
Universidade Nova de Lisboa

Faculdade de Ciências e Tecnologia

Departamento de Informática

Pattern Operators for Grid

Environments

Maria Cecília Farias Lorga Gomes

Dissertação apresentada para a obtenção

do Grau de Doutor em Informática pela

Universidade Nova de Lisboa, Faculdade

de Ciências e Tecnologia.

Lisboa
(2007)

This dissertation was prepared under the supervision of

Professor José Cardoso e Cunha,

of the Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa.

ii

To my parents,

and in memory of my uncle Dário

iv

Acknowledgements

I would like to express my gratitude to all those that, directly or indirectly, have con-

tributed to make this thesis possible. In particular, I would like to thankmy supervisor,

Prof. Cardoso e Cunha for his invaluable technical and human support and for the con-

fidence he had on me during the thesis time. Without him, this thesis could had never

been possible. Moreover, I would like to express my gratitude to Dr. Omer Rana whith

whom I had the privilege to work with. Dr. Rana’s remarkable professional expertise

and human qualities enriched and enlarged both my technical and personal horizons.

I would also like to thank Dr. Pedro Medeiros for his invaluable comments and help

on this work, and for his true friendship and kindness.

Many thanks are also due to João Lourenço and Vítor Duarte for their help onmany

technical issues and their human support. I am honoured and lucky to have been

sharing the same office with my friend Vítor who always gave me strength through

many difficult times. Many thanks are also due to Hervé Paulino, Fernanda Barbosa,

Rui Marques, Sérgio Duarte, Margarida Mamede, João Pires, and Jorge Cruz. Special

gratefulness to my friends Anabela, Iara, Simone Ludwig, Ingo, and Michael, for all

the support and useful advices.

The work over the Triana tool was only possible because of the invaluable help of

Dr. Matthew Shields and Dr. Ian Wang, to whom I would like to express my gratitude.

Special thanks are due to Ian Taylor for access to the Triana source code, and A. Nelson,

N. White, P. Williams, and R. Philp, of the Galaxy Formation Group, Department of

Physics and Astronomy, Cardiff University, UK, for the simulation data for the Galaxy

application.

Finally, my very special thanks to my family. To my brothers and my sisters-in-law

for their kindness, and to my nephews and nieces, Tiago, Ana Rita, Miguel, andMarta,

for their endless love, energy, and joy for life. To my parents, in particular, whose wise

words and kindness lightened my darkest days. They were always present whenever I

needed them. I would also like to honor my two aunts Elvira Marta and Maria Amélia

for their kind comfort.

I would also like to acknowledge the following institutions for their financial sup-

port:

v

Departamento de Informática and Faculdade de Ciências e Tecnologia of the Uni-

versidade Nova de Lisboa;

Centro de Informática e Tecnologias da Informação of the FCT/UNL;

Reitoria da Universidade Nova de Lisboa;

Distributed Collaborative Computing Group, Cardiff University, United Kingdom;

Fundação para a Ciência e Tecnologia;

Instituto de Cooperação Científica e Tecnológica Internacional;

French Embassy in Portugal;

European Union Commission through the Agentcities.NET and Coordina projects;

and the European Science Foundation, EURESCO.

vi

Summary

The definition and programming of distributed applications has become a major re-

search issue due to the increasing availability of (large scale) distributed platforms

and the requirements posed by the economical globalization. However, such a task

requires a huge effort due to the complexity of the distributed environments: large

amount of users may communicate and share information across different author-

ity domains; moreover, the “execution environment” or “computations” are dynamic

since the number of users and the computational infrastructure change in time. Grid

environments, in particular, promise to be an answer to deal with such complexity, by

providing high performance execution support to large amount of users, and resource

sharing across different organizations. Nevertheless, programming in Grid environ-

ments is still a difficult task. There is a lack of high level programming paradigms

and support tools that may guide the application developer and allow reusability of

state-of-the-art solutions.

Specifically, the main goal of the work presented in this thesis is to contribute to

the simplification of the development cycle of applications for Grid environments by

bringing structure and flexibility to three stages of that cycle through a commonmodel.

The stages are: the design phase, the execution phase, and the reconfiguration phase.

The common model is based on the manipulation of patterns through pattern oper-

ators, and the division of both patterns and operators into two categories, namely

structural and behavioural. Moreover, both structural and behavioural patterns are

first class entities at each of the aforesaid stages. At the design phase, patterns can

be manipulated like other first class entities such as components. This allows a more

structured way to build applications by reusing and composing state-of-the-art pat-

terns. At the execution phase, patterns are units of execution control: it is possible, for

example, to start or stop and to resume the execution of a pattern as a single entity. At

the reconfiguration phase, patterns can also be manipulated as single entities with the

additional advantage that it is possible to perform a structural reconfiguration while

keeping some of the behavioural constraints, and vice-versa. For example, it is pos-

sible to replace a behavioural pattern, which was applied to some structural pattern,

with another behavioural pattern.

vii

In this thesis, besides the proposal of the methodology for distributed application

development, as sketched above, a definition of a relevant set of pattern operators

was made. The methodology and the expressivity of the pattern operators were as-

sessed through the development of several representative distributed applications. To

support this validation, a prototype was designed and implemented, encompassing

some relevant patterns and a significant part of the patterns operators defined. This

prototype was based in the Triana environment; Triana supports the development and

deployment of distributed applications in the Grid through a dataflow-based program-

ming model. Additionally, this thesis also presents the analysis of a mapping of some

operators for execution control onto the Distributed Resource Management Applica-

tion API (DRMAA).

This assessment confirmed the suitability of the proposed model, as well as the

generality and flexibility of the defined pattern operators.

viii

Resumo

A concepção e a programação de aplicações distribuídas é cada vez mais um tema

de intensa investigação, devido à crescente disponibilidade de plataformas distribuí-

das de grande escala e às solicitações resultantes da globalização económica e social.

Contudo, o desenvolvimento das referidas aplicações requer um grande esforço por

causa da complexidade inerente aos ambientes distribuídos: um grande número de

utilizadores situados em diferentes domínios administrativos, podendo comunicar en-

tre si e partilhar informação; além disso, o ambiente de execução das aplicações é

dinâmico, uma vez que a plataforma computacional, o número de participantes, e a in-

formação solicitada ou gerada, variam ao longo do tempo. Os ambientes de execução

baseados em Grids1 computacionais têm potencial para lidar com aquela complexi-

dade, uma vez que disponibilizam uma plaforma de alto desempenho vocacionada

para suportar múltiplos utilizadores e partilha de recursos em diferentes organizações.

No entanto, programar no ambiente de uma Grid computacional é ainda uma tarefa

difícil. Há falta de paradigmas de programação de alto nível que suportem a actividade

do programador de aplicações, nomeadamente no aspecto da reutilização de compo-

nentes já existentes e testados, bem como das interacções entre os vários componentes

que compõem uma aplicação.

Parte do ciclo de desenvolvimento de uma aplicação para uma Grid computacional

é composto pelas fases de desenho, de execução e de reconfiguração. O principal ob-

jectivo desta dissertação é simplificar as actividades conduzidas neste ciclo através da

proposta de um modelo de estruturação flexível e comum às três fases. Este modelo é

baseado na manipulação de padrões (patterns) através da definição de operadores de

padrões; os padrões e os operadores são divididos em duas categorias: estruturação

e comportamento. Em particular, quer os padrões de estruturação quer os de com-

portamento são entidades de primeira ordem em cada uma das fases acima referidas.

Na fase de desenho, os padrões podem ser manipulados como entidades de primeira

ordem, tal como os componentes. Assim, uma forma mais estruturada de desenvolvi-

mento de aplicações é suportada através da reutilização e da composição de padrões

pré-existentes. Na fase de execução, os padrões são unidades de controlo da execução:

1Designação derivada da analogia com a rede eléctrica “Power Grid”.

ix

é possível, por exemplo, lançar, parar e retomar a execução dos componentes com-

putacionais que constituem um padrão como uma entidade única. Na fase de recon-

figuração, os padrões podem também ser manipulados como entidades únicas, com a

vantagem ser possível executar uma reconfiguração da estrutura, enquanto se assegura

a manutenção das especificações de comportamento; o inverso é também possível, isto

é, manter a estrutura e modificar o comportamento, por substituição do padrão de

comportamento.

Nesta dissertação, além da proposta da metodologia de desenvolvimento de apli-

cações distribuídas acima esboçada, definiu-se um conjunto relevante de operadores

de padrões. A metodologia e a definição dos operadores de padrões foram validadas

através do desenvolvimento de um variado conjunto de aplicações distribuídas rep-

resentativas. Para suportar esta validação, foi desenhado e implementado um pro-

tótipo de um ambiente de desenvolvimento de aplicações que supporta uma parte

significativa do modelo desenvolvido. Este protótipo baseou-se no ambiente Triana,

que suporta também o desenvolvimento de aplicações em Grids computacionais, as-

sente num modelo de composição de componentes baseado em fluxos de dados. Foi

também apresentada a análise de um mapeamento de alguns operadores de controlo

da execução na especificação DRMAA (uma interface de programação de aplicações

baseada nas funcionalidades de um gestor de recursos distribuídos).

Esta validação, bem como outros exemplos ilustrativos apresentados, permitiram

confirmar a adequação do modelo proposto, bem como a aplicabilidade e a flexibili-

dade dos operadores de padrão definidos.

x

Contents

1 Introduction 1

1.1 Motivation . 2

1.1.1 The Importance of Grid environments 2

1.1.2 Difficulties of Grid Application Development 3

1.1.3 Problem Solving Environments (PSEs) 6

1.2 The Need of High-Level Abstractions for Grid Application Development 11

1.2.1 Components and Services . 11

1.2.2 Skeletons and Design Patterns . 11

1.2.3 The Main Goal of this Work . 12

1.3 The Proposed Model . 13

1.3.1 Structural and Behavioural Patterns 13

1.3.2 Pattern Operators . 17

1.3.3 A Methodology within the Model 20

1.3.4 Assisting Application Development in PSEs 21

1.4 Contributions of the Thesis . 23

1.4.1 Work Approach . 23

1.5 Dissertation Outline . 23

2 Abstractions for Grid Programming 25

2.1 Introduction . 26

2.2 General Solutions . 27

2.2.1 Component Paradigm . 27

2.2.2 Dynamic Reconfiguration and Adaptability 30

2.2.3 Coordination Paradigm . 32

2.3 Solutions for Structure and Interaction Reusability 32

2.3.1 Skeletons . 34

2.3.2 Patterns . 36

2.4 Skeleton/Pattern-based Models and Systems 39

2.4.1 Skeleton-based Models and Systems 39

2.4.2 Pattern-based Models and Systems 45

xi

2.5 Summary . 47

3 Characteristics of the Model 51

3.1 Introduction . 52

3.1.1 Structural and Behavioural Patterns 52

3.1.2 Structural and Behavioural Operators 54

3.1.3 The Basic Methodology . 55

3.2 Pattern Templates . 57

3.2.1 Structural Pattern Templates: Topological 58

3.2.2 Structural Pattern Templates: Non-Topological 60

3.2.3 Graphical Representation of Structural Pattern Templates 62

3.2.4 Behavioural Pattern Templates . 63

3.2.5 Combining Behavioural and Structural Patterns 66

3.3 Operators . 68

3.3.1 Operator Categories . 69

3.3.2 Structuring and Grouping Operators 71

3.3.3 Inquiry Operators . 74

3.3.4 Ownership Operators . 76

3.3.5 Execution Operators . 77

3.3.6 Global Coordination Operators . 79

3.3.7 Pattern and Operator Summary 80

3.4 Summary . 80

4 Pattern Operator Semantics 83

4.1 Introduction . 84

4.2 Semantics of Structural Operators . 84

4.2.1 Structuring Operators . 85

4.2.2 Grouping Operators . 97

4.3 Sequences of Structural Operators . 106

4.3.1 Sequences Including the Replicate, Replace, or Reshape Operators 106

4.3.2 Sequential Application of Extend, Increase/Decrease, and Reduce 108

4.3.3 Structural Operation of Hierarchical Pattern Templates 112

4.4 Semantics of Behavioural Operators . 115

4.4.1 The CO_OPN/2 Formalism . 116

4.4.2 Start and Terminate Operators . 120

4.4.3 Stop and Resume Operators . 121

4.4.4 Repeat and TerminateRepeat Operators 122

4.4.5 Limit Operator . 124

4.4.6 Restart and TerminateRestart Operators 125

4.4.7 Log Related Operators . 126

4.5 Sequences of Behavioural Operators . 129

xii

4.5.1 Common Sequences and Compound Operators 129

4.5.2 Controlling Individual Executions in the Context of the

Restart/Repeat Operators . 130

4.6 Summary . 133

5 Towards Pattern-based Reconfiguration 135

5.1 Introduction . 136

5.2 The Methodology Revisited . 136

5.2.1 Methodology Steps . 137

5.2.2 Operating a Pattern Template (SB-PT) 139

5.2.3 Operating Component Instantiated Structural Patterns (CISPs) . 150

5.2.4 Operating Pattern Instances (PIs) 155

5.3 Reconfiguration . 163

5.3.1 Reconfiguration Options . 164

5.3.2 Reconfiguration Examples . 166

5.4 Summary . 168

6 The Architecture and its Implementation 169

6.1 Introduction . 170

6.2 The Architecture Supporting the Model 170

6.2.1 Application Configuration and Execution Control 172

6.2.2 Application Reconfiguration . 174

6.3 An Instance of the Architecture: Implementation over Triana 177

6.3.1 The Specific Architecture . 177

6.3.2 The Triana Environment . 181

6.4 Patterns and Operators in Triana . 185

6.4.1 Structural Patterns and Operators in the Triana GUI 187

6.4.2 Scripts of Structural Patterns and Operators 190

6.4.3 Execution Control from the Triana GUI and from Scripts 196

6.4.4 Implementation in Triana . 202

6.5 Mapping to the DRMAA API . 208

6.5.1 Start and Terminate Behavioural Operators 210

6.5.2 Stop and Resume Behavioural Operators 212

6.5.3 Restart and Repeat Behavioural Operators 213

6.5.4 Limit Behavioural Pattern . 215

6.6 Summary . 216

7 Validation 219

7.1 Introduction . 220

7.1.1 Conceptual Examples . 220

7.1.2 Examples in Triana . 220

xiii

7.2 Configuring Distributed Systems Topologies 221

7.2.1 Basic Topologies . 221

7.2.2 Hybrid Topologies . 224

7.3 Configuring a Problem Solving Environment 226

7.3.1 A Typical PSE Example . 226

7.3.2 Structural Patterns in Use . 228

7.3.3 Behavioural Patterns in Use . 229

7.3.4 Structural Operations . 231

7.3.5 Behavioural Operators in Use . 234

7.3.6 Reconfiguration Scenarios . 236

7.4 Skeleton Modelling . 244

7.4.1 Mapping P3L Skeletons to Structural and Behavioural Patterns . 244

7.4.2 Modelling a P3L Example . 249

7.4.3 Reconfiguring the P3L Example 253

7.5 Analysis of Gravitational Waves . 259

7.5.1 Simulation in Triana . 259

7.5.2 Configuration and Execution through a Script 262

7.5.3 Simulating Regular Production of Data 264

7.6 Galaxy Formation Example . 269

7.6.1 Alternative Configuration . 271

7.6.2 Introducing Execution Control and Reconfiguration 272

7.7 Simulating Flexible Information Retrieval and Processing 281

7.7.1 Database Access . 281

7.7.2 First Structural Reconfiguration: Accessing a New Tool 283

7.7.3 Second Structural Reconfiguration: Pattern Replacement 286

7.8 Summary . 288

8 Conclusions and Future Work 289

8.1 Conclusions . 290

8.1.1 Contributions of the Thesis . 290

8.2 Future Work . 293

xiv

List of Figures

1.1 A typical logical architecture for a distributed/parallel PSE consisting of three

components – a distributed simulator, a visualisation and a control component. 8

1.2 A generic PSE. 15

1.3 Example of the identification of Structural and Behavioural Patterns in a PSE . 15

1.4 Pattern-based configuration of the example in Figure 1.3. All elements of the

Structural Patterns are already instantiated to the necessary tools/services. . . 18

1.5 Launching periodically the execution of the PSE. 20

1.6 New configuration of the PSE (e.g. providing support for an additional user of

the Steering Interface, i.e. “proxy3”). 20

1.7 The software life-cycle of application development in PSEs (left column) and the

mapping of the application of the pattern and operators model to that life-cycle

(right column). 22

2.1 Useful paradigms and techniques and their characteristics. 27

3.1 Relating the used pattern definitions. 54

3.2 The basic steps of the methodology. 56

3.3 The Star pattern. 58

3.4 The Pipeline pattern. 59

3.5 The Connector pattern. 59

3.6 The Ring pattern. 60

3.7 The Adapter pattern [9]. 61

3.8 The Facade design pattern [9]. Example: the "Facade” provides a unified in-

terface for accessing domains in the Grid environment, redirecting the calls to

services like "discover” and "execute”. 61

3.9 The Proxy pattern [9]. 62

3.10 Graphical representation of examples of Structural Pattern Templates (S-PTs). . 62

3.11 A Sequence diagram for the Mobile Agent/Itinerary pattern defining a possible

itinerary for the component. 66

3.12 A Remote Evaluation B-PT applied to a Facade PT. 67

xv

3.13 Two Behavioural Pattern Templates, namely Client/Server and Observer B-

PTs, applied to a Star PT. 67

4.1 The creation of three S-PTs, namely a Star (“starPT”), a Facade (“facadePT”),

and an Adapter (“adapterPT”) . 86

4.2 Examples of the Reshape operator over a Pipeline and a Proxy Pattern Templates. 87

4.3 Examples of the Increase operator applied to Pipeline, Proxy, and Facade Pat-

tern S-PTs. 89

4.4 Examples of the Decrease operator applied to Pipeline, Proxy, and Facade Pat-

tern S-PTs. 90

4.5 Examples of the second application versions of the Increase and Decrease oper-

ators upon a Pipeline S-PT. 90

4.6 Examples of the “Extend(P)” operator over cases of the Proxy, Adapter, and

Facade Pattern Templates. 91

4.7 Example of the “Extend(element, P)” operator over one Facade Template. . . . 92

4.8 Example of the “Extend(element, P)” operator over one case of Adapter Template. 93

4.9 Different ways of applying the “Extend(element, P)” operator to a Proxy Tem-

plate. 94

4.10 Examples of the application of both versions of the Reduce operator to one Proxy

Template. 95

4.11 Examples of both versions of the Reduce operator over one Facade Template. . . 96

4.12 Examples of both versions of the Reduce operator applied to an Adapter Template. 97

4.13 The pattern templates "ringPT” and "startPT” are grouped through the Group

operator, and the resulting aggregate is named "groupPT”. 98

4.14 The group "groupPT” is dissolved through the Ungroup operator. 99

4.15 Adding a extra pattern template to the aggregate "groupPT”. 99

4.16 Merging of groups "group1PT” and "group2PT” through the Group operator,

producing the aggregate "group1PT”. 100

4.17 An example of a pipeline template with an embedded pattern (a star) in the

leftmost stage (“cph1”). This hierarchic pattern template is built through the

Embed operator. 100

4.18 Examples of possible connections between the embedded pattern and the enclos-

ing pattern. 101

4.19 Extracting pattern “starPT” from within the first stage of the pattern

“pipelinePT”. 102

4.20 Embedding an adapter template into a proxy template in the position of the

"real subject”. 102

4.21 Embedding a group ("group1PT”) into another ("group2PT”). 103

xvi

4.22 Embedding the same pattern template into two Hierarchical Pattern Templates.

In both examples, the "adapterPT” is embedded in the "nucleus” of a "starPT”,

but in one case (upper part of the Figure) this latter pattern is included in

a group, whereas in the other, the "starPT” is embedded in the "realsubject”

position of the "proxyPT”. 104

4.23 Extracting a pattern template from a Hierarchical Pattern Template, namely a

starPT is removed from within the "realsubject” of a proxyPT, and the “real-

subject” gets uninstantiated. 105

4.24 Extracting a pattern template from a Hierarchical Pattern Template, specifi-

cally, the adapterPT is extracted from the "nucleus” of the starPT which is

located in the position of the "real subject” in the proxyPT. Consequently, the

“nucleus” of the starPT gets uninstantiated. 105

4.25 Building a new similar PT to the ProxyPT but where a ringPT is embedded in

the "nucleus” of the starPT (instead of the adapterPT). 107

4.26 Transforming an embedded pattern into another through the Reshape operator. 108

4.27 Applying the Extend and Increase operators in sequence to a Proxy PT. 108

4.28 Applying the Extend and Increase operators in sequence to a Facade PT. 110

4.29 Applying the two versions of the Reduce operator to the "proxyPT” template. . 111

4.30 Applying the two versions of the Reduce operator to the "facadePT” template. . 111

4.31 Applying the Increase and Decrease operators to a pipeline hierarchic pattern

that contains an embedded pattern in the first stage. 113

4.32 Applying the Extend operator to a proxy hierarchic pattern that contains an

embedded pattern in the “realsubject” element. 114

4.33 Applying the Reduce operators to a facade hierarchic pattern that contains an

embedded pattern in the outmost facade element (i.e. “facade2”). 115

4.34 An example of a CO_OPN/2 object with its behaviour modelled through a Petri-

Net. 116

4.35 An example of a synchronised call between two CO_OPN/2 objects. 117

4.36 An example of a CO_OPN/2 context with two objects. 118

4.37 Example of the Start and Terminate operators over a pipeline pattern instance. . 120

4.38 Example of the Stop and Resume operators applied to a pipeline instance. . . . 121

4.39 Example of the Repeat and TerminateRepeat operators applied to a pipeline in-

stance. 123

4.40 Example of the Limit operator applied to a pipeline instance. 124

4.41 Example of the Restart and TerminateRestart operators applied to a pipeline

instance. 125

4.42 Example of the Log, TerminateLog, SeqLog, TermSeqLog, and ResumeLog op-

erators applied to a pipeline instance. 127

5.1 Relating the used pattern definitions. 137

5.2 Methodology steps for application configuration and execution control. 138

xvii

5.3 Applying a single Behavioural Pattern to all elements of a Structural Pattern

forming a Regular SB-PT. 140

5.4 Defining the behavioural role of one specific element within a pattern (and the

adding of other necessary behavioural annotations). Since that behavioural role

pertains a different Behavioural Pattern than the one already applied to the

pattern, the result is an Heterogeneous SB-PT. 140

5.5 Replicating a SB-PT in two ways: a) considering it as a first class entity

(“facadeSB-PT”); b) acting only over the Structural Pattern Template included

in the SB-PT (“facadeS-PT”). 144

5.6 Augmenting the number of component-place holders of a SB-PT in two ways:

a) considering it as a first class entity (“facadeSB-PT”); b) acting only over the

Structural Pattern Template included in the SB-PT (“facadeS-PT”). 146

5.7 Extending two SB-PT in two ways: a) considering it as a first class entity

(“proxySB-PT”); b) acting only over the Structural Pattern Template included

in the SB-PT (“facadeS-PT”). 147

5.8 Applying the Reduce operator to a SB-PT. 148

5.9 Modifying the behavioural annotations of a SB-PT considered as a first class

entity (“facadeSB-PT”). 149

5.10 Instantiation of the component place-holder “cph1” of the pattern “facade-

CISP” to the “Resource management” component. 150

5.11 Extending a Component Instantiated Structural Pattern, namely “facadeCISP” 151

5.12 Increasing a Component Instantiated Structural Pattern (“facadeCISP”) by

two component place-holders. 152

5.13 Increasing a component instantiated Pipeline (“pipelineCISP) by two compo-

nent place-holders inserted after element "FFT”. 152

5.14 Application of the Decrease operator. The first example (upper part of the Fig-

ure) presents a case of reducing the number of component place-holders from

a Partial CISP, namely, a partially instantiated Facade. The second example

shows the usage of the Decrease operator to eliminate a set of elements from

a Partial CISP (“pipelineCISP”) starting at a specific element, namely the

"Gaussian” element. 154

5.15 Elimination of one particular element of the “facadeCISP”, namely “Scientific-

tool”. 154

5.16 Increasing a Regular FC-PI by one element, namely a pipeline pattern combined

with the Streaming Behavioural Pattern. 157

5.17 Increasing an Heterogeneous PI by one element, namely a star pattern com-

bined with the Observer and Client/Server Behavioural Patterns. 158

xviii

5.18 Decreasing a partially instantiated Heterogeneous PI by two component place-

holders. Although it was requested the deletion of three CPHs, only the two

existing CPHs are deleted. All behavioural annotations pertaining to those

components are also eliminated. 159

5.19 Decreasing two PIs by one element. On top, the element “FFT” is removed from

the Regular PI “pipelinePI”. On bottom, the element “Newscenter” is removed

from the Heterogeneous PI “starPI”. 160

5.20 Applying the Extend operator to a PI (“adaptLegacyPI”). At the top, the struc-

ture is augmented disregarding the applied Behavioural Pattern. At the bottom,

the PI is operated as a Regular FCSB-PT which results in the automatic anno-

tation of the new element with a role within the applied Behavioural Pattern. . 161

5.21 Applying the Reduce operator to a PI. 162

5.22 Changing the behavioural annotations of two Regular PIs. 163

5.23 Summary of the possible steps for reconfiguring a running application. 164

5.24 The dynamic reconfiguration of a Regular Pattern Instance representing a Grid

service. 167

5.25 Building a dynamic itinerary for an Agent . 167

5.26 Reconfiguring a Pattern Instance whose execution needs to be stopped. 168

6.1 A generic architecture that supports the model based on Patterns and Operators. 171

6.2 The necessary steps to configure and execute an application using patterns and

pattern operators. Please read the Figure starting from the bottom. 173

6.3 Application of the Increase Structural Operator at development time and after

step 4 in Figure 6.2, in order to instantiate application App5 as the last stage of

the pipeline. 175

6.4 Modifying the control dependencies within the pattern, after the application in

Figure 6.3 is executing. 176

6.5 The specific architecture, based on the Triana environment, which supports the

patterns/operators model. The shaded elements in the upper layer are the result

of the work presented in this dissertation. 178

6.6 The Triana’s Graphical User Interface. 181

6.7 A simplified vision of Triana’s distribution model. 184

6.8 The inclusion of Patterns and Operators into the Triana Environment. 186

6.9 The Triana’s Graphical User Interface. 187

6.10 Iinitalisation of Pattern Template. 187

6.11 Application of the Embed Structural Pattern to the Ring Pattern Template. . . 188

6.12 Instantiation of the DummyUnit component place-holder to the AccumStat Unit.189

6.13 A Ring pattern fully instantiated at the outmost level. 190

6.14 A script with structural operations is associated to a particular pattern. 190

xix

6.15 General structural manipulation from a script defined in EBNF. The presented

actions (nonterminal EBNF elements) may be interleaved and applied as many

times as necessary. A terminal element defining the end of script processing is

omitted for simplification reasons. 191

6.16 Structural Operators. 192

6.17 EBNF definition of the usage of the Embed Structural Operator from a script. . 192

6.18 EBNF definition of the names of the component place-holders within a Pattern

Template. 192

6.19 EBNF graph for the “Instantiate_DummyUnit” nonterminal element in the

graph in Figure 6.15. 193

6.20 EBNF graph for the “Create_and_Embed_Other_Patterns” nonterminal ele-

ment in the graph in Figure 6.15. 194

6.21 EBNF graph for the “Create_Pattern” nonterminal element in the graph in

Figure 6.20. 194

6.22 EBNF graph for the “Run _Structural _Script” nonterminal element in the

EBNF graph in Figure 6.20. 195

6.23 EBNF graph for the “SetApplication _Parameter” nonterminal element in the

EBNF graph in Figure 6.22. 195

6.24 The data and control flow connections in a (Hierarchical) Pattern Instance. . . 198

6.25 The parameter panel representing the Execution Operators and their argu-

ments. The Restart Operator is selected to launch the periodic execution every

10000 milliseconds. 198

6.26 Application of the Terminate operator. 199

6.27 Execution debug information generated upon application of the Terminate op-

erator to a pattern-based application ruled by the Restart operator. 199

6.28 EBNF graph for the Execution Operators. 200

6.29 EBNF graph for the execution control of pattern-based applications. 200

6.30 EBNF graph for explicit execution control including the usage of trigger nodes. 200

6.31 Activating a trigger node from a Pattern Instance’s parameter panel. 201

6.32 Definition of a Pattern Instance. 203

6.33 UML simplified description of some Triana classes. 204

6.34 Simplified UML definition of the classes for creating and manipulating Pat-

tern Templates and Instances through Structural and Behavioural Operators,

respectively. The definition includes a particular example of the Ring pattern

template. 205

6.35 The data and control flow connections in a (Hierarchical) Pattern Instance. . . 207

6.36 A Streaming (data-flow) Behavioural Pattern combined with a Pipeline Struc-

tural Pattern. Figure A shows the entities before the execution of the Pattern

Instance. Figure B shows the jobs created by a DRMS to support the execution

of the applications (“App1”.. “App3”) in the “Pipeline” Pattern Instance. . . . 208

xx

6.37 DRMAA mapping of the Start operator. 210

6.38 DRMAA mapping of the Terminate operator. 212

6.39 DRMAA mapping of the Stop operator. 212

6.40 DRMAA mapping of the Resume operator. 213

6.41 DRMAA mapping of the Repeat operator. 214

6.42 DRMAA mapping of the Limit operator. 215

7.1 The Centralised and Ring distributed systems topologies. 221

7.2 The Hierarchical distributed systems topology (c) and its modelling through

the Star Structural Pattern Template manipulated by Structural Operators. . . 223

7.3 The Decentralised topology. 224

7.4 The hybrid Centralised+Ring topology, and its configuration by embedding a

Ring Pattern Template into the nucleus of a Star Pattern Template. 224

7.5 The hybrid Centralised+Centralised topology, and its configuration by the com-

bination of the Star Structural Pattern and the Client/Server Behavioural Pattern.225

7.6 The hybrid Centralised+Decentralised topology. 226

7.7 A PSE supporting the active steering of a Problem Solver. The arrows represent

the flow of data. 226

7.8 The Monitoring service is stopped and consequently the Steering interface also

stops. The output data is not lost because it is being saved in the Database system.227

7.9 The initial Monitoring service is replaced with a more complex one (Monitoring

and Statistics service), which is activated to continue the filtering of the output

data. 227

7.10 After the Problem Solver terminates its execution, data can be re-analysed. . . . 228

7.11 Identification of the Ring and Pipeline patterns in the PSE example. 228

7.12 Identification of the Star, Adapter, and Proxy patterns in the PSE example. . . 229

7.13 Combination of the Ring pattern with the Producer/Consumer Behavioural Pat-

tern, and the Pipeline pattern with the Streaming Behavioural Pattern. 230

7.14 Combination of: the Star SP with the Master/Slave Behavioural Pattern; the

Adapter SP and the Service Adapter Behavioural Pattern; and the Proxy SP

with the Client/Server Behavioural Pattern. 231

7.15 Initial steps for building the PSE depicted in Figure 7.7. 232

7.16 Final steps for building the PSE depicted in Figure 7.7. 233

7.17 The final configuration for the PSE example. 234

7.18 Applying the Terminate Behavioural Operator to replace the embedded “Moni-

toringSv” Pattern Instance (PI) for the “Mon itStatSv” pattern. 237

7.19 Applying the Start Behavioural Operator to the “Mon itStatSv” pattern to

continue the execution. 238

7.20 Execution suspension of the embedded “SteeringInt” Pattern Instance through

the Stop Behavioural Operator and replacement of its Behavioural Pattern. . . 239

xxi

7.21 Resuming the execution of the embedded “SteeringInt” PI with the definition

that the user “Pattern Controller” may manipulate this pattern with the In-

crease/Decrease and Instantiate operators. 239

7.22 Incrementing the number of proxies in the embedded “SteeringInt” providing

access to the “Steering Interface” to an extra (passive) user. 240

7.23 New configuration for analysis of the PSE generated data formerly saved at the

Database system. 242

7.24 A new component is directly connected to the Problem Solver. This configura-

tion is based on the one presented in Figure 7.17. 243

7.25 Two Control Parallel skeletons: a) sequential and c) loop; and one Task Parallel

skeleton: b) pipeline. 245

7.26 Modelling the farm Task Parallel skeleton. 246

7.27 The “map” and “comp” Data Parallel skeletons. 247

7.28 Modelling the reduce Data Parallel skeleton. 248

7.29 A P3L example [151] composed of four DP tasks interacting according to the

composition of a farm TP and a pipeline TP. 250

7.30 One case of modelling the P3L example in Figure 7.29 using the Pattern/Oper-

ator model. 250

7.31 One possible reconfiguration of the pattern-based example in Figure 7.30 . . . 254

7.32 Two reconfiguration scenarios for the modelling presented in Figure 7.31. . . . 256

7.33 A P3L pipeline with two iterated stages. Results of stage 3 are fed back to stage

2 [151]. 257

7.34 Modelling the P3L example in Figure 7.33 using the Pattern/Operator model. . 257

7.35 A simple example in the area of gravitational wave experiments. 259

7.36 Initialisation of a Star PT. 260

7.37 Addition of one satellite to a Star PT. 260

7.38 A Star PT with three satellites and a Pipeline PT with three elements. 261

7.39 Application of the Embed Structural Operator to the Star PT. 261

7.40 Instantiation of a Unit. 262

7.41 Final configuration. 262

7.42 Execution results. 263

7.43 Application of a script to a pattern template. 264

7.44 Debug window showing the application of the Restart Behavioural operator. . . 265

7.45 A simple simulation of regular production of data by the gravitational wave

detection service. 266

7.46 Producing different waves every 10 seconds. 266

7.47 Two different waves produced at two consecutive execution steps. 267

7.48 Selection of the Terminate Behavioural operator. 267

7.49 The debug window showing the execution of the Terminate Behavioural operator. 267

xxii

7.50 Applying the Repeat Behavioural Pattern for launching the execution ten con-

secutive times. 268

7.51 The animation is supported by a pipeline PT which is embedded in the nucleus

of the star PT. 269

7.52 An example of a component place holder instantiation. 270

7.53 A possible final configuration for the image processing of the “Galaxy Forma-

tion example”. 271

7.54 Execution snapshot for the selected configuration. 272

7.55 Parallel animation execution with different view points. 272

7.56 Detail of the stage named Pipeline in the Ring PT from Figure 7.55 273

7.57 Configuration and execution of the Galaxy simulation example through the

script named "GalaxyExecCtrl". 274

7.58 The ImgProjection pipeline. 275

7.59 The ImgProcessing pipeline. 276

7.60 The ImgAnalysis pipeline. 276

7.61 The Star Structural Pattern supporting the configuration of the Galaxy example. 276

7.62 Triggering the EnhContrast unit to consume the next 2D image. 277

7.63 Triggering the EnhContrast and CountBlobs units. 278

7.64 An execution step of the Galaxy example. 279

7.65 The results at both satellites in the next execution step after the one presented

in Figure 7.64. 280

7.66 The configuration of the ImgProjection pipeline for a step-by-step execution. . . 280

7.67 The Facade Structural Pattern Template. 282

7.68 Configuration supporting the request of information to two sub-systems. 282

7.69 Two Pipeline Structural Patterns supporting the configuration of two sub-

systems for database access and output data analysis/processing. 283

7.70 The parameter panel of DBExplore, a database inquire tool available in Triana. . 284

7.71 Application of the Extend Structural Operator to the Facade Structural Pattern. 284

7.72 Result configuration of the action in Figure 7.71. 285

7.73 The innermost Facade acting as a subsystem of Facade1 in Figure 7.72. 286

7.74 An Adapter Structural pattern providing access to a simulation tool. The

Adapter pattern will replace Facade1. 286

7.75 The configuration after the application of the Replace Structural Operator de-

scribed in Figure 7.74. 287

7.76 Another possible configuration where the client application, the Requester, re-

ceives processed data it has requested. 287

xxiii

xxiv

List of Tables

1.1 Issues addressed by PSEs. 7

3.1 Pattern Templates and Operator Summary. 81

4.1 Applicability of Structural Operators to Topological and Non-topological

Structural Pattern Templates . 84

xxv

xxvi

1
Introduction

Contents

1.1 Motivation . 2

1.2 The Need of High-Level Abstractions for Grid Application Devel-

opment . 11

1.3 The Proposed Model . 13

1.4 Contributions of the Thesis . 23

1.5 Dissertation Outline . 23

This chapter presents the motivation for providing high level software abstractions to

aid in the construction of parallel and distributed applications, namely for Grid envi-

ronments; enumerates the main contributions of this thesis; and presents an outline of

the dissertation, with a brief summary of each of the following chapters.

1

1.1 Motivation

In this section, the motivation for this work is presented, namely, we highlight the need

of adequate programming abstractions to support the development of distributed ap-

plications. Firstly, the main difficulties related to Grid programming are considered,

followed by a discussion on the need of programming/software abstractions and en-

vironments for Grid computing.

The goal of this work is subsequently presented, namely to contribute to a develop-

ment environment based on high-level abstractions, with a specific focus on support

for structured and flexible composition for application construction, reconfiguration,

and execution control. To that extent, this chapter introduces the main characteristics

of the proposed approach underlying the above goal, and which are further discussed

throughout this thesis.

1.1.1 The Importance of Grid environments

Large-scale distributed applications have increased in importance in the last years as

a result of the Internet expansion and economical globalisation. People communicate

globally more than ever, discovering the benefits of distributed environments and, at

the same time, continuously demanding better capabilities provided by those environ-

ments. Therefore, there is a strong need for applications that reliably support large

amounts of users independently from their location, support collaboration, span or-

ganisations’ boundaries, and provide the user with adequate qualities of service. In

this context, the growing importance of Grid environments results from their current

and planned features for promising development for enabling such large-scale dis-

tributed applications.

Grids are highly heterogeneous, complex, and dynamic distributed systems pro-

viding large number of users the additional possibility of high computational power

and access to large amounts of data [50,96]. Such facilities were not easily accessible or

combinable before the Grid era. Nowadays, and through Grid environments, the user

has, on one hand, access to a high number of very different resources such as high-

performance computing and networks, storage systems, intelligent sensors, and many

specific scientific instruments and systems; on the other hand, many of those resources

are already accessed through standard services which aim to provide a common basis

for application deployment.

As dynamic environments, Grids’ operating characteristics can change significantly

over the lifetime of a single application, for example, with resources being added and

removed. Given the large number of organisations that can benefit from and contribute

to the Grid, Grid platforms span different administrative domains in the worldwide

context. Namely, Grid environments have to support the dynamic formation of vir-

tual organisations, and also their modification in order to support different goals at

2

different times.

Grid Applications

Over the years, the motivation to exploit Grid environments has been increasing, both

in science and business domains. Nowadays, Grids are increasingly targeted at non-

academic areas such as business applications in the domains of Life Sciences, Electronic

Design, Financial services, and Aerospace and Film industries [197–199].

Initially, the Grid concept was mainly motivated by developments in the area of

High-Performance Computing and was aimed to support computational scientists on

their efforts to enable larger engineering and scientific applications. Examples, among

others, are projects such as the DataGrid [57] and MyGrid [56] that provide scientific

platforms that simplify the application development in specialised domains such as

High-Energy Physics, Astrophysics, Biology, Earth observation, etc.

Present and future Grid applications in science and engineering aspire to hide the

complexity of the underlying execution platforms and integrating both specific and

general purpose tools and instruments without hindering the possibility of choosing

the best solutions for each kind of application domain.

Grid Architectures

Major Grid platforms like Globus [11], Legion [52], and UNICORE [53] try to provide

reliable and transparent testbeds for the users to submit jobs. After an initial authenti-

cation process, users may submit their jobs to resource managers which control differ-

ent hardware and software resources, across their administrative domains.

The need for standardisation has led to an ongoing effort to make Grids’ distinct

features compliant to Web Services resulting, for example, on the development of the

Open Grid Service Architecture (OGSA) [48] specification. These efforts include the ex-

tension of Web Services towards Grid Services, in order to have a simplified way to

both access and combine different types of Grid resources. Advances on Grid services

have been extensively discussed in the Open Grid Forum (OGF) (former Global Grid

Forum (GGF)) with the intent of the pervasive adoption of Grid computing both for

research and industry. [17].

1.1.2 Difficulties of Grid Application Development

The difficulties of Grid application development occur at different levels, namely appli-

cation level, development/programming level, and system level (which include middleware

and system architecture layers).

Application Level Difficulties Due to the complexity of the Grid environments, an

application developer will have difficulties in understanding how the logical

3

specification/characteristics of an application relate to the system organisation,

its distributed architecture and the corresponding software and hardware re-

sources; a suitable compromise must be sought between the required level of

transparency and the degree of user control over the execution environment. Of

course, this is critically dependent on user and application profiles. It may also

happen that the levels of transparency and user control may be required to adapt,

depending on the evolution of the computations. As an example, consider a sit-

uation where adequate Quality of Service must be satisfied by the system: if the

parameters defining the quality of service reach unacceptable values, the user

may want to have an active role upon application (and system) reconfiguration.

It is also difficult to understand how computation and data access application

characteristics may affect the efficient usage of the allocated Grid resources, thus

making it extremely difficult or even impossible for the user or application devel-

oper to make decisions concerning the appropriate mapping between the needed

and available resources.

The above difficulties can be overcome by providing:

1. adequate development/programming environments;

2. adequate middleware/system support that contribute to ease the mappings

from the logical application characteristics to the allocated system resources,

and also that allow their dynamic reconfiguration.

Development/Programming Level Difficulties At this level, the main difficulties are

due to the complexity of applications (in science and engineering, but also in

business) built out of a large diversity of heterogeneous components (some of

which can be legacy codes of high internal complexity), which are based on dif-

ferent programming and computationmodels, and that may require distinct (and

sometimes incompatible) execution support environments.

Due to the above, adequate abstractions should be provided in order to support

clear separation of concerns, in the following dimensions:

• regarding the logical component specification and its execution environ-

ment, allowing a clear separation between the logical application organi-

sation and its system level deployment;

• regarding the component individual interfaces and how they are intercon-

nected in order to build a global application structure;

• regarding individual component behaviour and how global application

components are coordinated, possibly including reconfiguration and adap-

tation to change;

4

System Level Difficulties The difficulties at system level, including middleware and

system architecture layers, are related to the issues of how distributed operat-

ing systems for Grid platforms will be capable of handling scalability (physical,

number of users, hardware/software resources), heterogeneity (in computation,

storage and communication physical resources, and also in the logical or soft-

ware resources), dynamic nature (in terms of failure; of unpredictable variation

in system behaviour; and of modifications in hardware/software components

and services), and the span of system administrative domains, coupled with the

critical issue of security.

In most existing Grid systems, the user interface is too low-level and mostly dedi-

cated to job submission. It is still assumed that the application developers should have

a solid knowledge of the interface details for resource allocation, and their proper or-

chestration with data location and file management. Consequently, adequate facilities

for resource composition and coordination are still lacking in those systems.

In order to solve such difficulties, the integration of high-level abstractions, for

example based on components and workflow management tools into Grid environ-

ments has proven extremely useful for simplifying Grid application development.

Component-based models encapsulate different kinds of resources and with different

granularities, thus providing a clearer and simpler interface for their access. Never-

theless, the composition of components supporting adequate data and control flows

is a difficult task, moreover considering the large-scale, dynamic, and heterogeneous

characteristics of Grid environments.

Considering such difficulties, workflow systems for Grid environments aim at im-

proving application development support (e.g. [4, 23, 206]). Concerning its structur-

ing and composition, workflow systems based on components support specific data

and control flow mechanisms for defining data paths and enacting component execu-

tion. Usually a straightforward Graphical User Interface for component composition is

available, but this is not mandatory, an alternative being a textual workflow language.

In the lower layers, support for the workflow execution exist.

Workflow systems enable important functionalities:

• component reuse and composition;

• adequate User Interfaces (UI) for application specification;

• adequate interfaces and mechanisms for their integration into the enclosing en-

vironment, flexibility to incorporate script-based control languages, and flexible

interfaces to the underlying resource management layers and execution support

systems, including the Grid;

• managing the entire life cycle of application, including specification, deployment

and execution, and dynamic reconfiguration.

5

1.1.3 Problem Solving Environments (PSEs)

In our work, we are interested in approaches based on Problem Solving Environments

(PSEs). PSEs are integrated environments which help scientists and engineers to solve

problems in their specific domains. PSEs integrate specific models (like models for rep-

resenting the human body, or models to represent the wind flows on the atmosphere),

and generic or specific tools to evaluate or control those models. An example of a generic

tool is a 3D visualization front-end which may be used in both a medical PSE and a

weather prediction PSE. However, a medical PSE may integrate a specific tool like a

controller for a medical robot, whereas a weather forecast PSEmay integrate a different

specific tool like a mathematical engine for wind and temperature analysis.

This is an area of intensive research, requiring expertise from very different do-

mains in science and engineering, fitting what is commonly designated as computa-

tional science and engineering [90,91]. PSEs are particularly helpful for complex appli-

cations where large number of users may interact at an abstract level, namely using the

languages and models of the specific scientific domains, as well as adequate user in-

terfaces. Hence, PSEs require support platforms capable of combining heterogeneous

distributed computational components, and of transparently supporting the complex

interactions between the components and the users.

Traditionally, PSEs have been providing specific support to the development and

execution of experiments in science and engineering. In general, the user interface is a

virtual workbench that tries to simulate a real laboratory and which is accessed using

a high-level language, specific to the problem domain.

The main goal of the PSE developers is to combine the best of two worlds: to

provide transparent access to the specific software resources required by applications,

and to better exploit the available distributed computational capabilities. Since a large

number of traditional PSEs for different application areas include common resources

or tools with similar functionalities, middleware platforms try to capture and provide

those similarities.

Middleware platforms for PSEs [90, 112–114] offer the necessary generic support

to build application specific PSEs, thus simplifying the developers’ tasks. Those plat-

forms provide facilities for a broad class of applications in the areas of Environmental

Engineering, Weather control, Chemistry and Physics Engineering, Mechanical Engi-

neering, among others.

Furthermore, those generic platforms follow the principles of the component

paradigm [27, 100], what is important for reusing and composing the resources to as-

semble a new particular PSE. An important evolution of this component structuring is

the need to add support for dynamic operation, i.e. PSEs with configurations that may

evolve in time and allowing users to control those changes directly.

In the above we explained the reasons for our focus on PSEs, particularly, PSEs

which are amenable to being structured as collections of cooperating components. In

6

Environments Problems

High performance requirements
Massive data processing

PSE Highly heterogeneous tools
Flow dependencies

Reliability
Security

Complex interactive Tool synchronisation
environments Consistency

Cooperative work

Dynamic environments Dynamic reconfiguration

Table 1.1: Issues addressed by PSEs.

the following we discuss a number of issues addressed by PSEs as illustrated in ta-

ble 1.1:

• Many scientific applications usually have high-performance requirements which

use complex mathematical models requiring the support of parallel processing

systems.

• Many applications produce large amounts of data. As such, PSEs have to give

support to the storing, management, and transmission of huge bulks of data.

• The computational components are heterogeneous, both in their hardware and

software requirements, as well as in their computational models (e.g. sequential,

concurrent, event-driven).

• In other situations, e.g. like code coupling simulations, PSEs may have to inte-

grate models from different scientific areas (like mathematics, physics, biology,

geography), so that expert users from different areas may communicate, or even

use tools from another area without having to know the intricacies of the scien-

tific language of that area.

• In an integrated PSE, tools may exhibit mutual dependencies. For example, if

the execution of two cooperating tools involves frequent interactions (e.g on the

throughput of the flow of data), their mappings to real processors should take

such dependencies into account.

• Reliability may also be mandatory. Several applications are critical systems (e.g.

medical systems) which require continuous execution with fault-tolerance.

• Many distributed PSEs have to address security issues.

• Additionally, PSEs show characteristics common to complex interactive environ-

ments. Such kind of problems are a consequence of the user capabilities that the

underlying execution systemwill have to guarantee. For example, an application

7

may critically depend on the correct synchronisation of a set of heterogeneous

tools, each one showing specific hardware and performance requirements.

Considering another example, a set of users may want to cooperate on the steer-

ing of a scientific experiment (i.e. control of the parameters of the experiment at

run-time, so that different execution scenarios can be analysed and compared).

The system will have to support some coordination, so that parameter steering

by the users is consistently applied and perceived by the concurrent users (ob-

servers).

• Finally, future PSEs aim at solving additional kinds of problems not present in

current PSEs, such as problems related to dynamic reconfiguration and adapt-

ability. For a comprehensive discussion on future trends of PSEs, please refer

to [38].

The Cycle of Activities of a Typical Problem Solving Environment

Control Component

Steering

Visualization

Configuration

Visualization ComponentDistributed Simulation Component

Solver

Solver

Figure 1.1: A typical logical architecture for a distributed/parallel PSE consisting of three
components – a distributed simulator, a visualisation and a control component.

Typically, the distributed architecture which underlies a PSE is composed of the

following main elements (see Figure 1.1): application components (e.g. for simulation)

which may be run in parallel or in a distributed platform; visualisation components;

and control components (e.g. for steering). When implemented with associated sup-

port tools for user interaction and assistance, the PSE provides a complete environment

to support the user, throughout all application development and execution phases.

These phases may be represented through the following sequence of activities [36]:

8

1. Problem specification using an application specific model (for instance, an algo-

rithm for parallel and distributed simulation).

2. Configuration of the logical architecture of the PSE, achieved by component se-

lection (for example, components that represent the simulation, components for

visualisation, and components for execution control), and their associated sup-

port tools.

3. Component activation and mapping onto an underlying architecture.

4. Initial definition and setup of the parameters of the application components, de-

pending on the selected type of the application model (for example, a simulation

may be executed under different models, each one needing specific parameters).

5. Start of the execution with specification of observation and control functionalities

(for example, start of the simulation, with monitoring and steering).

6. Interactive control of the execution.

7. Analysis of the intermediate or final results.

The above steps may be repeated cyclically until the desired final results are ob-

tained. Depending on the specified modes of operation, the final results may have to

be logged into files for post-mortem processing or passed to other tools or subsystems.

For example, in the simulation example, in steering mode, the intermediate results are

displayed on-line, and the user can dynamically modify the simulation parameters. In

general, the experimentation process may lead the application developer to go back to

step 1 and repeat the above cycle with different approaches for problem specification

for each step.

In order to ease the above identified difficulties at the application level (sec-

tion 1.1.2), long-term efforts have been trying to improve the functionalities offered by

PSEs [18, 93]. Current state-of-the-art PSEs are complete, integrated computing envi-

ronments for composing, compiling, and running applications in a specific application

domain, trying to provide all the computational facilities necessary to solve a target

class of problems.

We believe that approaches based on PSEs do provide adequate solutions to meet

the above difficulties, as mentioned at application level, as they encapsulate knowl-

edge and state-of-art algorithms relevant to a specific application domain. However,

for enabling flexible PSE development in new and emerging application areas, “more

generic” development environments are required, that should provide abstractions

and tools for component specification, programming, composition and interconnec-

tion, as well as their instantiation and deployment, via appropriate interfacing to un-

derlying resource management systems. Such “more generic” facilities are quite help-

ful to build PSEs for specific applications.

9

For example, following these ideas, several ongoing projects have been trying to

promote high-level paradigms for application development, based on the workflow

and the component concepts [1, 15–17]. Component based models provide an effective

way to develop applications from a range of different software libraries, and possibly

wrapped legacy codes. Components can vary in complexity and granularity – ranging

from complete applications to specialised sub-routines. The associate environments

provide interfaces to specify the manipulation of components, e.g. the selection of

components from a repository and their combination through a visual editor.

Features Lacking in PSEs, even for Grid Development

Some PSEs already support the deployment of applications into distributed Grid plat-

forms (e.g. Triana [201]). However, although the user is already able to run component-

based applications in a Grid, the support of structured and systematic ways of reusing

components is still limited. Most state-of-the-art component-based PSEs support lim-

ited structured component composition, and have limitations regarding the support

for significant changes in the structure and flow dependencies.

Many PSEs allow the user to specify direct connections between components, for

example through channels and ports, but usually still lack full support on important

aspects like:

• explicit support for defining and composing new (typical) structures for compo-

nent interconnection that may be subsequently reused in similar problems. Those

(reusable) structures should be manipulable from component repositories with

operations like save, recovering, and searching;

• facilities for manipulation of such structures and topologies as templates (par-

tially instantiated). Those templates should be able to be refined and instantiated

(either at development and execution times), by applying specific commands or

operators;

• existence of adequate, flexible, and architecture neutral interfacing to the resource

management layers of a Grid architecture, in order to support the deployment,

execution, and (dynamic) reconfiguration of applications based on such typical

structures and topologies.

10

1.2 The Need of High-Level Abstractions for Grid Appli-

cation Development

1.2.1 Components and Services

Due to the complexity of Grid environments, several projects have been developing

programming models based on encapsulated units such as components and Web/-

Grid services [20, 59, 63–67, 114]. Although such models do simplify the development

process by providing units that can be composed and reused, the management of de-

pendencies and coordination between those units is still a difficult task. Moreover, it

is desirable to reuse useful components’ interdependencies as a way to support less

experienced users and to improve the development process. Additionally, Grid appli-

cations’ execution control and dynamic reconfiguration are still open research subjects.

1.2.2 Skeletons and Design Patterns

Similarly to what has happened to general purpose programming languages andmod-

els, distributed Grid application development might benefit from the manipulation of

higher-level abstractions, namely design patterns [9], as first class entities. Currently,

patterns are not just a modeling abstraction anymore, but have also been included into

development tools and in languages, as first class entities [61, 62].

A Pattern encodes a commonly recurring theme in service or component composi-

tion. It allows good practice to be identified, and shared across application domains. A

pattern is generally defined in an application independent manner, and used to encode

characteristic useful behaviours. Patterns are particularly useful for configuring and

specifying systems that are composed of independent sub-systems. Patterns are aimed

at capturing some common and generic attributes of a system – which may be further

refined (eventually) to lead to an implementation.

The above concepts can meet important requirements for Grid applications, which

generally need to operate in dynamic environments. Furthermore, users of a Grid

infrastructure usually have different abilities, and less experienced users may find it

difficult to identify useful architectural models for interconnecting components, or ad-

equate coordination behaviours. As such, the availability of recurring patterns allows

the selection of the most adequate solutions, potentially reducing both applications’

development complexity and effort. Moreover, the introduction of patterns as first

class entities allows the manipulation of a pattern (and its elements) as a single entity

from design time to execution time, increasing re-usability and maintenance. Accord-

ingly, pattern-based concepts may become units of both execution control and dynamic

configuration.

Some component tools already provide patterns as first class entities, where pat-

11

terns may be defined, stored and reused independently of the individual components.

Tools like the ones mentioned in [54, 55] provide a pattern-based approach for com-

ponent composition – for example, the ObjectAssembler [55] visual development envi-

ronment provides a catalogue of patterns for connecting JavaBeans components [104].

Similarly, the Pacosuite [54] tool supports component composition through composition

patterns which define component interactions. Nevertheless, the patterns in those sys-

tems are neither manipulable as execution units nor dynamic reconfiguration units.

The Grid community has already recognised the importance of patterns [47] as a

way to re-use expert knowledge, but those still have limitations and are generally still

not available as a programming paradigm for the Grid (or integrated in Grid software

development environments). Works on skeletons for Grid computing [195, 196] repre-

sent a related approach towards reusability of expertise within Grid Environments.

Specifically, skeletons are programming abstractions (most often inherited from func-

tional programming and parallel-processing systems) that are sometimes amenable to

optimised implementations of typical parallel algorithms. Nevertheless, the available

skeletons present on those Grid Environments are not kept as first-order abstractions

throughout a Grid application’s life cycle.

1.2.3 The Main Goal of this Work

Motivated by the above considerations, we argue in favor of an approach which aims

at providing patterns to Grid environments in two main dimensions, namely struc-

tural and behavioural. Such separation of concerns contribute to increase flexibility on

pattern-based application configuration.

The aim of this work is to contribute to simplifying the development of distributed

applications, namely mapped to Grid environments, by providing a novel way to com-

pose and manipulate their components. Specifically, the goal is to enhance the appli-

cation development cycle supported by Problem Solving Environments by providing:

• Reuse of typical application configurations.

• Structured support for constructing new configurations and controlling their ex-

ecution.

• A systematic methodology applicable in all the stages of the application develop-

ment cycle, from application specification to execution and reconfiguration con-

trol.

Our work methodology was based on observing typical PSEs and Grid applica-

tions, where common and recurrent interrelations/associations emerge, both at the

structural level (e.g. direct connections between the PSEs’ components and, for exam-

ple, common software architectures in high-performance computing applications) and

12

at the behavioural/coordination level. The focus was then to try to capture those com-

mon interaction patterns into well identified abstractions. These are made available

for reuse through an uniform and extensible model which allows the user to combine

and control those abstractions in a structured and systematic way. A first overview of

our approach, which we designate as model, is described in the following section.

1.3 The Proposed Model

The model presented in this dissertation elects patterns as the main abstractions that are

kept as first class entities during the entire application development cycle. In this way,

patterns can be manipulated either at design, execution, and reconfiguration times.

That is, patterns are manipulable units for configuration, execution control and recon-

figuration actions.

In the model, application configurations result from the composition of patterns

(e.g forming different topologies and hierarchies) and may also be changed through

pattern replacement or refinement. During execution time, individual control of pat-

terns is also possible. Moreover, and with proper execution control, dynamic reconfig-

urationmay also be achieved. All these actions for patternmanipulation are performed

through a variety of Operators both for design and execution times where all operators

act upon patterns in a uniform way in all phases of the development process and for

the different manipulable patterns.

Patterns and operators are used to support the specification and manipulation of

the application configuration as composition of patterns, and these can be individually

manipulated through adequate operators. Additionally, the distinction between two

main categories, namely structural and behavioural, both for patterns and operators,

provides the model with flexibility on application configuration, reconfiguration, and

control. A pattern from one category (structural or behavioural) may be combined

with different patterns from the other category, and also structural patterns may be

manipulated independently from the associated behavioural patterns, and vice-versa.

This is quite important for application development, as shown in Chapter 7 concerning

the assessment of the model.

Furthermore, the persistence of patterns and their manipulation through opera-

tors throughout the application development cycle promotes an uniform view of the

model. Finally, the model promotes a methodology which on one hand may guide the

user, and on the other hand may be (totally or partially) automated through scripts.

The following sub-sections describe structural and behavioural patterns and the

methodology proposed.

1.3.1 Structural and Behavioural Patterns

Structural Patterns capture component connectivity and represent common ways of

13

combining components within a given application domain, as well as of reusing them

across several applications. Examples of Structural Patterns are:

Pipeline: e.g. the detection of waves in a Cosmology application as the first stage, its

analysis/processing through subsequent stages, and visualisation of results in

the final stage;

Star: commonly underlying the Master/Slave processing in parallel applications

where the nucleus, i.e. the Master, divides a problem into independent sub-

problems and sends these requests to be processed by the satellites, i.e. the slaves;

Facade: common in portal technologies for Web Services, which hides the access to

several distinct services (or tools, instruments, etc.) under a simplified interface.

Proxy: which usually supports the access to Grid services (through a proxy or gate-

keeper).

Structural Patterns are represented in our model through Templateswhose elements

can be instantiated to executable entities (e.g tools, services, etc.) or to other Structural

Patterns.

Behavioural Patterns, in turn, define interaction constraints, namely they rule the

data and control flow dependencies among a set of components. Examples of Be-

havioural Patterns are:

Client/Server: commonly present in distributed services;

Producer/Consumer: common in workflow systems;

Itinerary: used in mobile Agent systems, where an Agent moves in order to accom-

plish a task, leaving behind a chain of forward pointers keeping track of the

Agent’s location.

Provided the above two categories of design patterns, configurations are built by

selecting the Structural Patterns that best represent the connectivity between the appli-

cations’ elements, and by applying upon those the appropriate Behavioural Patterns.

The most adequate combinations of Behavioural and Structural patterns result from

the users’ knowledge on the application needs and on the capabilities of the underly-

ing support infrastructure.

Examples of Patterns in One Particular PSE

To illustrate the usefulness of Structural and Behavioural Patterns, this section presents

possible identifiable patterns in the context of the configuration of a Problem Solving

Environment (this example was introduced in [44, 204]). Please note that details and

definitions about the patterns are given in the corresponding chapters; the idea here is

to give a glimpse of the possibilities of the model.

14

Steering Interface
Service

Monitoring Selected dataOutput data

Input data

Database System

Problem
Solver

Figure 1.2: A generic PSE.

As illustrated in Figure 1.2, basic components of this PSE are a Problem Solver (e.g.

a scientific tool) that generates data to both a Database and aMonitoring Service for data

storage and filtering, respectively. Moreover, the data compiled by the latter service is

fed into a Steering Interfacewhich shows relevant data to users interested in controlling

some parameters of the Problem Solver.

Steering Interface

Database System

Monitoring
Service

Proxy

Proxy

Real Subject
(Steering Interface)

server

clients

{Proxy Strutural Pattern + Client/ServerBP}

Adapter

Adaptee

{Adapter S. Pattern +
ServiceAdapterBP}

(Monitoring
legacy code)

{Star S. Pattern + Master/SlaveBP}

Database
(master)

Database
(slave) Database

(slave)

DatabaseDatabase
(slave)(slave)

Selected dataOutput data

Input data

Problem
Solver

{Pipeline Structural Pattern + StreamingBP}

{Ring Structural Pattern + StreamingBP}

Figure 1.3: Example of the identification of Structural and Behavioural Patterns in a PSE

Figure 1.3 presents several identifiable configurations and how they are supported

by corresponding Structural Patterns. The principal ones are:

a) a Ring, establishing the necessary connections between the Problem Solver, theMon-

itoring Service, the Steering Interface, and this one back to the Problem Solver;

b) a two-stage Pipeline connecting the Problem Solver and the Database System.

Concerning Behavioural Patterns, an adequate pattern for both structures, i.e a)

and b), might be a Streaming Behavioural Pattern where the destinations process the

continuous flow of data generated by the Problem Solver. This is also represented in

Figure 1.3.

15

PSEs like this became a useful support tool within Grid environments, where the

described components may represent simple or complex distributed services. For ex-

ample, considering the case that the Problem Solver generates large amounts of data,

the Database System component in Figure 1.2 may in fact represent a distributed stor-

age system. In this case, a suitable configuration for this system could be a Star Struc-

tural Pattern (see Figure 1.3) where the nucleus behaves as the Master that coordinates

storage access among a set of slave Databases organised as the star’s satellites.

TheMonitoring Service, in turn, can be provided by a legacy tool that can be accessed

through the association of the Adapter Structural Pattern with the Service Adapter Be-

havioural Pattern (to support its access as a service). Finally, considering that several

users may be allowed to cooperate on the steering of the Problem Solver in Figure 1.2,

the Steering Interfacemight be supported by the Proxy Structural Pattern and the Clien-

t/Server Behavioural Pattern. Each user (client) would access its proxy to submit re-

quests to a coordinator Steering Interface acting as a server. Both configurations are

also shown in Figure 1.3.

Flexibility on Application Configuration

The separation of concerns related to structure and behaviour introduces a level of flex-

ibility on configuring applications. The reasons are:

a) the same underlying structure, i.e. Structural Pattern, may be combined with two

different behaviours at different times;

b) the same Behavioural Pattern is applicable to different Structural Patterns.

Such separation of concerns allows users to choose the most appropriate combina-

tions, thereby increasing reusability of both structural and behavioural patterns.

As an example of a), one may think of a Pipeline Structural Pattern whose compo-

nents forming the pipeline stages may interact at different times according to differ-

ent Behavioural Patterns. For instance, at one time, such stages may be coordinated

through the Streaming Behavioural Pattern, where data is automatically fed to the fol-

lowing stage in the pipeline. At a later time, those components may interact according

to the Client/Server model where one stage requests data from the previous stage. In

both cases, the flow of data remains the same. However, whereas in the first case the

arrival of data may control the execution, in the second case, execution controls the

time when data is sent.

The case b), i.e. the same type of behaviour is ruling different structures, is very

common. For example, the Client/Server Behavioural Pattern may enforce data and

control flows on diverse Structural Patterns, e.g. Proxy (e.g. as the Steering Interface in

Figure 1.3), Star, Ring, or Facade. Likewise, theMaster/Slave Behavioural Patternmay be

useful, for example, on the Star Pattern (represented in Figure 1.3), as well on a Facade

16

Structural Pattern that may interface to dissimilar, although functionally equivalent,

sub-systems.

Another level of flexibility results from the possibility of combining Structural Pat-

terns and associated Behavioural Patterns into hierarchies. As such, a pattern may con-

tain elements which are patterns themselves. For example, a stage in a Pipelinemay be

itself an Adapter Pattern. The behaviour of the elements of the outer pattern (i.e. the

Pipeline) may be ruled by the Producer/Consumer Behavioural Pattern, whereas the ele-

ments in the inner pattern (i.e. the Adapter) may behave according to the Client/Server

Pattern. Therefore, this resulting Hierarchical pattern is coordinated differently at each

individual pattern that composes it. Furthermore, inner patterns are still directly ma-

nipulable.

Such hierarchical structuring on pattern composition, supports the commonly dual

approach towards configuration, namely either top to bottom or vice-versa. On one

hand, the user may start by selecting the most adequate patterns that best represent the

overall application’s architecture, and only then define and embed into those patterns,

the appropriate patterns for the sub-elements in that architecture. On the other hand,

the user may start by identifying all the necessary elements needed for the application

and their associated patterns, and only then aggregate those patterns into higher-level

configurations.

In the next section we discuss how Structural and Behavioural Patterns may be

manipulated through Structural and Behavioural Operators to support a finer appli-

cation configuration and execution control. A reconfiguration example supported by

operators is also presented in the section.

1.3.2 Pattern Operators

Pattern Operators are the abstractions that manipulate patterns and in such a way that

the patterns’ intrinsic characteristics are preserved along all the phases where opera-

tors are applied. In this way, besides persisting from design to execution time, patterns

are handled in a uniform way throughout the application life cycle.

Pattern operators may be applied in pre-defined ordered combination and may

shared between users. These operator sequences may be inserted into scripts provid-

ing automated configuration, reconfiguration, and execution control.

Operators are also divided into Structural and Behavioural. Structural Operators en-

able a constrained way to modify Structural Patterns, i.e. the distinctive configuration

of each of the manipulated Structural Patterns remains the same. A list of the Oper-

ators available is given in a section ahead, but some examples of pattern refinement

through Operator application are:

• deleting one of the satellites of a Star Pattern by applying the Decrease operator;

• adding another sub-system to a Facade Pattern through the Increase operator;

17

• or using the Embed operator to insert a Structural Pattern into another Structural

Pattern, forming a hierarchy (e.g. such that the nucleus of a Star Pattern template

becomes in fact a Pipeline Pattern template).

Behavioural Operators act upon the final application configuration, which comprises

Structural and Behavioural Patterns, for ruling data and control flow dependencies.

Some examples are:

• to Repeat the execution of a pattern a certain number of times, e.g. to run twice a

pipeline whose elements are coordinated by the Streaming Behavioural Pattern;

• to Limit the execution of a pattern, i.e. such that in the case the execution does

not terminate within a pre-defined time, the execution is aborted;

• to Stop (i.e. suspend) and Resume the execution of a pattern.

Behavioural operators support abstractions for application execution control, and for

static or dynamic reconfigurations. Sequences of applied behavioural operators can be

incorporated into scripts and reused for replaying a specific execution history.

The next subsection describes the combined application of some Structural and Be-

havioural Operators in the case of the PSE example described in sub-section 1.3.1.

Configuring and Controlling One Particular PSE

After having identified the useful Patterns for the PSE in Figure 1.3 presented earlier,

the user selects them from a repository and combines them through some Structural

Operators. The components within each resulting Structural Pattern (SP) are connected

according to its definition. These SP are in fact pattern templates whose elements must

subsequently be instantiated to tools/services by the user.

Database
system

Proxy

ProxyMonitoring
legacy c.

Interface
Steering

solver
Problem Adapter

Figure 1.4: Pattern-based configuration of the example in Figure 1.3. All elements of the
Structural Patterns are already instantiated to the necessary tools/services.

Figure 1.4 shows the final structural configuration for that PSE, where the necessary

number of elements for each Structural Pattern may be defined through the Increase

and Decrease operators.

18

Pattern hierarchy is defined with the Embed operator: a Star SP representing the

Database System was embedded in the second stage of a Pipeline SP representing the

connection to the Problem Solver; this Pipeline SP was in turn embedded in one stage

of a Ring SP; the other two subsequent stages were defined by embedding, respec-

tively, an Adapter SP supporting theMonitoring Service and a Proxy SP for the Steering

Interface.

In the following we present a possible Structural Operator sequence to build the

configuration in Figure 1.4. Please note that this operator sequence only generates the

necessary patterns and combines them, i.e. the instantiation of the pattern elements to

specific tools/services (e.g. the Problem Solver, etc.) is absent in the sequence:

1: Create(RingSP, ‘‘PSE’’, 3)

2: Create(PipelineSP, ‘‘DataStoring’’, 2)

3: Create(StarSP, ‘‘DatabaseSystem’’, 4)

4: Embed(DatabaseSystem, DataStoring, ‘‘cph2’’)

5: Embed(DataStoring, PSE, ‘‘cph1’’)

6: Create(AdapterSP, ‘‘MonitoringSv’’)

7: Create(ProxySP, ‘‘SteeringInt’’)

8: Increase(1, SteeringInt)

9: Embed(MonitoringSv, PSE, ‘‘cph2’’)

10: Embed(SteeringInt, PSE, ‘‘cph3’’)

Please see the following chapters for the detailed description of the above operator se-

quence.

Finally, the PSE’s configuration is completed: a) by selecting the necessary Behavioural Pat-

terns referenced earlier and associating them to the Structural Patterns; and b) by instantiating

all the elements (i.e. component place-holders) in the templates.

Subsequently, the user may launch the execution of the application, and control it through

Behavioural Operators. For example, by applying the Restart operator to the (outer) Ring pat-

tern in Figure 1.5 will (recursively) launch the execution of all the components in a periodic

way. One argument of Restart defines the period of time when the application’s execution

should be automatically restarted. At a later moment, the application of the Terminate operator

will cease the current execution (in case there is one) and the invocation of the TerminateRestart

operator will abort the defined automatic restart.

The user may also apply Structural and Behavioural Operators to reconfigure the PSE in

Figure 1.5. Namely, Figure 1.6 presents the configuration of the PSE after:

a) TheMonitoring Service is replaced with a pattern representing a more sophisticated service.

This is the result of the application of the Replace Structural Operator.

b) The usage of the Increase Structural Operator to add a new client of the Steering Interface.

This reconfiguration may be performed at run-time.

19

Monitoring
service

(adapter)

adaptee
(legacy

code)

MonitoringSv
{AdapterSP + ServiceAdapterBP

Steering
Interface

(user1)
proxy1

client client

proxy2
(user2)

DataStoring
{PipelineSP + StreamingBP}

DatabaseSystem
{StarSP + Master/SlaveBP}

Database
(slave2)

Database
(slave3)Database

(slave1)

Database
(master)Output

data

PSE
{RingSP + StreamingBP}

Restart(time_period, PSE)

Output data Selected data

Input data

server

Input data

data
Input

Problem
Solver

Database
System

Output
data source

destination

source
destination

SteeringInt
{ProxySP + Client/ServerBP}

Figure 1.5: Launching periodically the execution of the PSE.

Steering
Interface

DataStoring
{PipelineSP + StreamingBP}

PSE
{RingSP + StreamingBP}

Monitoring
Statistics
service

(user1)
proxy1

Output data

Input data Input data

data
Input

Problem
Solver

Database
System

Output
data source

destination

MonitStatSv

source
destination

subject

proxy

client

client

server

(user2)
proxy2 (user3)

proxy3

client

SteeringInt
{ProxySP + Client/ServerBP}

Figure 1.6: New configuration of the PSE (e.g. providing support for an additional user of the
Steering Interface, i.e. “proxy3”).

1.3.3 A Methodology within the Model

To summarise the above descriptions, the model is applicable at three different stages, namely

at configuration, at execution, and at reconfiguration times:

• At configuration time, component connectivity is defined through Structural Patterns.

Structural Pattern Templates can be composed and refined through Structural Operators.

• At execution time, the user can control application execution through Behavioural Oper-

ators. The executable application results from instantiating the templates with executable

components. Behavioural Operators act upon the combined Behavioural and Structural

Patterns, for example allowing the user to stop and resume execution of the patterns, or

20

to launch them periodically.

• At reconfiguration time, Behavioural Operators support reconfiguration in the dimen-

sions of structure and behaviour, including one independent from the other.

Both the creation of pattern instances and their manipulation through operatorsmay be defined

through scripts for systematic usage.

The above actions define a methodology within the model. On one hand, such methodology

may guide a less experienced user on programming and controlling an application based on

patterns. On the other hand, the methodology may also define a systematic approach for both

more and less experienced users as it may be automated into scripts.

In general, the methodology is based on the following stages:

1. Structure definition by selection of Structural Patterns and their refinement through Struc-

tural Operators.

2. Behaviour definition (i.e. definition of data and control flows) by selection of Behavioural

Patterns which are associated to the selected Structural Patterns.

3. Execution control based on Behavioural Operators.

4. Dynamic reconfigurations supported by Behavioural and Structural operators.

Upon execution finalisation, or when execution abortion is explicitly requested by the user,

steps (1) and (2) above may be repeated, and also intertwined, defining a development time

reconfiguration.

1.3.4 Assisting Application Development in PSEs

This section discusses how the full implementation of the proposed model assists application

development. Specifically, a mapping between stages in the presented model and the applica-

tion development life cycle illustrates the adequacy of the model to that purpose.

Using the Model to Enhance the Application Development Life Cycle

The relevance of the model composed of patterns and operators may be analysed in the con-

text of a Problem Solving Environments’ life cycle. The different stages needed by our model

are directly mapped to the PSE life cycle, although some extra requirements are necessary, as

presented in Figure 1.7.

• In the first step (1 in Figure 1.7), besides the definition of the application model, it is nec-

essary to perform an evaluation of the most appropriate configurations and the required

interactions between the elements of the model. As such, the user is required to have

some knowledge (and/or advice) of the necessary state-of-the-art configurations and be-

haviours of the application. This may (or not) be already provided by our approach, as

well as how to use those configurations/behaviours for building specific configurations

that suit the application model the most.

21

Configuration: component and
pattern selection. Refinement
through structural operators.

Application of the operator
"Start". Monitoring and
Steering components are
necessary.

Problem specification.
Configuration evaluation.

Mapping dependent on the
underlying resource manager.

Application of behavioural
operators.

Parameter setup.

operator for analysis of the

2

3

4

6

7

1

5

Configuration: component
selection.

Problem specification.

Parameter setup.

Control of the execution.

Analysis of results.

Mapping onto the
underlying architecture.

Start of the execution.
Evaluation and change
of the application status.

Application of a log−related

A log component is needed.
pattern−based application.

Figure 1.7: The software life-cycle of application development in PSEs (left column) and the
mapping of the application of the pattern and operators model to that life-cycle (right column).

• In the second step (2), the user selects the adequate Structural Patterns, instantiates them

with the necessary components, and defines their flow interdependencies by selecting

and applying the adequate Behavioural Patterns. The structural operators allow the def-

inition of the configuration in an incremental way.

• The third step (3) is dependent on the specific implementation of our model on a given

architecture. In the prototype implementation of our model over the Triana environment

(Chapter 6), the user may select for example, which components are to be executed re-

motely or in parallel. Considering a different underlying system, such decision may be

transparently made by some support tool.

• The fourth step (4) remains the same.

• In the fifth step (5), the user launches the execution using the behavioural operator Start.

Nevertheless, the requests for observation and modification of the application status are

dependent on the existence of monitoring and steering components tailored to the appli-

cation model.

• In the sixth step (6), the user is supplied with different behavioural operators which allow

for instance, to suspend application execution and to resume it afterwards, or to define

how many times the execution will be repeated.

• In the seventh step (7) the user may apply, for example, a log-related behavioural operator

22

(in order to produce a trace of the execution history) and inspect data associated with a

given pattern-based configuration.

Finally, the cyclic repetition of the above steps represented in Figure 1.7 may be mapped to

the discussed reconfiguration dimensions of the proposed Pattern- and Operator-based model.

1.4 Contributions of the Thesis

In the previous section, we gave an overview of the model and the methodology for develop-

ing applications targeted to Grid environments and this presentation was illustrated with an

example of development of a PSE. The main contribution of this thesis is the proposal of an ap-

proach providing Structural and Behavioural/Coordination Patterns and Operators. There is

also an associated methodology which may guide the user on structured and systematic appli-

cation construction. We designate the proposed approach as “a model for pattern- operator-based

application development”. The defined model aims to contribute to the simplification of Grid

programming, specifically in the context of Problem Solving Environments.

1.4.1 Work Approach

The phases of our work which led to this dissertation were the following:

1. Evaluation of the state-of-the-art concerning Problem Solving and Grid Environments, as

well as abstractions for distributed application development and execution control.

2. Proposal of a Pattern and Operator-based model providing abstractions for specification of

structure and behaviour, execution control, and reconfiguration.

3. Investigation of how Structural and Behavioural patterns may be used to abstract typical

application scenarios in Grid environments.

4. Definition of an abstract architecture supporting the model.

5. Mapping of the abstract architecture onto a Grid-aware environment – Triana, and develop-

ment of an experimental prototype.

6. Evaluation of the model through selected applications, and their experimental validation

using the developed prototype.

The above stages were developed incrementally and several iterations were performed.

1.5 Dissertation Outline

This dissertation contains eight chapters, whose contents are summarised below:

Chapter 2. This chapter describes state-of-the-art useful paradigms for Grid programming,

and highlight the importance of (higher-level) abstractions such as skeletons and pat-

terns to represent and reuse typical component interactions in Grid applications.

23

Chapter 3. This chapter discusses the characteristics of the model. Namely, the model is based

on Structural Patterns and Operators, and Behavioural Patterns and Operators. The se-

mantics of Structural and Behavioural Patterns are described in this chapter, whereas op-

erator semantics are discussed in Chapter 4. Chapter 3 also describes the basic method-

ology associated to the model, whereas an extension to the methodology and the recon-

figuration capabilities of the model are discussed in Chapter 5.

Chapter 4. This chapter describes the semantics of the Structural and Behavioural Operators.

Chapter 5. This chapter describes the capabilities of the model towards structured reconfigu-

ration based on pattern manipulation, both on development and execution times. The

model starts describing an extension to the methodology discussed in Chapter 3 for pat-

tern manipulation through the application development cycle, followed by a discussion

on the possible application reconfiguration strategies as a result of pattern manipulation

through operators.

Chapter 6. This chapter illustrates the partial implementation of the proposed model over Tri-

ana, a Grid-aware and workflow-based Problem Solving Environment. The Chapter also

discusses a possible mapping of a small sub-set of the behavioural operators to the DR-

MAA, a distributed resource manager API for execution control.

Chapter 7. This chapter presents a set of examples highlighting the capabilities of the model,

some of which are case studies based on the developed implementation of the model

over the Triana workflow system.

Chapter 8. This chapter summarises the achievements of the research work described in this

thesis, and lists open issues, which will ground future research work.

24

2
Abstractions for Grid Programming

Contents

2.1 Introduction . 26

2.2 General Solutions . 27

2.3 Solutions for Structure and Interaction Reusability 32

2.4 Skeleton/Pattern-based Models and Systems 39

2.5 Summary . 47

This chapter discusses solutions for distributed application development based on high-level

abstractions such as skeletons and design patterns and their integration in programming en-

vironments. The importance of other Software Engineering abstractions such as Componen-

t/Service systems andDynamic Reconfiguration for Grid application development is also high-

lighted.

25

2.1 Introduction

According to Foster [191] a system may be considered a Grid if it fulfills three requirements:

• A Grid isn’t subject to centralized control. A Grid provides integration and coordination

for resources at different control domains, from diverse entities at a unique or across

different administrative domains providing users with support on issues such as security,

policy, payment, membership, etc.

• A Grid is based on standard, open, and general-purpose interfaces and protocols. These

support essential issues such as authentication, authorization, resource discovery, and

resource access.

• The interfaces and protocols provide some level of quality of service, in terms of security,

throughput, response time, or the coordinated use of different resource types.

Moreover, the features distinguishing Grid environments from other distributed computing

approaches include: heterogeneity and dynamics. Specifically, the infrastructure can change sig-

nificantly over the lifetime of a single application, it is composed of a range of different plat-

forms, and it may be managed by different administrators (see [22] for a useful survey).

Users utilising a Grid infrastructure possess very different abilities, and less experienced

users may find it difficult to identify useful architectural models for interconnecting compo-

nents/services. Consequently, the existence of a pre-defined set of patterns/schemes is there-

fore particularly useful in this context, and their relevance for Grid environments has been

increasingly recognised in the community [38, 47, 143, 186]. Once components and services

have been connected together, another major difficulty is the need to identify suitable coor-

dination mechanisms between them. Providing a set of operators for execution control and

orchestration jointly with the abstractions at the “behavioural” level is therefore important.

