
JORGE CARLOS FERREIRA RODRIGUES DA CRUZ

CONSTRAINT REASONING FOR DIFFERENTIAL MODELS

Dissertação apresentada para obtenção do Grau de

Doutor em Engenharia Informática pela Universidade

Nova de Lisboa, Faculdade de Ciências e Tecnologia.

LISBOA

2003

iii

For

Teresa and Filipe

with love

v

Acknowledgements

I am specially indebted to Pedro Barahona who supported me, not only as the supervisor of this work,

but also in all my academic formation. He is an excellent supervisor which I greatly recommend to any

one intending to start a PhD in constraint programming. He has the rare ability of being open minded

with respect to new ideas and contribute diligently to their success. Despite his overbooked schedule,

he was always present whenever needed. He is a good friend and is a pleasure to work with him.

I am very grateful to Frédéric Benhamou and all his research team for their good hospitality and

their crucial support in the early phases of this work. Thanks to Frédéric Goualard and Laurent

Granvilliers for their friendship and all our valuable discussions.

Special thanks to Luís Moniz Pereira, for his careful reading and comments on the introduction and

conclusions of this work, but above all, for his excellent work in promoting Artificial Intelligence

which attracted me in the first place for taking a computer science degree.

My acknowledgements to the Computer Science Department for having conceded me three

sabbatical years which were extremely important for the progress of this work.

Many thanks to my colleagues in the Computer Science Department and CENTRIA for their

companionship, trust and concern. In particular, I am grateful to the constraint research group for

creating a stimulating working environment. Thanks to my good friends Anabela and Cecília for their

sincere care and help, promptly sharing with me their own resources whenever I needed.

Thanks to all my family for their love and precious help in handling so many practical problems

which allowed me to fully concentrate on my work. I am particularly grateful to my parents for their

continuous support and belief on my own choices.

Finally, I am deeply grateful to my wife Teresa, who, from the beginning of this work, has always

been by my side, giving me confidence and encouragement in difficult moments and a good reason to

keep on searching for success. I can never thank her enough for all the days, weekends and holidays

that she has sacrificed for helping me.

vii

Sumário

A motivação básica deste trabalho foi a integração de modelos biofísicos na tecnologia de restrições

com intervalos para o apoio à decisão. Comparando as características mais importantes dos modelos

biofísicos com o poder de representação das restrições com intervalos, foi fácil de identificar que a

maior insuficiência estava relacionada com a representação de equações diferenciais. A dinâmica dos

sistemas é frequentemente modelada por equações diferenciais, mas não era possível representar uma

equação diferencial como uma restrição que possa ser incluída num modelo de restrições.

Consequentemente, o objectivo principal deste trabalho é a integração de equações diferenciais

ordinárias na tecnologia de restrições com intervalos. Neste trabalho é alargado o âmbito das restrições

com intervalos com um novo formalismo para o tratamento de equações diferenciais como Problemas

de Satisfação de Restrições Diferenciais. Este paradigma permite a especificação de equações

diferenciais ordinárias juntamente com informação relacionada através de restrições, e proporciona

técnicas de propagação eficientes para a redução do domínio das suas variáveis. Assim, toda esta

informação é integrada numa única restrição cujas variáveis podem ser usadas noutras restrições do

modelo. O método usado para reduzir os domínios destas variáveis pode ser então combinado com os

métodos de redução associados às outras restrições num algoritmo de propagação geral para diminuir a

incerteza de todas as variáveis do modelo.

A utilização de um algoritmo de propagação de restrições para a redução dos domínios das

variáveis, isto é, a imposição de consistência local, revelou-se insuficiente para o apoio à decisão em

problemas práticos que envolvam equações diferenciais. A redução dos domínios não é, em geral,

suficiente para permitir decisões seguras e a principal razão deriva da não linearidade das equações

diferenciais. Consequentemente, um objectivo complementar deste trabalho é a proposta de um novo

critério de consistência particularmente apropriado ao apoio à decisão com modelos diferenciais, isto

é, que apresente um equilíbrio adequado entre a redução dos domínios obtida e o respectivo esforço

computacional. Vários algoritmos alternativos foram propostos para impor este critério, tendo sido

feito um esforço no sentido de conceber implementações capazes de fornecer resultados a qualquer

momento da execução.

Uma vez que o critério de consistência depende da existência de soluções canónicas, é proposto um

mecanismo de pesquisa local que pode ser integrado com a propagação de restrições e, em particular,

com os algoritmos de imposição do critério para antecipar a descoberta de soluções canónicas.

