHMS'  ability  to  expose 

distributed objects platforms and to orchestrate its services.

The validation scenario consists on populating the Mission Specific Services layer of 

COMCOP. Although COMCOP architecture is composed by three layers, we consider 

the  other  two as  its  core,  since  their  services  are  present  in  every instance  of  the 

platform. For that layer populating purpose, we created two simple BPEL processes 

using the services from the core of COMCOP and one external service.

The first scenario (portrayed in figure 24) is a simple service that creates new activity 

definitions for a given set of assets of COMCOP. This involves the invoking of the 

login method from Login Service from COMCOP, and, case it is successful, the BPEL 

process  invokes  another  operation,  addActivityArgumentDefinition,  but  at  this  time 

from  Service  ActivityControlConfiguration  Service.  After  this  is  concluded,  the 

returning  value,  that  is  an  error  code,  will  be  assigned  to  the 

addReportingDataDefintion operation  ReportingDataConfiguration  Service, in order 

to the result from creating new activities is reported. 

The second validation scenario, presented in figure 25, is a little more complex than 

the first one. Its purpose is to make the choice of the domain assets for a given mission 

depend on the weather forecast, e.g., in the case of a sea rescue mission, if the sea 

conditions are good, maritime assets such as a high-speed boat may be considered. 

Otherwise, the choice should probably rely on a air assets, such as an helicopter.

The implemented BPEL process also invokes the Login Service, but at this time, after 

having the result,  if  it  successful,  it  will  invoke an external  weather forecast  Web 

service  [34]. Depending on the result of this invocation, the  getAssetDefs operation 

from Domain Service will be invoked in both cases illustrated in the respective figure. 
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This operation returns a list with assets identifiers,  that will be used at the time of 

invocation  of the  addActivityDef operations  that  consist  in  assigning an activity to 

those identifies assets. The activity assigned shall be different regarding the result of 

the  previous  operation,  that  in  turn  depends  on  the  result  of  the  weather  forecast 

invocation. Once again, the result returned by the Activity Service will be assigned to 

the addReportingDataDefintion operation from ReportingData Service.

Both  BPEL processes  were  deployed  into  Apache  ODE11 and  successfully  tested. 

Their resultant WSDL definitions can be published in the UDDI Repository associated 

to COMCOP, thus making the services accessible and orchestrable as the remainder.

Thus,  with  the  deployment  of  these  two  services  we  were  able  to  attest  the 

functionality of the OHMS platform and of the implemented prototype.

11 http://ode.apache.org/
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Figure 24: Validation Scenario 1
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Figure 25: Validation Scenario 2
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5. Conclusions and Future Work

5.1. General Considerations

This masters thesis presents OHMS, a platform that provides a simple framework for 

the orchestration  of  distributed  objects  middleware  services  in  the context  of  their 

platform.

COMCOP and other distributed objects-based platforms cannot benefit from service 

orchestration or inter-operate with other platforms. As is evidenced throughout this 

document,  OHMS  changes  that  scenario.  By  using  OHMS,  COMCOP  and  other 

distributed objects platforms in general are able to profit from service composition, 

thus creating new services through orchestration. Moreover, we introduced the concept 

of interoperability. This is particularly important in Command and Control application 

scenarios,  e.g.,  a  disaster  scenario,  where  having  different  platforms  working  in 

conjunction can be vital. 

OHMS ports distributed-objects based platforms to the Web services world, enabling 

Web  access  and  business-to-business  interaction,  through  its  both  directory  and 

Orchestration modules. It is a technology independent model that allows the registry 

of new technologies by defining its associated bridging logistic.

By registering their name-server in the OHMS directory module, platforms built on 

top  of  distributed  objects  can  automatically  expose  their  set  of  services  as  Web 

services. The implementation design of this module does not require alterations to the 

original  platforms,  since  the  bridging  process  is  completely  transparent  to  the 

platform. The services to be bridged are specified in a properties file, which is sent to 
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the  directory  in  the  platform's  registration  process.  To  prove  our  concept,  we 

developed a bridging logistic for CORBA technology,  that was validated using the 

COMCOP platform.

Orchestration in OHMS is also platform-oriented. The developed orchestration module 

enables  the  retrieval  of  bridged  services  from  platforms.  Thus,  this  module,  that 

consists in an extension to the Eclipse BPEL plug-in, provides the support for creating 

BPEL processes using platform services, as well as other services available on the 

Web. This extension made to the plug-in was possible through Eclipse RCP, known 

for  its  steeper  learning  curve.  This  fact  required  a  previous  contact  with  that 

application before starting the development of the extension.

The development of both directory and orchestration modules allowed us to meet the 

requirements that were initially proposed. Thus, the final result of this work matches 

our initial expectations. 

However, there are some aspects of our work that could be revised, namely the support 

for new technologies,  making OHMS available as a Web service,  and improve the 

solution used for discovering new registered services in our CORBA bridging logistic. 

5.2 Future Work

Currently,  OHMS only support the CORBA technology.  Future work will focus in 

creating  support  for  others  distributed  objects  technologies.  Nonetheless,  new 

distributed objects technologies can be implemented and registered in the directory. 

The cost involved is almost negligible compared to the porting of a whole platform to 

the Web service technology. Furthermore, the for registration of both technologies and 

name-servers  can  be  changed  to  a  Web  services  implementation.  Moreover,  the 

orchestration module can be provided with other UDDI implementations than jUDDI, 

in  order  to  support  a  wider  range  of  UDDI  repositories.  Regarding  the  OHMS 

platform, it could be provided with an application for BPEL process deployment and 

execution.
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