Therefore, the work in this thesis aims to extend Grid application development environ-

ments with structuring mechanisms based on commonly recurring patterns. Using a library of

design templates and pattern operators, a user is able to combine these with other specialised

components that may be required in a particular application domain – both at design and exe-

cution times.

The difficulties of programming in a Grid Environment have already been discussed in

Chapter 1. In the following section, we introduce some paradigms from the area of software

development; these concepts proved their usefulness in the software development process, and

some of them are already used for Grid program development (please see [95] for an extensive

study on Grid Programming Models). The goal of that section is to describe paradigms that

had influence on the definition of our proposed approach. The subsequent sections, in turn,

highlight the importance of higher-level abstractions to represent component interactions, such

as skeletons and specifically patterns, to be included as constructs for application development.

26

2.2 General Solutions

Solutions to some of the mentioned types of problems have been included in several state-

of-the-art distributed environments (applications and systems). Low-level and middle-level

distributed systems like Globus [11] are allowing transparent access to distributed high-

performance executing platforms, and related efforts have led to the development of several

paradigms.

DYNAMIC RECONFIGURATION
TECHNIQUES

− coordination patterns represented in a
 coordination component

− control−driven coordination models
− a separate language for coordination

Problem resolution

COMPONENT PARADIGM

− Glue code (e.g. scripting languages)
− Metareflection
− Aspect oriented programming
− Interactions as 1st class components

Caracteristics:
− modularity

− transparency
− encapsulation

− programming : COMPOSITION

Platforms:
− pre−defined services
− (interface) standards

(Software Architecture)

− coordination separated from computation

COORDINATION PARADIGM

Model:
components + interactions

− data−driven coordination models

Figure 2.1: Useful paradigms and techniques and their characteristics.

Figure 2.1 identifies relevant paradigms for distributed programming, which are briefly

discussed in the next subsections.

2.2.1 Component Paradigm

Firstly, one significant contribution came from the Component concept 1which further simplifies

the structuring of distributed applications and increases productivity.

The Component Paradigm [27, 100] is adequate for reuse because it extends the traditional

Distributed Object Paradigm (e.g. underlying JavaRMI [107] and the original CORBA specifica-

tion [105]) offering a major decoupling between the entities that build distributed applications.

A component represents a self-contained abstraction that explicitly defines its functionality as

well as its context dependencies through an interface specification. The specification usually

follows the rules of a initially discussed component standard [100].

1We assume a component definition as the one in the area of Software Architecture [98, 99].

27

The component abstraction in itself presents a larger granularity than the object abstrac-

tion, where, in fact, a component may be built out of several object implementations. These

objects may be executing in a distributed environment, and together provide the complete

component’s functionality. Nevertheless, a component may be programmed under a different

paradigm other than the object paradigm. In any case, the component has always to specify

in a clear way which is its contribution and what the component expects from the executing

environment. Component platforms view components in this way, and allow high-level appli-

cations to be built as structured distributed environments [104–106].

The components’ characteristics of modularity jointly with high-granularity, encapsulation,

transparency, and interface specification, help to reduce and clarify the dependencies of one

component from other entities. Consequently, developers find it simpler to combine compo-

nents and replace them.

Furthermore, there has been a proliferation of off-the-shelf components which represent

complete (or partial) enterprise applications that can be transparently accessed by the users.

Enterprises guarantee reliability of the component’s services which the users access as simple

black-boxes. Due to these characteristics, programming in component based distributed en-

vironments is strongly related to composition (e.g. [28]). End-users select the most adequate

components and aggregate them through composition techniqueswhich hide component hetero-

geneity but satisfy, at the same time, users’ requirements for the final complete application.

Component platforms [104–106] integrate several services for component management and pro-

vide the adequate environment for component composition under some component standard.

Furthermore, the Service-Orientated Computing paradigm, e.g. underlyingWeb Services composi-

tion, has extended the object-oriented and component paradigms defining the composition of

(loosely coupled) services [87–89].

Therefore, component and service based software development provides an effective way

to develop applications from a range of different software libraries, wrapped legacy codes, and

through the access (e.g. discovery and connection) to services. Such components can vary in

complexity and granularity – ranging from complete applications to specialised sub-routines.

“Problem Solving Environments” (PSEs) [18,90,91,94], in particular, are examples of those envi-

ronments, traditionally in the areas of science and engineering, for Grid computing application

development. For example, the Triana System [82] provides access to many components repre-

senting tools, but also provides access to Web Services similarly to those components. Namely,

Web Services are available in Triana’s tool box, and they are represented as Units in workflows

in the Triana’s canvas similarly as the Units representing tools.

A number of projects (see a list in [1,16]) have explored component composition and work-

flow management for components and services in the context of Grid computing [15,17]. Gen-

erally, these environments involve a user interface which enables components to be selected

from a repository, and combined using an editor. The interfaces to the components are gener-

ally pre-defined, and often expressed in a standardised form (e.g. XML [76]).

Such environments generally consist of 3 tiers:

• a user portal to enable interaction with the components;

• a series of middle tier services – such as a datamanagement service, one ormore compute

28

services, etc; and

• the physical resources on which the components are to be executed.

Manipulating either individual components or groups of components is a useful extension

– and a complete support to achieve this is not yet directly provided in existing environments.

It is also useful to determine and abstract common interactions between components, and to

make these abstractions available to a user.

One novel theme addressed in our work is the ability to view component and service com-

position (to solve a particular problem) as being equivalent to manipulating a Structural Pat-

tern using pre-defined Operators. Subsequently, the resulting structure can be manipulated

via Behavioural Operators that enable multiple data flows to co-exist within a system. A user

(application developer) may identify useful Structural or Behavioural Patterns – in particular

application contexts – and record these within a patterns library. These can then be configured

using an operator library.

Modeling Interactions

A number of approaches exist already for modeling interactions between components in the

context of Grid environments, or for developing formal models of job submission and man-

agement in a Grid [31]. These, however, still provide very limited support for enabling a user

to subsequently utilise the outcome of these models. For example, Marinescu [3, 4] provides a

common abstraction for modeling workflow to support Web and Grid Services. The approach

is centered on developing graphical abstractions that can be used to model interaction patterns

between components. The graphical patterns model aspects such as AND/OR/XOR based

interactions – and the focus is to support a workflow enactment engine that may be used to

co-ordinate component execution.

Similarly, a key emphasis in the Fraunhofer Resource Grid [2] is on developing a Grid Re-

source and Job definition language, to enable job submission, resource selection, and allow a

description of dependencies which exist between resources. In this work, the Grid Job Def-

inition Language may be mapped to a series of parameterised Petri Net (PN) blocks. Each

block represents some aspect of the language such as Task execution and synchronisation,

Conditionals and Choice , and loops (such as the While...do loop etc). Each PN block is

encoded in XML based on the Petri Net Markup Language (PNML) [30]. Both of these ap-

proaches are focused on providing either a specialised representation scheme, or a workflow

management approach for components and/or services.

Our approach is more generic, and based on the provision of a standard pattern template

library in UML and associated operators. Some of those operators may be used to support

workflow, and PN models for patterns may also be constructed from their UML descriptions,

as outlined in [7]. The PN models are useful to capture the semantics of the operators, and to

undertakewhat-if investigations when combining operators. The availability of UML templates

will make our approach more widely deployable, and may be used with a number of existing

toolkits such as Rational Rose or TogetherJ (a survey can be found in [8]).

The utilisation of languages such as Java (such as the CoG [13] interface to Globus)

and the central interest in Web Services [12] identifies the importance of using object-

29

oriented/component-oriented design approaches. Various tools are currently available which

can take UML diagrams and generate code fragments for these technologies. We therefore feel

that a representation centered on UML is easier to translate into working designs.

2.2.2 Dynamic Reconfiguration and Adaptability

Another strong contribution to enrich distributed environments came from dynamic reconfigu-

ration techniques, their importance being due to the impossibility of predicting all possible con-

figuration options at the time the system is first designed. The challenge is to allow new config-

uration options at run-time without disturbing the parts of the running application which are

not involved in the reconfiguration process, and also keep the overall application’s consistency.

A common definition of reconfiguration is

Reconfiguration is to modify either the structure, or the topology, or the implementation

of a (distributed) application.

These types of reconfiguration may happen at different levels of a distributed computing plat-

form. For example, in hardware resource management, which tries to provide users with the

best possible quality of service according to the available resources, it may be necessary to run

some parts of the application in different machines (“modification of the topology”). On the

other hand, at the end-user level, it may be necessary to introduce new logical resources or

to change the existing resource associations (“modification of the structure”). Finally, existing

middleware systems which support reflection may allow changing the code of some resources

(“modification of the implementation”).

Besides traditional dynamic reconfiguration techniques based on scripting languages, the com-

ponent paradigm itself simplifies the dynamic reconfiguration process. For example, component

platforms already support, at run-time, component replacement or system extension with new

components (i.e. “modification of the structure”).

An ultimate goal related to reconfigurability is to build self-adaptable systems. Besides having

dynamic reconfiguration capabilities, those systems are automatically able to decide when to

launch the reconfiguration process. Such is central to the support of the increasingly important

area of Autonomic Computing [187].

Problems in Dynamic Reconfiguration

One problem in dynamic reconfiguration is to change the functionality of the environment by

changing the implementation of the running code. Reflection techniques [188] intend to provide

precisely this ability, which is to be used when “plug-in” capabilities are not sufficient. The ulti-

mate goal is to allow users to apply reflection either over the “components” themselves (if they

are seen as “grey boxes”) or over the “glue code” that binds components together. Some works

go a step further about what can be changed and consider the system under an architectural

perspective2. As such, the interactions between components are defined as “first class entities”,

2In the discipline of Software Architecture [99], a system has two types of entities: components and connec-
tors; components are executable entities each obeying some particular logic, and connectors contain the compo-
nents’ interactions – connectors bind the components together.

30

and reflection is used to change dynamically those entities3. In this way, interaction patterns

are encapsulated in those “first class entities” (i.e. connectors) which can then be reused [189].

Furthermore, these patterns themselves may be dynamically “adapted” to, for example, best

accommodate a new component (e.g. that replaced another one with which it is not totally

compatible).

A second problem has to do with the overall effects of reconfiguration over the running ap-

plication. One dimension of this problem has to do with the consistency of the application, i.e.

that after reconfiguration the system still performs correctly (i.e. it satisfies the specifications).

For some solutions this requires reaching a consistent state from which it is then possible to

reconfigure the system [190]. For other solutions, the problem is solved through the explicit

representation and management of dependencies in a graph.

Other dimension has to do with the quality of service (QoS) of the non-functional properties

of the system, for example performance or reliability. In this case, a user may require that a

specific level of QoS of the system has to be preserved. This may imply that the underlying

system itself has to proceed with further reconfigurations than those required by the user, so

that some QoS may be guaranteed. Otherwise, the system should inform users of the con-

sequences and ask for alternatives. At a higher level, some works study the reconfiguration

problem considering the semantics of the application (e.g. select a component which is seman-

tically compatible with the overall environment or even adapt a new component so that the

whole semantic behavior is preserved).

Finally, an additional problem is how to control the reconfiguration process itself: do it

at once; do it in stages; which parts are automatic; which ones are controlled by a user, i.e.

to allow the explicit coordination of the reconfiguration process; separate the reconfiguration

policy from the reconfiguration process and give the possibility to dynamically change that

policy.

In our work, we propose an approach towards (dynamic) reconfiguration. Specifically, we

propose reconfiguration capabilities based on pattern manipulation through pattern operators.

Namely, the unit of reconfiguration is a pattern (either a Pattern Template or a Pattern Instance),

where its structure can be changed independently from its ruling behaviour, and vice-versa

(examples are presented in section 5.3.2). Moreover, each pattern can be directly reconfigured,

even if it is embedded in a Hierarchic Pattern, restricting in this way those changes to a sub-

domain within the application (which in turn is represented by that Hierarchic Pattern). For

instance, the example in section 7.3.6 illustrates the case of reconfiguring an embedded pattern

with no consequences for the Hierarchic pattern that represents the overall application (namely,

the number of remote users to a Steering Interface is modified with no implications on the con-

figuration of the PSE application including that interface). Nevertheless, a thorough study on

the associated problems of pattern-based reconfiguration still has to be addressed in our future

work.

3The objective and the concepts behind this approach are quite similar to the “Control-driven Coor-
dination Models”.

31

2.2.3 Coordination Paradigm

Another contribution for the development of distributed applications, came from the Coordina-

tion Paradigm [214]. This paradigm is concerned with high-level problems within distributed

environments, like creation/destruction of coordinated entities, control of communication flow

between these entities, or control of distributed execution and synchronization. Being such a

general concept, coordination is also related to the specific problems of dynamic composition

and reconfiguration.

The general discipline of Coordination Theory [215] studies

the body of principles about how activities can be coordinated, i.e. how actors can work

together harmoniously (this includes conflict resolution and cooperation).

The theory has many practical applications in the distributed systems domain, like provid-

ing the necessary features to allow a set of human users to effectively cooperate on a task4,

or identifying the adequate (programming) models for process cooperation in concurrent, par-

allel, and distributed systems. In particular, Coordination Models and Languages [214, 216] had

the major role of highlighting the importance of clearly identifying the coordination issues, i.e.

where an “actor” (e.g. a process) is not working alone anymore but is contributing to a wider

coordination policy.

Contrarily toData-driven CoordinationModels (e.g. Lindamodel [109]), Control-driven Coordi-

nation Models [214] completely separate computation from coordination: the computational en-

tities are considered as black-boxes with defined interfaces where internal data is irrelevant for

coordination; the coordination rules (patterns) are encapsulated in a separate entity. Namely,

and using the words of the Component paradigm, the entities are separated in “computational

components” and “coordination components”. The coordination language (e.g. [212]) used to

program the coordination components is completely independent from the language(s) used

to build the computational components. The “composition of components” (or services) means

to define, inside a coordination component, the coordination patterns that represent the “harmo-

nious” work of a set of components (or services, e.g. [213]). These latter components may be

computational components or even other coordination components.

Reuse is also present in those models, namely, reuse of computational components, and

reuse of coordination patterns (because the same patterns of interaction occur in many different

problems). Furthermore, those types of coordination languages are adequate to control the

reconfiguration process itself [211].

Such concerns have motivated our interest on the availability of Behavioural/Coordination

Patterns for application development.

2.3 Solutions for Structure and Interaction Reusability

The three approaches described in section 2.2 define major contributions for the development

and control of complex applications. The Component Paradigm supports the configuration

of a system into components and connectors, where the latter ones represent the interactions

4Problem studied by the CSCW systems (Computer Supported Cooperative Work).

32

between the former. Components/services represent a good abstraction for reusability, which

has resulted on the existence of many component-oriented systems, and recently on service-

oriented systems.

The Coordination Paradigm, in turn, aims to provide more adequate abstractions to rep-

resent and manage the interactions between the elements of a system. The Component and

Service Paradigms and the Coordination Paradigm are easily intertwined because they both

promote a separation between computational units and their interactions. In fact, several co-

ordination models and languages were specifically developed for component systems, pro-

viding a system which provides reusability of computational units as well as of interaction

“idioms” [212,213].

The Reconfiguration Paradigm and the Coordination Paradigms are related as well [211].

For instance, dynamic reconfiguration requires a specific form of coordination, where the evo-

lution of the system has to be controlled in a way that the system consistency is guaranteed.

The reusability of dynamic reconfiguration protocols is a major asset for a dynamic distributed

system such as the Grid.

In the context of our model, we propose an initial approach towards dynamic reconfigura-

tion based on Hierarchical Patterns, each one reconfigurable through Pattern Operators (see 5.2

and 5.3 in particular). Namely, our approach supports the combination of Behavioural Patterns

into hierarchies, where each individual pattern is still directly manipulable through operators

within the hierarchy. However, the (hierarchical) composition of diverse Coordination/Be-

havioural Patterns raises several complex interdependencies problems by itself, which could

not be addressed in the context of this thesis. Such problems, and the manipulation of patterns

towards dynamic reconfiguration, will be the subject of future research in the context of our

proposed model.

To summarise, reusability appears as an important feature of the systems that rely on the

three mentioned paradigms. It is not acceptable anymore to build complex systems from

scratch, due to time and cost restrictions. Not only the computation units have to be reused, but

also the configuration of an application and the interaction rules between its elements, should

be reused as well. Specifically, due to the complexity of distributed systems and the Grid, it

is desirable to provide mechanisms for reusing and combining common coordination schemes

(e.g. defining flow dependencies between components/services).

In this section, we present two other abstractions that have been used in parallel and dis-

tributed systems. The abstractions are:

Skeletons mainly used on parallel programming and represent abstractions at the program-

ming level;

Patterns which started to be applied at the design level of centralized and distributed systems,

but which nowadays, are becoming first class entities throughout the development and

execution life cycle of distributed applications.

One of the major contributions of our work is precisely the manipulation of patterns as first

class entities, namely in Grid-supported PSEs, from the design phase, to the execution phase.

Our proposed model also contemplates pattern manipulation supporting dynamic reconfigu-

ration.

33

It is worthwhile to mention that, in some systems, the distinction between skeletons and

patterns is not clear. Early versions of those systems were directed specifically to parallel ap-

plications, so they were based on the skeleton abstraction. Recent versions aim at giving sup-

port to parallel and distributed environments like the Grid, and sometimes the “pattern” word

has simply replaced the “skeleton” word. Nevertheless, patterns and skeletons have, in some

way, many similarities. For example, the Pipes-and-Filters [10] and theMaster-Slave pattern (see

section 3.2.4) correspond to the pipeline and farm skeletons respectively (these are described

ahead).

However, in [47], the editors make a clear distinction between skeletons and patterns:

a) the description of skeletons is formal, whereas pattern descriptions are loosely described

either in English and/or a combination of UML [68] diagrams;

b) a design pattern has consequences across several phases of the development cycle, whereas

skeletons are used as a programming abstraction;

c) skeletons are directed to the design of high-performance systems, whereas patterns are

more general since they may represent common general requirements in distributed sys-

tems (e.g. fault-tolerance, timeliness, and quality of service).

2.3.1 Skeletons

The work on skeletons originates in the parallel computing community, and is based on the

use of algorithmic skeletons5. The predominant motivation behind this has been the need to over-

come the difficulty of constructing parallel programs – by capturing common algorithmic forms

which may subsequently be used as components for building parallel programs [167], [24].

Such skeletons are expected to provide parameterisable abstractions that may be composed

– generally using a functional programming language. A skeleton is expected to be transpar-

ent to an application user (and may come with a pre-packaged implementation). Skeletons are

viewed formally as polymorphic, higher-order functions – which may be repeatedly applied to

achieve various transformations (on data structures such as lists). In fact, in skeleton-oriented

functional languages, the functional programmer considers a skeleton to be simply a polymor-

phic higher-order function which can be applied with many different types and parameters.

As such, programming with skeletons, as with high-order functions, is “to define each concept

once and to reuse it many times”.

Being based on high-order functions, many skeleton systems use functional languages as

the host language [155,157,159]. However, to increase efficiency, some systems chose to extend

imperative languages like C and C++ [152, 160, 161, 164]. Nevertheless, those systems offer

typically a closed collection of skeletons which the application programmer can use, but the

addition of new skeletons usually implies a considerable effort.

In general, the main points behind skeletons are [151]:

5More generally, skeletons may be classified as [179]: algorithmic skeletons, which encapsulate control
structures that represent some standard algorithm (complete or a fragment); or homomorphic skeletons,
which take into account geometric information, being associated to particular data types (lists, arrays,
etc.).

34

1. A complex parallel application can be coded at high-level by instantiating and composing

available skeletons.

2. A cost model may be associated to a skeletonwhich allows the programmer tomake sensible

decisions during the software development process.

3. In some situations, cost models may be used to manage resource optimisation automatically.

Additionally, and related to the first point defined above, skeleton systems may be divided

into [151]:

Flat Skeleton systems The structuring of a parallel application in these systems (e.g. [152,155,

167]) is based on a single skeleton, which limits expressivity. Although in some of those

systems is possible to add new skeletons, such hinders their simplicity.

Systems providing Skeleton Nesting These systems support an adequate composition of

skeletons to form more complex applications [151, 157]. Due to the similarities of this

kind of skeletons systems to our hierarchical pattern-based model, the examples dis-

cussed in section 2.4 reference systems that support such skeleton nesting.

Specifically, skeleton nesting is supported through skeletal composition languages. Basic skele-

tons representing simple recurrent parallel patterns are the building blocks of those languages.

An application’s parallel structure is expressed only as a composition of basic skeletons. In

skeletal composition languages, a cost prediction of the whole program is still available at

the programmer level, and it can be derived from the cost of the program’s constituent skele-

tons. Optimisation tuning is hidden by the implementation. However, skeletal composition

languages require an adequate choice of the basic skeleton set, a reliable cost model, and an

efficient implementation. Examples of basic skeletons are [151]:

Data parallel skeletons Represent the application of general operations over large data struc-

tures whose sub-structures are processed in parallel. For example:

• map – a particular function is applied to each element in a data structure (e.g. appli-

cation of a function to a list producing a list of the same size);

• filter – all elements that satisfy a specific predicate are filtered;

• reduce – this skeleton corresponds to a reduction, namely, an associative operator is

applied to a data structure generating a single value as a result.

Task parallel skeletons Represent the parallel execution of a task by dividing it into sub-tasks.

For example:

• divide_and_conquer – a split function divides a problem into a set of sub-problems

that upon being processed in parallel, their produced results are combined by a

join function into a new (sub-)solution; such processing is recursively applied to all

sub-problems.

• farm – for each independent data item, the controller of the task skeleton selects

one worker (from a pool of workers) to execute that data; the workers execute in

parallel, and all their produced results are afterwards gathered together.

35

2.3.2 Patterns

A Pattern [9, 10] encodes a commonly recurring theme in service or component composition.

It allows good practice to be identified, and shared across application domains. A pattern is

generally defined in an application independent manner, and used to encode particular use-

ful behaviours. Patterns are particularly useful for configuring and specifying systems that

are composed of independent sub-domains. Patterns are aimed at capturing some generic at-

tributes of a system – which may be further refined (eventually) to lead to an implementation.

These are important requirements for Grid computing applications, which generally need to

operate in dynamic environments, as proposed in the present work.

Libraries of common “patterns” for designing software allow the developers to select more

adequate patterns. Design patterns’ documentation is in most cases rather informal, namely

in textual form, and/or is presented using UML diagrams. Additionally, one way to select the

adequate patterns to define an application is to use a pattern language. For example, in [185]

a pattern language is defined for parallel application programs. Specifically,

“A pattern language is a collection of design patterns that are carefully organised

to embody a design methodology. A designer is led through the pattern language,

at each step choosing an appropriate pattern, until the final design is obtained in

terms of a web of patterns” [185].

Although it was not our goal in this work to provide a pattern language for Grid environ-

ments, the set of selected patterns (discussed in section 3.2) provides, in our opinion, adequate

expressiveness for the configuration of different kinds of typical applications in the above en-

vironments.

Additionally, Patterns applicability ranges from high-level strategies for organising soft-

ware to low-level implementation mechanisms. In the latter case, patterns are called “idioms”

and represent language-dependent techniques to model objects. Idioms are being applied in

a variety of contexts, from concurrent programming in Java to distributed programming in

CORBA. Patterns started to be identified and applied in object-oriented user interfaces. In this

case, patterns’ main quality criteria were usability, extensibility and portability. Soon, patterns’

suitability to parallel and distributed systems was also recognised, and patterns for diverse

domains were defined. This is illustrated in the following sub-sections.

Parallel patterns

Besides skeletons, the pattern concept started also to be used by some parallel research groups

to capture concurrency and parallelism characteristics (e.g. [175, 185]). However, initially, the

main goal of pattern usage in the parallel computing domain was targeted to issues of syn-

chronisation and non-determinism which are more relevant to distributed computing. Recent

research works on patterns in the parallel community, on the other hand, have been tackling

concerns of High Performance Computing, namely the specific facets of concurrency and par-

allelism [118, 143, 148]. Consequently, these research directions show pattern usage where the

connection to skeletons has become increasingly apparent.

36

Examples of parallel patterns are [110, 118, 144]: mesh design pattern; pipeline; master-

slave; work-queue; divide-and-conquer; wavefront; fork/join model; workpiles and meshes.

Additional parallel patterns are discussed also in [186].

Patterns for Object-Oriented Middleware

Patterns for Object-Oriented (OO) middleware represent recurring structure and interaction

schemas in common OO middleware like CORBA, Web Servers and Peer-to-Peer systems.

Several examples can be found in [110], such as:

• Service Access and Configuration Patterns:

– Wrapper Facade design pattern – encapsulates the functions and data provided by

existing non-object-oriented APIs within more concise, robust, portable, maintain-

able, and cohesive object-oriented class interfaces.

– Component Configurator design pattern – allows an application to link and unlink its

component implementations at run-time without having to modify, recompile, or

statically relink the application. Component Configurator further supports the re-

configuration of components into different application processes without having to

shut down and re-start running processes.

• Event Handling Patterns:

– Reactor architectural pattern – allows event-driven applications to demultiplex and

dispatch service requests that are delivered to an application from one or more

clients.

Workflow Patterns

Workflow Patterns identify common requirements and control flow schemas in state-of-the-

art Workflow Systems. The work developed by Wil van der Aalst on workflow patterns [79]

presents an exhaustive study of common characteristics (e.g. interactions) in workflows, for

instance, in the dimensions of

Control flow These define common dependencies between workflow tasks concerning control

flow.

Data representation and dependencies These characterise the way data is commonly repre-

sented and utilised in workflows, namely: the way data elements are perceived by the

tasks in workflow (i.e. data visibility and data interaction); the way data is transferred

between workflow tasks; and finally, the way data elements may have influence upon

workflow execution (e.g. over control flow between tasks).

Necessary resources These capture common ways of resource representation and usage in

workflows, e.g. the necessary allocation of resources, tasks, etc., as well how delegation

is supported.

For instance, examples of control flow patterns discussed in [79] are:

37

• Basic Control Flow Patterns – these are supported, for example, in the Triana workflow

system [82,201] and in the Karajan workflow system [207]. Examples:

– Sequence – the tasks in a workflow are processed sequentially, namely, after the com-

pletion of a task, the execution of the next task in the sequence is enabled.

– Parallel Split – upon the execution of a thread of control in the workflow process,

multiple threads of control are generated allowing the parallel execution of multiple

tasks in the workflow.

• Advanced Branching and Synchronization Patterns:

– Multi-choice – defines the possibility of selecting one or more branches, among sev-

eral branches in the workflow process. For example, in a point in the workflow pro-

cess the evaluation of workflow control data defines which branches in the work-

flow process to select resulting on the activation of the correspondent workflow

tasks. This pattern is fully supported in Karajan [207] and Triana [82] supports a

limited version (through a “if-then-else” Control Unit).

– Synchronizing Merge – represent the convergence of multiple paths in the workflow

process to a single point supported by a single thread. The pattern defines that on

the existence of multiple threads resulting from the process of (some of) thosemulti-

ple paths, those threads have to be synchronised before processing the next (single)

thread in the workflow process. It is assumption in the pattern that an activated

branch cannot be re-activated while the synchronisation (i.e. merge) of all branches

does not take place. The concept underlying this pattern is used in the implemen-

tation of our work over Triana (see section 6.4), namely for the Repeat Execution

Operator where it is necessary to guarantee that all tasks within a pattern (or all

embedded patterns within a Hierarchic Pattern) have terminated before the next

iteration in the Repeat operator is activated (which will generate another execution

of those patterns).

Design Patterns for Computational Grids

The importance of Patterns for Grid computing was first extensively discussed in [47]. Namely,

in [34] the authors identify a set of Service Design Patterns for Computational Grids. These patterns

identify how applications may be composed, shared, andmanaged over a Computational Grid.

Examples of patterns in [34] are:

• Broker Service Pattern: provides a service to support a user application to discover suitable

computational services. A Broker may utilise a number of other services to achieve this

objective.

• Service Adapter Pattern: attaches additional properties of behaviours to an existing appli-

cation to enable it to be invoked as a service. This pattern is present in some examples in

this thesis.

38

2.4 Skeleton/Pattern-based Models and Systems

At the time of the central definition of our work [37, 44, 45] very few systems provided design

patterns as building abstractions for application development. Specifically, to the best of our

knowledge, none of those systems provided patterns for Grid application development in the

way we propose in this dissertation (e.g. patterns as first class entities for the whole life cycle

of application development). However, the inclusion of skeletons already existed for some

parallel systems which have been extended to the Grid domain. Nevertheless, skeletons in

those systems are not manipulable entities through operators, e.g. for execution control and

reconfiguration, as we propose in our work.

In this section, we describe shortly some of the existent systems at that time, whose au-

thors highlight the importance of providing skeletons/patterns for reusing common interac-

tion schemes in distributed and parallel applications. Some works were selected based on the

existence of similarities to the model described in this thesis towards highlighting the relevance

of our work. For example, the defined skeletons in the P3L parallel programming language can

be mapped to our Structural and Behavioural Patterns as will be discussed in the example in

section 7.4.

2.4.1 Skeleton-based Models and Systems

This section describes a few models and systems that use skeletons as the high-level program-

ming abstraction.

Pisa Parallel Programming Language (P3L)

P3L [150, 151, 153] is a skeletal composition language where programs are composed of set of

code fragments and a skeleton description that describes how the fragments are composed

into a complete program. The language provides nesting of pre-defined basic data and parallel

skeletons, allowing complex global parallel structures of a program.

P3L is suited for mixed task and data parallelism applications since applications are con-

figured according to a two tier structure. Namely, task parallelism is exploited at a coarse level

among groups of processes, and these exploit data parallelism (data parallel tasks). P3L is also

intended for applications that have a static and predictable parallel structure and work on a

stream of independent input data sets. Furthermore, P3L supports performance tuning at the

user level through cost models associated to the basic skeletons.

Structure and Behaviour

P3L presents a clearly defined model where the parallel structure results from the compo-

sition and nesting of task (TPSs) and data parallel skeletons (DPSs). DPSs abstract array partition

and alignment of dense multi-dimensional array structures. TPSs define the overall parallel

structure connecting DPSs. In the model, behaviour is hidden in TPSs, DPSs, and in control

parallel skeletons (CPSs) which can be freely nested because they do not change the parallel

structure of the application.

• DPSs’ behaviour is to parallelize a function which is applied to the different parts of

39

the dense multidimensional arrays. Examples: map distribute input data according to a

user specified pattern creating a tuple of aligned arrays; reduce “sums” the elements of

an array using a binary operator; scan computes the parallel prefix of an array using a

binary operator; compmodels usual functional composition. DPSs can be nested in DPSs

and in TPSs.

• TPSs exploit parallelism between the execution of data parallel tasks (instances of DPSs) on

a stream of homogeneous independent input data. TPSs generate a stream of results. Ex-

amples: in the pipeline TPS, a sequence of skeletons (DPSs or TPSs) execute concurrently

defining independent stages of a computation; the farm TPS replicates a skeleton (a DPS

or TPS) in a pool of identical copies (the workers). Different workers compute indepen-

dent data items of the input stream. The workers are scheduled in order to guarantee

load balancing, and their outputs are merged forming the farm output stream. TPSs can

be nested in TPSs but cannot be nested inside DPSs.

• The CPSs are: seq wraps sequential code which will be used to instantiate truly parallel

skeletons; loop iterates the execution of a skeleton on the received input until a condi-

tion is verified. In this case, a single input can cause several executions of the skeleton

controlled by the loop. CPSs can be freely nested in other CPSs, DPSs, and TPSs.

The programmer defines the nesting of skeletons by invoking one or more skeletons inside a

skeleton declaration, and the pre-defined semantics have to be guaranteed (e.g. TPSs cannot be

nested in DPSs, as cited above).

In terms of execution, skeletons can only work on independent input data sets, and a skele-

ton’s arguments of a skeleton instance can only match the pre-defined types in P3L. Moreover,

each P3L computation can only have exactly one source and one sink data parallel task (i.e.

an instance of a DPS). TPSs, in particular, are supposed to produce as many output values as

the number of input values which are consumed. Communication, in both TPSs and DPSs, is

hidden from the programmer. Namely, the actual way each input is fetched in and results are

passed on to next DPS in the structure, according to what was defined by the programmer, is

implementation dependent.

Similarly to our model, P3L also provides configuration constructors supporting hierar-

chies, namely TPSs and DPSs. However, DPSs are not general, as they are meant for dense

multidimensional arrays. Nevertheless, DPSs are abstract in the sense that they hide paral-

lelism – the actual mapping of a DPS into a disjoint set of processors is implementation depen-

dent. However, there are no explicit operators to manipulate skeletons contrasting with the

model presented in this thesis where operators can manipulate patterns.

Moreover, TPSs do represent the pipeline and farm general parallel patterns, and execution

is based on the Streaming (data-flow) behavioural pattern. However, in the farm TPS, the selection

of which worker to run next is the responsibility of the controller of the farm whose actions are

implementation dependent.

Program reconfiguration in P3L, in turn, requires recompilation of the code. Nevertheless,

the change of the global structure of the programmay be done with few coding if new complex

global parallel structures of a program may then be defined.

40

In principle, the P3L language is not easily extensible because a program relies on a partic-

ular abstract machine. Specifically, a P3L program is mapped onto the underlying hardware

architecture by creating an abstract machine tailored for the skeleton and execution environ-

ment. New skeletons would imply a skeleton designer to create new abstract machines. Nev-

ertheless, the existence of a fixed set of available skeletons is a feature, not a weak point, since

the authors claim that this is the way to guarantee the best performance.

Finally, the authors also claim that the techniques used are scalable to WAN scale meta-

computing systems, but such developments were still not available at the time of this writing.

Implementation

Anacleto is a cross-compiler of the P3L programs in a SPMD program written in C + MPI

(standard message-passing library MPI [165]). Implementation is specific to an architecture of

Linux Clusters with MPI. Translation of P3L programs is accomplished using a library of imple-

mentation templates (the template library) which consist of a generic implementation of a skeleton.

The templates can be parameterised, for example, with fragments of sequential code, for the

definition of the input/output types, to specify the number of works, etc. The library has

several templates for the same skeleton, each one providing different implementation strate-

gies and an associated cost model. Anacleto was implemented in a modular way to allow new

skeletons and templates to be inserted.

Skil and a Skeletal Parallel Programming Library

This section describes some of Kuchen’s work on skeletons, from the language Skil to a system

which provides a library of skeletons.

Skil (Skeleton Imperative Language) [160] is a language that provides algorithmic skeletons

to the programmer by supporting: functional features like high-order functions (parameters

may be other functions or even partial applications), a polymorphic type system, and the def-

inition of distributed (parallel) data structures. The selected approach was to provide Skil as an

imperative language based on a subset of the language C, overcoming the inefficiencies of pure

high-order functional languages. The low-level support was based on MPI.

Although the language Skil proved to be an efficient way to support parallel programming,

according to the (co-)author of [163, 164], the availability of a library of skeletons implemented

in C++ has the advantage of attracting more typical parallel programmers to the skeleton’s

inherent benefits. Namely, C++ is a popular language among the parallel programming com-

munity, and providing skeletons as C++ templates reduces the effort to learn “skeleton-based

programming”. In this way, programmers can manipulate high-level abstractions to define

parallelism without the burden of low-level implementation details, and without significant

performance loss.

Structure and Behaviour

Similarly to the aforementioned P3L language, the skeleton library described in [161, 162,

164] is based on a two-layer model, consisting of Task Parallel Skeletons (TPSs) and Data Parallel

Skeletons(DPSs).

In general, the main concepts result from: the integration of data parallelism from the Skil

language; well-known task parallel skeletons such as pipeline and farm; and the two-tier model

of P3L. The parallel structure results from task parallelism on the outer level and an atomic task

41

parallel computation may use data parallelism inside. This means that, like in P3L, nesting is

provided by both invoking TPSs and DPSs inside TPSs, but also by enclosing skeletons in C++

control structures like loop and conditionals. similarly to P3L, TPSs cannot be nested in DPSs.

According to the authors [161] there are many algorithms in which data parallel components

exist within a task parallel (e.g. pipeline) framework, but there are no realistic examples where

the reverse holds.

The skeleton library also provides benefits regarding flexibility. Specifically, skeletons’ ar-

gument functions are not restricted to C++ functions, but can be partial applications as well.

Since the details of a skeleton’s underlying structure are dependent on the skeletons’ argu-

ments, some of those details are then dependent on parameters of the partial applications

which are computed at runtime.

Although the behaviour is encapsulated in TPSs and DPSs and in the enclosing C++ code,

the stream processing model underpins the task parallel components. Contrary to P3L, there

is no restriction on the number of output data items produced as a result of the input data

items consumed and, at the time of this writing, the version of the library does not provide a

skeleton-based cost analyser and a corresponding optimiser.

Skil provided two distinct classes of data parallel skeletons, namely computation skeletons

and communication skeletons. Computation skeletons process the elements of a distributed data

structure in parallel. Communication consists of the exchange of the partitions of a distributed

data structure between all processors participating in the data parallel computation. There is

no implicit communication like accessing elements of a remote partition. Starvation and dead-

locks are avoided because partitions are exchanged in a synchronised way and there are no

individual messages. Examples of communication skeletons: “permutePartition”, and skele-

tons that represent MPI collective operations like “broadcastRow” and “gather”.

However, in the library [162, 163], communication skeletons are available as operations

over the DPSs. The available DP skeletons are: DistributedArray (DA) and DistributedMatrix

(DM). There are many operations which allow, for example, the access to attributes of the local

partitions of a distributed data structure. The DA skeleton is represented as a C++ template

which provides methods (to implement the operations) like getSize which returns the number

of elements of the DA, map that applies a function to all elements of the DA, or fold which

combines all the elements of the DA by a binary function passed as argument to the method.

Task Parallel Skeletons (TPS) are also implemented as templates which can be parame-

terised.

• The simplest TPS is the Atomic skeleton which takes a sequence of inputs and transforms

it into a sequence of output values by applying a unary function to each of the inputs.

The atomic skeleton may have data parallelism internally.

• The Filter skeleton is more general allowing, for each input, an arbitrary number of out-

put values to be produced (including 0). Inputs are consumed using the auxiliary opera-

tion get, and outputs are produced using operation put.

• The Pipe and Farm skeletons are similar to the ones in P3L.

• The Par skeleton (parallel composition) is similar to the Farm skeleton, but the sequence

42

of inputs is forwarded to all the workers. The outputs produced by the workers are

merged non-deterministically and propagated.

• The Loop TPS encapsulate in the body another TPS where output values produced by the

body are propagated to the next skeleton and/or given back to the body, depending on

two boolean argument functions.

• The Search is also a farm-like skeleton which solves a sequence of search problems. The

problem is divided into sub-problems which are given to the workers. A different data

structure is used for each problem (e.g. a stack leads to k-parallel depth first search, a

queue leads to k-parallel breadth first search, and a heap leads to (a variant of) best first

search).

• The Branch and Bound TPS is similar to the Search skeleton but where a boolean function

less is used to identify the most promising sub-problems which will then be given first to

the workers.

Implementation

According to the authors [164], the implementation of algorithmic skeletons is based on

three features: parametric polymorphism, higher-order functions and partial applications. C++

templates were crucial to support all those features. High-order functions and partial applica-

tions were possible as a result of C++ operator overloading (in particular overloading of the

parenthesis operator - operator()).

The skeleton library was implemented on top of MPI with the consequent advantages of

platform independence and reduced performance penalties. There are no individual messages

– all the messages are transparently coordinated within skeletons’ boundaries. Such coordina-

tion requires, in some cases, a rather sophisticated communication protocol (that is the case of

the controller, an auxiliary process which is responsible for coordinating the workers of a task

parallel skeleton). Such complex coordination is necessary because, contrary to P3L, processes

in a TPS are not restricted to produce the same number of output values as the number of input

values that were consumed.

eSkel

The Edinburgh Skeleton Library (eSkel) [169,170] is a C library of algorithmic skeletons built upon

MPI. Similarly to other systems, skeletons abstract common recurring patterns of parallel be-

haviour which can be parameterised with application specific functions. Like in Skil, skeletons

are presented in the form of a library in order to avoid the introduction of any new syntax.

Examples of implemented skeletons are pipeline, task farming and butterfly style divide-and-

conquer.

The underlying conceptual model of eSkel is that of SPMD distributedmemory parallelism,

quite common in MPI applications. Although skeleton implementation is transparent to the

user, MPI’s collective operations are available (e.g. MPI_Broadcast, MPI_Reduce) meaning that

the user code may invoke them directly. Recent versions of eSkel [171, 172] support skeletons

over the Grid to enhance application’s performance. The approach considers single skeletons

which span the Grid, and modelling techniques are used to estimate performance.

43

Structure and Behaviour

Structure in eSkel is defined by skeletons which represent a group of processes each one

calling the collective operation that represents the skeleton. According to the skeleton’s se-

mantics, during the call of the collective operation the members of the group are grouped

and regrouped by the implementation. For example, each sub-group may execute a stage in

a pipeline; the authors call “activity” to a sub-group of a skeleton. The model also supports

skeleton embedding, where in the previous example, a stage may be a skeleton itself.

Each group representing a skeleton has a special associated process called the “commu-

nicator” which is passed as argument to the collective call. By accessing this communicator,

the members of the group may communicate explicitly with other members, with the guar-

antee that communication is restricted to the group boundaries. In fact, eSkel makes a clear

distinction between explicit and implicit communication. Implicit communication represents

the necessary communication to support the skeletons semantics, i.e. the interactions between

activities (e.g. communication between two consecutive stages of a pipeline). Explicit commu-

nication, as mentioned above, circumvents the skeleton’s default behaviour, allowing a process

in a activity to communicate with another process in the same activity.

Behaviour is encapsulated in a skeleton and is the result of implicit and explicit communi-

cation. As said before, each stage may be represented as a skeleton itself, or may show internal

parallelism through direct calls to MPI. Low level details such as task distribution, load balanc-

ing and collating and storing results, are transparent to the user. Similarly to Skil, eSkel allows

that activities may produce more than one result or none result at all.

In general, pre-defined semantics are related to skeletons themselves, i.e. they define the

way in which a skeleton’s activities may interact. Spatial constraints determine the activities

with which each activity may interact and the directions these interactions may take. These are

called “partner activities” (e.g. two consecutive stages in a pipeline). Temporal constraints, in

turn, determine the allowable orderings of interactions between partners. For example, in a

particularly strict form of pipeline, it may be required that a stage interacts first with its pre-

decessor then its successor, in strict alternation. Our work may support this kind of behaviour

through Behavioural Patterns and through implementation dependent “Task triggers”(through

“trigger nodes” as defined in Chapter 6).

Reconfiguration is one of the goals in the under development version of eSkel. Skeletons

are modeled in a generic way to obtain significant performance results which may be used to

reschedule the application dynamically. At the time of this writing, it was still not possible to

reconfigure a skeleton dynamically forming a new one.

Implementation

Each activity is associated with a new communicator, allowing to trace a stack of commu-

nicators for the whole embedding. Our approach also relies on a pattern controller for each

Pattern Instance (i.e. Structural plus Behavioural Pattern combination). In a Hierarchical Pattern

Instance the result is a tree of connected pattern controllers (e.g. supporting execution control

as presented in Chapter 6).

Parallelisation in eSkel is supported by multithreading over MPI, and no new abstract data

types were introduced for distributed-shared data. Skeletons in eSkel add the facility to move

data between activities, following the skeleton specification, without the need to explicitly in-

44

voke MPI communications. As such, it is possible to reuse existing components.

Other Systems

The PAS system [144] is based on algorithmic skeletons [167] providing a number of commu-

nication interfaces tailored for specific parallel structures such as workpiles and meshes. Ap-

plications are written either using a specification language that includes special constructs for

skeleton information or using template C++ code and instantiating the correct communication

interface. It is unclear if the specification language in PAS can be easily extended to incorporate

new communication interfaces. Nevertheless, the subsequent system, namely SuperPAS [149]

overcome such limitation.

The ASSIST [173, 174] system is a software development system based upon integrated

skeleton technology supporting effective reuse of parallel software across different platforms,

in particular large-scale platforms (and recently grids). Application design in ASSIST consists

of defining generic graphs of parallel components. To this extent, and besides supporting se-

mantic definition of several skeletons as particular cases, the ASSIST system defines a new

paradigm named “parallel module” (parmod) to express more general parallel and distributed

program structures (including both data-flow and non-deterministic reactive computations).

Additionally, external objects (e.g. shared data structures and CORBA abstract objects) can be

used within ASSIST modules, and ASSIST applications can be reused and exported as compo-

nents for other applications.

2.4.2 Pattern-based Models and Systems

The goal of this section is to describe examples of tools that provide patterns for application

programming. Namely, we mention a simple design tool (Model Maker) without support for

distributed programming, and a tool for parallel programming (CO2P3S).

Model Maker

The Model Maker tool from Borland [182] includes design patterns as an integral part of its

modelling engine supporting the Delphi language. Patterns are defined at the same level as

classes and units, and they may interact with or extend other patterns. In this way, the user

benefits from expert knowledge by reusing successful designs and architectures, making the

system itself reusable.

Design patterns also improve the documentation and maintenance of the built system since

they provide an explicit specification of class and object interactions and describe their main

purpose. The application of a pattern requires the specification of its context by insertion of

user code into the model. Specifically, it may be necessary to include classes, member or code

sections in methods. The pattern helps the user on deciding what to insert where. Furthermore,

the patterns are “active” (named “active patterns”) – they “stay alive” by detecting changes in

the code associated with the pattern.

The user may create new patterns through "Parametric Code Templates", although these

are not “active patterns”. Examples of the available patterns are mainly some of the ones de-

45

scribed in [9]: Adaptor, Mediator, Singleton, Decorator, Visitor, and Observer. Also available

are the “Lock Pattern” that provides a mechanism to temporarily lock some aspect of a class

(see description in [183]), and “ Reference counting pattern” that “provides a mechanism to

control the life-span of an object with reference counting” [182].

Enterprise and CO2P3S

The work developed in the project CO2P3S (Correct Object-Oriented Pattern-based Parallel Pro-

gramming Systems [115] aims at combining different abstractions to reduce the complexity

of developing correct parallel applications. The abstractions are from the domains of object-

oriented programming, design patterns, frameworks, and programming layers. The user is

provided with a set of pattern templates, each one including several parameters that the user

instantiates according to the domain-specific requirements of the application. Application ex-

amples can be found in [117].

The CO2P3S system was the successor of the Enterprise system [122, 123]. Although the

Enterprise system offered a good tool support and users were able to quickly create a working

parallel program based on patterns, it was not possible to tune its performance. Moreover,

performance errors were easily introduced by the users since the Enterprise system required a

subtle change to programming language semantics. The CO2P3S system overcome these prob-

lems, and also introduced the concept of generative design pattern [125]. This pattern generates

code as opposed to simple descriptive design patterns, i.e. a custom framework is generated

from the instantiated pattern templates. The framework has the advantage of encapsulating all

of the parallel structure, including synchronization and communication code, with the guaran-

tee of code correctness. The generated code serves as the highest of three layers of application

code, where the lower layers are used only for performance tuning according to the applica-

tion’s performance requirements.

Whereas CO2P3S provides only a pre-defined set of pattern templates,meta-CO2P3S allows

a pattern designer to rapidly and easily edit existing patterns and create new ones. Namely,

in [116] the success of using CO2P3S and meta-CO2P3S is demonstrated to generate struc-

turally correct parallel programs from parallel design patterns, and the creation of a new de-

sign pattern named the Wavefront pattern is also described. This pattern captures the common

behaviour of wavefront computations 6 used in several parallel programs (e.g. “the Biological

Sequence Alignment Using Dynamic Programming”, “the Skyline Matrix Problem”, and “the

Matrix Product Chain Problem”).

CO2P3S/meta-CO2P3S concurrency results from using different processors to compute ei-

ther multiple elements or groups of elements (forming a block) at the same time. In this case,

the evaluation of elements in the boundaries requires values from adjacent blocks. Such bound-

ary exchange defines the communication and synchronization structure. The authors demon-

strate that the usage of Wavefront pattern results on code with good speed-ups on shared-

memory computers. The pattern is applied in the resolution of three problems, namely se-

quence alignment, skyline matrices and matrix product chain.

6In wavefront computations, “each element computes a value that depends on the computation of a
set of previous elements, and the computation typically flows from one region to another”. [116]

46

The basis of the CO2P3S parallel programming system, the Parallel Design Patterns (PDP)

process is described in [118, 124]. The PDP process is independent of programming language

and parallel architecture. In the mentioned paper, CO2P3S is one implementation of this pro-

cess, which generates multithreaded Java framework code for shared memory multiprocessor

systems. A distributed shared memory implementation is also described in [121].

The PDP process provides a layered development model by combining different abstrac-

tion techniques commonly used to reduce the complexity of sequential programming, namely

object oriented programming, design patterns, and frameworks. At the topmost development layer,

the Patterns Layer, the user is provided with a set of design pattern templates – parametrized

constructs based on design patterns – whose parameters may be instantiated according to the

desired parallel structure of a program.

After selection of the pattern template and refinement of the pattern structure through pa-

rameter instantiation, the parameters guide the code generator. The result is a correct cus-

tomized framework consisting of abstract classes, which encapsulates all of the structural de-

tails of the pattern, including communication and synchronization. Since the framework is

specific to the selected parameters, better performance levels are achieved. Moreover, the gen-

eration of a correct framework saves the user from writing and debugging this code, simplify-

ing the creation of a parallel application.

The application specific sequential code, defined by the user after parameter instantiation,

is kept separated from the generated code. The specific code is provided in the framework as

hook methods which are invoked by the parallel structure code at the appropriate time. As

such, frameworks and design pattern are combined considering the application domain of the

framework to be the implementation of a pattern.

Other Systems

The DPnDP system [143] uses a design pattern information to generate code for the pattern

where all pattern-specific communication is handled automatically. Although the system al-

lows the addition of new patterns, this is done only at the C++ framework level instead of

providing tools that support extensibility. Furthermore, only the structure of new patterns can

be added. Behavioural aspects, such as pattern-specific communication, cannot be added.

The ObjectAssembler [55] is an example of a visual development environment that provides

a catalogue of patterns for connecting JavaBean components.

The goal of the Enhance Project [111] is to enhance the performance predictability of Grid

applications with Patterns and Process Algebras.

The Pacosuite [54] tool supports component composition through composition patternswhich

define component interactions.

2.5 Summary

This chapter highlighted the importance of Software Engineering abstractions such as com-

ponents and services, dynamic reconfiguration, and coordination models, on application pro-

gramming. Moreover, the chapter also highlights the importance of higher-level abstractions

47

such as skeletons and patterns to reuse common interactions in distributed and parallel sys-

tems in general, and presents some programming systems providing those abstractions.

To conclude, and in order to further argue in favor of the relevance on the availability

of skeletons and patterns for application development, we mention a study which evaluated

the practical usefulness of those abstractions in the particular domain of parallel processing.

Specifically, in [177] a detailed study is described to compare the relevance of patterns on the

usability of two Parallel Programming Systems (PPSs). The evaluated systems were the Enter-

prise system [122] which provided patterns for application programming, and a PVM [178]-like

library of message-passing routines.

For that evaluation, students were divided into two groups, each one running controlled

experiments over one of the two parallel systems. Three comparison categories were used that

affect the assessment of PPSs, namely performance, applicability, and usability. The authors claim

that usability, in particular, had not been commonly used for evaluation of parallel systems,

contrasting with performance. In their opinion usability will have an increasing importance on

the acceptance of a parallel system. The used assessment metrics for usabilitywere [177]:

“learning curve, probability of programming errors, functionality integration with

other systems, deterministic performance compatibility with existing software,

suitability for large-scale software engineering, power in the hands of an expert,

ability to do incremental tuning”.

This early study revealed that the usage of Enterprise provided more productivity gains

even though performance was poorer. One of the contributions to that gain was that the system

prevented several common parallel programming errors concerned with correctness. This was

due to the fact that the implementation of patterns (tuned for parallel systems) was reused,

and less errors were generated as a result. Another contribution was the availability of an

integrated set of support tools supporting the application development process.

Moreover, in [121] it is also claimed that for many parallel applications it is more important

to provide a rapid and correct development of a parallel application than to focus only on

performance. Nevertheless, the tools have to support the tuning of the available patterns, the

easy definition of new patterns, and the provided patterns have to support that the application

parallelism is abstracted from the target parallel architecture so that it is possible to generate

code to a different architecture.

Such concerns are extensible for patterns in Grid domains, namely in terms of their repre-

sentativity for common interactions in Grid applications, the independence of patterns from

the supporting Grid platform (e.g. in terms of the mapping to resource managers), the possi-

bility of adding new patterns, and the tuning of patterns (e.g. concerning Quality of Service

issues).

Therefore, we argue that in Grid environments, e.g. whose users are aware of the required

structures/topologies to configure their applications as well as of the required coordination

schemes for their behavioural dependencies as proposed in this work, patterns are an impor-

tant contribution for Grid programming.

At the time of the first definition of our work [44] the use of skeletons and patterns on

Grid development environments was still limited. Namely, tools available for skeleton lan-

guages did not connect to Grid middleware, such as Globus or UNICORE, although skeletons

48

based approaches do provide a useful prototyping tool for analysis. Our use of “operators”

(discussed in 3.3) borrowed from the use of transformation techniques in skeleton based ap-

proaches, albeit our focus is on the use of object-oriented techniques.

The integration of patterns in Problem Solving Environments for Grid application devel-

opment (e.g. Grid-aware workflow based PSEs), and their availability and manipulation by

operators at all development stages (including reconfiguration support) is therefore, in our

opinion, an important contribution on Grid usability.

49

50

3
Characteristics of the Model

Contents

3.1 Introduction . 52

3.2 Pattern Templates . 57

3.3 Operators . 68

3.4 Summary . 80

This chapter describes the main characteristics of the model and its components, namely Struc-

tural and Behavioural Patterns and their associated Operators; explains the way these compo-

nents are related; and describes the methodology associated to the model.

51

3.1 Introduction

This first section in the chapter describes the major concepts that form the basis for the model.

The subsequent sections in this chapter explain the model’s entities, which are classified ac-

cording to those concepts, and the way they are related. Each entity is characterised in terms

of its semantics and applicability.

The basic concepts underlying the model are Patterns and Pattern Operators. In our model,

Patterns capture commonly occurring structural and behavioural aspects in component com-

position, which can be typically perceived in distributed and Grid computing applications. As

well as components in Component-oriented models, Patterns are first class entities, namely,

patterns identified at design time are still present at execution time. Operators, in turn, ma-

nipulate those structure and behaviour aspects in a constrained way for configuration and

reconfiguration of applications and for execution control.

Patterns and operators are divided and classified according to the above two dimensions;

namely, the model provides both Structural and Behavioural Patterns and Operators. This

separation of concerns is also a distinctive characteristic of the model as a way to promote

flexibility:

• allowing different behaviours to be combined upon the same structure;

• reusing the same behaviour for different structures;

• allowing the refinement of the structure independently of the behaviour;

• changing the behaviour independently of the structure.

Finally, the last concept concerns a (suggested) methodology which can be associated with

the model. Specifically, the persistence of patterns through the entire application life cycle, and

their uniform manipulation by different operators at different stages, allows the definition of

a systematic process for application configuration and its execution control. Such systemati-

sation aims at helping expert users develop applications, or the methodology may guide less

experienced users in that process. A basic methodology is explained in section 3.1.3, whereas

extensions to that basic methodology, e.g. concerning reconfiguration, are deferred to Chap-

ter 5. Nevertheless, we emphasise that these procedures are to be seen as possible guidelines

for application construction and modification.

3.1.1 Structural and Behavioural Patterns

Structural Patterns (SPs) encode component connectivity, and identify common ways in which

components may be combined within a given application domain. Structural constraints may

be useful, for example, to represent common software architectures in high-performance or

distributed computing applications. For instance, one of the uses of the data flow pipeline, in

particular, is rendering, which involves a data input, simulation/rendering, and visualisation

pipeline. Structural patterns may also contain a hierarchy, allowing the embedding of a pattern

within another, these embeddings also being supported through specialised operators.

52

Structural Pattern Templates (S-PTs) consist of component place-holders (CPHs) to which indi-

vidual components are instantiated at runtime, and a specification of the connectivity between

those place-holders matching an associated pattern’s semantics. Therefore, Structural Pattern

Templates are instances of Structural Patterns in the sense that they are formed of a limited set

of elements (i.e. CPHs) obeying the correspondent specific structural restriction. The number

of those elements defines the cardinality of the S-PT. Structural Pattern Templates may include

other S-PTs as their elements, forming a Hierarchical S-PT, and where each embedded S-PT is

still directly accessible. In general in this work, the cardinality of a Hierarchical S-PT is con-

sidered to be simply the number of elements (either CPHs or S-PTs) in the first level of the

hierarchy.

Behavioural Patterns (BPs) encode useful and commonly required functionality such that com-

ponents within a Behavioural Pattern primarily identify interaction constraints, and not the

exact functionality required from each individual component. As such, Behavioural Patterns

can capture temporal or flow dependencies between components. Flow dependencies model

data and control flows, and encode execution ordering on components (flow dependencies are

typically used to express synchronisation constraints). Behavioural Patterns may be defined to

specify: a) typical interactionmodels between components (e.g. Peer-to-Peer or Client/Server);

and b) schemes which are used to update/change the behaviour of each component (i.e. new

inter-dependencies are defined within the involved components).

Behavioural Pattern Templates (B-PTs) define the necessary set of actions/rules to support the

semantics of the associated Behavioural Patterns, and characterise the role of each participant.

These participants are defined as component place-holders/wrappers to be instantiated/ap-

plied to specific executable components.

The combination of Behavioural Pattern Templates (B-PTs) with Structural Pattern Templates (S-

PTs) defines a generic configuration. This configuration is named a Template Configuration and

represents a composition of Pattern Templates. Specifically, each individual Pattern Template,

also designated as SB-PT, results from combining a particular Structural Pattern Template (S-

PT) with one or more Behavioural Pattern Templates (B-PTs). In turn, the binding of component

place-holders within the above Template Configuration to specific executables defines a particular

application configuration. In particular, an individual SB-PTwhen fully instantiated to executable

components produces a Pattern Instance (PI). Consequently, the final application’s instantiated

configuration consists of one or several combined Pattern Instances (PIs).

Figure 3.1 describes the relations between the entities described above. Namely, a S-PT is

created from a SP. Likewise, a B-PT enforces the semantics of a BP upon the involved elements.

The combination of a S-PT with one or more B-PTs results in a SB-PT that following the in-

stantiation of its component place-holders with executables, generates a PI. As can be observed

in the Figure, a PI can also be obtained by first binding the component place-holders within

a S-PT to executables, and subsequently combining the resulting Component Instantiated Struc-

tural Pattern (CISP) with one or more B-PTs. Finally, SB-PTs and CISPs have no direct relation

between them – they only represent intermediate entities on the two distinct paths that lead to

the generation of PIs.

The next sub-section describes the available operators to manipulate the above patterns.

53

(semantic definition)
Behavioural Pattern (BP)

(a particular SP with well−defined
structure and number of elements,
as component place−holders)

Structural Pattern (SP)
(semantic definition)

(all or a part of the S−PT’s
elements are linked to executables)

(a S−PT combined with
one or more B−PTs)

Components/
Tools/Services

associate/bind
executables

associate/bind
executables Components/

Tools/Services
(rules enforcing the semantics
of the BP; characterisation of
the roles of each participant)

runnable entity)
(pattern−based

Structural Pattern Template (S−PT)
Create

Component Instantiated
Structural Pattern (CISP)

Pattern Template (SB−PT)

Pattern Instance (PI)

apply B−PT(s) B−PTs

Define

Behavioural Pattern Template (B−PT)
apply B−PT(s)

Figure 3.1: Relating the used pattern definitions.

Examples on their manipulation are presented along Chapters 4 and 5.

3.1.2 Structural and Behavioural Operators

Structural Operatorsmanipulate Structural Patterns (either plain S-PTs, or the structure underly-

ing SB-PTs, CISP, or PIs) enabling a constrained way to modify these patterns with the guaran-

tee of preserving the distinctive structural characteristics of the manipulated patterns. Those

operation constraints are defined by the semantics of each Operator, and relate to the result

generated after the operator has been applied.

Behavioural Operators are used to configure Behavioural Patterns, and provide the user with

execution control and reconfiguration capabilities. Similarly to Structural Patterns, each Be-

havioural Operator’s semantics also define a constrained way of operating the involved pat-

terns.

Although the actions of both Structural and Behavioural Operators are generally to be de-

scribed in terms of Pattern Templates (PTs), some are in fact applicable to Pattern Instances (PIs)

only. This is the case of one of the operator categories described next, namely Execution operators

which will be further discussed in section 4.4.

54

Operator Categories

Structural and Behavioural Operators are further classified into six categories, namely Struc-

turing, Grouping, Inquiry, Ownership, Execution, and Global Coordination.

The first two categories include operators to define and change the structural connections

between patterns (either pattern templates or pattern instances) building the application’s basic

configuration.

Inquiry operators, in turn, grant the user the possibility of evaluating the properties of

different Structural PTs before applying the Structuring and Grouping operators. Inquiry op-

erators allow the assessment of structural relationships between patterns (e.g. if one PT is part

of another pattern), and may be used to analyse pattern compatibility (which includes both

structural and behavioural properties). Finally, Inquiry operators also evaluate a user’s access

rights to manipulate a pattern which are defined through Ownership operators.

Ownership operators include operations to define who is entitled to access or manipulate a

specific pattern, and also to associate specific actions to this pattern defined as being under the

responsibility of a particular user or set of users.

Execution operators support the manipulation of Pattern Instances (PIs), both for execution

control and reconfiguration purposes, providing the user with operations for automating repet-

itive or periodic actions and to control the applications’ evolution in face of changing resources

or requirements. The user may in this way add or replace existing patterns in order to exploit

such dynamic changes.

Finally, Global Coordination operators establish/change the behavioural dependencies be-

tween elements within a pattern according to some Behavioural Patterns or coordination rules.

3.1.3 The Basic Methodology

This section describes a basic methodology for the construction and control of pattern-based

application configurations.

We define an application configuration as “pattern-based” if it results from the refinemen-

t/composition of Structural Patterns combined with Behavioural Patterns. Although the addi-

tion of individual components and direct connections between any elements within the struc-

ture are also possible and may be necessary for application configuration, this work focus on

pattern manipulation towards application construction and control. Therefore, none of the

discussions here presented makes any assumptions or identify the implications of establish-

ing connections/dependencies among elements, which are outside the context of the defined

patterns.

Figure 3.2 depicts the sequence of steps forming a basic methodology for the construction

and control of pattern-based application configurations. This description assumes the exis-

tence of a supporting tool with an environment such that the user launches, for example, a

Problem Solving Environment (PSE) editor (as, for example, identified in [18]) to connect com-

ponents together, and that provides interfaces for execution control. For example, through a

visual editor the user may select and build the necessary patterns, make other necessary direct

connections between components, and apply the available operators. However, a visual-based

pattern composition andmanipulation is not mandatory as the definedmethodology steps and

55

execution
launch

operations
ownership

used for the

inquire /
refine /

compose

change dependencies
control execution /

applied to

Structural
Pattern

Templates
Configuration

Structural Template
Configuration

Pattern
Templates

Behavioural

Configuration
ApplicationRunning

Application

Components

Services
/ Tools /

Structural Operators

Behavioural Operators

Behavioural Operators

application
direct

manipulation

transformation
produced

instantiation of

Figure 3.2: The basic steps of the methodology.

the definition of operator sequences can also be achieved through scripting languages. Such

scripts, in turn, may provide a systematic way of building those application configurations and

controlling their execution.

The methodology steps represented in Figure 3.2 correspond, in part, to the left branch of

Figure 3.1, namely, the steps illustrate: the generation of Structural Pattern Templates (S-PTs)

from Structural Pattern (SPs) definitions; their combination with Behavioural Pattern Templates

(B-PTs) leading to Pattern Templates (SB-PTs); and finally, the instantiation of SB-PTs to Compo-

nents/Tools/Services generating Pattern Instances (PIs).

Methodology Steps

1. The user selects, typically from a repository, the most adequate Structural Patterns gener-

ating Templates (i.e S-PTs – Structural Pattern Templates in the Figure 3.2) which enable the

static composition of components and over which the (data and control) flow dependencies

will be defined.

2. The user combines and refines the selected Structural Pattern Templates by applying the

available Structural Operators with the guarantee that these are invariant regarding the tar-

get pattern template structure. Structural Operators of the Structuring, Grouping and In-

quiry categories are available from a repository for user selection. At any time, the user can

also modify the structure of a Pattern Template directly by using the editor commands.

The pattern refinement process may be associated with the selection of further necessary

Structural Patterns until the desired Structural Configuration (in the Figure) is produced

(which may be a single S-PT or several combined S-PTs). At this stage, the designed con-

figuration does not restrain the flow dependencies between the involved elements in any

way. Meanwhile, new Structural Patterns may be defined and saved in the repository for

further reuse. Furthermore, the generation of Pattern Templates as well as the application

of sequences of Operators may be triggered by running user defined scripts.

56

3. The user specifies the behavioural dependencies between the elements by first selecting,

from a repository, and then applying, the suitable Behavioural Patterns over the previously

defined Structural Configuration. The result is a Template Configuration (i.e. a combination

of SB-PTs) with defined data and control flows between the elements. These SB-PTs may

be statically configured using some Behavioural Operators, for example, for the definition of

ownership restrictions. The Template Configuration can also be saved for later reuse. To pro-

duce the final Application Configuration in the Figure 3.2 (i.e a combination of PIs), the user

instantiates the component place-holders with the necessary runnable components, tools, or

services. This instantiation consists of relating the elements within the Application Config-

uration to the necessary information to run the executables or to access the selected services.

4. The user launches the application’s execution and configures its run-time behaviour through

Behavioural Operators. Sequences of Behavioural Operators may also be invoked from user

defined scripts.

The availability, at run-time, of Structural and Behavioural Patterns as manipulable first-

class entities just like the executable components (e.g. accessible through a PSE editor),

provides the user with a higher level of control over the application. Through Behavioural

Operators, the user may manage the application’s execution as a whole, or may restrict

the configuration/control of the behaviour to just one or more Patterns. Moreover, further

modifications to the application may be imposed, either statically or dynamically.

The division into these four stages of design is inspired on existing user scenarios for applica-

tion construction in Problem Solving Environments. Based on our approach, a user must first

commit to a Structural Pattern, and then to a Behavioural one. Structural Patterns may, for

example, try to capture how many machines (for instance) or groups are necessary to execute

a given application – and do not instantiate these to particular instances until the Behavioural

Operators are applied. The four stage approach in this example reflects the approach adopted

by application schedulers – but tries to abstract this as a collection of patterns and operators –

and brings it closer to the application construction process.

The following sections describe the selected Structural and Behavioural Patterns, introduce

a relevant set of Operators, and outline the capabilities supported by the model. However,

the existence of different entities, i.e. a set of Structural and Behavioural Patterns leading to

different associations, and their different manipulation through the entire life-cycle, ultimately

suggests a high number of combinations to be discussed that it was not possible to describe

exhaustively in the context of this work.

3.2 Pattern Templates

This section describes the selected Structural and Behavioural Pattern Templates (S-PTs and B-PTs)

that aim to represent frequent configurations and behaviours present in distributed and Grid

environments, at the level of the components integrated in Problem Solving Environments in

particular.

The chosen set of Patterns can be seen as identifying a small Pattern System which was

found to provide adequate expressiveness for the collection of application examples that were

57

studied. New Patterns may be added if found required for specific applications, as the model

is amenable to extensions.

3.2.1 Structural Pattern Templates: Topological

Topological patterns represent structures that frequently occur in distributed and Grid systems.

For illustration purposes, we identify three basic architectural layouts as possible candidates to

include in the model within this category: star, pipeline, and ring.

Star Pattern

StarStructure

Center/Nucleus SimpleChannel Satelite

0..*

0..*

0..*0..* 0..*

0..*

Figure 3.3: The Star pattern.

The Star pattern (see figure 3.3 for the UML [68, 69] definition) is an aggregation of three

components: the Nucleus is the center of the star; a Satellite represents an element communicat-

ing with the star; and the SimpleChannel binds together a Satellite to the Nucleus. The Nucleus

may be connected to several instances of SimpleChannel, but each SimpleChannel is only con-

nected to a single Satellite. The star topology defines the general interaction of several common

Grid/distributed applications. For example, in the Client/Server model, the clients accessing

the service can be structurally represented by the satellites with the server standing at the nu-

cleus of a star. Likewise, the Master/Slave model can also be structurally represented by the

star architectural layout.

Pipeline Pattern

The Pipeline pattern is a sequence of stages which communicate with each other. The pattern

occurs frequently in many applications. For example, a scientific application produces data to

a sequence of filters (like Data Analysis Tools), and the pipeline is terminated in a Visualisation

Toolwhere the user can follow the application’s execution. The pattern’s structure (as shown in

Figure 3.4) was adapted from the Pipes and Filters pattern [10]. The structure can be generally

represented by three components (see Figure 3.4) : a DataSource produces data to a Connector,

and the DataSink consumes data from the Connector.

The Connector has a recursive structure, as illustrated in Figure 3.5. A Connector may be

a SimpleConnector (similar to a Unix pipe, an event channel, a data stream channel, etc.) or it

58

PipelineStructure

DataSource
Connector

+addConnector()
+removeConnector()

DataSink

+CommunicatesWith +CommunicatesWith+CommunicatesWith +CommunicatesWith

Figure 3.4: The Pipeline pattern.

SimpleConnector

Pipe EventChannel

CompositeConnector

Component

Connector

+addConnector()
+removeConnector()

+Binds
+Binds

+CommunicatesWith

1..*

+CommunicatesWith

+Binds
+Binds

+CommunicatesWith

1..*

+CommunicatesWith

Figure 3.5: The Connector pattern.

may be a CompositeConnector. The latter is a connected association of a SimpleConnector and a

Component. Recursively, the CompositeConnectormay be connected to another Connector and the

recursion terminates at the SimpleConnector. The number of recursions define the number of

necessary associations (each comprising a SimpleConnector connected to one Component) which

will define the pipeline stages.

Ring Pattern

The Ring pattern represents, like the pipeline, a sequence of stages, but with no "first” or "last”

stage. The structure of the Ring pattern (Figure 3.6) is also based on the Connector structural

definition . The difference is that every Component is always connected to two SimpleConnectors

(in the limit, the unique component will have two connections to a single SimpleConnector). The

number of recursions in the Connector definition will define the number of stages in the ring.

For simplification purposes, the definition of the Connector is not complete in Figure 3.6 (see

Figure 3.5 for its complete definition). This topological structure can be found in a number of

applications, both in the context of application execution (such as for modelling interactions

within a local area network) to logical topologies such as supporting an authentication chain

when approving participants withmultiple certificate servers. Each server delegates an authen-

tication request to the next domain, and the last server replies to the original client. This chain

based mechanism can also be found when resolving the address/location of an executable us-

59

RingStructure

Connector

+addConnector()
+removeConnector()

Component

SimpleConnector CompositeConnector

+CommunicatesWith

+Binds

+CommunicatesWith

+CommunicatesWith+CommunicatesWith

+CommunicatesWith

+Binds

+CommunicatesWith

Figure 3.6: The Ring pattern.

ing a directory lookup service (as found in the Globus MDS [11]).

Although the star, pipeline and ring topologies represent, by themselves, the underlying struc-

ture of many distributed applications, those topologies can be combined to configure other

common topologies in distributed systems (this will be exemplified in Chapter 7). Moreover,

the benefits of topology-awareness for distributed and Grid computing are presented in [210],

for example, for reducing communication costs. As such, application developers may benefit

from pre-defined topologies for application configuration.

3.2.2 Structural Pattern Templates: Non-Topological

The Adapter, Facade, and Proxy design patterns (adapted from [9]) are examples of non-

topological Structural Patterns that are particularly useful in the context of distributed and

Grid computing.

Adapter Pattern

The Adapter pattern allows communication between two elements when they do not have the

same interface (see Figure 3.7 for the UML definition). In a Grid environment, the Adapter

pattern has applicability, for example, in the adaptation of services, or as wrappers for legacy

codes (such as Fortran binaries). If the client is expecting a different interface from the one

provided by the server, the adapter can act as a translator. This pattern is also particularly

useful for providing a mapping between the interface of an existing code and a pre-defined

component data model for Grids, such as CCA [27].

60

Target

+Request()

Adapter

+Request()

Adaptee

+SpecificRequest()

adaptee->SpecificRequest()

Client

+adaptee+adaptee

Figure 3.7: The Adapter pattern [9].

subsystem classes

Facade

+discover()
+execute()

Domain1

+d1.discover()
+d1.execute()

Domain2

+d2.discover()
+d2.execute()

Subdomain2.1

+d2.d1.discover()
+d2.d1.execute()

+Invokes +Invokes+Invokes+Invokes

Figure 3.8: The Facade design pattern [9]. Example: the "Facade” provides a unified interface
for accessing domains in the Grid environment, redirecting the calls to services like "discover”
and "execute”.

Facade Pattern

The Facade pattern (Figure 3.8) is useful when a system may be divided into several sub-

systems, and the access to communication/entry-point into the system needs to be restricted.

The Facade pattern occurs in the structuring of the Grid into multiple "domains”. The access to

each domain (sub-system) in the Grid may be via a Facade interface.

Proxy Pattern

The Proxy pattern is also frequent in distributed systems. The access to Grid services, for ex-

ample, is usually achieved through a proxy (or gatekeeper). The structure of the pattern (Fig-

ure 3.9) consists of an abstract interface (the Subject) representing the service, the implemen-

tation of the service (RealSubject), and a surrogate (Proxy) which forwards the request to the

implementor of the service.

61

Subject

+Request()

RealSubject

+Request()

Proxy

+Request()

realSubject->Request()

Client

+realSubject+realSubject

Figure 3.9: The Proxy pattern [9].

Nucleus

Adapter

Adaptee

Facade

Proxy
Proxy

Proxy
Real

Subject

Proxy S−PT

Pipeline S−PT Ring S−PT

Satellite

Facade S−PT

Star S−PT

Adapter S−PT

Figure 3.10: Graphical representation of examples of Structural Pattern Templates (S-PTs).

3.2.3 Graphical Representation of Structural Pattern Templates

The graphical representation of instances of the above mentioned Structural Pattern Templates

(S-PTs) is shown in Figure 3.10. Such representation is used throughout the thesis, both in the

visual description of the Operators’ semantics and in some examples in Chapter 7.

The basic elements in the Structural PTs’ representations are: a) the component place-

holders, which are depicted as circles or as a small rectangle in the case of the Facade PT’s

main element; and b) the associations between the place-holders defining the structure, which

are depicted as solid lines connecting the circles (or rectangles).

Figure 3.10 illustrates: one Pipeline and one Ring templates (S-PTs) each with three ele-

ments (i.e. the cardinality of both S-PTs is equal to three) ; one Star and one Proxy templates

with three satellites and proxies, respectively (here the cardinality of the S-PTs is equal to four

elements) ; one Facade S-PT with four component place-holders to be instantiated to four sub-

systems (i.e. the cardinality of the S-PT is equal to five); and an Adapter template (the cardi-

nality of the S-PT is equal to two).

The visual representation of the topological Structural Patterns consists of similar component

place-holders indicating that there are no restrictions on the type of components or services

62

which will instantiate them. Compatibility evaluation of two connected place-holders will be

undertaken at instantiation time. For example, in the Triana tool [40], the data-flow connection

between two consecutive services in a topological Structural Pattern is only allowed in case of

data type matching between the source’s output and the destination’s input data.

The visual representation of the non-topological Structural Patterns, in turn, distinguishes in

some way the component place-holders within a template (e.g. the “Facade” element within

the structure of the “Facade S-PT” in Figure 3.10 is represented differently from the sub-system

elements). This aims to highlight the fact that each element within each non-topological Struc-

tural Pattern has associated structural constraints that have to be met when instantiating those

component place-holders to specific executable components.

3.2.4 Behavioural Pattern Templates

Behavioural Pattern Templates (B-PTs) capture recurring themes in component interactions

defining their (control and data) flow dependencies to be described through rules or schemes.

Specifically, the patterns described here aim to represent common component interdepen-

dencies appearingwithin Grid applications, in particular, and in distributed systems in general.

Master/Slave Pattern

One of the selected patterns is the Master-Slave [10] which is commonly found in distributed

and parallel systems. The pattern comprises two types of elements, namely, a master, and a

set of "N” slaves. The work is divided by the master into sub-tasks that are performed by the

(usually independent) slaves. Afterwards, the partial results returned from the slaves to the

master are used by the latter to compute the final result. The Master-Slave pattern is present in

grid-enabled environments such as XtremWeb [221], BOINC [222], the Condor Master Worker

project [224], and Nimrod/G [223].

Client/Server Pattern

Another common pattern is the Client-Server [10, 220] where a particular element, the server

(either centralised or distributed), processes the requests made by concurrent clients. This pat-

tern is similar to the Master-Slave although in the former the control flow is more complex.

The Client-Server pattern can be identified in innumerous distributed applications and archi-

tectures, including Grids. For example, Client-Server based systems such as NetSolve [225],

ICENI [227], and Ninf-G [226], provide access to several Grid resources.

Peer-to-Peer Pattern

The Peer-to-Peer pattern [220], in turn, eliminates the difference between "server elements” and

"client elements” – all components within a Peer-to-Peer system function simultaneously as

"clients” and "servers” to the other components. Consequently, whereas in a Client-Server

system the interaction is undertaken through a central server which is prone to resource bot-

tlenecks, Peer-to-Peer systems support sharing of computer resources (e.g. data, storage, CPU

cycles) by direct exchange between the involved components and are also more resilient to

63

failures. The Peer-to-Peer model became very popular in distributed applications and sys-

tems [230–233] including for the access to Grid resources [21, 234, 235].

Producer/Consumer and Streaming Patterns

Another pattern which is also common in distributed systems, is the Producer-Consumer pat-

tern [236]. This pattern captures the coordination of the asynchronous production and con-

sumption of information, where the data flow is unidirectional: from one or more producers

elements to one or more consumers elements. The Producer/Consumer pattern is useful to

decouple entities that produce and consume data at different rates (and commonly data is to

be processed in order), and hence data is buffered between the producer and the consumer.

The Producer/Consumer model is, for example, frequently used in Monitoring Services within

Grid environments [240, 242].

The Streaming pattern is a variant of the Producer/Consumer and represents a continuous

production of data. This pattern is used in this work to represent both the data flow production

characteristic of scientific calculations and tools (whichmay present a high throughput), as well

as the streaming characteristic to audio and video media.

Parameter-Sweep Pattern

As for the Parameter-Sweep pattern, it represents the repeated invocation of a component with

unique sets of input parameters – the same code is run multiple times and a single parameter

varies over a range of values or multiple parameters vary over a large multidimensional space.

The Parameter-Sweep pattern is used as the basic execution model in many scientific and engi-

neering applications (e.g. applications based on Monte-Carlo simulations or parameter-space

searches), and due to their large-scale and loosely coupled nature, these applications are well

suited for the Grid. The Parameter-Sweep pattern can be found in systems such as the Apples

Parameter Sweep Template (APST) project [228] and Nimrod [19].

Observer/Publish-Subscriber Pattern

Considering the need to manage the consistency among a set of related, although decoupled,

entities, we have selected the Observer/Publish-Subscriber pattern [9, 10] as one important Be-

havioural Pattern for distributed/Grid systems. In this pattern, one or more entities may reg-

ister themselves (or be registered) to be notified when a certain event occurs at an observed

entity. The latter is called the subject and the former are called observers. The pattern defines a

one-to-many dependency between the subject and its observers, and the notificationmay either

simply raise an event to be notified at the observers, or it may carry information concerning

the change at the entity being observed.

For instance, the Observer/Publish-subscriber is used in many Graphical User Interface

(GUI) applications (e.g. the Java Swing GUI itself uses the pattern), and applications where

changes to some (centralised) data have to be notified to the (distributed) observers, like appli-

cations providing information about stock quotations, or health care applications that monitor

the patients’ status. The Observer pattern is increasingly being used in a Web services context

64

(e.g. [238], and in [239] the pattern is used as the basis for a Web Services Notification fam-

ily of specifications), and in the Grid context, the pattern is used, for example, in support of

collaborative visualisation of scientific applications [237].

One final remark, concerns the possibility of making the distinction between the Observer

pattern and the Publish/Subscriber pattern. The formermay be considered simpler than the latter

in the case that the subjects to be observed (e.g state, events) pertain to a single entity, and that

this one keeps a registry defining which other entities are observers, and which subjects these

observers are interested on. The Publish/Subscriber pattern, on the other hand, decouples the

entities that possess the observable subjects (e.g. events) and the registry. This registry may

perform, for example, the following tasks: a) to provide information of whose subjects are

observable, and who provides them; b) to register who is interested on which subjects; c) to

relate the entity that provides the observable subjects, and the entities that are registered as

their observers. Nevertheless, the examples presented in this work consider, in general, the

(simpler) Observer semantics, and not the more complex Publish/Subscriber semantics.