O último objectivo deste trabalho é a verificação da validade da abordagem como uma importante

contribuição para a integração dos modelos biofísicos no apoio à decisão. Consequentemente, é

desenvolvida uma aplicação protótipo que integra todas as extensões propostas às restrições com

intervalos e que é usada para a resolução de problemas em diferentes domínios biofísicos.

ix

Abstract

The basic motivation of this work was the integration of biophysical models within the interval

constraints framework for decision support. Comparing the major features of biophysical models with

the expressive power of the existing interval constraints framework, it was clear that the most

important inadequacy was related with the representation of differential equations. System dynamics is

often modelled through differential equations but there was no way of expressing a differential

equation as a constraint and integrate it within the constraints framework.

Consequently, the goal of this work is focussed on the integration of ordinary differential equations

within the interval constraints framework, which for this purpose is extended with the new formalism

of Constraint Satisfaction Differential Problems. Such framework allows the specification of ordinary

differential equations, together with related information, by means of constraints, and provides

efficient propagation techniques for pruning the domains of their variables. This enabled the

integration of all such information in a single constraint whose variables may subsequently be used in

other constraints of the model. The specific method used for pruning its variable domains can then be

combined with the pruning methods associated with the other constraints in an overall propagation

algorithm for reducing the bounds of all model variables.

The application of the constraint propagation algorithm for pruning the variable domains, that is, the

enforcement of local-consistency, turned out to be insufficient to support decision in practical

problems that include differential equations. The domain pruning achieved is not, in general, sufficient

to allow safe decisions and the main reason derives from the non-linearity of the differential equations.

Consequently, a complementary goal of this work proposes a new strong consistency criterion, Global

Hull-consistency, particularly suited to decision support with differential models, by presenting an

adequate trade-of between domain pruning and computational effort. Several alternative algorithms

are proposed for enforcing Global Hull-consistency and, due to their complexity, an effort was made

to provide implementations able to supply any-time pruning results.

Since the consistency criterion is dependent on the existence of canonical solutions, it is proposed a

local search approach that can be integrated with constraint propagation in continuous domains and, in

particular, with the enforcing algorithms for anticipating the finding of canonical solutions.

The last goal of this work is the validation of the approach as an important contribution for the

integration of biophysical models within decision support. Consequently, a prototype application that

integrated all the proposed extensions to the interval constraints framework is developed and used for

solving problems in different biophysical domains.

xi

Symbols and Notation

LOGIC

¬ The negation operator

∧ The conjunction operator

∨ The disjunction operator

⇒ The implication operator

∀ The universal quantifier

∃ The existential quantifier

SET THEORY

∈ An element of

∉ Not an element of

⊆ A subset of

⊂ A proper subset of

∩ The intersection operator

∪ The union operator

⊎ The union hull operator

∅ The empty set

REAL VALUES, INTERVALS AND BOXES

r, ri, k A real value

a, b, c, d A real value representing the bound or the center (c) of an interval

r The largest F-number not greater than r

r The smallest F-number not lower than r

-∞, +∞ The minus and the plus infinity F-numbers

I, Ii. K An interval, either a real interval or an F-interval

IR, IRi A real interval

IF, IFi An F-interval

<a..b> An interval bounded by a and b (closed, half closed or open)

[a..b] A closed interval bounded by a and b

(a..b], (-∞..b] A left open interval

[a..b), [a..+∞) A right open interval

xii

(a..b), (-∞..+∞) An open interval

[a..a], [a], {a} A degenerate interval with the singe real value a

B, Bi A box, either an R-box or an F-box

<I1,...,In> A box with n intervals

<IR1,...,IRn> A real box with n real intervals

<IF1,...,IFn> An F-box with n F-intervals

INTERVAL BASIC FUNCTIONS AND APPROXIMATIONS

left([a..b]) The function that returns the left bound of [a..b]

right([a..b]) The function that returns the right bound of [a..b]

center([a..b]) The function that returns the mid value of [a..b]

width([a..b]) The function that returns the width of [a..b]

cleft([a..b]) The function that returns the leftmost canonical bound of [a..b]

cright([a..b]) The function that returns the right canonical bound of [a..b]

Iapx(IR) The RF-interval approximation of the real interval IR

Sapx(SR) The RF-set approximation of the real set SR

Ihull(SR) The RF-hull approximation of the real set SR

VARIABLES, EXPRESSIONS AND FUNCTIONS

xi A real valued variable

Xi An interval valued variable

+ The real or interval arithmetic operator of addition

− The real or interval arithmetic operator of subtraction

× The real or interval arithmetic operator of multiplication

/ The real or interval arithmetic operator of division

Φ A basic real or interval arithmetic operator

Φapx The interval operator Φ evaluated with the outward evaluation rules

E, Ei, Ec A real or interval expression

e, ei, ec A real expression

f, g A real function

f’, g’ A real function which is the derivative of f or g, respectively

f*(D) The range of the real function f over the domain D

Df The domain of the real function f

fE, fEi
A real expression representing the real function f

F, F’, G An interval function

xiii

FE, FEi
An interval expression representing the interval function F

and the interval function resulting from its interval evaluation

Fn The Natural interval extension of a real function wrt a real expression

Fc The Centered interval extension of a real function wrt an interval

Fm The Mean Value interval extension of a real function wrt an interval

Ft(m) The Taylor (m) interval extension of a real function wrt an interval

Fd The Distributed interval extension of a real function

N The interval Newton function with respect to a real function

NS The Newton Step function with respect to a real function

NN The Newton Narrowing function with respect to a real function

CONSTRAINT SATISFACTION PROBLEMS

(X,D,C)A CSP with the variables X ranging over D and constrained to C

2D The power set of D, with respect to a CCSP defined as (X,D,C)

A, A’, Ai An element of 2D (wrt a CCSP defined as (X,D,C))

<x1,...,xn> A tuple of n variables of a CSP

Di The domains of variable xi of a CSP

D1×...×Dn The Cartesian Product of the domains of n variables of a CSP

di A value form the domain of variable xi of a CSP

<d1,...,dn> A tuple of n values from the domains of n variables of a CSP

d, dl, dr A tuple of values from the domains of some variables of a CSP

⋄ A symbol from {≤,=,≥}

c=(s,ρ) A constraint establishing a relation ρ between the variables within s

c≡ec⋄0 A constraint represented as a relation between a real expression and 0

c≡ec⋄e0, c≡e1⋄e0 A constraint represented as a relation between two real expressions

d[s] The projection from the values in d to the values of variables within s

B[s] The projection from the intervals in B to the intervals of variables of s

CONSTRAINT PROPAGATION

NF, NF’, NFi A narrowing function associated with a constraint of a CCSP

DomainNF The domain of the narrowing function NF

CodomainNF The codomain of the narrowing function NF

RelevantNF The set of variables used for defining the narrowing function NF

Fixed-PointsNF(A) The set of all fixed-points of the narrowing function NF within A

∪Fixed-PointsNF(A) The union of all fixed-points of the narrowing function NF within A

xiv

Q, S, Si A set of narrowing functions associated with constraints of a CCSP

ψei The inverse interval expression of a constraint wrt the expression ei

ψxi The inverse interval expression of a constraint wrt the variable ei

πxi

ρ
A projection function wrt a constraint c=(s,ρ) and a variable xi∈s

BNFxi

ρ
A box-narrowing function wrt a constraint c=(s,ρ) and a variable xi∈s

∏xi

ρB
The interval projection of constraint c=(s,ρ) wrt xi∈s and the F-box B

prune(Q,A) The function that propagates a set Q of narrowing functions over an

element A of 2D and returns a smaller element A’⊆A

narrowBounds(I) The function that narrows an F-interval I accordingly to the narrowing

strategy of the constraint Newton method

intervalProjCond(I) The function that verifies if the interval projection condition is

satisfied at the canonical F-interval I

searchLeft(I) The function that returns the leftmost zero of an interval projection

within the F-interval I

searchLeft(I) The function that returns the rightmost zero of an interval projection