Service Design Patterns for Grids

Concerning patterns specific for Grids, several were first described by Walker and Rana in

[34]. For example, the Service Adapter Pattern is a Behavioural Pattern that captures the prop-

erties/behaviours which are necessary to provide an application as a service, and the Service

Migration Pattern enables the migration of a service to another computational platform (which

provides enhanced computational resources).

Mobile Computing Patterns

Finally, we elected three general patterns from the mobile computing domain [243] as relevant

to be part of a repository of Behavioural Patterns, namely Code-on-Demand, Remote Evaluation,

andMobile Agent/Itinerary. The mobile code paradigm represents a decoupling between the be-

haviour of distributed components from their location, and therefore it is an important concept

both for distributed systems and Grid computing [246].

– Remote Evaluation

The Remote evaluation [243] scheme generally represents the sending of code, by a client, to be

executed by a remote server that, afterwards, returns the results back to the client. This scheme

is fundamental in Grid computing, for example, as a way to provide clients with the capability

of delegating code execution to high performance computational servers, or to perform data

processing code on servers that have local access to large amounts of data, therefore avoid-

ing expensive data shipping. Ninf [251], NetSolve [225], and Globus [249, 250] are examples

of Grid environments supporting remote evaluation, and some already provide higher-level

abstractions for remote submission of jobs [247, 248].

– Code-on-demand

The Code-on-demand [243] scheme, in turn, represents the sending of executable programs by

server computational units to be run by other client computational units. This scheme is the ba-

sis of the Java applets [244] model, and it is also present in Grid environments (e.g java applets

in [249] support the runtime steering of the applications through a friendly GUI; the "Coglets

65

framework” [245] aims to support arbitrary execution environments, namely Java applications

running applets).

– Mobile Agent/Itinerary

The third pattern belongs to theMobile Agents domain [243]. Amobile agent is a complete soft-

ware component, which includes code and also state (contrary to the two previous patterns),

that moves between different execution environments within a network (e.g. for gathering

information and negotiating with other agents on behalf of their clients).

Home : Location1 : Location2 :

 : Init

 : move(Location1)

 : move(Location2)

 : execute

 : return(home)

Itinerary = (static | dynamic)

dynamic = update_itinerary

return_to_home

 : Init

 : move(Location1)

 : move(Location2)

 : execute

 : return(home)

Figure 3.11: A Sequence diagram for the Mobile Agent/Itinerary pattern defining a possible
itinerary for the component.

The selected pattern is the Mobile Agent/Itinerary [35] (identified as a "Traveling Pattern”

within mobile agents), and Figure 3.11 illustrates its sequence diagram. In this pattern, a com-

ponent is initialised at a given location (Home), and may move to another location based on a

pre-defined itinerary or on a dynamic one.

The mobile agents paradigm and theMobile Agent/Itinerary pattern in particular have been

considered as a significant contribution for Grid environments [246, 252, 253, 255].

3.2.5 Combining Behavioural and Structural Patterns

This section presents some examples of Behavioural Patterns applied to Structural Patterns.

Specifically, the combination of both classes of patterns results in specifying, i.e. annotating,

the behaviour of each element/component within the Structural Pattern Template (S-PT) in

conformity with one or more Behavioural Pattern Templates (B-PT). The role of each pattern

element within the applied Behavioural Pattern(s) has a simple visual representation in all

examples presented in this chapter.

We define two forms of applying a Behavioural Pattern to a Structural one:

66

1. All elements within a Structural Pattern will be coordinated according to a unique Be-

havioural Pattern.

2. Diverse Behavioural Patterns may rule the flow dependencies among different Structural

Pattern’s elements.

remote
evaluator remote

evaluator
remote

evaluator

remote
evaluator

sender
code

facade

Figure 3.12: A Remote Evaluation B-PT applied to a Facade PT.

As an example of the first situation, Figure 3.12 depicts the combination of the Remote Eval-

uation Behavioural PT and the Facade Structural PT. The component place-holder representing

the facade element is annotated as playing the role of the code sender, and all component-place

holders to be instantiated with particular subsystems are tagged as remote evaluators. Upon

instantiation of all place-holders their defined (flow and control) dependencies will enforce

the Remote Evaluation behaviour. Such combination may be useful, for example, for interfac-

ing data processing on different database systems. The facade component would therefore

provide an uniform user interface hiding those (sub-systems) databases’ specific interfaces

through which users may submit specific executable code for searching/analysing/process-

ing data. This code would be dispatched by the code sender (facade) to be remotely evaluated by

the adequate database(s) .

nucleus

server

observer

observer

client

subject

satellite2

satellite3satellite1

Figure 3.13: Two Behavioural Pattern Templates, namely Client/Server and Observer B-PTs,
applied to a Star PT.

An example of the second situation, namely different Behavioural Patterns Templates (B-

PTs) applied to the same Structural PT, is shown in Figure 3.13. A Star Structural PT is combined

67

with: a) an Observer B-PT, where the "nucleus” is annotated as the subject, and "satellite1” and

"satellite2” are component place-holders annotated as its observers; and b) a Client/Server B-PT

where the "nucleus” is tagged as the server and "satellite3” is the client.

Such combination of structure and behaviours can be adequate, for example, for distributed

health caremonitoring systems. Typically, the structuremay represent the connection of remote

monitors ("satellites”) to the central monitor ("nucleus”) in a patient’s room that is responsible

for collecting and providing information about the patient’s vital signals. One remote monitor

may be registered to simply observe heart beat frequency and brain activity values assisting

the day resident nurse. Another nurse in charge of daily medication may rely on information

provided by a second remote monitor registered to be notified of parameter values such as

blood pressure The behaviour of those two remote monitors may be therefore ruled by the

Observer pattern guaranteeing automatic data notification, and the tools representing the two

monitors would, for example, instantiate the “satellite1” and “satellite2” elements within the

Star SB-PT in Figure 3.13.

However, a third monitor might also be used to inspect the patient’s vital signals on de-

mand. This monitor might support, for example, a doctor that only needs to inquiry about

the patient’s condition on a less frequent base and, therefore, a Client/Server orchestration is

sufficient. The tool representing the doctor’s monitor would, typically, instantiate the element

“satellite3” in the same Figure.

Both Template Configurations (i.e. combination of Behavioural and Structural PTs still not

instantiated to specific components/services) described in the two previous examples may also

be reused in distinct application scenarios.

Having described the selected Structural and Behavioural Pattern Templates, the next section

presents a set of Operators for Pattern Templates’ manipulation in order to build architectures

and to control the execution of the final configuration.

3.3 Operators

Operators enable constrained manipulation of patterns by a developer or an execution con-

troller, and provide a limited set of methods to achieve this. Operators provide transformations

between patterns, albeit subject to a set of constraints, with the guarantee that the semantic

restrictions of the manipulated patterns are kept consistent with the definitions presented in

section 3.2. All manipulated patterns are uniquely identified by their name, which is used as

an argument to the applicable operators, provided that those pattern’s types are conform to the

type of parameter defined for the operator.

Two kinds of operators exist within our approach: Structural Operators, and Behavioural

Operators. Operators are further divided into six categories, namely the Structuring, Grouping,

Inquiry, Ownership, Execution, and Global Coordination categories.

This section first describes the meaning of each category (sub-section 3.3.1) followed

by a brief summary of the semantics of the available operators within each category (sub-

sections 3.3.2 to 3.3.6). A full operator semantics will be described in Chapter 4, but only for

the Structuring, Grouping, and Execution operators. In Chapter 4 the operators’ applicability, in

68

particular, will be described in terms of individual operators, as well as in terms of operator

sequences (with a particular ordering) involving sets of (different) operators. Those particular

sequences include operators belonging to the same or different categories.

Operators may as well be combined, leading to "compound operators”, although this is

only allowed if operators from the same category are chosen – to ensure consistency of the

result. Implementation-wise, each operator category can be considered to be implemented as

a separate class library, and each operator is a method call within the library, but of course, the

model definition is neutral regarding the concrete implementation.

3.3.1 Operator Categories

Structuring: These operators are used to establish or modify the connectivity between compo-

nents in patterns.

Grouping: Operators to support grouping allow patterns to be combined and subsequently be

manipulated as a whole. Grouping also involves including patterns within each other,

thereby assisting on building hierarchies. Consequently, a Hierarchical Pattern consists of

a pattern which contains at least another pattern as one of its members.

Inquiry: Inquiry operators support comparison between pattern templates, to check for con-

sistency or compatibility (for instance). Inquiry operators may also be used to verify

structural or behavioural properties associated with a template, and return a boolean

value on evaluation.

Ownership: Ownership operators enable the modification and access rights of a template to

be controlled. These may be used, for example, to define which user or users are allowed

to manipulated a pattern (or a group representing a set of patterns). The owner of a

pattern may also delegate access to a single user or group of users to modify the pattern.

Execution: Operators to control execution, for example, to assist the mapping between the

application configuration within a Problem Solving Environment and a resource man-

agement system. Execution operators provide functionalities for managing execution of

Pattern Instances, and provide support for changing the behavioural properties of pat-

tern instances dynamically. Execution operators may connect to pre-defined scripts for

starting, stopping, resuming, etc, component execution, or may be mapped to the pro-

tocol layer between a global Scheduler and local Schedulers (e.g. to reserve and allocate

resources in the Grid). Specifically, the execution operators rely upon the functionality

available within a resource management system, and depend on obtaining monitoring

information. The mapping between the operators and the particular functionality of re-

source management systems therefore cannot be completely pre-defined. We therefore

rely on an intermediate API (such as a global Scheduler as mentioned above) to enable

these operators’ execution.

Global Coordination: This type of operators support both the definition and the changing of

the behavioural dependencies between elements within a pattern. These will rule those

69

elements inter-related behaviour at execution time. Such definitions and modifications

may as well be applied upon executing Pattern Instances.

All the operators in the previous categories have a common parameter type which identi-

fies the pattern(s) being operated. Such parameter is usually identified as “SP”, or “P”, “P1”,

“P2”, etc., and it represents a particular pattern at a particular point of the development pro-

cess, from design to execution time. Namely, the parameter may either represent a particular

Pattern Template (PT), Pattern Template (SB-PT), Component Instantiated Structural Pattern (CISP),

or Pattern Instance (PI). The argument that instantiates a parameter “P”, “P1”, etc., identifies

uniquely that particular pattern within the system. Each pattern operator, as described in the

following, takes one (or more) pattern(s) of the above types as input, and returns a pattern, a

boolean result, or particular data pertaining to the operator’s semantics.

Some operators, in particular, also make reference to a particular member, or element, of

the operated pattern. In fact, a pattern consists of a set of members/elements which are related

according to that pattern’s semantics, and where each member has its own unique identifier

within the pattern. Depending on the pattern’s type being manipulated, a pattern’smember/ele-

mentmay represent:

• a component place-holder, e.g. a member of a S-PT;

• an annotated component place-holder, i.e. a component place-holder with an associated

role within a particular Behavioural Pattern (e.g. a member of a SB-PT);

• a component instantiated element, i.e. a component place-holder which was already

bound to an executable (e.g. a member of a CISP);

• a runnable element, i.e. an element of a PI; namely, an element within a particular Struc-

tural Pattern for which the necessary (data and flow) dependencies were already defined,

and which is associated to the particular executable to be run in that context.

The identifier of a pattern’s member/element is also sometimes named as position. Conse-

quently, an argument named position identifies solely a particular member within the pattern.

Furthermore, the reference to the members of a pattern usually alludes to all elements within

that pattern at its top level, i.e. level one. Specifically, all members of a non-hierarchic pattern

(i.e. a pattern which does not include any another pattern as its member), are said to be posi-

tioned in the level one of that pattern. On the other hand, a Hierarchical Pattern has two or more

levels and one or more elements at its level one are also patterns.

Moreover, for the majority of operators (e.g Structural Operators), their actions upon a spe-

cific Hierarchical Pattern have effect only upon the members in level one. This means that, in

general, those operator’s actions are not recursive. Nevertheless, since inner patterns within a

Hierarchical Pattern are directly accessible through their identifier, any operator can be directly

applied to those inner patterns independently from the other members of the outer pattern.

Typically, the identifier of an inner pattern consists of a name sequence (e.g. concatenation)

which starts with the name of the outmost pattern, and ends with the name of the inner pat-

tern. The discussion on the structural operation of Hierarchical Patterns, in particular, will be

presented in section 4.3.

70

The next sub-sections summarise the available operators within each of the described cate-

gories, providing an introductory description of their semantics.

A more detailed detailed description on some operators is discussed in Chapter 4, and gen-

erally in the context of Pattern Templates (PTs). Nevertheless, some operators like the Execution

Operators are only meaningful if applied to Pattern Instances (PIs). Consequently, in Chapter 4,

their general semantics is discussed in the context of PIs. Subsequently, operator semantics are

again discussed in Chapter 5, namely, section 5.2 further clarifies the semantics of some rele-

vant operators when applied in the particular contexts of SB-PTs, CISPs, and PIs; and the role

of the different kind of operators towards reconfiguring an executing application is discussed

in section 5.3.

3.3.2 Structuring and Grouping Operators

These operators are used to create Structural Pattern Templates (S-PTs), and tomodify their struc-

ture maintaining the structural constraints of the original PT, and include:

Create(SP, name [, nElems]) Creates a new instance of the Structural Pattern identified by

“SP”. Consequently, a new S-PT is generated with a number of component place-holders

defined by the parameter “nElems”. The parameter “name” is assumed to be a unique

identifier of the S-PT within the system. The “nElems” parameter may be considered

optional in case the structure of the Structural Pattern “P” implies a pre-defined number

of elements (e.g Adapter Pattern).

Eliminate(P) The pattern identified by the parameter “P” is deleted and its identifier is re-

moved from the system.

Replicate(n, P [, {id1, ..., idn}]) The pattern "P” is replicated "n” times, and these replicas be-

come independent Patterns – each replica acquires its own unique identifier and can be

individually operated. Although the generation of those unique identifiers is to be im-

plementation dependent, an extra parameter to the operator is also defined for clarity

purposes and it is used in our examples – the labels “id1”..“idn” identify the name of

each of the replicas.

Replace(P1, P2) Replaces the pattern fully identified by “P1”, as a single entity, with the pat-

tern identified by “P2”. For example, if “P1” is the identifier of a Star S-PT which is

embedded in the first stage of a pipeline, and “P2” represents a Proxy S-PT, this pattern

takes the place of “P1” in the first stage of that pipeline.

Reshape(P1, P2) A pattern P1 is transformed into pattern P2. This structural transformation

is constrained by the structural restrictions of the original and destination patterns ("P1”

and "P2”, respectively).

Increase(n, P) Adds “n” component place-holders to the first level of a pattern “P” according

to its structural definition which establishes where the new elements are to be placed

within that structure. Considering that the Increase has effect only on the first level of a

pattern, such means that this operator is not recursively applied to the inner elements in

71

case “P” is a Hierarchical Pattern. Nevertheless, the Increase operator can also be explic-

itly applied to a pattern at an inner level since that pattern is always directly accessible

through its unique identifier within the Hierarchical Pattern.

Increase(n, P, position) Inserts "n” component place-holders into pattern “P” according to its

structural definition, but at a specific positionwithin that structure. Namely, that position

is related with a specific element within “P” which is identified by the value passed as ar-

gument to the parameter “position”. This version of the Increase operator is to be used in

particular cases of: S-PTs (e.g. extended non-topological patterns); Component-Instantiated

Structural Patterns (CISPs); and Pattern Instances (PIs). Similarly to the previous version

of the Increase operator, this version is not recursively applied to the inner elements of

“P”, in case this one is a Hierarchical Pattern.

Decrease(n, P) Decrements the number of component place-holders (i.e. elements not yet

bound to executables) of a pattern "P” by the value passed as argument to the parameter

"n”. This value should not be greater than the maximum number of existing component

place-holders within the pattern. However, if this is not the case and “P” is a partially

instantiatiated CISP or PI, i.e. some members are already bound to executables, this ver-

sion of the Decrease operator only eliminates all free component place-holders. Similarly

to what was described for the Increase operator, the Decrease is not recursively applied to

inner patterns of aHierarchical Pattern, but can be directly applied to those inner patterns.

Decrease(n, P, position) Deletes "n” pattern elements (either elements already instantiated to

executable components or free component place-holders) starting at, and including, the

pattern element identified by the argument "position”. Consequently, if it is possible

to define an ordering for the operated pattern “P” (e.g. Pipeline and Ring patterns), the

element “position”, and its “n-1” consecutive elements are deleted. However, in case

it is not possible to define an ordering within the operated patterns, the Decrease is to

be called with value "1” for the parameter "n”, meaning that only the pattern element

identified by the argument value of "position” is removed. This version of the Decrease

operator is also not recursively applied to the inner elements of “P”, in case this one is a

Hierarchical Pattern.

Extend(P) A new member is added to the structure of pattern “P” considering a structural

recursive iteration permissible in the context of that pattern’s semantics. The place where

that new component place-holder (CPH) is placed is pre-defined and it is dependent on

the structural definition of “P”. For example, extending anAdapter pattern (introduced in

Figure 3.7) implies annotating the newCPH as anotherAdapter for the previously existent

Adapter, which then becomes the Adaptee of that new CPH. In this way, the pre-existent

(first) Adaptee is adapted twice. This is useful, for example, if the firstly defined Adapter

element is not fully conform to the requirements of a new configuration.

Extend(element, P) Augments the structure of “P” by one recursive iteration, similarly to the

previous version of the Extend operator, but allowing the definition of the place for the

new CPH. Specifically, the point where the structure of pattern “P” is to be augmented is

defined by the value passed as argument to the parameter “element”. As such, “element”

72

represents a pre-existent member of “P” which defines a structural position where it is

meaningful to extend that pattern’s structure. For example, in case of a Facade pattern that

had already been augmented by the Extend operator, it is possible to augment again the

inner (pre-existent) Facade by generating an intermediate Facade between the two existent

Facades.

Reduce(P) Truncates one structural recursive iteration of the pattern "P” in the inverse order

that resulted from the application of the Extend(P) operator. Hence, this operator is

symmetric to the Extend operator in the way that one operation of Reduce(P) undoes one

structural iteration resulting from the Extend(P) operator. Taking as example the one

presented in the description of the Extend(P) operator version, reducing the extended

Adapter pattern implies eliminating the lastly added Adapter.

Reduce(element, P) Truncates one structural recursive iteration of pattern "P” but that is re-

lated to the structural position defined by the parameter “element”. Consequently, the

value passed as argument to parameter “element” has to identify a particular member

within the previously extended structure of “P” where it is possible to generate a coher-

ent contract of its the structure. Evoking the example described in the Extend(element, P

) operator, it is possible to use this extended version of the Reduce operator to eliminate,

for example, the most inner Facade within the previously extended structure.

Group(P1, .., Pn, ResultP) Aggregates a set of Patterns identified by the parameters “P1”,

“P2”, ... , “Pn”, forming a group (also sometimes referred as an aggregate). This newly cre-

ated Structural Pattern, which is named after the value passed to the parameter ResultP,

represents its members as a single entity, with no other structural relationship among

those members. If the argument to the “ResultP” parameter refers to an already ex-

isting group, patterns “P1”..”Pn” are added to the group. Moreover, if the arguments

“P1”..”Pn” are themselves groups, they are merged into a single group identified by “Re-

sultP” (which may exist already).

UnGroup(P) On one hand, if the pattern "P” was the result of the Group operator, the ag-

gregation is dissolved and "P” disappears, but the inner patterns continue to exist. Fur-

thermore, if those inner patterns also are groups themselves, they remain intact, i.e. the

Ungroup operator is not recursive. On the other hand, if the pattern “P” passed as argu-

ment to the Ungroup is not an aggregate, this operator has no effect. Since the Ungroup

operator undoes the result of a previous Group operation, the former operator is said to

be symmetric to the latter operator.

Embed(P1, P2, position) Includes a pattern "P1” into another pattern "P2”, specifically in the

component place-holder identified by the parameter "position”. The concept of hierarchy

is therefore supported here by enabling component place holders to contain other PTs.

Embed(P1, P2) This version is used to include pattern “P1” into pattern “P2” when it is not

necessary, or possible, to identify a position within “P2”, e.g. when “P2” is an aggregate

that resulted from the Group operation. In case “P1” is itself an aggregate, the operator

encloses the group “P1” into group “P2” as its member, i.e. “P1” still exists as a group

73

within “P2”. In this way, this version of the Embed allows the construction of a hierarchy

of groups contrarily to the Group operator that would perform a merge of the two groups

passed as arguments.

Extract(P1, P2, position) Removes pattern "P1” from within pattern "P2”, specifically from

the element identified by “position”. Pattern “P1” is moved to the same level as the

outmost pattern that may enclose “P2”. This operator is complementary to the Embed

Operator.

Extract(P1, P2) This version is used to remove pattern "P1” from within pattern "P2” when:

a) it is not possible to identify the particular position where “P1” is located within “P2”,

i.e. when “P2” is an aggregate that resulted from the Groupmanipulation; or b) the value

of parameter “P1” is sufficient to locate the pattern to be extracted from “P2”.

3.3.3 Inquiry Operators

These operators are used to inquire about the properties of the patterns and perform compati-

bility checks. Inquiry Operators, in general, return a boolean result and include:

IsExtensible(P) Identifies if pattern “P” has an extensible structural semantics, returning a

true or false value. This operator may be used to check if the Extend/Reduce Structural

Operators can be applied to “P”.

IsHierarchical(P, type) Verifies if pattern “P” is aHierarchical Patternwhichmay have resulted

from the application of either the Group or Embed operators, returning a true or false

value. In case of a successful check, this operator returns a true value and the output

parameter “type” defines if “P” is a group pattern (“type” returns the value “G”) or

if “P” is hierarchical as a result of an Embed manipulation (in this case, “type” returns

the value “E”). In case this operator returns a false value, the parameter “type” has no

meaning.

IsInHierarchy(P1, P2, position) Verifies if pattern "P1” is one of the elements of theHierarchi-

cal Pattern “P2”. The verification is based only on the unique identifier of “P1” within the

system, and it is done recursively in all elements within “P2” which are also Hierarchical

Patterns themselves. In case the pattern “P1” is found, a true value is returned, and the

output parameter “position” is instantiated with the path name to access “P1” within

“P2” (e.g. “P2.P(i).P1”, where “P(i)” represent the chain of names of the successive inter-

mediate hierarchical patterns that enclose “P1”). In case the pattern “P1” is not found, a

false value is returned, and the output parameter “position” has no meaning.

EqualStructure(P1, P2, depth) Verifies if two patterns have exactly the same structure, re-

turning a true or false value. This operator also accepts Hierarchical Patterns as argu-

ments performing a recursive checking until the hierarchic level defined by the parame-

ter “depth” is reached. If “depth” is equal to the “zero” value, this operator only checks

if the patterns “P1” and “P2” are instances of the same Structural Pattern independently

of their number of elements. For example, in case “P1” and “P2” are two pipeline S-PTs

74

with a different number of elements, the EqualStructure operator would return true. If

“depth” is greater or equal to the value “one”, the operator first performs a check on

level “one” evaluating if “P1” and “P2” have the same number of elements and if each

element of both patterns is of the same structural type (i.e. if the elements under com-

parison are two instances of the same Structural Pattern). Subsequently, the verification

is done recursively until, and including, the hierarchic level defined by the parameter

“depth”. The exact semantics of this operator is implementation dependent since it re-

lies on the definition of an ordering within the Structural Patterns (e.g. the “satellites”

of a Star S-PT would be created in a well defined order allowing the comparison of the

“satellites” of two Star PTs according to that order).

IsSubstructure(P1, P2, position) Verifies if a pattern “P1” is a sub-structure of theHierarchical

Pattern “P2”, returning a true or false value. Pattern “P1” may also be a Hierarchical

Pattern. The verification checks for the existence of a pattern enclosed in “P2” whose

structure is similar to “P1” (analogously to the verification done by the EqualStructure

Operator but with no depth limit). If a similar enclosed pattern is found, the operator

returns a true value and the output parameter “position” returns the path name of that

pattern within “P2”. Otherwise, the operator returns a false value and the parameter

“position” has no meaning.

IsCompatible(P1, P2) Verifies if a pattern is compatible with another one. This operator is

used to determine if two patterns are functionally identical. This analysis is undertaken

in stages. The first stage involves checking if two patterns are structurally similar (e.g.

analogously to the EqualStructure operator). The second stage involves checking if the

control and data flows between components within a pattern are similar. The final check

involves verifying if all components (or types) within two patterns are identical. All

three checks must be valid for the compatibility test to pass, and the exact semantics of

the checks is implementation dependent.

IsOwner(P1, {A1, ..., An}) This operator is used to confirm if one particular user or a group

of users identified by the parameters “A1”.. “An” are the owners of pattern “P1”. This

operator is related with theOwnership Operators ahead, and may be used, for example, to

check if a subsequent operator manipulation of “P1” is allowed for the user(s) identified

by “A1”, ..., “An”.

The presented operators above simply aim to suggest a few possible ways to inquire about

patterns’ characteristics and that, therefore, may be somehow useful on supporting the user on

the application of the other types of pattern operators upon the inquired patterns. Such support

on application configuration is important either if the construction process is based on scripting

language or if the user works with a visual environment provided by a PSE. Nevertheless, since

we consider that a full understanding of the applicability of these Inquiry Operators is not crucial

to the clarification of the the overall relevance of the pattern operator model, a full description

of their semantics is not presented in this work.

75

3.3.4 Ownership Operators

These operators relate to protection and access rights concerns and assume a definition of user

ownership and protection concepts, which are also not developed in this thesis. Therefore, the

description bellow only aims at illustrating how the proposed model can also integrate those

kind of operators. Particularly, we present a few operators that may allow defining the users

who may modify a pattern in general (i.e. all operations upon that pattern are allowed), or the

users who are grant the permission to perform a particular set of operations. For the first case,

it is also possible to restrict the users’ access rights to a specific time period.

DefineOwners(P1, {U1, ..., Un} [, δT]) This operator is used to make a particular user or the

set of users identified by “U1” . . . “Un” the owners of pattern “P1”. Each Ui may also

represent a user group and hence user identification is implementation dependent. All

the users defined as owners have thereafter modification rights to the pattern “P1” but

the associated set of allowed operations is also implementation dependent. This might

indicate, for example, that all users with a owner status for pattern “P1” may manipulate

“P1” with any of the defined pattern operators. The δT parameter, in turn, is optional

and defines a time interval during which the owner status for the defined users is valid.

The expiration of that time interval is equivalent to a call to the UndefineOwners operator

below referring the same users.

UndefineOwners(P1, {U1, ..., Un}) This operator disables themodification rights for the users

“U1” . . . “Un” which were previously granted by the DefineOwners operator. In case the

owner status had been granted for a specific time interval and this has already expired,

the UndefineOwners operator has no effect.

AssignActivity(P1, {Activity}, {U1, ..., Un}) Enables pattern “P1” to be modified by users

“U1” . . . “Un” according to the set “Activity”. The operations in the set “Activity” may

either be pattern operator invocations or user defined operations (e.g. which are bound

to a particular implementation). The set of users identified by “U1” . . . “Un” acquire

the owner status for pattern “P1” but only to perform the actions represented by the set

“Activity”.

RemoveActivity(P1, {Activity}, A) Disables a single or a set of activities represented by “Ac-

tivity” for pattern “P1” and users “U1”, ..., “Un”.

Please note that the owner of a pattern may delegate its access to a single user or group

of users by calling the DefineOwners operator upon the same pattern (the same applies to

theAssignActivity operator).

Ownership Operators, as the ones described above, can hence define ways to control ap-

plication construction/manipulation which may be significant for many application domains

including the Grid (since Grid environments typically provide support to many different types

of users).

76

3.3.5 Execution Operators

Executing a pattern involves the coordinated execution of its components. Specifically, we

model the execution of a pattern instance as a distributed computation as specified by Marzullo and

Babaoglu in [217]. Namely, a distributed computation is defined by a partial ordering on the

set of events which can be generated by the execution of individual components ("local events”)

and their interactions ("interaction events”). The partial event ordering is induced by data and

control flow and time dependencies among components, as defined by Behavioural Patterns

(combined with Structural Patterns), which put synchronisation constraints on the execution

ordering.

The state of an execution of a Pattern Instance (PI), on the other hand, is characterised as the

global state of the distributed computation associated to that pattern instance. Such global

state includes both the data and execution states, as well as the data at the communication

links. This is defined using the same concept from distributed computing theory as mentioned

above [217].

Therefore, the semantics of the defined execution operators rely on the above concepts of

"executing a pattern instance” and "the state of a pattern instance”. Considering their oper-

ational perspective, execution operators are activated through execution scripts acting upon

the particular resource management system being used (e.g. Globus [11] for a particular Grid

environment).

This sub-section provides a summary description of the available execution operators. The

complete description of each operator’s semantics is deferred to section 4.4.

Start(P) This operator starts a pattern’s execution.

Terminate(P) This is used to terminate a pattern’s execution.

Stop(P) This operator is used to pause a pattern’s execution – with the side-effect of saving a

checkpoint of the execution state.

Resume(P) The pattern’s execution is resumed and the saved checkpoint state, which re-

sulted from the application of the Stop operator, is restored. Therefore, this operator is

companion to the Stop operator.

Repeat(n, P) The execution of pattern "P” is repeated "n” times.

TerminateRepeat(P) Discontinues the action triggered by the Repeat operator, thus prevent-

ing the launching of further iterations, and ceases the current execution in case an itera-

tion had started in the meanwhile.

Limit(δT, P) Limits the duration of the execution of pattern "P” to a maximum time interval

equal to δT. If δT expires before the pattern executing being completed, its execution is

terminated by force.

UndoLimit(P) Undoes the time limit set by the Limit operator upon the pattern “P”, meaning

that this pattern execution it is no longer interrupted until it is completed.

77

Restart(δT, P) Repeats the execution every δT time (periodic execution). This operator allows

the user to specify periodic re-starts of an application.

TerminateRestart(P) Discontinues the action triggered by the Restart operator by preventing

the periodic execution of pattern P which had been previously set by the Restart operator.

Log(id, δT, P) This operator is used to periodically checkpoint or log the execution state of

a pattern “P”. The value of the δT parameter is used to make the distinction between

the request for a single checkpoint or a periodic log. Namely, if δT is zero, a single

checkpoint is accomplished, and it is identified by the parameter “id”. However, if δT

is greater than zero, this value defines the time interval for the periodic log. In this

situation, the parameter “id” is to be associated to a time tag, one for each periodic log,

forming another identifier (“idt”) that will uniquely identify each specific log operation.

Consequently, a set of identifiers (i.e. several “idt” tags) will identify the log operations,

each one undertaken at a particular time (which is ruled by the parameter δT). Those

identifiers can be used as arguments to ResumeLog operator ahead, to restore execution

from a particular saved pattern’s execution state.

TerminateLog(P) Discontinues the action of the last periodic logging set by the Log operator.

SeqLog(P) Triggers an automatic mechanism for collecting a succession of intermediate

saved global states of “P” each one triggered with a unique identifier. Such succession

constitutes a trace of the pattern’s execution and allows its off-line inspection by appro-

priate tools. Each of the generated identifiers, i.e. one for each saved intermediate global

state, can also be passed as argument to the ResumeLog operator ahead to repeat the exe-

cution of pattern “P” but from that saved state.

TermSeqLog(P) Interrupts the action of the sequential logging set by the SeqLog operator.

ResumeLog(idt, P) The execution state of pattern “P” is resumed from one previous logged

state that resulted either from the Log or SeqLog operators, and to which a unique tag,

generated in the context of those operators, was associated. Consequently, the param-

eter “idt” is to be instantiated with a tag generated in the context of the Log or SeqLog

operators which identifies that particular saved state.

SteerComponent({parameters}, P, component) Change the value of a set of parameters of a

specific element within pattern “P”. The pattern’s element is identified by the operator

parameter “component” that represents a specific steerable executable/service. There-

fore, the modifiable parameters are application dependent.

Steer({parameters}, P) This operator allow changing the value of a set parameters associated

to pattern “P” as whole. Those parameters are implementation dependent and may, for

example, capture parameters related with the executable/services that instantiate the

elements within “P” (e.g. parameters that are common to all executables within “P”).

To conclude, these operators have a direct impact on how execution of components within

a pattern takes place, and therefore need to interface to existing resource management and

scheduling systems. Namely, the operators which refer to a notion of time associated to the

78

execution of a pattern, rely on the notion of time, as provided by the underlying distributed

system. The same applies to the Global Coordination Operators presented in the next sub-section.

Section 6.5 in Chapter 6 describes, in particular, the mapping of some of the Execution Operators

described above to the Distributed Resource Management Application API (DRMAA) [43].

3.3.6 Global Coordination Operators

This sub-section describes possible operators to define/change the data and control flow se-

mantics, to specify coordination rules associated to patterns, and to manage the connection

between patterns.

Similarly to Ownership operators (requiring an associated definition of a user/protec-

tion/access rights sub-system), the following operators assume an associated definition of a

coordination sub-system and policies. The following description in this section only aims

at illustrating several possibilities for defining coordination capabilities through specific Be-

havioural Operators. As such, their semantics was not defined in this work, and the following

description only suggests possible additional desired functionalities tomanipulate Behavioural

Patterns.

DefineRoleBehavPatt(P, B-P, {element, role}) Annotates one or more specific elements

within pattern “P” with roles defined by the semantics of Behavioural Pattern “B-P”. The

parameter “{element, role}” represents several mappings, one for each “element” within

“P” and its correspondent behaviour at execution time according to pattern “B-P”.

DefineBehavPatt(P, B-P) Applies the Behavioural Pattern identified by “B-P” to the entire pat-

tern identified by “P”, i.e. all elements within “P” are annotatedwith specific roles within

“B-P”. The mappings between the elements of “P” and the “roles” within “B-P” are pre-

defined and are implementation dependent. This operator hence avoids the need to ex-

plicitly define individual behaviours to all elements of “P”.

ReplaceBehavPatt(P, B-P1, B-P2) Replaces the Behavioural Pattern “B-P1” as a single entity,

with the Behavioural Pattern “B-P2”, in the context of a configuration named “P”. Con-

cretely, “P” represents a specific Structural Pattern combined with the Behavioural Pat-

tern “B-P1” (e.g. a SB-PT), and after the behavioural replacement, “P” corresponds to the

same Structural Pattern now combined with the Behavioural Pattern “B-P2”. Similarly

to the DefineBehavPatt operator, the mappings between the elements of “P” and roles

within “B-P2” that coordinate their behaviour are pre-defined and are implementation

dependent.

Coordinate(P, rule) Apply the coordination rule to elements of pattern “P”. The rule is iden-

tified by the parameter “rule” and defines, for example, the temporal/data flow/control

flow dependencies between the elements. Consequently, the rule may be constructed as

a sequence of Execution and other Behavioural Operators (e.g. the rule may represent

the sequence “Stop, ReplaceBehavPatt, Resume”), or it may represent a set of coordination

rules supported by the implementation system (e.g. each rule can be defined using the

deftemplate-defrule structure found in the Java Expert System Shell (JESS) [29]).

79

ChangePatternDependencies(rule, P) This operator allows the execution environment or a

user to change the dependencies between elements of pattern “P” according to the “rule”

parameter. The rule may change, for example, the following type of dependencies:

• control flow dependencies, e.g. the control flow within a pipeline PI is changed

from a push-based control rule, to a pull-based control rule;

• data flow dependencies, e.g. the data flow in a pipeline is reversed.

Similarly to the Coordinate operator, the “rule” parameter may represent a set of other

Behavioural Operators, or a set of coordination rules supported by the implementation

system.

DefineDependencies(rule, P1, ..., Pn) This operator allows the execution environment or a

user to define/change the interdependencies between the set of (unrelated) patterns

“P1”, . . . , “Pn”. The rule may change independently for the following type of depen-

dencies:

• time dependencies, e.g. all patterns have to produce their results in a synchronous

fashion;

• control flow dependencies, e.g. all patterns are executed in a round-robin fashion,

as soon as one terminates execution, the next one begins;

• shared data dependencies, e.g. change the way the set of patterns access a shared

resource (e.g. to switch from exclusive access to permission to multiple entities).

The “rule” parameter may again represent a set of coordination rules supported by the

implementation system.

3.3.7 Pattern and Operator Summary

Table 3.1 summarises the list of patterns and operators. Specifically, the table shows the oper-

ators to manage the defined/selected Structural Patterns, and the Behavioural Operators that

can manipulate Structural Patterns combined with Behavioural Patterns.

3.4 Summary

This chapter described the main characteristics of a pattern- and pattern operator-based model

for supporting a structured development and execution control of applications over Grid en-

vironments. A set of Structural and Behavioural Patterns were also discussed in this Chapter,

whereas the discussion on the semantics of the Structural and Behavioural Operators is pre-

sented in Chapter 4. The reconfiguration strategies possible in the context of the model are also

deferred to Chapter 5.

The model also supports a methodology for application construction which may support

the systematisation of some of the necessary steps for application development. We claim this

is specially useful for supporting the building and configuration of Problem Solving Environ-

ments, as illustrated in the examples of Chapter 7.

80

Patterns Operators

Structural Pipeline, Star, Ring, Create, Eliminate, Replicate,
Adapter,Proxy, Facade Reshape, Replace, Increase,

Decrease, Extend, Reduce,
Embed, Extract, Group,
Ungroup, IsExtensible,

IsHierarchical, IsInHierarchy,
EqualStructure, IsSubstructure

Behavioural Master-Slave, Streaming, IsCompatible, IsOwner, DefineOwners,
Client-Server, Peer-to-Peer, UndefineOwners, AssignActivity,
Mobile Agents/Itinerary, RemoveActivity, Start, Terminate, Stop,
Remote Evaluation, Resume, Limit, UndoLimit, Repeat,

Code-on-Demand, Contract, TerminateRepeat, Restart, TerminateRestart,
Observer/Subscribe-Publish, Log, TerminateLog, SeqLog,

Parameter Sweep, TermSeqLog, Steer, SteerComponent,
Service Adapter Pattern DefineRoleBehavPatt, DefineBehavPatt,

ReplaceBehavPatt, Coordinate,
ChangePatternDependencies,
DefineDependencies

Table 3.1: Pattern Templates and Operator Summary.

81

82

4
Pattern Operator Semantics

Contents

4.1 Introduction . 84

4.2 Semantics of Structural Operators . 84

4.3 Sequences of Structural Operators . 106

4.4 Semantics of Behavioural Operators 115

4.5 Sequences of Behavioural Operators 129

4.6 Summary . 133

This chapter describes the semantics of the Structural and Behavioural Operators.

83

4.1 Introduction

This chapter describes the semantics of the operators introduced in Chapter 3. Namely, the

chapter begins with the Structural Operators, followed by the description of some Structural

Operators sequences. Subsequently, the chapter describes the semantics of the Behavioural

Operators and the description of applying some of these operators in sequence. The discussion

on sequences including both Structural and Behavioural operators are deferred to Chapter 5.

4.2 Semantics of Structural Operators

Structural Operators Topological Patterns Non-Topological Patterns

(Pipeline, Star, Ring) (Adapter, Proxy, Facade)

Replicate, Replace, Embed, Applicable to all Applicable to all
Extract, Group, Ungroup

Increase, Decrease Applicable to all Non-applicable to
the Adapter pattern

Extend, Reduce Non-applicable Applicable to all

Reshape:
– to restructure a pattern into Applicable to all Applicable to all
a topological pattern

– to restructure a pattern into Depends on the cardinality Depends on the cardinality
a non-topological pattern of the pattern templates of the pattern templates

Table 4.1: Applicability of Structural Operators to Topological and Non-topological Structural
Pattern Templates

Structural Operators generate or manipulate Structural Patterns guaranteeing that the struc-

tural constraints of the created or manipulated patterns are preserved in the process. This

means that the resulting instances remain consistent with the semantics of the Structural Pat-

terns they represent. Nevertheless, not all Structural Operators are applicable to all Structural

Patterns, as represented in Table 4.1. Moreover, the produced result of some operators (e.g.

Reshape) is dependent on the patterns they are applied to. Such restrictions will be explained in

the discussion of each operator’s semantics.

One should also note that additional transformations to the operated Structural Patterns

may always be undertaken by a user directly using an editor – although this does not neces-

sarily provide any checking that the transformation will leave a pattern class invariant. Albeit

such consistency checking is desirable as future work, the work presented in this thesis only

considers application configuration and execution control in a pattern-based perspective.

The next two-subsections describe the Structuring and Grouping operators, but only when

applied to (Structural Pattern Templates (S-PTs). The manipulation of SB-PTs, CISPs, and PIs by

those operators is deferred to 5.2.

84

4.2.1 Structuring Operators

The two basic Structuring Operators are the Create and Eliminate operators for generating a par-

ticular Structural Patter Template (S-PT) and deleting it, respectively.

The Create(SP, name [, nElems]) operator generates an instance of the type of Structural Pattern

defined by the parameter “SP” according to its structural semantics. The identification and

number of elements of the created S-PT are defined by the second and third parameters, namely

“name” and “nElems”, respectively. The parameter “nElems” in the Create operator is defined

as optional since some Structural Patterns may have a fixed number of elements or in case

the implementation supporting system creates a S-PT with a default number of elements. The

generated component place-holders (CPHs) for the S-PT are to be labeled with unique and

meaningful identifiers within that S-PT (called its CPH_identifier)1. To manipulate the S-PT, the

access to one of those CPHs is made by composing its name with its S-PT’s name, in the form:

“S-PT_identifier.CPH_identifier”.

As an example, Figure 4.1 represents the generation of two S-PTs with a specific num-

ber of elements: a Star Structural Pattern (SP) named “starPT” with four component place-

holders, namely, a “nucleus”, and three satellites – from “satellite1” to “satellite3”; and a Fa-

cade SP named “facadePT” whose interface is represented by the “facade” component place-

holder, and the component place-holders representing the Facade’s sub-systems are named

“subsyst1”, “subsyst2”, etc. In this example, the cardinality of the S-PT “starPT” is equal to four

elements, and the cardinality of the S-PT “facadePT” is equal to five.

In turn, the creation of the Adapter S-PT represented in Figure 4.1, i.e.“adapterPT”, does

not require the definition of the number of component place-holders to be generated since the

Adapter Structural Pattern is defined as having two fixed elements for a non-extended Adapter.

Moreover, the parameter “nElems” in the Create operator may also be ignored in case the im-

plementation support generates a default number of component place-holders for any kind of

S-PT.

Implementation-wise, it is also possible to define an order for the component place-holders

(CPHs) within a specific S-PT, and to use it to identify a specific CPH within that S-PT. For

example: the CPH representing the first stage of a Pipeline S-PT may be the “first” element, the

second-stage CPH may be the “second”, etc; the “facade” element within a Facade S-PT may

be the “first”, whereas the first sub-system to be created will be the “second”, an so forth. That

ordering value could therefore be used to identify a CPH instead of its name (for example, in

application configuration through scripts). Nevertheless, the examples presented in this work

rely on a CPH’s name to identify it.

The deletion of a S-PT, may be accomplished by the Eliminate(P) operator, which removes the

S-PT as well as its identifier. For example, the operation Eliminate(facadePT) deletes the S-PT

“facadePT”, and this identifier may be reused.

1For clarification of the examples given throughout this work, the CPHs’ identifiers try to hint the
task of each component place-holder within the semantics of the Structural Pattern they belong to, as
it will be presented in the examples in Figure 4.1 ahead. However, sometimes those component place-
holders are simply labelled as “cph1”, “cph2”, etc., or their name is simply omitted, when their repre-
sentation within that structural semantics is somehow obvious, and not necessary for the subject under
discussion.

85

Create(StarSP, "starPT", 4)

starPT

nucleus

satellite1

satellite2

satellite3

Create(FacadeSP, "facadePT", 5)

adapterPT

adapter

adaptee

facade

subsyst1

subsyst2 subsyst3

subsyst4

facadePT

Result S−PTCreate(SP, name [, nElems])

Create(AdapterSP, "adapterPT")

Figure 4.1: The creation of three S-PTs, namely a Star (“starPT”), a Facade (“facadePT”), and
an Adapter (“adapterPT”)

Replicate, Replace, and Reshape

Both the Replicate and Replace are operators which do not imply major structural transforma-

tions nor are bound to restrictions – all patterns can be replicated and any pattern can be re-

placed by another one. The Replicate(n, P [, {id1, ..., idn}]) operator creates "n” replicas of the

pattern "P” and each replica will have a different identifier (either implementation generated or

defined by the parameters “id1”.. “idn”), and the identifiers themselves can be changed. The

Replicate operator helps the user on creating similar configurations without having to build

them from scratch.

The Replace(P1, P2) operator, in turn, substitutes pattern "P1” for pattern "P2” – "P2” takes

the place of "P1” within the configuration that included "P1”. This operator allows the recon-

figuration of parts of an existing schema, by complementing them with new patterns.

The Reshape(P1, P2) operator transforms one pattern into another, and the cardinality of

the pattern being transformed ("P1”) may be important in determining whether the operator

can or cannot be applied (see table 4.1). For instance, any topological pattern may be trans-

formed into any other topological pattern, independently of the cardinality of the pattern. For

example, a Pipeline pattern can be transformed into a Ring pattern, by connecting the first and

last components of the Pipeline (see Figure 4.2). Similarly, a Pipeline can be transformed into a

86

Reshape(proxyPT, starPT)

Reshape(pipelinePT, ringPT)

Reshape(pipelinePT, facadePT)

Result patternPattern

proxy
nucleus

real
subject proxy

proxy

facade

Reshape(Pattern, resultPattern)

Figure 4.2: Examples of the Reshape operator over a Pipeline and a Proxy Pattern Templates.

Star, by taking one of the Pipeline’s components as the nucleus of the Star pattern, with the other

components becoming satellites.

Moreover, any non-topological pattern can be restructured into a topological pattern, as

long as the cardinality of the original pattern is maintained. For example, in Figure 4.2, a

Proxy pattern template containing three proxies is restructured into a star, whichwill have three

satellites. Also, when using the Reshape operator, the defined cardinality must be preserved.

For example, it is not possible to reshape a pipeline pattern with five elements into an Adapter

pattern, because the latter has two fixed elements . However, the same pipeline can be reshaped

into a Facade by annotating one of its elements as the facade component place-holder, and the

other elements as the sub-system classes (see Figure 4.2), as a Facade pattern is not defined with

a fixed cardinality.

The description of the remaining Structuring Operators, namely Increase/Decrease and Ex-

tend/Reduce, is preceded by a functional comparison between those two types of operators.

Comment about Increase/Decrease vs. Extend/Reduce

The pair of Increase/Decrease operators manage the incremental growing/decreasing of the

structure of a pattern. These operators act at the topmost or higher level (level one) of the struc-

tural definition of a Pattern. The effect is just to add/delete elements, assuming these elements

are of the same type as existing elements in the Pattern definition. This does not imply that all

pre-existing elements are of the same type (e.g. a Star as a distinguishable element, namely the

“nucleus”, whereas all the other elements are “satellites”), but that there is a subset of elements

in the Pattern definition that is increased or decreased. The semantics of Increase/Decrease is

87

defined according to each type of pattern.

The pair of Extend/Reduce operators manage Patterns through recursive extension or reduc-

tion based on the Patterns’ semantics. Consequently, these pair of operators are not meaningful

for Patterns without a clear recursive structural definition or when it is not different from an

incremental growing/decreasing of the number of elements (which is already provided by the

Increase/Decrease operators). Consequently, the Extend and Reduce operators can be applied to

the selected non-topological patterns (i.e. Proxy, Adapter, and Facade), but not to the topological

patterns (i.e. Pipeline, Ring, and Star).

Increase and Decrease Operators

As described in section 3.3.2, there are two application versions for the Increase/Decrease op-

erators: one that creates/eliminates elements within a pattern’ structure in a pre-defined way;

and another which requires the user to identify a position, i.e. a particular element within the

structure, where to include the new elements or that defines which elements to delete. Since

the operated patterns in this discussion are Structural Pattern Templates (S-PTs) which include

(mainly) undifferentiated component place-holders (CPHs), it is not mandatory to identify a par-

ticular element within the structure. Therefore, this discussion concerns mainly the first ver-

sions of both operators, whereas a more detailed discussion on the second versions is deferred

to 4.3 and 5.2.

The Increase(n, P) operator augments the number of elements in a "P” pattern’s structure

by "n”, whereas the Decrease(n, P) operators reduce that number by "n”. Both operators act

according to the structural constraints of the pattern they manipulate. For example, when

applied to the Pipeline and Ring patterns, the Increase operator adds "n” stages to those patterns.

Figure 4.3 depicts a two-element pipeline PT being increased to a four-element pipeline PT,

and Figure 4.4 represents the decreasing of the latter pipeline PT. Being applied to the Star

pattern, the Increase operator increases the number of satellites in the structure, and theDecrease

operator reduces that number.

Concerning the non-topological patterns, both the Increase and the Decrease operators may

be applied to the Proxy pattern resulting in the increasing/decreasing, respectively, of the proxy

elements in the pattern, as represented in Figures 4.3 and 4.4. The same operations over the

Facade pattern, in turn, result in the increasing/decreasing of the number of subsystem classes

identified as “cph1”, “cph2”, etc., as shown in the same Figures.

Due to the same reason as explained for the Reshape operator, it is not possible to apply the

Increase and Decrease operators to the Adapter pattern.

Application-wise, the Increase and Decrease operators allow, for example: changing the

number of stages in sequential data processing applications (which rely on the pipeline-based

or ring-based configurations); adjusting the number of processing slaves in a computationally

intensive application configured as a star; addingmore computational facilities (e.g. more pow-

erful ones) hidden by the same interface provided by a Facade (this Facade may hence redirect

more demanding requests to the new facilities); or controlling the number of local proxies to a

remote Web Service.

As for the second versions of the operators, namely Increase(n, P, position) and Decrease(

n, P, position), Figure 4.5 presents a case of their application to a four-stage pipeline, where

88

pipelinePT pipelinePT

proxyPT

proxyPT

facadePT facadePT

Result patternPattern Increase(2, Pattern)

Increase(2, pipelinePT)

cph1 cph2 cph1 cph2 cph3 cph4

real
subject

proxy

subject
real

proxy3

proxy2

Increase(2, proxyPT)

proxy1

facade
facade

Increase(2, facadePT)

cph1 cph2
cph1

cph2
cph3

cph4

Figure 4.3: Examples of the Increase operator applied to Pipeline, Proxy, and Facade Pattern
S-PTs.

the “position” parameter is the component place-holder named “cph1”. On top of the Figure,

the application of Increase(2, pipelinePT, “cph1”) results on the creation of two new component

place-holders (“cph3” and “cph4”) following the “cph1” element of the “pipelinePT” S-PT. As

for the Decrease(2, pipelinePT, “cph1”) operation, the result is the deletion of two component

place-holders, starting at, and including, the “cph1” element. These second versions of the

Increase and Decrease operators are more useful when applied a) to patterns with instantiated

elements (therefore differentiated), as will be explained in section 5.2.3; or b) when the structure

of a non-topological pattern has been previously extended, as will be exemplified in section 4.3.

Extend Operator

The Extend operator is used to augment the structure of a pattern which comprises a recursive

definition, where the effect of the operator depends on that pattern’s semantics. There are two

possible application versions of the Extend operator, namely:

Extend(P) Extends the structure of pattern “P” based on its recursive definition, and both

the structural role and the position of the new component place-holder (CPH) are pre-

defined.

Extend(element, P) Extends the structure of pattern “P” based on its recursive definition, but

89

cph1 cph2 cph3 cph4 cph1 cph2

pipelinePT

proxyPT

Facade

cph1

cph3

cph4

cph2

Facade

cph1 cph2

real
subject

proxy1

subject
real

proxy3

proxy2
proxy1

pipelinePT

proxyPT

facadePT facadePT

Result patternPattern

Decrease(pipelinePT, 2)

Decrease(Pattern, 2)

Decrease(proxyPT, 2)

Decrease(facadePT, 2)

Figure 4.4: Examples of the Decrease operator applied to Pipeline, Proxy, and Facade Pattern
S-PTs.

pipelinePT

cph1 cph2 cph3 cph4

pipelinePT

cph1 cph2

pipelinePT

pipelinePT

cph3 cph4

Pattern

Increase(2, pipelinePT, "cph1")

Result pattern

cph1 cph3 cph4 cph2

Decrease(2, pipelinePT, "cph1")

Figure 4.5: Examples of the second application versions of the Increase and Decrease operators
upon a Pipeline S-PT.

whereas the structural role of the new CPH is pre-defined, its position depends on the

parameter “element”. Concretely, this parameter represents a pre-existent member of

“P” and defines a structural position (i.e. element) where it is meaningful to extend that

pattern’s structure and hence create the new CPH.

90

proxyPT

adapterPT

facadePT

proxyareal
subject

adapter

adaptee

adapterPT

adaptee1

adaptee2/adapter1

adapter2

facadePT

facade1

facade2

proxyPT

Pattern

facade1

Extend(facadePT)

Extend(adapterPT)

Extend(proxyPT)

Extend(Pattern) Result pattern

proxy b / proxy areal
subject real subject a

Figure 4.6: Examples of the “Extend(P)” operator over cases of the Proxy, Adapter, and
Facade Pattern Templates.

Figure 4.6 presents three examples of the application of the Extend operator, i.e. Extend(P),

to three cases of the Proxy, Adapter, and Facade S-PTs. According to that definition, the location

and structural role of the added element is pre-defined and consistent with the semantics of the

manipulated pattern.

On top of the Figure, a Proxy S-PT is augmented in its structure, and a new CPH with a

dual structural role is created as a result. Specifically, the element “proxy b” is created between

the elements “real subject” and “proxy a”. Since “proxy b” is defined to represent the “real

subject” to the pre-existent “proxy a”, it is also defined as the “real subject a” for “proxy a”. The

cardinality of “proxyPT” after the Extend operation is equal to three. The extension of a Proxy

pattern occurs, for example, in mobile agent/object systems, where the sequence of proxies is

used for locating the agent/object (via a chain for message forwarders, for instance). Therefore,

the Extend operation allows the inclusion of an extra proxy that, for example, represents the

agent/object or service in case these move to another location.

Likewise, the application of Extend to the Adapter pattern (Figure 4.6) would allow a fur-

ther adaptation of legacy code (reusing the previous adaptation) to allow it to be accessed by

other computational components with different interaction requirements. As presented in the

middle of Figure 4.6, the operator Extend(adapterPT) creates another “adapter” element within

the “adapterPT” S-PT, i.e. “adapter2”, and the pre-existent adapter becomes the “adaptee” el-

ement within the structure (i.e. “adaptee2”) but remaining the adapter (i.e. “adapter1”) for

91

the principal element to be adapted (i.e. “adaptee1”). The cardinality of “adapterPT” becomes

equal to three after the Extend operation.

Finally, the Facade pattern may be extended as presented on the bottom of in Figure 4.6.

A new facade component within the structure, i.e. “facade2”, "hides” an existing facade (i.e.

“facade1” on the left-side of the Figure) that becomes a simple subsystem class for the new facade

component. The cardinality of the “facadePT” S-PT increases from the value four to five after

the Extend manipulation. Such operation may be useful, for instance, for extending the access

interface to a set of Grid services in a portal. The first Facade (i.e. “facade1”) might provide

an uniform interface to a set of services, and the extension to a new Facade (i.e. the addition

of “facade2”) would allow a more complete interface for redirecting services both to: a) new

functionalities provided by new (incrementally added) sub-systems; and b) to the pre-existent

services.

Extend(element, Pattern)

facadePT

facade1

facade2

facade1

facade2

facade3

facade1

facade3

facade2

Extend("facade1", facadePT)

Result patternPattern

Extend("facade2", facadePT)

Extend(facadePT)

Figure 4.7: Example of the “Extend(element, P)” operator over one Facade Template.

To clarify the applicability of the second version of the Extend operator, i.e. Extend(element,

P), Figure 4.7 presents its use onto a Facade pattern. In this second version, the “element”

parameter defines a member of pattern “P” where it is possible to apply a recursive iteration

on the pattern’s definition. First, and as presented on top of the Figure, the result of applying

the Extend(“facade2”, proxyPT) operator is similar to the result of applying the Extend(proxyPT)

operation described before. Particularly, another Facade structure is created – represented by

the “facade3” CPH – which in turn interfaces the previous Facade that is represented by the

“facade2” element. New sub-systems may be added to the outmost Facade structure, as to

any inner Facade. This will be clarified in section 4.3 that discusses interleaved sequential

92

application of the Extend and Increase operators.

However, if this extended version of the Extend operator is applied to a “facade” structural

element within the previously extended “facadePT”, the produced result is different from the

one resulting from the first version of the operator. As presented on the bottom of right-side of

Figure 4.7, the Extend(“facade1”, facadePT) operator generates a third Facade structure, i.e. “fa-

cade3”, between the Facades represented by the “facade2” and “facade1” CPHs. Recalling the

example of the portal interfacing the access to a set Grid service presented for the first version

of the Extend operator, the creation of an intermediate Facade structure, might allow, for ex-

ample, the creation of an intermediate Grid sub-domain when the portal’s structural definition

is already set. In this way, the outer Facade represented by “facade2” would not be changed,

but the access to the inner facade symbolized by “facade1”, would now be interfaced by the

intermediate Facade, i.e. “facade3”. This Facade might represent a Grid (sub-)domain includ-

ing a different department at the same University which could also contribute with additional

(although similar) Grid resources besides the ones already interfaced by "facade1”. Please note

that the Extend(element, P) operator can only receive as argument for the “element” parameter

members of the structure of “P” which are annotated as being of the “facade” type within the

structure.

Extend(element, Pattern)

adapterPT

adaptee1

adaptee2/adapter1

adapter2

adapterPT

Result patternPattern

Extend("adapter2", adapterPT)

Extend("adapter1", adapterPT)

adaptee3/adapter1

adaptee2/adapter3

adapter2

adaptee1

adaptee2/adapter1

adaptee3/adapter2

adapter3

adaptee1
Extend(adapterPT)

Figure 4.8: Example of the “Extend(element, P)” operator over one case of Adapter Template.

As for the applicability of the Extend(element, P) to an Adapter S-PT, Figure 4.8 presents

two outcomes of that usage. If applied to the “adapter2” element within “adapterPT”, an extra

adapter element, i.e. “adapter3”, is created adjusting “adapter2” to be included in a different

environment. However, if applied to the inner adapter element, i.e. “adaptee2/adapter1” in

the Figure, another intermediate adapter is created, i.e. “adaptee2/adapter3” that now bridges

“adapter2” and “adapter1”. The extension of an Adapter structure therefore allows providing a

slightly different access to the adaptee element (i.e. “adaptee1”) even when a set of adaptation

layers is already defined.

Finally, Figure 4.9 presents the application of Extend(element, P) to a Proxy S-PT. On top of

the Figure, the result of applying the Extend(“real subject”, proxyPT) operator is similar to the

result of applying the Extend(proxyPT) operation. This means that if the parameter “element”

93

proxyPT

Extend(element, Pattern)

proxyPT

proxy b /
real subject a

real
subject

real
subject

proxy b /
real subject a

real
subject

proxy b /
real subject a

proxy c

proxy a /
real subject c

real
subject

Result patternPattern

proxy aproxy c /
real subject b

proxy a Extend("real subject", proxyPT)

proxy a

proxy c /
real subject a

Extend("proxy a", proxyPT)

Extend("proxy b", proxyPT)

proxy b /
real subject c

Extend(proxyPT)

Figure 4.9: Different ways of applying the “Extend(element, P)” operator to a Proxy Template.

is the “real subject”, the Proxy S-PT is augmented in the pre-defined way with the creation of

“proxy c”, which is similar to what was described before.

In the example presented in the middle of the Figure, the Extend(“proxy b”, proxyPT) op-

eration generates a new proxy element, i.e. “proxy c/real subject a” that acts as a surrogate

between the pre-existent “proxy b” and “proxy a” elements. This result is as if the “proxy b”

has moved to another location, and a new proxy (“proxy c”) is created at the original loca-

tion of “proxy b”. Another example may be, for example, in case, for some reason, it is not

possible anymore to keep the connection between “proxy a” and “proxy b” to access a mobile

agent/object (i.e. the “real subject”). This might happen, for instance, in case “proxy a” is to

be included in a higher security domain whose access to the outside is now bridged by a new

gateway represented by the new “proxy c”.

In the third case (on bottom of Figure 4.9), the parameter “element” in the call to Extend(el-

ement, P) (second version of the operator) may also be instantiated with the “proxy a” element.

The result is that “proxy a” gets its own proxy, namely “proxy c”, and it is now also annotated

as “real subject c” acting, therefore, as a surrogate of the “real subject” towards “proxy c”. As it

will be exemplified in section 4.3, it is possible to use the Increase operator to add new proxies

either to the “real subject” element within a Proxy pattern, or to members with a double an-

notation, i.e. a proxy which is also annotated as a “real subject” element like “proxy b/ real

subject a” on the left-side of top of Figure 4.9. However, this third application case, i.e. Extend(

“proxy a”, proxyPT), represents the transformation of an ordinary proxy into a proxy with a dual

annotation (i.e. with both “proxy” and “real subject” definitions), which means that other new

ordinary proxies may be directly associated with it. In fact, the practical result is that the chain

of proxies may grow towards the right-hand side in the Figure, i.e. new proxies may be added

to the first proxy in the chain (i.e. “proxy a”). Such situation might be useful, for instance, in

cases when it is not possible to connect a new ordinary proxy with neither the “real subject”

nor proxies with a dual definition within a Proxy pattern. For example, citing again the case

94

of a security domain, if this domain already has a proxy to an external service through which

all contacts with the service have to be redirected to, it is now possible to create new ordinary

proxies within that domain, but that will connect directly the pre-existing internal proxy.

To conclude, we highlight that most of the examples presented in this work make use of the

Extend operator in its pre-defined form, i.e. Extend(P).

Reduce Operator

The Reduce operator is used to lessen the structure of a pattern that was previously subject to an

augment by the Extend operator. Analogously to the Extend, the effect of the Reduce operator is

also dependent on the semantics of the Structural Pattern it is applied too. Furthermore, there

are also two possible application versions of the Reduce operator, namely:

Reduce(P) Reduces the structure of pattern “P” by undoing the last recursive structural iter-

ation that resulted from the application of the Extend(P) operator.

Reduce(element, P) Reduces the structure of pattern “P” based on its recursive definition,

but at the position defined by the argument to the parameter “element”. As such, the

“element” must identify a member within the structure where it is coherent to perform a

deflation of the previously extended structure of “P”.

real
subject

proxy b /
real subject a

proxy aproxy c /
real subject b

proxyPT

proxy b /
real subject a

real
subject proxy a

proxyPT

Reduce(Pattern)

Reduce(element, Pattern)

real
subject

proxy c /
real subject b

proxy b
Reduce("proxy b", proxyPT)

real
subject

proxy c /
real subject a

proxy a

Reduce(proxyPT)

Reduce("realsubject", proxyPT)

Pattern Result pattern

Reduce("proxy c", proxyPT)

Figure 4.10: Examples of the application of both versions of the Reduce operator to one Proxy
Template.

Figure 4.10 presents examples of the application of the two versions of the Reduce operator

to one Proxy S-PT. On top of the Figure, the Reduce(proxyPT) operation eliminates the “proxy

c” element that might have been generated by the Extend(proxyPT) operator. The same result

can be achieved by the Reduce(“real subject”, proxyPT) operator. Recalling the example for

95

the Extend(P) operator, such situation may be useful to represent the returning of a mobile

agent/object (i.e. the “real subject”) back in the chain to the last visited place.

The second version of the Reduce operator is also used in Figure 4.10 to eliminate one of the

inner members that is annotated both as a “proxy” to the next element in the chain and as the

“real subject” to the previous element in the chain. Concretely, the Reduce(“proxy c”, proxyPT

) operator eliminates the previous proxy with a dual role in the chain, i.e. the “proxy b/real

subject a” is deleted and the element “proxy c/real subject a” element is now the surrogate

of the “real subject” for the element “proxy a”. An example of such situation, may be the

moving of “proxy c” to its previous location, and the consequent elimination of “proxy b”

(which becomes unnecessary).

Finally, and recalling the extension of an ordinary proxy into a surrogate for a newly cre-

ated proxy, i.e. the (third) example on bottom of Figure 4.9, such transformation can be undone

by applying the Reduce operator to the first member in the proxy chain that is annotated with

a dual definition. Specifically, the Reduce(“proxy b”, proxyPT) operator eliminates the ordi-

nary proxies connected to “proxy b” (in this case, only “proxy a”), and transforms the element

“proxy b/real subject a” into an ordinary proxy (“proxy b”).

Reduce(facadePT)

Reduce("facade3", facadePT)

facade1

facade2

facade1

facade3

facadePT

facade1

facade2

facade3

Pattern

Reduce(Pattern)

Reduce(element, Pattern)
Result pattern

Reduce("facade2", facadePT)

Figure 4.11: Examples of both versions of the Reduce operator over one Facade Template.

Figure 4.11, in turn, presents the application of both versions of the Reduce to a Facade S-

PT. The manipulations Reduce(facadePT) and Reduce(“facade3”, facadePT) produce an equal

result, namely the elimination of the outmost Facade represented by the “facade3” element. On

the other hand, the Reduce(“facade2”, facadePT) eliminates that inner Facade (i.e. “facade2”).

Considering the example of the portal for a Grid domain, such deflations of the structure of the

pattern “facadePT” would eliminate the created extensions, in case the access to new or other

96

types of services was to be provided only temporarily, i.e. the original Facade interface should

be restored after that time.

Reduce(Pattern)

Reduce(element, Pattern)

adapterPTadapterPT

adaptee2/adapter1

adaptee3/adapter2

adapter3

adaptee1

adaptee2/adapter1

adaptee1adapter2

adaptee3/adapter1

adaptee1adapter3

Reduce(adapterPT)

Reduce("adapter3", adapterPT)

Reduce("adapter2", adapterPT)

Pattern Result pattern

Figure 4.12: Examples of both versions of the Reduce operator applied to an Adapter Template.

Finally, examples of the application of both versions of the Reduce operator to an Adapter

pattern are presented in Figure 4.12. The manipulations Reduce(adapterPT) and Reduce(

“adapter3”, adapterPT) generate the elimination of the last adapter, i.e. “adapter3”. However,

the Reduce(“adapter2”, adapterPT) eliminates the intermediate adapter “adaptee3/adapter2”.

Considering the example of the usage of the Adapter pattern to support the interface to a legacy

code, a deflation of the structure through several calls to Reduce may, for example, eliminate

the outmost and the inner adapter elements (e.g. “adapter3” and “adapter2” in the Figure),

allowing the reuse of the pattern to yet another environment that would simply require the

original adaptation (i.e. “adapter1”).

4.2.2 Grouping Operators

This section describes the semantics of the Group and Embed operators which support the for-

mation of Hierarchical Patterns, and their associated operators, namely Ungroup and Extract,

respectively.

Group and Ungroup

The semantics of the Group(P1, .., Pn, ResultP) and Ungroup(P) operators is quite simple.

All types of S-PTs can be aggregated into a group template that will, thereafter, represent all

its members as a whole. This resulting group template is one example of a Hierarchical Pattern

(i.e. it contains other pattern templates). The single structural relationship among the S-PTs

belonging to the newly formed group template is that they are represented and accessed as a

97

single entity. The identifier of this new pattern is defined in the call of the Group operator by

the parameter “ResultP”.

Such grouping operator may be useful, for example, to aggregate a set of patterns and,

subsequently, apply one of the previously described Ownership operators. This permits defin-

ing access restrictions to the group, and consequently, to its members. Group templates may

also ease the process of mapping an application configuration onto the lower level resource

management layers. Moreover, a group may be replicated through the Replicate operator, thus

avoiding the need to duplicate its members individually. At any time, a group may be undone

through the Ungroup operator.

Nucleus

ringPT starPT

ringPT

starPT

groupPT

Patterns

Satellite

Result pattern

Group(ringPT, starPT, groupPT)

Group(Pattern1, Pattern2, resultPattern)

Figure 4.13: The pattern templates "ringPT” and "startPT” are grouped through the Group
operator, and the resulting aggregate is named "groupPT”.

Figure 4.13 depicts the grouping of a Ring S-PT and a Star S-PT into an aggregation named

as "groupPT”. As a result, both S-PTs are said to be at the same “level” within the group,

specifically the first level of the group, and this one is said to have a cardinality equal to two

(i.e. “groupPT” has two members). Furthermore, an aggregation does not have the concept

of “position” since there is no structural associations among the group’s members. However,

it is possible to access the members of the group by concatenating the group’s name and a

member’s name. For example, the “ringPT” in Figure 4.13 is accessible through the iden-

tifier “groupPT.ringPT”, and the access to the other member is done through the identifier

“groupPT.starPT”. Appropriately, the elements within the structure of these enclosed patterns

can also be accessed by concatenating the identifier of the pattern with the identifier of its el-

ement. For example, the identifier “groupPT.starPT.nucleus” would allow the access to the

“nucleus” element within the “starPT”.

Figure 4.14, in turn, shows the disaggregation of the aggregate “groupPT” through the

Ungroup operator and, as presented in the Figure, the ex-members are not deleted. Even if the

members of the group passed as argument to theUngroup operator are groups themselves, they

remain intact after the manipulation, i.e. the Ungroup operator is not recursive. The possibility

of enclosing one group into another will be described in the discussion of the Embed operator

in a section ahead.

To further clarify the Group operation, Figure 4.15 shows the result of adding a new S-PT

to an existing group PT. Namely, the pattern "facadePT” is added to the "groupPT”, and the

98

ringPT starPT

groupPT

ringPT starPT

Ungroup(groupPT)

Ungroup(Pattern)Pattern Result patterns

Figure 4.14: The group "groupPT” is dissolved through the Ungroup operator.

ringPT starPT

groupPT groupPT

ringPT

Result patternPatterns

Group(groupPT, facadePT, groupPT)

starPT

facade PT
facade

facade PT

facade

Group(Pattern1, Pattern2, resultPattern)

Figure 4.15: Adding a extra pattern template to the aggregate "groupPT”.

cardinality of the group increases to three. Please not that in case of adding a pattern to a group,

if that pattern’s identifier already exists within the group, its namewill be changed somehow to

guarantee that all group member’s at the same level have a unique identifier within the group.

Additionally, Figure 4.16 shows a case of aggregating two groups, namely "group1PT” and

"group2PT”. In consequence of this operation, the two groups are merged into one named

"group1PT”, and the identifier “group2PT” disappears since the label “group1PT” was indi-

cated as the name for the result group.

Embed Operator

According to the semantics of the Embed(P1, P2, position) operator, the pattern identified by

parameter "P1” is to be embedded into the destination pattern identified by the parameter "P2”

by instantiating a particular component place-holder within “P2”. That specific component

place-holder is fully determined within the structure of pattern “P2” through the parameter

“position”, which typically refers to the identifier of the component place-holder.

As a result of the Embed operation, the pattern “P1” becomes one of the elements within the

99

ringPT starPT

group1PT

adapterPT
adapter

adaptee

Facade
facade PT

group2PT

ringPT starPT

adapterPT
adapter

adaptee

Facade
facade PT

group1PT

Result patternPatterns Group(Pattern1, Pattern2, resultPattern)

Group(group1PT, group2PT, group1PT)

Figure 4.16: Merging of groups "group1PT” and "group2PT” through the Group operator,
producing the aggregate "group1PT”.

structure of pattern “P2”. Consequently, pattern “P2” is now classified as a hierarchic pattern,

i.e. a pattern with one or more patterns as its structural elements. Clearly, the Embed operator

only succeeds if the parameter “position” identifies a free component place-holder.

Embed(Pattern1, Pattern2, position)Patterns Result pattern

pipelinePT

starPT

cph2 cph3cph1/starPT

starPT

nucleus

satellite

pipelinePT

cph1 cph2 cph3

Embed(starPT, pipelinePT, "cph1")

Figure 4.17: An example of a pipeline template with an embedded pattern (a star) in the left-
most stage (“cph1”). This hierarchic pattern template is built through the Embed operator.

For example, Figure 4.17 represents the embedding of a Star S-PT, i.e. “starPT”, into the

first stage (“cph1” element) of a Pipeline S-PT, i.e. “pipelinePT”. The first stage of “pipelinePT”

keeps its original identifier, i.e. “cph1” but it is also identified by the name of the embedded

pattern, i.e. “starPT”. The embedded pattern can thereafter be accessed through the identi-

fier “pipelinePT.starPT”, but its position is also defined as “pipelinePT.cph1”. The cardinality

of this resulting Hierarchical pattern remains equal to three, since the number of stages of the

“pipelinePT” did not change. Therefore, the cardinality of a Hierarchical pattern refers to the

number of elements (with other embedded patterns or not) within the first level of that pattern.

The embedding operation is useful, for example, when combining different subsystems in a

Grid environment. The user may start by first defining a pipeline S-PT to represent a sequence

100

of Grid services and tools. This may be the case of a scientific application (head of the pipeline)

that generates results for a data analysis tool, which in turn produces data to a visualisation

tool (corresponding to the last stage of the pipeline). A user familiar with the structure of the

problem to be solved may then define the scientific application’s configuration with another

pattern. For instance, considering that the scientific application is computationally intensive,

the user may model its configuration through a star topology supporting a central manager –

perhaps running on a parallel machine or high-end server, and a number of sub-servers that

interact with it. Assuming, for instance, that the behaviour of this sub-system follows the

Master/Slave pattern, this behaviour can then be developed over the star topology. Hence, the

user creates a new star S-PT (with an adequate number of satellites for supporting the slaves),

and embeds this S-PT in the first position of the pipeline S-PT, thus producing a hierarchical

structure.

pipelinePT

cph2 cph3cph1/starPT

pipelinePT

cph2 cph3cph1/starPT

Figure 4.18: Examples of possible connections between the embedded pattern and the enclosing
pattern.

To conclude, please note that the Embed operation does not define which elements of the

“StarPT” in the example in Figure 4.17 are to be structurally connected to the enclosing CPH

(i.e. “cph1”) which, in turn, is structurally connected to “cph2” according to the pipeline def-

inition. Specifically, the Embed operator does not define if, as exemplified in Figure 4.18, a

structural connection (that will represent a data/control flow within a Behavioural Pattern) is

to be made only between the “nucleus” of “StarPT” and the enclosing “cph1”; or, if all satellites

should be connected to “cph1”; etc.

We consider that the way such definition is made is implementation dependent. For exam-

ple, in our implementation onto the Triana PSE, the components/tools/services that instantiate

the component place-holders have input/output ports. Moreover, a component place-holder

which encloses a pattern is supported by a group in Triana, and this one is defined as a com-

ponent as well, i.e. a group may also have input/output ports. The Triana GUI allows making

direct connections between those ports, but our implementation also defines by default, and

for all implemented patterns, how one embedded pattern is connected to the other elements

in the enclosing pattern. However, and to avoid such restrictions, we recognise the need to

include in the model the possibility of defining direct connections between elements, so that a

101

complete configuration can be built from a script.

Extract Operator

starPT

nucleus

satellite

pipelinePT

cph1 cph2 cph3

pipelinePT

starPT

cph2 cph3cph1/starPT

Pattern Result patterns

or alternatively
Extract(starPT, pipelinePT)

Extract(starPT, pipelinePT, "chp1")

Extract(Pattern1, Pattern2)

Figure 4.19: Extracting pattern “starPT” from within the first stage of the pattern
“pipelinePT”.

The complementary operator to the Embed, namely Extract(P1, P2, position), removes pat-

tern "P1” from a specific location within pattern "P2” which is identified by the parameter “po-

sition”. Figure 4.19 presents the result of the particular manipulation Extract(starPT, pipelinePT,

“cph1”). Considering that each pattern template has its own unique identifier within the en-

closing pattern, the "position” argument may be omitted from an Extract call. The second ver-

sion of this operator, which does not require the parameter “position”, can therefore be used to

produce the same result, i.e. Extract(starPT, pipelinePT), as presented in the same Figure.

proxyPT

adaptee

adapter

adapterPT

subject
real

proxy3

proxy2
proxy1

adaptee

adapter

adapterPT

proxy1

proxy3

proxy2

adapterPT
realsubject /

Pattern Result patternEmbed(Pattern1, Pattern2, position)

Embed(adapterPT, proxyPT, "realsubject")

Figure 4.20: Embedding an adapter template into a proxy template in the position of the "real
subject”.

Another example of applying the Embed operator is shown in Figure 4.20, where an Adapter

102

S-PT ("adapterPT”) becomes the "real subject” of a Proxy S-PT ("proxyPT”). Such configuration

may be useful, for instance, to provide access to a Grid Service for different types of users, each

one with distinct access policies and request types. Dissimilar "protection proxies” interface the

users to the service, with this one requiring adaptation to attend the different types of requests.

ringPT starPT

group1PT

Embed(Pattern1, Pattern2, position)

group2PT

adapterPT
adapter

adaptee

group2PT

ringPT starPT

group1PT

adapterPT
adapter

adaptee

Patterns

Embed(group1PT, group2PT)

Result pattern

facade PT
facade

facade PT
facade

Figure 4.21: Embedding a group ("group1PT”) into another ("group2PT”).

To clarify the Embed’s semantics when applied to group templates, Figure 4.21 illustrates

the embedding of the aggregate "group1PT” into another group, namely "group2PT”. Such

operation can be accomplished by the version of the Embed operator that does not require a

parameter for the embedding position, i.e. Embed(P1, P2). Comparing with the aggregation

of two groups, which results in a single group containing all the elements (as was depicted in

Figure 4.16), the Embed(group1PT, group2PT) operator implies that the embedded group, i.e.

“group1PT”, becomes a sub-group of the encloser group, i.e. “group2PT”. As such, the result

of the Embed is also a hierarchy.

Finally, the embedding of a PT that is not a group into a group template has an equivalent

semantics to the aggregation of an extra PT to the original group (this example was shown in

Figure 4.15).

The following discussion of embedding a pattern template into a Hierarchical Pattern Tem-

plate completes the description of the Embed operator’s semantics.

Hierarchical Pattern Templates

A Hierarchical Pattern Template is either: 1) a pattern template with one or more embedded

pattern templates (the embedded patterns may themselves have other embedded pattern tem-

plates); or 2) a group template. In the latter case, a group may also contain other sub-groups,

and both the outmost group and the inner groups may also contain higher-level templates as

103

defined in point 1). The semantics of a Hierarchical PT is therefore recursive resulting on a hier-

archy of enclosed pattern templates which is built through the Embed operator (or also through

the Group operator in the case of a group template).

The enclosed patterns in the Hierarchical Pattern Template are directly accessible, meaning

they can be manipulated individually by the operators. Depending on the operator, the access

to those inner patterns can either be based on their unique identifiers within the pattern of

whom they are members, or alternatively, on the ordered concatenation of the names of all

the pattern templates that enclose them. In this case, the name of the operated (inner) pattern

comes last in that sequence, and the name of the outmost pattern comes first.

ringPT starPT

nucleus

groupPT

adapterPT
adapter

adaptee

Embed(adapterPT, starPT, nucleus)

starPT

nucleus

proxyPT

real
subject proxy1

proxy2

proxy3

proxyPT

nucleus

starPT

real
subject proxy1

proxy2

proxy3

adaptee

ringPT

groupPT

starPT

nucleus
adaptee

Patterns Result pattern

Embed(adapterPT, groupPT.starPT, "nucleus")

Embed(adapterPT, proxyPT.starPT, "nucleus")

Figure 4.22: Embedding the same pattern template into two Hierarchical Pattern Templates.
In both examples, the "adapterPT” is embedded in the "nucleus” of a "starPT”, but in one case
(upper part of the Figure) this latter pattern is included in a group, whereas in the other, the
"starPT” is embedded in the "realsubject” position of the "proxyPT”.

The left side of Figure 4.22 shows two Hierarchical PTs, namely, a group pattern template

("groupPT”) and a Proxy template ("proxyPT”) with an embedded Star template in the "real-

subject” position ("starPT”). The Figure exemplifies how to embed a pattern into those two

kinds of Hierarchical PTs in well specified positions. In the example, the same pattern tem-

plate, namely "adapterPT”, is embedded into the "nucleus” of the "startPT” which is present

in both Hierarchical PTs. In both Embed examples, the latter template is referenced by name

104

concatenation, concretely, "groupPT.starPT” in the case of the group PT, and "proxyPT.starPT”

in the case of the Proxy PT.

proxyPT

nucleus

starPT

adaptee

real
subject proxy1

proxy2

proxy3

real
subject

proxyPT

proxy2

proxy1

proxy3

nucleus

starPT

adaptee

Result patternsPattern

Extract(starPT, proxyPT, "realsubject")

Extract(starPT, proxyPT)

Extract(Pattern1, Pattern2, position)

Extract(Pattern1, Pattern2)

Figure 4.23: Extracting a pattern template from a Hierarchical Pattern Template, namely a
starPT is removed from within the "realsubject” of a proxyPT, and the “realsubject” gets unin-
stantiated.

proxyPT

nucleus

starPT

adaptee

real
subject proxy1

proxy2

proxy3

starPT

nucleus

proxyPT

real
subject proxy1

proxy2

proxy3

adapterPT
adapter

adaptee

Result patternsPattern

Extract(adapterPT, proxyPT.starPT, "nucleus")

Extract(adapterPT, proxyPT.starPT)

Extract(Pattern1, Pattern2, position)

Extract(Pattern1, Pattern2)

Figure 4.24: Extracting a pattern template from a Hierarchical Pattern Template, specifically,
the adapterPT is extracted from the "nucleus” of the starPT which is located in the position of
the "real subject” in the proxyPT. Consequently, the “nucleus” of the starPT gets uninstanti-
ated.