within the F-interval I

xv

Table of Contents

Chapter 1 INTRODUCTION ...1

1.1 Contributions ..5

1.1.1 Interval Constraints for Differential Equations ...5

1.1.2 Strong Consistency: Global Hull-consistency ..5

1.1.3 Local Search for Interval Constraint Reasoning..5

1.1.4 Prototype Implementation: Applications to Biophysical Modelling6

1.2 Guide to the Dissertation ..6

Part I INTERVAL CONSTRAINTS ...11

Chapter 2 CONSTRAINT SATISFACTION PROBLEMS ..13

2.1 Solving a Constraint Satisfaction Problem...15

2.1.1 Pruning ...16

2.1.2 Branching ...17

2.1.3 Stopping..18

2.2 Constraint Satisfaction Problems With Continuous Domains......................................18

2.2.1 Intervals Representing Unidimensional Continuous Domains.....................................19

2.2.2 Interval Operations and Basic Functions...21

2.2.3 Interval Approximations ...22

2.2.4 Boxes Representing Multidimensional Continuous Domains.......................................23

2.2.5 Solving Continuous Constraint Satisfaction Problems...24

2.3 Summary ..25

Chapter 3 INTERVAL ANALYSIS ..27

3.1 Interval Arithmetic ...27

3.1.1 Extended Interval Arithmetic..30

3.2 Interval Functions...31

3.2.1 Interval Extensions ...34

3.3 Interval Methods...39

3.3.1 Univariate Interval Newton Method...40

3.3.2 Multivariate Interval Newton Method ..46

3.4 Summary ..47

xvi

Chapter 4 CONSTRAINT PROPAGATION.. 49

4.1 The Propagation Algorithm ... 49

4.2 Associating Narrowing Functions to Constraints .. 53

4.2.1 Constraint Decomposition Method .. 55

4.2.2 Constraint Newton Method .. 59

4.2.3 Complementary Approaches.. 64

4.3 Summary.. 66

Chapter 5 PARTIAL CONSISTENCIES... 67

5.1 Local Consistency.. 67

5.2 Higher Order Consistency ... 73

5.3 Summary.. 77

Chapter 6 GLOBAL HULL-CONSISTENCY ... 79

6.1 The Higher Order Consistency Approach.. 81

6.1.1 The (n+1)B-consistency Algorithm.. 82

6.2 Backtrack Search Approaches ... 82

6.2.1 The BS0 Algorithm ... 84

6.2.2 The BS1 Algorithm ... 85

6.2.3 The BS2 Algorithm ... 86

6.2.4 The BS3 Algorithm ... 87

6.3 Ordered Search Approaches .. 89

6.3.1 The OS1 Algorithm ... 91

6.3.2 The OS3 Algorithm ... 91

6.4 The Tree Structured Approach .. 92

6.4.1 The Data Structures ... 92

6.4.2 The Actions .. 95

6.4.3 The TSA Algorithm .. 97

6.5 Summary.. 99

Chapter 7 LOCAL SEARCH.. 101

7.1 The Line Search Approach .. 102

7.1.1 Obtaining a Multidimensional Vector - the Newton-Raphson Method...................... 103

7.1.2 Obtaining a New Point .. 109

7.2 Alternative Local Search Approaches ... 115

7.3 Integration of Local Search with Global Hull-Consistency Algorithms.................... 116

7.4 Summary.. 118

xvii

Chapter 8 EXPERIMENTAL RESULTS ...119

8.1 A simple example ...119

8.2 The Census Problem...121

8.3 Protein Structure...123

8.4 Local Search ...124

8.5 Summary ..126

Part II INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS127

Chapter 9 ORDINARY DIFFERENTIAL EQUATIONS ..129

9.1 Numerical Approaches ...131

9.1.1 Taylor Series Methods ..132

9.1.2 Errors and Step Control ...134

9.2 Interval Approaches..136

9.2.1 Interval Taylor Series Methods ..137

9.2.2 Validation and Enclosure of Solutions Between two Discrete Points138

9.2.3 Computation of a Tight Enclosure of Solutions at a Discrete Point139

9.3 Constraint Approaches ...141

9.3.1 Older’s Constraint Approach ...142

9.3.2 Hickey’s Constraint Approach ...143

9.3.3 Jansen, Deville and Van Hentenryck’s Constraint Approach145

9.4 Summary ..147

Chapter 10 CONSTRAINT SATISFACTION DIFFERENTIAL PROBLEMS..149

10.1 CSDPs are CSPs ...149

10.1.1 Value Restrictions...152

10.1.2 Maximum and Minimum Restrictions...154

10.1.3 Time and Area Restrictions ..156

10.1.4 First and Last Value Restrictions ...157

10.1.5 First and Last Maximum and Minimum Restrictions ...158

10.2 Integration of a CSDP within an Extended CCSP..159

10.2.1 Canonical Solutions for Extended CCSPs..160

10.2.2 Local Search for Extended CCSPs ...163

10.3 Modelling with Extended CCSPs...164

10.3.1 Modelling Parametric ODEs..165

10.3.2 Representing Interval Valued Properties ...167

10.3.3 Combining ODE Solution Components ..168

10.4 Summary ..168

xviii

Chapter 11 SOLVING A CSDP... 169

11.1 The ODE Trajectory .. 169

11.2 Narrowing Functions for Enforcing the ODE Restrictions.. 172

11.2.1 Value Narrowing Functions... 173

11.2.2 Maximum and Minimum Narrowing Functions... 173

11.2.3 Time and Area Narrowing Functions .. 175

11.2.4 First and Last Value Narrowing Functions ... 177

11.2.5 First and Last Maximum and Minimum Narrowing Functions 179

11.3 Narrowing Functions for the Uncertainty of the ODE Trajectory 180

11.3.1 Propagate Narrowing Function... 182