The extraction of patterns from aHierarchical PT is illustrated in both Figures 4.23 and 4.24.

In the first case (Figure 4.23), a pattern template is removed from the first level of the hierar-

chy, namely, the "starPT” template is extracted from the "realsubject” of the "proxyPT” by the

Extract(starPT, proxyPT, “realsubject”). Consequently, the “realsubject” becomes uninstantiated

105

and, later on, another pattern can be embedded in that component place-holder. Considering

that the “starPT” identifier is unique within the “proxyPT” pattern, the Extract(starPT, proxyPT)

produces the same result.

In the second case (Figure 4.24), the pattern to be removed, namely "adapterPT”, is located

in the second level of the hierarchy. Specifically, "adapterPT” is located in the “nucleus” of the

"starPT” which, in turn, is enclosed by the "proxyPT” in the "realsubject” position. After the

removal of the “adapterPT” by the Extract(adapterPT, proxyPT.starPT, “nucleus”) operator, the

“nucleus” of the “starPT” stays uninstantiated. As can be seen by this second example, after the

extraction, the "adapterPT” moves to the same level as the outmost pattern, i.e. "proxyPT” pre-

serving, in this way, the structural consistency of this latter pattern. Considering also here that

the “adapterPT” identifier is unique within the “proxyPT.starPT” pattern, the second version

of the Extract operator, i.e Extract(adapterPT, proxyPT.starPT) generates the same result.

Please note that in the case of group-basedHierarchical PTs, the Extract and Embed operators

can be used to move PTs between those inner sub-groups without loss of structural consistency,

according to the semantics of group-based pattern templates.

4.3 Sequences of Structural Operators

Structural Operators can be applied in sequence and some can be composed forming Com-

pound Structural Operators. This sub-section aims to illustrate some relevant examples of those

situations.

4.3.1 Sequences Including the Replicate, Replace, or Reshape Oper-

ators

The present examples aim to further illustrate the utility of the Replicate, Replace, and Reshape

operators.

First, if applied to a Hierarchical Pattern Template produced by the Group operator, the Repli-

cate operator allows a faster way to duplicate a set of PTs. For example, the next sequence

defines a possible way of duplicating a set of patterns:

Group(P1, P2, P3, P4, P5, groupPT)

Replicate(1, groupPT, ‘‘group2PT’’)

Ungroup(groupPT)

Ungroup(group2PT)

According to the semantics of the Replicate operator previously discussed, the application

of this operator to the “groupPT” pattern in the previous sequence, results in the creation of

a clone with a distinct identifier, namely, “group2PT” in the example. The subsequent disag-

gregation of the two groups through the Ungroup operator results in the original patterns plus

their clones (each one having its own unique identifier as well).

Second, the Replicate operator can be used to build a clone of a more complex pattern tem-

plate like "proxyPT”, as shown in Figure 4.25. The "proxyPT” was previously presented in

Figure 4.22. The slightly different pattern to be built (“proxy2PT”) is dissimilar to “proxyPT”

106

proxyPT

nucleus

starPT

real
subject proxy1

proxy2

proxy3

adaptee

proxyPT

nucleus

starPT

real
subject proxy1

proxy2

proxy3

adaptee

nucleus

starPT

real
subject proxy1

proxy2

proxy3

adaptee

proxy2PT

proxyPT

nucleus

starPT

real
subject proxy1

proxy2

proxy3

ringPT
2: Replace(proxy2PT.starPT.adapterPT, ringPT)

1: Replicate(1, proxyPT,
"proxy2PT")

Figure 4.25: Building a new similar PT to the ProxyPT but where a ringPT is embedded in the
"nucleus” of the starPT (instead of the adapterPT).

in the sense that a diverse pattern should be embedded in the "nucleus” of the "proxyPT.starPT”

instead. As shown in Figure 4.25, such result is obtained by applying the Replace operator to

the "adapterPT” in “proxy2PT”, substituting it by the "ringPT”. An example of an operator

sequence to build such result might be:

Embed(Embed(adapterPT, starPT, nucleus), proxyPT, reals ubject))

Replicate(1, proxyPT, ‘‘proxy2PT’’)

Replace(proxy2PT.starPT.adapterPT, ringPT)

The previous sequence also gives an example of the Embed operator composed with itself,

forming one case of a Compound Structural Operator.

Finally, the Reshape operator can also be directly applied to a pattern embedded into a Hier-

archical Pattern Template, as long as the restrictions defined in sub-section 4.2.1 are obeyed. For

example, Figure 4.26 shows the transformation of the "starPT” (embedded in the "real subject”

of the "proxyPT”) into a ring pattern template ("ringPT”).

107

proxyPTproxyPT

Reshape(proxyPT.starPT, ringPT)

real
subject proxy1

proxy2

proxy3starPT

real
subject proxy1

proxy2

proxy3

ringPT

nucleus

Figure 4.26: Transforming an embedded pattern into another through the Reshape operator.

4.3.2 Sequential Application of Extend, Increase/Decrease, and Re-

duce

The next examples aim to provide a clarification of structural operator sequences including the

Increase, Decrease, Extend, and Reduce operators. First of all, a sequence of those operators is

only applicable to Proxy and Facade S-PTs since, on one hand, the Extend/Reduce operators

cannot be applied to the Topological Structural Patterns (i.e. Ring, Star, and Pipeline) and, on the

other hand, the Increase operator cannot be applied to the Adapter pattern (this was previously

explained in sub-section 4.2.1).

proxyPT

proxy1

proxy2
real

subject

proxyPT

proxy3

proxy1

proxy2
real

subject

proxyPT

proxy3

proxy4
real

subject
proxy1

proxy2
proxy5

proxyPT

proxy3

proxy4
real

subject
proxy1

proxy2
proxy5

proxyPT

real
subject

proxy3

proxy4
proxy1

proxy2
proxy5

proxy6

proxyPT

real
subject

proxy4

proxy5

proxy6

proxy3

proxy1

proxy2

proxy8 proxy7

Extend("realsubject",
proxyPT)

Increase(2, proxyPT,
"proxy3")

Increase(2,proxyPT)Extend(proxyPT)

Result patternPattern Result pattern1: Extend(Pattern) 2: Increase(2, Pattern)

Result pattern Result patternPattern 3: Extend(element, Pattern) 4: Increase(2, Pattern, position)

Figure 4.27: Applying the Extend and Increase operators in sequence to a Proxy PT.

As a first example, Figure 4.27 represents the sequential manipulation of a Proxy S-PT, i.e.

“proxyPT”, by the Extend and Increase operators. On the top of the Figure, the “proxyPT” is

manipulated by the first versions of those operators, namely Extend(proxyPT) and Increase(

2, proxyPT) (steps 1 and 2). The result of these manipulations is, respectively, the creation of

“proxy3” that is also annotated as a Real Subject for the “proxy1” and “proxy2” elements, and

108

the creation of two new ordinary proxies associated to the “realsubject” element, i.e. “proxy4”

and “proxy5”. These actions can be represented by the following sequence:

Extend(

proxyPT) Increase(2, proxyPT)

which could also be defined through a Compound Structural Operator like

Increase(2, Extend(proxyPT))

On the bottom of Figure 4.27, the pattern “proxyPT” is subsequently manipulated by the

second versions of the Extend and Increase operators (steps 3 and 4). First, the Extend(“realsub-

ject”, proxyPT) operator generates the new “proxy6” element that becomes its local surrogate for

the pre-existent proxies, i.e. “proxy4” and “proxy5”. Second, the Increase(2, proxyPT, “proxy3”

) operator creates two ordinary proxies associated to the “proxy3” element. These two actions

can also be represented by a sequence:

Extend(

‘‘realsubject’’, proxyPT) Increase(2, proxyPT, ‘‘proxy3 ’’)

We recall that the selected members to instantiate the “position” parameter in the Increase

(n, P, position) operator have to be consistent with the Proxy pattern’s definition. Specifically,

the eligible members are the ones which are (also) defined as a Real Subject to the ordinary

proxies to which it is directly associated. Therefore, it was possible to increment the number

of proxies of the member “proxy3”, as it would be to instantiate the “position” parameter with

the member “proxy6” and, of course, “realsubject”.

As a second example, a corresponding manipulation of a Facade S-PT by an interleaved

application of both versions of the Extend and Increase operators is presented in Figure 4.28.

The four operations in the Figure can be represented by the following operator sequence:

Extend(facadePT)

Increase(2, facadePT)

Extend(‘‘facade1’’, facadePT)

Increase(2, facadePT, ‘‘facade3’’)

With the first operator, the structure of the “facadePT” is extended resulting on the creation

of a new “facade” element within the structure, i.e. “facade2” in the Figure. The second opera-

tion increases the number of elements of the extended “facadePT”. Since the position of where

to create the new sub-systems is not explicitly defined, the Increase(2, facadePT) creates the two

new CPHs on the outmost facade element by default, namely within the structural context of

“facade2” element. Subsequently, the “facadePT” is again extended through Extend but with

the explicit description where to augment recursively the structure. Concretely, the Extend(“fa-

cade1”, facadePT) operator (step 3) generates a new Facade structure between the pre-existent

Facade structures, i.e. the “facade3” element provides an interface for the “facade1” element

and other sub-systems that may be created within that new Facade structure. Such may be

represented by the Increase(2, facadePT, “facade3”) operator (step 4) that creates two new CPHs

for two sub-systems associated to the “facade3” element. We again recall that the Increase(n,

109

facadePT

facade

facadePT

facade1

facade2

facadePT

facade1

facade2

facade1

facadePT

facade2

facadePT

facade1 facade1

facadePT

Increase(2, facadePT)Extend(facadePT)

Result patternResult patternPattern 1: Extend(Pattern) 2: Increase(2, Pattern)

Pattern Result pattern Result pattern

Extend("facade1", facadePT) Increase(2, facadePT, "facade3")

facade2

facade3

facade2

facade3

3: Extend(element, Pattern) 4: Increase(2, Pattern, position)

Figure 4.28: Applying the Extend and Increase operators in sequence to a Facade PT.

facadePT, position) can only be applied to the “facade1”, “facade3”, and “facade2” elements

within the “facadePT” pattern.

As for similar operator sequences like the ones above which include the Increase/Decrease

operators, but where the Reduce operator is used instead of Extend, their results are somehow

symmetric to what was described for the latter operator. Specifically, since the Reduce operator

undoes a corresponding Extend operation, the result of applying the Reduce is as if the Extend

operator had not be applied at all.

Figures 4.29 and 4.30 present examples of the Reduce operator to cases of Proxy and Facade

S-PTs. In the first Figure, both versions of the Reduce are applied to the “proxyPT”. First, the

Reduce(proxyPT) operator, which is similar to the Reduce(“realsubject”, ProxyPT), deflates the

previously extended pattern in a pre-defined way. Concretely, the reduce operation is applied

to the element annotated as the Real Subjectwithin the pattern and, as a result, the “realsubject”

element takes the place of the “proxy6” element within the structure. Therefore, the “proxy7”

element becomes incoherent and is deleted, and the “proxy4” and “proxy5” elements are now

associated to the “realsubject” as a result of the deletion of “proxy6”.

Second, the Reduce(“proxy6”, proxyPT) operator defines that the reduction of the struc-

ture of “proxyPT” is to be performed at the “proxy6” element, meaning that this element will

take the position of “proxy3” within that structure. As a result, the “proxy4” and “proxy5”

become incoherent within the structure and are therefore deleted. Moreover, the “proxy6” el-

ement takes the structural position of the deleted “proxy3”, and also becomes the Real Subject

structural element for the “proxy1” and “proxy2” elements.

Figure 4.30, in turn, represents the application of the Reduce, in its two forms, to a Facade

110

proxyPT

real
subject

proxy3

proxy4
proxy1

proxy2
proxy5

proxy6

proxy7

proxyPT

proxy3

proxy4
real

subject
proxy1

proxy2
proxy5

proxyPT

proxy6

proxy7
real

subject
proxy1

proxy2

Reduce(element, Pattern)

Reduce(Pattern)

Pattern Result pattern

Reduce("proxy6", proxyPT)

Reduce("realsubject", proxyPT)

Reduce(proxyPT)

Figure 4.29: Applying the two versions of the Reduce operator to the "proxyPT” template.

facade1

facadePT

facade2

facade3

Reduce(element, Pattern)

Reduce(Pattern)

facade1

facadePT

facade2

facade1

facade3

facadePT

Reduce("facade3", facadePT)

Pattern

Reduce("facade2", facadePT)

Reduce(facadePT)

Result pattern

Figure 4.30: Applying the two versions of the Reduce operator to the "facadePT” template.

S-PT. The application of the Reduce(facadePT) operator deflates the structure of “facadePT”

by eliminating the outmost Facade structure. This result, which is pre-defined, is equal to

explicitly invoking Reduce(“facade2”, facadePT) and results in the deletion of the “facade2”

element, as well as of the two associated CPHs. The Reduce(“facade3”, facadePT) operator,

in turn, eliminates the Facade structure in the middle which is represented by the “facade3”

structural element. Appropriately, this CPH is eliminated along with its associated CPHs, and

the structure is deflated. We recall that the Reduce(element, facadePT) could only be applied to

the “facade1”, “facade2”, and “facade3” elements within the original structure of “facadePT”.

To conclude, what was said for a sequence of the Extend, Increase, and Reduce operators,

111

would also be applicable if the Decrease operator was used instead of the Increase operator. On

the other hand, an operator sequence including an Extend and a Reshape is not considered in

this work, although the cardinality of an extended pattern might permit a Reshape operation

upon that pattern.

4.3.3 Structural Operation of Hierarchical Pattern Templates

This sub-section describes examples of sequences of Structural Operators that include the Em-

bed or Group operators. For simplification reasons, these operators are considered to have been

already applied, and consequently, the discussion is restricted to the structural manipulation

of instances of Hierarchical Patterns (i.e. which were generated by Group or Embed).

Some Structural Operators are similarly applicable to all types of Hierarchical Patterns and

with analogous results to the described application of those operators to non-hierarchical pat-

terns. These operators are the Eliminate, the Replace, and the Replicate. Specifically:

1. The Eliminate operator results in the deletion of the outmost pattern as well as all inner

patterns. Therefore, the action of the Eliminate operator is always recursive for any type of

Hierarchical Pattern.

2. The Replace operator is also applicable to any type of Hierarchical Pattern, substituting it for

the pattern defined as argument to the Replace. The Replace can also be applied to (inner)

patterns enclosed by a Hierarchical S-PT, since these are directly accessible for manipulation.

3. It is possible to duplicate any kind ofHierarchical S-PT through the Replicate operator, gener-

ating newHierarchical S-PTs, each onewith its own identifier. Please note that each accessible

individual pattern within a Hierarchical S-PT can also be replicated, but the replicas are gen-

erated at the same level of that Hierarchical S-PT. This means that the replicas of the inner

patterns are created outside the Hierarchical S-PT, i.e. they do not become new members of

that Hierarchical S-PT. Although keeping those new replicas as new members of a group-

based Hierarchical S-PT would not disrupt its semantics, for a Hierarchical S-PT resulting

from an Embed operation, the replicas have to be created outside this S-PT, in order not to

disrupt its structural definition.

Likewise, the Group, Ungroup, Embed, and Extract operators can be applied to any type of

Hierarchical S-PTs as previously described in section 4.2.2.

However, the Reshape operator is not applicable to any kind of Hierarchical Pattern. For

group S-PTs in particular, these do not have a structural definition among the group members,

so it is meaningless to reshape an inexistent structure. As for embed-based Hierarchical S-PTs,

at least one of its component place-holders (CPH) is instantiated with another pattern, making

it different from the other free CPHs. If possible, a reshape operation would require defining

where to place that instantiated CPH, and this would result in different possibilities. Therefore,

we discard this option for the time being.

In the following, we describe the application of the remaining operators, first to group-

based hierarchical patterns, and subsequently to hierarchical patterns that resulted from the

Embed operation.

112

Group-based Patterns

The Increase,Decrease, Extend, Reduce, and operators cannot be applied to aHierarchical S-PT that

resulted from the Group operator, as a group/aggregate is merely a set of structurally unrelated

patterns. As described before, the structural binding between them is simply that they belong

to the same group, although this group is a Structural PT on its own. This means that, for

example, the Increase operator cannot be directly applied to a S-PT which is a group like the

“groupPT” represented in Figure 4.15. However, since the members of a group are directly

accessible, the Increase operator can be applied to each member individually, as long as these

members are not groups themselves. For example, an operation like Increase(3, groupPT.starPT)

is valid within the context of the group S-PT described in that Figure.

Patterns with Embedded Patterns

– Application of Increase/Decrease

pipelinePT

starPT

cph2 cph3cph1/starPT pipelinePT

starPT

cph4cph1/starPT cph2 cph3

pipelinePT

cph2 cph3

Pattern

Decrease(1, pipelinePT, "cph1")

StructuralOperator Result pattern

Increase(1, pipelinePT, "cph1")

Figure 4.31: Applying the Increase and Decrease operators to a pipeline hierarchic pattern that
contains an embedded pattern in the first stage.

The application of the Increase and Decrease operators to change the number of elements in a

pattern with other embedded patterns is similar to what was previously described for non-

hierarchic patterns. Figure 4.31 presents the case of a Pipeline S-PT with a Star S-PT embed-

ded in its first stage. The addition of new CPHs to the “pipelinePT” can be performed either

through the Increase(n, pipelinePT) operator, or in case it is necessary to define an explicit posi-

tion for the newCPHs, the addition can be accomplishedwith the Increase(n, pipelinePT, position

) operator. The Figure represents an example of this situation where the Increase(1, pipelinePT,

“cph1”) operator generates a new component place-holder (“cph4”) which is positioned after

the component place-holder “cph1”. The cardinality of “pipelinePT” becomes therefore equal

to four.

113

The elimination of CPHs from a patternwith other embedded patterns can be accomplished

through the Decrease(n, P, position) operator. Figure 4.31 presents the case of eliminating the

first stage of the “pipelinePT”. This is achieved by the Decrease(1, pipelinePT, “cph1”) opera-

tor or, likewise, by the manipulation Decrease(1, pipelinePT, “starPT”) which define that one

element starting at, and including, the element “cph1” (also tagged “starPT”), is to be deleted

from “pipelinePT”. As a result, that first CPH in the sequence, i.e. “cph1”, is deleted along with

the embedded pattern. In this case, the cardinality of “pipelinePT” becomes two.

Please note that both the Increase and Decrease operators are still directly applicable to the

embedded patterns of a Hierarchical pattern. For example, the application of the Increase(2,

pipelinePT.starPT) operator would increase the number of CPHs of the embedded star by two.

– Application of Extend/Reduce

adaptee

adapter

adapterPT

proxy1

proxy3

proxy2

adapterPT
realsubject /

proxyPT

adaptee

adapter

adapterPT

adapterPT
realsubject /

proxy3

proxyPT

proxy4

proxy2

proxy1

Pattern StructuralOperator

Extend(proxyPT)

Result pattern

Figure 4.32: Applying the Extend operator to a proxy hierarchic pattern that contains an
embedded pattern in the “realsubject” element.

As for the application of the Extend and Reduce operators to a pattern with other embedded

patterns, it is also similar to what was previously described for non-hierarchic patterns. For

example, Figure 4.32 presents the case of extending the structure of a Proxy S-PT, i.e. “prox-

yPT”, which has another pattern (“adapterPT”) embedded in the element representing the Real

Subject within the Proxy pattern definition. As represented in the Figure, the application of the

Extend(proxyPT) operator results in the creation of the element “proxy4” that acts as surrogate

to the pre-existent proxies (i.e. “proxy1”, “proxy2”, and “proxy3”). Moreover, the “adapterPT”

pattern remains embedded in the “realsubject” element within the structure. Clearly, the struc-

ture of “adapterPT” could also be augmented by direct manipulation through the Extend oper-

ator.

Figure 4.33, in turn, presents a case of reducing the structure of a facade hierarchic pattern.

Specifically, the “facadePT” has the pattern “pipelinePT” pattern embedded in the outmost

facade element, i.e. “facade2”. The application of the Reduce(facadePT) operator defines that

the outmost facade element is deleted. Consequently, the “facade2” element is deleted along

with the embedded “pipelinePT”.

114

pipelinePT
facade2 /

facadePT

facadePT

Reduce(facadePT)

Pattern StructuralOperator Result pattern

facade1
facade1

Figure 4.33: Applying the Reduce operators to a facade hierarchic pattern that contains an
embedded pattern in the outmost facade element (i.e. “facade2”).

4.4 Semantics of Behavioural Operators

Despite different types of Behavioural Operators were introduced in section 3.3, the discussion

in this sub-section is restricted to the semantics of the Execution Operators. These enable direct

control of ongoing computations, as it will be illustrated in the applications of Chapter 7. Al-

though the available Execution Operators were previously described (section 3.3.5) in terms of

pattern templates, in fact, those operators act upon Pattern Instances (PIs). As explained be-

fore, PI are Structural Pattern Templates which have been already assigned to one ore more

Behavioural Patterns, and within which component place-holders have already been bound to

executable component instances.

Execution Operators include: Start and Terminate, Stop and Resume, Restart and TerminateR-

estart, Limit, Repeat and TerminateRepeat, Log and TerminateLog, SeqLog and TermSeqLog, and Re-

sumeLog, Steer, and SteerComponent. The latter two operators were defined as being imple-

mentation dependent and so their semantics is not discussed. As for all the other Execution

Operators, their semantic discussion is based on specific examples. Concretely, all operators are

considered to be applied to the same Pattern Instance (PI) – a three-stage pipeline coordinated

by the Streaming Behavioural Pattern.

The explanation of the Execution Operators’ semantics is preceded by a sub-section de-

scribing the main concepts of the used formalism, namely the CO_OPN/2 [32,33] synchronous

model. Albeit this formalism provides also asynchronous operations (for example to mimic

an arbitrary selection of the invocation of one of two available methods), all the CO_OPN/2

operations we use are synchronous ones. For example, the application of some Behavioural

Operators to a pattern instance (e.g. Stop and Resume) results on a synchronous call to several

methods available at the elements belonging to that pattern instance. Even though a complete

semantics discussion should also consider cases where the invocation of each component is

asynchronous, we restrict our analysis to the synchronous case, primarily because of the par-

ticular benefit the CO_OPN/2 tool offers in undertaking such analysis. Specifically, our goal

is simply to present a clear definition of the workings of each operator, although this does

115

not imply that the actual implementations of the described operators should follow a strictly

synchronous model.

4.4.1 The CO_OPN/2 Formalism

The CO_OPN/2 formalism [32, 33] provides Object-Oriented abstractions for specifying sys-

tems, e.g. classes and objects as class instances, and where synchronisation between object

invocations can be modelled.

The functionality of each object within the CO_OPN/2 formalism is represented as a Petri-

Net and data flow is based on abstract data types. The interface of CO_OPN/2 objects provide

methods (i.e. input ports) with the guarantee of transactional semantics upon invocation. More-

over, CO_OPN/2 objects may generate events through its interface’s gates (i.e. output ports).

Considering our operators’ semantics, CO_OPN/2 objects are used by us to describe both the

executable components representing the pattern instances’ elements, as well as other necessary

functionality.

The Context concept within CO_OPN/2, in turn, defines a coordination environment for

ruling inter-object interactions. Namely, the interactions between a pattern instance’s elements

are defined within a particular context.

In the following, we describe the above concepts and their visual notation through a small

example.

I – Objects

time_
expired

decrement_
interval

transition

flow relations

CO_OPN/2 object

Legend:

method (input port)

gate (output port)

Petri−net elements:

place

object

time
counter

t

0

get_time_left(t)

t
t

pred(t)

t

timeout

tick
true

true

set(time_interval)

Figure 4.34: An example of a CO_OPN/2 object with its behaviour modelled through a Petri-
Net.

Figure 4.34 shows a simple CO_OPN/2 object (named time counter) representing a timed

alarm. Based on the CO_OPN/2 visual notation, an object is represented as an ellipse, and

its interface’s input and output ports are represented as solid small rectangles at the border of

the ellipse, black solid or white solid, respectively. The object in Figure 4.34 provides three

invokable methods (i.e. input ports), namely, tick, set(time_interval), and get_time_left(t). A

method’s name is depicted next to its correspondent small black solid rectangle at the border

116

of the ellipse, and its invocation is to be represented by a arrow-head (dashed) line directed

to that black rectangle, as will be described further ahead. The tick method, in particular, is

to be invoked by another object representing a clock, whereas the set method is to be used

to define the time interval of the alarm, and the get_time_left method allows inspecting the

remaining time left before the alarm is fired. Upon expiring of the time interval, the time counter

object generates an event through an output port or gate named timeout. Therefore, Gates in

CO_OPN/2 represent events generated by the object and they are represented as small white

solid rectangles along the ellipse’s border.

Being a CO_OPN/2 object, the timed alarm’s functionality is modelled through a Petri-Net

inside the object. The Petri-Net elements are defined according to the following notation: a)

places are represented as small white circles; b) transitions are modelled as small white rect-

angles; c) input arcs (connecting places to transitions) are symbolised as arrow-headed arcs

from places to transitions; and d) output arcs (connecting transitions to places) correspond to

arrow-headed arcs from transitions to places. Transitions are fired as soon as all required to-

kens (existent in places connected with input arcs) are present. As mentioned before, tokens

in CO_OPN/2 are Abstract Data Types (ADTs) allowing the definition of simpler Petri-Nets to

model an object’s functionality.

The time counter object contains two places, and two transitions labeled "decre-

ment_interval” and "time_expired”. One place receives the time interval which is represented

by the "t” token, and it is initialised through the invocation of the set method. The other place

receives a token upon each tick of a clock, which results from the invocation of the tickmethod.

The "decrement_interval” transition is fired as soon as each tick token is ready at one place,

and the "t” token (with "t” bigger than zero) is ready at the other place. As a result, the value

of the time interval (i.e. the "t” ADT) is decremented and it is set again at the same place. Only,

when the value of the token "t” becomes zero, the "time_expired” transition is fired consuming

the token and generating an event through the timeout gate. Meanwhile, the remaining time

before the timeout event can be inspected by invoking the get_time_left(t)method. In this case,

the value of the token "t” is returned as an output parameter. As such, upon one method invo-

cation in CO_OPN/2, the flow of data may be bi-directional, as a result of the presence of both

input and output parameters in that object’s method.

II – Inter-object Synchronised Calls

synchronised call

CO_OPN/2 object

Legend:

gate (output port)

method (input port)

time_
expired

decrement_
interval

t

0

t
t

pred(t)

ttrue

truetick

timeout

set_frequency(time_unit)

set(time_interval) get_time_left(t)

clock

tick

time
counter

object

object

Figure 4.35: An example of a synchronised call between two CO_OPN/2 objects.

117

The CO_OPN/2 formalism provides inter-object synchronisation with flow of data through

objects’ ports. Such synchronisation is represented visually by dashed arrows connecting those

objects’ ports, starting at an object’s gate and ending at another object’s method. Moreover, that

synchronised call occurs as soon as an event is ready at the gate, which results on the automatic

invocation of the method at the other object, and data may flow between the two objects as a

result of parameter instantiation.

Figure 4.35 shows an example of a synchronised call between the tick gate at the clock object

and the tick method at the timer counter object, representing the automatic notification of this

object at each clock tick.

It is also possible, in CO_OPN/2, to have a synchronised call between two methods of two

objects as long as one of the parameters in one of the method is an output parameter, i.e. this

output argument instantiates an input argument at the other method in the synchronised call.

In case both methods have an input and an output port, the flow of data is bidirectional.

III- Contexts and Synchronisation Policies

time_
expired

decrement_
interval

SetAlarm(time_unit, time_interval) TimeLeft(t)

CO_OPN/2 object

Legend:

gate (output port)

CO_OPN/2 context

method (input port)

context input port

context output port

synchronised call

//
simultaneity

policy
synchronisation

Alarm context

set_frequency(time_unit) t

0

t
t

pred(t)

ttrue

truetick

timeout

//
get_time_left(t)set(time_interval)

alarm

clock

tick

time
counter

object

object

Figure 4.36: An example of a CO_OPN/2 context with two objects.

Another important aspect of modelling with CO_OPN/2 is the notion of a context – which is

represented as a large rectangle with round corners. A context is an entity encapsulating a set

of objects/components and the coordination rules that constrain those components. Therefore,

a CO_OPN/2 context does not define Petri nets but their compositions, and a context may also

contain, and coordinate, sub-contexts forming hierarchies. Figure 4.36 shows the Alarm context

including the previously described objects, namely the clock object and the time counter object.

Similarly to CO_OPN/2 objects, contexts also have input and output ports. Semantically,

input ports represent services provided by a context (i.e. they correspond to callable methods

118

implemented within that context), whereas output ports symbolise the context’s events or ser-

vices required by that context. According to the formalism, the context’s ports are represented

as bi-coloured rectangles. On one hand, inport ports are represented with the dark part of the

rectangle on the outside of the context and the white part on the inside. On the other hand,

output ports are represented with the dark side of the rectangle inside the context box and the

white side is on the outside of that box. Figure 4.36 shows that the Alarm context provides the

SetAlarm and TimeLeftmethods, and the alarm output port.

In CO_OPN/2, the calls among contexts, and also between a context and its inner objects or

between the context and its sub-contexts, consist of syncronised invocations from output ports

to input ports where multiple invocations may be ruled by synchronisation policies. CO_OPN/2

provides three kinds of synchronisation policies where, similarly to transactions, all the policies

imply an "all or nothing” semantics. First, the simultaneity policy implies a simultaneous invoca-

tion of the involved calls (and one call can only succeed if all other involved calls can succeed

as well). Second, the sequence synchronisation policy defines a sequential call for the involved

methods (e.g. one before the other, in a sequence policy applied to two synchronised calls). Fi-

nally, an alternative or nondeterminism policy defines that the method to be executed is selected

in a non-deterministic way among a set of available alternatives (i.e. the call succeeds if one of

the alternatives succeeds).

In the example depicted in Figure 4.36, and as a result of the Simultaneity policy, an in-

vocation of the SetAlarm(time_unit, time_interval) context’s method implies a simultaneous

synchronous call to the set_frequency(time_unit) and set(time_interval) methods at the clock

and time counter objects, respectively. This guarantees that the initialisation of the clock object

with the chosen frequency (e.g. seconds, milliseconds) is synchronised with the initialisation

of the alarm (time counter object) with the expiration time interval (defined according to the

chosen frequency). When the time expires, an event at the timeout gate at the time counter object

generates an event available at the alarm output port of the Alarm context. This context also

provides the TimeLeftmethod to inspect meanwhile the interval of time until the next alarm.

The next-subsections describe the semantics of the Execution Behavioural operators accord-

ing to the CO_OPN/2 formalism. Implementation-wise, to note that those descriptions rely

on the assumption that each executable component within a pattern, e.g. that represents a

particular tool or service, includes a wrapper. This wrapper is responsible for implementing

the interface to the component and providing proper coordination and communication to the

necessary resource managers (that support that tool or service execution). Furthermore, the

operators may have effect only over those wrappers. This means that if those wrappers are

interfacing the access to, for example, services over which it is not possible to have a direct ex-

ecution control, the execution control represented by the described operators are restricted to

the manipulated wrappers. For instance, whereas in some cases it may be possible to suspend

the execution of the executables forming the stages of a Pipeline Pattern Instance (PI), in some

other cases the suspension may be restricted to the execution of the wrappers interfacing (some

of) the Pipeline PI’s stages to specific services/tools.

119

Method of
the Pattern

Synchronisation

Simultaneity//

Input port
(Method)

Pattern
instance
(Context)

Component
instance

Output port
(Gate)

Legend:Start

Terminate

Output(d)

Start

Input(d)

StartStart

Input(d) Output(d)

Terminate Terminate Terminate

//

//

Figure 4.37: Example of the Start and Terminate operators over a pipeline pattern instance.

4.4.2 Start and Terminate Operators

Figure 4.37 presents an application example of the Start and Terminate operators over the se-

lected pattern instance, namely a pipeline with three stages. Each stage represents an exe-

cutable component (e.g. tool/service) which is modelled as an CO_OPN/2 object (i.e. a small

ellipse). As we are not, in this discussion, concerned with the internal behaviour of such com-

ponents, we do not show Petri-Net blocks for these. As described before, the input ports (i.e.

method calls) available on a component are represented by black rectangles along the border of

the ellipse, whereas the output ports (i.e. Gates) are represented as white rectangles.

Figure4.37 shows that the output port (Output(d)) of the leftmost component in the pipeline

instance is synchronised with one of the input ports (Input(d)) of the middle component. As

soon as the Outputmethod is invoked, the Inputmethod in the other component is invoked as

well, and data is exchanged in the process by argument instantiation. Likewise, the output port

(Output(d)) of the middle component is synchronised with the port Input(d) of the rightmost

component. In this way we represent, in a simplified way, the Streaming Behavioural Pattern

ruling the control and data flows between the components of the pipeline.

A CO_OPN/2 context is used to represent the pipeline Pattern Instance, as well as the neces-

sary synchronised calls to the pattern as a whole. The invocation of the Start method over the

pipeline context implies the simultaneous invocation of the Start method of every component.

We represent this simultaneous invocation by the simultaneity policy symbol “//”, according to

the CO_OPN/2 formalism. The Terminate operator has a similar behaviour to the Start operator,

as shown in the Figure. The invocation of Terminate over the pipeline implies the simultane-

ous invocation of the Terminatemethod at all component instances. Although omitted from the

context, an extra CO_OPN/2 object would represent the pattern instance’s state, namely, if the

pipeline as a whole is executing or has terminated (i.e. it is not running). Nevertheless, it is

assumed that a call to the Terminate operator is only effective if the pattern is already running.

120

−−−stp_checkp stop_and_checkpoint

Stop

state

Start

stopped
stopped

Output(d) Input(d) Output(d)

Input(d)

StartStart

//

Startstp_checkp stp_checkp stp_checkp

//

component_
_stopped

pattern

n_elems

npred(n)
running

running

state

stopped

0

running

get_stopped

stopped

Resume

//

res_checkp

running(n_elems)

pipeline context

stoppedres_checkp
res_checkp

Legend:

Petri−net elements:

−−−res_checkp resume_from_checkpointing

place

transition

get_running

stopped
pattern_

_stopped

count_

Figure 4.38: Example of the Stop and Resume operators applied to a pipeline instance.

4.4.3 Stop and Resume Operators

The semantics of the Stop operator implies the suspension of the execution of all component in-

stances – hence it is similar to the Terminate operator. Using this operator, however, also causes

the state of all component instances to be recorded. Each component (in fact, the component

wrapper) is assumed to have a stp_checkpmethod that upon being called suspends (or requests

the suspension of) the inner component’s execution and saves its current state. As consequence

of that method call, an event is generated through the stopped gate (output port) informing that

the component is stopped/suspended.

Figure 4.38 represents the semantics of Stop operator applied to the pipeline instance as a

simultaneity synchronous call to all of stp_checkp methods provided by the components. An

extra CO _OPN/2 object, included in the pipeline context, represents the pattern’s state. This

pattern state object registers whether the component is running or stopped (a possible terminat-

ed/not_running state is omitted for simplification reasons). As shown in the Figure, the Start

operator invokes the running method and the components’ individual start methods (with a

simultaneity policy), and in consequence, the pattern is set to be in the "running” state and the

number of the pipeline’s stages is defined (through the "n_elements” token). Although not

represented in the Figure, the number of elements (i.e. stages) of the pipeline is assumed to

be available at the pattern (i.e. pattern instance) context. This value instantiates the argument

"n_elements” when the method "running(n_elements)” is invoked as a consequence of the Start

operator. From now on, we assume that the information about the number of elements forming

121

a pattern instance is always available to be used, and it is updated automatically whenever that

number changes (e.g. as a result of applying the Increase/Decrease Structural Operators).

The Stop operator, in turn, only succeeds if the pattern is running, as this operator re-

quires a successful call to the get_running method (which requires a “running” token at the

place “state”). Upon a successful stopping operation, and after all stopped events get col-

lected through calls to the component_stopped method, the pattern instance’s state switches to

"stopped”.

The Resume operator consists on a synchronised call to the individual res_checkp methods

and to the get_stopped and runningmethods of the pattern state object. Therefore, the effective-

ness of the operator depends also on the pattern being in the "stopped” state, and the latter

is then changed to "running”. The invocation of each component’s res_checkp method implies

restoring that component’s saved state and resume its execution.

4.4.4 Repeat and TerminateRepeat Operators

The Repeat(n,P) operator guarantees that the pattern instance "P” is executed "n” times, where

the next iteration is started as soon as the previous execution ends. In case the user wants to

abort those consecutive executions, the TerminateRepeat(P) operator aborts the current execu-

tion and prevents the execution of the remaining iterations.

As depicted in Figure 4.39, the semantics of Repeat operator relies on two contexts: the Re-

peat and the pipeline contexts. The former context contains a CO_OPN/2 object which is respon-

sible for launching the pattern’s first execution, as well as the subsequent ones as soon as a pre-

vious execution is detected as ended. The object contains the remaining_iterations counter which

is decremented when the next_iteration context’s method is called, and can also be set to zero

through the terminate_repeat method. A zero value for the Petri-Net place remaining_iterations

fires a transition triggering the end of the repeat.

The pipeline context represents the pattern instance’s components and their interactions, and

includes also an object that controls when to request for the next pattern’s execution. The latter

object also registers whether the pattern is in the "repeating” state (represented by "rept” in

pipeline state object in the Figure) or in the "terminated” state. The former state is set by the

define_first_iteration context method, and the latter is set by the TerminateRepeat operator. This

operator is associated (as a method) to the pipeline context for simplification reasons.

The Repeat operator implies consecutive calls to the Startmethod at the pipeline context, and

each call results in the invocation of each component’s startmethod (with a simultaneity policy),

as well as of the startedmethod belonging to the pipeline state object. As a result of invoking this

started(n_elems)method, the number of elements (i.e. components) within the pattern instance’s

structure (three in this case) is saved in a counter (a place within the pipeline state object) that is

used to represent how many pipeline elements have not terminated executing yet. The value

of that counter is initialised with the value of the "n_elems” argument that is instantiated when

the started method of the pipeline state object is invoked. As said before, it is assumed that the

number of elements forming a pattern instance’s structure is known within the context that

represents the instance, namely, pipeline context in this case.

Whenever the execution of one pattern element (i.e. component) ends, the value of the

122

terminate_repeat

start

pred(n)

pred(n) n

count

0

0

Repeat(n_iterations, pipeline)

n_iterations

repeat
_terminate

Repeat context

first_

n

set(n_iterations)

iterations

remaining_
_iterations

do_start next_iteration

_iteration

end_of
repeat

//

//

define_first_iteration

Start
Input(d) Input(d)

Start
Output(d) Output(d)

0
pred(n)

n

execution_
_ended

_ended
execution_

started(n_elems)

Start

terminate

set_repeating

rept
rept

pipeline
state

n_elems

Start

Terminate

Terminate Terminate

_termination
register_

get_repeating

count_
ended

rept

state

termi−
nated

terminate_called

end

iteration_ended

execution_
_ended

TerminateRepeat(pipeline) pipeline context

Figure 4.39: Example of the Repeat and TerminateRepeat operators applied to a pipeline in-
stance.

above counter is decremented. Such happens when each component (in fact, each wrapper)

generates an event through its execution_ended gate upon executing ending. As a direct con-

sequence of this, the register_termination method in the pipeline state object is invoked. When

the counter reaches zero, that object generates an event that results on a call request to the

next_iterationmethod available at the Repeat context.

Finally, the TerminateRepeat operator implies a synchronisation call ruled by the simultaneity

policy to the Terminate method at each pipeline element, as well as to the terminate method of

the pipeline state object. In this object, the transition “terminated” sets the "state” place with

a "terminated” token. On one hand, this denies an immediate re-start, i.e. at this time an

invocation to the Start method fails since the get_repeating method in the pipeline state object

cannot succeed because the token at the place "state” is not "rept”. On the other hand, the

transition “terminated” also generates an event through one gate of the pipeline state object,

which in turn will result on the invocation of the terminate _repeatmethod at the Repeat context.

123

This method, in turn, invokes the _terminate method that sets to zero the value of the place

“remaining_iterations”. Consequently, the sequential re-start of the Pattern Instance triggered

by the Repeat operator is interrupted.

4.4.5 Limit Operator

//

//

Output(d) Input(d)Input(d) Output(d)

Terminate

Start

Terminate

Start

Start

Terminate

Start

Terminate

pipeline context

tick get_tick

decrement_

Limit(time_interval, pipeline)

Limit context

set_time_interval

_interval

terminate_
_execution

counter

(t>0)
0

pred(t)

tTime_ticker

do_terminate

Figure 4.40: Example of the Limit operator applied to a pipeline instance.

The Limit(δT, P) operator waits until the time value received as input (i.e. δT) expires

– followed by the termination of the Pattern Instance managed by this operator, in case the

pattern is still being run. It is assumed that the Limit operator is applied to a running pattern

instance (i.e it may be composed with or applied in sequence after the Start operator), and its

action is restricted to that particular execution. This means that in order to limit the time of the

pattern’s next execution, it is necessary to apply the Limit operator again.

The description of the Limit operator’s semantics includes two contexts: the Limit and the

pipeline contexts, as represented in Figure 4.40. The Limit context consists of an object that

registers the time interval, decrements this interval at each tick of a clock object, and when it

reaches the zero value a transition is fired prompting the operation of the Terminate method

on the pipeline Pattern Instance. As depicted in the Figure, a zero value for the time_interval

parameter of the Limit operator originates an immediate call to the Terminate method in the

pipeline context.

The Terminatemethod, in turn, causes a synchronisation call with a simultaneity policy to the

terminate methods available at the components’ interfaces. For simplification reasons, the pat-

tern instance’s state is omitted although it is also assumed that the effectiveness of the Terminate

124

method depends on the pattern being in the running state.

4.4.6 Restart and TerminateRestart Operators

Component
instance

Synchronisation

Simultaneity//

Method of
the Context
(Input port)

Method
required by
the Context

(Gate)

Legend:

Operator’s
object

Input port
(Method)

Output port
(Gate)

Context

Output(d)

Start

Input(d)

StartStart

Input(d) Output(d)

Terminate Terminate Terminate

Start

//

//

pipeline contextTerminate

_terminated
set_launch_

restartdecrement_
interval

Time_ticker

tick

do_restart Restart context

Restart(time_interval, pipeline) terminate_restart

get_tick

set_time_interval

pred(t)

t

state
iterating

ended

time
t

iterating

iterating

(t>0)
(t>0)

(t>0)

t

0
counter

//

TerminateRestart contextTerminateRestart(pipeline)

Figure 4.41: Example of the Restart and TerminateRestart operators applied to a pipeline in-
stance.

The Restart(δT, P) operator is similar to the ⁀Limit operator described previously, in the

sense that both operators depend on the notion of time for controlling a pattern. Namely, when

the time value received as input (i.e. δT) expires, an operation is performed over the Pattern

Instance represented by the parameter “P”. However, the Restart operator results on the invoca-

tion of the Start operation over the Pattern Instance it manages, after waiting for the expiration

of the value held by the input time token. Moreover, the Restart operator guarantees a peri-

odic re-launching of the pattern it is applied to – the time token is saved and after launching

one particular execution the next execution will start as soon the received time interval expires

again.

The TerminateRestart(P) operator, in turn, discontinues the periodic re-start set by the Restart

operator and terminates a possible current execution. The existence of the TerminateRestart

125

operator separated from the Terminate operator, allows the division between: a) the termination

of a single (current) execution (which is done with the Terminate operator) and that not prevents

the subsequent periodic re-starts; and b) the interruption of the periodic re-starts, guaranteed

by the TerminateRestart operator.

The semantics of the Restart and TerminateRestart operators are depicted in Figure 4.41. The

semantic description of the Restart operator relies on two contexts, the Restart context and the

Pattern Instance context it is applied to (in this case, the pipeline context). Since the semantics

of the TerminateRestart depends on the two previous contexts, these are represented as sub-

contexts of the TerminateRestart context, allowing a simultaneity synchronisation call to the

pipeline context’s Terminate method and to the terminate_restart method of the Restart context.

This latter method changes the state of the present Restart operation to ended, preventing fur-

ther re-starts.

The Restart context encapsulates two CO_OPN/2 objects: one is a timer which generates a

tick at a specific time interval (e.g. a second); the second object represents the necessary steps

for the restart operator. One of the transitions in the Petri-Net in this second object decrements

the time interval (received as argument) at each tick of the timer, and keeps the result in the

counter place. When the counter reaches zero, a second transition is fired which launches the

restart of the pipeline’s execution through the do_restart gate, and also re-initialises the place

“counter” with the original time interval (kept in the place “time”). The call of the Restart

operator also initialises the place “state” defining that the process is "iterating”. The firing of the

launch_restart transition also depends on the value of that place. In fact, if the TerminateRestart

operator is called meanwhile, the state’s value changes to "ended”, preventing the automatic

restart. Upon the next call to Restart, the state’s value is set again to "iterating”.

As can be concluded from Figure 4.41, the semantics of the Restart operator is disassoci-

ated from the time that the Pattern Instance, which the operator is applied to, takes to com-

plete its execution. Therefore, it is assumed that the user defines a reasonable time_interval for

re-launching the execution (i.e. the value of the δT parameter should be greater than the Pat-

tern Instance’s execution time). For example, for some applications it may be useful to launch

their execution on a weekly basis, whereas for others some small time_intervals are due (e.g.

frequent processing of sensor based collected data which, typically, require application depen-

dent time_intervals). The Restart operator may guarantee a periodic execution of an individual

pattern configuration that only supports part of an application’s (pattern-based) configuration,

and independently from the overall configuration’s execution being ruled by other Behavioural

Pattern Operators.

4.4.7 Log Related Operators

Logging operators allow the user to checkpoint the state of a running pattern instance, either (1)

once, (2) periodically, or (3) sequentially, and (4) to re-start the pattern’s execution from one of

those saved checkpoints. Specifically, the Log operator supports the first two types of log opera-

tions (1 and 2), whereas the TerminateLog operator discontinues the periodic logging defined by

operation (2), and the ResumeLog enacts a pattern (re-)execution from a saved checkpoint (op-

eration 4). Finally, the SeqLog operator executes a consecutive checkpointing (operation 3) that

126

can be discontinued by the TermSeqLog operator. It is assumed that the Log operators (except

for the ResumeLog) are only applied to an already executing Pattern Instance.

pipeline and
log context

_terminated
set_launch_

loggingdecrement_
interval

Log(id, time_interval, pipeline) TerminateLog(pipeline)

seqLog

SeqLog(pipeline) TermSeqLog(pipeline)

termSeqLog

Log operators
context

resumeLog(idt)

ResumeLog(idt, pipeline)

get_tick

set_time_interval(id,t)

state

ended

logging

logging

0
pred(t)

(t > 0)

t (id,t)

(id,t)

logging
(id,t>0)

idt

Time_ticker

tick (t > 0)

counter

Log controller context

terminate_loglog(id, time_interval)

do_log(idt)

saveCheckptData(idt)

Figure 4.42: Example of the Log, TerminateLog, SeqLog, TermSeqLog, and ResumeLog opera-
tors applied to a pipeline instance.

Figure 4.42 represents a simplified semantics of all log related operators, which are de-

scribed in the following.

SeqLog and TermSeqLog

The SeqLog(P) operator launches an activity for the sequential logging of the execution of

pattern “P”. This operator assumes that the PI that instantiates “P”, e.g. “pipeline” as in the

SeqLog(pipeline) context method in Figure 4.42, has an associated specification of a collection of

checkpoint code locations, corresponding to relevant points such that the state of the pattern

should be logged when execution control reaches those points. The activation of the SeqLog

operator therefore triggers an automatic mechanism for collecting a succession of intermediate

saved global states of “P”, each one taggedwith a unique identifier. Such succession constitutes

a trace of the pattern’s execution and allows its off-line inspection by appropriate tools. Please

127

note that, as “P” will typically include multiple components which are subject to a distributed

execution, the building of the trace of “P” requires the invocation of an appropriate algorithm

constructing the global state checkpointing of the distributed computation. However, at the

level of our pattern operator model, the definition of the SeqLog operator is kept independent

of the particular global checkpointing algorithm used for the above purpose. This semantics is

to be guaranteed within the pipeline and log context displayed in Figure 4.42, as a result of the

invocation of its seqLog context method.

In fact, the pipeline and log context in the Figure represents the encapsulation of: a) the three

stage pipeline Pattern Instance (PI) example used so far whose components are subject to a

distributed execution; b) an additional executable entity running the appropriate algorithm for

obtaining the mentioned intermediate global states of “P”; and c) a log component to save these

states. Each global state is to be appropriately tagged with an identifier which can later on be

used, e.g. as argument to the ResumeLog(idt, P) operator described ahead.

The TermSeqLog(P) operator, in turn, interrupts an ongoing sequential logging triggered

by the SeqLog(P) operator.

Log and TerminateLog

The semantics of the Log(id, δT, P) and TerminateLog(P) operators are associated, as rep-

resented in Figure 4.42 for the pipeline PI. The Log operator may be called to perform either a

single checkpointing or a periodic one, being the latter terminated by the TerminateLog operator.

Specifically:

1. In the case of a single checkpointing, the user labels the log through the "id” parameter of

the Log operator, and defines the time interval δT as zero. Consequently, the launch_logging

transition is promptly fired, as represented in the object within the Log controller context in

Figure 4.42. As a result, an event is generated at this context which is synchronised with

a call to the saveCheckptData(idt) method at the pipeline and log context in the Figure. Such

method represents the request for a consistent checkpointing of the global state of a pipeline

Pattern Instance (PI), with a similar semantics to what was described for the SeqLog operator.

Consequently, the PI’s global state is appropriately tagged with the value passed to the “idt”

parameter in the saveCheckptData(idt)method and is saved in the log component within the

pipeline and log context.

2. In the case of a periodic checkpointing, the user calls the Log(id, δT, P) operator with a

value greater than zero for the time interval (δT) parameter, and labels the logging opera-

tion with the "id” tag. As can be seen in the Log controller context in Figure 4.42, the "time

interval” value is used to set a timer that upon expiring fires the launch_logging transition.

Before that, the state of the log is set to "logging”, and the time interval is saved to set the

timer for the next call. The launch_logging transition results in a request for the next logging

operation through do_log(idt) event where the "idt” argument tags that specific log call.

Specifically, the "idt” identifier is the result of the "id” tag from the Log operator combined

with a time reference. Consequently, a call to the saveCheckptData(idt)method at the pipeline

and log context is generated with a similar semantics to what was previously described. Each

128

individual checkpointing of the PI’s global state is thereafter accessible at the pipeline and log

context based on the “idt” identifier.

3. To finalise the periodic checkpointing, the user may call the TerminateLog(P) operator gen-

erating a call to the terminate_log method of the Log controller context, as represented in Fig-

ure 4.42. In consequence, the value of the "state” place changes to "ended” which inhibits

the firing of the launch_logging transition. A posterior call to the Log operator will reset that

place’s state to "logging” allowing another periodic logging.

ResumeLog

In order to replay the execution of a pattern instance "P” starting from a previously saved state,

the user may use the ResumeLog(idt, P) operator. The first argument, i.e. "idt”, identifies a

specific saved state in time of the execution of "P” which may have been produced by either

the Log or SeqLog operators. As represented in Figure 4.42 for the pipeline PI example, a call

to the ResumeLog(idt, pipeline) operator implies the invocation of a method of the pipeline and

log context which is responsible for resuming the pipeline’s execution from the global state

identified by the value of “idt”.

To conclude the discussion on the Execution Operators, we restate that the described seman-

tics were defined in the context of a simple Pattern Instance example. A more complete discus-

sion would require, for example, the semantic definition of applying the described execution

operators upon Hierarchical Pattern Instances which may present different ruling Behavioural

Patterns.

Next section provides some examples on how some Execution Operatorsmay be combined,

although still applied to the same non-hierarchical pipeline PI example.

4.5 Sequences of Behavioural Operators

In this section, we first define some relevant sequences of Behavioural Operators as well as

possible compositions of those operators, and subsequently discuss some particular situations

in the context of the Restart and Repeat operators.

4.5.1 Common Sequences and Compound Operators

One common sequential application of Behavioural Operators involves the Start and Limit,

as the latter requires the operated pattern instance to be already under execution. As such,

the user launches the pattern instance’s execution and later may define a time limit for that

execution:

Start(pipeline)

. . .

Limit(time_interval, pipeline)

In case of an immediate operation of Limit to a new execution of a Pattern instance, the user

may also compose both operators forming a Compound Behavioural Operator such as:

129

Limit(time_interval, Start(pipeline))

According to what was said before, the inverse composition, namely Start(Limit(. . .)), is

not allowed. Likewise, a sequence consisting of applying the Limit operator followed by Start

results in the Limit’s action to be ignored.

Another typical Behavioural Operator sequence consists of the ordered operation of the Start,

Stop, Resume, and Terminate operators, where the sub-sequence including the Stop and Resume

operators may be applied several times:

Start(pipeline)

. . .

Stop(pipeline)

. . .

Resume(pipeline)

. . .

Stop(pipeline)

. . .

Resume(pipeline)

. . .

Terminate(pipeline)

Clearly, the Terminate operator may not be invoked in the previous sequence, if a complete

Pattern Instance’s execution is required.

The above Behavioural Operator sequence defines the possible execution states for a Pattern

Instance: through the Start operator a non-running Pattern Instance changes to the "executing”

state; the Stop operator causes a transition from the "executing” state to the "suspended” state;

the transition from the "suspended” state back to the "running” state is operated by the Resume

operator; and finally, the Terminate operator forces a transition (either from the "running” or

"suspended” states) to the "terminated” state, to which the Start operator may be applied again.

Other possible common sequences are: Repeat and TerminateRepeat; Restart and TerminateRestart;

Log and TerminateLog; and SeqLog and TermSeqLog. In each of these sequences, the time between

the two operators’ invocations is user defined.

4.5.2 Controlling Individual Executions in the Context of the

Restart/Repeat Operators

This section highlights the possible results of combining the Restart or the Repeat operators with

other Execution Operators.

I – Usage of the Terminate Operator

The Terminate operator terminates a single pattern’s instance execution, whereas the Termi-

nateRestart and TerminateRepeat operators discontinue the action of the Restart and Repeat op-

erators, respectively. Consequently, if it becomes necessary to abort the current execution of a

Pattern Instance being ruled by the two latter operators, the user may call the Terminate opera-

tor meanwhile. Therefore the following sequences:

130

Restart(time_interval, pipeline)

. . .

Terminate(pipeline)

. . .

and

Repeat(n, pipeline)

. . .

Terminate(pipeline)

. . .

will interrupt the current pattern instance’s execution, but will not discontinue the action

of the Repeat and Restart operators.

II – Usage of the Stop/Resume Operators

Similarly to the previous examples, and considering that a single execution of a particular

pattern instance lasts enough time to be controlled, the user may also apply the Stop andResume

operators to each of the several individual executions generated as a result of the Repeat and

Restart operators. This means that the following sequences are also valid:

Restart(time_interval, pipeline)

. . .

Stop(pipeline)

. . .

Resume(pipeline)

. . .

and

Repeat(n, pipeline)

. . .

Stop(pipeline)

. . .

Resume(pipeline)

. . .

III – Usage of the Limit Operator

Since both the Repeat and Restart operators make use of the Start operation, the Limit operator

may also be applied to define a maximum amount of time for one individual execution of the

particular pattern instance being operated. However, and according to the semantics of the

involved operators previously defined, different results may be produced. First, the definition

of the following Compound Behavioural Operator:

Limit(time_interval, Repeat(n, pipeline))

. . .

131

might: a) limit the execution time of the first execution of the pattern instance, in case the

time interval is less than the time the first execution of the pipeline pattern would take to be

completed; or b) interrupt the execution of the second or a subsequent invocation resulting

from the Repeat operation, in case the time interval is higher than the execution time of the first

execution. In either case, the activity of the Repeat operator would not be discontinued.

Second, the user may also invoke a Behavioural Operator sequence like:

Restart(time_interval, P)

(. . .)

Limit(time_interval, pipeline)

. . .

where the particular pattern instance’s execution iteration that may be interrupted as conse-

quence of the Limit operator would also depend on the total time of each individual execution

of the pattern instance, and on the time interval defined by the user as argument to the Limit

operation.

Finally, it might also be desirable to use the Limit operator to control the execution time of

the individual execution iterations that are generated by the Repeat and Restart operators. Such

might be possible if instead of calling the Start operator to launch each iteration, the Repeat

and Restart operators would call instead a Compound Behavioural Operator in the form Limit(δT,

Start(P)). Such improvement, however, has to be deferred to future versions of our model.

IV – Combining the Restart and Repeat Operators

Sequences of the Restart and Repeat operators should be used with care, as their semantics were

defined separately. Specifically, those operators may be applied in sequence as long as the

necessary time interval argument in Restart and the overall time to do "n” iterations in Repeat

do not conflict. Namely, the sequence:

Repeat(n, pipeline)

. . .

Restart(time_interval, pipeline)

. . .

is safe if the overall time for the "n” iterations terminates before the Restart is invoked.

Likewise, the sequence

Restart(time_interval, pipeline)

. . .

Repeat(n, pipeline)

. . .

is also possible if the Repeat is invoked and completes in between two consecutive restarts

of the pattern instance’s execution controlled by Restart.

However, to prevent disruptive mixed execution launches provoked by the sequential ap-

plication of the above two operators, their semantics should have been commonly defined in

terms of the current state of the operated pattern instance. A state machine within that pattern

132

instance’s context would define, for example, that a restart iteration would be ignored if a re-

peated execution was under way, or that a call to the Repeatwould only imply "n-1” iterations,

in case one execution was already occurring as a result of Restart operator.

Nonetheless, it might have been desirable to provide a Compound Behavioural Operator like

Restart(δT, Repeat(n, P)) that, at each restart of the "P” pattern instance’s execution, "P”

would be executed "n” number of times according to the Repeat operation. The possibility of

such composition may be eventually made available in future versions of our model.

Finally, and considering situations where sequential invocations of the Repeat operator may

occur, such sequence should be avoided if the full execution resulting from invoking the op-

erator the first time does not terminate before the second invocation. The same applies to two

sequential invocations of the Restart operator.

4.6 Summary

This chapter described the semantics of the Structural and Behavioural Operators for Pattern

manipulation. Such description included a few application examples on operator usage.

133

134

5
Towards Pattern-based Reconfiguration

Contents

5.1 Introduction . 136

5.2 The Methodology Revisited . 136

5.3 Reconfiguration . 163

5.4 Summary . 168

This chapter describes an extension of the methodology towards reconfiguration where pat-

terns are the units for development and run-time reconfiguration.

135

5.1 Introduction

One important characteristic of our model is the possibility to directly modify patterns in the

final application configuration, even at execution time. Such pattern manipulation is possible

since patterns remain as first class entities during the whole application development cycle.

Therefore, the reconfiguration process is also based on pattern manipulation through oper-

ators. Namely, modifications in the application configuration are restricted to the operated

patterns, and in the independent dimensions of structure and behaviour. Such implies that the

modifications are restricted to the sub-domains represented by each of the operated patterns,

even if they are embedded in a Hierarchical Pattern.

Moreover, a pattern-based reconfiguration through pattern operators allows the user to

control the reconfiguration process itself. Namely:

• the user may choose which parts of the application are to be modified (i.e. which pat-

terns), and also when to modify them (by using the Stop/Resume operators, or the Termi-

nate/Start operators);

• the user may also choose to modify only the structure of the application (i.e. by applying

the Structural Operators to the selected patterns), or only the behaviour (i.e. by apply-

ing the Coordination and Execution Operators); or both (e.g. by replacing one Pattern

Instance to another after checking their compatibility through an Inquiry Operator);

• the reconfiguration steps may defined in a operator script (e.g. to be reused, or to be

launched automatically);

• pattern operators allow the definition of different reconfiguration policies to modify the

same application.

To that extend, this chapter defines how to manipulate a pattern in the different stages of

the application development time, including execution time.

In our opinion, the above characteristics may contribute to minimise the overall effects of

reconfiguration over a running application, although such still has to be fully validated in our

future research. Nevertheless, the main aspects of pattern-based reconfiguration and their po-

tentialities are illustrated in this Chapter. Namely, the first section describes an extension to the

methodology discussed in Chapter 3 and defines the foundations for the pattern-based recon-

figuration process (concerning development and execution time) which, in turn, is illustrated

in the second section.

5.2 The Methodology Revisited

This section presents an extended version of the possible methodology described in sec-

tion 3.1.3 to represent also different possible ways to build an initialApplication Configuration, as

well as the possibility tomodify it at development time. Applicationmodification, in particular,

is useful to adapt the configuration to new requirements and, therefore, the considerations dis-

cussed in this section are used as the basis to support application reconfiguration as described

in section 5.3 ahead.

136

(semantic definition)
Behavioural Pattern (BP)

(a particular SP with well−defined
structure and number of elements,
as component place−holders)

Structural Pattern (SP)
(semantic definition)

(all or a part of the S−PT’s
elements are linked to executables)

(a S−PT combined with
one or more B−PTs)

Components/
Tools/Services

associate/bind
executables

associate/bind
executables Components/

Tools/Services
(rules enforcing the semantics
of the BP; characterisation of
the roles of each participant)

runnable entity)
(pattern−based

Structural Pattern Template (S−PT)
Create

Component Instantiated
Structural Pattern (CISP)

Pattern Template (SB−PT)

Pattern Instance (PI)

apply B−PT(s) B−PTs

Define

Behavioural Pattern Template (B−PT)
apply B−PT(s)

Figure 5.1: Relating the used pattern definitions.

The first sub-section describes the steps of the extended methodology, and the other sub-

sections, in turn, discuss operator usage in that context, specifically on handling other possible

pattern entities besides Structural Pattern Templates (S-PTs) and Behavioural Pattern Templates (B-

PTs), as defined in section 3.1.1. For clarity, we re-display the inter-relation between those enti-

ties in Figure 5.1. First of all, section 5.2.2 describes the manipulation of SB-PTs, i.e. Structural

Pattern Template (S-PT) combined with one or more Behavioural Patterns. Second, the opera-

tion of CISP, i.e. Component Instantiated Structural Patterns is described in section 5.2.3. Finally,

section 5.2.4 discusses the handling of Pattern Instances (PIs).

5.2.1 Methodology Steps

Figure 5.2 extends Figure 3.2 with additional ways for application configuration. Next, we

describe the set of possible methodology steps represented in the Figure.

First, and similarly to what was previously described in section 3.1.3, the user selects the

adequate Structural Patterns Templates, and second, defines the application’s Structural Config-

uration by manipulating those templates through Structural Operators.

Third, Behavioural Pattern Templates are applied to the elements in the structural configura-

tion, thus producing a Template Configuration. If necessary, this configuration is further extend-

ed/changed by applying additional Templates and Operators (both structural and behavioural

like Ownership Operators).

137

execution
launch

operations
ownership

inquiry /

inquire /
refine /

compose

operations
ownership

inquiry /

templates
new

templates
new

templates
new

instantiation

reconfiguration
structural

applied to

instantiation

control execution /
change dependencies

Structural
Pattern

Templates

Pattern
Templates

Behavioural

Components

Services
/ Tools /

Running
Application

Pattern
Templates

Behavioural

Structural Operators

Structural
Pattern

Templates

Behavioural Operators

Behavioural Operators

Structural Operators

Behavioural OperatorsConfiguration
Structural

Template
Configuration

Configuration
Application

application
direct

manipulation

transformation
produced

Reconfigured
Application

Figure 5.2: Methodology steps for application configuration and execution control.

Fourth, the instantiation of the component place-holders within the Template Configuration

generates theApplication Configuration. Unlike the basicmethodology presented in section 3.1.3,

the user may still change this configuration. Namely, as shown in Figure 5.2, the user may

apply other (Structural and Behavioural) Pattern Templates, instantiate the new component

place-holders, and activate the necessary operations through the (Structural and Behavioural)

Operators. Such changes may be done in the following ways:

A- The user recursively applies the previously described sequence: adds and manipulates

Structural Patterns through Structural, Inquiry, and Ownership operators; combines new

Behavioural patterns to the new Template Configuration and operates them through Own-

ership operators; and finally instantiate the available component place-holders.

B- Particular Pattern Instances, i.e. fully instantiated (Structural plus Behavioural) Pattern Tem-

plates, may also be replaced with other Pattern Instances. Before replacement, the user

138

may check for the compatibility of those Pattern Instances through an Inquiry Operator,

namely, IsCompatible(P1, P2) (section 3.3.3).

C- The user first associates specific component executables to Structural Pattern Templates be-

fore defining the (data and control) flow dependencies between them (i.e. before apply-

ing particular Behavioural Patterns to those Structural Pattern Templates). These patterns’

elements are therefore tagged relating them to the associated component executables.

However, these resulting Component Instantiated Structural Patterns (CISPs) are still not

runnable, meaning that they cannot yet be operated by executable operators, although

they can be saved in a repository for later reuse. Having defined those CISPs, the user

may then combine them with the necessary Behavioural Patterns generating Pattern In-

stances (PIs). Ownership operators may be applied before or after that combination.

Such changes, specifically options “A” and “C” above follow the left and right branches,

respectively, displayed in Figure 5.1. In fact, this extended version of the methodology is con-

sidered a generalisation of the one presented in section 3.1.3 as a result of the changes “A”, “B”,

and “C” which are possible in this fourth step.

As the final step, the user launches the application’s execution and configures its run-time

behaviour through the Behavioural Operators, as described in section 3.1.3.

Having identified the new actions concerning a more general possible methodology for

pattern-based application configuration, the next subsections clarify some of those steps. The

first sub-section (section 5.2.2) describes the third methodology step, namely the operation of a

Structural Pattern already combined with one or more Behavioural Patterns. The subsequent

sub-sections clarify the semantics of some operators when applied to already instantiated pat-

terns represented in the fourth step above. Specifically, the second sub-section (section 5.2.3)

describes examples of operating non-runnable instances of structural patterns, i.e. whose ele-

ments have already been linked to some executables of services but for which no flow depen-

dencies have been defined. The third sub-section (section 5.2.4), in turn, describes examples of

operating Pattern Instances before executing them.

5.2.2 Operating a Pattern Template (SB-PT)

As mentioned before, the designation SB-PT refers to a Structural Pattern Template already

combined with one or more Behavioural Pattern Templates.

Moreover, we recall the two ways of combining Behavioural Patterns to a Structural one, as

described in section 3.2.5:

• A single Structural Pattern Template is combined with a single Behavioural Pattern

Template, i.e all component place-holders are annotated with roles within a unique Be-

havioural Pattern, and in a well-defined way. We designate this pattern as a Regular

SB-PT.

• A single Structural Pattern Template is combined with two or more different Behavioural

Patterns implying that some component place-holders may be annotated with different

roles related to different Behavioural. We define this as an Heterogeneous SB-PT.

139

facade

facadePT

remote
evaluator remote

evaluator
remote

evaluator

remote
evaluator

facade
sender
code

facadePT

DefineBehavPatt(facadePT,
"Remote Evaluation")

Figure 5.3: Applying a single Behavioural Pattern to all elements of a Structural Pattern
forming a Regular SB-PT.

nucleus

server

observer

client

subject

observer

satellite1

satellite2

satellite3

starPT
starPT

nucleus

observer

subject

observer

satellite1

satellite2

satellite3

DefineRoleBehavPatt(starPT, "Client/Server",
"satellite3", "client")

Figure 5.4: Defining the behavioural role of one specific element within a pattern (and the
adding of other necessary behavioural annotations). Since that behavioural role pertains a dif-
ferent Behavioural Pattern than the one already applied to the pattern, the result is an Hetero-
geneous SB-PT.

Two examples were presented in that section:

1. Figure 3.12 showed a Regular SB-PT – a Facade S-PT combined with a Remote Evaluation

B-PT. The generation of this Regular SB-PT is presented in Figure 5.3 as a result of the De-

fineBehavPatt(facadePT, “Remote Evaluation”) operator.

2. Figure 3.13 depicted anHeterogeneous SB-PT – a Star S-PT combined with two B-PTs, namely

a Client/Server B-PT and an Observer B-PT. To build such a SB-PT, the user has to annotate

each particular element within the the structure with a particular behavioural annotation.

Figure 5.4 represents the result of applying the DefineRoleBehavPatt(starPT, “Client/Server”,

“satellite3”, “client”), which annotates the element “satellite3” with a different role from the

other satellites, thereby generating an Heterogeneous SB-PT.

The operators DefineBehavPatt and DefineRoleBehavPatt are both Global Coordination Opera-

torswhich were defined in section 3.3.6.

In general, both Regular and Heterogeneous SB-PTs can be manipulated in three ways:

1. by the application of Ownership Operators;

2. throughStructural Operators;

3. by changing the behavioural annotations associated with the Pattern Template’s component

place-holders.

140

Ownership operations are independent from the SB-PTs’ behavioural annotations, and

therefore are not discussed further. However, for the other two kinds of manipulations, the

distinction between Regular and Heterogeneous SB-PTs allows us to define some optimisations

on those patterns’ manipulation, namely in what concerns a structural reconfiguration inde-

pendently from the behavioural annotations, and change of behavioural dependencies inde-

pendently from the underlying structure.

First of all, we define as possible, the replacement of the Behavioural Pattern Template (B-

PT) ruling a Regular SB-PT by another B-PT without changing the underlying structure. More-

over, we define that the behavioural annotations of a Regular SB-PT may be pre-defined for

new component place-holders that may be added to the pattern, according to the applied Be-

havioural Pattern of the SB-PT. Thismeans that structural reconfigurations are possible without

changing the existing behaviour (i.e. the behaviour of the older elements is not affected and the

behaviour of the new elements is pre-defined). As for Heterogeneous SB-PTs no optimisations

are assumed, meaning that the user has to explicitly annotate the behaviour of new pattern’s

elements added to the structure.

To further clarify the above definitions, we start by describing possible Regular SB-PTs, and

then exemplify structural reconfiguration independent from behavioural definitions, and also

how to change these.

I – Regular Pattern Templates (SB-PTs)

Eligible Regular SB-PTs are:

• a Pipeline or a Ring pattern where all elements are coordinated by one of the following

Behavioural Patterns: a) the Peer-to-Peer pattern; b) the Streaming pattern; c) the Itinerary/-

Mobile Agent pattern where the elements in the chain pre-define the places the agent has

to travel to; d) the Producer/Consumer pattern; e)the Client/Server pattern; f) the Remote

evaluation pattern where the structural elements define the (path of) host executors for a

mobile code.

• a Star pattern whose elements may be coordinated by:

a) the Client/Server pattern where the nucleus is ruled by the "server” role within the

pattern, and all present and future satellites are "clients”;

b) the Master/Slave pattern, where the nucleus is the "server” and all the clients obey

the "slave” behaviour within the pattern;

c) the Producer/Consumer pattern with the nucleus being the "producer” and all satel-

lites being "consumers”;

d) the Observer pattern with the nucleus being the "subject” and the satellites the “ob-

servers”;

e) the Parameter-Sweep pattern where the nucleus dispatches identical code to all satel-

lites but with different parameter values and then collects the results;

f) the Code-on-demand pattern where the nucleus requests the code from its satellites;

141

g) the Remote evaluation where the nucleus sends the requested code to be executed to

the satellites;

h) the Streaming pattern where data flows either from all the satellites to the nucleus

or, inversely, from the nucleus to all satellites.

• a Proxy pattern whose elements may be coordinated by:

a) the Client/Server pattern with the RealSubject behaving as the "server” and the prox-

ies as "clients”;

b) the Producer/Consumer pattern where the RealSubject sends data to be consumed by

the "proxies” at the desired rate;

c) the Mobile Agent/Itinerary where the sequence a proxies defines the traveling path

of the "agent” (i.e. the Real Subject);

d) the Observer pattern where the proxies are notified of events related to the subjects

they are registered to at the Real Subject.

• a Facade pattern whose elements may be coordinated by:

a) the Client/Server pattern where the facade element (“client”) forwards requests to

the sub-systems (the "servers”);

b) the Remote Evaluation pattern where the facade element sends the code to be exe-

cuted by one (or more) of the sub-systems,

c) the Code-on-Demand pattern where the facade element requests the code to be exe-

cuted from one of its sub-systems;

d) the Observer pattern where the sub-systems have to observe certain events at the

facade element;

e) the Streaming and Producer/Consumer patterns where the subsystems consume the

data sent by the facade element,

f) theMaster-Slave pattern where the sub-system elements behave as the "slaves” and

the facade element plays the "master” role within the pattern.

• an Adapter pattern whose elements are ruled by: a) the Client/server pattern, where the

“adaptee” is the “server”, and the “adapter” is the client; b) the Streaming pattern, where

data flows from the “adapter” to the “adaptee”, and back from the “adaptee” to the

“adapter”.

For all the above examples, it is possible to define cases where new added elements will

behave in a pre-defined way. For example: a) on adding a new element to a Star S-PT combined

with a Master/Slave B-PT where the “nucleus” is annotated with the “master” role, the new

satellite is to be automatically annotated with the “slave” role within that Behavioural Pattern;

b) on applying the Extend operator to an Adapter S-PT ruled by a Client/Server B-PT (where

the original “adaptee” element is the “server”, and the “adapter” is the “client”), the new

“adapter” is to be annotated with the “client” role, whereas the old “adapter” becomes its

“server”, while remaining the “client” of the original “adaptee”.

142

Moreover, it would also be possible to define a map table between pairs of some of the

above Regular SB-PTs establishing which Regular SB-PTs can be transformed into other Regu-

lar SB-PTs, in the dimensions of behavioural modification or structural transformation. For

instance, examples of both conversions are, respectively: a Ring S-PT combined with the Peer-

to-Peer B-PT can be transformed into the same Ring S-PT combined with the Streaming B-PT; the

original Ring-PT combined with the Peer-to-Peer B-PT can also be transformed into a Pipeline

S-PT (with the same number of elements) combined with the same Peer-to-Peer B-PT. Mappings

like these support optimisations on both structural and behavioural transformations, some of

which will be explained in examples in the sub-sections ahead, and also in the manipulation of

both CISPs and PIs.

To conclude, and on the definition of Regular SB-PTs through the application of the De-

fineBehavPatt(P, B-P) to a S-PT, a final remark is due. For some of the Regular SB-PTs described

above, it is possible to define different ways of applying the same B-PT to a S-PT, and the result

is still a Regular SB-PT. For example, on applying the Streaming Behavioural Pattern to the Star

Structural Pattern, two different combinations are possible, both resulting in Regular SB-PTs.

Specifically, in case data flows from the nucleus to all satellites, if another satellite is added, it

will also receive data from the nucleus; in case the nucleus receives data from all satellites, it

will also receive data from any other satellite added to the Star SB-PT. However, the DefineBe-

havPatt(StarS-PT, “Streaming”) operator does not provide a way to distinguish between those

cases.

As defined in section 3.3.6, theDefineBehavPatt(P, B-P) assumes that the mappings between

the elements of “P” and the “roles” within “B-P” are pre-defined and are implementation de-

pendent. Therefore, it is up to the implementation to somehow distinguish between the differ-

ent possibilities of applying the same Behavioural Pattern to a S-PT, to form a Regular SB-PT.

However, in order to make such distinction, an extra parameter could also have been added to

the definition of the DefineBehavPatt operator (and also to the ReplaceBehavPatt operator) that

would represent information associated to the specific “B-P”. This will be included in a future

version of our model.

For the time being, and for simplification reasons, whenever the application of theDefineBe-

havPatt operator may generate any ambiguities, these will be explicitly clarified in the text.

Nevertheless, most Regular SB-PTs defined above clearly specify which is to be the behavioural

role of each element in the operated S-PT.

Next section describes possible structural operations on SB-PTs, either Regular or Heterogeneous

SB-PTs.

II – Structural Operation of SB-PTs

In this section we define two possible structural manipulations of both Regular and Heteroge-

neous SB-PTs:

1. Structural Operators act only over the structure of a SB-PT with no regard to the behavioural

annotations.

2. A SB-PT may be structurally manipulated as whole (i.e. a first class entity) and, conse-

quently, the behavioural annotations are also taken into account. This allows further optimi-

143

sations for some Structural Operators. To distinguish such manipulation from the previous

one, we use the designation FCSB-PTs (i.e. First Class (Structural plus Behavioural) Pattern

Templates) for a SB-PT whenever necessary.

Both types of structural manipulations will be exemplified for each of the following op-

erators where the distinction between Regular and Heterogeneous SB-PTs will be highlighted

whenever relevant.

1 – Replicate operator

remote
evaluator remote

evaluator
remote

evaluator

sender
code

facade1

cph1

cph2
cph3

remote
evaluator remote

evaluator
remote

evaluator

sender
code

facade2

cph1

cph2
cph3

facade2SB−PT

remote
evaluator remote

evaluator
remote

evaluator

sender
code

facade1

cph1

cph2
cph3

facadeSB−PT

remote
evaluator remote

evaluator
remote

evaluator

sender
code

facade1

cph1

cph2
cph3

facadeSB−PT

facade2

facade2S−PT

cph1

cph2
cph3

Replicate(1, facadeS−PT, "facade2S−PT")

facadeSB−PT = {facadeS−PT + RemoteEvaluationB−PT}

Replicate(1, facadeSB−PT,
"facade2SB−PT")

Figure 5.5: Replicating a SB-PT in two ways: a) considering it as a first class entity
(“facadeSB-PT”); b) acting only over the Structural Pattern Template included in the SB-PT
(“facadeS-PT”).

The duplication of SB-PTs, either Regular orHeterogeneous, by the Replicate operator can be done

in two ways:

a) if a SB-PT is a FCSB-PT, its defined structure and applied behavioural annotations are dupli-

cated for the replicas, meaning that identical FCSB-PTs are created. This is exemplified on

Figure 5.5 where the FCSB-PT named “facadeSB-PT” is replicated once through Replicate(1,

facadeSB-PT,“facade2SB-PT”) generating a new SB-PT named “facade2SB-PT”. Otherwise,

b) only the structure of the SB-PT is duplicated creating a new Structural Pattern Template.

This is done on bottom of Figure 5.5 by applying the Replicate operator to the S-PT within

the pattern “facadeSB-PT”. As represented in the Figure, this SB-PT is the combination of

a Facade Structural Pattern Template named “facadeS-PT” and a Remote Evaluation Be-

havioural Pattern Template named “RemoteEvaluationB-PT”. The operation Replicate(1,

facadeS-PT, “facade2S-PT”) explicitly acts upon the structure of the SB-PT, and produces

a new S-PT named “facade2S-PT”.

144

In this example, as well as from now on, we use different identifiers for a SB-PT and its

associated S-PT and B-PT, as a way to distinguish between the access to the SB-PT as whole (i.e.

treating it as a first class entity, i.e. FCSB-PT), or to the S-PT/B-PT, individually. Nonetheless,

such distinction could have been exemplified by adding an extra parameter to the definition of

the operators (e.g. a flag) that would differentiate if the SB-PT is to be structurally manipulated

as a FCSB-PT or not.

2 – Replace and Reshape operators

On one hand, the Replace operator can be applied to a FCSB-PT replacing it by another FCSB-

PT. For example, it is possible to replace a FCSB-PT like a Proxy Structural Pattern Template

(S-PT) annotated with aMaster-Slave Behavioural Pattern Template (B-PT) which is included in

aHierarchical Pattern by another FCSB-PT like a Star S-PT annotated with the Client/Server B-PT.

On the other hand, the Replace operator may also be used to replace the Structural Pattern

Template (S-PT) within a SB-PT by another S-PT while keeping the Behavioural Pattern Tem-

plate (B-PT), resulting on a new SB-PT. For example, it could be possible to replace the Star

S-PT in the previous example (i.e. a SB-PT including a Star S-PT and a Client/Server B-PT), by

a Proxy S-PT. However, this feature is only applicable in the context of the Regular SB-PTs as

the ones described in the previous section, since the role of each element within the SB-PT is

regular/pre-defined (e.g. all created proxies become annotated with the client role in the ex-

ample above, and the Real Subject becomes the server). However, whereas for Regular SB-PTs

it would be possible to build a mapping (to be automatically applied) of possible structural

replacement within a SB-PT, for Heterogeneous SB-PT such mapping would be infeasible.

In general, and due to its semantics restrictions previously described, we define the Reshape

operator not to manipulate SB-PTs.

3 – Embed/Extract operators

To include a SB-PT into another (or into a simple S-PT) through the Embed operator, that SB-

PT is manipulated as a FCSB-PT. Therefore, the pattern to be embedded keeps the same be-

havioural annotations as before. The same applies for the Extract operator.

4 – Group/Ungroup and Eliminate operators

The Group and Ungroup operators handle SB-PTs as FCSB-PTs: the grouped FCSB-PTs are rep-

resented by the resulting aggregate as a whole, as for normal S-PTs. The Ungroup dissolves

the FCSB-PT passed as argument but the inner SB-PTs continue to exist, similarly to what was

described for S-PTs in section 4.2.1.