11.3.2 Link Narrowing Function .. 184

11.3.3 Improve Narrowing Functions... 185

11.4 The Constraint Propagation Algorithm for CSDPs ... 188

11.5 Summary.. 191

Chapter 12 BIOMEDICAL DECISION SUPPORT WITH ODES .. 193

12.1 A Differential Model for Diagnosing Diabetes ... 194

12.1.1 Representing the Model and its Constraints with an Extended CCSP 195

12.1.2 Using the Extended CCSP for Diagnosing Diabetes ... 195

12.2 A Differential Model for Drug Design .. 197

12.2.1 Representing the Model and its Constraints with an Extended CCSP 199

12.2.2 Using the Extended CCSP for Parameter Tuning ... 200

12.3 The SIR Model of Epidemics .. 201

12.3.1 Using the Extended CCSP for Predicting the Epidemic Behaviour 202

12.4 Summary.. 205

Chapter 13 CONCLUSIONS AND FUTURE WORK... 207

13.1 Interval Constraints for Differential Equations.. 207

13.2 Strong Consistency: Global Hull-consistency ... 208

13.3 Local Search for Interval Constraint Reasoning.. 209

13.4 Prototype Implementation: Applications to Biophysical Modelling 210

13.5 Conclusions.. 211

REFERENCES .. 213

APPENDIX A: INTERVAL ANALYSIS THEOREMS ... 223

APPENDIX B: CONSTRAINT PROPAGATION THEOREMS .. 237

xix

List of Figures

Part I INTERVAL CONSTRAINTS

Chapter 2 CONSTRAINT SATISFACTION PROBLEMS

2.1 An example of a CSP with finite domains ...15

2.2 Domain lattice partially ordered by set inclusion. ..16

2.3 Pruning some value combinations..17

2.4 Branching a lattice element into smaller elements ...17

2.5 Stopping the search when the goal of finding all solutions is achieved18

2.6 R-intervals and F-intervals ...20

2.7 Interval operations and basic functions ..22

2.8 Interval approximation ...23

Chapter 3 INTERVAL ANALYSIS

3.1 An example of subdistributivity ...29

3.2 The intended interval function represented by an interval expression33

3.3 An interval extension of an interval function ...34

3.4 Natural interval extensions of a real function wrt three equivalent real expressions ...35

3.5 The decomposed evaluation of an interval expression ...36

3.6 An example of the application of the interval Newton method....................................43

3.7 The interval Newton method for enclosing the zeros of a family of functions45

Chapter 4 CONSTRAINT PROPAGATION

4.1 The constraint propagation algorithm...51

4.2 An example of a constraint and its projection functions ..53

4.3 The narrowing algorithm for finding an enclosure of the projection function60

4.4 The function that verifies if the constraint projection condition may be satisfied61

4.5 The algorithm for searching the leftmost zero of the complex interval projection61

Chapter 5 PARTIAL CONSISTENCIES

5.1 Insufficient pruning achieved by local consistency enforcement.................................73

5.2 The generic kB-consistency algorithm..75

5.3 The auxiliary kB-consistency function used by the generic algorithm76

xx

Chapter 6 GLOBAL HULL-CONSISTENCY

6.1 Pruning achieved by enforcing Global Hull-consistency .. 80

6.2 The (n+1)B-consistency algorithm... 82

6.3 The generic backtrack search algorithm for finding canonical solutions 83

6.4 The BS0 algorithm.. 84

6.5 The BS1 algorithm.. 85

6.6 The BS2 algorithm.. 86

6.7 The BS3 algorithm.. 88

6.8 The generic ordered search algorithm for finding canonical solutions........................ 90

6.9 The relevance of an F-box with respect to a variable bound 93

6.10 The procedure that updates the inner box to enclose new canonical solutions............ 94

6.11 The procedures for deleting, narrowing and branching a leaf of the binary tree 94

6.12 The procedure for pruning a subbox of a leaf of the binary tree 96

6.13 The procedure for searching a canonical solution within a subbox of a tree leaf 96

6.14 The procedure to split a subbox of a binary tree leaf... 97

6.15 The TSA algorithm... 98

Chapter 7 LOCAL SEARCH

7.1 The local search algorithm... 102

7.2 The definition of the vector function F.. 104

7.3 The algorithm that computes the Newton-Raphson vector .. 107

7.4 The multidimensional vectors obtained at different points of the search space 108

7.5 The algorithm that computes a new point along the Newton’s vector direction 112

7.6 The new points obtained by the lineMinimization algorithm 113

7.7 Convergence of the local search algorithm.. 114

7.8 The modified generic backtrack search algorithm with local search......................... 117

Chapter 8 EXPERIMENTAL RESULTS

8.1 A simple unsatisfiable constraint problem... 120

8.2 The best fit solution for the USA Census problem.. 121

8.3 Comparing 3B with GH, and GH with similar execution time (about 1’)................. 122

Part II INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

Chapter 9 ORDINARY DIFFERENTIAL EQUATIONS

9.1 Local and global discretization errors for an unstable and a stable diff. equation..... 135

xxi

Chapter 10 CONSTRAINT SATISFACTION DIFFERENTIAL PROBLEMS

10.1 CSDP P1, representing the ODE system)()(tyty −=′ for t∈[0.0..4.0].....................151

10.2 CSDP P2, representing a binary ODE system for t∈[0.0..6.0]...................................152

10.3 CSDP P1a, representing the IVP: 0.1)0.0(=y and)()(tyty −=′153

10.4 CSDP P1b, representing the IVP: []0.1..5.0)0.0(=y and)()(tyty −=′153

10.5 CSDP P2a, representing a boundary value problem ..154

10.6 CSDP P2b, representing a problem with a Maximum restriction155

10.7 CSDP P2c, representing a problem with Time and Area restrictions157

10.8 CSDP P1d, representing a problem with a First Value restriction158

Chapter 11 SOLVING A CSDP

11.1 An ODE trajectory enclosing the ODE solutions of the CSDP P2b170

11.2 Narrowing functions associated with a Maximum restriction174

11.3 The three possible cases for the definition of the Area≥k(I) function176

11.4 Time and Area narrowing functions for CSDP P2c ...176

11.5 The definition of the timeEnclosure function...177

11.6 First Value narrowing functions for CSDP P1d...179

11.7 The definition of the pruneGap function..181

11.8 The definition of the insertPoint function ..182

11.9 The definition of the propagateTrajectory function...183

11.10 The definition of the choosePropagationGap function..183

11.11 The definition of the linkTrajectory function ...184

11.12 The definition of the chooseUnlinkedGap function ...184

11.13 The definition of the heuristicValue function...186

11.14 The definition of the improveTrajectory function ..187

11.15 The definition of the choosePropagationGap function..188

11.16 The constraint propagation algorithm for CSDPs ..189

11.17 The solving function associated with an CSDP..190

Chapter 12 BIOMEDICAL DECISION SUPPORT WITH ODES

12.1 Evolution of the blood glucose concentration ..194

12.2 The periodic limit cycle with p1=1.2 and p2=ln(2)/5 ..198

12.3 Maximum, minimum, area and time values at the limit cycle....................................198

12.4 SIR model predictions with S(0)=762, I(0)=1, R(0)=0, r=0.00218 and a=0.44036 ...202

xxiii

List of Tables

Part I INTERVAL CONSTRAINTS

Chapter 4 CONSTRAINT PROPAGATION

4.1 Inverse interval expressions of some primitive constraints ..56

4.2 Inverse interval expressions of c1≡ x1×x3=0 and c2≡ x2-x1=x357

4.3 Projection functions of c1≡ x1×x3=0 and c2≡ x2-x1=x3 ...57

4.4 Narrowing functions of CCSP (<x1,x2,x3>,D1×D2×[-∞..+∞],{x1×x3=0,x2-x1=x3})58

4.5 Examples of the application of the decomposition method on a CCSP58

4.6 Searching a new left bound for x1 within the interval [-0.499..2.5]..............................64

Chapter 8 EXPERIMENTAL RESULTS

8.1 Pruning domains in a trivial problem ...120

8.2 US Population (in millions) over the years 1790 (0) to 1910 (120)121

8.3 Comparing 2B-, 3B- and Global Hull-consistency in the Census problem................122

8.4 Comparing anytime GH and 3B in the Census problem ..122

8.5 Comparing anytime GH and 4B in the Census problem ..123

8.6 Comparing GH with different precision requirements in the Census problem123

8.7 Square distances between pairs of atoms of the protein ...124

8.8 Comparing 2B, 3B and GH in the Protein problem..124

8.9 Comparing various Global Hull-consistency enforcing algorithms125

Part II INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

Chapter 12 BIOMEDICAL DECISION SUPPORT WITH ODES

12.1 Narrowing results obtained for patient A from the information of the 1st test............196

12.2 Narrowing of T domain achieved by 3B-, 4B- and Global Hull-consistency.............197

12.3 Infectives reported during an epidemics in an English boarding school202

xxv

List of Definitions

Part I INTERVAL CONSTRAINTS

Chapter 2 CONSTRAINT SATISFACTION PROBLEMS

2-1 Constraint ...13

2-2 Constraint Satisfaction Problem ...14

2-3 Tuple Projection ...14

2-4 Constraint Satisfaction..14

2-5 Solution ..14

2-6 Consistency ..15

2-7 Equivalence ..15

2.2-1 Numeric Constraint Satisfaction Problem ..18

2.2-2 Continuous Constraint Satisfaction Problem..19

2.2.1-1 R-interval ..19

2.2.1-2 F-numbers...20

2.2.1-3 F-interval ..20

2.2.2-1 Union Hull ..21

2.2.2-2 Interval Basic Functions ...21

2.2.3-1 RF-interval approximation ...22

2.2.3-2 RF-set approximation ...22

2.2.3-3 RF-hull approximation ...22

2.2.4-1 R-box ..23

2.2.4-2 F-box ..23

2.2.4-3 Canonical Solution ...24

Chapter 3 INTERVAL ANALYSIS

3.1-1 Basic Interval Arithmetic Operators...28

3.1-2 Evaluation Rules for the Basic Operators...28