The Eliminate operator, in turn, when applied to any kind of SB-PTs deletes the Structural

Pattern and, consequently, the behavioural annotations.

5 – Increase and Decrease operators

The Increase operator can either: a) act over the Structural PT of a SB-PT; or b) manipulate

the SB-PT as a FCSB-PT. In the first case, the structure of the SB-PT is increased and the new

component place-holders do not have any automatically associated behaviour. Consequently,

dependencies for the new place-holders have to be explicitly annotated by the user.

In the second case, since the SB-PT is considered a first class entity (FCSB-PT), the control

and data flow dependencies of the new component place-holders are pre-defined, as long as

the SB-PT is a Regular FCSB-PT as described above. In case of an Heterogeneous FCSB-PT, the

user also has to explicitly annotate the dependencies for the new elements.

145

Increase(1, facadeSB−PT)

remote
evaluator remote

evaluator
remote

evaluator

sender
code

cph1

cph2
cph3

facade

remote
evaluator remote

evaluator
remote

evaluator

remote
evaluator

sender
code

facade

cph1

cph2
cph3

cph4

remote
evaluator remote

evaluator
remote

evaluator

sender
code

facade

cph1

cph2
cph3

cph4

Increase(1, facadeS−PT)

facadeSB−PT = {facadeS−PT + RemoteEvaluationB−PT}

Figure 5.6: Augmenting the number of component-place holders of a SB-PT in two ways: a)
considering it as a first class entity (“facadeSB-PT”); b) acting only over the Structural Pattern
Template included in the SB-PT (“facadeS-PT”).

Figure 5.6 presents the increasing of a Regular FCSB-PT concerning the above two cases. As

shown in the left side of the Figure, the FCSB-PT is named “facadeSB-PT”, and consists of a

Facade S-PT (identified as “facadeS-PT”) combined with a Remote evaluation B-PT. The “facade”

component place-holder within the FCSB-PT is annotated with the “code sender” role within

the B-PT, and the sub-systems are annotated as “remote evaluators”.

The top right-hand side of Figure 5.6 shows the result of operating the “facadeSB-PT” as a

first class entity – one extra element is added (“cph4”) and it is automatically annotated with

the “remote evaluator” behaviour. The bottom right-hand side, in turn, shows the direct mod-

ification of the structure (identified as “facadeS-PT”) ignoring the associated B-PT, resulting on

the new component place-holder (“cph4”) having no behavioural annotations.

The Decrease Structural Operator, in turn, when applied to a SB-PT, either considered as first-

class entity or not, removes component place-holders, and eliminates the related behavioural

annotations. This has no major implications on the behavioural annotations of the other com-

ponent place-holders for Regular SB-PT. For example, removing a sub-system of the “facadeSB-

PT” in the previous example (Figure 5.6) has no effect on the other sub-systems.

However, for the elimination of elements from an Heterogeneous SB-PT, it is necessary to

explicitly identify the element to be removed. To accomplish such removal, one needs to use

the second version of the definition of theDecrease operator as presented in section 3.3.2. More-

over, the behavioural annotations of the remaining component place-holders after the Decrease

operation may have to be explicitly modified by the user (e.g. the removal of a pipeline’s inner

stage that behaves as a server to the previous client stage and as a producer to the subsequent

consumer stage leads to an incoherent result).

146

A SB-PT whose underlying structure obeys the Adapter Structural Pattern requires an ad-

ditional remark – the restriction concerning the impossibility of operating an Adapter S-PT re-

mains. Therefore, the Increase/Decrease operators are not applicable to such a SB-PT.

6 – Extend and Reduce operators

remote
evaluator remote

evaluator
remote

evaluator

sender
code

remote
evaluator remote

evaluator
remote

evaluator

sender
code

real
subject

real
subject

facadeSB−PT = {facadeS−PT + RemoteEvaluationB−PT}
facade2

cph1

cph2
cph3

facade1
cph1

cph2
cph3

facade1

proxySB−PT = {proxyS−PT + Client/ServerB−PT}

clientserver

proxy1

server clientPserverP

proxy2 proxy1

client /

Extend(proxySB−PT)

Extend(facadeS−PT)

Figure 5.7: Extending two SB-PT in two ways: a) considering it as a first class entity
(“proxySB-PT”); b) acting only over the Structural Pattern Template included in the SB-PT
(“facadeS-PT”).

Similarly to the Increase operator, the Extend operator can also either: a) act over the Structural

PT of a SB-PT; or b) manipulate the SB-PT as a FCSB-PT. Figure 5.7 presents two examples

concerning those situations. As an instance of the first situation (a), and on bottom of the

Figure, the underlying structure of the pattern “facadeSB-PT” (a Facade S-PT combined with

a Remote evaluation B-PT) is augmented through the Extend Structural operator. The access to

that structure is done through “facadeS-PT”, passed as argument to Extend and, consequently,

a new component place-holder is added to the structure (according to what was defined for

the Facade Structural Pattern (Figure 4.6 in section 4.2.1)), and no behavioural annotations are

added to the new element “facade2”.

As an example of the second situation (b), the top of Figure 5.7 shows the Extend opera-

tor being applied to a Proxy S-PT whose elements are annotated with roles within the Clien-

t/Server Behavioural Pattern. The “proxySB-PT” in the top left-hand side of the Figure includes

a “proxy1” component place-holder, which is annotated as the “client” within the Client/Server

pattern , and the “realsubject” which is associated with the “server” role. Since this SB-PT is

operated as a first class entity, structural modifications are automatically annotated with data

and control flow dependencies. Consequently, extending the “proxySB-PT” results in the ad-

dition of an extra component place-holder –“proxy2” – that is tagged with two roles. On one

side, “proxy2” becomes the (direct) “client” of “realsubject”. On the other side, “proxy2” is also

147

annotated as a server (identified as “serverP”) to the original “proxy1” (symbolically annotated

as “clientP”). In this way, “proxy2” can forward normal requests from “proxy1” to be answered

by the “realsubject”. The present example may illustrate the migration of a service to a new

location resulting in a chain of proxies to reach that service.

client2

proxy4

real
subject

server

proxy5

client3

clientP1

proxy1

proxy2

clientP2

serverP

proxy3

client1 /

Reduce(proxySB−PT)

clientP1

proxy1

proxy2

clientP2

real
subject

server

proxySB−PT = {proxyS−PT + Client/ServerB−PT}

Figure 5.8: Applying the Reduce operator to a SB-PT.

As for the application of the Reduce operator to a SB-PT, it is not necessary to distinguish be-

tween operating only the structure of a SB-PT and operating it as FCSB-PT. The Reduce opera-

tion results in the elimination of some elements according to the semantics of the operated S-PT

(e.g. Figures 4.29 and 4.30 in section 4.3), and consequently, all related behavioural annotations

are also eliminated.

For example, Figure 5.8 illustrates the application of the Reduce to a Proxy S-PT combined

with the Client/Server B-PT (“proxySB-PT”). The “proxySB-PT”, on the left-hand side of the Fig-

ure, had already been operated by the Extend and Increase operators which resulted on three

new elements annotated with roles within the applied Behavioural Pattern: “proxy3” repre-

sents the “realsubject” acting as a “server” to the pre-existent “proxy1” and “proxy2” elements;

“proxy3” is also a “client” to the “realsubject” analogously to the “proxy4” and “proxy5” el-

ements which were created as a result of the Increase operator. The operation of Reduce on

“proxySB-PT” undoes the above actions of the sequential operation of the Extend and Increase

operators, and the necessary behavioural annotations are removed. The result is a contracted

structure where the “realsubject” returns to its original position within the structure, thereby

replacing “proxy3” which is eliminated, and the elements “proxy4” and “proxy5” are also

deleted.

To finalise the discussion on SB-PT manipulation, next section describes how to change the

behavioural annotations within a Template Configuration independently from its structure.

III – Behavioural Modification of SB-PTs

A behavioural modification of a Structural PT combined with one or more Behavioural PTs (i.e.

a SB-PT) comprises the change of the behavioural annotations of the SB-PT’s component place-

holders. Similarly to the structural reconfiguration of FCSB-PTs (i.e. SB-PTs manipulated as

first-class entities), the modification of the behavioural annotations within those pattern tem-

148

plates can also be optimised. Specifically, we define the possibility of replacing the Behavioural

PT (B-PT) associated to a FCSB-PT by another B-PT, resulting on the automatic modification of

all behavioural annotations of the entire component place-holders within the SB-PT.

Nevertheless, we highlight that such automatic behavioural modification is defined in the

context of Regular SB-PTs, since it is possible to define structural and behavioural transfor-

mation mappings between those FCSB-PTs towards reconfiguration, as it was previously dis-

cussed in section 5.2.2.

The replacement of a Behavioural PT within a FCSB-PT is defined by the ReplaceBehav-

Patt(SB-P, B-P1, B-P2) operator introduced in section 3.3.6. The first argument to the operator

is to be the first-class SB-PT whose behavioural annotations are to be modified. These are rep-

resented as a whole by the second argument, “B-P1”, that identifies the Behavioural Pattern

Template to be replaced with the new Behavioural Pattern Template passed as the third argu-

ment, namely “B-P2”.

remote
evaluator remote

evaluator
remote

evaluator

sender
code

"Remote Evaluation",
ReplaceBehavPatt(facadeSB−PT,

"Client/Server")

FCSB−PT Result FCSB−PT

facadeSB−PT = {facadeS−PT + RemoteEvaluationB−PT} facadeSB−PT = {facadeS−PT + ClientServerB−PT}

ReplaceBehavPatt(SB−PT, B−P1, B−P2)

cph1

cph2
cph3

facade

cph1

cph2
cph3

facade

server

server server

client

Figure 5.9: Modifying the behavioural annotations of a SB-PT considered as a first class entity
(“facadeSB-PT”).

Figure 5.9 shows an example of applying the ReplaceBehavPatt operator to the “facadeSB-

PT” regarded as a first class SB-PT. This FCSB-PT was previously presented in Figures 5.6

and 5.7. The original behavioural annotations within that FCSB-PT are conform to the Re-

mote Evaluation Behavioural Pattern, and the new annotations comply to the Client/Server Be-

havioural Pattern as described in section 5.2.2 – the “facade” component place-holder is tagged

with the “client” role and all sub-systems are annotated with the “server” role within that be-

havioural pattern.

Having described the third step of the more generic methodology explained in section 5.2.1,

the following sub-sections (5.2.3 and 5.2.4) describe the fourth step within that methodology.

The next-subsection, in particular, considers the manipulation of Structural Pattern Templates

still not associated to any Behavioural Pattern Templates, but whose component place-holders

are already instantiated to specific executables (i.e. CISPs), whereas the subsequent sub-section

presents PImanipulation.

149

5.2.3 Operating Component Instantiated Structural Patterns (CISPs)

We define as Component Instantiated Structural Pattern (CISP), a S-PTwhere all or a sub-set of its

component place-holders are already associated to executables. We designate the first case as a

Full CISP, and the second case as a Partial CISP.

To represent the instantiation process we define two new (Structural) Operators, namely:

Instantiate(P, position, component) The component place-holder (CPH) of pattern “P” iden-

tified by the parameter “position” is instantiated to the executable/service identified by

the parameter “component”. As a consequence, the pattern’s bound element is annotated

with the executable/service to be executed at run-time, and can thereafter be accessed by

the name of that executable/service (i.e. the value of the parameter “component”).

Unistantiate(P, position) The instantiated element of “P” identified by the parameter “po-

sition” is unbound, meaning that the annotations that associate that element to an exe-

cutable/service are deleted. Whether this uninstantiation operation generates a free CPH

with the same identifier it received when it was first created, or receives a new name is

implementation dependent. Nevertheless, the new name as well as all members’ identi-

fiers should be kept unique within the pattern.

facadeCISP facadeCISP

Pattern Result pattern
Instantiate(Pattern, position, component)

Instantiate(facadeCISP, "cph1", "Resource management")

cph1
cph2

cph3

Grid domain

cph2
cph3

Grid domain

Resource
management

cph1

Figure 5.10: Instantiation of the component place-holder “cph1” of the pattern “facadeCISP”
to the “Resource management” component.

Figure 5.10 represents, as an example, the association of one of the elements of the pat-

tern “facadeCISP”, namely the component place-holder named “cph1”, to the “Resource man-

agement” executable/service. The Unistantiate(facadeCISP, “Resource management”) operator

would, in turn, eliminate that association resulting on a free component place-holder.

Considering now the semantics of the Structural Operators characterised in Chapter 4, their

application to both types of Component Instantiated Structural Patterns (i.e Full CISPs and Partial

CISPs) implies no further considerations for the majority of operators. Namely, the Eliminate,

Replicate, Replace, Extend, Reduce, Embed, Extract, Group, and Ungroup operators are applied in

the same way to CISPs as they were before to S-PTs. However, the Embed operator can only be

applied to CISPs with free (not instantiated) component place-holders.

As an example of the use of one of those operators, Figure 5.11 shows the result of applying

the Extend operator to an already instantiated Facade Structural pattern. The Facade interface

150

management
Resource

Scientific
tool

Data
service

Grid domain

management
Resource

Scientific
tool

Data
service

Grid domain

Pattern Result pattern

facadeCISP

facade

Extend(facadeCISP)

Extend(Pattern)

Figure 5.11: Extending a Component Instantiated Structural Pattern, namely “facadeCISP”

is named "facadeCISP” and the pattern represents the controlled access to a particular Grid

domain and its available facilities, namely, for resource management, control of a scientific

tool, or data services like file transfer. In case this Grid domain is to be part of a new wider

Grid domain that will be responsible to control the access to the former domain as well as

other Grid domains, the original Facade is manipulated in the usual way through the Extend

operator. The result of this operation is depicted on the right side of Figure 5.11. The resulting

extended Facade can then be increased as necessary, new patterns may also be embedded, and

the available component place-holders can therefore be instantiated.

As for the remaining operators, namely Reshape, Increase, andDecrease, further clarifications

are needed. TheReshape operator, in particular, is not to be applied to CISPs as this would imply

several particular cases. Nevertheless, this limitation may be revised in further developments

of our model. The Increase/Decrease operators, in turn, are not applicable to a CISP conforming

to the Adapter Structural Pattern, similarly to what was defined for an Adapter S-PT, but can be

applied to the remaining CISPs. Such is described in the next sub-sections. Nevertheless, we

recall that the Increase/Decrease operators are not recursive, meaning that their effect is restricted

to the first level of a CISP.

Applying the Increase Operator to a CISP

As it was presented in section 3.3.2, there are two possible versions for the Increase operator,

namely:

Increase(n, P) Adds “n” new component place-holders to pattern “P” according to its seman-

tics.

Increase(n, P, position) Adds “n” new component place-holders to pattern “P” but at a spe-

cific position within the pattern. Such position is related to the pattern element identified

by parameter “position”.

The version Increase(n, P) was previously described for S-PTs in section 4.2.1, and can be

applied to the basic cases of the Star, Proxy, and FacadeCISPs with similar results as if they were

S-PTs, due to those patterns’ structural characteristics.

151

management
Resource

Scientific
tool

Data
service

Grid domain

management
Resource

Scientific
tool

Data
service

Grid domain

cph1

cph2

facadeCISP

Result patternPattern
Increase(n, Pattern)

Increase(2, facadeCISP)

Figure 5.12: Increasing a Component Instantiated Structural Pattern (“facadeCISP”) by two
component place-holders.

For example, Figure 5.12 shows the application of the Increase(n, P) version to a Full CISP

based on the Facade Structural Pattern, i.e. “facadeCISP” which represents a Grid domain pro-

viding access to a set of services. The result of the Increase operation is the creation of two new

component place-holders within the pattern’s structure, and the new elements are labeled with

unique tags within that pattern, namely "cph1” and "cph2”. The creation of two new compo-

nent place-holders for Star CISPs or Proxy CISPs would be similar as presented for the Facade

CISP.

However, for cases of the Pipeline and Ring CISPs, for which it is possible to identify a se-

quential order for the elements, an extra parameter for the operator is mandatory. Specifically,

to identify where to create the new component place-holders within the sequence of elements

that define those CISPs. Therefore, the second form of the Increase operator has to be used in

those cases. Concretely, the “position” parameter in the Increase(n, P, position) operator identi-

fies the element within the Pipeline or Ring CISPs after which the new component place-holders

are to be placed. In the particular case of a Pipeline CISP, if the “position” parameter is in-

stantiated with a “zero” identifier, the new component place-holders are created before the first

element in the pipeline.

Gravit
wave
detect

HistgrmFFT

Gravit
wave
detect

HistgrmFFT

cph1 cph2

Increase(2, pipelineCISP, "FFT")
pipelineCISP

Increase(n, Pattern, position)
Pattern Result pattern

Figure 5.13: Increasing a component instantiated Pipeline (“pipelineCISP) by two component
place-holders inserted after element "FFT”.

For instance, Figure 5.13 shows a case of increasing a PipelineCISPwith the definitionwhere

to place the new elements. The pattern, named “pipelineCISP”, represents a simple example in

the area of astrophysics supporting data analysis and processing of out of space waves. First,

these are detected by a "Gravitational wave detector” (first stage in the pipeline), they are then

modified by "FFT”, a Fast Fourier transformation, and finally the result is analysed at the last

152

stage through an "Histogrammer” (a graphical displaying unit for rendering input signals).

The right-hand side of Figure 5.13 shows the result of the operation of the Increase where the

position to include the two new component place-holders is after the "FFT” component. Each

new component place-holder is tagged with a unique identifier within the pattern, as usual.

On the other hand, the addition of two new component place-holders before the first element

of the “pipelineCISP”, i.e. “Gravitwavedetect”, would for example, be accomplished with the

invocation: Increase(2, pipelineCISP, “zero”).

A final remark concerning the increasing of instantiated Structural Patterns, in particular of

Facade CISPs like the one in Figure 5.12, is due. According to the semantics of the Facade Struc-

tural Pattern, the member representing the facade element within the structure provides an in-

terface to all sub-systemsmembers. Therefore, it is assumed that the addition of new CPHs to an

already instantiated Facade CISP, i.e. the facade element is already bound to an executable/ser-

vice, is only possible if that facade element is also possible to provide an interface for the ex-

ecutables/services that are to instantiate the new CPHs. Therefore, the new CPHs added to

the “facadeCISP” in Figure 5.12 are supposed to be instantiated with tools/services compatible

with the “Grid domain” element.

Applying the Decrease Operator to a CISP

Similarly to the Increase operator, the Decrease operator also exists in two versions and can be

applied both to partially and fully instantiated Structural Patterns (i.e. Partial CISPs or Full

CISPs):

Decrease(n, P) Eliminates free (non instantiated) component place-holders (CPHs) within

pattern “P”. The number of CPHs to delete is defined by the parameter “n”. In case

“n” is greater than the number of free CPHs, only those free CPHs are deleted.

Decrease(n, P, position) Eliminates both free and instantiated CPHs from pattern “P”. The

parameter “n” defines the number of elements to remove, and the parameter “position”

defines the element where the deletion starts. In case of patterns for which it is possible

to define an ordering within the pattern, e.g. Pipeline and Ring CISP, the parameter “n”

defines the number of elements to delete after, and including, the element defined by the

parameter “position”. For the other types of patterns, e.g. Facade, Proxy, and Star CISP

without an implementation-defined ordering, this version of the Decrease operator only

removes a single element. Therefore, the parameter “position” identifies the element to

remove, and the parameter “n” is to be instantiated with the value one.

Figure 5.14 depicts the usage of theDecrease operator in two forms, namely, non-instantiated

elements’ removal, and elimination of a specific element. The first form is exemplified by op-

erating a Facade Partial CISP named "facadeCISP”. The operator invocation results in trying to

eliminate two component place-holders from the Facade, but since only one exists within the

pattern, solely this one ("cph1”) is in fact removed.

The second form of the Decrease operator is exemplified at the bottom of Figure 5.14 – three

elements of a partially instantiated pipeline pattern (“pipelineCISP”) are deleted from it, start-

ing from (and including) the "Gaussian” element. In case only the "Gaussian” element is to

153

management
Resource

Scientific
tool

Data
service

cph1

Grid domain

management
Resource

Scientific
tool

Data
service

Grid domain

Gravit
wave
detect

cph1

HistgrmFFTGaussian Gravit
wave
detect

Histgrm

Result pattern
Decrease(n, Pattern)

Decrease(2, facadeCISP)

Pattern

facadeCISP

Decrease(n, Pattern, position)Pattern Result pattern

Decrease(3, pipelineCISP, "Gaussian")pipelineCISP

Figure 5.14: Application of the Decrease operator. The first example (upper part of the Figure)
presents a case of reducing the number of component place-holders from a Partial CISP, namely,
a partially instantiated Facade. The second example shows the usage of the Decrease operator to
eliminate a set of elements from a Partial CISP (“pipelineCISP”) starting at a specific element,
namely the "Gaussian” element.

facadeCISP

management
Resource

Scientific
tool

Data
service

Grid domain

facadeCISP

management
Resource Data

service

Result patternPattern

Decrease(1, facadeCISP, "Scientifictool")

Grid domain

Decrease(n, Pattern, position)

Figure 5.15: Elimination of one particular element of the “facadeCISP”, namely “Scientific-
tool”.

be removed upon invocation of the Decrease, the argument "n” should have the value one, i.e.

Decrease(1, pipelineCISP, “Gaussian”). Likewise, the removal of a specific instantiated CPH from

the “facadeCISP” pattern would require the value one for the parameter “n”, e.g. Decrease(1,

“facadeCISP”, “Scientifictool”) as represented in Figure 5.15.

Please note that, it is not allowed to use the Decrease(n, P, position) operator version to

remove a crucial element of a non-topologic CISP or one element that disrupts the structural

semantics of the pattern. For example, it is not possible possible to delete the “Grid domain”

element from the “facadeCISP” in Figure 5.14, as it is not possible to delete the nucleus of a Star

CISP, nor the “realsubject” of a Proxy CISP.

154

Next section concludes the description of the possible actions in the fourth methodology step

defined in section 5.2.1, namely the operation of Structural Patterns combined with (one or

more) Behavioural Patterns (i.e. SB-PTs) but whose elements are already bound to specific

executables, i.e. Pattern Instances (PIs).

5.2.4 Operating Pattern Instances (PIs)

In this section we clarify the operation of a Pattern Instance (PI)which represents:

• a fully or partially Component Instantiated Structural Pattern (CISP) (defined previously in

section 5.2.3) annotated with one or more Behavioural Patterns;

• the result of associating (all or a sub-set of) the component place-holders of a SB-PT (a

Structural Pattern Template combined with one or more Behavioural Pattern Templates,

as defined in section 5.2.2) to executables representing components/services/tools.

Moreover, we recall the distinction between Regular SB-PTs and Heterogeneous SB-PTs de-

fined in section 5.2.2 and exemplified in section 5.2.2. Such differentiation is also made in the

context of PIs, namely:

• A Regular PI represents a Pattern Instance (PI) whose present and future elements are

to be coordinated by a Single Behavioural Pattern at run-time. Specifically, the data and

control flows annotations associated to pre-existing and future elements are well defined,

both at development time and at run-time. Therefore, the user does not need to explic-

itly define the flow dependencies for the new added elements since their behaviour is

established by default.

• An Heterogeneous PI represents the combination of a single (partially or totally) instanti-

ated Structural Pattern with more than one Behavioural Pattern providing the pattern’s

elements with different behaviours. Consequently, new elements of the Heterogeneous PI

are not automatically associated with pre-defined data and control flow dependencies,

but these have to be explicitly defined by the user.

Furthermore, we also define the possibility of operating PIs as first-class entities, similarly

to was described for SB-PTs. Consequently, these PIs, designated as FC-PIs, can also be, for ex-

ample, replicated or replaced as a single entity, but their underlying structure and behavioural

annotations are also directly accessible towards independent structural and behavioural recon-

figuration purposes.

Finally, and concerning all possible operations over PIs, these are identical to the three ones

described for SB-PTs in section 5.2.2, but with the necessary distinction between development

time and run-time. Namely, on one hand, Ownership operations, Structural operations, and the

modification of behavioural annotations are all applicable to PIs at development time, and with

similar results to what was explained for SB-PTs. On the other hand, those three types of

pattern manipulation are also possible at run-time but, in some cases, under the control of the

other possible operations, namely, Execution Operators (previously presented in sections 3.3.5

and 4.4).

155

The description of overall run-time manipulation of PIs is deferred to section 5.3, whereas

the following two sub-sections describe, respectively, Structural operations and the modification

of behavioural annotations over the different types of PIs at development time. As for Ownership

operations at development time, these are similar to operating S-PTs or SB-PTs, and are, again,

not discussed.

I – Structural Operation of PIs

First of all, the application of the Eliminate operator to a PI results in its deletion – any annota-

tions related to behaviour or to the binding to executables are completely discarded.

Moreover, and similarly to CISPs, the Reshape operator cannot be applied to any Pattern

Instances (PIs). A PI with a particular behaviour cannot therefore be transformed into another

PI comprising a different structure (and that would either present the same behaviour or a

different one).

The Replace operator, in turn, can only be applied to a First-Class Pattern Instance (FC-PI),

and it may be substituted for another FC-PI, for a S-PT, or for a SB-PT. For these two latter

replacing patterns, the user has to subsequently apply, as necessary, additional behavioural

annotations and to instantiate the component place-holders to executables in order to build a

new PI.

As for the Replicate operator, in case the PI is manipulated as a FC-PI, a new complete and

identical PI is created. However, the Structural Pattern within the PI is also directly accessible,

meaning that in this case the Replicate operation results in the creation of a new S-PT with the

same structure as the operated PI.

TheGroup andUngroup operators, in turn, handle PIs as FC-PIs: the grouped FC-IPs are rep-

resented by the aggregate as a whole, and at any time the aggregate can be dissolved through

the Ungroup operator but the inner PIs remain existing.

Clearly, the Embed operator can only embed FC-PIs and into a pattern which has free com-

ponent place-holders (CPHs), may it be already a Hierarchical PI, or not. In fact, and in case of

the destination being a Hierarchical PI, this can only be either a group, or a partially instantiated

PI – Partial PI (i.e. PI that has at least one free component place-holder). The Extract operator

can also only remove a FC-PI fromwithin aHierarchical PI, being the latter either a group-based,

or a partially/fully instantiated Hierarchical PI (i.e. Partial Hierarchical PI or Full Hierarchical PI).

Finally, and considering the application of the Increase/Decrease and Extend/Reduce opera-

tors, these operators make the distinction between manipulating, or not, a PI as a first class

entity. Specifically, the manipulation of FC-PIs results in pre-defined behavioural annotations

to be automatically added to the new elements within FC-PIs, optimising therefore a FC-PI’s

reconfiguration. We discuss first the Increase/Decrease operators, with the exception of PIs with

a structure conforming to the Adapter Structural Pattern, as those operators are not applicable

in this situation. Afterwards, this section ends with the Extend/Reduce operators.

a) – Applying the Increase Operator to a PI

The manipulation by the Increase operator (in its two versions) of a PI results in the cre-

ation of “n” new component place-holders, being “n” the number passed as argument to the

operator. As expected, the new elements are structurally connected to the other elements in

conformity to the Structural Pattern within the PI. Furthermore, the behavioural annotations

156

of the pre-existent elements remain the same after the Increase operation and, by default, the

new component-place holders are not tagged with any behavioural annotations. As a result,

a structural reconfiguration independent from the behaviour is accomplished. The user may

then annotate the new elements with roles within a specific Behavioural Patterns.

However, in the case of a Regular PI, as the ones suggested in section 5.2.2, the behaviour

of the new elements is predictable, since a single Behavioural Pattern is to rule their flow and

data dependencies at run-time in a well defined way. For this reason, it is possible to anno-

tate automatically those new elements with pre-defined roles within that Behavioural Pattern.

Contrarily, an Heterogeneous PI is to be coordinated by two or more Behavioural Patterns, and

therefore, it is up to the user to associate new elements with a behaviour.

Nevertheless, we also offer the possibility of not defining automatically the roles of new

elements within a Regular PI. As such, only if the Regular PIs are manipulated as first class

entities (i.e. a Regular FC-PI) the behavioural annotations are added automatically. Otherwise,

it is up to the user to annotate explicitly the new elements with specific roles, for example,

within a different Behavioural Pattern and, consequently, transforming the Regular PI into an

Heterogeneous PI.

Gravit
wave
detect

cph1

FFT Histgrm

Gravit
wave
detect

HistgrmGaussian FFT

Gravit
wave
detect

FFT Histgrm

direction of the data
and control flows

Streaming Behavioural Pattern: Instantiate(pipelinePI, "cph1", "Gaussian")

Increase(1, pipelinePI, "Gravwavedetect")

pipelinePI = {pipelineCISP + StreamingBP} pipelinePI = {pipelineCISP + StreamingBP}

Figure 5.16: Increasing a Regular FC-PI by one element, namely a pipeline pattern combined
with the Streaming Behavioural Pattern.

Figure 5.16 presents an example of increasing the number of elements of a Regular FC-PI.

The PI in the Figure represents a pipeline for gravitational wave processing which is to be

coordinated, at run-time, by the Streaming Behavioural Pattern. As shown in the left-side of the

Figure, the pipeline has three stages defined with data and control flows which will obey the

Streaming pattern. Namely, the first stage is associated with a tool for detecting gravitational

waves ("Gravwavedect”) and it is marked to produce data to a Fast Fourier transformation

component ("FFT”). This component, in turn, is to send the transformed data to a visualisation

tool ("Histgrm”).

Since the component place-holders within a PI are already bound to executables, it is nec-

essary to define where the new component place-holder is to be placed. This is accomplished

through the extended version of the Increase operator, namely Increase(n, P, position). In the case

of the example depicted in Figure 5.16, the new component place-holder is created after the

“Gravwavedetect”, as shown in the right-hand side of that Figure. Moreover, the new element

157

is to obey to the Streaming Behavioural Pattern, and consequently, its data and flow dependen-

cies are automatically annotated, being similar to the annotations of the pre-existent elements.

Subsequently, that component place-holder is bound to a "Gaussian” component for data pro-

cessing, defining the new stage’s action in the pipeline for gravitational wave processing. The

instantiation process is represented by the Instantiate(P, position, component) operator which

was previously described in section 5.2.3.

Seismo−
graphy
center

News
center

Francisco
San

EQOC

Angeles
EQOC

Los
observer

observer

client

subject

server

client
server

GovInst

Behavioural Patterns’ annotations:

Observer

Client/Server

Increase(1, starPI)

Seismo−
graphy
center

Francisco
San

EQOC

Angeles
EQOC

Los
observer

nucleus

server

observer

client

subject

GovInst

Seismo−
graphy
center

Francisco
San

EQOC

Angeles
EQOC

Los
observer

nucleus

observer

client

subject
satellite1

server

GovInst

starPI = {starCISP + ObserverBP + Client/ServerBP}

Instantiate(starPI, "satellite1", "Newscenter")

DefineRoleBehavPatt(starPI, ClSv, "satellite1", "client")

Figure 5.17: Increasing an Heterogeneous PI by one element, namely a star pattern combined
with the Observer and Client/Server Behavioural Patterns.

Concerning the modification of an Heterogeneous Pattern Instance (PI), Figure 5.17 depicts a

star whose elements are coordinated in different ways. On the left-hand side of the Figure, two

satellites within the PI, namely "LosAngelesEQOC” and "SanFranciscoEQOC” (representing

two "Earthquake Observation Centers”) are referenced as "observers” within the applied Ob-

server Behavioural Pattern; the third satellite, namely "GovInst” (representing a "Governmen-

tal Institution”) is associated with "client” role within the applied Client/Server Behavioural

Pattern; and finally, the nucleus of the star, "Seismographycenter” in the Figure, is marked

for playing two roles – as the "subject” and as the "server” – concerning the two applied Be-

havioural Patterns.

The addition of an extra element to the star through the Increase(n, P) operator version is

represented in the right-hand side of Figure 5.17. A new component place-holder, i.e. "satel-

lite1”, is created, and it is not automatically tagged with a specific behaviour. The user has to

explicitly associate that element with a role, for example, a "client” role. This is displayed in

Figure 5.17 by the application of the DefineRoleBehavPatt(P, B-P, {element, role}) operator pre-

sented in section 3.3.6, i.e. DefineRoleBehavPatt(starPI, ClSv, “satellite1”, “client”) .

Finally, the new component place-holder is instantiated to an executable component, i.e. a

158

"Newscenter” as shown in the Figure, through the Instantiate(starPI, “satellite1”, "Newscenter”)

operator. After the instantiation, it will be ruled at run time by the Client/Server Behavioural

Pattern on interacting with the "Seismographycenter”.

b) – Applying the Decrease Operator to a PI

The decreasing of the number of elements of a PI is similar to Component Instantiated Struc-

tural Patterns (CISPs), but where the behavioural annotations have also to be contemplated.

As such, we recall the two definitions for the Decrease operator (presented in section 3.3.2 and

discussed in section 5.2.3) and define their consequences on the behavioural annotations. Con-

cretely:

Decrease(n, P) Decrements the number of non instantiated elements, i.e. component place-

holders (CPHs) of a Partial PI (i.e. partially instantiated PI) “P”, by the value "n”. If this

number is greater than maximum number of the existing free CPHs, only these CPHs

are deleted. Hence, the operator has no effect in the case of a fully instantiated PI (i.e. a

Full PI). The behavioural annotations associated with the eliminated component place-

holders are also removed.

Decrease(n, PI, position) Deletes "n” pattern elements (either instantiated or CPHs) from a PI

“P” starting at, and including, the pattern element identified by the argument "position”.

In case it is not possible to define a structural orderingwithin the operated PI, theDecrease

is to be called with argument "1” for the parameter "n”, meaning that only the pattern

element define by "position” is removed. The behavioural annotations associated with

the removed elements are also eliminated.

Behavioural Patterns’ annotations:

Observer

Client/Server

Seismo−
graphy
center

Francisco
San

EQOC

Angeles
EQOC

Los
observer

Seismo−
graphy
center

Francisco
San

EQOC

Angeles
EQOC

Los
observer

nucleus

observer

subject

Decrease(3, starPI)

cph1

cph2

observer

subject

client
server

observer

subject

starPI = {starCISP + ObserverBP + Client/ServerBP}

Figure 5.18: Decreasing a partially instantiated Heterogeneous PI by two component place-
holders. Although it was requested the deletion of three CPHs, only the two existing CPHs are
deleted. All behavioural annotations pertaining to those components are also eliminated.

On one hand, an application example of the first form of the Decrease operator, is depicted

in Figure 5.18. Specifically, the Decrease(3, starPI) operator is applied to the Heterogeneous PI

named “starPI” for the deletion of three component place-holders. Since only two CPHs exist

within “starPI”, they are eliminated along with their behavioural annotations. The resulting PI

159

is shown on the right-hand side of the Figure. As can be observed, the “server” role annotation

(pertaining to the Client/Server Behavioural Pattern) of the nucleus of the star (i.e. “Seimog-

raphycenter”) no longer exists, as a result of the removal of the related “client” component

place-holder (i.e. “cph2”).

direction of the data
and control flows

Streaming Behavioural Pattern:

Seismo−
graphy
center

Francisco
San

EQOC

Angeles
EQOC

Los
observer

nucleus

observer

subject

server

GovInst

client

Seismo−
graphy
center

News
center

Francisco
San

EQOC

Angeles
EQOC

Los
observer

nucleus

observer

subject

server

server

GovInst

client

client

Decrease(1, starPI, "Newscenter")

starPI’s behavioural annotations:

Observer

Client/Server

Decrease(1, pipelinePI, "FFT")Gravit
wave
detect

HistgrmGaussian FFT
Gravit
wave
detect

HistgrmGaussian

pipelinePI = {pipelineCISP + StreamingBP}

Figure 5.19: Decreasing two PIs by one element. On top, the element “FFT” is removed
from the Regular PI “pipelinePI”. On bottom, the element “Newscenter” is removed from the
Heterogeneous PI “starPI”.

On the other hand, two application examples of the second form of the Decrease operator,

i.e. Decrease(n, P, position), are shown in Figure 5.19. The first example is depicted in the

upper part of the Figure, where the Decrease operator is used to remove one specific element,

i.e. “FFT”, from a Regular PI (“pipelinePI”). Consequently, the structural connections and the

behavioural annotations remain consistent for the other elements.

The second example shows the removal of a particular element from an Heterogeneous

PI. Concretely, the “Newscenter” element is eliminated from the “starPI”, and all related

behavioural annotations are also removed, with no implications on the (still) necessary be-

havioural annotations.

Finally, two remarks are due:

1. For both versions of the Decrease operator, and for particular cases of Heterogeneous PIs, i.e.

whose behavioural dependencies are defined by two distinct Behavioural Patterns, it may be

necessary to check and correct the behavioural consistency of the resulting PI. For example,

the deletion of an inner member of a Pipeline PI that is annotated with both server and pro-

ducer roles (within the Client/Server and Producer/Consumer patterns, respectively) produces

an inconsistent behaviour that has to be corrected by the user.

160

2. As previously remarked for CISPs, it is not allowed to use the Decrease(n, P, position) opera-

tor version to remove a crucial element of a PI, i.e. an element whose deletion would disrupt

the pattern’s structural semantics. For example, it is not possible to delete the “Seismogra-

phy center” element from the “starPI” in Figure 5.19, since it is not possible to have a Star

pattern without a “nucleus” element within the structure.

c) – Applying the Extend and Reduce operators to a PI

Considering the manipulation of PIs by the Extend and Reduce operators, such is similar to

what was described for SB-PTs in section 5.2.2 with the difference that now the pattern argu-

ment is a SB-PT whose all or a sub-set of its component place-holders are already bound to

executables.

Augmenting a PI through Extend results in the addition of an element in conformity to the

Structural Pattern within the PI. Equivalently to SB-PTs, the Extend operator can either: a) act

over the Structural Pattern underlying the operated PI; or b) manipulate the PI as a first class

entity (FC-PI). In the first situation, the structure is extended in conformity to the operated

Structural Pattern and independently from the applied behavioural annotations. This opera-

tion is similar to what was specified in section 5.2.3 forComponent Instantiated Structural Patterns

(CISPs). In the second situation (i.e. “b”), the behavioural annotations are taken into consider-

ation if the PI is Regular, analogously to what was defined for Regular FCSB-PT in section 5.2.2.

Therefore, the new added element, resulting from the Extend operation, is automatically anno-

tated with a role within the applied Behavioural Pattern.

client

adapter

Adapter
Interface

Code
Legacy

adaptee

server

Behavioural annotations:
Client/Server

Adapter
Interface

adaptee2/adapter1

server2/client1

client2

adapter2

Code
Legacy

adaptee

server1

Adapter
Interface

adaptee2/adapter1

server2/client1

Code
Legacy

adaptee

server1

adapter2

adaptLegacyPI

adaptLegacyPI = {adapterCISP + Client/ServerBP}

Extend("adapter", adaptLegacyPI)

Extend("adapter", adaptCISP)

Figure 5.20: Applying the Extend operator to a PI (“adaptLegacyPI”). At the top, the structure
is augmented disregarding the applied Behavioural Pattern. At the bottom, the PI is operated
as a Regular FCSB-PT which results in the automatic annotation of the new element with a
role within the applied Behavioural Pattern.

Figure 5.20 depicts an example of the above two situations on extending a PI. The un-

derlying structure of the operated PI is an Adapter Structural Pattern, and the data and flow

161

dependencies are to be ruled by the Client/Server Behavioural Pattern. The PI, shown on the

left hand side of the Figure, is named “adaptLegacyPI” and represents the adaptation of the

interface of a legacy code (“LegacyCode”) that supports some service. The “LegacyCode” is

the “adaptee” within the semantics of the Adapter SP and it is annotated with the “server” role,

and the “InterfaceAdapter” instantiates the “adapter” within that semantics and it is annotated

as the “client”.

The result of extending the “adaptLegacyPI” independently from its behavioural annota-

tions is represented on the top of the right-hand side of Figure 5.20 – a new adapter is cre-

ated (“adapter2”) and no behavioural annotations are attached to it. In turn, the bottom of

the Figure illustrates the result of augmenting the “adaptLegacyPI” as a Regular FC-PI – the

new “adapter2” element is automatically annotated with the “client” role within the applied

Behavioural Pattern.

Conversely, the application of the Reduce operator to a PI does not need to distinguish be-

tween operating only the structure of a PI or operating it as FC-PI, since the elimination of the

necessary elements implicates the removal of any associated behavioural annotations. There-

fore, a PI operated by Reduce obeys the structural semantics of the underlying Structural Pat-

tern, which were exemplified in Figures 4.29 and 4.30 in section 4.3, and it is similar to what

was defined for SB-PTs in section 5.2.2.

management
Resource

Scientific
tool

Data
service

UserAccess
service

Grid portal

Grid domain

serverclient

server server server

client

server

management
Resource

Scientific
tool

Data
service

Grid domain

server server server

client
Reduce(facadePI)

Behavioural annotations:
Client/ServerfacadePI = {facadeCISP + Client/ServerBP}

Figure 5.21: Applying the Reduce operator to a PI.

Figure 5.21 presents a case of applying the Reduce operator to a PI named “facadePI”

which consists of a Facade CISP whose elements are annotated according to the Client/Server

Behavioural Pattern. As a result, the outmost Facade S-P is eliminated jointly with the sub-

system (“UserAccessService”) that resulted from a previous Increase operation. The outmost

facade element is now “Grid domain” whose behavioural annotation as a “server” to the elim-

inated structural element (i.e. the facade “Grid portal”) is also removed since it is no longer

necessary.

Next sub-section discusses how to change the behavioural annotations within a PI.

162

II – Behavioural Modification of PIs

The modification of the behavioural annotations within a PI is identical to what was defined

for SB-PTs in section 5.2.2. Given a Regular PI, its applied Behavioural Pattern can be replaced

as a whole for another Behavioural Pattern that also results into another Regular PI. The Re-

placeBehavPatt(SB-P, B-P1, B-P2) operator defined in section 3.3.6 supports such behavioural

change independently from the underlying structure, with the automatic replacement of the

behavioural annotations onto all elements within the PI.

master
clusterIntf

mach1

mach2 mach3slave

slave slave

clusterIntf

mach1

mach2 mach3

scheduler

executor
executor executor

ReplaceBehavPatt(facadePI,
Master/SlaveBP,
ParameterSweepBP)

ReplaceBehavPatt(proxyPI,
Client/ServerBP,
StreamingBP)

serverP
client /

clientPserver

proxy2 proxy1
media
center

source

proxy2 proxy1
media
center

facadePI = {facadeCISP + Master/SlaveBP} facadePI = {facadeCISP + ParameterSweepBP}

proxyPI = {proxyCISP + Client/ServerBP} proxyPI = {proxyCISP + StreamingBP}

Figure 5.22: Changing the behavioural annotations of two Regular PIs.

Figure 5.22 presents two examples on replacing the behavioural annotations within two

PIs. On top of the Figure, the behaviour associated to a proxy supporting the remote access to a

media center (“proxyPI”) is changed from the Client/Server pattern (left-hand side of the Figure)

to a Streaming pattern (right-hand side of the Figure). The Client/Server behaviour supports

media download, whereas a switch to the Streaming pattern represents the “media center” now

acting as remotely accessible “streaming media system”.

The bottom of Figure 5.22 displays a facade representing the interface to a machine cluster

(“facadePI”). On the left-hand side of the Figure, the behaviour is to be controlled by theMas-

ter/Slaver pattern supporting the parallel execution of particular applications. However, this

behaviour may be switched to the Parameter-Sweep pattern in case of specific applications that

benefit from this pattern (e.g. Monte-Carlo simulations).

Next section discusses the different ways to reconfigure an application which is already

being executed.

5.3 Reconfiguration

Onemajor characteristic to be provided to application/system designers (either experts or non-

experts) is the possibility to adapt a defined configuration to both respond to new user require-

163

ments and to incorporate new system capabilities. Preferentially, such adaptation should also

be possible at runtime. Therefore, we highlight in this section the potentiality of our model on

supporting both static and dynamic reconfiguration. Namely, the structural and behavioural

operation of patterns as first class entities allows the structural change of a configuration inde-

pendently from its behaviour, and vice-versa. Moreover, Full PIs (i.e. Full CISPs combined with

one or more Behavioural Patterns) may be replaced with other Pattern Instances.

Whereas the above changes may be done at development time (as previously described in

section 5.2), the model may also support some degree of run-time reconfiguration. The first

sub-section suggests the possible ways to reconfigure a running pattern-based application, and

the second presents a few examples.

5.3.1 Reconfiguration Options

structural / inquiry /

dependency operations
/ ownership /

inquiry /
ownership /

structural /

dependency
operations

Reconfiguration
Static

Behavioural Operators
Structural /

Components

Services
/ Tools /

Pattern
Templates

Behavioural
Structural /

Application
Suspended

(Partially/Totally)Running
Application

Reconfiguration
Dynamic

Configuration
Application

Behavioural Operators
Structural /

Behavioural Operators

Start
(1) Terminate

(4) Stop
(2)

Resume
(3)

direct
manipulation

application

state transition
transformation /

2
1

3

(4)

Application
Reconfigured Terminated

Application

Figure 5.23: Summary of the possible steps for reconfiguring a running application.

There are three ways to reconfigure a running (pattern-based) application:

A to abort its execution, apply the necessary modifications, and re-execute it;

164

B to suspend the application’s execution, either completely or partially, and apply the de-

sired changes;

C to operate the running application, while trying to reduce the perturbation upon its exe-

cution.

The first situation corresponds to a Static Reconfiguration, whereas the other two may be

classified as Dynamic Reconfigurations. These situations are identified in Figure 5.23 which aims

to represent a general view towards reconfiguring pattern-based applications.

Before explaining the above reconfiguration options, it is worthwhile recalling the role of

the Start, Stop, Resume, and Terminate Behavioural Operators on controlling state transitions.

Similarly to what was described in section 4.5 for a single Pattern Instance, the transitions be-

tween different execution states for anApplication Configuration are also controlled by the above

operators. Specifically:

• The Start operator causes the application to switch to the "running” state (transition 1 in

Figure 5.23).

• The Stop operator originates a shift from the "running” to the "suspended” state (tran-

sition 2). Since this operator may be applied to individual Pattern instances within the

application, the application may be only partially suspended.

• The Resume operator changes the application back to "running” state (transition 3). Ac-

cording to what is represented in Figure 5.23, the transition from a (Partially/Totally) Sus-

pended Application to a Running Application only occurs when all previously suspended

Pattern Instances are switched to the "running” state.

• The Terminate operator aborts the execution of the Running Application, generating a tran-

sition to Terminated Application (transition 4).

These operators play a major role in the first and second reconfiguration options enumer-

ated above. Namely, a Static Reconfiguration begins with the application of the Terminate op-

erator as shown in Figure 5.23, followed by the application and operation of Structural and

Behavioural PTs and operators, and the instantiation of the component place-holders to exe-

cutable components (or services/tools). Subsequently, the resulting reconfigured application

may be (re-)launched through the Start operator.

The second reconfiguration option enumerated above concerns the modification of a run-

ning application but whose transformations can only be applied if the execution of the entire

application or of sub-parts of it are suspended. Therefore, this kind of Dynamic Reconfiguration

requires the application of the Stop operator to suspend the execution of the particular running

Pattern Instances (or the entire application) upon which changes have to be applied to. After

the employment and operation of Structural and Behavioural PTs and the instantiation of the

component place-holders to executable components (or services/tools), the Resume operator is

used to proceed with the normal execution, as depicted in Figure 5.23.

This way to reconfigure a running application, namely, by acting upon individual PIs, per-

mits changing parts of the application, but at a higher granularity than the component level

(e.g. PIs may be replaced as a single entity, or structural/behavioural adjustments may be

165

restricted to individual PIs). Moreover, the manipulated PIs may represent independent sub-

systems whose individual reconfiguration may have a reduced impact upon the overall appli-

cation’s execution.

The third reconfiguration option, namely, themodification of a running application without

suspending its execution, is also based on acting over individual PIs.

The next sub-section presents a few possible examples on how tomodify a running applica-

tion concerning the second and third reconfiguration options enumerated above. As for static

reconfiguration (first reconfiguration option above), it was already discussed and examples

were presented throughout section 5.2.

5.3.2 Reconfiguration Examples

As described in the previous section, one way to reconfigure a running application is to act

upon it and trying a minimal disturbing of its execution. Taking the characteristics of our

model into consideration, suchmodification is only possible in a restricted number of cases. On

one hand, we define as possible, the dynamic reconfiguration (i.e. with no need for stopping

the application’s execution) of the structure of Regular PIs. In fact, the addition/elimination of

elements does not disrupt the overall execution, and the behaviour of the new added elements

is pre-defined. The first two examples aim to illustrate such situation. On the other hand, it is

also possible to reconfigure a partially or totally suspended application (i.e. as a result of the

Stop operator). The third example illustrates the latter case.

First Example

Figure 5.24 presents an example that consists of a Regular Pattern Instance based on the Star

Structural Pattern whose elements’ data and flow dependencies are ruled by a single Be-

havioural Pattern, namely, the Client/Server. As shown in the Figure, the number of satellites

is augmented by one, firstly by adding a new satellite component place-holder to the structure,

and secondly, by instantiating it with a runnable component whose execution is automatically

launched. Such procedure is represented in the Figure by the InstantiateRunnable(gridservicePI,

“satellite1”, “Gridclient4”) action that corresponds to the implementation mechanism of asso-

ciating the selected executable to "satellite1” and launching its execution. As it would be ex-

pected, the new element’s dependencies to the nucleus of the Star, namely "Gridserver”, are to

be ruled by the Client/Server pattern, similarly to what happens to the other satellites.

Second Example

Figure 5.25 presents a dynamic reconfiguration as a way to build a dynamic itinerary for a mo-

bile agent. This may be useful, for example, for a “Grid agent” whose visited “grid services”

are to be dynamically defined. The PI representing the “Grid Agent” relies on the Proxy Struc-

tural Pattern combined with the Itinerary/Mobile Agent Behavioural Pattern. Such combination

defines a Regular PI, and the agent is moved simply by operating the PI through Extend. A

chain of proxies is left behind, allowing the remote access to the “Grid Agent” wherever its

location.

166

nucleus

gridservicePI

Grid
server

Grid
client1

client2
Grid

client3
Grid

gridservicePI

Grid
client1

client2
Grid

client3
Grid

Grid
client4

Grid
server

InstantiateRunnable(gridservice, "satellite1", "Gridclient4")

Increase(1, gridservicePI)
gridservicePI = {starCISP + Client/ServerBP}

nucleus

satellite1

client1

Grid
server

client2 client3
Grid

Grid

Grid

Figure 5.24: The dynamic reconfiguration of a Regular Pattern Instance representing a Grid
service.

direction of the data
and control flows

Itinerary/Mobile Agent Behavioural Pattern:

proxy1

(client)(GridServ1)
location1 home

Agent
Grid

proxy1

(GridServ2)
location2

(GridServ1)
location1

proxy2

home
(client)

Agent
Grid

gridAgentPI = {proxyPI + ItineraryBP}

Extend("Grid Agent", gridAgentPI)

Figure 5.25: Building a dynamic itinerary for an Agent

Third Example

The other way to reconfigure a running application, is to suspend its execution temporarily

(through the Stop operator), operate its configuration through the available Structural and Be-

havioural operators, and then resume execution within the new configuration.

Figure 5.26 presents an example of a running application which has to be stopped in order

to be reconfigured. Concretely, the pre-defined itinerary (i.e. defined at development time)

for a “Grid Agent” has to be changed. In order to guarantee that the agent does not miss an

intermediate new stage within the Itinerary, the entire PI is to be suspended through the Stop

167

Increase(1,
gridAgentPI,
"GridServ@C")

direction of the data
and control flows

Agent
Grid

location3 location2 location1 home

(GridServ@A)

clientGridSrv
@C

GridSrv
@B Agent

Grid

(GridServ@A)

location2 location1 homelocation3location4

client

cph1

GridSrv
@C

GridSrv
@B

Agent
Grid

(GridServ@A)

location2 location1 homelocation3location4

clientGridSrv
@C

GridSrv
@F

GridSrv
@B

Instantiate(gridAgentPI, "cph1", "GridSrv@F")

gridAgentPI = {pipelineCISP + ItineraryBP}

Itinerary/Mobile Agent Behavioural Pattern:

Figure 5.26: Reconfiguring a Pattern Instance whose execution needs to be stopped.

operator. The left-hand side of Figure 5.26 presents the already stopped PI that supports the

pre-defined Itinerary for a “Grid Agent” – the PI is named “gridAgentPI”.

The inclusion of a new (intermediate) destinationwithin the itinerary is achieved by operat-

ing “gridAgentPI” through Increase. This operator allows the definition of the specific position

where to insert the new element, namely, after “GridSrv@C” (which represents a Grid service at

location “C”). Subsequently, the new element is instantiated with the new destination, namely,

“GridSrv@F” (a Grid Service provided at location “F”). The execution of “gridAgentPI” can

thereafter be resumed with the guarantee that the new location is also visited.

5.4 Summary

This chapter described reconfiguration strategies for applications built as a result of pattern

composition, both for development time and also while an application is already executing.

To that extent, the chapter also discussed an extended version of the methodology associated

to the model which defines pattern manipulation at the different phases of the application

development cycle.

Namely, we proposed an approach for control of the reconfiguration process itself, namely,

reconfiguration may be done explicitly by the user, on a per pattern basis, and the reconfigu-

ration steps may be defined as sequence of operators applied to those patterns. Furthermore,

individual pattern reconfiguration may be performed in the two dimensions of structure and

behaviour, either independently or jointly.

Nevertheless, the reconfiguration capabilities discussed in this chapter still have to be fully

validated in terms of their adequacy to solve the problems inherent to dynamic reconfiguration

previously mentioned in Chapter 2, and also raise other problems related with the coordination

of the behaviours in a Hierarchical Pattern. Such was not possible to be studied in the context

of this thesis, but will be the subject of future research concerning our model.

168

6
The Architecture and its

Implementation

Contents

6.1 Introduction . 170

6.2 The Architecture Supporting the Model 170

6.3 An Instance of the Architecture: Implementation over Triana 177

6.4 Patterns and Operators in Triana . 185

6.5 Mapping to the DRMAA API . 208

6.6 Summary . 216

This chapter describes an architecture supporting the model and a specific implementation of

a subset of the model based on an extension of the Triana workflow system. This chapter also

discusses the partial mapping of the architecture onto a distributed programming interface,

namely the DRMAA API.

169

6.1 Introduction

To provide the user with the possibility of configuring and controlling the execution of a

Pattern- and Operator-based application, these have to be integrated in an environment that

offers adequate support for all stages of the cycle application development process.

At design time, patterns are meant to define common inter-relations among state-of-the-art

abstractions involving components and services towards reuse. Therefore, patterns have to

be provided as first class-entities similarly to components/services so that they are manipula-

ble entities in the configuration process. Moreover, adequate support has to be provided for

Structural Operators for their effective usage on pattern refinement.

Additionally, at run-time, Patterns have to remain as operable entities, and Behavioural

Operators, in particular, require a distributed execution environment with control capacities

over application execution.

In order to fulfill the above requirements, we selected the Triana Problem Solving Environ-

ment [20] as the host implementation platform. Triana is a component-based workflow tool

that provides support for different kinds of distributed execution, including Grid access.

Hence, this chapter aims to clarify the implementation of the main concepts in the proposed

approach within Triana. Specifically, the first section describes a generic layered architecture

suitable to support the realisation of Patterns and Operators. The specific implementation over

Triana is described in the subsequent sections. Moreover, and due to the relevance of standard

generic Distributed Resource Managers Interfaces to control the execution of several resource

managers, the last section sketches a possible mapping of some of the Behavioural Operators

to the DRMAA API [43].

6.2 The Architecture Supporting the Model

Figure 6.1 represents a view of the generic architecture supporting the model based on patterns

and operators. Two major Layers shown as boxes may be identified:

• the upper layer, i.e. the upper bigger box in the Figure named Layer 1, describes the

phases of application design and mapping of components into a generic distributed plat-

form;

• the second layer, i.e. the lower bigger box in the Figure named Layer 2, represents the

necessary entities for the resource allocation, activation and distributed execution control

of the application’s components.

On the upper layer (Layer 1), the architecture is represented by three levels:

• The first level, i.e. Level 1, represents a composition environment which supports the in-

terface with the user. Examples are Problem Solving Environments and Portals, which

allow the selection of components from the second level, i.e. Level 2, and their intercon-

nection for application structuring. In general, the first level provides the user with an

integrated environment for the development of a class of applications.

170

API for Distributed Resource Management and Execution Control
and Distributed Services

Level 1

Level 1

Level 2

Level 2

Level 3

Level 3

Components of a Development and Execution Environment

(Problem Solving Environment / Portal Interface)

Generic Distribution Interface

Composition Environment

Layer 1

Layer 2

Web−based / P2P Services

Grid Services

Local Resource Managers

Figure 6.1: A generic architecture that supports the model based on Patterns and Operators.

• The components represented by the second level, i.e. Level 2, may be, for example, sim-

ulators, visualisation tools, monitoring and steering tools, or coordination components,

which are relevant for application configuration in a particular area.

• The third level, i.e. Level 3, represents a Generic Distribution Interface which provides ca-

pabilities for explicitly running and controlling the execution of components in a specific

remote place. However, the distribution capability may be completely transparent to the

user. The Composition Environment (Level 1) uses the features of this third level to provide

a distributed execution environment to the user. For example, the particularities associ-

ated with different kinds of “Grids”infrastructures are hidden by the Generic Distribution

Interface.

At the lower layer (Layer 2), several entities provide the effective distribution and execution

capabilities supporting the running application.

• The first level (Level 1), i.e. API for Distributed Resource Management and Execution Control

and Distributed Services, hides the programming specifics of the execution system under-

neath. This first level provides simpler interfaces for distributed resource management

which allow

– the allocation of the necessary resources for the application and the control of the

distributed (execution) among the local resource managers;

171

– access to Grid interfaces likeCOG or theOGSA standardwhich avoid programming

directly over the Globus [71] system;

– or access to Web and Peer-to-Peer services.

• The lower levels (Levels 2 and 3) represent the low-level distributed services:

– Grid services which give support to the distributed execution over several hetero-

geneous resource managers across different organisation boundaries;

– Web services which provide different functionalities accessible through a standard

interface, and may bridge the access to specific services like Grid services;

– and Peer-to-Peer services which provide a flexible and scalable way for execution

distribution.

The implementation of Patterns and Operators relies on Layer 1 defined in Figure 6.1.

Namely, they are integrated as entities in a Composition Environment (Levels 1 and 2 in Layer 1 in

the Figure) and benefit from aGeneric Distributed Interface (Level 3 in Layer 1). In order to support

all the described capabilities of our model, such interface has to provide adequate mechanisms

for resource management and distributed execution control and depend on obtaining moni-

toring information. One example of such desired capabilities is to suspend the execution of

all distributed components in a pattern, e.g. executing in a Grid environment, and making a

checkpoint of their state; and subsequently resuming the pattern’s execution from that saved

state. As a result of the complexity of these these kind of actions, the mapping between the

operators and the particular functionality of a resource management system therefore cannot

be pre-defined. We therefore rely on that intermediate API (i.e. the Generic Distributed Interface

in Level 3/Layer 1) implementing a “Super-Scheduler” interfacing local Schedulers necessary

to reserve and allocate resources in the Grid (e.g. [5]).

Due to the complexity of our model, only a small subset of the proposed capabilities were

effectively implemented. This is described in section 6.3. Meanwhile, next sub-section presents

a simple example aiming to highlight how pattern and operator usage relate to the layer that

supports the distributed execution of all components in the example.

6.2.1 Application Configuration and Execution Control

The application of Patterns and Operators for structuring distributed applications on Grid-

aware environments may be represented by fours steps as previously defined in the basic

methodology in section 3.1.3. Namely, in the first step, the user selects from a repository the

relevant Structural Patterns that best configure the application, generating the necessary Struc-

tural Pattern Templates. In the second step, the user refines the configuration by applying the

necessary Structural Operators, resulting in a composition of the Structural Patterns. In the third

step, the user selects the adequate Behavioural Patterns which define the control and data flow

dependencies between the elements of the Structural Patterns. Finally, in the fourth step, the

user controls the execution of the application by applying the Behavioural Operators, which also

allow the control of the reconfiguration of the application.

172

Pattern Instance

App1 App2 App3 App4

Pattern controller

job4job3job2job1

Pattern Instance

Functions of a Distributed Resource Manager

Pattern controller

Increase(1, P)

Structural Pattern Template

Instantiation of the
pattern elements
(component place−holders)
with executable applications
(App1, ..., App4)

3b−

Creation of jobs that
support the execution
of the applications at
a resource manager.
Application of the
Behavioural Operators
to the pattern instance.

4−

Generation of a Structural1−
Pattern Template

2−
Operator (Increase)
Application of a Structural

Application of a
Behavioural Pattern
−− Streaming pattern:

control dependencies

data flow dependencies

enforce the Behavioural Pattern
supported at each pattern element
by the wrapper

The "pattern controller" will

3a−

Start, Stop, Resume, Terminate,
Limit, Restart,...

Pattern Template

Pattern controller

Figure 6.2: The necessary steps to configure and execute an application using patterns and
pattern operators. Please read the Figure starting from the bottom.

Figure 6.2 presents those necessary steps to configure and execute a particular application

which, in this example, is based on the Pipeline Structural Pattern combined with the Streaming

Behavioural Pattern. Such configuration is typical of the processing/filtering in stages, the data

produced by a scientific tool occupying the first stage of the pipeline. The Figure simply aims

to be a logical outline of the more important entities and their interactions. The description of

the four steps is:

1. The user defines the structural composition that will relate the particular executables. Par-

ticularly, the user selects a Pipeline Structural Pattern from a repository and generates one

Pipeline Structural Pattern Template (S-PT) named with three elements, i.e. component

place-holders (CPHs).

173

2. An extra element is added to the S-PT through manipulation by the Increase(n, P) operator

version.

3. The user selects the Streaming Behavioural Pattern to be applied to all the elements of the

Structural Pattern Template, and instantiates the CPHs with executables. Specifically:

• Action 3a in Figure 6.2 highlights the data and control dependencies between the el-

ements defined according to the applied Streaming Behavioural Pattern through the

DefineBehavPatt(P, B-P) operator. Such dependencies are enforced by an entity, at the

pattern level, namely the pattern controller. As for the associated necessary dependen-

cies between the pattern elements these are assured by wrappers enclosing each pattern

element. The wrappers are therefore coordinated by the pattern controller. The execu-

tion of both the pattern controller and the wrappers is to be supported by the run-time

system of a distributed Problem Solving Environment (PSE). Specifically, the mapping

to a Grid/Web Services domain relies on the existing interfaces to suitable middleware.

• Action 3b in Figure 6.2, in turn, represents the Pattern Instance that resulted from the

instantiation of the component place-holders to the selected executables (called Appli-

cations in the Figure). In a workflow-based PSE each Applicationmay either represent a

single executable or a group of executables organised in a taskflow.

4. Finally, the necessary Behavioural Operators are applied to the Pattern Instance. Successful

execution of those operators is dependent on an adequate underlying distributed resource

manager which is also responsible for the execution of the Applications represented as jobs in

Figure 6.2.

Besides necessary capabilities such as selection of the most suitable hardware/software re-

sources and data transfer across different authority domains, the distributed resource manager

has desirably to provide checkpointing facilities supporting the suspension and resumption of

the jobs (e.g. in [209] it is discussed an abstraction based Grid middleware layer supporting

checkpointable hierarchical Task Graphs). Upon selection of the Start Behavioural Operator by the

user, the pattern controller is responsible for using the available PSE API to launch all the jobs

representing the Applications which are to be controlled by the underlying resource manager.

Likewise, upon the invocation of the Stop Behavioural Operator, for example, the pattern con-

troller is dependent on a suspend method available in the PSE’s API to be applied to all jobs in

the Pattern Instance.

6.2.2 Application Reconfiguration

In order to perform a few simple development and run-time reconfiguration actions upon the

example in the previous sub-section, this sub-section describes the application of some of the

concepts previously discussed in 5.2.1 and 5.3.

Reconfiguration at Development Time

After the fourth step in Figure 6.2, the user may decide to increase the number of stages of

the pipeline with an extra Application placed as its last stage. The reconfiguration is done at

174

development time, meaning that either all components in the pipeline have already finished

executing, or the user has explicitly requested their abortion through the Terminate(pipelinePI)

operator.

App1 App2 App3

Pattern controller

App4

Increase(1, pipelinePI, "App4")

Pattern Instance

cph5

App1 App2 App3

Pattern controller

App5App4

Instantiate(pipelinePI,"cph5","App5")

Pattern Instance

Result of increasing the
pipeline regular pattern
by one element after
the "App4" element.

5a−

Instantiation of the new
component place−holder
with the executable
application App5.

5b−

Figure 6.3: Application of the Increase Structural Operator at development time and after step
4 in Figure 6.2, in order to instantiate application App5 as the last stage of the pipeline.

Figure 6.3 presents the result of the cited reconfiguration, namely:

1. In step 5a (at the bottom of the Figure), the user applies the Increase(1, pipelinePI, “App4”)

operator. The result is the generation of a new component place-holder (CPH), i.e. “cph5”,

specifically located after the last pre-existent component, i.e. “App4”. Moreover, the new

CPH is automatically annotated with the same data and control flows as the pre-existent

components. Such is possible considering that the combination of the Pipeline Structural

Pattern and the Streaming Behavioural Pattern defines a Regular Pattern, as discussed in sec-

tion 5.2.2.

The addition of an extra stage to the “pipelinePI” in the characterised terms implies

i) the creation of an extra wrapper to enforce the necessary dependencies to the previous

stage; and

ii) the pattern controller becomes aware of that extra wrapper enclosing the new CPH so

that it is also considered for the overall coordination of the pattern “pipelinePI”, and

according to the Streaming Behavioural Pattern.

2. In step 5b (on top of the Figure 6.3), the new CPH, i.e. “cph5”, is bound to the “App5”

executable through the Instantiate(pipelinePI, “cph5”, “App5”). Specifically, the last pipeline

stage is annotated with the necessary information so that the “App5” component is executed

as soon as an Execution Operator, e.g. Start, Repeat, etc., is again called upon the pattern

“pipelinePI”.

175

Reconfiguration at Execution Time

This section presents an example of modifying the application defined in Figure 6.3 while it

is already executing. Specifically, we suppose that the user wants to modify the control flow

between the executables in the pipeline to the pull model [9].

We recall that the “pipelinePI” may represent, for example, an application where the data

produced by a scientific instrument, and processed by intermediate filters, is subsequently

analysed in the last stage by a controllable visualisation tool manipulated by the user. The

intended modification to the pull model may be particularly useful in the context of this ex-

ample, in case the user wants to have direct control at the pace that data is transformed and

analised. Specifically, instead of data being continuously fed into the last stage, an on-demand

request for data by the user, i.e. through that controllable visualisation tool named as “App5”,

activates the penultimate stage, namely “App4” in Figure 6.3. This activation will still result on

data being sent from “App4” to “App5” since the data flow is not changed. In case of insuffi-

cient data, subsequent activations will be propagated towards the previous stages (i.e. “App3”,

“App2”), reaching, at last, the scientific instrument, i.e. “App1”, in the first stage.

job3job2job1

Pattern Instance

Functions of a Distributed Resource Manager

Pattern controller

job5job4

job3job2job1

Pattern Instance

Functions of a Distributed Resource Manager

Pattern controller

job5job4

Stop(pipelinePI)
ChangePatternDependencies("pullRule", pipelinePI)

Resume(pipelinePI)

6a−Result of modifying the pattern
dependencies, namely, changing
the control flow from the push
model to the pull model. The

6b−
the checkpointed state, and
the pull model defines the

The execution is resumed from

Stop operator generates a saved
checkpoint of the application.

control flow.

Figure 6.4: Modifying the control dependencies within the pattern, after the application in
Figure 6.3 is executing.

Figure 6.4 represents the steps to change the control flow of the “pipelinePI” while it is

already executing. Specifically,

1. Step 6a (bottom of the Figure) presents the result of applying the following operator se-

quence:

176

i) The Stop(pipelinePI) (Execution) Behavioural Operator generates the execution suspen-

sion of the running jobs that represent the Application components at run-time. To per-

form such operation, the pattern controller generates a call to a suspend operation which

has to be available at the Functions of a Distributed Resource Manager layer presented in

Figure 6.4. It is also assumed that the suspend operation causes the (coordinated) check-

point of the state of all jobs in the Pattern Instance.

ii) To modify only the control dependencies in the Pattern Instance, the user applies the

ChangePatternDependencies(“pullRule”, pipelinePI) Global Coordination Operator de-

fined in section 3.3.6. The parameter “pullRule” in the operator represents the neces-

sary set of coordination rules supported by the implementation system to modify the

control flow.

2. Step 6b (on top of the Figure 6.4) presents the result of applying the Resume(pipelinePI)

operator to the application, which includes restoring the state of each of the “jobs” from the

saved checkpoint and continue the Pattern Instance’s execution.

In the followingwewill discuss the instantiation of the aforementioned generic architecture

representing the inclusion of Patterns and Operators into a Grid-aware platform.

6.3 An Instance of the Architecture: Implementation

over Triana

The present section describes how Patterns and Operators were supported by the Triana en-

vironment [20] towards a flexible configuration on application configuration and an explicit

control over its execution and dynamic reconfiguration. The initial sub-sections describe the

specific architecture for implementing Patterns and Operators in Triana, as well as the Triana

environment itself, whereas the succeeding sub-sections describe the actual implementation of

a sub-set of the proposed Patterns and Operators.

6.3.1 The Specific Architecture

The implementation architecture of the Patterns/Operators model outlines the concern of pro-

viding the user with high-level abstractions for application (re)configuration and execution

control, hiding the difficulties inherent to (large-scale and heterogeneous) distributed execu-

tion. Certainly, those high-level abstractions

a) demand an underlying system providing adequate support for the above requirements,

specifically in Grid environments. For example, although the semantics of the execution

operators is independent from a particular resource manager, their availability at run time

relies on the possible capabilities provided by the selected resource manager made accessi-

ble by the underlying system;

b) benefit from the availability of a suitable GUI for Pattern manipulation through the entire

application development life-cycle.

177

The Triana system [20] provides support for the two concerns above and therefore is an ade-

quate environment for the implementation of most concepts in our model.

DRMAA CoG Core /
OGSA

Web Services
Peer−2−Peer

(P2PS/JXTA)

Local Resource Managers

GAP/GAT
(Triana/GridLab)

Composition Environment
(Problem Solving Environment / Portal Interface)

(Units)
Components Patterns Operator

Library

Distribution Interface

Triana

Layer 1

Layer 2

Figure 6.5: The specific architecture, based on the Triana environment, which supports the
patterns/operators model. The shaded elements in the upper layer are the result of the work
presented in this dissertation.

Triana is a Java-based workflow environment that supports application construction based

on distributed components. On one hand, Triana provides the capability of decoupling the

user interface from the distribution functionalities, and on the other hand, provides simple

interfaces for different types of distributed execution and resource management, including the

Grid. Namely, the Triana environment has been developed in order to provide the following

kinds of execution:

• local versus remote;

• sequential versus parallel;

• Peer-to-peer execution;

• Web services;

• Grid computations.

Such characteristics are presented in Figure 6.5 which defines the specific architecture of the

implementation of Patterns and Operators in Triana which benefit from Triana’s pluggable

architecture.

As depicted on the bigger box named Layer 1 on top of the Figure, Triana provides a Compo-

sition Environment through its Graphical User Interface (GUI), from where the user may select

the adequate components/services, which are identified as Units, and interconnect them in a

workflow.

178

The Triana GUI was extended in our work so that the user may combine the components

according to Structural Patterns defined in the Pattern repository, and manipulate them using

the Structural Operators from the Operator Library (in the Figure). New patterns defined by the

user can also be saved for latter reuse.

Concerning behaviour, Triana is inherently flow based, providing both a Data-flow model as

well as Control flowmechanisms:

Data flow Data is sent in a stream or in frames between components in the workflow, and

when all necessary data is available at a Triana Unit/component its execution is auto-

matically triggered.

Control flow Control commands in Triana may control execution of the entire workflow as

well of individual components (e.g. to trigger the execution of a component).

Therefore, the Data-flow in Triana matches the Streaming Behavioural Pattern, and also the Pro-

ducer/Consumer although the buffer capacity between units is limited. Moreover, and due to

the Control flow mechanisms, other coordination patterns are also possible in Triana, e.g., to

simulate the Client/Server or theMaster/Slave Behavioural Patterns.

The result of Structural Pattern refinement through Structural Operators and the subse-

quent composition with Behavioural Patterns is represented as a Triana workflow.

A set of Behavioural Operators is also available at the Operator Library in the specific ar-

chitecture to control the execution of the final application configurations. Operators rely on

Triana’s commands/control mechanisms and capabilities of the Distribution Interface, which is

represented in the specific architecture in Figure 6.5. Concretely, the Distributed Interface sup-

ports workflow enactment and Triana commands over different types of distributed execution

environments without the burden of dealing with their specificities. Triana provides a few im-

plemented bindings for distinct distributed execution environments, but other bindings may

also be developed and plugged into the architecture.

In Triana, the GUI is completely decoupled from the distributed execution support:

• The GUI is used to define units, to produce taskgraphs, and to submit commands. Their

concrete execution is in turn processed by the Distribution Interface, which is represented

in Figure 6.5.

• There are different available readers/writers for units, taskgraphs, and commands, and

new readers/writers may also be seamless inserted into the architecture. For example,

task graph writers include BPEL4WS [267] and a proprietary XML format.

The decoupling of the GUI from the distributed execution provides, for example, the usage of

the Triana GUI simply to produce a taskgraph in a specific language, or Triana is only used to

execute an externally defined BPEL4WS taskgraph.

The Triana’s Distribution Interface is supported by the GAP/GAT interface [40] (see Fig-

ure 6.5), developed within the GridLab project [41,42]. The Grid Application Toolkit (GAT) [39,41]

provides an abstraction layer to construct and execute Grid applications which are indepen-

dent of the underlying middleware actually deployed. Previous knowledge of the runtime

environment is therefore not mandatory for end-users and application developers. The GAT

179

API provides abstract capabilities commonly required by Grid applications like resource dis-

covery, job submission, or file transfer.

In turn, the Grid Application Prototype Interface (GAP Interface) [40], which was considered

for the implementation of our model, is compliant to the GAT interface but also enables

cross-environment support for both Grid, Web Services and Peer-to-Peer technologies (see Fig-

ure 6.5). Namely, the GAP interface provides applications with methods for advertising, locat-

ing, and communicating with other peers/services.

Specifically, in the Triana version used for the implementation of Patterns and Operators

(Triana version 3.1), there are three middleware bindings implemented for the GAP Inter-

face [40, 83, 84] (see Figure 6.5):

• JXTA [77], a peer-to-peer toolkit originally developed by Sun Microsystems;

• P2PS, a lightweight alternative to JXTA;

• and a Web services binding.

A XML-based interface presented by the components in the Triana toolbox may be dynamically

bound to one of the mentioned supported underlying middleware. The task graph generated

by the composition tool is also defined in a proprietary XML, and subsequently bound to one

of the described middleware.

The first developed GAP interface was to JXTA which provides protocols for peer-to-peer

discovery and communication. However, this first binding proved to have some performance

and reliability problems. Therefore, a second binding was developed, namely the P2PSmiddle-

ware [202], whose architecture was inspired by that of JXTA. The P2PS binding [266] provides

lightweight but effective Peer-to-Peer mechanisms which are based on XML [76] advertise-

ments and messaging. For this reason, the P2PS infrastructure is independent of any imple-

mentation language and computing hardware, and it is also not tied to any single transport

protocol. With adequate P2PS implementations, Triana is to support the building of a P2PS

network that includes everything from super-computer peers to PDA peers.

The third GAP binding was the Web Services binding [83] which is based on UDDI reg-

istry [85] and theWeb Service Invocation Framework (WSIF) [86]. Triana applications may there-

fore discover, publish, and invoke Web Services, where data is packaged from Triana units to

Web Services. In the Triana GUI, Web services are represented as Units which provide trans-

parent invocation, and Triana workflows define service composition.

Concerning Grid access, the flexibility of the GAP interface allows applications to work

with Grid middleware such asOpen Grid Services Architecture (OGSA) [48,60], the Java Commod-

ity Grid (CoG) kit [13], and the GridLab Resource Management System (GRMS) service [80, 81, 84].

Implementation-wise, the Triana mappings to OGSA (through the GAT interface) and to CoG

were still not included in version 3.1 although they were already under study. Already un-

der advanced development was the binding to the GRMS service [84] as part of the GridLab

project.

The GRMS service [81] is an open source meta-scheduling system to support management

to the whole process of remote job submission to various batch queuing systems (e.g. Con-

dor [268], PBS, Sun Grid Engine), clusters, or resources directly. For example, GRMS provides

180

dynamic resource selection and mapping for load-balancing among clusters. The first release

of GRMS implementation is based on Globus system.

Finally, a mapping was also under study of the GAP interface to theDRMAA API [43] dis-

tributed resource manager system. Nevertheless, section 6.5 describes, in particular, a possible

mapping of the Behavioural Operators to the DRMAA API. This aims to clarify how specific

Operators like Stop and Resume can be effectively supported as long as there is an API with

adequate operations for distributed job control.

6.3.2 The Triana Environment

Figure 6.6: The Triana’s Graphical User Interface.

In general, Triana [20, 40, 84, 203] is a Java workflow based Problem Solving Environment

written for application construction based on distributed components. Through the Graphical

User Interface provided with Triana(Figure 6.6), users have access to components representing

services/tools for many different areas and that can be easily composed for building scientific

applications. For example, there are components for signal processing, image manipulation,

mathematical calculations, etc., and they are later bound to the tools/services that they rep-

resent to create a highly dynamic programming environment. New components may be also

easily added to Triana (e.g. using a component wizard).

On programming a component to be added to Triana, for example a scientific tool, the user

specifies the type of information a component can receive as well as the type of information it

can output. Specifically, the interface to a component in Triana is well defined through input

and output ports (designated as nodes) and parameters. Typically, input/output nodes allow the

connection to other components through communication channels, whereas parameters allow

181

modifying and sending settings or information not directly related to generated data results

among components. Each component has to be compiled only once and thereafter component

communication obeys its specified interface.

Components are present in the toolbox on the left-side of the Triana GUI (Figure 6.6) and

they are designated as Units. A Triana Unit is defined in a XML proprietary language to repre-

sent the necessary interface to the associated tool/service as well as all the necessary informa-

tion for their late binding.

Users drag and drop Units from the toolbox onto the scratch pad (present on the right

side on the toolbox), and create workflows by dragging cables that connect components to-

gether. Sender components are connected through output ports (or nodes) on the right-side,

to receivers’ input ports (nodes on the left-side). Users may also group selected components

together into a component which represents the entire set. This “group component” also has

input/output ports and parameters for connecting the group (and some of its hidden elements)

with other components in a workflow.

In the Triana GUI, the user interface to access the parameters of a component is designated

parameter panel. In Triana, this user interface is decoupled from the component and may be run

in a different computer. The parameter panel allows tuning the value of interface component

variables (e.g. to change the wave length/frequency of a wave generator tool). In the case

of group components the parameter panel also gives access to all parameters of each of the

individual components belonging to the group.

Data and Control Flow

Data and control flow between components/Units in Triana may be defined through Unit’s port-

s/nodes, events, and control commands and Units.

The available component nodes in Triana are:

Data nodes These define the data flow connection between two tools/services, were data is

sent along the output nodes of the sender, to the input nodes of the receiver. Data nodes

have associated data types, and Triana provides design-time type checking since only

allows the connection between between output and input nodes in case of data type

matching.

Data flow along data nodes is also related to control flow since data arrival at a com-

ponent’s input node may trigger its execution. Specifically, input data nodes may be

defined as mandatory/essential or optional. Mandatory input nodes block the execution

of a component until data is received on that node. Optional input nodes, on the other

hand, allow component execution triggering (e.g. through control operations) even in

the absence of data. This means that if the component has several mandatory data in-

put nodes, only when data is received on all of them is the execution of the component

triggered. Contrarily, if a component has several optional input nodes its execution trig-

gering is independent of the arrival of data to those nodes. Data arriving at an optional

data input node of a running component may be either consumed by the component or

simply ignored.

182

Trigger nodes These support control flow between components where there is no specific data

dependency. Control flow between two components is enabled by defining a trigger input

node at one of the components to which the other component sends a control signal.

Specifically, any input sent by the (controller) component will trigger the execution of

the (receiver) component containing the trigger node (the value of the input is ignored).

Input trigger nodes may also be defined as optional or essential (mandatory). In Triana

version 3.1 an input trigger node is only effective if it is defined as mandatory. This

means that a control signal sent to an optional trigger node has no effect. On the other

hand, an effective trigger node (i.e. mandatory) blocks the execution of a Unit, i.e. even

if a Unit has data at all its essential data nodes, in the presence of an essential trigger node,

the Unit’s execution will only be triggered by explicitly sending a control signal to that

essential trigger node.

Parameter nodes Besides available from the parameter panel the user interface variables are also

accessible through parameter nodes allowing sending their values between components.

Parameter nodes may also be classified as input and/or output. A parameter input node

allows changing the value of the variable it is associated to. A parameter output node is

used to send a variable’s value to another component. Parameters nodes may be con-

nected through a cable to both data nodes and parameter nodes in another component.

In this case, it is possible to syncronise the values of two variables (i.e. parameters) in

two distinct components by connecting their output and input parameter nodes.

Input parameter nodes may optionally also be defined as triggering nodes. Such means

that as soon data is ready at a component’s input parameter node, its execution is trig-

gered.

The connection between nodes is supported by communication “pipes” through which Data

and Control messages may be transmitted from the sender to the receiver, e.g. causing the

receiver to execute.

Data and control flow in Triana is also possible through events. For example, each Unit’s

parameter, when modified, generates an event. Other Units may be defined as listeners to those

parameter events. On parameter update, all the listeners are notified and receive the new value

for the parameter. Triana supports this notification also to distributed Units/components in the

network. The fact that a Triana Unit is a listener to its own parameters allows the referenced

decoupling of the parameter panel from the Unit itself for remote tuning.

Additionally, Triana provides looping and logic Units (e.g. “if-then-else” Units and “do-

while” Units) to graphically control the dataflow.

Finally, the Triana GUI provides control commands to execute the workflow defined in the

canvas, e.g. to start or to abort the execution of the workflow.

Local and Distributed Execution Models

Conceptually, and as previously discussed, Triana is a two-layered application where the Tri-

ana GUI is de-coupled from the provided distribution functionalities. These are supported by

different types of distributed execution environments, including Grid environments. A de-

tailed description of Triana’s architecture is presented in [21, 72, 82, 84, 269]. In the following

183

we present an introductory description of Triana’s execution model, particularly peer-to-peer

distributed execution in Triana (useful in highly dynamic environments).

XML WSFL−based taskgraph
Triana
Gui

Service
Triana

resource
Local

manager Service
Triana

Service
Triana

�
�
�
�

�
�
�
�

��
��
��

��
��
��

execute

Remote node

Remote node

The Grid

sub−taskgraph_A

sub−taskgraph_B

Figure 6.7: A simplified vision of Triana’s distribution model.

Figure 6.7 presents, in a simplified way, how Triana provides large-scale high-performance

execution support to applications. Specifically, distributed execution results from the composi-

tion of several network peers collaborating to solve a problem [21,72]. Each peer acts both as a

client (for local users’ requests) and as a server (for remote peers’ execution requests). Access

and communication between peers is based on JXTA architectures [77] (i.e. for distributing and

locating available peers through resource discovery, and including pipe based communication,

rendezvous nodes, etc). Locally, each peer may access existing Grid services, for example, to

execute high-performance computations (e.g. through the access to the GRMS service).

The Triana implementation considers two types of components: the Triana Controller (TC),

and the Triana Service (TS). The Triana Controller represents the user interface (either based on

command line or on a GUI) and provides access to a network of Triana service daemons run-

ning on multiple CPUs. The Triana Service is responsible for the distributed execution by ac-

cessing other peer Triana Services. Typically, one Triana Service is in direct communication with

the Triana Controller and it can be either local or remote. In Figure 6.7, such Triana Service is local

to the Triana Controller, i.e. Triana GUI.

Through the GUI, users define an application by connecting a set of components forming a

workflow. Users may also define which parts of the workflow should be executed on remote

peers. Consequently, the peer supporting the Triana GUI acts as a co-ordinator for launching

different parts of the application on other peers.

The interaction with the GUI results in a TaskGraph, i.e. a “work-flow process definition

184

that defines the tasks that need to be executed and the order in which they are executed” [73].

Namely, each component in Triana is the unit of execution resulting in a Triana Task, and the

TaskGraph is an internal object based workflow graph representation defining the Tasks (also

representing compound components) and their interconnections. The taskgraph is written in

a proprietary XML-based language, but Triana also provides a taskgraph writer for BPEL4WS,

and other writers can be plugged into the architecture as well.

The resulting TaskGraph is passed to the Triana Service directly in communication with the

Triana Controllerwhich decides which parts are to be executed locally and which sub-TaskGraphs

should be sent to remote peers. Each peer must support a Triana Service, to enable execution

requests to be received from the co-ordinator – essentially the Triana Service acts as a hosting

environment to launch and manage task execution on remote resources. A peer may subse-

quently also sub-contract execution to other peers.

Each Triana Service itself consists of three components: a Command Server Process, a Client

and a Server. Typically, the first two components are only active in the Triana Service directly

in communication with the Triana Controller. Specifically, the Command Server Process inter-

acts with the Triana Controller, and the Client is responsible for sending requests to the remote

peers in case the required programs/services are not available locally, and for collecting their

replies. Otherwise, the Server component executes/accesses those local programs/services it-

self or contacts a local resource manager (e.g. the Globus GRAM [14]1 or GRMS [80]). The

Triana Services at the contacted remote peers only work in server mode and therefore, upon

receiving a sub-TaskGraph (as represented in Figure 6.7), their Server component evaluates if the

necessary programs (services) are available. If not, the Server contacts the Server of another peer

for remote execution. Each peer Triana Service may therefore act as a gateway for distributed

execution.

Additionally, Triana provides the user with the possibility of specifying custom distributed

policies defining the mechanism for distribution within a group of Units (i.e. Tasks). Namely,

the unit of distribution is the Group Unit (e.g. representing a sub-TaskGraph), and it has its own

distribution policy implemented as a Triana Unit (named Control Unit). Triana provides some

distributed policies by default, e.g. parallel (task farming with no communication between

resources) and pipeline (each Unit in the Group is distributed on a different resource and data

is passed between them).

The following section describe the extension of the Triana environment to include support

for our Patterns and Operators.

6.4 Patterns and Operators in Triana

The Triana PSE tool was augmented in our work with a Pattern Template (PT) and Operator

library as represented in Figure 6.8. The user may therefore select a Structural PT from the li-

brary, andmay apply one or a combination of operators to modify the structure of the template.

As previously described, the Structural Operators provide a transformation between patterns,

1GRAM provides a single protocol for communicating with different batch/cluster job schedulers,
and enable users to locate, submit, monitor and cancel remote jobs on Grid-based compute resources

185

Service
Triana

Service
Triana

Remote node

resource
Local

manager

Service
Triana

XML WSFL−based taskgraph
Structural
Patterns

Operators
(script)

�
�
�
�

�
�
�
�

��
��
��

��
��
��

Remote node

The Grid

sub−taskgraph_A

sub−taskgraph_B

execute

Patterns
Behavioural

Triana
Gui

Figure 6.8: The inclusion of Patterns and Operators into the Triana Environment.

and are invariant to a given PT structure. The result may be stored by the user as a new tem-

plate in a user-defined PT library.

Once the structure has been defined, the user now instantiates components accessible

through Triana to the elements of a PT. This is then followed by defining interactions between

components – based on the provided Behavioural Pattern Templates, generating a Pattern Instance.

The current available Behavioural Patterns are the Producer/Consumer and Streaming which are

provided by Triana by default. Due to Triana’s controlling mechanisms for independent con-

trol flow from data flow, other coordination patterns may also be defined (e.g. simulating the

Client/Server pattern). Subsequently, the component interactions may be modified using the

Behavioural Operators.

Additionally, and in order to simplify and automate applications construction, the im-

plementation supports the usage of simple scripts as well. The scripts allow the creation of

Structural Patterns and their manipulation through Structural operators and execution control

through Behavioural Operators.

To conclude, the Triana’s distributed execution model, as represented in Figure 6.8 and pre-

viously described, supports the defined pattern-based component interactions and execution

control in a distributed network of peers which may give access to Grid services.

186

Figure 6.9: The Triana’s Graphical User Interface.

6.4.1 Structural Patterns and Operators in the Triana GUI

Structural Patterns were made available in Triana’s toolbox as normal components (from a

graphical perspective) as presented in Figure 6.9.

Figure 6.10: Iinitalisation of Pattern Template.

The user just has to drag and drop them into the scratch pad and subsequently initialise

them, as represented in Figure 6.10. Figure 6.9 shows a Ring Pattern Template (PT) and a Star

PT that resulted from the initialisation of DrawRing and DrawStar, respectively. The user may

change the name of each PT through the Triana GUI and in case of name collision the name is

187

automatically appended with a number defining a unique identifier.

Each Pattern Template represents a set of component place-holders called DummyUnits

which can be instantiated to other PTs or tools from the toolbox. DummyUnits are connected

together according to the PT’s specific Structural Pattern (i.e. Ring, Star, etc). Each compo-

nent place-holder, i.e. DummyUnit, has a unique identifier within the Pattern (e.g. DummyUnit,

DummyUnit1, and DummyUnit2, as in the Ring in Figure 6.9).

Structural Operators are available as parameters to Pattern Templates (through a parameter

panel) which upon selection act over the entire PT producing the required transformation. The

structural constraints of the specific operator are obeyed even if the PT is an Hierarchic PT

(i.e. this PT already comprises other PTs as its elements). For example, the Increase operator

applied to a Pipeline PT adds one extra element to the PT, independently of the stages being

DummyUnits or other PTs. In this case, the position where the new component place-holder is

placed within the PT is pre-defined, i.e. our implementation in Triana does not yet support the

Increase operator version Increase(n, P, position) (the semantics of this version was presented

in section 3.3.2).

Figure 6.11: Application of the Embed Structural Pattern to the Ring Pattern Template.

An example of the application of a Structural Operator to a Structural Pattern is presented in

Figure 6.11. Namely, to apply the Embed operator to the Ring PT, the user must first invoke the

Ring’s PT parameter window, as shown in the Figure. Next, the user specifies that the Pipeline

188

PT should be embedded into the Ring PT’s component place-holder named “DummyUnit1”.

In this example, the Pipeline PT already has an embedded Star PT.

In order to implement Structural Pattern Templates in Triana, these were mapped to groups

of the Triana model (i.e. a Unit enclosing other Units). Each group supporting a PT contains:

a) the connected DummyUnits;

b) the pattern controllerwhich supports the Pattern’s management.

For example, the Triana’s group forming the Ring PT in Figure 6.12 includes one com-

ponent place-holder (CPH) still uninstantiated named DummyUnit, two already instantiated

CPHs named Pipeline andMakeCurve, and the pattern controller (named DrawRing).

Concerning structural issues, it is the responsibility of the pattern controller

• to keep track of the number of elements within the PT (and their connections);

• to listen to relevant events (e.g. requests to instantiate DummyUnits to tools);

• to support the execution of the Structural Operators.

Examples of these actions are described next.

Figure 6.12: Instantiation of the DummyUnit component place-holder to the AccumStat Unit.

Namely, the instantiation of a particular component place-holder like theDummyUnit in the

Ring pattern in Figure 6.12 requires the activation of its parameter panel in order to select the

required Unit (representing a particular Tool, Service, Pattern, or Workflow) from the Toolbox.

Upon selection, an event is generated at theDrawRing pattern controller which replaces the

DummyUnit with the selected Unit while guaranteeing the necessary connections and keeping

the structural constraints. Figure 6.13 shows the result of that instantiation.

On the other hand, the action resulting from the selection of a Structural Operator at the

DrawRing’s parameter panel is restricted to that operated Ring. In order to manipulate one

embedded Pattern, for example the Pipeline pattern in Figure 6.13, the user has to: activate

the parameter panel of the Pipeline pattern, specifically the DrawPipeline’s parameter panel;

189

Figure 6.13: A Ring pattern fully instantiated at the outmost level.

and select the desired operator. The same applies to other patterns embedded into the Pipeline

pattern. Additionally, the parameter panel of all embedded patterns are also directly accessible

from the parameter panel of their enclosing pattern. In this way, the encapsulation of each

Pattern into a Triana’s group provides a layered access to all Patterns forming a Hierarchic

Pattern.

After composing an application by combining PTs with existing components, the user can

save them as a group component in the toolbox for later reuse.

6.4.2 Scripts of Structural Patterns and Operators

Figure 6.14: A script with structural operations is associated to a particular pattern.

In order to allow the automated building of an application’s configuration the user may

define the creation and manipulation of Structural Patterns in a script. The script is processed

by selecting the RunScript operation in the parameter window of a pattern controller and by

defining the script’s name as presented in Figure 6.14. The structural operations defined in the

script are processed in the context of a particular Structural Pattern. Additionally, the scripting

190

process has a recursive definition meaning that fromwithin a script it is also possible to process

(sub)scripts associated with other Structural Patterns. The following resumed description of

the semantics of the scripting actions are illustrated in the Extended Backus-Naur Form (EBNF)

meta-language [270].

A - Common Structural Operations

There are a few actions which are common in structural scripts, as defined in the EBNF graph

in Figure 6.15:

Create_and_Embed_Other_Patterns

Initialize

Structural_Refinement

Instantiate_DummyUnit

Figure 6.15: General structural manipulation from a script defined in EBNF. The presented
actions (nonterminal EBNF elements) may be interleaved and applied as many times as nec-
essary. A terminal element defining the end of script processing is omitted for simplification
reasons.

1. Although a script is usually associated with an existing Pattern Template on the Triana GUI,

it is also possible to generate the Pattern Template itself from within the script. Such is pos-

sible as long as the Triana Task supporting the pattern controller is already executing. This

pattern generation supports the Create(SP, name [, nElems]) Structural Operator presented

in section 3.3.2 and it is defined as the Initialize action in the script. This pattern initialisation

is defined as necessary in the EBNF graph in Figure 6.15 (i.e. the Initialize terminal element),

although such is not mandatory.

2. In a script associated to a pattern, the user may apply to that (newly created) Pattern Tem-

plate as many Structural Operators as desired. These are represented by a nonterminal

element named Structural Refinement in the EBNF graph in Figure 6.15. The Structural Re-

finement is defined in Figure 6.162. The nonterminal element Number_Max in this graph

represents the number of component place-holders in the Increase/Decrease operators.

For example, to create a Star with four component place-holders, the user as to:

(a) drag and drop the DrawStar Unit into the canvas;

(b) launch the processing of the following script from the parameter panel of DrawStar:

Initialize

Increase 1

2Although not defined here, the Reshape Structural Operator was also implemented for the non-
topological Structural Patterns and it is accessible from the Triana GUI.

191

As for the Embed operator, the nonterminal element Embed_Pattern in the EBNF graph in

Figure 6.16 represents the embedding of an already existing pattern into a component place-

holder (i.e. DummyUnit(i)).

Number_Max

Embed_Pattern

Extend

Decrease

Increase

Reduce

Figure 6.16: Structural Operators.

The definition of the Embed Operator is presented in Figure 6.17.

Embed Pattern_Name Dummy_Unit

Figure 6.17: EBNF definition of the usage of the Embed Structural Operator from a script.

Concretely, in the Embed operation the user has to:

a) specify the name of an already existing pattern (represented by the nonterminal element

Pattern_Name in Figure 6.17);

b) define where this pattern should be embedded, i.e. into which component place-holder.

This one is represented in Figure 6.17 by the nonterminal Dummy_Unit EBNF element,

which represents the names of the available Dummy_Units. Figure 6.18 defines that the

. . .

DummyUnit

DummyUnit1

DummyUnitN

Figure 6.18: EBNF definition of the names of the component place-holders within a Pattern
Template.

possible names of the component place-holders within a generic Pattern Template in

Triana are DummyUnit, DummyUnit1, DummyUnit2, etc.

For example, the following script performs the embedding operation previously presented

in Figure 6.11, if this script is processed in the context of the pattern controller DrawRing in

the Figure:

192

Embed Pipeline DummyUnit1

3. As previously presented in Figure 6.15, another common action within a pattern and op-

erator based script is the instantiation of the available component place-holders to tools in

the Triana toolbox. Figure 6.19 presents the definition of the instantiation operation from a

script.

Name

Separator

Instantiate DummyUnit_Name Tool_Path

Separator:
/

\

Tool_Path:

Figure 6.19: EBNF graph for the “Instantiate_DummyUnit” nonterminal element in the
graph in Figure 6.15.

For example, the following script line performs the instantiation operation previously illus-

trated in Figure 6.12.

Instantiate DummyUnit

/home/mcg/working/toolboxes/Math/Statistics/AccumSt at.xml

4. Finally, the nonterminal element Create_and_Embed_Other_Patterns in Figure 6.15 represents

the possibility of creating other Structural Pattern Templates, manipulate them with Struc-

tural Operators, and subsequently embed them in the pattern processing the script. More-

over, the user may operate the principal pattern before or in between (and after) those ac-

tions. This is defined in Figure 6.20.

On one hand, the Create_Pattern nonterminal EBNF element is illustrated in Figure 6.21.

Please note that although the Facade,Adapter, and ProxyDesign Patterns are presented in this

Figure, and also illustrated in an example in section 7.7.1, they are not yet fully implemented

in Triana.

On the other hand, the nonterminal EBNF element Run_Structural_Script in the graph in

Figure 6.20 represents the processing of a sub-script defining the structural manipulation of

the newly created PT. This is described next.

B - Processing a sub-script

In order to trigger the structural manipulation of a PT from a script being processed by the

principal pattern, the user has to:

a) define a sub-script, i.e. enclose those manipulations with the RunStructuralScript and End-

StructuralScript script actions;

193

Run_Structural_Script

Create_Pattern

Embed_Pattern

Structural_Refinement

Instantiate_DummyUnit

Structural_Refinement

Instantiate_DummyUnit

Figure 6.20: EBNF graph for the “Create_and_Embed_Other_Patterns” nonterminal element
in the graph in Figure 6.15.

Ring

Pipeline

Star

Proxy

Facade

Adapter

Create Pattern_NamePattern

Pattern:

Figure 6.21: EBNF graph for the “Create_Pattern” nonterminal element in the graph in Fig-
ure 6.20.

b) identify the PT to which that sub-script is applied. The sub-script will be processed inde-

pendently by the pattern controller of that PT.

For example, the following script illustrates the definition of a sub-script, which is preceded by

the creation of the PT it is applied to; subsequently, this new PT is embedded in one component

place-holder:

Create Star Star

RunStructuralScript Star

Increase 1

EndStructuralScript

Embed Star DummyUnit2

194

Assuming that this script is processed by a Pipeline PTwith three component place-holders,

the result is (a similar Pipeline PT was illustrated in Figure 6.11):

a) the creation of a Star PT named “Star” to which a new component place holder was added

through the Increase operator;

b) the resulting “Star” PT is subsequently embedded in the “DummyUnit2” component place-

holder of the Pipeline PT.

Figure 6.22 defines the graph for a sub-script.

RunStructuralScript Pattern_Name

SetApplication_Parameter EndStructuralScript

Structural_Refinement

Instantiate_DummyUnit

Figure 6.22: EBNF graph for the “Run _Structural _Script” nonterminal element in the EBNF
graph in Figure 6.20.

As illustrated in this Figure, the user may define other structural operations like:

• component place-holder instantiation to tools from the Triana toolbox;

• parameterisation of these tools. The EBNF graph for this parameterisation is presented

if Figure 6.23.

SetParameter Unit_Name Parameter_Name Value

Figure 6.23: EBNF graph for the “SetApplication _Parameter” nonterminal element in the
EBNF graph in Figure 6.22.

The following sub-script illustrates the instantiation of component place-holders as well as

the parameterisation of a particular tool, namely the definition of the “filename” parameter in

the “DataFrameReader” tool.

RunStructuralScript ImgProjection

Decrease 1

Instantiate DummyUnit

/home/mcg/working/toolboxes/Demos/GalaxySim/DataFra meReader.xml

SetParameter DataFrameReader fileName /home/mcg/workin g/triana/old_out.drt

Instantiate DummyUnit1

/home/mcg/working/toolboxes/Demos/GalaxySim/ViewPoi ntProjection.xml

EndStructuralScript

195

Please note that the parameterisation of tools is also possible in a regular script, i.e. it is not

restricted to sub-scripts.

Finally, it is worthwhile mentioning that, within a script, it is also possible to manipulate

an already embedded pattern. For example, it is possible to define the following:

Create Pipeline ImgProjection

RunStructuralScript ImgProjection

Decrease 1

Instantiate DummyUnit

/home/mcg/working/toolboxes/Demos/GalaxySim/DataFra meReader.xml

SetParameter DataFrameReader fileName

/home/mcg/working/triana/old_out.drt

EndStructuralScript

Embed ImgProjection DummyUnit

Instantiate ImgProjection.DummyUnit1

/home/mcg/working/toolboxes/Demos/GalaxySim/ViewPoi ntProjection.xml

In this case, the “DummyUnit1” component place-holder in the “ImgProjection” pipeline

is instantiated to the “ViewPointProjection.xml” tool after the pipeline has been embed-

ded. The access to that component place-holder is made through the identifier “ImgProjec-

tion.DummyUnit1”, i.e. this identifier results from the concatenation of the identifier of the

pattern and the identifier of the component place-holder.

As previously described, the next step towards a pattern-based configuration is the defini-

tion of the data and control flows between components and subsequently their manipulation

through Behavioural Operators. It is also the responsibility of the pattern controllerwithin a pat-

tern to enforce such behavioural patterns and give support to the execution of the Behavioural

Operators. This is described in the next sub-section.

6.4.3 Execution Control from the Triana GUI and from Scripts

Workflow enactment in Triana defines that the execution of Units composing a workflow is

triggered by the arrival of the sufficient data to that Unit. Namely, upon connecting the Units

in a workflow, the user requests its whole execution through a Run control button in the GUI.

As a result, the first Units to be triggered are the ones which are not dependent on data from

other Units. Typically, such Units produce data that will be fed into other tools which are then

rescheduled.

As previously described, each Unit’s implementation requires the definition of the type

of the input data nodes in terms of being mandatory/essential or not. Each Unit’s execution is

supported by a Triana Task, and if a Unit’s Task is already executing (e.g. through a control

node named Trigger node), the existence of that mandatory node in the Unit implies the blocking

of the Task when the node is read, until new data arrives in this node. Conversely, if the Task is

not already executing, the arrival of data in a mandatory node may automatically trigger that

Task’s execution (e.g. if the Unit/Task only has that mandatory input node, and all other input

nodes are optional).

196

Such behaviour, provided by default in Triana, supports the Streaming (Data-flow) Be-

havioural Pattern. Consequently, the combination of this Behavioural Pattern with the de-

fined Structural Patterns in an application’s configuration is automatically available to the user.

Many of the examples presented in Chapter 7 rely on this Data-flow Behavioural Pattern, since

this pattern is commonly used in parallel and distributed systems.

While the default Triana’s Data-flow Behavioural Pattern becomes very useful for many ex-

amples, it also restricted the implementation of alternative Behavioural Patterns. Namely, in

the Triana version (3.1) used for the Pattern/Operator implementation, control flow is gener-

ally dependent on data flow, and the available separated control mechanisms provided by the

trigger nodes do not support a powerful independent control-based execution flow. Namely, al-

though trigger nodes can be used for control flow independently from the triggering mechanism

associated to the mandatory data nodes, they also restrict a Task’s execution. Specifically,

• A trigger node is only effective if it is declared as mandatory/essential. This means that a

control message sent through a channel connected to a Task’s trigger node is ignored if

the trigger node is declared as optional (i.e. non-mandatory).

• An effective (i.e. essential) trigger node blocks the execution of a Task until it is sent a

control message.

Consequently, only an essential trigger node may be used to trigger a Task’s execution and it

blocks that Task’s execution until a control message is explicitly sent to that node. This means

that a Task with two essential trigger nodes can only run if two control messages are sent, one

to each trigger node.

Nevertheless, we used trigger nodes in our implementation in order to provide additional

execution control among the tasks in a pattern-based workflow. A more detailed description

of execution control will be described in a sub-section ahead. In the following, we describe the

existing data and flow connections in a Pattern Instance in general.

Figure 6.24 presents one example of the connections supporting data and control flow

within a particular Pattern Instance (PI) in the extended Triana. The represented Pattern In-

stance is a Star-based Hierarchical Pattern Instance named “Star” whose components are them-

selves PIs. Namely, the nucleus of the Star is a Pipeline-based PI named “ImgProjection”, which

is also presented in the Figure. The two satellites are two Pipeline-based PIs named “ImgPro-

cessing” and “ImgAnalysis” (their detailed configuration is absent in the Figure).

The nucleus of the Star, i.e. ImgProjection, is connected to the satellites through output

and input data nodes in each of the involved PIs. However, as represented in Figure 6.24 all

components of the Star PI, i.e. the nucleus and the two satellites, are also connected to that

PI’s pattern controller, namely the DrawStar unit. These connections from the pattern controller

bind to trigger nodes, one in each element in the Pattern Instance, through which the pattern

controller may send control messages to all components in the PI.

In each PI in the extended Triana, may it be hierarchical or not, its pattern controller is

always connected to all elements composing that PI through trigger nodes. The state of those

individual trigger nodes may be toggled between mandatory and optional through the Triana

nodes and also from scripts. Such will be described in a following sub-section.

197

Figure 6.24: The data and control flow connections in a (Hierarchical) Pattern Instance.

Execution Operators

Figure 6.25: The parameter panel representing the Execution Operators and their arguments.
The Restart Operator is selected to launch the periodic execution every 10000 milliseconds.

The implementation of the Behavioural Operators in Triana was restricted to the Execution

Operators, namely, the Start, Terminate, Restart, Repeat, Limit, and a limited version of the Stop

and Resume operators (e.g. the checkpointing of the pattern’s state is not implemented yet).

Similarly to the Structural Operators, the Execution Operators are accessible in the Triana GUI

through the parameter panel of a Pattern Instance (PI) as presented in Figure 6.25. The opera-

tors are activated upon selection and as long as their necessary arguments are properly defined

198

through that panel.

For example, Figure 6.25 represents the parameter panel of a Pipeline PI where the Restart

Operator is selected. The defined time period for this operator is 10000 milliseconds, as repre-

sented in the Figure.

Figure 6.26: Application of the Terminate operator.

Figure 6.27: Execution debug information generated upon application of the Terminate opera-
tor to a pattern-based application ruled by the Restart operator.

The described automatic re-execution can be stopped at any time by applying the Terminate

Behavioural Operator as presented in Figures 6.26 and 6.27. In our Triana implementation,

the Terminate not only aborts a pattern-based application’s execution triggered by the Start

operator, but also aborts the effect of the Repeat and Restart operators.

Also similarly to the Structural Operators, the implemented Execution Operators can be

activated through a script. Therefore, scripts may either include only Structural Operators for

application configuration, only Execution Operators for execution control, or both kinds of

operators.

On one hand, the simplified semantics of the usage of individual Execution operators from

a script is presented in Figure 6.28 (the Terminate operator was omitted). The usage of these

operators from the Triana GUI, in particular, require the previous definition of their necessary

parameters in the parameter panel.

On the other hand, Figure 6.29 presents the simplified graph of execution control through

operators of a pattern-based application, both from scripts and from the Triana GUI. Except for

the Define_Execution_Control non-terminal element in the EBNF graph, all other non-terminal

elements in the graph in Figure 6.29 were previously defined in Figure 6.28.

199

Number
Number

Stop

Repeat

Limit

Restart Amount_of_Time

Amount_of_Time

Resume

Repeat_Execution

Limit_Execution

Restart_Execution

Stop_Resume

Amount_of_Time

Figure 6.28: EBNF graph for the Execution Operators.

Repeat_Execution

Limit_Execution

Define_Execution_Control

Restart_Execution

Figure 6.29: EBNF graph for the execution control of pattern-based applications.

The EBNF graph for Define_Execution_Control, in turn, is presented in Figure 6.30.

Activate_Trigger

Start

Terminate

Deactivate_Trigger

Stop_Resume

Trigger_Unit

Figure 6.30: EBNF graph for explicit execution control including the usage of trigger nodes.

Specifically, Figure 6.30 represents the graph (both from a script and from the GUI) of:

• the invocation of the Start, Stop, Resume, and Terminate Execution Operators;

• the explicit flow control of an execution supported by Triana’s trigger nodes, and its rela-

tion with the previous execution operators.

This explicit management of control flow within Patterns is described in the next-

subsection, along with the definition of the non-terminal elements in the EBNF graph in Fig-

ure 6.30 which are related to trigger nodes.

200

Independent Manipulation of the Control Flow

As previously described, a trigger node in Triana may be defined as mandatory/essential or op-

tional. Moreover, it possible to change the state of a trigger node frommandatory to optional, and

vice-versa. We define that

a) an optional trigger node is in the silent/non-active state;

b) an essential trigger node is in the active state.

In the silent state, a trigger node has no influence upon the execution, and the control is driven

by Triana’s data flow model previously cited. However, in the active state, execution control is

stopped at the unit that owns that trigger node. This means that, although data may arrive in

that unit’s data nodes, only when the trigger node is “triggered” the execution flow is allowed

to proceed.

Figure 6.31: Activating a trigger node from a Pattern Instance’s parameter panel.

The user can, at any time, activate and deactivate a trigger node through the operator panel

of the Pattern Instance (i.e. the panel associated to the PI’s pattern controller). This is illustrated

in Figure 6.31. Specifically, the button “Trigger node activation” allows toggling the state of the

the trigger node identified by the parameter “Name of the Unit that owns the trigger node”.

In the figure, that particular trigger node was activated. Furthermore, Figure 6.31 also presents

the selection of the TriggerUnit operation that results on the sending of a control message to the

unit “ImgProjection” defined in the parameter “UnitToTrigger”.

The following example also shows the usage of the control mechanisms provided by trigger

nodes through a script. The line numbers in the script were introduced for their reference in

the description text.

1: Initialize

2: Increase 1

3: Instantiate DummyUnit /home/mcg/working/toolboxes/C ommon/Const/ConstGen.xml

4: SetParameter ConstGen constant 7.0

5: Instantiate DummyUnit1 /home/mcg/working/toolboxes- dev/Patterns/Inc.xml

6: Instantiate DummyUnit2 /home/mcg/working/toolboxes- dev/Patterns/Inc.xml

201

7: Instantiate DummyUnit3 /home/mcg/working/toolboxes/ Common/Const/ConstView.xml

8: Activate Inc

9: Activate ConstView

10: Start

11: TriggerUnit ConstView

12: TriggerUnit Inc

The script above is associated with a DrawPipeline unit and generates a Pipeline PT with

four component place-holders (lines 1 and 2). In turn, lines 3 to 7 generate a Pattern Instance

as a result of the instantiation of all component place-holders. In the pipeline, the value of a

constant (generated by the “ConstGen” tool – lines 3 and 4) is to be incremented twice (through

the “Inc” tool – lines 5 and 6) and displayed in the last stage (through the “ConstView” tool –

line 7). Please note that in Triana, the creation of two instances of the “Inc” tool will generate

two units named “Inc” (which instantiates the “DummyUnit1”) and “Inc2” (which instantiates

“DummyUnit2”).

Additionally, lines 8 and 9 activate the trigger nodes of the tools “Inc” and “ConstView”.

We recall that a Unit’s trigger node supports the connection to the pattern controller of a PI.

Consequently, although the execution of the Pipeline PI is launched through the Start Execution

Operator in line 10, the constant sent by the “ConstGen” tool does not automatically trigger the

execution of the “Inc” tool, as would be the normal behaviour. Only when the trigger node of

the “Inc” tool is sent a control message, what happens in line 12, the “Inc” tool’s execution

is allowed to proceed. Such combination of the activation/de-activation of the trigger nodes

together with the triggering control messages allows the emulation of the Stop and Resume

operators.

The described control mechanisms together with the Execution Operators may also sup-

port the definition of different coordination schemes. This will be illustrated in a example in

section 7.6.2 ahead.

6.4.4 Implementation in Triana

In this section we describe how Structural Pattern Templates, Structural Operators, and Be-

havioural Operators are implemented in the context of Triana’s class hierarchy (Triana version

3.1).

Intrinsically, a Pattern Template is a group entity: it contains a set of entities (connected in a

pre-defined way) that is seen from the outside as a single entity representing and giving access

to the elements in the set. As previously cited, Triana itself has the concept of a group of units:

a) a group in Triana is a component that encapsulates a set of units;

b) it has a recursive definition (it can contain other groups of units);

c) a group owns a set of input and output ports to support the connection to the input and

output ports of the encapsulated units.

As such, a Pattern Template was naturally represented as a group in Triana. In turn, a

Pattern Instance is an already instantiated pattern template. Figure 6.32 describes, in a simplified

202

Pattern InstanceGroup Unit
1..*

Pipeline StarSGTGrapherWave

Pattern Controller

Service/Unit

0..*

Figure 6.32: Definition of a Pattern Instance.

way, the meaning of a Pattern Instance in the context of Triana. Namely, a Pattern Instance is a

Group unit (i.e. a group of units), which in turn contains Triana units (like Wave, etc) and may

contain other Group units as well. Each particular Pattern Instance (e.g. Pipeline, Facade, etc)

aggregates units according to a specific structure. Finally, all Pattern Instances own a Pattern

Controllerwhich is responsible for:

a) keeping track of the elements (units) in the pattern and how they should be connected;

b) implementing the Structural Operators which act upon the Structural Pattern;

c) implementing the Behavioural Operators which act upon the Structural Pattern combined

with some Behavioural Pattern;

d) implementing a small script engine which evaluates Structural and Behavioural Operators

read from a file;

e) detecting and processing relevant events, such as a request to instantiate aDummyUnit, or a

notification of the end of the execution of units within the Pattern Instance. For instance, this

notification allows the Pattern Controller to evaluate if the pattern, as a whole, has finished

its execution.

A Few Triana Classes

Figure 6.33 shows a very small and simplified subset of Triana’s Class Hierarchy, specifically,

some of the classes which are in some way directly related to the implementation of the Pattern

Templates and the execution control of their associated Pattern Instances. The Figure just aims

at providing a general overview of some of the more important entities, and in fact, it is not

completely accurate: the interface hierarchy was omitted, and the name of some classes was

replaced with the name of one of the interfaces they implement (this was done for the Tool, Task,

and TaskGraph entities).

Figure 6.33 is divided into three major areas: Unit definition presents the basic class for

defining a Triana service/unit; Helper entities shows some essential classes for helping realizing

the execution of a unit; and finally, GUI entities gives a small example of the classes that support

the interaction with the users.

203

Tool

Task

TaskGraph

+createTask()

+groupTasks()
SGTGrapher Wave

Unit

+process()
+init()

RunnableTask

MainTriana

+mousePressed()

+deleteSelected()

TrianaTool

MainTrianaTool

GroupTool

Unit definition

Helper

 entities

GUI entities

1..*

0..*

0..*

1..*

Figure 6.33: UML simplified description of some Triana classes.

A new service is defined by extending the Unit abstract class, which provides all the neces-

sary methods. Some of these methods have to be explicitly implemented by the service devel-

opers, and others are optional. For example, the process() method is mandatory and specifies

the unit’s specific actions. In an optional method like init(), the user may define the initialisa-

tion actions that have to be done before the specific service code executes (i.e. before process()

is executed).

Triana also provides an event mechanism through parameter definition: users may define

parameters to the unit, and whenever the value of a parameter changes an event is generated,

to be caught by the entities declared as “listeners” to that parameter.

Helper classes like Tool, Task, and RunnableTask, provide the necessary code to execute a

unit, and to send and receive data through nodes. Tool defines code common to all units in

the toolbox (e.g. parameter management code, like code to get the name of all the service’s

parameters). A tool object results from the evaluation of a unit’s XML file. Task extends Tool and

represents a task in a task-graph, i.e. an entity that can be connected to other entities forming a

data-flow network. RunnableTaskmakes the connection between a Unit and a Task. It initialises

an associated unit (e.g. an object of class Wave) by calling its init() method. Furthermore, it

implements the data handling capability of a Task (e.g. keeps track of which nodes have data

that has not yet been processed, and wakes up a task when there is data ready to be read in all

input nodes).

As represented in Figure 6.33, a TaskGraph is itself a Taskwhich provides code to represent a

group of tasks. In Triana, a taskgraph contains a collection of tasks linked by cables. Whenever

a task is created, it is always created in the context of a taskgraph (and contains a reference to

this taskgraph as shown in Figure 6.33).

A TaskGraph provides methods for: creating a new task within it (createTask()); connect-

204

ing/disconnecting tasks which belong to the taskgraph; creating a new sub-taskgraph out of a

group of tasks that belong to the taskgraph (groupTasks()); etc.

MainTriana handles the user interface for interconnecting units – it represents an area where

the tasks belonging to a (single) taskgraph are drawn. The icon representing a task is associated

with MainTrianaTool and the icon representing a (sub-)taskgraph is associated with GroupTool.

MainTriana gives support to several actions like: evaluating if two nodes belonging to two

components (i.e. icons) are compatible; connecting compatible components’ nodes through a

cable; drawing pop-up menus; moving selected units; grouping selected units; etc.

Some of the described classes communicate through an event mechanism. For example

a taskgraph is a listener to the tasks that it represents (e.g. it gets notified when a task is

disconnected from another task). Besides tasks, it is possible to listen to events from task’s

nodes, cables, taskgraphs, parameter updates, etc.

Implementation of Patterns and Operators

One of the restrictions concerning the implementation of the Structural Patterns and Opera-

tors was that the Triana’s code should be changed as least as possible, in order to keep our

development independent from Triana’s internal changes. As such, the simplest solution was

to implement Patterns (and Operators) as Unit extensions.

Task

TaskGraph

+createTask()

+groupTasks()DummyUnit
DrawPatternTemplate

+drawTemplate()
+increase()

+embed()

+assignActivity()

Unit RunnableTask

DrawPipeline

+drawTemplate()

DrawRing

+drawTemplate()

DrawStar

+drawTemplate()

GroupTool

Star

instance_of

displayed_through

1..*

encapsulates

control task

contains

1..*1..*

Figure 6.34: Simplified UML definition of the classes for creating and manipulating Pattern
Templates and Instances through Structural and Behavioural Operators, respectively. The def-
inition includes a particular example of the Ring pattern template.

As shown in Figure 6.34, class DrawPatternTemplate is an abstract class that extends Unit

and defines the common code for the construction of Pattern Instances and their execution

control. The existing abstract methods are redefined by each of the specific sub-classes like

205

DrawPipeline, DrawStar, and DrawRing. These are the pattern controllers of the patterns they

represent.

Through the association with RunnableTask, each of these sub-classes has access to its asso-

ciated task and then to the taskgraph to which it belongs. Consequently, the units can create

new tasks and new taskgraphs by invoking taskgraph.createTask() and taskgraph.groupTasks(), re-

spectively.

For example, to create a Pattern Template (and subsequently a PI) like Star in Figure 6.34,

an instance of DrawStar (DrawStar) creates a new taskgraph that includes the instance itself.

This DrawStar’s instance will act as a pattern controller for the pattern represented by the newly

created taskgraph. The major supported functionalities supported by this pattern controller

are described in the following.

• The first responsibility of the pattern controller is to draw the specific (star) structure by

creating a default set of component place holders, i.e. DummyUnit tasks, inside the task-

graph, and by connecting them in the shape of a star. A DummyUnit instance provides

an initialisation parameter for the selection of a specific unit from the toolbox that will

instantiate that component place holder. Moreover, all DummyUnits are also connected

to the pattern controller through trigger nodes.

• The second responsibility is to catch relevant events at DummyUnits’ level. For example,

the instantiation of the DummyUnit is in fact implemented by the DrawStar. DrawStar is

declared as a “listener” to the parameter for DummyUnit initialisation, and wakes up as

soon as this parameter changes. It then replaces the DummyUnit with a specific service

from the toolbox, keeping the existing connection trough a trigger node. The toggling of

the state of these trigger nodes is another example of the events processed by the pattern

controller.

• The third responsibility is to implement the Structural Operators like Increase, Embed, etc.

The operators’ major code is defined in DrawPatternTemplate, and specific actions are left

to the subtypes.

For example, the Increase operator needs two actions:

a) to create and draw a new DummyUnit element;

b) to identify the connection element, i.e. to which of the already existingDummyUnits

should the new element be attached to.

Action a) is common to all sub-types, so it is implemented in the DrawPatternTemplate

class. Action b), in turn, is specific of each Structural Pattern. For example, for a Star

Pattern Template a new DummyUnit has to be attached to the nucleus of the star, whereas

for the pipeline a new DummyUnit is added to one of the ends of the pipeline. As such,

each subtype redefines the abstract method getConnectionElement() which identifies the

DummyUnit that represents the adequate connection point.

• The fourth responsibility is to support the execution data and control flows within its

own Pattern Instance, but also in the context of a Hierarchic Pattern Instance it may

206

belong to. To this extent, all pattern controllers within a Hierarchic Pattern Instance are

connected to the pattern controller of the enclosing Pattern Instance.

Figure 6.35: The data and control flow connections in a (Hierarchical) Pattern Instance.

For example, in the example in Figure 6.35 all DrawPipeline pattern controllers of the

pipeline-based PIs “ImgProjection”, “ImgProcessing”, and “ImgAnalysis”, are connected

to the DrawStar pattern controller of the enclosing star-based PI. Through these connec-

tions, the DrawStar pattern controller may for example send control messages to the pat-

tern controllers of the embedded patterns.

• Finally, the pattern controller is also responsible for the execution support of the imple-

mented Execution Operators within the context of its own PI. For example, to support

the Repeat operator applied to its own PI, the pattern controller has to detect

a) when all tasks within the PI have terminated executing before relaunching the PI’s

execution for the next Repeat iteration;

b) if number of the desired repeated invocations (as defined in the parameter for the

Repeat operator) has been reached or not. In case all iterations have been accom-

plished, the PI’s execution is not triggered again.

Triana proved to be an adequate environment to support the implementation of Patterns

and Operators. However, the version used for our implementation had some limitations on

the propagation of some necessary events for the distributed execution of a Hierarchical Pattern

Instance.

In the following section we also describe how to map some of the described Execution

Operators to a particular distributed resource manager for execution control.

207

6.5 Mapping to the DRMAA API

The Triana supporting architecture already provides the mapping to several APIs for dis-

tributed environments, as previously described in section 6.3.1. However, the proposed Be-

havioural Operators require a set of functionalities allowing the fine tuning of the execution

control of jobs. For this reason, we highlight the relevance of the Distributed Resource Manage-

ment Application API (DRMAA) [43] API, which provides a standard job control programming

interface and allows a distributed representation of the application tasks. Namely, the exe-

cution control primitives provide us with operations which are suitable for implementation

of the Behavioural Operators proposed in our model. Furthermore, the relevance of the DR-

MAA API as a specification for submission, control, and monitoring of distributed jobs has

been supported by an increasing number of systems whose implementations are conform to

the DRMAA API [263–265].

The DRMAA specification allows the submission and control of jobs to one or more dis-

tributed resource management systems (DRMSs). Since DRMAA abstracts fundamental job inter-

faces of DRMSs, it facilitates integration of application programs. Concretely, a job is a running

application on a DRMS and it is identified by a job_id attribute that is passed back by the DRMS

upon job submission. This attribute is used by the functions that support job control and mon-

itoring, e.g. termination and suspension operations.

DRMAA uses an IDL [108]-like definition (with IN, OUT and INOUT parameters) for spec-

ifying the API, and also provides support for handling errors (via error codes).

App 2

Element 2

App 3

Element 3

wrapper wrapper wrapper

App 1

Element 1

data flow

control flow control flow

data flow

Figure A
wrapper wrapper wrapper

data flow

control flow control flow

data flow
job 2job 1 job 3

Figure B

Figure 6.36: A Streaming (data-flow) Behavioural Pattern combined with a Pipeline Struc-
tural Pattern. Figure A shows the entities before the execution of the Pattern Instance. Figure
B shows the jobs created by a DRMS to support the execution of the applications (“App1”..
“App3”) in the “Pipeline” Pattern Instance.

The mapping of the Execution Operators to the DRMAA API is illustrated through a sim-

ple application example. This example is configured as a three stage Pipeline Structural Pattern

combined with the Streaming (data-flow) Behavioural Pattern, and instantiated to executable ap-

plications (e.g. representing tools/services) named App1, App2, and App3, as represented in the

left side of Figure 6.36 (i.e. “Figure A”). The resulting Pattern Instance is simply designated as

Pipeline. Such example is similar to the one used in the semantic description of the Execution

Operators in section 4.4, as well as to the example presented in Figure 6.2 in section 6.2.1.

The execution of the applications App1 .. App3 using the DRMAA specification requires

the definition of some attributes like the application’s name, its initial input parameters, the

necessary remote environment that has to be set up for the application to run, and so forth.

These attributes are used to explicitly configure the task to be run in a resource manager. We

208

designate as Element the entity that represents an application and its attributes which are nec-

essary to run the application in a DRMS. In the description of the mapping of the Behavioural

Operators the initialisation of an application’s attributes is most times omitted. Only relevant

attributes are explicitly initialised.

In Figure 6.36, “Figure A” represents the Elements encapsulating the executable applica-

tions. In turn, the Elements are themselves encapsulated in wrappers that enforce the Streaming

(data-flow) Behavioural Pattern jointly with the Pattern Controller, as previously described.

The execution of the Elements in a DRSM are supported by Jobs as represented in the right

side of Figure 6.36, i.e. “Figure B”. It is assumed that the standard output of Element 1 is redi-

rected to the standard input of Element 2, and the standard output of Element 2 is in turn redi-

rected to the standard input of Element 3. One way to map this redirection to the DRMAA is

to define the parameters drma_input_path and drmaa_output_path for the jobs that support the

execution of the Elements.

The DRMAA specification has the notion of sessions. However, in version 1.0 only one

session can be open at a time, meaning that the nesting of sessions is not supported. For sim-

plification reasons, it is assumed a single DRMAA session for all the operators. It is therefore

assumed that the DRMAA’s initialisation (i.e. drmaa_init) and exit (i.e. drmaa_exit) routines are

called, respectively, after the Pattern Instance is created and in the end of the script program.

The alternative would be to create a new DRMAA session (with drmaa_init) in the beginning of

each Behavioural Operator’s definition, and terminate that session (with drmaa_exit) at the end

of the operators’ definition.

A few more assumptions are made:

a) APattern Instance has an object associatedwith it. The Object gives access to some variables

like:

Element pattern_elements[MAX_ELEMS] This vector contains the Elements that compose

a specific pattern instance.

String job_identifiers[MAX_ELEMS] This vector represents the job identifiers returned

by the drmaa_run_job routine for the jobs that are created to support the activities rep-

resented in the vector pattern_elements. The order of the activities is preserved, i.e. the

first job identifier in the vector pattern_elements belongs to the first job identifier in the

vector job_identifiers.

b) DRMAA variables frequently used:

INOUT jt Represents the job template (opaque handle).

INOUT drmaa_context_error_buf Contains a context-sensitive error upon failed return.

c) Error processing is simplified. It uses the auxiliary function:

process_error(IN ret, IN drmaa_context_error_buf) This simplified routine is used to

check if the result of the last call to a DRMAA routine (the result is passed in ret)

is different from DRMAA_ERRNO_SUCCESS. If it is, it prints the error returned in

drmaa_context_error_buf through the drma_strerror routine.

209

d) Other auxiliary routines:

define_attributes(IN jt, IN Element) This routine sets attributes of the job template jt

based on the properties of a specific Element. For example, the following actions could

be done inside the define_attribute routine:

ret = drmaa_set_attribute(jt, drmaa_remote_command,

Element.executableName,

drmaa_context_error_buf);

process_error(ret, drmaa_context_error_buf);

ret = drmaa_set_attribute(jt, drmaa_v_argv,

Element.arguments,

drmaa_context_error_buf);

process_error(ret, drmaa_context_error_buf);

...

Other attributes to be defined depend on the specific application to be run (which is

accessed through Element).

The following sub-sections define themappings of the Start, Terminate, Stop, Resume, Restart,

Repeat, and Limit Execution Operators, and in the context of the simple application example

previously described. It is worthwhile mentioning here that the Execution Operators are as-

sumed to be executed sequentially due to the lack of adequate (workflow) constructs in the

DRMAA.

6.5.1 Start and Terminate Behavioural Operators

The order by which the Elements are started in the Pipeline is from last to first. In this way, the

first element to run, i.e. Element 3, will block waiting for data. Conversely, the first element to

be terminated is the first one, followed by the Element 2, and Element 3.

job3job2job1

Pattern Instance

Pattern controller

drmaa_run_job(job_id, ...)

Start(Pipeline)

Figure 6.37: DRMAA mapping of the Start operator.

210

Start(Pipeline) (Figure 6.37):

/* The variable Pipeline.pattern_elements[0] represents the

‘‘Element 1’’ in the pipeline.

*/

for(int index = Pipeline.pattern_elements.length -1 ; ind ex >= 0;

index --) { // launch all activities in the pipeline

int ret;

ret = drmaa_allocate_job_template(jt, drmaa_context_er ror_buf);

process_error(ret, drmaa_context_error_buf);

define_attributes(jt, Pipeline.pattern_elements[inde x]);

/* As an example, it is also possible to define exactly the

time at which all jobs in the pipeline will be started. The

variable ‘‘Pipeline.startTime’’ defines the time at which all

elements in the pipeline instance should start running.

*/

ret = drmaa_set_attribute(jt, drmaa_start_time,

Pipeline.startTime,

drmaa_context_error_buf);

process_error(ret, drmaa_context_error_buf);

/* Now, it is necessary to run the job. The difference between

running a single job or a bulk of jobs is again dependent on the

‘‘Element’’ that instantiates the pattern template

(which is accessed through ‘‘Pipeline.pattern_elements[index]’’).

For simplification, we assume that a single job is run.

*/

ret = drmaa_run_job(job_id, jt, drmaa_context_error_buf);

process_error(ret, drmaa_context_error_buf);

/* Now, the job identifier is saved to allow access, later on, to

the jobs belonging to this pipeline, from other Behavioural Patterns.

*/

Pipeline.job_identifiers[index] = job_id;

} // end cycle for

Terminate(Pipeline) (Figure 6.38)

for(int index = 0; index < Pipeline.job_identifiers.lengt h ; index++

) { // terminate all activities in the pipeline

ret = drmaa_control(Pipeline.job_identifiers[index],

DRMAA_CONTROL_TERMINATE,

drmaa_context_error_buf);

process_error(ret, drmaa_context_error_buf);

} \\ end cycle for

211

job3job2job1

Pattern Instance

Pattern controller

Terminate(Pipeline)

drmaa_control(job_id,
DRMAA_CONTROL_TERMINATE,...)

Figure 6.38: DRMAA mapping of the Terminate operator.

6.5.2 Stop and Resume Behavioural Operators

The first element to be stopped is Element 1 and the last will be Element 3. For the Resume

operator is the opposite: the first element to be resumed is Element 3.

job3job2job1

Pattern Instance

Pattern controller

Stop(Pipeline)

drmaa_control(job_id,
DRMAA_CONTROL_SUSPEND,...)

Figure 6.39: DRMAA mapping of the Stop operator.

Stop(Pipeline) (Figure 6.39):

for(int index = 0; index < Pipeline.job_identifiers.lengt h ; index++

) { // suspend all activities in the pipeline

ret = drmaa_control(Pipeline.job_identifiers[index],

DRMAA_CONTROL_SUSPEND,

drmaa_context_error_buf);

process_error(ret, drmaa_context_error_buf);

} \\ end cycle for

Resume(Pipeline) (Figure 6.40):

for(int index = Pipeline.job_identifiers.length -1 ; inde x >= 0;

index --) { // resume all activities in the pipeline from the p oint

212

job3job2job1

Pattern Instance

Pattern controller

Resume(Pipeline)

drmaa_control(job_id,
DRMAA_CONTROL_RESUME,...)

Figure 6.40: DRMAA mapping of the Resume operator.

// where they were suspended

ret = drmaa_control(Pipeline.job_identifiers[index],

DRMAA_CONTROL_RESUME,

drmaa_context_error_buf);

process_error(ret, drmaa_context_error_buf);

} \\ end cycle for

6.5.3 Restart and Repeat Behavioural Operators

The Restart operator defines a periodic re-start of the execution of a pattern, and the mapping

uses the one defined above for the Start operator. However, it is assumed that the time the

applications composing the pipeline instance take to run is less then the period of time that is

passed as argument to the Restart operator. Moreover, the Restart operator is assumed to be

endless. Although not represented, the TerminateRestart could be implemented by changing

the value of a variable to be checked by the Restart operator prior re-calling the Start operation,

similarly to the semantics description in Figure 4.41 in section 4.4.63. Meanwhile, the invocation

of the Terminate operator would only abort the current execution of the “Pipeline” as a result of

the invocation of drmaa_control(job_id, DRMAA_CONTROL_TERMINATE,. . .).

Restart(time_period, Pipeline):

/* For simplification reasons, it is used a Unix-like ‘‘alar m’’

routine that generates an interruption when the timeout exp ires.

Similarly, it is assumed the existence of a ‘‘pause’’ routin e

to block the process running the ‘‘restart’’ operator.

*/

for(; ;)

{

/* It is assumed that the ‘‘Restart’’ operator is endless.

*/

3Alternatively, assuming that the Restart operator can be aborted by a signal, such signal would be
sent upon invocation of the TerminateRestart operator.

213

Start(Pipeline);

alarm(time_period);

pause();

}

As for the Repeat operator, it controls the number of consecutive times a pattern is to be

executed. The operator gurantees that, for each individual pattern’s execution, only when

all applications in the pattern finish running, a new pattern’s execution is then launched. The

DRMAAAPI provides the drmaa_synchronize routinewhich supports this semantics since, upon

invocation of the routine, the execution is only allowed to proceed when all the jobs passed as

argument terminate their execution.

job3job2job1

Pattern Instance

Pattern controller

Repeat(n, Pipeline)

for(; count<n;) {
Start(Pipeline)
drmaa_synchronize(job_identifiers,...) }

Figure 6.41: DRMAA mapping of the Repeat operator.

In the mapping of the Repeat operator bellow, it is defined that an individual execution of

the pipeline pattern as a whole is supported by the Start(Pipeline) operator). The identifiers

of the jobs that represent the applications forming the stages of that pipeline are then passed

as the first argument to the drmaa_synchronize. Consequently, only when all those pipeline’s

jobs terminate, a new pipeline’s execution is allowed. The drmaa_synchronize routine accepts a

second argument which defines for how long such barrier-like synchronisation will hold. In

this case, it is simply assumed that the value passed as argument (i.e. “timeout”) is greater than

the time all individual jobs will take to execution.

Repeat(n, Pipeline) (Figure 6.42):

for(int count = 0; count < n; count++) {

Start(Pipeline);

/* The timeout argument is assumed to be large enough to

allow all jobs in the pipeline to terminate.

*/

drmaa_synchronize(Pipeline.job_identifiers, timeout, 0,

drmaa_context_error_buf);

}

214

6.5.4 Limit Behavioural Pattern

The semantics of the Limit(time_period,Pattern) operator in section 4.4.5 specifies that the Pattern

Instance this operator is applied to is already executing. The Limit operator just defines how

much time the pattern still has left to run. To this extent, the implementation of the mapping to

the DRMAA invokes the drmaa_synchronize routine using the “time_period” value as its second

argument. This defines for how long to wait for all pipeline’s jobs to terminate. In case that

timeout expires, it means that the pipeline’s execution as a whole has not finished yet and,

therefore, it is necessary to explicitly abort its execution by invoking the Terminate(Pipeline)

operator.

job3job2job1

Pattern Instance

Pattern controller

Limit(time_period, Pipeline)

if(ret==DRMAA_ERRNO_EXIT_TIMEOUT)
ret=drmaa_synchronize(job_identifiers,time_period,...)

Terminate(Pipeline)

Figure 6.42: DRMAA mapping of the Limit operator.

Limit(time_period, Pipeline) (Figure 6.42):

/* The ‘‘Limit’’ operator waits that the jobs in the Pipeline

terminate. In case the ‘‘time_period’’ expires, the opera tor cancels

the execution of all jobs in the Pipeline.

*/

ret = drmaa_synchronize(Pipeline.job_identifiers, time _period, 0,

drmaa_context_error_buf);

if(ret == DRMAA_ERRNO_EXIT_TIMEOUT)

Terminate(Pipeline);

To consider the execution time limit from the moment the Pipeline Pattern Instance starts

executing, the user may apply the compound operator Limit(time_interval, Start(Pipeline)), as

discussed in section 4.5.1. The following description defines how that compound operator may

be directly mapped to the DRMAA. Namely, the implementation is similar to the one for the

Start operator, but it uses the drmaa _wct _hlimit DRMAA attribute to limit the Pipeline’s time

of execution.

Limit(time_period, Start(Pipeline)):

/* The mapping of this compound operator is similar to the ‘‘S tart’’

operator. The only difference is that a special attribute li miting

the execution time has to be set for the jobs.

215

*/

for(int index = Pipeline.pattern_elements.length -1 ; ind ex >= 0;

index --) { // launch all activities in the pipeline

int ret;

ret = drmaa_allocate_job_template(jt, drmaa_context_er ror_buf);

process_error(ret, drmaa_context_error_buf);

define_attributes(jt, Pipeline.pattern_elements[inde x]);

/* Definition of the limit of time to run the job: */

ret = drmaa_set_attribute(jt, drmaa_wct_hlimit, time_pe riod,

drmaa_context_error_buf);

process_error(ret, drmaa_context_error_buf);

ret = drmaa_run_job(job_id, jt, drmaa_context_error_buf);

process_error(ret, drmaa_context_error_buf);

Pipeline.job_identifiers[index] = job_id;

} // end cycle for

6.6 Summary

In this chapter we described the partial implementation of our model in a Grid-aware develop-

ment environment.

The chapter defined a general architecture which is necessary to support the execution of

our model and associated methodology over the Grid environment. This architecture high-

lights the necessity of diverse features to support a Pattern-based manipulation through Oper-

ators at different stages of the application development cycle. For instance:

• an adequate composition environment for application configuration;

• an API for distributed execution in Grid environments which may support the orches-

tration of diverse distributed applications/services;

• support of fine tuned control over the distributed execution, for instance to suspend

and checkpoint the state of a distributed application so that its execution may be later

resumed (e.g. [209]).

Additionally, the chapter presented the selected implementation platform, the Triana Prob-

lem Solving Environment, and discussed its adequacy for supporting the implementation of

Patterns and Operators. Due to the complexity of our proposed model, only a subset of the

previously discussed Patterns and Operators were effectively implemented within Triana.

This extension of Triana was discussed in terms of the usage of Patterns and Operators

and the way they were implemented. Through the extended Triana, the user may configure

and execute a pattern-based application according to the basic methodology as described in

section 3.1.3. Due to the complex interactions underlying the dynamic reconfiguration charac-

teristics discussed in 5.3, it was not possible to include them in the Triana implementation.

216

Finally, the chapter ends by describing a possible mapping of Behavioural Operators over

a distributed resource manager system, namely the DRMAA specification. This was intended

as a feasibility study of the mapping between part of the proposed model over a standardized

API.

217

218

7
Validation

Contents

7.1 Introduction . 220

7.2 Configuring Distributed Systems Topologies 221

7.3 Configuring a Problem Solving Environment 226

7.4 Skeleton Modelling . 244

7.5 Analysis of Gravitational Waves . 259

7.6 Galaxy Formation Example . 269

7.7 Simulating Flexible Information Retrieval and Processing 281

7.8 Summary . 288

This chapter illustrates, through examples, the expressiveness of the model. Some examples

were tested using the extensions made to Triana workflow system, a Grid-aware Problem Solv-

ing Environment extended with Structural and Behavioural Patterns and Operators. Some

other examples making use of pattern operators at the conceptual level are also included, in

order to clarify the potentialities of the model.

219

7.1 Introduction

The purpose of this chapter is to exemplify how the pattern/operator model presented in this

thesis can be used to build typical application configurations in distributed and Grid environ-

ments.

The enumerated examples may be divided in two groups. The first group includes three

cases (sections 7.2, 7.3, and 7.4) that concern the application of the model at the conceptual

level. Although these examples use some model features which are not actually implemented,

it is our intention to further clarify the relevance of those features. The second group is a set of

three examples(sections 7.5, 7.6, and 7.6) implemented over the Triana extension with patterns

and operators as described in Chapter 6.

7.1.1 Conceptual Examples

The first conceptual example (section 7.2) highlights the fact that the proposed Structural Pat-

terns are adequate to configure typical distributed systems topologies. The possibility of com-

bining (the selected) Structural Patterns with different Behavioural Patterns allows not only

to represent the typical interactions in those distributed systems topologies, but also to define

other dissimilar data and control flows upon the same structures.

The second example (section 7.3) discusses themethodology for building a Problem Solving

Environment which represents a common configuration in several areas. This example aims to

highlight the relevance of the patterns we chose to be presented in this work, and the way

they can be manipulated during the entire PSE development cycle, namely, from application

configuration to execution control, and also towards reconfiguration.

The third example (section 7.4) makes a parallel between the patterns in the model, and

similar abstractions for application configuration that have been ported to Grid environments,

namely the skeletons programming abstractions. The example aims to clarify how patterns may

represent skeletons, with the advantage that patternsmay bemanipulated for execution control

and reconfiguration. Moreover, patterns include design concepts which are not covered by the

skeleton definition.

7.1.2 Examples in Triana

The fourth example (section 7.5) defines a simulation in Triana for the analysis of Gravitational

Waves. This example illustrates the usage of the implemented Patterns and Operators in the

Triana environment both from the GUI and also from scripts. Specifically, the example demon-

strates in general how to configure an application in the extended Triana and how to control its

execution.

The fifth case (section 7.6) presents a simulation of a real-world application in Grid envi-

ronments, specifically in the Astrophysics scientific domain. Concretely, it is illustrated how to

configure a Galaxy formation example by using Pattern manipulation through Pattern Opera-

tors. The example was also developed both at the Triana GUI as well from pattern and operator

scripts. Some scenarios for the Galaxy example concerning diverse execution control models

220

as well as reconfiguration possibilities are also presented.

Finally, the last example (section 7.7), although not completely implemented, aims to high-

light the interest on enabling flexible manipulation of Structural Patterns through Operators,

as it is proposed in our model. Such is illustrated through possible reconfiguration scenarios

for a simulation of a Database access application.

7.2 Configuring Distributed Systems Topologies

Due to the inherent complexity of distributed systems and applications, a topology is identified

in [192] as a useful abstraction to simplify the understanding and construction of a distributed

system’s architecture. We discuss in this section the usage of our model on assisting the config-

uration of common distributed systems topologies.

Topologies can be identified at different levels, e.g. physical, logical, connection, or organi-

sational, and can be considered in terms of the information flow [192]. Moreover, it is possible

to identify in those levels a set of essential topologies, which are also the basis to build a group

of more complex topologies that are common in distributed systems1. Consequently, the pos-

sibility of reusing those typical basic topologies may, in our opinion, help configuring new

distributed systems. Our goal with this section is simply to illustrate how the model proposed

in this dissertation can be used to specify most of those typical topologies. Such is achieved

by manipulating the basic Structural Patterns in the model through the proposed Structural

Operators and combining the resulting structural configuration with Behavioural Patterns.

7.2.1 Basic Topologies

In [192], four elementary topologies are identified and discussed, namely Centralised, Ring,

Hierarchical, and Decentralised.

A- Centralised

a) Centralised b) Ring

Figure 7.1: The Centralised and Ring distributed systems topologies.

Centralised systems, part a) of Figure 7.1, are the most familiar form of topology. Those are

usually known to support the “Client/Server pattern” which is extensively used in distributed

1Some criteria for evaluating topologies and discuss their relative merits in terms of the existing
system designs are also presented in [193].

221

systems [193]. In this pattern, many clients connect to the server which centralises all function

and information, making scalability one of its major problems, which only may be partially

overcome by providing a fast server.

In our model, the Star Structural Pattern associated with the Client/Server Behavioural

Pattern (where the “nucleus” of the star is the “server”) maps the centralised topology directly.

Moreover, the number of satellites of the Star Structural Pattern may be easily changed through

the Increase/Decrease Structural Operators. As discussed in section 5.2.2 the centralised topol-

ogy is one example of a Regular SB-PT and, consequently, the insertion/deletion of elements

was defined as not disrupting the overall Client/Server behaviour, and the new satellites are

automatically annotated with a behavioural role, namely as “clients”.

B- Ring

The ring topology, part b) in Figure 7.1, is also described as a commonly found solution in dis-

tributed and parallel systems. For example, the ring topology frequently underpins a cluster

of machines, globally providing a distributed service, in the context of a local network owned

by a single organisation. Considering the present and planned capabilities of Grid environ-

ments, the support to ring topologies can be extended to a larger scale, the restriction of single

organisation ownership can be overcome, and with the support of a reasonably fast connection

between the Ring’s elements distributed on the network.

In our model, the Ring Structural Pattern, combined with Behavioural Patterns such as

StreamDataflow, Producer/Consumer, Client/Server, etc, can be used to specify the ring topol-

ogy. If all stages in a Ring Structural Pattern are ruled by the same behavioural role(s) within a

single Behavioural Pattern, the result is also a Regular SB-PT. This definition represents the pos-

sibility of changing both the structure and the behaviour of ring topology-based architectures

in a transparent way through the Structural and Behavioural Operators.

C- Hierarchical

Hierarchical systems are common in distributed systems, namely in the Internet (e.g. the Do-

main Name Service), to enable access to distributed resources and to ease the dissemination of

information [192]. The left-hand side of Figure 7.2 (part c) shows an example of a hierarchical

topology, whereas its right-hand side displays how that hierarchy is configured using Struc-

tural Patterns and Operators. A hierarchy may be considered as a recursive definition of a tree,

which can be supported in our model through the manipulation of the Star Structural pattern

by Structural Operators. The construction of a hierarchical topology can be done step by step

in a Problem Solving Environment, and can also be automated through a script.

In the right-hand side of Figure 7.2, a Star Structural Pattern Template (S-PT) composed of

a nucleus and two satellites is processed by a script to build the presented example of a hierar-

chical topology. First of all, the template can be generated with the Create(StarSP, “starPT”, 3),

and it is subsequently replicated four times (step 1 in the script in Figure 7.2) resulting in five

Star S-PTs: “starPT”, “star1PT”, ..., “star4PT”. It is assumed that the replica names are defined

in the invocation of the Replicate operator and that they are unique pattern identifiers within

the configuration.

222

nucleus

satellite1 satellite2

starPT

satellite2

starPT

satellite1

nucleus

satellite1

star2PT

satellite2

star1PT

star3PT

star4PT

Structural Operators Script:

 1: Replicate(4, starPT, {star(i)PT})
2: Increase (1, star1PT)
3: Decrease(1, star3PT)
4: Embed(star3PT, star2PT, "satellite1")
5: Embed(star4PT, star2PT, "satellite2")
6: Embed(star1PT, starPT, "satellite1")
7: Embed(star2PT, starPT, "satellite2")

c) Hierarchical

Structural Operators Script

Figure 7.2: The Hierarchical distributed systems topology (c) and its modelling through the
Star Structural Pattern Template manipulated by Structural Operators.

To form the left side of the hierarchic topology example, the “star1PT” has its number

of satellites increased by one (step 2 in the script), and it is embedded in the “satellite1” of

“starPT” through the Embed Structural Operator (step 6). The right-hand side of the final hi-

erarchy is built by: a) decreasing the number of satellites of “star3PT” by one (step 3 in the

script); b) embedding it in the “satellite1” of the “star2PT” (step 4); c) embedding “star4PT”

in “satellite2” of the “star2PT” (step 5); and d) embedding the “star2PT” in the “satellite2” of

the “starPT”. The nucleus of “starPT” is the root of the hierarchy. Please note that Compound

Structural Operatorsmight be used to built the hierarchy:

Embed(star4PT,Embed(star3PT,star2PT,’’satellite1’’) ,‘‘satellite2’’)

Embed(star2PT, Embed(star1PT,starPT,’’satellite1’’), ‘‘satellite2’’)

Through similar scripts, our model allows the automated construction of hierarchies and,

additionally, the instances of the basic Structural Pattern used (i.e. the Star) are still accessible

and manipulable. For example, the application of the Increase operator allows the addition of

new elements to the embedded “star1PT”, “star3PT”,etc, as well to the outer pattern “starPT”.

As for the typical information flow in the hierarchy (as described in [192]), which starts at

the root down to the leaves, it may be represented by applying the Streaming Behavioural Pat-

tern to the nucleus of each of the Star patterns in the built star-based configuration. However,

other Behavioural Patterns may be still (directly) applied to the inner Star S-PTs instead.

D- Decentralised

Figure 7.3 shows an example of a decentralised topology, which is typical of peer-to-peer sys-

tems. None of the Topological Structural Patterns maps directly to this topology. Nevertheless,

by having our model supported by a Problem Solving Environment like Triana, as described

in Chapter 6, the user may therefore connect the components directly and build the decen-

223

d) Decentralised

Figure 7.3: The Decentralised topology.

tralised topology. This configuration can be included in the Triana repository for subsequent

use, refinement, and instantiation.

Although not discussed in this work, it would be desirable to define the decentralised topol-

ogy as a basic Structural Pattern of its own, and to allow the application of Structural and

Behavioural Operators to its templates. For example, the behaviour could be defined on a per-

element basis through theDefineRoleBehavPatt(P, B-P, {element, role}) Behavioural Operator, or a

unique Behavioural Pattern could be applied to all elements in the topology forming a regular

pattern. This would be the case of the Peer-to-Peer Behavioural Pattern where new elements in

the configuration would have a similar role (i.e. “peer”) to the pre-existing elements. Structural

Operators such as Replicate, Replace, Group, or even Embed would, at first, be straightforward,

but other operators such as Increase/Decreasewould require a deeper study.

7.2.2 Hybrid Topologies

Based on the basic topologies described in the previous section, this section discusses a set of

hybrid topologies formed from those basic ones, as presented in [192].

E- Centralised+Ring

e) Centralised+Ring A Ring PT embedded in the nucleus of a StarPT

Figure 7.4: The hybrid Centralised+Ring topology, and its configuration by embedding a Ring
Pattern Template into the nucleus of a Star Pattern Template.

The left-hand side of Figure 7.4 presents an example of an hybrid topology that results

from the combination of the ring and centralised topologies. This can describe, for instance,

224

the configuration of a service supported by a ring of servers for load balancing and fail-over,

and the system as a whole is seen as a centralised system from the clients’ point of view.

In our model, the representation of such hybrid topology is supported by a Ring S-PT em-

bedded in the nucleus of a Star S-PT (as shown in the right-hand side of figure 7.4). Moreover,

the Client/Server Behavioural Pattern when applied to the Star S-PT may represent the interac-

tions between the clients and the service as whole. In turn, the servers (i.e. the elements in the

embedded Ring S-PT) may interact between them according to different Behavioural Patterns

(e.g. Streaming, Itinerary, etc). Please note that both the embedded pattern and the encloser pat-

tern may be defined as Regular SB-PTs, and are also directly manipulable through Operators.

For example, the addition of an extra element to the ring in the topology (e.g. to accommodate

another server) can be supported by the Increase operator applied to the embedded Pattern Tem-

plate (SB-PT), and the new element is annotated with the same behaviour as the other elements

in the ring.

F- Centralised+Centralised

Legend:
S − Server
C− Client

S
C

C
C

C
C

S

C

S

CC

S
S

f) Centralised+Centralised A Star Structural Pattern Template combined
with the Client/Server Behavioural Pattern

Figure 7.5: The hybrid Centralised+Centralised topology, and its configuration by the combi-
nation of the Star Structural Pattern and the Client/Server Behavioural Pattern.

Another hybrid topology represents a centralised system that is itself a client of one or more

other servers. The left-hand side of Figure 7.5 represents such a “Centralised+Centralised”

topology. The right-hand side of the Figure shows how this may be described, namely, by

combining the Star Structural Pattern with the Client/Server Behavioural Pattern. The nucleus

of the Star represents the server that handles requests from the clients, and it is, itself, a client

of another set of servers. In this case, the Star S-PT in the Figure is combined with the same

Behavioural Pattern but it is not regular, since the roles of all elements is not uniform: the nu-

cleus is both a client and a server, and the satellites may either clients or servers disallowing

the possibility of pre-defining a role for the new satellites. As such, the behaviour has to be de-

fined in a per-element basis through theDefineRoleBehavPatt(P, B-P, {element, role}) Behavioural

Operator.

G- Centralised+Decentralised

The Centralised+Decentralised topology (left hand-side of Figure 7.6) represents a common situ-

ation in current peer-to-peer systems where some peers have a centralised relationship with a

225

g) Centralised+Decentralised

Figure 7.6: The hybrid Centralised+Decentralised topology.

“supernode” which in turn interact with other peers, in a decentralised way, to respond to re-

quests. Our topological Structural Patterns do not support this topology directly. Nevertheless,

once the decentralised topology described before is made available as a pattern template, the user

may then embed the necessary Star S-PTs into the nodes of that topology which then represent

the centralised access to that particular node.

7.3 Configuring a Problem Solving Environment

In this section, a typical Problem Solving Environment (PSE) configuration example is provided

to describe activities that are commonly required to manage an application. This example illus-

trates some of the applicabilities of patterns and operators on modelling similar environments,

and it was first discussed in [44].

7.3.1 A Typical PSE Example

Steering Interface
Service

Monitoring Selected dataOutput data

Input data

Database System

Problem
Solver

Figure 7.7: A PSE supporting the active steering of a Problem Solver. The arrows represent
the flow of data.

Figure 7.7 presents an example of the structure of a PSE combining different types of ser-

vices, which frequently appear in applications. The Problem Solver component represents, for

example, a service running some scientific experiment that continuously produces data. An

instance of such a service may be, for instance, a wave generator or a matrix solver. After re-

ceiving some initial input parameters, the service starts producing data that can be analysed

at run-time or stored for “post-mortem” analysis. The Problem Solver service may be steer-

able, meaning that its input parameters can be changed while the service is executing. By

226

adjusting the input parameters a user may, for example, generate and then visualise particular

behaviours using this service.

Steering is frequently supported by two types of services: aMonitoring Service and a Steering

Interface. TheMonitoring Service is used to register relevant output data or events produced by

the Problem Solver. The data/events are filtered by theMonitoring Service and they are passed

to a Steering Interface that shows them to the user in a pre-defined format. Consequently, a

user may use the Steering Interface to undertake “what if” scenarios – generally by defining

new values for the Problem Solver’s input data. Furthermore, one may consider that several

users have access to the Steering Interface, thus requiring some coordination over changing the

parameters of the Problem Solver.

This kind of applications may also include another service, namely a Database System (as

represented in Figure 7.7) to store all the output produced by the Problem Solver. This may

enable a user to reconfigure the PSE without requiring the Problem Solver to be stopped, i.e.

all data is saved in the Database System. Moreover, a user may re-examine output data for

additional processing after the Problem Solver terminates its execution (based on pre-defined

behaviour or as a result of a fault). These scenarios are illustrated, respectively, in Figures 7.8

and 7.9, and in Figure 7.10.

Problem
Solver Steering InterfaceService

Monitoring

Database System
Output data

Figure 7.8: The Monitoring service is stopped and consequently the Steering interface also
stops. The output data is not lost because it is being saved in the Database system.

Problem
Solver Steering Interface

Selected dataOutput data

Input data

Database System

Monitoring and
Statistics Service

Figure 7.9: The initial Monitoring service is replaced with a more complex one (Monitoring
and Statistics service), which is activated to continue the filtering of the output data.

In Figure 7.8, theMonitoring Service is stopped so that it can be replaced with a more com-

plex tool like the Monitoring and Statistics service in Figure 7.9; in the meantime, the Problem

Solver continues its execution and its output is saved in the Database System.

227

Database System

Problem
Solver Steering Interface

Monitoring and
Statistics Service

Selected data

Saved output data

Figure 7.10: After the Problem Solver terminates its execution, data can be re-analysed.

The alternative scenario is illustrated in Figure 7.10: after the Problem Solver terminates its

execution, its output can be processed, either from the beginning or from the point at which

theMonitoring Service was being replaced (and that would otherwise be lost). In this case, the

Database System acts as a temporary buffer. Clearly, in this alternative scenario depicted in

Figure 7.10, the Steering Interface cannot be used anymore to parameterise the application.

The next two sections identify which Structural and Behavioural Patterns could be used

to configure the PSE outlined in Figure 7.7. Subsequently, section 7.3.4 describes the appli-

cation of Structural Operators to build that PSE, and section 7.3.5 discusses the application

of Behavioural Operators to control the PSE’s execution. The initial modelling of the exam-

ple follows the Basic Methodology as previously described in section 3.1.3. Subsequently, the

modification of that configuration is based on the concepts discussed in 5.2 and 5.3.

7.3.2 Structural Patterns in Use

Steering Interface

Database System

Monitoring
Service

Selected dataOutput data

Input data

Problem
Solver

Ring Structural Pattern

Pipeline Structural Pattern

Figure 7.11: Identification of the Ring and Pipeline patterns in the PSE example.

The analysis of the interactions between the components in 7.7 suggests two main Struc-

tural Patterns which are represented in Figure 7.11: a) a Ring Structural Pattern may configure

the interactions between the Problem Solver, theMonitoring Service and the Steering Interface; and

b) a Pipeline Structural Patternmay connect the Problem Solver to the Database System.

To represent such configuration the user would define a Ring Structural Template (S-PT)

with three elements, and a Pipeline Structural Template with two elements. One way to com-

228

bine the two patterns is by embedding the Pipeline S-PT into one of the elements of the Ring

S-PT forming a Hierarchical Pattern Template. Structural Operators provide this kind of pattern

combinations, as will be described in one of the following sections.

Steering Interface

Database System

Service
Monitoring

Database
(slave)

Database
(master)

Database
(slave)

Database
(slave)Database

(slave)

Adapter

Proxy

Proxy

Real Subject
(Steering Interface)

Proxy Strutural Pattern

Selected dataOutput dataProblem
Solver

Star S. Pattern

Input data

Adaptee

Adapter S. Pattern

(Monitoring
legacy code)

Figure 7.12: Identification of the Star, Adapter, and Proxy patterns in the PSE example.

Figure 7.12 identifies three more Structural Patterns, namely for configuring the individual

services. For example, the Star Structural Patternmay represent the Database System supposing

that the system is composed of a set of distributed Database sub-systems. These sub-systems

are the Satellites in the Ring’s structure, and they are controlled by a Master Database system

acting as a coordinator. The Figure shows that Star with three satellites.

The second example in Figure 7.12 presents the possibility of using the Adapter Structural

Pattern for the Monitoring service. This service may be supported by legacy code which needs

to be adapted in order to interact with the other services. This Adapter pattern would be

embedded in the second element of the Ring.

Finally, one way to represent the possibility of sharing the Steering Interface among multiple

users is through the Proxy Structural Pattern. Each user has a Proxy to access the central service

which in turn controls the concurrent accesses. Therefore, the Steering Interface placed at the

subject element of the Proxy pattern coordinates the concurrent requests from users to tune the

Problem Solver. The Figure shows a Proxy S-PT with two proxies for two users.

7.3.3 Behavioural Patterns in Use

Taking as a basis the Structural Patterns illustrated in Figures 7.11 and 7.12 this section enu-

merates some applicable Behavioural Patterns. Please see table 3.1 in section 3.3.7 for a more

229

complete list.

Steering Interface

Database System

Monitoring
Service

Selected dataOutput data

Input data

Problem
Solver

{Pipeline Structural Pattern + StreamingBP}

{Ring Structural Pattern + StreamingBP}

Figure 7.13: Combination of the Ring pattern with the Producer/Consumer Behavioural Pat-
tern, and the Pipeline pattern with the Streaming Behavioural Pattern.

The following combinations of Structural and Behavioural patterns are depicted in Fig-

ure 7.13 (the first three enumerated cases) and in Figure 7.14 (the last three enumerated cases):

1. The Streaming pattern may represent the interaction between the Problem Solver and the

Monitoring Service. However, if the Monitoring service only requires a sub-set of the data

produced by the Problem Solver, then such interaction might be represented by the Observer

pattern.

2. The Streaming pattern may also be used to represent the control and data flows between:

a) the Monitoring service (source of the selected data) and the Steering Interface (destination

of the selected data) in the Ring pattern (Figure 7.11); b) the Steering Interface (source of the

input data to tune the application) and the Problem Solver (destination of the input data).

3. The Streaming pattern is once again used to define the data and control dependencies for

the elements in the Pipeline Structural Pattern. This Structural Pattern connects the Problem

Solver and the Database System, and the Streaming behaviour represents the continuous flow

of data generated by the Problem Solver and that needs to be maintained in the Database

System.

4. TheMaster/Slave pattern can represent the behaviour of the Database System (Figure 7.12): a

master controls and distributes requests to the slaves.

5. The Client/Server pattern can represent the interaction between the Steering Interface (server)

and its proxies (clients) that redirect users’ requests to access the Steering service.

6. The Adapter Structural Pattern that gives access to the legacy code to support theMonitoring

service can be combined with the Service Adapter Behavioural Pattern which “attaches ad-

ditional properties or behaviours to an existing application to enable it to be invoked as a

service” [34].

230

Steering Interface

Database System

Service
Monitoring

Database
(slave)

Database
(master)

Database
(slave)

Database
(slave)Database

(slave)

Proxy

Proxy

Adapter

Adaptee

{Adapter S. Pattern +
ServiceAdapterBP}

(Monitoring
legacy code)

Selected dataOutput dataProblem
Solver

Input data

Real Subject
(Steering Interface)

{Star S. Pattern + Master/SlaveBP}

{Proxy Strutural Pattern + Client/ServerBP}

server

clients

Figure 7.14: Combination of: the Star SP with the Master/Slave Behavioural Pattern; the
Adapter SP and the Service Adapter Behavioural Pattern; and the Proxy SP with the Clien-
t/Server Behavioural Pattern.