3.1-3 Algebraic Properties of the Basic Operators ..28

3.1-4 Outward Rounding Evaluation Rules of the Basic Operators29

3.2-1 Real and Interval Expressions ..31

3.2-2 Real and Interval Functions..31

3.2-3 Semantic of an Interval Expression ..32

3.2-4 Interval Arithmetic Evaluation of an Interval Expression..32

3.2.1-1 Interval Extension of a Real Function ..34

xxvi

3.2.1-2 Natural Interval Expression ... 35

3.2.1-3 Dependency Problem... 37

3.3-1 Newton Function ... 41

3.3-2 Newton Step... 41

3.3-3 Newton Narrowing .. 41

Chapter 4 CONSTRAINT PROPAGATION

4.1-1 Narrowing Function... 50

4.1-2 Monotonicity and Idempotency of Narrowing Functions.. 50

4.1-3 Fixed-Points of Narrowing Functions.. 50

4.2-1 Projection Function.. 53

4.2-2 Box-Narrowing Function... 54

4.2.1-1 Primitive Constraint... 55

4.2.1-2 Inverse Interval Expression ... 56

4.2.2-1 Interval Projection ... 59

Chapter 5 PARTIAL CONSISTENCIES

5.1-1 Arc-Consistency .. 67

5.1-2 Interval-Consistency .. 68

5.1-3 Hull-Consistency ... 69

5.1-4 Box-Consistency.. 71

5.1-5 Local-Consistency ... 72

5.2-1 kB-Consistency.. 74

Chapter 6 GLOBAL HULL-CONSISTENCY

6-1 Global Hull-Consistency.. 80

Part II INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

Chapter 9 ORDINARY DIFFERENTIAL EQUATIONS

9-1 ODE system... 130

9-2 Solution of an ODE system ... 130

9-3 Solution of an IVP ... 130

Chapter 10 CONSTRAINT SATISFACTION DIFFERENTIAL PROBLEMS

10.1-1 CSDP ... 150

10.1.1-1 Value restrictions ... 152

10.1.2-1 Maximum and Minimum restrictions .. 155

xxvii

10.1.3-1 Time restrictions...156

10.1.3-2 Area restrictions..156

10.1.4-1 First and Last Value restrictions...157

10.1.5-1 First and Last Maximum and Minimum restrictions ..158

10.2-1 Extended Continuous Constraint Satisfaction Problem..159

10.2-2 CSDP Narrowing Functions ...160

10.2.1-1 Canonical Solution of an extended CCSP ..161

10.2.1-2 CSDP Solving Relaxation ..162

10.2.1-3 CSDP Solving Requirement ...162

10.2.2-1 CSDP Evaluation..163

10.2.2-2 F(r) and J(r) values associated with a CSDP constraint...164

Chapter 11 SOLVING A CSDP

11.2.1-1 Value Narrowing Functions ...173

11.2.2-1 Maximum and Minimum Narrowing Functions...174

11.2.3-1 Time and Area Narrowing Functions ...176

11.2.4-1 First and Last Value Narrowing Functions...178

11.2.5-1 First and Last Maximum and Minimum Narrowing Functions..................................180

11.3.1-1 Propagate Narrowing Function...184

11.3.2-1 Link Narrowing Function ...185

11.3.3-1 Improve Narrowing Functions ...188

xxix

List of Theorems

Part I INTERVAL CONSTRAINTS

Chapter 3 INTERVAL ANALYSIS

3.2-1 Soundness of the Interval Expression Evaluation ..33

3.2.1-1 Soundness of the Evaluation of an Interval Extension ...34

3.2.1-2 Natural Interval Extension..35

3.2.1-3 Intersection of Interval Extensions ...36

3.2.1-4 Decomposed Evaluation of an Interval Extension..36

3.2.1-5 No Overestimation Without Multiple Variable Occurrences37

3.3.1-1 Soundness of the Interval Newton Method with Roots ..43

3.3.1-2 Soundness of the Interval Newton Method without Roots...43

3.3.1-3 Interval Newton Method to Prove the Existence of a Root ..44

3.3.1-4 Convergence of the Interval Newton Method ..44

3.3.1-5 Efficiency of the Interval Newton Method - Quadratic..44

3.3.1-6 Efficiency of the Interval Newton Method - Geometric...44

Chapter 4 CONSTRAINT PROPAGATION

4.1-1 Union of Fixed-Points ..51

4.1-2 Contraction Applying a Narrowing Function...51

4.1-3 Properties of the Propagation Algorithm..52

4.2.1-1 Projection Function based on the Inverse Interval Expression.....................................57

4.2.2-1 Properties of the Interval Projection...59

4.2.2-2 Projection Function Enclosure based on the Interval Projection..................................60

INTRODUCTION

1

Chapter 1

Introduction

The original motivation for this work derives from our past experience in the design of decision

support systems for medical diagnosis. Knowledge representation has always been a major concern in

the design of decision support systems, namely those applied to the medical domain. The early

medical knowledge based systems were designed to accomplish some specific medical task (typically

diagnosis) and the medical knowledge was mostly embedded in the procedures designed to

accomplish that task. This led to problems of consistency (the medical knowledge reflected the views

of the medical experts that advised the design of such systems, which by no means was consensual

within the health care community) and also of reuse (the same knowledge could not be used in two

different tasks – e.g. diagnosis and treatment).