Having identified the Structural and Behavioural patterns, the following sub-section de-

scribe the usage of Structural Operators in order to build the desired configuration. The sub-

sequent sections describe the execution control of the final application through Behavioural

Operators, as well as some reconfiguration scenarios.

7.3.4 Structural Operations

Figures 7.15 and 7.16 describe a possible sequence of steps to build the PSE configuration

shown in Figure 7.7, according to the patterns identified in Figures 7.11 and 7.12. The cor-

respondent Structural Operator sequence is divided in parts along with the explanation of a

sub-set of the steps, as presented ahead. Lines in these sequences are numbered according to

the enumerated steps.

The following operator sequence steps are presented in Figure 7.15:

1: Create(RingSP, ‘‘PSE’’, 3)

2: Create(PipelineSP, ‘‘DataStoring’’, 2)

3: Create(StarSP, ‘‘DatabaseSystem’’, 4)

4: Embed(DatabaseSystem, DataStoring, ‘‘cph2’’)

Step 1 The user creates a Ring Structural Pattern Template (S-PT) with three component place

231

problem solver and the database system).
two component place holders (for the
Step 2 − Creation of a pipeline PT with

Step 3 − Creation of a star PT for the
database system (the front−end will
be the nucleus and the slaves will be
the satellites).

into the pipeline PT built in step 2.
Step 4 − Embedding of the star PT

Step 1− Creation of a ring PT with three
component place holders (for the problem

steering interface).
solver, the monitoring service, and the

STEP 2:

STEP3:

STEP 1:

STEP 4:

Figure 7.15: Initial steps for building the PSE depicted in Figure 7.7.

holders (CPHs) to represent the components connecting the Problem Solver, the Moni-

toring Service, and the Steering Interface.

Step 2 Next, the user creates a Pipeline S-PT named “DataStoring” with two CPHs to represent

the connection between the Problem Solver and the Database System. This pipeline will

be embedded in the first component place holder of the ring, but first the user creates a

S-PT to represent the Database System.

Step 3 The user creates a Star S-PT named “DatabaseSystem” with three satellites that will be

instantiated to the Database sub-systems.

Step 4 The user applies the Embed Structural Operator over the Pipeline S-PT with the Star S-

PT to be embedded in the second component place holder (“cph2”) of the Pipeline S-PT.

The following operator sequence steps are presented in Figure 7.16:

5: Embed(DataStoring, PSE, ‘‘cph1’’)

6: Create(AdapterSP, ‘‘MonitoringSv’’)

7: Create(ProxySP, ‘‘SteeringInt’’)

8: Increase(1, SteeringInt)

Step 5 The user applies the Embed Structural Operator to include the Pipeline S-PT obtained in

step 4 into the first component place holder (“cph1”) of the Ring S-PT (previously defined

in step 1).

Step 6 Next, the user creates an Adapter S-PT named “MonitoringSv” to represent the Moni-

toring service.

232

Adapter Adaptee

Adapter

structural operator to the proxy PT.
Step 8 − Application of the Increase

Step 9 − Embedding of the adapter
PT (step 6) into the ring defined in.
step 5.

PT into the third element of the
ring PT.

Step 10 − Embedding of the proxy

Step 11 − Instantiation of all PTs
with services.

Step 7 − Creation of a proxy
PT for the steering interface.

Step 6 − Creation of an adapter
PT for the monitoring service.

Database
system

Problem
solver

Interface
Steering

Real
Subject

Step 5 − Embedding of the pipeline
PT defined in step 4, into the ring
PT defined in step 1.

STEPS 7 and 8:

STEP 6:

STEPS 9, 10 and 11:

STEP 5:

Monitoring
legacy c.

Proxy

Proxy

Proxy

Proxy

Figure 7.16: Final steps for building the PSE depicted in Figure 7.7.

Steps 7 and 8 The user creates the structure for the Steering Interface (which will be accessed

by other users). To achieve this, the user creates a Proxy S-PT named “SteeringInt” and

then its proxy elements are increased by one through the application of the Increase Struc-

tural Operator.

The following operator sequence steps are also presented in Figure 7.16:

9: Embed(MonitoringSv, PSE, ‘‘cph2’’)

10: Embed(SteeringInt, PSE, ‘‘cph3’’)

Steps 9 and 10 The user embeds the Adapter S-PT and the Proxy S-PT in the ring’s second and

third component place holders, respectively (i.e. “cph2” and “cph3”).

Step 11 Finally, the user instantiates all pattern templates with the selected services. This step

requires the application of the Instantiate(P, position, component) operator (described in

section 5.2.3) in case the configuration is generated by a script. Alternatively, the in-

stantiation of the elements may be done through a GUI of a workflow tool, like the one

provided by the implementation of patterns/operators over the Triana Problem Solving

Environment, as described in section 6.4.

Having defined the structural configuration, the user may now apply the appropriate Be-

havioural Patterns, as defined in section 7.3.3, and run the application using the Behavioural

Operators to control its execution. Such is described in the next section.

233

7.3.5 Behavioural Operators in Use

A Behavioural Operator sequence following the Structural Operator sequence defined in the pre-

vious section may be used to define the behaviours that rule each of the Structural Patterns in

the current example according to what was presented in Figures 7.13 and 7.14. The final con-

figuration is depicted in Figure 7.17. In all cases, we define that the result is a Regular Pattern

Instance (PI) as defined in section 5.2.4, meaning that a single Behavioural Pattern is applied

to one individual Structural Pattern, and the behavioural role of future elements within each

Structural Pattern is pre-defined.

Monitoring
service

(adapter)

adaptee
(legacy

code)

MonitoringSv
{AdapterSP + ServiceAdapterBP

SteeringInt
{ProxyPT + Client/ServerBP}

Steering
Interface

(user1)
proxy1

client client

proxy2
(user2)

DataStoring
{PipelineSP + StreamingBP}

DatabaseSystem
{StarSP + Master/SlaveBP}

Database
(slave2)

Database
(slave3)Database

(slave1)

Database
(master)

Output data Selected data

Input data

server

Input data

Output
data

data
Input

Problem
Solver

Database
System

Output
data source

destination

source
destination

PSE
{RingSP + StreamingBP}

Figure 7.17: The final configuration for the PSE example.

Operator sequence steps generating the final PSE configuration illustrated in Figure 7.17:

12: DefineBehavPatt(PSE.DataStoring.DatabaseSystem, ‘ ‘Master/Slave’’)

13: DefineBehavPatt(PSE.DataStoring, ‘‘Streaming’’)

14: DefineBehavPatt(PSE, ‘‘Streaming’’)

Step 12 The embedded “DatabaseSystem” pattern is composed with the Master/Slave Be-

havioural Pattern where the “nucleus” of the Star pattern is defined as the Database

master. The tool/service that instantiates the nucleus is to select to which satellite, i.e.

“Database slave”, data will be sent to be stored. The “DatabaseSystem” represents a

distributed (federated) database system that, for example, is common in distributed

and Grid environments. Please note that this operation is possible since the embedded

“DatabaseSystem” pattern is still directly accessible for manipulation. As defined in the

operator invocation, this embedded pattern is accessed through the concatenation of the

patterns’ identifiers starting from the outer pattern, i.e. “PSE”. Specifically the “Databas-

eSystem” is referenced through the identifier: “PSE.DataStoring.DatabaseSystem”.

234

Step 13 The flow of data generated by the “Problem Solver” in the “DataStoring” Pipeline

pattern is ruled according to the Streaming Behavioural Pattern, where the destination

of the data is the Database master. This means that the embedding operation previously

defined in step 4, i.e. Embed(DatabaseSystem, DataStoring, “cph2”), will imply a structural

connection representing the data flow to the nucleus of the star, i.e. Database master.

Step 14 The Streaming Behavioural Pattern is to coordinate at run-time all elements in the ring-

based “PSE” pattern. The “Problem Solver” is defined as a “source” of data and the

“MonitoringSv” is defined as the “destination” of that generated data.

Furthermore, the “MonitoringSv” is also defined as a “source”, i.e. filtered data at

the Monitoring Service is sent to the next stage in the Ring, namely the Steering Inter-

face (“SteeringInt”). This means that the “adapter” element within that Adapter-based

pattern that represents the Monitoring Service consumes data generated by the “Prob-

lem Solver” and, additionally, data filtered at the “adaptee” element (i.e. the legacy

code that implements the monitoring) is also sent by the “adapter” to be consumed

by the “SteeringInt” pattern. In this element, the “destination” of the selected data is

the “Steering Interface” that instantiates the “subject” element within the Proxy-based

“SteeringInt” pattern.

Finally, the data for application tuning generated by the Steering Interface is considered

also to be consumed by the “Problem Solver”. Therefore, the “SteeringInt” as well as the

“Problem Solver” are alike considered as “sources” and “destinations” of data.

15: DefineBehavPatt(PSE.MonitoringSv, ‘‘Service Adapte r’’)

16: DefineBehavPatt(PSE.SteeringInt, ‘‘Client/Server’ ’)

Step 15 The Service Adapter Behavioural Pattern is combined with the Adapter pattern (named

“MonitoringSv”) to provide access to the legacy code as a service. Please note that we

assume that the data generated at the Problem Solver is delivered to the adapter element

(“Monitoring service” in Figure 7.17).

Step 16 Finally, the Proxy pattern that represents the Steering Interface is combined with

the Client/Server Behavioural Pattern where the proxy elements in the pattern are the

“clients”. These proxies forward requests from the users in order to access the Steering

Interface (i.e. the “subject” element within the Proxy pattern and that behaves as the

“server”).

After the above Behavioural Operator sequence (steps 12 to 16), the final configuration

represented in Figure 7.17 is ready to be executed. This PSE Pattern Instance (PI) can be manip-

ulated through Execution operators in different ways. For instance:

1. The application of the Start(PSE) operator launches the execution of all components/ser-

vices. Through the proxies that give access to the Steering Interface, two (remote) users may

tune the Problem Solver according to data collected by theMonitoring Service.

2. The application of the Start(PSE) and Limit(time_interval, PSE) in sequence allows lim-

iting the time the PSE PI is allowed to execute. Upon expiration of the time defined in

“time_interval”, the execution of all elements is terminated.

235

3. The application of the Restart(time_interval, PSE) provides the periodic execution of the

complete application. For example, the PSE may be restarted every day at the same time,

and when this automatic re-execution is no longer desired, the TerminateRestart(PSE) oper-

ator discontinues that periodic execution.

Please note that in these three examples the Start, Limit and Restart/TerminateRestart opera-

tors are assumed to act recursively upon the hierarchy forming the PSE Pattern Instance.

Moreover, it is also assumed that the coordination between the defined Behavioural Pat-

tern for the PSE PI and the behaviours of the embedded PIs is implementation dependent.

For example, whereas the overall enclosing pattern, i.e. the PSE PI, is ruled by the Streaming

Behavioural Pattern, the PI embedded at the second stage of that Ring-based pattern, namely

the “Monitoring service”, is ruled by the Service Adapter Behavioural Pattern. Therefore, it is

necessary to coordinate the reception of data at that second stage with the invocation of the

embedded “Monitoring service” that will process that received data. Implementation-wise,

such coordination is to be guaranteed by the pattern controller (defined in section 6.2.1) of each

embedded pattern in orchestration with the pattern controller of the enclosing pattern.

We recall that the detailed study of the behavioural coordination in Hierarchical patterns,

although fundamental, is out of the scope of this thesis, and it is deferred to future work.

The next sub-section presents a few reconfiguration scenarios of the PSE example, which

include the ones discussed in section 7.3.

7.3.6 Reconfiguration Scenarios

Starting from the configuration defined in the previous section (Figure 7.17) it is possible to

define a few reconfiguration scenarios resulting from pattern manipulation through Structural

and Behavioural Operators. Some scenarios have to be accomplished at development time,

whereas others may be done at execution time.

For both cases, we may assume that the application reconfiguration is restricted to a par-

ticular set of users. To that purpose, the DefineOwners Ownership Operator introduced in sec-

tion 3.3.4 may be used to specify those access restrictions. For example, with the DefineOwn-

ers(PSE, “PSEmanager”, “scientist1”, “scientist2”) operation, it is possible to designate that only

the user identified as the manager of the PSE example, and two scientists may operate the

application. We recall again that the implications of the access restrictions associated to the

DefineOwners operation are implementation dependent.

Replacing the Monitoring Service

Figures 7.8 and 7.9 in section 7.3.1 described a reconfiguration scenario where the Monitoring

service is replaced with a more complex service, namely the Monitoring and Statistics Service,

while the Problem Solver continues its execution. The hierarchical configuration of the “PSE”

Pattern Instance defined for the PSE example permits its reconfiguration at run-time accord-

ing to what was discussed in section 5.3. Specifically, the execution of part of the application

representing the PSE example is suspended, while the rest of the components/services in the

application remain in operation. In fact, only the execution of the service to be replaced, i.e. the

236

Monitoring service, is terminated while the Problem Solver, the Database system, and the Steering

Interface are uninterrupted.

SteeringInt
{ProxyPT + Client/ServerBP}

Steering
Interface

(user1)
proxy1

client client

proxy2
(user2)

DataStoring
{PipelineSP + StreamingBP}

Monitoring
service

(adapter)

PSE
{RingSP + StreamingBP}

Monitoring
Statistics
service

Output data

Input data

server

Input data

data
Input

Problem
Solver

Database
System

Output
data source

destination adaptee
(legacy

code)

MonitoringSv

Terminate(PSE.MonitoringSv)
Replace(PSE.MonitoringSv, MonitStatSv)

proxy

subject

MonitStatSv

Figure 7.18: Applying the Terminate Behavioural Operator to replace the embedded “Monitor-
ingSv” Pattern Instance (PI) for the “Mon itStatSv” pattern.

One way to achieve such reconfiguration through pattern operators may be:

1. To apply the Terminate operator to the “MonitoringSv” Pattern Instance (PI) located at the

second stage of the Ring pattern. Consequently, the execution of the “MonitoringSv” pattern

is aborted and data generated in the mean time by the Problem Solver is no longer processed

at that second stage. Thus data is also no longer received by the “SteeringInt” PI located at

the following stage. This is depicted in Figure 7.18.

Since the execution of the overall “PSE” PI was not aborted nor was terminated, the “DataS-

toring” PI continues its execution and data generatedmeanwhile by the Problem Solver is still

saved at theDatabase system. Similarly, the “SteeringInt” PI remains active, whichmeans that

although data is not received from the previous stage and therefore it cannot be displayed

at the Steering Interface, the users accessing its proxies may still tune the Problem Solver.

2. To apply the Replace(PSE.MonitoringSv, MonitStatSv) Structural operator so that the “Monit-

StatSv” pattern takes the place of the “MonitoringSv” pattern within the “PSE” PI. This

pattern, also depicted in Figure 7.18, represents a Proxy-based PI which gives access to a

(remote)Monitoring and Statistics Service that provides extra capabilities for processing data

generated by the Problem Solver.

3. To launch the execution of the new pattern through the Start(MonitStatSv) Behavioural

Operator. After the “MonitStatSv” starts executing, as depicted in Figure 7.19, the flow of

data in the ring-based “PSE” PI continues normally.

Please note that the former “MonitoringSv” PI may either be added to a pattern repository

(associated to an implementation support environment, like Triana) for later reuse, or may be

deleted through the Eliminate(MonitoringSv) operator.

237

SteeringInt
{ProxyPT + Client/ServerBP}

Steering
Interface

(user1)
proxy1

client client

proxy2
(user2)

DataStoring
{PipelineSP + StreamingBP}

PSE
{RingSP + StreamingBP}

Monitoring
Statistics
service

Start(PSE.MonitStatSv)

Output data

Input data

server

Input data

data
Input

Problem
Solver

Database
System

Output
data source

destination

MonitStatSv

source
destination

subject

proxy

Figure 7.19: Applying the Start Behavioural Operator to the “Mon itStatSv” pattern to con-
tinue the execution.

Modifying the Steering Interface

As an example of an additional run-time reconfiguration of the “PSE” Pattern Instance, one

may consider that the Problem Solver runs for a considerable amount of time and, meanwhile,

the type of users that may access Steering Interface may change. For instance, the new users

accessing that interface are passive (e.g. students observing the functionality of the steering

interface), and therefore it may be necessary to guarantee that they are not allowed to change

the Problem Solver’s parameters.

One possible way to accomplish such restriction is to change the Behavioural Pattern that

coordinates the “SteeringInt” Pattern Instance (PI) as a whole, namely to the Producer/Con-

sumer Behavioural Pattern (BP). The Steering Interface service (the “producer”) defined as the

“subject” element at the Proxy-based PI sends data to the “proxy” components to be consumed.

Users accessing these proxies no longer can submit requests to the Steering Interface and simply

observe data generated by it.

An additional dynamic reconfiguration may be the possibility to change the number of

passive users, e.g. incrementing the number of students, with the guarantee that new proxies

for new users exhibit a similar behaviour to the existing ones. Concretely, the new proxies

perform as “consumers” according to the ruling Producer/Consumer BP. We may assume that

the possibility to accomplish this second reconfiguration is delegated by one of the owners of

the PSE PI to a special user named “Steering Controller” (for example a teacher on a e-learning

class).

One way to achieve such dynamic reconfigurations through pattern operators may be:

1. The execution of the Steering Interface is stopped as a result of the Stop(PSE.SteeringInt) Ex-

ecution Operator. This is presented in Figure 7.20. Consequently, the execution of all com-

ponents within the “PSE.SteeringInt” PI is suspended and the Problem Solver parameters

cannot be changed in the meanwhile. As represented in the same Figure, the ReplaceBehav-

PattGlobal Coordination Operator is used to change the ruling behaviour of all components

within the “SteeringInt” PI.

According to what was defined in sections 5.2.2 and 5.2.4, the ReplaceBehav-

238

DataStoring
{PipelineSP + StreamingBP}

Monitoring
Statistics
service

PSE
{RingSP + StreamingBP}

Stop(PSE.SteeringInt)
ReplaceBehavPatt(PSE.SteeringInt,

"Client/Server", "Producer/Consumer")

Output data producer

data
Input

Problem
Solver

Database
System

Output
data source

destination

MonitStatSv

source
destination

subject

proxy proxy2
(user2)(user1)

proxy1

consumerconsumer

Steering
Interface

SteeringInt
{ProxyPT + Producer/ConsumerBP}

Figure 7.20: Execution suspension of the embedded “SteeringInt” Pattern Instance through
the Stop Behavioural Operator and replacement of its Behavioural Pattern.

Patt(PSE.SteeringInt, “Client/Server”, “Producer/Consumer”) operator replaces the Be-

havioural Pattern associated to the “SteeringInt” PI. This operation assumes that the new

Behavioural Pattern, i.e. “Producer/Consumer”, associated to the Proxy pattern is also a

Regular PI, and therefore the new role of each component within the PI is (implementation

dependent and) pre-defined. In this case, as presented in Figure 7.20, the “Steering Inter-

face” is defined as the “producer”, and all proxy components will behave as “consumers”.

DataStoring
{PipelineSP + StreamingBP}

Monitoring
Statistics
service

PSE
{RingSP + StreamingBP}

AssignActivity(PSE.SteeringInt,
{Increase,Decrease,Instantiate},
"Steering Controller")

Resume(PSE.SteeringInt)

Output data producer

data
Input

Problem
Solver

Database
System

Output
data source

destination

MonitStatSv

source
destination

subject

proxy proxy2
(user2)(user1)

proxy1

consumerconsumer

Steering
Interface

SteeringInt
{ProxyPT + Producer/ConsumerBP}

Figure 7.21: Resuming the execution of the embedded “SteeringInt” PI with the definition
that the user “Pattern Controller” may manipulate this pattern with the Increase/Decrease and
Instantiate operators.

2. One of the owners of the “PSE” PI (assigned above through theDefineOwnersOwnership

Operator) uses the AssignActivity Ownership Operator to define that the user named

“Steering Controller” may operate the “SteeringInt” PI through the Increase, Decrease,

and Instantiate operators. This is presented in Figure 7.21. Subsequently, the execution

of the Steering Interface proceeds through the Resume(PSE.SteeringInt), as displayed at the

same Figure.

239

DataStoring
{PipelineSP + StreamingBP}

Monitoring
Statistics
service

PSE
{RingSP + StreamingBP}

(user1)
proxy1

(user2)
proxy2

(user3)
proxy3

Output data

data
Input

Problem
Solver

Database
System

Output
data source

destination

MonitStatSv

source
destination

subject

proxy

SteeringInt
{ProxyPT + Producer/ConsumerBP}

Interface
Steering

producer

consumer

Increase(1, PSE.SteeringInt)
Instantiate(PSE.SteeringInt, "proxy3", "user3")

Figure 7.22: Incrementing the number of proxies in the embedded “SteeringInt” providing
access to the “Steering Interface” to an extra (passive) user.

3. In case of need to increment the number of remote passive users of the Steering Inter-

face, the user “Steering Controller” may then apply the Increase Structural Operator with

the guarantee that all newly created proxies will behave according to the “consumer”

role within the Producer/Consumer Behavioural Pattern. This is presented in Figure 7.22

through the application of the Increase(1, PSE.SteeringInt). It is assumed that: a) the

new proxy component place-holder (i.e. “proxy3”) is instantiated with a similar compo-

nent (i.e. “user3” in the Figure) to the other proxies in order to support the access to the

“Steering Interface” component; b) the execution of that similar component is automat-

ically launched. This is represented by the Instantiate(PSE.SteeringInt, “proxy3”, “user3”)

operation.

Please note that although the passive users with proxy access cannot tune the Problem Solver

through the Steering Interface, this one is still directly accessible by the owners of the “PSE” PI

that may want to change the application parameters.

Post-mortem Data Analysis

The final reconfiguration illustration of the present PSE example concerns the analysis of the

data saved on the Database system, once the Problem Solver has finished its execution. This

development time reconfiguration was previously discussed in section 7.3.1 and illustrated in

Figure 7.10.

Starting from a previous configuration for the PSE example, e.g. the one presented in Fig-

ure 7.22, the aimed reconfiguration may be achieved in different ways. One option is to not

modify the “PSE” Pattern Instance (PI) (e.g. to be saved in a repository):

1. The necessary Pattern Instances for the new configuration are replicated, namely the

“Database system”, the “MonitStatSv”, and the “SteeringInt” PIs:

1: Replicate(1,PSE.DataStoring.DatabaseSystem,‘‘Data baseSystemPM’’)

2: Replicate(1, PSE.MonitStatSv, ‘‘MonitStatSvPM’’)

240

3: Replicate(1, PSE.SteeringInt, ‘‘SteeringIntPM’’)

2. A three stage pipeline ruled by the Streaming Behavioural Pattern is generated in order to

connect the replicated PIs:

4: Create(PipelineSP, ‘‘PSEPM’’, 3)

5: DefineBehavPatt(PSEPM, ‘‘Streaming’’)

It is assumed that data flows from the first stage of the pipeline (named “cph1”) to the second

(i.e. “cph2”), and from this one to the third stage (i.e. “cph3”).

3. In order to process the Problem Solver’s generated data saved at theDatabase system, its ruling

behaviour is changed to the Client/Server Behavioural Pattern. In this way, the principal

Database located at the nucleus of the star-based “DatabaseSystemPM” becomes responsible

for retrieving the data spread at the distributed secondary databases defined as the satellites

of the Star pattern 2:

6: ReplaceBehavPatt(DatabaseSystemPM,‘‘Master/Slave’ ’,‘‘Client/Server’’)

As presented in Figure 7.23, the principal Database (at the nucleus) is annotated with the

“client” role, and all secondary Databases at the satellites are defined as “servers”.

4. The replica “DatabaseSystemPM” is embedded in the first stage of the “PSEPM”, the replica

“MonitStatSvPM” in the second, and the “SteeringIntPM” in the third:

7: Embed(DatabaseSystemPM, PSEPM, ‘‘cph1’’)

8: Embed(MonitStatSvPM, ‘‘cph2’’)

9: Embed(SteeringIntPM, ‘‘cph3’’)

5. The Start(PSEPM) Behavioural Operator is used to launch the execution of all compo-

nents/services in the application. It is assumed that this operator acts recursively upon the

“PSEPM” Hierarchical PI launching the execution of all components/services.

The actions enumerated above lead to the configuration presented in Figure 7.23.

Another option to perform a configuration for the post-mortem analysis of the generated

data is similar to first option, except that the necessary PIs are extracted from the “PSE” PI and

this one is itself deleted:

1: Extract(DatabaseSystem, PSE.DataStoring, ‘‘cph2’’)

2: Extract(MonitStatSv, PSE, ‘‘cph2’’)

3: Extract(SteeringInt, PSE, ‘‘cph3’’)

2Under the assumption that theMaster/Slave Behavioural Pattern would also support the retrieval of
data from the secondary databases at the satellites, the behavioural change would not be necessary.

241

Monitoring
Statistics
service

(user1)
proxy1

(user2)
proxy2

(user3)
proxy3

Database
(server2)

Database
(server1)

Database
(server3)

{StarSP + Client/Server}
DatabaseSystemPM

{PipelineSP + StreamingBP}
PSEPM

Start(PSEPM)

source
destination

source
destination

subject

proxy

SteeringIntPM

Interface
Steering

producer

consumer

ProbSolv data

Database
(client)

MonitStatSvPM

Figure 7.23: New configuration for analysis of the PSE generated data formerly saved at the
Database system.

4: Eliminate(PSE)

5: Create(PipelineSP, ‘‘PSEPM’’, 3)

6: DefineBehavPatt(PSEPM, ‘‘Streaming’’)

7: ReplaceBehavPatt(DatabaseSystem,‘‘Master/Slave’’, ‘‘Client/Server’’)

8: Embed(DatabaseSystem, PSEPM, ‘‘cph1’’)

9: Embed(MonitStatSv, ‘‘cph2’’)

10: Embed(SteeringInt, ‘‘cph3’’)

11: Start(PSEPM)

Finally, an hypothetical option based on the Reshape Structural Operator could be consid-

ered to simplify the present reconfiguration of the “PSE” PI. An operator sequence using that

operator could be:

1: Extract(DatabaseSystem, PSE.DataStoring, ‘‘cph2’’)

2: ReplaceBehavPatt(DatabaseSystem,‘‘Master/Slave’’, ‘‘Client/Server’’)

3: Eliminate(PSE.DataStoring)

4: Reshape(PSE, PipelineSP)

5: Embed(DatabaseSystem, PSE, ‘‘cph1’’)

6: Start(PSE)

However, such reconfiguration is not possible due to the restriction that the Reshape opera-

tor cannot be applied to CISPs, SB-PTs, and PIs, as discussed throughout section 5.2. In this par-

ticular example, it would be necessary to establish, upon calling the Reshape(PSE, PipelineSP)

operator, that although the same Behavioural Pattern, i.e. Streaming, would be used for the

new (Pipeline) structure: a) the “cph1” element in the original Ring Structural Pattern would

become the first stage of the new pipeline-based structure for the “PSE” PI, the “cph2” would

become the second pipeline stage, etc. ; and b) the data flow would continue to proceed from

the first pipeline stage to the second, and from this one to the third. In a simple analysis, this

would correspond to break the ring connection between the stage containing the “SteeringInt”

242

and the first stage (formerly containing the “DataStoring” PI). Although the usage of the Re-

shape operator upon CISPs, SB-PTs, and PIs raises a high number of different possible transfor-

mation mappings, we intend to make that study in future versions of our work.

Addition of an extra Component

Finally, as an additional example of a development time reconfiguration, wemay assume that it

is necessary to add a Visualisation Component to the configuration. Specifically, this component

is to display all the information generated by the Problem Solver, i.e. the Visualisation Component

has to be directly connected to the Problem Solver, and not to theMonitoring Service.

Steering
Interface

(user1)
proxy1

client client

proxy2
(user2)

Problem
Solver

Database
System

data
Input Monitoring

service
(adapter)

adaptee
(legacy

code)

PSE
{RingSP + StreamingBP}

Output data Selected data

Input data

server

Input data

source
destination

source
destination

SteeringInt
{ProxySP + Client/ServerBP}

Output
data

{StarSP + StreamingBP}
DataEmission MonitoringSv

{AdapterSP + ServiceAdapterBP

Visualis
Compnt

Figure 7.24: A new component is directly connected to the Problem Solver. This configuration
is based on the one presented in Figure 7.17.

One way to achieve such reconfiguration is to define a Star Structural Pattern, also com-

bined with the Streaming Behavioural Pattern, where the Problem Solver at the “nucleus” sends

data to both “satellites”, namely the Database system and the Visualisation Component. This is

represented in Figure 7.24.

Such reconfiguration may be achieved with the following operator sequence:

1: Create(StarSP, ‘‘DataEmission’’, 3)

2: Extract(DatabaseSystem, PSE.DataStoring, ‘‘cph2’’)

3: Embed(DatabaseSystem, DataEmission, ‘‘satellite2’’)

4: Instantiate(DataEmission, ‘‘satellite1’’, ‘‘Visuali sCompnt’’)

5: Instantiate(DataEmission, ‘‘nucleus’’, ‘‘ProblemSol ver’’)

6: Replace(PSE.DataStoring, DataEmission)

We assume that the instantiation above of the “nucleus” component place holder (CPH)

with the Instantiate(DataEmission, “nucleus”, “Problem Solver”) operator refers exactly the same

Problem Solver used so far in the several PSE examples. To instantiate the remaining CPHs of

the newly created pattern, i.e. “DataEmission”, the operations are similar to the ones described

so far. Subsequently, the “DataEmission” PI takes the place of the “DataStoring” PI as the first

stage of the ring-based PSE through the Replace(PSE.DataStoring, DataEmission) operator.

243

7.4 Skeleton Modelling

As previously described in section 2.3.1, skeleton-based approaches have been providing for

already some time a way to compose parallel programs by reusing basic recurrent parallel

structures without the need to code their typical interactions. In their classic definition, skele-

tons are, in general, polymorphic, higher-order functions with pre-packaged implementations

specifically tuned for (high-performance) parallel systems. Several functional programming

languages defined skeletons as their basic constructor [152,155,167] but without allowing skele-

ton nesting, whereas other works support an adequate composition of skeletons to form more

complex applications [151, 157].

With time, skeleton usage has been naturally ported from the parallel programming do-

main into Grid-based environments as a way to simplify programming [259–261]. Although

being proven as a powerful concept to model parallel interactions, the classical skeleton defi-

nition lacks the expressiveness to express design issues in Grid environments, which are better

defined, in our opinion, through patterns as the ones we propose in this dissertation. Never-

theless, it is possible to find similarities between the interaction structures underlying typical

skeletons, and some combinations of Structural Patterns (e.g. topological such as Pipeline or

Star patterns) with Behavioural Patterns (e.g. Streaming or Master/Slave patterns). As such,

our goal in this section is simply to provide an example of how our patterns and operators

may be used to model the interactions inherent to some typical skeletons. This is done in the

context of a particular skeleton-based language, namely the Pisa Parallel Programming Language

(P3L) [154]. The P3L language already provides skeleton nesting which can also be represented

in our model, namely through the Embed operation.

A general introduction to P3L was previously presented in section 2.4.1. The next sub-

section describes how to configure some of its basic skeletons through our model entities,

whereas the following sub-section presents the modeling of one P3L example.

7.4.1 Mapping P3L Skeletons to Structural and Behavioural Patterns

The P3L composition language is based on Data Parallel skeletons (DPs), Task Parallel skeletons

(TPs), and Control Parallel skeletons (CPs), making it suitable for mixed task and data parallelism

applications. DPs abstract array partition and alignment of dense multi-dimensional array

structures, and include the map, reduce, and comp skeletons. TPs exploit parallelism at coarse

level, namely between the execution of instances of DPs and for a stream of homogeneous

independent input data, and include the pipeline and farm skeletons. DPs and TPs are the

configuration constructors, whereas CPs do not change the parallel structure of the application.

Namely, the seq CP abstracts sequential code to instantiate truly parallel skeletons, and the loop

CP controls skeleton execution iteration.

Control and Task Parallel Skeletons

Figure 7.25 presents three skeletons defined by the P3L language that represent different forms

of execution control. The first skeleton is the sequential control skeleton (seq CP) (a) which repre-

sents a module that encapsulates code written in a sequential language and that may be used

244

a) sequential b) pipeline
first skeleton last skeleton

c) loop

Figure 7.25: Two Control Parallel skeletons: a) sequential and c) loop; and one Task Parallel
skeleton: b) pipeline.

from the P3L language. The in/out interfaces are well defined in the module and it is used

to instantiate truly parallel skeletons. In our model, a seq CP corresponds to the instantiation

of a component place-holder (CPH) in a Structural Pattern Template (S-PT) to a program exe-

cuting sequentially. For example, in the model implementation to the Triana PSE described in

Chapter 6, a CPH is instantiated to a Triana “tool/unit” whose interfaces are also well defined

through input and output ports.

The second skeleton in the Figure (b) is the pipeline Task Parallel skeleton which represents a

sequence of skeleton instances (i.e. tasks in P3L) executing concurrently. The pipeline TP skele-

ton defines a sequence of independent stages of computation, and it may represent a sequence

of both DP and/or TP skeletons. In our model, the pipeline TP may be directly mapped to a

Pattern Template (SB-PT) resulting from a Pipeline S-PT where data and control flow between

stages may be ruled by the Streaming Behavioural Pattern. Moreover, and due to our Embed

Structural Operator, each stage in that SB-PT can enclose itself a SB-PT to model a DP or a TP

in P3L.

The third skeleton in Figure 7.25 (c) is the loop Control skeleton which iterates skeleton com-

position until some condition is verified (a single input may cause several executions of the

skeletons controlled by the loop). The representation of the loop skeleton in our model may

be done in two ways. On one hand, the application of the Repeat Behavioural Operator to

a Pipeline-based SB-PT (e.g. ruled by the Streaming BP) could represent the loop skeleton, if

the loop condition is to be a number defining how many times the skeleton sequence has to

run, and that number does not depend on data produced by the last skeleton instance in the

sequence.

On the other hand, the cyclic execution control of a sequence of skeletons defined by the

loop control skeleton may be structurally represented by the Ring S-PT. First, the application of

the Streaming Behavioural Pattern to the inner stages that represent the skeleton sequence may

represent the data and control flows between those skeletons. Second, the structural connection

from the last CPH back to the first CPH (i.e. the one that closes the cycle between the last

skeleton in the sequence and the first one in the sequence) is to represent (at least) a control

flow allowing triggering another execution of the skeleton sequence.

In the Triana-based implementation of our model, this is possible through the structural

connection to special ports named trigger nodes (as described in Chapter 6) which allows acti-

vating the execution of the unit they belong to. Although that ring-based SB-PT could model

a circular execution, the loop skeleton semantics requires the evaluation of a condition. Such

evaluation could be performed by an extra stage placed between the one that represents the last

245

skeleton in the sequence and the stage that represents the first skeleton. In this way, it is pos-

sible to define the loop condition based on data produced by the last skeleton in the sequence,

that upon positive evaluation would result on the triggering of another execution.

master

slave1

slave2

starSB−PT = {starS−PT + Master/SlaveB−P}

d) farm

P3L Skeleton Pattern− Operator−based Modelmapping

star2SB−PT cph2

pipelineSB−PT = {pipelineS−PT + StreamingB−P}
star2SB−PT = {star2S−PT + StreamingB−P}

Figure 7.26: Modelling the farm Task Parallel skeleton.

The farm skeleton is another Task Parallel skeleton which is presented in Figure 7.26 along

with two possible ways for its modeling through Structural and Behavioural Patterns and Op-

erators. The farm TP skeleton replicates a skeleton (a DP or TP) in a pool of identical copies –

the workers – that run in parallel. Each worker computes independent data items, i.e. for each

data item, the controller of the farm TP skeleton selects which workerwill compute that data.

In the example of a farm TP in the Figure (d), the first element in the skeleton, i.e. the con-

troller (depicted in the leftmost position), sends data to be processed by one of the next two

elements (the workers) and according to an implementation dependent scheduling rule. The

results are gathered by the last element (the rightmost one). In our model, this farm TP skeleton

may be configured in two ways, although the first option described next is more adequate in

our opinion. Namely, the first option considers that the controller itself gathers all the com-

puted results. Consequently, the skeleton may be modelled through a Star S-PT combined with

the Master/Slave Behavioural Pattern, as presented on the upper part of the right-hand side of

Figure 7.26. The “nucleus” of the starSB-PT has the “master” role representing the controller in

the farm TP skeleton, and the “satellites” are the “slaves” i.e. the workers.

The second configuration option of the farm closely follows its configuration, i.e. the con-

troller does not collect the computed results, but they are collected by another entity as pre-

sented in the Figure 7.26. To build such configuration, two SB-PTs are necessary. The first SB-

PT named “pipelineSB-PT” results from a two stage Pipeline S-PT combined with the Streaming

Behavioural Pattern. The second SB-PT named “star2SB-PT” combines a Star S-PT (containing

two satellites) also with the Streaming Behavioural Pattern. This second SB-PT represents the

246

interactions between the controller of the farm (i.e. the “nucleus”) and the workers (i.e. the

“satellites”), and it is up to the controller to select which worker will compute the input data.

The “star2SB-PT” represents the first stage to be included into the first component place-holder

of the “pipelineSB-PT”, and the second stage of this pipeline represents the entity that gathers

the computed results. Therefore, the Embed Structural Operator is used to make that inclusion.

The following operator sequence defines one possible way of building this second modelling

option of the farm skeleton:

Create(PipelineSP, ‘‘farmPT’’, 2)

Create(StarSP, ‘‘starSB-PT’’, 3)

DefineBehavPatt(farmPT, ‘‘Streaming’’)

Embed(starSB-PT, farmPT, ‘‘cph1’’)

DefineBehavPatt(farmPT.starSB-PT, ‘‘Streaming’’)

Please note that, in this operator sequence example, it is assumed that the embedding op-

eration of a star into an element of a pipeline implies establishing structural connections from

all satellites in the “starSB-PT” into the second stage of the “farm” pipeline. Those connections

represent the data flow of the computed results from all workers into the entity in the second

stage that collects that computed data. Moreover, it also assumed that the application of the

DefineBehavPatt(farmPT.starSB-PT, “Streaming”) results on a data flow from the “nucleus” of

the “starSB-PT” to the satellites.

Data Parallel Skeletons

Data Parallel skeletons (DPs) in P3L provide abstractions to hide a few common configurations

for parallel processing of multi-dimensional array structures. The actual mapping into a dis-

joint set of processors is implementation dependent. P3LDPs include themap, comp, and reduce

skeletons [154].

e) map DP f) comp DP

Figure 7.27: The “map” and “comp” Data Parallel skeletons.

Figure 7.27 represents the map (e) and the comp (f) Data Parallel skeletons (DPs) in P3L. In

general, the map skeleton takes a function and a data structure as arguments and applies the

function to each element of the data structure. With the map DP in P3L, the same computation

is replicated and run in parallel at several nodes to process all elements of a (possibly nested)

data structure. The comp skeleton, in turn, combines several data parallel stages modelling

common functional composition. Although these two skeletons are not directly supported by

247

the patterns in our model, they can be included in a pattern-based configuration through the

Adapter Structural pattern. Available code, or for instance a service, implementing those two

DPs can be interfaced by the Adapter pattern combined with an adequate Behavioural Pattern.

Pattern− Operator−based Model

satellite2/star3SB−PT

satellite1/star2SB−PT

nucleus

reducePT

g) reduce

P3L Skeleton mapping

reducePT = {star1S−PT + StreamingB−P}

star(2,3)SB−PT = {star(2,3)S−PT + StreamingB−P}

Figure 7.28: Modelling the reduce Data Parallel skeleton.

The left-hand side of Figure 7.28 represents a third Data Parallel skeleton in P3L, namely

the reduce skeleton. The reduce skeleton allows the application of an associative binary operator

to the elements of an array and this reduction operation is executed in parallel resulting on

the “sum” of all elements. An available implementation of the reduce skeleton may as well be

included in a pattern-based configuration through the Adapter pattern.

Nevertheless, the right-hand side of Figure 7.28 presents a possible way of building a simi-

lar configuration based on the Star Structural Pattern. The basic pattern is a Star S-PT with two

satellites representing one reduction operation which is to be operated at the “nucleus”. The

reduce topology can then be represented by the hierarchical combination of similar replicas of

that basic S-PT. The “reducePT” in the picture represents the outmost Star PT which contains

two other Star PTs, each one embedded in one of its “satellites”. As displayed in the Figure, the

Streaming Behavioural Pattern is again used to represent the data flow. The following operator

sequence defines a possible way to build the “reducePT” Pattern Template:

Create(StarSP, ‘‘reducePT’’, 3)

DefineBehavPatt(reducePT, ‘‘Streaming’’)

Replicate(2, reducePT, {‘‘star2SB-PT’’, ‘‘star3SB-PT’’ })

Embed(star2SB-PT, reducePT, ‘‘satellite1’’)

Embed(star3SB-PT, reducePT, ‘‘satellite2’’)

In this operator sequence wemake two assumptions. First, in this application of the Stream-

ing Behavioural Pattern to a Star S-PT, we assume that data flows from the satellites to the

248

“nucleus” of the Star, contrary to other examples where data flows from the “nucleus” to the

satellites 3.

Second, the embedding of both inner Stars SB-PTs, i.e. “star2SB-PT” and “star3SB-PT”,

implies establishing structural connections with their enclosing satellites, i.e. “satellite1” and

“satellite2”, respectively, so that incoming data to these satellites and thereafter processed at

“star2SB-PT” and “star3SB-PT” is to flow to the “nucleus” of the “reducePT” pattern.

Skeleton Nesting and Execution in P3L

The P3L provides skeleton nestingwhere:

• Data Parallel skeletons (DPs)may be nested in other DPs;

• Task Parallel skeletons (TPs)may be nested in other TPs;

• DPs may be also nested in TPs, but TPs cannot be nested in DPs;

• Control Parallel skeletons (CPs) may be nested either on TPs, DPs, and other CPs, since

they do not change the parallel structure of the application.

After the definition of the overall configuration of an application based on P3L skeletons,

their instantiation originates tasks (either sequential or parallel tasks) to be executed. DP tasks

are executed in parallel, and when an input item is computed in a DP task, its data parallel

skeletons are computed in all the processors assigned to that DP task, and intermediate results

are kept distributed. Moreover, the executions and interactions of independent DP tasks are

controlled by task parallel skeletons. Namely, results produced by a DP task are forwarded

to the next (usually) DP task, according to the global structure defined by TPs skeletons (e.g.

two DP tasks in two stages of a pipeline TP). Data flow implementation is hidden from the

programmer, e.g. the necessary input fetching and sending of results can be delegated to a

centralised controller or to an appropriate subset of the processes in a DP task. The termination

of a P3L program happens when the end of the input stream is detected by all processes in the

program.

The next sub-section presents a possible configuration for an example in P3L that includes

skeleton nesting.

7.4.2 Modelling a P3L Example

In [151] a typical example of P3L is described which is presented in Figure 7.29. This particular

P3L computation is composed of four DP tasks (DP1, DP2, DP3, and DP4 implement the “map”

Data Parallel skeleton) interacting according to the composition of a farm and a pipeline Task

Parallel skeletons. All tasks in DP1 (first stage of the pipeline) run in parallel and the produced

results are sent to the next second stage in the pipeline where, in turn, all tasks in DP2 process

the income data and also send the results to the next stage. Stage three in the pipeline is con-

trolled by a farm TP task, where the controller element in the farm TP sends data to one of the

3As described in section 5.2.2, this a case where the same B-P can be applied to a S-PT in two different
ways, which need further clarification to distinguish both situations.

249

DP1

source

DP2
DP4

sink

DP3

DP3

stage three

Figure 7.29: A P3L example [151] composed of four DP tasks interacting according to the
composition of a farm TP and a pipeline TP.

DP3 replicas. Results are merged at the farm task element acting has a receiver, and are then

sent to the final stage of the pipeline (DP4 task).

p3lEx1 = {pipelineS−PT + StreamingB−P}

adapterDP1 adapterDP2 farmStar

Legacy code

adaptee

adapterDP(i) = {adapter(i)S−PT + StreamingBP}

slave1

slave3 slave2

adapterDP4

farmStar = { starS−PT + Master/SlaveBP}

adapterDP2

slave(i) = adapter(i)DP3

farmStar

adapter
codeDP2

master
code

Figure 7.30: One case of modelling the P3L example in Figure 7.29 using the Pattern/Operator
model.

One way of modelling of the example of Figure 7.29 through the Pattern/Operator model

is shown in Figure 7.30. First, a four-stage Pipeline S-PT combined with a Stream Behavioural

Pattern, may be used to represent the pipeline TP skeleton (“p3lEx1” in the Figure).

Second, the modelling of the farm TP skeleton may be supported by a Star S-PT with three

satellites combinedwith theMaster/Slave Behavioural Pattern (“farmStar” in Figure 7.30) – each

satellite is a “slave” within this B-PT and the nucleus has the “master” role. As explained in

the previous sub-section (see Figure 7.26), such modelling considers that the “master” selects

to which “satellite” each independent data input should be sent to, and also collects the results.

Third, all DPs in the example in Figure 7.29 may be considered as being supported by

legacy code specific of parallel programming that implements the “map” skeleton. Namely,

that legacy code represents the replication and parallel execution of the same computation

250

over several nodes to process all elements of a (possibly nested) data structure.

In our model, such legacy codes may be made accessible in the configuration through

Adapter S-PTs combined with the Streaming Behavioural Pattern – the “adapter” element in-

terfaces the legacy code, i.e. the “adaptee” element in the pattern, and input data flows from

the “adapter” to the legacy code whose results are again collected by the “adapter”. The no-

tation in Figure 7.30 defines that the “adapterDP1” represents the DP1 skeleton in Figure 7.29,

“adapterDP2” represents the DP2 skeleton, etc. The DP3 skeleton, in particular, is replicated

three times by the farm skeleton. These replicas are named “adapter1DP3”, “adapter2DP3”,

and “adapter3DP3” in Figure 7.30, and they instantiate, respectively, the “slave1”, “slave2”,

and “slave3” elements in “farmStar”.

The operator sequence that may be used to build and execute the above configuration will

be described in three parts.

Operator sequence, part one Represents the creation and composition of the SB-PTs that de-

fine the Task Parallel skeletons in the example:

1: Create(PipelineSP, ‘‘p3lEx1’’, 4)

2: DefineBehavPatt(p3lEx1, ‘‘Streaming’’)

3: Create(StarSP, ‘‘farmStar’’, 4)

4: DefineBehavPatt(farmStar, ‘‘Master/Slave’’)

5: Embed(farmStar, p3lEx1, ‘‘cph3’’)

6: Instantiate(p3lEx1.farmStar, ‘‘nucleus’’, ‘‘masterc ode’’)

• Steps 1 and 2 create the Pattern Template that models the pipeline TP skeleton in the

example. It is assumed that the application of the Streaming Behavioural Pattern

defines that data flows from left to right, i.e. from the first stage in the pipeline

(left-most one), which is named “cph1” thereafter, to the second stage (“cph2”), etc.

• As for steps 3 and 4, they create the Pattern Template that models the farm TP skele-

ton – a star with three satellites is created, and upon the application of the Mas-

ter/Slave Behavioural Pattern, the satellites are annotated with the “slave” role, and

the nucleus becomes the “master”. The master sends each data frame to one of the

slaves (where each slave is to be a replica of each other), and collects the results.

• Step 5 defines the embedding of the “farmStar” SB-PT into the third stage (“cph3”)

of the “p3lEx1” modelling skeleton nesting. Step 6 defines the code that implements

the master, namely through the Instantiate operator.

Operator sequence, part two Represents the creation of the necessary Adapter-based SB-PT

patterns to represent two Data Parallel skeletons in the example, namely DP2 and DP3.

DP3 is also replicated to instantiate the defined satellites/slaves in the farm skeleton

configuration:

7: Create(AdapterSP, ‘‘adapterDP2’’)

8: Instantiate(adapterDP2, ‘‘adapter’’, ‘‘adaptercodeD P2’’)

9: Instantiate(adapterDP2, ‘‘adaptee’’, ‘‘legacycodeDP 2’’)

251

10: DefineBehavPatt(adapterDP2, ‘‘Streaming’’)

11: Embed(adapterDP2, p3lEx1, ‘‘cph2’’)

12: Create(AdapterSP, ‘‘adapter1DP3’’)

13: DefineBehavPatt(adapterDP3, ‘‘Streaming’’)

14: Instantiate(adapter1DP3, ‘‘adapter’’, ‘‘adaptercod eDP3’’)

15: Instantiate(adapter1DP3, ‘‘adaptee’’, ‘‘legacycode DP3’’)

16: Replicate(2, ‘‘adapter1DP3’’,{‘‘adapter2DP3’’,‘‘a dapter2DP3’’})

17: Embed(adapter1DP3, p3lEx1.farmStar, ‘‘satellite1’’)

18: Embed(adapter2DP3, p3lEx1.farmStar, ‘‘satellite2’’)

19: Embed(adapter3DP3, p3lEx1.farmStar, ‘‘satellite3’’)

• Steps 7 to 11 define the PI named “adapterDP2” that models DP2 and which is em-

bedded in the second stage of the pipeline. As defined before, the behaviour coordi-

nating the elements in the adapter is to be the Streaming BP (step 10). It is assumed

that data flows from the adapter element (“adaptercodeDP2” in Figure 7.30) to the

adaptee element (“legacycodeDP2” in the Figure), and also back from the adaptee

to the adapter.

Moreover, it is also assumed that the adapter is structurally connected to both the

previous stage and the next stage in the pipeline – data flows from the previous

stage, namely “adapterDP1”, to the “adaptercodeDP2” element, and results ob-

tained by the “adaptercodeDP2” from the “legacycodeDP2” flow to the next stage,

namely to “farmStar”.

Please note that the adaptation of all DP(i) in this example is coordinated by the

Streaming BP, and similar assumptions to the ones made for “apaterDP2” are again

presumed for all DP(i).

• Steps 11 to 14 create three similar patterns to represent the replicated DP3 in the

example (Figure 7.29).

• In steps 15 to 17, the replicas (“adapter1DP3” .. “adapter3DP3”) are embedded in

the satellites of the star-based pattern that models the farm skeleton.

Operator sequence, part three Finally, the last sequence represents the modelling of the re-

maining DPs, namely DP1 and DP4, as well as the execution activation of the final con-

figuration. It is assumed that the necessary implementation code (named “adaptercode”

bellow) to interface both legacy codes representing DP1 and DP4 is similar:

20: Create(AdapterSP, ‘‘adapterDP1’’)

21: DefineBehavPatt(adapterDP1, ‘‘Streaming’’)

22: Instantiate(adapterDP1, ‘‘adapter’’, ‘‘adaptercode ’’)

23: Replicate(1, adapterDP1, ‘‘adapterDP4’’)

24: Instantiate(adapterDP1, ‘‘adaptee’’, ‘‘legacycodeD P1’’)

25: Instantiate(adapterDP4, ‘‘adaptee’’, ‘‘legacycodeD P4’’)

26: Embed(adapterDP1, p3lEx1, ‘‘cph1’’)

27: Embed(adapterDP4, p3lEx1, ‘‘cph4’’)

28: Start(p3lEx1)

252

The common configuration (named “adapterDP1”) to both DP1 and DP4 is built in steps

20 to 22. Step 23 replicates that configuration under the name “adapterDP4”. The instan-

tiation to the adequate legacy codes is done in steps 24 and 25, and the embedding of the

final PIs is done in steps 26 and 27.

Finally, the execution is launched through the Start(p3lEx1) operator. In this case, it is

assumed that this Behavioural Operator acts recursively upon all embedded patterns to

trigger the execution of all involved elements.

7.4.3 Reconfiguring the P3L Example

This sub-section presents two possible reconfigurations of the P3L example described in Fig-

ure 7.4.2. The first case is based on the pattern-based configuration described in the previous

section. The second example is based on a second P3L example described in [151] which is

itself related to the first P3L example in Figure 7.4.2.

First Reconfiguration Case

The first example highlights the usefulness of our model considering the possible execution of

the described P3L computation in a Grid environment. The following description highlights

how the first pattern-based modelling depicted in Figure 7.30 may be reconfigured to that pur-

pose. Please note that although the described P3L computation is typical of high-performance

systems where performance is a main issue, we consider the situation where its porting to a

Grid environment is beneficial in terms of reuse of available Grid services. Such situationmight

be useful if, for example, high-performance computational resources are not available locally.

Therefore, this pattern-based modelling of the above P3L computation in a Grid environment

makes a few assumptions. Specifically:

1. We consider that the entities forming the stages of the pipeline in the example (Figure 7.30)

are distributed on the Grid. Although we define that the attached Behavioural Pattern in the

following reconfiguration is still the Streaming BP, the Producer/Consumer BP could also rep-

resent the flow of data between the distributed pipeline stages, where data between stages

is saved so that it is consumed as soon as possible.

2. We also consider that the data parallel computations DP2 and DP4 may be accessible as

services on the Grid. As such, the “adapterDP2” and “adapterDP4” patterns, at the second

and fourth stages in Figure 7.30, are now replaced, respectively, with the “GridServiceDP2”

and “GridServiceDP4” patterns, as presented in Figure 7.31. Each of these two new patterns

consists of the combination of an Adapter S-PT with the Service Adapter Pattern Behavioural

Pattern (see section 3.2.4). “GridServiceDP2” and “GridServiceDP4” still interface the legacy

codes supporting the replicated parallel execution of a computation but that are now acces-

sible as (Grid) services. The reconfiguration may be done by:

(a) checking the full compatibility of the “GridServiceDP2” and “GridServiceDP4” with

the original patterns through the IsCompatible(P1, P2) Inquiry Operator (see section

253

Remote
Executor

(RE)
Proxy

Remote
Executor

(RE)
Proxy

GridService
DP2

GridService
DP4

GridServiceDP4 =
{adapter2S−PT +
+ ServiceAdapter}

p3lEx1 = {pipelineS−PT + StreamingB−P}

farmStarstarDP1

starDP1

proxy3

and results
collector

Data distributor

proxy4

proxy1

proxy2

starDP1 = {starDP1S−PT + StreamingBP}

proxy(i) = {proxy(i)S−PT + Client/ServerBP}

slave1

slave3 slave2

farmStar = { starS−PT + Master/SlaveBP}

master
code

slave(i) = adapter(i)DP3

farmStar

Figure 7.31: One possible reconfiguration of the pattern-based example in Figure 7.30

3.3.3) to guarantee that they are functionally identical: IsCompatible(GridServiceDP2,

p3LEx1.adapterDP2), and IsCompatible(GridServiceDP4, p3lEx1.adapterDP4);

(b) replacing the original patterns to the “GridServiceDP2” and “GridServiceDP4” patterns

through the Replace Structural Operator which is applied to the patterns as first class

entities (as explained in sections 5.2.2 and 5.2.4): Replace(p3LEx1.adapterDP2, GridSer-

viceDP2) and Replace(p3LEx1.adapterDP4, GridServiceDP4).

3. In the “farmStar” pattern (third pipeline stage in Figure 7.30, and also in Figure 7.31)

the satellites/slaves may also be distributed in the Grid, i.e. each of these slaves

“adapter1DP3”.. “adapter3DP” representing a replica of the DP3may be supported by com-

putational resources at different locations. The master sends each data frame received from

the “adapterDP2” to one of the slaves, and all collected results are subsequently sent by

the master (“mastercode” in the Figure) to the “adapterDP4”. We again assume that each

“adapter(i)DP3” provides access to replicated parallel computations supporting the “map”

Data Parallel skeleton.

4. Finally, we define a different configuration for the first stage of the pipeline (which was

formerly represented by the “adapterDP1” in Figure 7.30) based on the assumption that the

data to be processed by the parallel computations in DP1 is very huge. As such, the data to

be processed might be already spread throughout four distributed “repositories” within the

Grid, where each repository has associated high performance execution support. Therefore,

254

each of the four replicated computations composing DP1 in the original example would be

executed locally at the each repository in order to process a sub-set of the data.

Taking in consideration this fourth assumption for the example, a Star SP might be used to

represent those kind of repositories, where the function of the entity at the “nucleus” element

in the star would be to collect the produced results, that would be subsequently forwarded to

the second stage of the pipeline (i.e. to “adapterDP2”). In case some additional data besides

the existing in the repositories would be necessary, the function of the nucleus would also be

to send that extra data to one ore more repositories. Moreover, we can also assume that the

communication to each distributed repository might be done through local proxies, and could

therefore be represented by instances of the Proxy Structural Pattern.

This new configuration for the first stage is also presented in Figure 7.31. The Star SP is

named “starDP1” and the entity at the nucleus is named “Data distributor and results collec-

tor”. The satellites are designated “proxy1”.. “proxy4” and represent the Proxy S-PTs which

are embedded at each satellite. Each Proxy S-PT is combined with the Client/Server Behavioural

Pattern, where the “proxy” element in the S-PT is the “client”, and the “subject” is defined with

the “server” role. The “subject” at each Proxy is designated as “Remote Executor (RE)”. The

flow of information between the nucleus and the proxies is ruled by the Streaming Behavioural

Pattern. An operator sequence to represent this reconfiguration of the first stage of the pipeline

might be :

Create(ProxySP, ‘‘proxy1’’)

DefineBehavPatt(proxy1, ‘‘Client/ServerBP’’)

Replicate(3, proxy1, {‘‘proxy2’’,’’proxy3’’,’’proxy4’ ’})

Create(StarSP, ‘‘starDP1’’)

DefineBehavPatt(starDP1, ‘‘StreamingBP’’)

Embed(proxy1, starDP1, ‘‘satellite1’’)

Embed(proxy2, starDP1, ‘‘satellite2’’)

Embed(proxy3, starDP1, ‘‘satellite3’’)

Embed(proxy4, starDP1, ‘‘satellite4’’)

The elements in this new configuration still have to be instantiated, i.e. the “real subject” in

“proxy1” should be associated to a particular “Remote Executor”, etc.

Please note that the Proxy S-PT combined with the Client/Server BP may be considered a

Regular pattern as described in section 5.2.2. This means that it is possible to extend the struc-

ture of this pattern where the behaviour of the new element is automatically defined. For

instance, in case the data at the “RemoteExecutor” in “proxy3” becomes inaccessible for some

reason, it is possible to forward the access to a replicated (backup) repository.

Figure 7.32 shows such a possible reconfiguration scenario in the satellite containing the

“proxy3”. The application of the Extend(proxy3) operator results on the creation of the element

“ProxyB” which is aimed to forward to the (new) “Remote Executor (RE)” the incoming re-

quests generated by the “Proxy” element. The “ProxyB” is automatically defined as a “server”

to the pre-existent “Proxy” and also as a “client” of the “RE” (i.e. the “server”).

Whereas the previous scenario concerns a development time reconfiguration, it is also pos-

sible to define an hypothetical dynamic reconfiguration scenario concerning the “farmStar”

255

slave3

slave(i) = adapter(i)DP3
farmStar = { starS−PT + Master/SlaveBP}

GridService
DP2

GridService
DP4

p3lEx1 = {pipelineS−PT + StreamingB−P}

farmStarstarDP1

slave1

slave2

master
code

slave4

farmStar

starDP1

proxy3

and results
collector

Data distributor

proxy4

proxy1

proxy2

Remote
Executor

(RE)
Proxy

Proxy REProxyB

starDP1 = {starDP1S−PT + StreamingBP}

proxy(i) = {proxy(i)S−PT + Client/ServerBP}

Figure 7.32: Two reconfiguration scenarios for the modelling presented in Figure 7.31.

pattern in the third stage of the pipeline. This reconfiguration scenario is also presented in

Figure 7.32. First of all, since the “farmStar” is also a Regular pattern resulting from the com-

bination of a Star S-PT and the Master/Slave Behavioural Pattern, new added satellites will be

automatically defined as “slaves” within that BP. We recall that the dynamic reconfiguration of

a Regular pattern was discussed throughout section 5.3.

A dynamic reconfiguration of the “farmStar” pattern might be useful in case of need to

speed up the processing of the income data at that “farmStar” pattern. Therefore, a new satellite

(“slave4” in the Figure) may be created to support the execution of another replica of DP3. Such

reconfiguration is possible at execution time because the pre-existing slaves are not disturbed,

but of course the “master code” must acknowledge at run-time the existence of new replicas

of DP3 (i.e. slaves) to which send the incoming data. This reconfiguration scenario might be

supported by the following operator sequence:

Replicate(1, p3lEx1.farmStar.adapter3DP3, ‘‘adapter4D P3’’)

Increase(1, p3lEx1.farmStar)

Embed(adapter4DP3, p3lEx1.farmStar, ‘‘slave4’’)

As described in 4.3.3 which discusses the structural operation of Hierarchical Pattern Tem-

plates, the replica generated by the Replicate operator is created at the same level of the (out-

most) operated Hierarchical Pattern. Namely, “adapter4DP3” is created outside the “p3lEx1”

pattern, and therefore has to be included at the right place through the Embed operator.

256

Second Reconfiguration Case

DP4

sink

DP3

DP3
DP1

source

DP2

loop intermediate results

Figure 7.33: A P3L pipeline with two iterated stages. Results of stage 3 are fed back to stage
2 [151].

The second reconfiguration example is based on a modification of the P3L example previ-

ously presented in Figure 7.29. Specifically, a loop Control Parallel skeleton (CP) is added to

the configuration in order to execute more than once the skeletons controlled by the loop CP.

Figure 7.33 shows such a case, where the results of the third pipeline stage are fed back to the

second stage, according to the loop policy.

loop
controller

adapterDP1 adapterDP4ringLoop

adapterDP2 farmStar

ringLoop = {ringS−PT + StreamingBP}

p3lEx1 = {pipelineS−PT + StreamingB−P}

ringLoop

Figure 7.34: Modelling the P3L example in Figure 7.33 using the Pattern/Operator model.

To represent this second reconfiguration case, the pattern-based modelling formerly pre-

sented in Figure 7.30 is modified as depicted in Figure 7.34. Please note that such modification

could also have been done to the pattern-based modelling presented in Figure 7.31.

The Ring Structural Pattern combined with the Streaming Behavioural Pattern in Figure 7.34

is used in order tomodel the loop skeleton, as described earlier in section 7.4.1. This “ringLoop”

pattern includes the “adapterDP2” and “farmStar” elements, which formerly were the second

and third stages of the pipeline, and the “loop controller” element that enforces a condition-

based policy. The “p3LEx1” has now only three stages, and the “ringLoop” is embedded in the

257

second stage. A possible operator sequence to reconfigure, at development time, the modelling

in Figure 7.30 into the configuration in Figure 7.34 may be, for example:

Terminate(p3lEx1)

Extract(adapterDP2, p3lEx1, ‘‘cph2’’)

Extract(farmStar, p3lEx1, ‘‘cph3’’)

Decrease(1, p3lEx1, ‘‘cph3’’)

Create(RingSP, ‘‘ringLoop’’, 3)

DefineBehavPatt(ringLoop, ‘‘Streaming’’)

Embed(adapterDP2, ringLoop, ‘‘cph2’’)

Embed(farmStar, ringLoop, ‘‘cph3’’)

Instantiate(ringLoop, ‘‘cph1’’, ‘‘loop controller’’)

Embed(ringLoop, p3lEx1, ‘‘cph2’’)

Start(p3lEx1)

The names “cph1”.. “cph4” in the script identify the stages in the original pipeline, and

we recall that the extracted patterns are moved to the same level of the outmost pattern, i.e.

“p3lEx1”.

Please note that in case it is possible to make the above reconfiguration without having to

abort the execution of the overall elements, the Stop and Resume operators could be used in

the above script instead of the Terminate and Start operators, respectively. Through the Stop

operator the execution of all patterns would be suspended and a checkpoint of the execution

state is made. It is assumed that the Stop operator is applied recursively to all embedded pat-

terns. With the the Resume operator the saved checkpoint state is restored and the execution is

resumed.

These two ways of reconfiguring an application were previously discussed throughout sec-

tion 5.3, namely: a) to abort an application’s execution, apply the necessary modifications, and

re-execute it; and b) to suspend the application’s execution, completely or partially, and apply

the desired changes.

258

7.5 Analysis of Gravitational Waves

(type B)
Service

Visualisation

Service
(type A)

Visualisation

Transformation
and

Service
Visualisation

Transformation
First

Transformation
Second Visualisation

Wave Detector

Figure 7.35: A simple example in the area of gravitational wave experiments.

Astrophysics is one of the areas that can also benefit from the computational power and the

distributed nature of Grid computing. The applications in this area require high-performance

computing support for the scientific calculations, which generate huge amounts of data. Addi-

tionally, the involved scientists and scientific instruments belong to different organisations that

combine efforts to solve applications’ intrinsic complex problems. One particular area is related

to gravitational wave experiments [75] where out of space waves are detected and analysed.

Figure 7.35 shows a simple example where a wave detector is producing data to be analysed

and displayed by several services, allowing scientists to compare the results. Two of those ser-

vices are represented in the example by two different types of visualisation services. The third

service applies a sequence of transformations to the original signal and displays the results.

To configure this application example, the user first identifies the relevant Structural Pat-

terns. A star topological PT with three satellites is created to represent the connections be-

tween theWave Detector service (Figure 7.35) and the transformation and visualisation services.

In turn, to support the Transformation and Visualisation service (Figure 7.35) the user creates a

pipeline topological PT also with three elements. To obtain the right number of component

place holders in both pattern templates, the user possibly had to apply the Increase() or the

Decrease() operators (e.g. if the created star PT does not have enough satellites by default).

Subsequently, the user combines both pattern templates by embedding the pipeline PT into

one of the star’s satellites. Finally, the user instantiates the component place holders with the

adequate services.

7.5.1 Simulation in Triana

This section presents a simplified implementation of the above example, which was actually

built on our prototype, due to the absence of an available tool in Triana for gravitational wave

detection. Namely, the detector is represented by a component which generates a wave with

parameterisable amplitude, frequency, etc.

The first configuration step is the creation of the two required PTs: a Star PT represents the

connections between theWave Detector service (Figure 7.35) and the transformation and visual-

259

Figure 7.36: Initialisation of a Star PT.

Figure 7.37: Addition of one satellite to a Star PT.

isation services; a Pipeline PT supports the Transformation and Visualisation service (Figure 7.35).

In order to create a Star PT, the user drags and drops the DrawStar unit from Triana’s Patterns

toolbox and initialises it (Figure 7.36). Depending on the number of satellites created by de-

fault, the user may have to apply the Increase() or the Decrease() operators to the Star PT. In this

case, it is necessary to increase the number of satellites (Figure 7.37). For the creation of the

Pipeline PT, the user selects the DrawPipeline unit and repeats the process.

Figure 7.38 shows the two PTs already including the right number of component place hold-

ers. These place holders are represented by DummyUnit components that can be instantiated

to a Structural Pattern Template, or to a service (unit) from the toolbox.

The next configuration step is to structure the two PT templates so that the Transformation

and Visualisation service is connected to the Wave Detector service. As such, the user applies

the Embed operator to the Star PT to transform the Pipeline PT into one of the star’s satellites

(DummyUnit1 in Figure 7.39).

Finally, the user instantiates the pattern templates with the necessary services from the

toolbox. An example can be seen in Figure 7.40.

260

Figure 7.38: A Star PT with three satellites and a Pipeline PT with three elements.

Figure 7.39: Application of the Embed Structural Operator to the Star PT.

Figure 7.41 shows the final configuration after all the template slots have been instantiated.

For demonstration purposes, as said earlier, theWave detector (Figure 7.35) is represented in this

example by the Wave unit which generates a waveform (the users may configure parameters

like frequency, amplitude, type of wave, etc). Two graphical displaying units for rendering

input signals are selected to represent the visualisation services: the SGTGrapher and the His-

togrammer. The selected transformation services for instantiating the first two pipeline stages

are the Gaussian unit (which adds noise to the data generated by the Wave) and the FFT unit

(which performs a Fast Fourier transform).

261

Figure 7.40: Instantiation of a Unit.

Figure 7.41: Final configuration.

After the execution, the user may compare the same data without transformations using

two different displaying units. It is also possible to compare that data to the transformed data

in a third display unit(Figure 7.42).

7.5.2 Configuration and Execution through a Script

The simulation described in section 7.5.1 can be automated through a script. Considering the

original example where a wave detector is constantly producing data, it might be interesting to

restart the application periodically. The script of the simulation, as described ahead, includes

the Restart Behavioural operator as the last operation, and launches the execution every 20000

milliseconds. The restarting can be aborted at any time by calling the Terminate Behavioural

operator.

Figure 7.43 shows the application of the script for the Wave detection simulation, and its code

is as follows (the lines are numbered for its reference within the text):

262

Figure 7.42: Execution results.

1: Initialize

2: Increase 1

3: Create Pipeline TransfVisSrv

4: RunStructuralScript TransfVisSrv

5: Instantiate DummyUnit

/home/mcg/working/toolboxes/SignalProc/Injection/Ga ussian.xml

5: Instantiate DummyUnit1

/home/mcg/working/toolboxes/SignalProc/Algorithms/F FT.xml

6: Instantiate DummyUnit2

/home/mcg/working/toolboxes/SignalProc/Output/SGTGr apher.xml

7: EndStructuralScript

8: Embed TransfVisSrv DummyUnit1

9: Instantiate DummyUnit

/home/mcg/working/toolboxes/SignalProc/Input/Wave.x ml

10:Instantiate DummyUnit2

/home/mcg/working/toolboxes/SignalProc/Output/Histo grammer.xml

263

Figure 7.43: Application of a script to a pattern template.

11:Instantiate DummyUnit3

/home/mcg/working/toolboxes/SignalProc/Output/SGTGr apher.xml

12:Restart 20000

The script is run by the pattern controller of a Star PT which performs the following steps:

a) creates the Star (1); b) adds one satellite to the nucleus (2); c) creates a Pipeline PT (named

TransfVisSrv – line 3) and instantiates all its slots (called DummyUnit(i) – lines 4-7); d) embeds

the Transformation and Visualisation service (TransfVisSrv) into the first satellite (DummyUnit1

– line 8); e) instantiates the rest of the empty slots of the template (lines 9-11); and, applies the

Restart Behavioural Operator , in order to execute the instantiated Star every 20000milliseconds

(12).

In Figure 7.44 the debug window displays auxiliary messages in the code including the

re-activation of the execution through the Restart Behavioural Operator.

7.5.3 Simulating Regular Production of Data

The simulation of the analysis of gravitational waves example described in sub-section 7.5.1

does not take into account the regular production of data by the wave detector. To simulate

such situation, this section describes a very simple configuration (Figure 7.45) where the tool

Count produces different values, at each execution, to the frequency parameter of the Wave

tool. Frequency starts at value 100Hz, and it is increased at each execution by 100Hz until a

264

Figure 7.44: Debug window showing the application of the Restart Behavioural operator.

maximum of 4000Hz. Consequently, the Wave tool produces different waves which can be

visualised in the SGTGrapher tool.

Similarly to the previous section 7.5.2, theRestart Behavioural operator can be applied to the

simulation, to see a sequence of different waves at a fixed time period (10 seconds). Figure 7.47

shows two consecutive snapshots of the SGTGrapher tool.

The automatic re-execution can be stopped at any time by applying the Terminate Be-

havioural operator (Figures 7.48 and 7.49). The Count tool remembers the intermediate value

for the frequency parameter of the last execution. Therefore, the user may, for example, repeat

the execution a certain number of times, by restarting from the previous saved frequency value.

Figure 7.50 shows the selection of the Repeat Behavioural operator for repeatedly launching

the execution of the simulation, by a certain number of times (in this case, 10 times). In this

way, the user can see the result after each consecutive iterations. The debug window in the

265

Figure 7.45: A simple simulation of regular production of data by the gravitational wave de-
tection service.

Figure 7.46: Producing different waves every 10 seconds.

Figure shows that the Repeat operator was repeatedly called.

266

Figure 7.47: Two different waves produced at two consecutive execution steps.

Figure 7.48: Selection of the Terminate Behavioural operator.

Figure 7.49: The debug window showing the execution of the Terminate Behavioural operator.

267

Figure 7.50: Applying the Repeat Behavioural Pattern for launching the execution ten consec-
utive times.

268

7.6 Galaxy Formation Example

To further illustrate the use of Pattern Templates in Triana, we use a “Galaxy Formation” code

example. The present example is an extension of the version introduced in [44].

The “Galaxy Formation” example involves generating the position of particles and subse-

quently animating these – using a combination of “DataReader” and “Animation” modules

from Triana. A data file is loaded by a single Data Reader Unit within Triana, and passed to

all the Triana nodes. Nodes then buffer the data for future calculations. Note that the data file

could be copied beforehand and distributed in a parallel way also. The loaded data is then

separated into frames, distributed amongst the various Triana servers on the available network

and processed to calculate the column density using smooth particle hydrodynamics. These

types of simulations can usually generate large data files containing snapshots of an evolving

system. They are therefore quite representative of the types of applications that may be ex-

ecuted over a Grid infrastructure. In this particular example, after undertaking a simulation

run, a snapshot is produced – and which is independent of others over time. This suggests that

any data analysis on frames can be carried out independently. Grid resources are used in this

instance to distribute and remotely process data frames, which finally return a small image to

the visualisation/controlling client. The images can be subsequently re-assembled in real-time

into the correct chronological order to generate a smooth animation.

Galaxy and star formation simulation codes generate binary data files that represent a series

of particles, along with their associated properties as a snapshot in time. The user of such codes

would like to visualise this data as an animation in two dimensions, with the ability to vary the

perspective of view, and project that particular two dimensional slice and re-run the animation.

Due to the nature of the data, each frame or snapshot is a representation at a particular point

in time of the total dataset. It is possible to distribute each time slice or frame over a number of

processes and calculate the different views based on the point of view in parallel.

Figure 7.51: The animation is supported by a pipeline PT which is embedded in the nucleus of
the star PT.

The Galaxy formation example may be represented by a Star PTwhose nucleus contains the

269

actions necessary to generate and control the animation execution, and the satellites represent

image processing and analysis actions. In this way, the same animation can be simultaneously

analysed/processed in different ways. Figure 7.51 shows a Star PT with three component place

holders – the satellites (DummyUnit1 and DummyUnit2) and the nucleus (DummyUnit). As the

animation is developed in stages, these are represented by a Pipeline PT. Figure 7.51 shows the

Pipeline PT embedded in the nucleus of the star by selecting the Embed Structural Operator,

and by identifying the embedding position (DummyUnit).

Figure 7.52: An example of a component place holder instantiation.

Figure 7.52 shows the Star PT with the embedded Pipeline PTs, to support the image pro-

cessing activities required to generate the animation. The snapshot represented by the Fig-

ure was taken with the first implementation of patterns and operators over Triana where only

the Structural Operators were available. The next step involves instantiating the place holder

(named DummyUnit) of the pipeline (in this case a DataFrameReader is selected from the Tri-

ana toolbox) – as illustrated in Figure 7.52. Figure 7.53 shows the final configuration, with all

component place holders instantiated with units. Hence, the binary data file produced by the

simulation code is loaded by the DataFrameReader unit. The frames are sent to the Sequence-

Buffer unit – a media controller that allows the replay of the application. The user may stop the

animation, rewind it, restart it, etc. TheViewPointProjection unit takes the 3D data andmaps this

onto a 2D space outputting a standard PixelMap. The user may change the point of projection

by changing parameters representing the (x,y) coordinates. The resulting animation images are

analysed/processed in parallel in Pipeline1 and Pipeline2. The GradientEdge unit selects images

based on a gradient edge detector, and subsequently displays these using the ImageView unit.

In Pipeline2, the number of non-black objects in each image are counted by CountBlobs unit and

displayed in ConstView unit.

Figure 7.54 shows the output of units ImageView and ConstView, and shows the parameter

interface panel for unit SequenceBuffer.

270

Figure 7.53: A possible final configuration for the image processing of the “Galaxy Formation
example”.

7.6.1 Alternative Configuration

A possible alternative configuration decouples the viewpoint projection of the simulation from

the reading of data, allowing parallel animations with different viewpoints. A Star PT supports

the configuration (Figure 7.55): the data is read at the nucleus by the DataFrameReader unit (the

SequenceBuffer unit was omitted for simplification) and sent to the satellites Pipeline PT and Ring

PT to be processed. The DataFrameReader unit may interact with the satellites according to a

Streaming Behavioural Pattern. In the satellite supporting the Pipeline PT (see Figure 7.55), a

user may select the appropriate viewpoint through the ViewPointProjection unit. The resulting

images may be scaled by the ScaleImage unit and subsequently displayed by the ImageView

unit. The Producer/Consumer Behavioural Pattern may represent the interaction between the

ScaleImage (the producer) and the ImageView unit.

In the satellite with the Ring PT (Figure 7.55), the viewpoint is automatically selected ac-

cording to the number of non-black objects in each image. For the Pipeline1 stage contained

within the Ring PT (see Figure 7.55), the images produced by ViewPointProjection are visualised

in the ImageView unit. In the next stage of the ring, the CountBlobs unit counts the number of

non-black objects in each image, followed by a stage (Pipeline) which evaluates if it is necessary

to change the viewpoint. If this is the case, the Scroller unit is triggered and inputs the new

value to the “x” coordinate parameter for the unit ViewPointProjection, thereby closing the ring.

271

Figure 7.54: Execution snapshot for the selected configuration.

Figure 7.55: Parallel animation execution with different view points.

7.6.2 Introducing Execution Control and Reconfiguration

To allow a step-by-step execution of the Galaxy simulation example, our implementation relies

on trigger nodes provided by Triana (see section 6.4.3). Each pattern controller, associated with

272

Figure 7.56: Detail of the stage named Pipeline in the Ring PT from Figure 7.55

each Structural Pattern, is connected to all the place holders in the pattern through trigger

nodes. The trigger nodes may be in two states: silent, or active. In the silent state, the trigger

node has no influence upon the execution, and the control is driven by the data flow. In the

active state, execution control is stopped at the unit that owns that trigger node. Although data

may arrive in that unit’s data nodes, only when the trigger node is “triggered”, execution flow

is allowed to proceed. The user can, at any time, activate and deactivate a trigger node through

the operator panel of the associated pattern controller.

In this way, it is possible to control the execution of a single unit within the pattern. The

implementation of the Behavioural Operator Stop over a single tool might be implemented in

this way – to stop a unit would simply imply that its pattern controller would activate the

unit’s trigger node. The Resume Behavioural Operator, limited to the next iteration, would

simply require triggering the unit. To continue the execution until the end (complete Resume)

it would simply require the deactivation of the trigger node.

Back to the example, to simplify the instantiation and composition of patterns, the configu-

ration and start of execution of a similar version of the Galaxy simulation example are defined

in a script.

Figure 7.57 shows how to start the interpretation of the script GalaxyExecCtrl. The unit that

represents a Star PT has to be dragged into the scratch-pad and its execution launched. The

user selects the RunScript operation and the intended script.

The script, containing the Structural and Behavioural Operators, is as following (lines are num-

bered for their reference within the text):

1: Initialize

2: Create Pipeline ImgProjection

3: RunStructuralScript ImgProjection

4: Decrease 1

5: Instantiate DummyUnit

/home/mcg/working/toolboxes/Demos/GalaxySim/DataFra meReader.xml

6: SetParameter DataFrameReader fileName /home/mcg/work ing/triana/old_out.drt

7: Instantiate DummyUnit1

/home/mcg/working/toolboxes/Demos/GalaxySim/ViewPoi ntProjection.xml

8: EndStructuralScript

9: Embed ImgProjection DummyUnit

10:Create Pipeline ImgProcessing

11:RunStructuralScript ImgProcessing

273

Figure 7.57: Configuration and execution of the Galaxy simulation example through the script
named "GalaxyExecCtrl".

12: Decrease 1

13: Instantiate DummyUnit

/home/mcg/working/toolboxes/ImageProc/Processing/Ef fects/EnhContrast.xml

14: Instantiate DummyUnit1 /home/mcg/working/toolboxes /ImageProc/Output/ImageView.xml

15: Activate EnhContrast

16:EndStructuralScript

17:Embed ImgProcessing DummyUnit1

18:Activate ImgProcessing

19:Create Pipeline ImgAnalysis

20:RunStructuralScript ImgAnalysis

21: Decrease 1

22: Instantiate DummyUnit

/home/mcg/working/toolboxes/ImageProc/Processing/De tection/CountBlobs.xml

23: Instantiate DummyUnit1 /home/mcg/working/toolboxes /Common/Const/ConstView.xml

24: Activate CountBlobs

25:EndStructuralScript

26:Embed ImgAnalysis DummyUnit2

27:Activate ImgAnalysis

28:TriggerUnit ImgProcessing

274

29:TriggerUnit ImgAnalysis

30:Start

The Initialize operation (line 1:) creates a star with two satellites. Next, the operation Create

Pipeline ImgProjection (2:) creates a pipeline that will contain the stages to read the frames from

the data file and to define the viewpoint projection. In the subsequent operation RunStruc-

turalScript ImgProjection (3:), the pattern controller of the pipeline is activated and execution

control is passed to it. In this way, the Pipeline PT ImgProjection’s pattern controller can con-

tinuing processing the main script to define the adequate number of component place holders

and their instantiation. Since the default number of stages in a Pipeline PT is three, the De-

crease Structural Operator is applied (4:) eliminating one stage. Next, the first component place

holder (DummyUnit) is instantiated with DataFrameReader unit (5:), and its parameter fileName

is defined (6:). The second component place holder (DummyUnit1) is then instantiated with the

ViewPointProjection unit (7:).

Figure 7.58: The ImgProjection pipeline.

The result ImgProjection pipeline can be seen in Figure 7.58, where the pattern controller’s

name is DrawPipeline.

The next operation in the main script is EndStructuralScript (8:). When the pipeline pattern

controller interprets this operation it ends its execution, and the execution control is returned

to the Star PT’s pattern controller. Next in the main script is the Embed ImgProjection DummyU-

nit Structural Operator (9:) which instantiates the nucleus of the star (DummyUnit) with the

ImgProjection pattern.

The process of creating a pipeline PT is repeated two more times. First, the ImgProcessing

pipeline PT is created (10:) and embedded in the first satellite (DummyUnit1) (17:). ImgProcess-

ing contains two stages, one for enhancing the contrast of the 2D image (EnhContrast – line 13)

produced by the ViewPointProjection unit, and another for displaying the image (ImageView –

line 14).

To control the execution of the pipeline in a step-by-step fashion, the trigger node of the

EnhContrast was activated with the operation Activate EnhContrast (15:). The resulting ImgPro-

cessing pipeline can be seen in Figure 7.59.

Second, the ImgAnalysis pipeline PT is created (lines 19–25) and embedded in the second

satellite (DummyUnit2) – line 26. ImgAnalysis contains two stages, one for counting the par-

ticles (CountBlobs counts the non-black objects – line 22) in the image produced by the View-

PointProjection unit, and another for displaying that number (ConstView – line 23). To control

the execution of the pipeline in a step-by-step fashion, the trigger node of the CountBlobs was

activated with the operation Activate CountBlobs (24:).

275

Figure 7.59: The ImgProcessing pipeline.

Figure 7.60: The ImgAnalysis pipeline.

The ImgAnalysis pipeline, after the execution of the entire main script, can be seen in

Figure7.60.

Figure 7.61: The Star Structural Pattern supporting the configuration of the Galaxy example.

The fully instantiated Star Structural Pattern, supporting the configuration of the Galaxy

example, can be seen in Figure 7.61.

276

To run the pattern controllers for both the ImgProcessing and ImgAnalysis pipelines, themain

script activates the connections to the Star’s pattern controller (Activate ImgProcessing in line 18,

and Activate ImgAnalysis in line 27) and triggers them (TriggerUnit ImgProcessing in line 28, and

TriggerUnit ImgAnalysis in line 29).

The final action in the main script is the application of the Start Behavioural Operator over

the entire Star pattern (line 30). Due to the active trigger nodes in EnhContrast and CountBlobs,

the user may observe each image individually at the desired pace, as well as the correspondent

number of particles in the image.

Figure 7.62: Triggering the EnhContrast unit to consume the next 2D image.

Figure 7.62 shows how to trigger the EnhContrast unit through the operation’s panel of the

ImgProcessing pipeline’s pattern controller.

Figure 7.63 shows a full image of the operator panels of the ImgProcessing and ImgAnalysis

pipelines, namely for triggering the named units.

Figures 7.64 and 7.65 show two successive execution steps of the Galaxy example. The im-

age in 7.65 was obtained after triggering both the EnhContrast and the CountBlobs units, show-

ing the image, and its number of particles, following the image presented in Figure 7.64. The

user may, at any time, deactivate the trigger nodes of both units and allow the execution to

continue until all frames are processed.

The described independent control of the execution in both pipelines is useful, in this way,

to observe a step-by-step execution of tools ImageView and ConstView. However, their execution

is not really independent. Even if the user triggers the EnhContrast’s trigger node continuously,

the execution of ImageView is not allowed to proceed more than once, unless the user triggers

the CountBlobs unit also continuously. The reason for this dependence is due, mainly, to the

Triana’s underlying dataflow Behavioural Pattern. First, trigger nodes are “mandatory” as de-

scribed previously. For example, when an image arrives in the CountBlobs’s data node, this unit

will only run if its trigger node is triggered by the user. Second, the Triana’s channels which

connect the units do not buffer more than one independent data item of a data stream. As a

consequence, when data is sent to the CountBlobs’s data input node, the channel is “full”, since

the image is not consumed as long as that unit is not triggered. Finally, the ViewPointProjection

unit uses a Triana’s operation to send data to all output nodes, and this forces the blocking of

277

Figure 7.63: Triggering the EnhContrast and CountBlobs units.

that unit in case data may not be sent through one of those nodes. Consequently, the ViewPoint-

Projection unit is “blocked” when outputting the next image since the channel, which connects

one of its output data nodes to one of the CountBlobs input nodes, is full. As such, the image is

not sent to the EnhContrast’s unit. The solution would be to define some or all output nodes of

ViewPointProjection as non-mandatory (named as optional in Triana), meaning that the impossi-

bility to send data to one of the nodes would not prevent the image to be sent to the other ones.

However, this would imply that some images would be not processed by the downstream units

connected to those non-mandatory nodes.

To conclude, and as a result of the not really independent execution of the ImgProcessing

278

Figure 7.64: An execution step of the Galaxy example.

and ImgAnalysis pipelines, a similar step-by-step execution to the one described in Figures 7.64

and 7.65 could be obtained by activating a trigger node upstream. Specifically, the ViewPoint-

Projection trigger node could be activated (see Figure 7.66).

Behavioural Reconfiguration

The configuration of the Galaxy example with the trigger nodes described in this section 7.6.2

supports a simple behavioural reconfiguration. Specifically, it would be possible to simulate the

the Client/Server Behavioural Pattern at both the ImgProcessing and ImgAnalysis pipelines. For

example, in the ImgProcessing pipeline, the EnhContrast could act as a Server and the ImageView

could become a Client. To implement such a Behavioural Pattern, the end of each iteration at

ImageView would imply that the ImgProcessing’s pattern controller would trigger the EnhCon-

trast tool. As such, after completing the display of one image at the client ImageView, it would

cause another (automatic) request to the server EnhContrast to reply with the next image.

Using the same mechanism, a limited version of the Producer/Consumer Behavioural Pat-

tern could also be simulated, if a Buffer tool would have been added to the pipeline (with the

Increase Structural Operator) between the EnhContrast and ImageView tools. The definition of

EnhContrast as a Producer and ImageView as a Consumer by the user, would cause the Img-

Processing’s pattern controller to trigger the EnhContrast tool a number of times equal to the

279

Figure 7.65: The results at both satellites in the next execution step after the one presented in
Figure 7.64.

Figure 7.66: The configuration of the ImgProjection pipeline for a step-by-step execution.

280

maximum capacity of the Buffer tool. A number of ’n’ images would then be produced by

EnhContrast and saved in Buffer. The pattern controller would then run the Buffer tool with

the RunUnit operation, which would send the first image to be consumed by ImageView. When

completing the display of this image, on the detection of end of execution of ImageView, the pat-

tern controller would again run the Buffer unit to allow ImageView to consume the next image.

This sub-process would be repeated ’n’-1 times until the Buffer would become empty. Next,

the pattern controller would trigger EnhContrast ’n’ more times, and the main process would

be repeated. Finally, the end of execution would be detected when the ImgProjection’s pattern

controller would inform the ImgProcessing’pattern controller of the end of execution of both the

DataFrameReader and ViewPointProjection tools.

Structural Reconfiguration

The configuration of the Galaxy example with the trigger nodes, as described in this section

(7.6.2), also supports a useful structural reconfiguration, while the Star’s execution is still ac-

tive. When running the step-by-step execution mode provided by the configuration, the user

may decide that it might be useful to add an extra satellite to the star. For example, to save the

images produced by the ViewPointProjection tool, the user might instantiate the new satellite

with theWriteGif tool. In case some other image processing would be required, the user might

instantiate the satellite with another pipeline. In this way, a structural reconfiguration, inde-

pendent from a behavioural reconfiguration, is possible while the current execution has not yet

finished.

7.7 Simulating Flexible Information Retrieval and Pro-

cessing

Like in Astrophysics, many other scientific areas need to manipulate large amounts of data.

Environmental and Life Sciences, Nuclear Physics, or Earth/Ocean Surface Topography from

Space, require the distributed storage of data across different organisations, and their manip-

ulation by many users. Several service-oriented Grids provide customisable or application-

specific Portals/Problem Solving Environments in order to facilitate the management and shar-

ing of such data. One common characteristic of the aforementioned environments is database

inquiry, where data may be spread over several databases. Many of those environments also

provide simulation tools, or even scientific instruments producing data in real time. The

present example is a possible simplified configuration of those scientific environments, aim-

ing at clarifying the usefulness of enabling flexible manipulation of Structural Patterns through

Operators.

7.7.1 Database Access

The first part of the example outlines a common configuration in the described Grid environ-

ments where a client application requires previously stored information to be displayed for

analysis. This example makes use of the Facade Structural pattern. However, such is just a

281

simulation example since the non-topological Structural Patterns were not fully implemented

yet.

Figure 7.67: The Facade Structural Pattern Template.

The Facade, as illustrated before, provides a simple interface to access a set of possibly com-

plex sub-systems (Figure 7.67 shows a Facade Pattern Template). In the present case, namely

the access to several databases, either replicated, or providing different types of information,

the Facade is a useful design pattern to provide a simplified uniform interface to inquire those

databases. Behaviour associated to the Facade may, for example, redirect the requests to the

suitable database, either based on the contents of the requests, or on Quality of Service issues

like response time in the case of replicated databases.

Figure 7.68: Configuration supporting the request of information to two sub-systems.

Figure 7.68 shows the Pipeline Structural pattern connecting the client application, the Re-

quester, to the Facade Structural pattern. The latter redirects requests to two subsystems already

instantiated with two Structural Patterns, namely, Pipeline and Pipeline1. Both pipelines config-

ure possible associations of databases to data analysis/processing tools. In terms of behaviour,

a simple version of the Client/Server Behavioural Pattern may represent the data and control

282

flows between the Requester (client) and the Facade (server): the server analyses the requests and

redirects them to the subsystems. Additionally, the Producer/Consumer or the Master/Slave

are two eligible Behavioural patterns to represent the data and control flows between the Fa-

cade and the two subsystems.

Figure 7.69: Two Pipeline Structural Patterns supporting the configuration of two sub-systems
for database access and output data analysis/processing.

The Pipeline subsystem in Figure 7.69 contains, as its first element, the DBExplore tool to

inquire a database through standard SQL [194] requests. As seen in the Figure, three values

may be output from the tool, and for these to be visualised in a three dimensional tool, the

values are processed by the MakeCurve tool and displayed with the GraceGrapher tool. The

Pipeline1 subsystem, in turn, provides access to a different or a replicated database combined

with another visualisation tool (Histogrammer) for output data analysis. This subsystem shows

the information in the database according to some criteria. Data and control flows in both

pipelines may be provided by the Streaming Behavioural pattern.

The parameter panel of theDBExplore tool (Figure 7.70) allows the access to different remote

machines, the selection of different databases, and the definition of the query (e.g. process_id=2).

The Facade hides some of these options, by fixing the databases which are to be accessed, and

providing an interface to the Requester such that it only has to define the search criteria.

7.7.2 First Structural Reconfiguration: Accessing a New Tool

Based on the configuration shown in Figures 7.68 and 7.69, the user may decide that it would

also be necessary to access data available in real time. Requests would either be satisfied by

analysing predated or the most recent data, or both. For example, in the case of Earth Surface

Topography from Space, it is important to evaluate the damages caused by natural disasters like

major earthquakes or tsunamis. The comparison of images, before and after the natural disas-

ter, does provide invaluable information concerning the dimension of the damages. Therefore,

the user might apply a reconfiguration operation to the previous example, in order to support

283

Figure 7.70: The parameter panel of DBExplore, a database inquire tool available in Triana.

the access to a Real Time Engine that would gather and process the relevant information (like

real time data of the earth surface topology of a specific area).

Figure 7.71: Application of the Extend Structural Operator to the Facade Structural Pattern.

284

In order to accomplish such reconfiguration, the user must first apply the Stop Behavioural

Pattern to the outmost Pipeline Structural pattern supporting the communication between the

Requester and the Facade. In this way, possible requests from the client are temporarily sus-

pended.

Next, the user applies the Extend Structural Operator to the Facade Structural Pattern (Fig-

ure 7.71) to provide a new interface that may redirect requests to the previous databases, to a

Real Time Engine, or both. As a result, the pre-existing Facade becomes a subsystem of the new

Facade, and the pipeline containing the Real Time Engine becomes the other (new) subsystem.

In this way, the previous interface to both databases is not changed, and the outmost facade

incorporates this interface and also gives access to the Engine. Behaviour associated with the

outmost Facade may hence redirect requests to the innermost Facade, to the Engine, or to both

of them. The Client/Server Behavioural Pattern may be used to define the data and control

flows between the outmost Facade and its own subsystems.

Figure 7.72: Result configuration of the action in Figure 7.71.

Figure 7.72 displays the result configuration consisting of the outmost Facade (Facade1 in

the Figure) which is embedded in the second stage of the outmost pipeline, and theRequester re-

mains the first stage. The outmost pipeline is presented on the left-hand side of Figure 7.72. The

Facade1 Structural Pattern is displayed on the top of the right-hand side of the Figure alongwith

its subsystems: Facade and Pipeline. The Pipeline subsystem is displayed on the bottom of the

right-hand side of that Figure showing the connection between a Real Time Engine (RTEngine)

and a visualisation tool (Histogrammer).

Figure 7.73, in turn, displays the contents of the innermost Facade, namely Facade in Fig-

ure 7.72. The subsystems of Facade are kept unchanged and can be recalled from Figure 7.69 in

the previous subsection.

Finally, to complete the reconfiguration, the user applies the Resume Behavioural Pattern

to the outmost Pipeline Structural Pattern allowing requests from the Requester to the outmost

Facade.

285

Figure 7.73: The innermost Facade acting as a subsystem of Facade1 in Figure 7.72.

7.7.3 Second Structural Reconfiguration: Pattern Replacement

To further illustrate other possible structural reconfigurations, one might assume another sce-

nario related to the example of a natural disaster as described in the previous subsection. Col-

lected data in the domain of Earth Surface Topology from Space is frequently used to build models

for catastrophe simulations. Such simulators might be useful, for example, to predict further

damages in case a earthquake is followed by some replicas. After the main disaster, the user

might want to access such a simulator to predict which areas are more vulnerable. Therefore,

the user may apply the Replace Structural Operator to the Facade1 pattern in Figure 7.72 so that

another pattern giving access to a simulator becomes the second stage of the outmost (main)

pipeline.

Figure 7.74: An Adapter Structural pattern providing access to a simulation tool. The Adapter
pattern will replace Facade1.

In order to make the simulator accessible by the Requester, the Adapter Structural pattern

transforms the client requests and submits them to the Simulator tool. Figure 7.74 shows the

Adapter pattern template already instantiated. After the application of the Replace operator,

286

Figure 7.75: The configuration after the application of the Replace Structural Operator de-
scribed in Figure 7.74.

such Adapter pattern will substitute the Facade1 pattern as the second stage of Pipeline. The

result of such replacement is shown in Figure 7.75.

Figure 7.76: Another possible configuration where the client application, the Requester, re-
ceives processed data it has requested.

Other possible structural reconfigurations are possible. For example, the user might sim-

ply want to get information (e.g. about the disaster event) from a Web Service, to process that

data to obtain relevant information, and feed the results back to the Requester (acting on behalf

of the user), therefore closing the cycle. As such, the user may reshape the Pipeline pattern in

Figure 7.75 into a Ring Structural pattern (Figure 7.76)4. The Adapter pattern in Figure 7.75 may

4Although the Reshape operator was defined not to support Pattern Instances, the transformation of a
Pipeline into a Ring was supported by a simple implementation of the Reshape operator. Namely, the last
stage of the Pipeline is connected to the first stage forming a Ring, independently if the place-holders
are already bound or not to Triana’s tools/services.

287

then be replaced with a InfoRetriever service (Figure 7.76), and after applying the Increase Struc-

tural operator to the Ring, the new component place holder may be instantiated to a InfoPro-

cessor service. Furthermore, the Client/Server Behavioural Pattern would be applied between

the Requester and the InfoRetriever, and the Stream Data-flow would guide the control and data

flows of the other Ring’s stages. Moreover, the application of the Restart Behavioural operator

that configuration would allow a periodic information request and processing.

7.8 Summary

This chapter includes some examples of the applicability of the model presented in this thesis,

both at: a) the conceptual level including their relevance for distributed and Grid environ-

ments; and b) over the Triana tool, which is a Grid-aware workflow-based Problem Solving

Environment. The first three examples, namely in sections 7.2, 7.3, and 7.4, are included in the

first category. The examples presented in sections 7.5, 7.6, and 7.7 were implemented over the

Triana extension with Patterns and Operators as presented in Chapter 6.

The examples illustrate, in our opinion, the adequacy of the model to represent typical

applications in distributed and parallel systems in general, and particularly in Grid systems.

288

8
Conclusions and Future Work

Contents

8.1 Conclusions . 290

8.2 Future Work . 293

This chapter summarises the main achievements of the research work described in this dis-

sertation, and discuss some still open issues, which will be considered in our future research

work.

289

8.1 Conclusions

The goal of our work was to contribute towards the simplification of the development of Grid

applications, namely through an increase of re-usability and flexibility. We aim to achieve this

by applying a common model to different stages of the development cycle, namely, to the de-

sign, execution, and reconfiguration phases. Our approach is supported by a development

methodology providing a set of Design Patterns that can be manipulated through a set of op-

erators.

8.1.1 Contributions of the Thesis

One contribution of this thesis is the proposal of an approach providing Structural and Be-

havioural Patterns andOperators, where patterns are defined as first-class high-order construc-

tors throughout the whole development cycle. The patterns can be systematically manipulated

through operators, either through a visual form or through scripts, and applied by following

a proposed methodology. We designate the proposed approach as a model for pattern- operator-

based application development. Our contribution also comprises a prototype extension of a spe-

cific Problem Solving Environment towards the development of a software engineering tool

where the composition and orchestrations of Grid resources results from the cited operator-

based manipulation of patterns.

Specific Contributions of the Proposed Model

Concerning the characteristics of the model, it is possible to highlight some relevant contribu-

tions towards the simplification of application development, namely in Grid environments:

• The model provides support to several stages of an application development cycle,

namely from the configuration phase, to the execution and reconfiguration phases. More-

over, the model is uniform throughout those stages. This uniformity results from the per-

sistence of the manipulable reusable abstractions and the way they are act upon during

those phases. Specifically:

– Patterns are the manipulable abstractions and which remain as first class entities

during the entire applications’ life cycle. As such, patterns are composition entities

at the design phase, they are subsequently entities whose execution can be indi-

vidually controlled, and, finally, patterns can be manipulated individually during

the (static/dynamic) reconfiguration phase. The persistence of patterns provides a

structured final configuration which is, in this way, amenable to reconfigurations

and fine tuned (coordination) control.

– Operators provide the uniform way to manipulate the variety of patterns as first

class entities, and their diversity provide useful actions for each stage. Operators

provide consistent refinement during the design and reconfiguration phases, and

during execution time the available operators provide execution control without

disrupting the overall behavioural semantics of the final configuration.

290

• The model provides flexibility on application configuration and control by defining two

clearly separated dimensions: structure and behaviour.

The existence of Structural and Behavioural Patterns provides different combinations

between them. Namely, the same Behavioural Pattern may be applied to different Struc-

tural patterns; and the same Structural pattern may give support to different Behavioural

Patterns at the same or different times. The selected Structural Patterns include both

common topologies as well as design archetypes (e.g. Facade and Proxy Design Pat-

terns). The selected Behavioural Patterns aim to represent common orchestration models

in distributed systems and in Grid computing.

The existence of Structural and Behavioural Operators also confers flexibility as structure

can be manipulated independently from behaviour and vice-versa.

• Moreover it is possible to reconfigure both the structure and the behaviour during the

entire application development cycle, meaning that reconfiguration is possible also at

run-time:

Reconfiguration at development time Structural Operators may be used to modify a

pattern’s configuration either a Pattern Template or a (partially or fully instanti-

ated) Pattern Instance. Additionally, the new added elements may be automati-

cally annotated with a pre-defined behaviour in the particular case of Regular Pat-

terns. Namely, a new added element is ruled by the same behaviour as other pre-

existent elements in the Patterns. Coordination (Behavioural) Operators, in turn,

may modify the behaviour of particular elements within a pattern. Additionally,

the behaviour of all elements in a Regular Pattern may also be modified through a

single operator.

Reconfiguration at run-time The user may reconfigure a running application in two

ways:

1. without suspending its execution; such dynamic reconfiguration is limited

to Regular Pattern Instances (e.g. to add new elements with pre-defined be-

haviour);

2. by suspending part of it as a result of the application of an Execution operator

(Stop) to some selected Pattern Instances. In this case, additional structural and

behaviour modifications are also possible.

• The model induces a methodology which aims at simplifying application construction.

On one hand, the methodology may guide a less experienced user on programming and

controlling an application based on patterns. On the other hand, the methodology is also

a systematic approach for both more and less experienced users as the methodology may

be systematized into scripts. Specifically, the creation of patterns’ instances and operator

application may be defined through scripts.

• The model is suitable both for application development and for service architecture def-

inition. The model’s properties such as reusability, extensibility, reconfigurability, and

291

systematisation, assist both types of developers on manipulating characteristic configu-

rations, either at the application level or on configuring middleware platforms. Never-

theless, such has to be further validated in future work.

Contributions Related to the Model Evaluation

The model was developed in an incremental way and validated by experimentation, instead

of being developed through a formal approach only. Although the result represents, in our

opinion, a significant set of entities and their interactions, and justifies its relevance, we can-

not assume that the model is minimal or complete, but we can claim that it is amenable to

extensions.

Towards affirming the suitability of the model, this work presents the following contribu-

tions:

Specification of the structure and semantics of the model. The specification included:

• the modelling of common topological schemes using the UML modelling lan-

guage [68];

• the operational semantics of Structural Operators illustrated through examples;

• a simplified definition of the semantics of some Behavioural Operators using

Object-Oriented Petri nets [32];

• the description and illustration of pattern manipulation throughout an applica-

tion’s life cycle by the application of Structural and Behavioural Operators towards

reconfiguration.

Implementation support Implementation-wise, this thesis proposed three contributions:

• Identification of a logical layered architecture to support the model.

• Development of a working prototype of the model integrated into a Grid-aware

computing environment. Specifically, the model was partially implemented by ex-

tending an existing PSE, namely the Triana environment [20], with some relevant

patterns and operators. Triana is a Grid-aware and workflow-based Problem Solv-

ing Environment which provides an extensible component based interface for com-

posing services in different scientific areas, guaranteeing a sound support for dis-

tributed execution. The prototype does not yet provide support for most of the

reconfiguration dimensions in the proposed model.

• Analysis of a mapping of some Behavioural Operators onto the Distributed Resource

Management Application API [43], a distributed resource manager API which sup-

ports execution control.

Validation Evaluation of the model for the specification of common application scenarios in

Grid environments, and in particular, in the context of Problem Solving Environments.

292

Particularly, one of themain goals of this workwas to contribute to improving existing tools

and methodologies supporting Grid application development, based on the Problem Solving

Environment approach. In order to achieve this goal, it was considered important to be able

to perform experimental assessment and validation of the model and associated methodology,

and this required the development of an experimental prototype. As a consequence of this goal,

an incremental approach was followed that allows further extensions to be added to the proto-

type, depending on their relevance to support common recurrent Structural and Behavioural

patterns, although we have analised what we believe are the most common structures and

behaviours which are typically found in Grid/distributed applications.

We feel that the above incremental methodology for the experimental validation of the

model is, in itself, an important aspect of this proposal, as it enables further evolution and

flexible adaptation of the underlying prototype to future situations.

8.2 Future Work

Our initial contribution, presented in this work, has opened the way for further research con-

cerning structured composition and dynamic reconfiguration of Grid applications.

However, several concepts in our approach were not fully validated yet and, therefore, it is

our intention to further extend the implementation over the Triana environment, namely,

• the full implementation of the non-topological Structural Patterns;

• the implementation of different Behavioural Patterns;

• the study and implementation of the coordination issues inherent to Hierarchical Pattern

Instances ruled by different Behavioural Patterns;

• the implementation of all proposed Structural and Behavioural Operators.

• the validation through application examples that access Web and Grid Services, made

accessible in recent Triana versions.

We also acknowledge the addition of new patterns, namely other state-of-the art generic

Design Patterns (e.g. the Decorator Pattern representing the dynamic addition of new function-

alities to an object [9]), or specific patterns, namely for parallel programming [218], workflow

systems [79], and Grid systems [47].

Additionally, it is our desire to evaluate the applicability of our approach to different kinds

of applications that are more independent of a dataflowmodel and where coordination control

is more complex. To this extent, we also aim to implement our approach over a (Grid-aware)

distributed environment that may support more elaborated control mechanisms for control

flow independently from data flow (e.g. similarly to some workflow tools giving access to the

Globus System like GridAnt [205]/Karajan [206] supported by the Java CoG Kit). Moreover,

we envision the importance of manipulating different Coordination/Behavioural Patterns, also

organised in hierarchies, through operators. Such patternsmay even not be explicitly combined

with Structural Patterns. This behaviour-only orchestration in distributed environments may

293

be useful to less experienced users not interested on how the mappings of those behaviours is

supported in practice.

Finally, one important characteristic of our approach, as cited above, is its suitability for ser-

vice architecture definition, besides application development. Therefore, in our future research

we intend to validate the model’s properties such as reusability, extensibility, reconfigurability,

and systematisation, on manipulating characteristic configurations for building middleware

platforms. For example, the possibility of including pattern-based dynamic reconfiguration

in those platforms to be automatically triggered by the middleware in the presence of some

events. Such may prove to be a contribution to autonomic computing systems research.

294

Bibliography

[1] Grid Computing Environments Working Group. See Web site at:

http://www.computingportals.org/ .

[2] A. Hoheisel, “Fraunhofer Resource Grid – Grid Application Definition Language”, Global

Grid Forum, Edinburgh, July 2002

[3] Dan A. Marinescu, “Internet Based Workflow Management: Towards a Semantic Web ”,

Wiley, New York, 2002

[4] Dan A. Marinescu, “A Grid Workflow Management Architecture”, Global Grid Forum

Working Document (submitted). School of Electrical and Computer Engineering, Univer-

sity of Central Florida, Orlando, Florida 32816, USA

[5] J. Mclaren, V. Sander, W. Ziegler, “Grid Resource Allocation Agreement Protocol

(GRAAP)”. See web site at: http://www.people.man.ac.uk/ z̃zcgujm/GGF/graap-wg.html .

[6] Craig Lee and Domenico Talia, “Grid Programming models: current tools, issues and

directions”, In Grid Computing: Making the global infrastructure a reality. Fran Berman,

Geoffrey Fox and Tony Hey (edts), Wiley, 2003.

[7] O. F. Rana and D. Jennings, “Automating Performance Analysis from UML Design Pat-

terns” (Research Note), Proceedings of EuroPar 2000, Munich, Germany

[8] UML Tools. See Web site at:

http://www.cetus-links.org/oo_uml.html#oo_uml_utili ties_tools .

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns: Elements of Reusable

Object-Oriented Software”, Addison-Wesley, 1994.

[10] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, “Pattern-Oriented Software

Architecture: A System of Patterns”, John Wiley & Sons, 1998.

[11] I. Foster, C. Kesselman, “The Globus Project: A Status Report”, Proc. IPPS/SPDP ’98 Het-

erogeneous Computing Workshop, pp. 4-18, 1998. Globus related publications can also be

obtained fromWeb site at: http://www.globus.org/research/papers.html .

[12] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, “Grid Service Spec-

ification", Open Grid Service Infrastructure WG, Global Grid Forum, Toronto, Canada,

February 2002.

295

[13] G. von Laszewski, I. Foster, J. Gawor, and P.Lane, “A Java Commodity Grid Kit”, Con-

currency and Computation: Practice and Experience, pages 643-662, Volume 13, Issue 8-9,

2001.

[14] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S. Tuecke, “A

Resource Management Architecture for Metacomputing Systems”, Proc. IPPS/SPDP ’98

Workshop on Job Scheduling Strategies for Parallel Processing, pg. 62-82, 1998. See web-

site at http://www.globus.org .

[15] Rajkumar Buyya, “Grid Computing InfoCentre". See Web site at:

http://www.gridcomputing.com/ .

[16] G. Fox, D. Gannon, and M. Thomas, “A Summary of Grid Computing Environments”,

Concurrency and Computation: Practice and Experience, 2002.

[17] Open Grid Forum (OGF), formely Global Grid Forum (GGF). See Web site at:

http://www.gridforum.org/ .

[18] D.W.Walker, M. Li, O.F.Rana, M.Shields, Y.Huang, “The Software Architecture of a Prob-

lem Solving Environment", Concurrency: Practice and Experience, December 2000.

[19] D. Abramson et al., “A Tool for Distributed Parametric Modelling". See Web site at:

http://www.csse.monash.edu.au/ davida/nimrod.html/ .

[20] I. Taylor et al., “TRIANA". See Web site at: http://www.triana.co.uk/ .

[21] I. Taylor, O. F. Rana, R. Philp, I. Wang, M. Shields, “Supporting Peer-2-Peer Interactions

in the Consumer Grid”, 8th International Workshop on High-Level Parallel Programming

Models and Supportive Environments (HIPS) at IPDPS, Nice, France, April 2003. IEEE

Computer Society Press.

[22] C.Lee, S.Matsuoka, D.Talia, A.Sussman, N.Karonis, G.Allen, and J.Saltz, “A Grid Pro-

gramming Primer”, Programming Models Working Group, Global Grid Forum meeting,

Washington DC, July 16–18, 2001.

[23] Jia Yu, Rajkumar Buyya, “A taxonomy of scientific workflow systems for grid computing”,

SIGMOD Record 34(3): 44-49, 2005.

[24] S. Gorlatch, “Extracting and implementing list homomorphisms in parallel program de-

velopment”, Science of Computer Programming, 33(1), pp 1–27, 1998.

[25] H. Bischof, S. Gorlatch, E. Kitzelmann. Cost Optimality and Predictability of Parallel Pro-

gramming with Skeletons. Euro-Par 2003, LNCS 2790, pp. 682-693 (distinguished paper).

[26] C. A. Herrmann and C. Lengauer, “Transforming Rapid Prototypes to Efficient Parallel

Programs”, book chapter in “Patterns and Skeletons for Parallel and Distributed Comput-

ing”, (Fethi A. Rabhi and Sergei Gorlatch (Eds)), Springer Verlag, 2002

[27] The Common Component Architecture Forum. See Web site at:

http://www.cca-forum.org/ .

296

[28] Franz Achermann and Oscar Nierstrasz, “Applications = Components + Script – A Tour

of Piccola”, Software Architectures and Component Technology, Mehmet Aksit (Ed.), pp.

261-292, Kluwer, 2001.

[29] E. Friedman-Hill, “The Rule Engine for the Java Platform”. See Web site at:

http://herzberg.ca.sandia.gov/jess/ .

[30] Michael Weber, Ekkart Kindler, “The Petri Net Markup Language (PNML)”. See Web site

at: http://www.informatik.hu-berlin.de/top/pnml/ .

[31] Z. Nemeth and V. Sunderam, “A Formal Framework for Defining Grid Systems”, Proceed-

ings of IEEE CCGrid 2002, Berlin, Germany.

[32] D. Buchs and N. Guelfi, “A Formal Specification Framework for Object-Oriented Dis-

tributed Systems”, IEEE Transactions on Software Engineering, Vol. 26, No. 7, July 2000.

[33] G. Di Marzo Serugendo, D. Mandrioli, D. Buchs and N. Guelfi, “Adding Real-Time Con-

straints to Synchronised Petri Nets”, Technical report 2000/341, EPFL, Lausanne, Switzer-

land, 2000.

[34] O. F. Rana, D. W. Walker, “Service Design Patterns for Computational Grids”, in “Patterns

and Skeletons for Parallel and Distributed Computing”, F. Rabhi and S. Gorlatch(Eds),

Springer, 2002.

[35] Y. Aridor, and D. B. Lange, “Agent design patterns: elements of agent application design”,

Proceedings of the Second international Conference on Autonomous Agents (Minneapo-

lis, Minnesota, United States, May 10 - 13, 1998), K. P. Sycara and M. Wooldridge, Eds.

AGENTS ’98. ACM Press, New York, NY, 108-115, 1998.

[36] J. C. Cunha, P. Medeiros, V. Duarte, J. Lourenco, M. C. Gomes, “An Experience in Building

a Parallel and Distributed Problem-Solving Environment”, Proceedings of the Intl. Con-

ference on Parallel and Distributed Processing Techniques and Applications, PDPTA’99,

Las Vegas, USA, CSREA Press, July, 1999.

[37] C. Gomes, O. F. Rana, J. Cunha, “Pattern/Operator Based Problem Solving Environ-

ments”, in Proceedings of the 10th Euro-Par Conference, Pisa, Italy, August/September

2004, M. Danelutto, D. Laforenza, M. Vanneschi (Eds), Springer.

[38] J. Cunha, O. Rana, P. Medeiros, “Future Trends in Distributed Applications and Problem-

Solving Environments”, Invited Paper. Future Generation Computer Systems, Elsevier

Science (22 pages), 2003 .

[39] T. Goodale, “Applications and the Grid”, GridLab document. See Web site at:

http://www.gridlab.org/ .

[40] I. Taylor, M. Shields, I. Wang, and O. Rana, “Triana Applications within Grid Comput-

ing and Peer to Peer Environments”, Journal of Grid Computing, 1(2):199-217, Kluwer

Academic Press, 2003.

297

[41] Gabrielle Allen, Kelly Davis, Konstantinos N. Dolkas, Nikolaos D. Doulamis, Tom

Goodale, Thilo Kielmann1, Andr_ Merzky, Jarek Nabrzyski, Juliusz Pukacki, Thomas

Radke, Michael Russell, Ed Seidel, John Shalf and Ian Taylor, “Enabling Applications on

the Grid: A GridLab Overview”, International Journal of High Performance Computing

Applications, Special issue on Grid Computing: Infrastructure and Applications, Vol. 17,

No. 4, 449-466 (2003).

[42] The GridLab Project. See Web site at: http://www.gridlab.org/ .

[43] Habri Rajic, Roger Brobst et al., “Distributed Resource Management Application API

Specification 1.0”. Global Grid Forum DRMAA Working Group. See Web site at:

http://www.drmaa.org/ .

[44] M.C.Gomes, O.F.Rana, J.C.Cunha “Pattern Operators for Grid Environments”, Scientific

Programming Journal, Volume 11, Number 3, 2003, IOS Press, Editors: R. Perrot and B.

Szymanski.

[45] M.C.Gomes, J.C.Cunha, O.F.Rana, “A Pattern-based Software Engineering Tool for Grid

Environments”, Concurrent Information Processing and Computing proceedings, NATO

Advanced Research Workshop, Sinaia, Romenia, June 2003, IOS Press.

[46] O.F.Rana, M.C.Gomes, J.C.Cunha, “Patterns and Operators for Grid Software Develop-

ment”, WWW/Internet 2003 proceedings, IADIS International Conference, Algarve, Por-

tugal, 5-8 November, 2003.

[47] “Patterns and Skeletons for Parallel and Distributed Computing”, F. Rabhi and S. Gorlatch

(Eds), Springer, 2002.

[48] The Globus Project, “Open Grid Services Architecture”. See Web site at:

http://www.globus.org/ogsa .

[49] Ian Foster, Carl Kesselman (Editors), “The Grid: Blueprint for a New Computing Infras-

tructure", Morgan Kaufmann, 1998.

[50] Ian Foster, Carl Kesselman (Editors), “The Grid 2: Blueprint for a New Computing Infras-

tructure", Morgan Kaufmann, 2004.

[51] The Globus Project. See Web site at: http://www.globus.org/ .

[52] The Legion Project. See Web site at: http://legion.virginia.edu/ .

[53] The UNICORE forum. See Web site at: http://www.unicore.org/ .

[54] B. Wydaeghe, W. Vanderperren, “Visual Composition Using Composition Patterns”, Proc.

Tools 2001, Santa Barbara, USA, July 2001.

[55] ObjectVenture, The ObjectAssembler Visual Development Environment. See Web site at:

http://www.objectventure.com/objectassembler.html .

[56] The MyGrid Project. See Web site at: http://www.mygrid.org.uk .

298

[57] The DataGrid Project. See Web site at:

http://eu-datagrid.web.cern.ch/eu-datagrid .

[58] “XCAT 2.0: A Component-Based Programming Model for Grid Web Services”, M. Govin-

daraju, S. Krishnan, K. Chiu, A. Slominski, D. Gannon, R. Bramley, Technical Report Num-

ber 562, Indiana University, Bloomington, Indiana, June 2002.

[59] T. Sandholm and J. Gawor, ”Grid Services Development Framework Design”,Draft Ver-

sion 0.13. Available at: http://esc.dl.ac.uk/WebServices/OGSA/ogsadf.pdf

[60] Foster, I., Kesselman, C., Nick, J. and Tuecke, S. The Physiology of the Grid: An Open

Grid Services Architecture for Distributed Systems Integration. The Globus Project, 2002.

Available at www.globus.org/research/papers/ogsa.pdf .

[61] J. Bosch, “Design Patterns as Language Constructs”, Journal of Object-Oriented Program-

ming, Vol. 11(2), pages 18-32, 1998.

[62] P. Forbrig and R. Lämmel, “Programming with Patterns”, Proc. TOOLS 2000, Santa Bar-

bara, USA, July 2000.

[63] M. Baker and G. Smith, ”Jini Meets the Grid”, International Conference on Parallel Pro-

cessing Workshops, Valencia, Spain, September 2001. IEEE Computer Society.

[64] N. Furmento, A. Mayor, S. McGough, S. Newhouse, T. Field, and J. Darlington, “An Inte-

grated Grid Environment for Component Applications”, In 2nd International Workshop

onGrid Computing 2001, volume 2242 of Lecture Notes in Computer Science, pages 26-37,

Denver, November 2001.

[65] A. Denis, C. Perez, T. Priol, and A. Ribes, “Padico: A Component-Based Software Infras-

tructure for Grid Computing”,In 17th International Parallel and Distributed Processing

Symposium (IPDPS2003), Nice, France, April 2003. IEEE Computer Society.

[66] M. Lorch and D. Kafura, “Symphony A Java-based Composition and Manipulation

Framework for Computational Grids”, Proceedings of the 2nd IEEE/ACM International

Symposium on Cluster Computing and the Grid, 21 - 24. May 2002, Berlin, Germany.

[67] D. Webb and A. Wendelborn, ”The PAGIS Grid Application Environment”,

Submitted to 3rd IEEE/ACM International Symposium on Cluster Comput-

ing and the Grid (CCGrid’03), Tokyo, Japan, 12-15 May, 2003. Available at

http://www.cs.adelaide.edu.au/ darren/files/ccgrid03 .pdf

[68] G. Booch, I. Jacobson, and J. Rumbaugh, “The Unified Modeling Language User Guide”,

Addison-Wesley Professional, 1999.

[69] M. Fowler, K. Scott, “UMLDistilled. Applying The Standard Object Modeling Language”,

Addison-Wesley, 1997.

[70] Gentleware, The Poseidon UML Tool, Web site at: http://www.gentleware.com/ .

[71] ANL, “The Globus System". See Web site at: http://www.globus.org/ .

299

[72] I. Taylor, M. Shields, I. Wang, R. Philp, S. Majithia, “Grid-Aware Triana Prototype”, Grid-

Lab - A Grid Application Toolkit and Testbed, Work Package 3: Work-Flow Application

Toolkit (TGAT). See Web site at: http://www.gridlab.org/ .

[73] I. Taylor S. Majithia, M. Shields, I. Wang, “Triana WorkFlow Specification “, GridLab - A

Grid Application Toolkit and Testbed, Work Package 3: Work-Flow Application Toolkit

(TGAT). See Web site at: http://www.gridlab.org/ .

[74] Department of Physics and Astronomy, Cardiff University, Wales. See Web site at:

http://www.astro.cf.ac.uk/ .

[75] The GEO600 project. See Web site at: http://www.geo600.uni-hannover.de/ .

[76] Extensible Markup Language (XML). World Wide Web Consortium (W3C. See Web site

at: http://www.w3.org/XML .

[77] Project JXTA. See Web site at: http://www.w3.org/XML .

[78] W.M.P. van der Aalst, A.H.M. ter Hofsted, “Workflow Patterns: On the Expressive Power

of (Petri-net-based) Workflow Languages”, In K. Jensen, editor, Proceedings of the Fourth

Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2002), volume

560 of DAIMI, pages 1-20, Aarhus, Denmark, August 2002. University of Aarhus.

[79] “Workflow patterns”. See Web site at: http://www.workflowpatterns.com .

[80] J. Brzezinski, J. Nabrzyski, J. Puckacki, T. Piontek, K. Kurowski, L. Lud- wiczak,

R. M. Hapke, Doulamis, A. M. Varvarigos, Strugalski, N. Doulamis, and K.

Dolkas, "Technical Specification of the GridLab Resource Management System”,

http://www.gridlab.org/Resources/Deliverables/D9.2.pdf, July 2002.

[81] GridLab Workpackage 9. See web site at http://www.gridlab.org/WorkPackages/wp-9 .

[82] Shalil Majithia, Matthew Shields, Ian Taylor, Ian Wang, “Triana: A Graphical Web Ser-

vice Composition and Execution Toolkit”, IEEE International Conference on Web Services

(ICWS’2004), July 2004, San Diego, California, USA.

[83] Shalil Majithia, Ian Taylor, Matthew Shields, Ian Wang,“Triana as a Graphical Web Ser-

vices Composition Toolkit”, UK e-Science All Hands Meeting 2003, September 2003, Not-

tingham, UK.

[84] David Churches, Gabor Gombas, Andrew Harrison, Jason Maassen, Craig Robin-

son, Matthew Shields, Ian Taylor, Ian Wang , ”Programming Scientific and Dis-

tributed Workflow with Triana Services”, Global Grid Forum 2004 Special Is-

sue of Concurrency and Computation:Practice and Experience. Available at

http://www.cc-pe.net/iuhome/workflow2004index.html

[85] UDDI.org UDDI Technical White Paper UDDI.org, September 6, 2000. See website at

http://www.uddi.org .

[86] Web Services Invocation Framework (WSIF). See website at http://ws.apache.org/wsif .

300

[87] F. Curbera, W. Nagy, and S. Weerawarana, “Web Services: Why and How”, OOPSLA 2001

Workshop on Object-Oriented Web Services. ACM, 2001.

[88] R. Khalaf, N. Mukhi, and S. Weerawarana, “Service-oriented Composition in BPEL4WS”,

WWW - World Wide Web Conference Series, 2003.

[89] F. Curbera, N. Mukhi, and S. Weerawarana, “On the Emergence of aWeb Services Compo-

nent Model”, Proc. of the 6th Workshop on Component-Oriented Programming (WCOP),

2001.

[90] Elias N. Houstis, John R. Rice, Efstratios Gallopoulos, Randall Bramley (Eds), “Enabling

Technologies for Computational Science: Frameworks, Middleware and Environments”,

Kluwer Academic Publishers, 2000.

[91] Elias N. Houstis, John R. Rice, “Future Problem Solving Environments for Computational

Science”, In Mathematics and Computers in Simulation journal, 54, 243-257, 2000.

[92] E. N. Houstis, J. R. Rice. On the Future of Problem Solving Environments. CSD TR-00-009,

Computer Science Department, Purdue University, 78 pp., March 2000.

[93] E. Gallopoulos, E. Houstis, and J. Rice, “Computer As Thinker/Doer: Problem-Solving

Environments for Computational Science”, IEEE Computational Science and Engineering,

vol. 1, no. 2, pp. 11-23, 1994.

[94] R. Buyya, T. Eidson, D. Gannon, E. Laure, S. Matsuoka, T. Priol,

J. Saltz, E. Seidel, Y. Tanaka, “Problem Solving Environment Com-

parison White Paper”, technical report, February, 2001. Online at

http://www.eece.unm.edu/ apm/WhitePapers/APM_Sys_Com p.pdf

[95] C. Lee, D. Talia, “Grid Programming Models: Current Tools, Issues and Directions”, In

Grid Computing: Making the Global Infrastructure a Reality, Wiley, 2003.

[96] Frank Berman, Geoffrey C. Fox, Anthony J. G. Hey (Eds), “Grid Computing: Making the

Global Infrastructure a Reality”, Wiley, 2003,

[97] Jean Bacon, “Concurrent Systems – Operating Systems, Database and Distributed Sys-

tems: An Integrated Approach”, Second Edition, Addison-Wesley, 1996.

[98] Len Bass, Paul Clements, Rick Kazman, “Software Architecture in Practice”, Addison-

Wesley, 1998.

[99] David Garlan, Mary Shaw, “An Introduction to Software Architecture”, technical report

CMU-CS-94-166, Carnegie Mellon University, January 1994.

[100] Clemens Szypersky, “Component Software: Beyond Object-Oriented Programming”,

Addison-Wesley, 1998.

[101] Sanjiva Weerawarana, Francisco Curbera, Matthew J. Duftler, David A. Epstein, Joseph

Kesselman, “Beanmarkup language: a composition language for JavaBeans components”,

Proceedings of the 6th conference on USENIX Conference on Object-Oriented Technolo-

gies and Systems - Volume 6, 2001.

301

[102] George Coulouris, Jean Dollimore, Tim Kindberg, “Distributed Systems: Concepts and

Design”, Addison-Wesley, 2001.

[103] Philip Eskelin, “Component Interaction Patterns”, Proceedings of 6th Conference on the

Pattern Languages of Programming (PloP), Illinois, USA, 1999.

[104] JavaBeans technology, See website at http://java.sun.com/products/javabeans/ .

[105] CORBA, Object Management Group (OMG), See website at http://www.corba.org/ .

[106] .NET framework, Microsoft, http://msdn2.microsoft.com/en-us/netframework .

[107] Java Remote Method Invocation, Sun Microsystems,

http://java.sun.com/javase/technologies/core/basic/ rmi/index.jsp .

[108] Interface Definition Language, OMG group, See website at

http://www.omg.org/gettingstarted/omg_idl.htm .

[109] Nicholas Carriero, David Gelernter, “Linda in Context”, Communications of the ACM,

Volume 32, Issue 4, Pages: 444 - 458, 1989.

[110] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann, “Pattern-Oriented

Software Architecture, Volume 2, Patterns for Concurrent and Networked Objects”, John

Wiley and Sons, 2000.

[111] The Enhance Project, See website at http://groups.inf.ed.ac.uk/enhance/ .

[112] M. Hiltunen and R. Schlichting, “The Cactus approach to building configurable mid-

dleware services”, Proceedings of the Workshop on Dependable System Middleware and

Group Communication (DSMGC), 2000.

[113] "SCIRun: A Scientific Computing Problem Solving Environment, Scientific Computing

and Imaging Institute (SCI)", http://software.sci.utah.edu/scirun.html .

[114] The XCAT project, IndianaUniversity, http://www.extreme.indiana.edu/xcat/index.html .

[115] CO2P3S (Correct Object-Oriented Pattern-based Parallel Programming System), See

website at http://www.cs.ualberta.ca/ systems/cops/ .

[116] John Anvik, Steve MacDonald, Duane Szafron, Jonathan Schaeffer, Steven Bromling and

Kai Tan, Generating Parallel Programs from the Wavefront Design Pattern, 7th Interna-

tional Workshop on High-Level Parallel Programming Models and Supportive Environ-

ments (HIPS’2002) at IPDPS, April 2002, Ft. Lauderdale U.S.A, CD-ROM pp. 1-8. (Best

Paper Award).

[117] S. MacDonald. From Patterns to Frameworks to Parallel Programs. PhD thesis, Depart-

ment of Computing Science, University of Alberta, 2001.

[118] Steve MacDonald, John Anvik, Steve Bromling, Jonathan Schaeffer, Duane Szafron,

Kai Tan. “From Patterns to Frameworks to Parallel Programs”. Parallel Computing,

28(12);1663-1683, 2002.

302

[119] K. Mani Chandy and S. Taylor. An Introduction to Parallel Programming. Jones and

Bartlett Publishers, 1992.

[120] R. Johnson. Frameworks = (components + patterns). CACM, 40(10):39 42, 1997.

[121] K. Tan, D. Szafron, J. Schaeffer, J. Anvik, and S. MacDonald, "Using Generative Design

Patterns to Generate Parallel Code for a Distributed Memory Environment", in Proceed-

ings of ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP 2003), San Diego, CA, June 2003, pages 203-215.

[122] J. Schaeffer, D. Szafron, G. Lobe, I. Parsons, “The Enterprise model for developing dis-

tributed applications Parallel and Distributed Technology”, Systems and Applications,

IEEE, Volume 1, Issue 3, Page(s):85 - 96, Aug. 1993.

[123] D. Szafron, J. Schaeffer, P. Iglinski, . Parsons, R. Kornelsen and C. Morrow, Enterprise:

Current Status and Future Directions, CASCON 94, CDRom Proceedings, Toronto, Octo-

ber, 1994.

[124] Steve Bromling, Steve MacDonald, John Anvik, Jonathan Schaefer, Duane Szafron, Kai

Tan, Pattern-based Parallel Programming, Proceedings of the International Conference on

Parallel Programming (ICPP’2002), August 2002, Vancouver Canada, 257-265.

[125] Steve MacDonald, Duane Szafron, Jonathan Schaeffer, John Anvik, Steve Bromling, Kai

Tan, Generative Design Patterns, 17th IEEE International Conference on Automated Soft-

ware Engineering (ASE) September 2002, Edinburgh, UK, 23-34.

[126] J. Bosch. Design patterns as language constructs. JOOP, 11(2), pp. 18-32, 1998.

[127] F. Budinsky, M. Finnie, J. Vlissides, and P. Yu. Automatic code generation from design

patterns. IBM Systems Journal, 35(2), pp. 151-171, 1996.

[128] G. Florijn, M. Meijers, and P. van Winsen. Tool support for object-oriented patterns. In

ECOOP, Vol. 1241 of LNCS, pp. 472-495. Springer, 1997.

[129] TogetherSoft Corporation. TogetherSoft ControlCenter tutorials: Using design patterns.

[130] J. Anvik, J. Schaeffer, D. Szafron, and K. Tan, Why Not Use a Pattern-based Parallel Pro-

gramming System?, EuroPar International Conference on Parallel and Distributed Com-

puting (EuroPar), August 2003, Klagenfurt Austria, pp. 81-86.

[131] G. Wilson. “Assessing the usability of parallel programming systems: The Cowichan

problems”. In IFIP Working Conference on Programming Environments for Massively

Parallel Distributed Systems, pages 183-193, 1994.

[132] M. MacNaughton, M. Cutumisu, D. Szafron, J. Schaeffer, J. Redford and D. Parker,

ScriptEase: Generative Design Patterns for Computer Role-Playing Games, 19th IEEE In-

ternational Conference on Automated Software Engineering (ASE) September 2004, Linz,

Austria, pp. 88-99.

303

[133] Using Generative Design Patterns to Develop Network Server Applications, Zhuang

Guo; Schaeffer, J.; Szafron, D.; Earl, P.; Parallel and Distributed Processing Symposium,

2005. Proceedings. 19th IEEE International 04-08 April 2005.

[134] Jini Architectural Overview, 2001. http://wwws.sun.com/software/jini/whitepapers/architecture.pdf.

[135] Sun Microsystems. Java Remote Method Invocation Specification, JDK 1.1, 1997. Avail-

able at http://java.sun.com/products/jdk/rmi_ed .

[136] D.C. Schmidt. Reactor: An Object Behavioral Pattern for Concurrent Event Demultiplex-

ing and Event Handler Dispatching. In Pattern Languages of Program Design, Addison-

Wesley, 1995, pp. 529-545.

[137] T. Harrison, I. Pyrarli, D. Schmidt, and T. Jordan. Proactor An Object Behavioral Pattern

for Dispatching Asynchronous Event Handlers. Washington University Technical Report:

WUCS-97-34, 1997.

[138] T. Harrison and D. Schmidt. Asynchronous Completion Tokens: An Object Behavioral

Pattern for Efficient Asynchronous Event Handling. In Pattern Languages of Program De-

sign, Addison-Wesley, 1997.

[139] D.C. Schmidt. Acceptor-Connector: An Object Creational Pattern for Connecting and

Initializing Communication Services. In Pattern Languages of Program Design, Addison-

Wesley, 1997.

[140] Apache Avalon Project. http://avalon.apache.org.

[141] J. Hu and D. Schmidt. JAWS: A Framework for High Performance Web Servers. In

Domain-Specific Application Frameworks: Frameworks Experience by Industry, Wiley

& Sons, 1999, pp. 339-376.

[142] M. Fayad, D. Schmidt, and R. Johnson, editors. Building Application Frameworks, John

Wiley & Sons, 1999.

[143] S. Siu, M. De Simone, D. Goswami, and A. Singh. “Design patterns for parallel program-

ming”. In Proceedings of the 1996 International Conference on Parallel and Distributed

Processing Techniques and Applications, pages 230-240, 1996.

[144] D. Goswami, A. Singh, and B. Priess. “Using object-oriented techniques for realizing par-

allel architectural skeletons”. In Proceedings of the Third International Scientific Comput-

ing in Object-Oriented Parallel Environments Conference, volume 1732 of Lecture Notes

in Computer Science, pages 130-141. Springer-Verlag, 1999.

[145] Using Object-Oriented Techniques for Realizing Parallel Architectural Skeletons Dhruba-

jyoti Goswami, Ajit Singh, and Bruno Richard Preiss. In Proc. ISCOPE ’99, San Francisco,

CA, December 1999.

[146] Dhrubajyoti Goswami, Ajit Singh, and Bruno Richard Preiss. Building Parallel Applica-

tions using Design Patterns. In Advances in Software Engineering: Topics in Comprehen-

sion, Evolution and Evaluation, New York, NY, July 2000. Springer-Verlag.

304

[147] Dhrubajyoti Goswami, Ajit Singh, Bruno R. Preiss: From Design Patterns to Parallel Ar-

chitectural Skeletons. J. Parallel Distrib. Comput. 62(4): 669-695 (2002).

[148] D. Goswami, A. Singh, B. Preiss. “From design patterns to parallel architectural skele-

tons”. Journal of Parallel and Distributed Computing, 62(4), pages 669-695, 2002.

[149] M. M. Akon, D. Goswami and H. F. Li, "SuperPAS: A Parallel Architectural Skeleton

Model Supporting Extensibility and Skeleton Composition". Accepted to the Second Inter-

national Symposium on Parallel and Distributed Processing and Applications (ISPA’04),

Hong Kong, 13-15 December, 2004. Appeared in Springer’s Lecture notes in Computer

Science (LNCS), Vol. 3358, pp. 985-996.

[150] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. “P3L: A structured

high level parallel language and its structured support”. Concurrency: Practice and Expe-

rience, 7(3):225-255, 1995.

[151] S. Pelagatti, “Task and data parallelism in P3L”, In Patterns and Skeletons For Parallel

and Distributed Computing, F. A. Rabhi and S. Gorlatch, Eds. Springer-Verlag, London,

155-186, 2003.

[152] J. Serot. “Embodying parallel functional skeletons: an experimental implementation on

top of MPI”. In C. Lengauer, M. Griebel, and S. Gorlatch, editors, Proc. of EURO-PAR’97,

Passau, Germany, volume 1300 on LNCS, pages 629-633, Springer-Verlag, Berlin, August

1997.

[153] Susanna Pelagatti, “Compiling and supporting skeletons on MPP“, Proceedings of

MPPM97, IEEE Computer Society Press, 1997.

[154] Bruno Bacci, Sergei Gorlatch, Christian Lengauer, Susanna Pelagatti: Skeletons and

Transformations in an Integrated Parallel Programming Environment. PaCT 1999: 13-27.

[155] F. Rabhi “Exploiting parallelism in funcional languages: A ’paradigm oriented’ ap-

proach”. In Abstract Machine Models for Highly Parallel Computing, pages 118-139. Ox-

ford Universitary Press, Oxford, 1995.

[156] Towards Patterns of Web Services Composition B. Benatallah, M. Dumas, M.C. Fauvet

and F.A. Rabhi, Technical Report no UNSW-CSE-0111, School of Computer Science and

Engineering, The University of New South Wales, Sydney, Australia, November 2001.

[157] J. Darlington, Y. Guo, H. W. To, and Y. Jing. “Skeletons for structured parallel compo-

sition”. In Proc. of the 15th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, Santa Barbara, CA, volume 30 of SIGPLAN Notices, pages 19-28,

July 1995.

[158] Newhouse, S., Mayer, A., and Darlington, J. 2000. A Software Architecture for HPC Grid

Applications (Research Note). In Proceedings From the 6th international Euro-Par Confer-

ence on Parallel Processing (August 29 - September 01, 2000). A. Bode, T. Ludwig, W. Karl,

and R. Wismüller, Eds. Lecture Notes In Computer Science, vol. 1900. Springer-Verlag,

London, 686-689.

305

[159] R. Loogen, Y. Ortega, R. Pena, S. Prebe, F. Rubio. ParallelismAbstractions in Eden. In Pat-

terns and Skeletons For Parallel and Distributed Computing, F. A. Rabhi and S. Gorlatch,

Eds. Springer-Verlag, London, 95-128, 2003.

[160] G. H. Botorog, H. Kuchen. “Skil: An Imperative Language with Algorithmic Skeletons

for Efficient Distributed Programming”, Proceedings of the Fifth International Sympo-

sium on High Performance Distributed Computing (HPDC-5), IEEE Computer Society

Press, 243-252, 1996.

[161] H. Kuchen, M. Cole. “The Integration of Task and Data Parallel Skeletons”. Parallel Pro-

cessing Letters 12(2): 141-155, 2002.

[162] H. Kuchen, “A Skeleton Library”, Technical Report 6/02-I, AngewandteMathematik und

Informatik, University of Münster, 2002.

[163] H. Kuchen. “A Skeleton Library”. Proceedings of Euro-Par 2002, LNCS 2400, 620-629, (C)

Springer-Verlag, 2002.

[164] H. Kuchen, J. Striegnitz. “Higher-Order Functions and Partial Applications for a C++

Skeleton Library”. Proceedings of ISCOPE 2002, ACM, 2002.

[165] The Message Passing Interface (MPI) standard. See website at:

http://www-unix.mcs.anl.gov/mpi/ .

[166] Murray I. Cole and Andrea Zavanella, “Coordinating Heterogeneous Parallel Systems

with Skeletons and Activity Graphs", Journal of Systems Integration, 10(2), pp 127–143,

2001.

[167] Murray I. Cole, “Algorithmic Skeletons: A Structured Approach to the Management of

Parallel Computation", Pitman, 1989.

[168] M. Cole. Algorithmic Skeletons: A Structured Approach to the Management of Parallel

Computation. MIT Press, 1988.

[169] Murray Cole. “Bringing skeletons out of the closet: a pragmatic manifesto for skeletal

parallel programming”. Parallel Computing, Volume 30, Issue 3, Pages 389-406, March

2004.

[170] Anne Benoit, Murray Cole, “Two Fundamental Concepts in Skeletal Parallel Program-

ming” International Conference on Computational Science (2) 2005: 764-771.

[171] A. Benoit, M. Cole, J. Hillston and S. Gilmore, “Flexible Skeletal Programming with eS-

kel”, EuroPar 2005, Lisbon, Portugal, LNCS Series, Springer Verlag. September 2005.

[172] A. Benoit, M. Cole, S. Gilmore and J. Hillston, “Evaluating the performance of skeleton-

based high level parallel programs”, In M. Bubak, D. van Albada, P. Sloot and J. Don-

garra, editors, The International Conference on Computational Science (ICCS 2004), Part

III, LNCS, pages 299-306. Springer Verlag, 2004.

306

[173] Marco Vanneschi. “The programming model of ASSIST, an environment for parallel and

distributed portable applications”. Parallel Computing, Volume 28, Issue 12, Pages 1709-

1732, December 2002.

[174] M. Aldinuccia, S. Campab, P. Ciullob, M. Coppolaa, M. Daneluttob, P. Pesciullesib, R.

Ravazzolob, M. Torquatib, M. Vanneschiband C. Zoccolob, “ASSIST: A framework for

experimenting with structured parallel programming environment design”, ParCo2003:

Parallel Computing, Software Technology, Algorithms, Architectures and Applications

(in series: Advances in Parallel Computing), G.R. Joubert, W.E. Nagel, F.J. Peters, W.V.

Walter, editors. Elsevier, 2004.

[175] M. Danelutto. “On skeletons and design patterns”. In Parallel Computing, Fundamentals

and Applications, Proceedings of the International Conference ParCo99, Imperial College

Press, 2000, pages 460-467.

[176] Kiminori Matsuzaki, Kazuhiko Kakehi, Hideya Iwasaki, Zhenjiang Hu, Yoshiki Akashi,

A Fusion-Embedded Skeleton Library, International Conference on Parallel and Dis-

tributed Computing (EuroPar 2004), Pisa, Italy, 31st August - 3rd September, 2004. LNCS

3149, Spinger Verlag. pp.644-653 .

[177] D. Szafron and J. Schaeffer, An Experiment to Measure the Usability of Parallel Program-

ming Systems, Concurrency Practice and Experience, Vol. 8, No. 2, March 1996, pp. 147-

166.

[178] G. Geist and V. Sunderam. Network-Based Concurrent Computing on the PVM System.

Concurrency: Practice and Experience, vol. 4, no. 4, pp. 293-311, 1992.

[179] David B. Skillicorn, Domenico Talia. “Models and languages for parallel computation”.

In ACM Computing Surveys, Volume 30, Number 2, pages: 123–169, 1998, ACM Press,

New York, NY, USA, ISSN:0360-0300.

[180] Dominique Parquer, “A Survey of Visual Programming Tools”, Technical Report, Depart-

ment of Computing Science, University of Alberta, Canada, July, 2003.

[181] SkeletonsHome Page. Seewebsite at http://homepages.inf.ed.ac.uk/mic/Skeletons/ .

[182] Borland, “Model Maker Design Patterns - Delphi design pattern”, See website at

http://www.modelmakertools.com/modelmaker/design-pa tterns.html .

[183] Lock Design Pattern. A description is available at:

http://www.castle-cadenza.demon.co.uk/lock.htm .

[184] Borland’s Together Soft. See website at http://www.borland.com/together/ .

[185] Berna L. Massingill and Timothy G. Mattson and Beverly A. Sanders, "A Pattern Lan-

guage for Parallel Application Programs (Research Note)", Lecture Notes in Computer

Science, volume 1900, 2001.

307

[186] Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders; "Additional Patterns

for Parallel Application Programs": Proceedings of the Tenth Pattern Languages of Pro-

grams Workshop (PLoP 2003), 2003.

[187] Autonomic Computing, IBM research, http://www.research.ibm.com/autonomic/index.html .

[188] Fabio Kon, Fábio Costa, Roy Campbell, and Gordon Blair, “The Case for Reflective Mid-

dleware”, Communications of the ACM. Vol. 45, No. 6, pp. 33-38. June, 2002.

[189] Fabio Kon, Manuel Román, Ping Liu, Jina Mao, Tomonori Yamane, Luiz Claudio Maga-

lhães, and Roy H. Campbell, “Monitoring, Security, and Dynamic Configuration with the

dynamicTAO Reflective ORB”, IFIP/ACM International Conference on Distributed Sys-

tems Platforms andOpenDistributed Processing (Middleware’2000). NewYork. April 3-7,

2000.

[190] M. Blay-Fornarino, A-M. Pinna-Dery, and M. Riveill, “Towards dynamic configuration

of distributed applications”, In 2nd IEEE International Workshop on Aspect Oriented

Programming for Distributed Computing Systems, ISBN 0-7695-1588-6, Vienna, Austria,

pages 487-492, July 2-5 2002.

[191] Ian Foster, “What Is the Grid? A Three Point Checklist", GRIDtoday, vol. 1, no. 6, 2002.

Available at http://www.gridtoday.com/02/0722/100136.html

[192] Nelson Minar, “Distributed Systems Topologies: Part1”, Technical Report, December

2001. Seewebsite at http://www.openp2p.com/pub/a/p2p/2001/12/14/topolog ies_one.html .

[193] Nelson Minar, “Distributed Systems Topologies: Part2”, Technical Report, January 2002.

Seewebsite at http://www.openp2p.com/pub/a/p2p/2002/01/08/p2p_top ologies_pt2.html

[194] The Structured Query Language (SQL). See websites at http:////www.sql.org/ and

www.mysql.com/documentation .

[195] Martin Alt, Jens Muller, and Sergei Gorlatch, “Towards High-Level Grid Programming

and Load-Balancing: A Barnes-Hut Case Study”, in Proceeding of Euro-Par 2005, J. C.

Cunha and P. D. Medeiros (Eds.), September 2005, LNCS 3648, Springer.

[196] M. Aldinucci, M. Danelutto, J. Dunnweber, and S. Gorlatch,“Optimization Techniques

for Implementing Parallel Skeletons In Grid Environments”, 4th International Workshop

on "ConstructiveMethods for Parallel Programming" (CMPP 2004), Stirling, Scotland, UK,

14 July 2004.

[197] Dan Kusnetzky, “DataSynapse: Using Grid Computing to Create

a Virtual Environment for Applications”, White Paper. Available at:

http://download.intel.com/business/bss/technologies /grid/datasynapse.pdf .

[198] “SGI”, High performance solutions for business and scientific areas. See website at

http://www.sgi.com .

[199] “Gria, Service Oriented Collaborations for Industry and Commerce”. See website at

http://www.gria.org/ .

308

[200] I. Taylor, M. Shields, I. Wang and R. Philp, “Grid Enabling Applications Using Triana”,

In Workshop on Grid Applications and Programming Tools. Seattle, 2003.

[201] Ian Taylor, Ian Wang, Matthew Shields, and Shalil Majithia, “Distributed Computing

with Triana on the Grid”, Concurrency and Computation:Practice and Experience , 17(1-

18), 2005.

[202] Peer-to-Peer simplified. See website at http://www.p2psimplified.org/ . Last visited:

August 2005.

[203] “Triana User Guide”, 2005 – work in progress. Available at:

https://forge.nesc.ac.uk/docman/view.php/33/104/Use rGuide.pdf

[204] M.Cecilia Gomes, José C. Cunha, and Omer F. Rana, “Pattern-based Configuration and

Execution Control of Grid-aware Problem Solving Environments”, Poster presentation at

the EuroConference on Problem Solving Environments and the Information Society, EU-

RESCO Conference on Advanced Environments and Tools for High Performance Com-

puting, Albufeira, Portugal, 2003.

[205] Kaizar Amin, Gregor von Laszewski, Mihael Hategan, Nestor J. Zaluzec, Shawn Hamp-

ton, Albert Rossi, “GridAnt: A Client-Controllable GridWorkfow System”,Proceedings of

the 37th Hawaii International Conference on System Sciences - HICSS 2004.

[206] Gregor Laszewski and Mike Hategan, “Grid Workflow - An Inte-

grated Approach”, Argonne National Laboratory, 2005. Available from

http://www-unix.mcs.anl.gov/ laszewsk/papers

[207] Gregor Laszewski andMike Hategan, “Workflow Concepts of the Java CoG Kit”, Journal

of Grid Computing, 3:3-4, 2005.

[208] Java Cog Kit, http://www.globus.org/cog

[209] K. Amin and G. von Laszewski and R. Ali and O. Rana and D. Walker, “An Abstrac-

tion Model for a Grid Execution Framework”, Euromicro Journal of Systems Architecture,

2005, accepted for publication.

[210] Craig A. Lee, B. Scott Michael, “The Use of Content-Based Routing to Support Events,

Coordination and Topology-Aware Communication in Wide-Area Grid Environments”,

in Process Coordination and Ubiquitous Computing, Editors Dan C. Marinescu and Craig

Lee, CRC Press, pp. 99-118, 2003. ISBN: 0-8493-1470-4.

[211] George A. Papadopoulos, Farhad Arbab, “Configuration and dynamic reconfiguration

of components using the coordination paradigm”. Future Generation Comp. Syst. 17(8):

1023-1038, 2001.

[212] Juan Guillen Scholten, Farhad Arbab, Frank S. de Boer, Marcello M. Bonsangue, “A

Channel-based Coordination Model for Components”. Electr. Notes Theor. Comput. Sci.

68(3), 2003.

309

[213] Theophilos A. Limniotes, George A. Papadopoulos, Farhad Arbab, “Coordinating Web

Services Using Channel Based Communication”, COMPSAC 2004: 486-491, 2004.

[214] George A. Papadopoulos, Farhad Arbab, “Coordination Models and Languages”, Ad-

vances in Computers 46: 330-401, 1998.

[215] T. W. Malone and K. Crowston, “The interdisciplinary study of coordination”, ACM

Computing Surveys, 26(1):87-119, March 1994.

[216] Robert Tolksdorf, “Models of Coordination”, Engineering Societies in the Agent World

(ESAW 2000): 78-92, 200.

[217] Ozalp Babaoglu, Keith Marzullo, “Consistent Global States of Distributed Systems:

Fundamental Concepts and Mechanisms”, in Distributed Systems, Editor S. Mullender,

Addison-Wesley, pp. 55-96, 1993.

[218] Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill, “Patterns for Parallel

Programming”, Software Patterns Series, AddisonWesley Professional, 2004. ISBN: 0-321-

22811-1.

[219] Paris Avgeriou, "Architectural patterns revisited - a pattern language", Proceedings of

10th European Conference on Pattern Languages of Programs (EuroPlop 2005), Irsee, Ger-

many, July 2005, pp. 1-39.

[220] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Robert

Nord, and Judith Stafford. Documenting Software Architectures: Views and Beyond.

Addison-Wesley, 2002.

[221] “XtremWeb, A Global Computing Experimental Platform”. See Web site at:

http://www.lri.fr/ fedak/XtremWeb/ .

[222] “BOINC, Berkeley Open Infrastructure for Network Computing”. See Web site at:

http://boinc.berkeley.edu/ .

[223] D. Abramson, J. Giddy, and L. Kotler, “High Performance Parametric Modeling with

Nimrod/G: Killer Application for the Global Grid?”, International Parallel and Dis-

tributed Processing Symposium (IPDPS), pp 520- 528, Cancun, Mexico, May 2000.

[224] J. Linderoth, S. Kulkarni, J-P. Goux, and M. Yoder, “An Enabling Framework for Master-

Worker Applications on the Computational Grid”, Proceedings of the Nineth IEEE Sym-

posium on High Performance Distributed Computing (HPDC9), August 2000.

[225] S. Agrawal, J. Dongarra, K. Seymour, and S. Vadhiyar, "NetSolve: Past, Present, and

Future - A Look at a Grid Enabled Server", Making the Global Infrastructure a Reality, F.

Berman, G. Fox, and A. Hey (Eds), Wiley Publishing, 2003.

[226] Y. Tanaka, H. Nakada, S. Sekiguchi, Suzumura Suzumura, and S. Matsuoka, “Ninf-G:

A Reference Implementation of RPC-based Programming Middleware for Grid Comput-

ing”, Journal of Grid Computing, 1(1):41-51, 2003.

310

[227] N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J. Darlington, “ICENI: An Open Grid

Service Architecture implemented with Jini”, SuperComputing 2002, Baltimore, Mary-

land, USA, 2002.

[228] H. Casanova, G. Obertelli, B. Berman, and R. Wolski, “The AppLeS Parameter Sweep

Template: User-Level Middleware for the Grid”, Supercomputing 2000, IEEE and ACM-

SIGARCH, Nov 2000.

[229] M.Y. Gulamali, A.S. McGough, S. Newhouse, et al , “Using ICENI to run parameter

sweep applications across multiple Grid resources”, Global grid forum 10, Case studies

on grid applications workshop, Berlin, Germany, March 2004, 2004.

[230] S. Androutsellis-Theotokis, and D. Spinellis, “A Survey of Peer-to-Peer Content Distri-

bution Technologies”, ACMComputing Surveys (CSUR), Volume 36 , Issue 4, pp. 335-371,

December 2004.

[231] “Gnutella”, See Web site at: http://www.gnutella.wego.com/ .

[232] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet: A Distributed Anonymous

Information Storage and Retrieval System”, Designing Privacy Enhancing Technologies,

Lecture Notes in Computer Science 2009, H. Federrath (Ed.), Springer-Verlag, Berlin, 2001,

pp. 46-66.

[233] “Entropia”, See Web site at: http://www.entropia.com/

[234] A. Iamnitchi, I. Foster, and D. Nurmi, “A Peer-to-Peer Approach to Resource Location in

Grid Environments”, Symp. on High Performance Distributed Computing, Aug. 2002.

[235] I. Foster, and Adriana Iamnitchi, “On Death, Taxes, and the Convergence of Peer-to-Peer

and Grid Computing”, IPTPS 2003, pp. 118-128.

[236] M. Grand, “Patterns in Java , Volume 1”, John Wiley and Sons, 1998.

[237] E. C. Wyatt, P. O’Leary, “Interactive Poster: Grid-Enabled Collaborative Scientific Visu-

alization Environment”, 15th IEEE Visualization 2004 Conference (VIS 2004), IEEE Com-

puter Society, 2004.

[238] F. Geysermans, and J. Miller, “Build asynchronous applications with

the Distributed Event-Based Architecture for Web Services”, Distributed

Event-Based Architecture (DEBA) from IBM Corporation. Available at:

http://www-128.ibm.com/developerworks/webservices/l ibrary/ws-dbarch/?Open&ca=daw-ws

.

[239] “Publish-Subscribe Notification for Web services”, contributors: IBM, Akamai Tech-

nologies, Computer Associates, Fujitsu Laboratories of Europe, Globus, Hewlett-

Packard, SAP AG, Sonic Software, TIBCO Software. Whitepaper available at:

http://www-128.ibm.com/developerworks/library/speci fication/ws-pubsub/ .

311

[240] B. Tierney, B. Crowley, D. Gunter, M. Holding, J. Lee, and M. Thompson, “A Monitoring

Sensor Management System for Grid Environments”, Journal of Cluster Computing 4, 1,

Kluwer Academic Publishers, 19-28, Mar. 2001.

[241] M. Baker, and M. Grove“jGMA: A lightweight implementation of the Grid Monitoring

Architecture”, proceedings of the UK e-Science All Hands Conference 2004. See Web site

at: http://www.allhands.org.uk/2004/ .

[242] A. Waheed, W. Smith, J. George, and J.C. Yan, “An Infrastructure for Monitoring and

Management in Computational Grids”, Proceedings of LCR ’00: Selected Papers from the

5th InternationalWorkshop on Languages, Compilers, and Run-Time Systems for Scalable

Computers, Springer-Verlag, 2000.

[243] A. Fuggetta, G.P- Picco, and G. Vigna , “Understanding code mobility”, IEEE Transac-

tions on Software Engineering, Volume 24(5), pp. 342–361, 1998.

[244] Java Applets, Sun Microsystems. See website at http://java.sun.com/applets/ .

[245] P.D. Coddington, L. Lu, D. Webb, and A.L. Wendelborn, “Extensible Job Managers for

Grid Computing”, Twenty-Sixth Australasian Computer Science Conference (ACSC2003),

Michael J. Oudshoorn (Ed.), Conferences in Research and Practice in Information Technol-

ogy 2003, Australian Computer Society, pp. 151-159, 2003.

[246] O. F. Rana, and LucMoreau, “Issues in Building Agent-Based Computational Grids”, UK

Multi-Agent Systems Workshop, Oxford, December 2000.

[247] A. Jhoney, M. Kuchhal, and Venkatakrishnan, “Grid Application Framework for

Java (GAF4J)”, Technical report, IBM Software Labs, India, 2003. Available at

https://secure.alphaworks. ibm.com/tech/GAF4J

[248] , K. Amin, G. von Laszewski, R. Ali, O. Rana, and D. Walker, “An Abstraction Model for

a Grid Execution Framework”, Euromicro Journal of Systems Architecture, 2005.

[249] G. Aloisio, M. Cafaro, P. Falabella, C. Kesselman, R. Williams, “Grid Computing on the

Web Using the Globus Toolkit”, HPCN Europe 2000, pp. 32-40, 2000.

[250] G. von Laszewski, J. Gawor, P. Lane, N. Rehn, M. Russell, and K. Jackson, “Features of

the Java Commodity Grid Kit”, journal of Concurrency and Computation: Practice and

Experience, 14:1045, 2002.

[251] M. Sato, K. Kusano, H. Nakada, S. Sekiguchi, and S. Matsuoka, “netCFD: a Ninf CFD

component for Global Computing, and its Java applet GUIH”, proceedings of HPC Asia

2000, pp. 501-506.

[252] S. W. Loke, “Towards Data-Parallel Skeletons for Grid Computing: An Itinerant Mobile

Agent Approach”, proceedings of the 3rd IEEE/ACM International Symposium on Clus-

ter Computing and the Grid (CCGRID), 2003.

312

[253] “MonALISA: An Agent based, Dynamic Service System to Monitor, Control and Opti-

mize Grid based Applications”, I.C.Legrand, H.B.Newman, California Institute of Tech-

nology, Pasadena, CA 91125, USAR.Voicu, European Center for Nuclear Research . CERN,

Geneva, Switzerland C.Cirstoiu, C.Grigoras, M.Toarta, C. Dobre, Polytechnic University

Bucharest, Romania CHEP 2004, Interlaken, Switzerland, September 2004. Available at:

http://monalisa.caltech.edu .

[254] H. Casanova, and J. Dongarra, “NetSolve: A network server for solving computational

science problems”, proceedings of Supercomputing 96.

[255] H. Casanova, and J. Dongarra, “Using agent-based software for scientific computing in

the NetSolve system”, Parallel Computing, 24(1998).

[256] B. Meyer, “Applying «Design by Contract»”, in journel Com-

puter, IEEE, 25, 10, October 1992, pp. 40-51. Available at

http://se.ethz.ch/ meyer/publications/computer/contr act.pdf .

[257] Douglas C. Schmidt, Frank Buschmann “Patterns, Frameworks, and Middleware: Their

Synergistic Relationships”, In Proceedings of the 25th international Conference on Soft-

ware Engineering (Portland, Oregon, May 03 - 10, 2003). International Conference on Soft-

ware Engineering. IEEE Computer Society, Washington, DC, 694-704.

[258] Weiguo Liu and Bertil Schmidt, “A Case Study on Pattern-based Systems for High Per-

formance Computational Biology”, IPDPS 2005.

[259] A. Benoit, M. Cole, S. Gilmore, and J. Hilston, “Scheduling Skeleton-Based Grid Appli-

cations Using PEPA and NWS”, Comput. J. 48(3): 369-378 (2005).

[260] M. Aldinucci, M. Danelutto, J. Dünnweber, and S. Gorlatch. “Optimization techniques

for skeletons on grid”. In L. Grandinetti, editor, Grid Computing and New Frontiers of

High Performance Processing, Advances in Parallel Computing. Elsevier, 2005. Available

as CoreGRID TR-0001.

[261] SengWai Loke, “Towards Data-Parallel Skeletons for Grid Computing: An Itinerant Mo-

bile Agent Approach”. CCGRID 2003, CCGRID 2003: 651-.

[262] Sun GridEngine. Web site: http://gridengine.sunsource.net .

[263] Announcement of the DRMAA C Binding for Sun GridEngine:

http://gridengine.sunsource.net/news/DRMAA0dot8-ann ounce.html .

[264] J. Herrera, E. Huedo, R.Montero, I. Llorente, “Developing Grid-Aware Applications with

DRMAA on Globus-Based Grids”. Euro-Par 2004, pp:429-435.

[265] B. Nitzberg, J. M. Schopf, and J. Jones, “PBS Pro: GRID Computing and Scheduling At-

tributes”, In “Grid resource management: state of the art and future trends”, Kluwer Aca-

demic Publishers, 2004, ISBN:1-4020-7575-8 .

313

[266] Ian Wang, “P2PS (Peer-to-Peer Simplified)”, Proceedings of 13th Annual Mardi Gras

Conference - Frontiers of Grid Applications and Technologies. Louisiana State University,

pages 54-59, February 2005.

[267] S. Thatte, T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Ley-

mann, K. Liu, D. Roller, D. Smith, I. Trickovic, and S. Weerawarana, Busi-

ness Process Execution Language for Web Services Version 1.1 , 2003. Available at:

http://www.ibm.com/developerworks/library/specifica tion/ws-bpel/

[268] The Condor Project. See website at http://www.cs.wisc.edu/condor/ .

[269] I. Taylor, M. Shields, and I. Wang, “Resource Management for the Triana Peer-to-Peer

Services”, In Jarek Nabrzyski, Jennifer M. Schopf, and JanWeglarz, editors, Grid Resource

Management, pages 451-462. Kluwer Academic Publishers, 2004.

[270] “Extended Backus-Naur Form (EBNF)”, International Organization for Standardization,

http://dret.net/biblio/reference/iso14977 .

314