This problem was soon recognised and several approaches were proposed to overcome it, namely to

represent medical knowledge declaratively. As such the systems could represent medical knowledge

proper (i.e. anatomical, physiological or pathological knowledge) separately from task related

knowledge (i.e. what are the necessary steps to be executed when performing diagnosis, treatment or

monitoring tasks). Moreover, task knowledge could be formalised and (re)used in several specific

medical domains (cardiology, neurology, etc.).

Such a view was particularly useful for systems based on logic, in that useful relations between

medical concepts are stored as facts (e.g. causal relations, associations, risk factors) that could be

handled by the reasoning process. Nevertheless, the medical concepts and relations represented were

usually relatively high level abstractions of the underlying processes and this led to the problem of

handling uncertainty - the more abstract are the concepts and relations the more uncertain are the

statements that can be made about them.

This problem can be alleviated if the knowledge handled by the systems would represent less

abstract concepts whose underlying uncertainty is more controlled. This is the approach taken by

systems based on “deep medical knowledge”. In contrast with systems that represent causal but

“shallow” relations, say, between a disease and a symptom, these systems would represent a more

detailed set of pathophysiological states and processes that could explain the shallow relation between

the disease and the symptom.

INTRODUCTION

2

This was the kind of approach used for the development of our own decision support system for the

diagnosis of neuromuscular diseases [Cru95, CBF96, CB97]. Such an approach was based on a

causal-functional model for the representation of anatomical and physiological domain knowledge

which supported a diagnostic reasoning strategy that mimics the medical reasoning usually performed

over those dimensions of medical knowledge.

However, the approach still presented certain difficulties, both with the representation of the domain

knowledge and with the soundness of the diagnostic reasoning. To avoid complexity, the quantitative

knowledge about the elementary physiological processes was abstracted into simpler qualitative

relations where the continuous domains were partitioned into symbolic values. Such simplifications

prevented, for example, an adequate modelling of the evolution of processes over time. On the other

hand, the reasoning strategy was only justified by clinical practice and not by the underlying

knowledge model, thus lacking automatic mechanisms for guaranteeing its soundness.

The difficulties found in our practical approach seem to generalise for decision support systems in

other biomedical domains where there is a clear gap between theoretical and practical approaches.

Despite the existence of “deep” biophysical models generally accepted by the biomedical community

(e.g. cardiovascular models, respiratory models, compartment models, etc), they are not explicitly

incorporated into decision support systems due to their complexity. They are often highly non-linear

models based on differential equations and these are difficult to reason about with simple “logical”

procedures. In most existing decision support systems, specialised on practical tasks such as diagnosis

or prognosis, this “deep” theoretical knowledge is still implicitly hidden in the heuristics and rules

used to perform those tasks.

In this context, constraint technology seems to have the potential to bridge the gap between theory

and practice. The declarative nature of constraints makes them an adequate tool for the explicit

representation of any kind of domain knowledge, including “deep” biophysical modelling. The

constraint propagation techniques provide sound methods, with respect to the underlying model, that

can be used to support practical tasks (e.g. diagnosis/prognosis may be supported through propagation

on data about the patient symptoms/diseases). In particular, the interval constraints framework seems

to be the most adequate for representing the non-linear relations on continuous variables, often present

in biophysical models. Additionally, the uncertainty of biophysical phenomena may be explicitly

represented as intervals of possible values and handled through constraint propagation.

The basic motivation of this work was then the integration of biophysical (or more general physical)

models within the interval constraints framework for decision support. On the one hand, it would be

necessary that biophysical models and phenomena could be represented as interval constraints. On the

other, to be of any practical use, the underlying constraint propagation techniques should be efficient

enough to support the decision making process.

Comparing the major features of biophysical models with the expressive power of the existing

interval constraints framework, it was clear that the most important inadequacy was related to the

representation of differential equations. System dynamics is often modelled through differential

INTRODUCTION

3

equations but there was no way of expressing a differential equation as a constraint and integrate it

within the constraints framework.

Consequently, the goal of this work is focussed on the integration of ordinary differential equations

within the interval constraints framework. In particular, in the context of managing uncertainty in

biophysical models for decision support, there is a special interest in representing uncertainty in the

model parameters by ranging them over intervals of possible values.

In this work we extend the interval constraints framework with a new approach for handling

differential equations by means of Constraint Satisfaction Differential Problems (CSDPs). Such

framework allows the specification of ordinary differential equations, together with related additional

information, by means of constraints, and provides efficient propagation techniques for pruning the

domains of their variables. Such techniques are based on existing reliable enclosure methods

developed for solving ordinary differential equations with initial value conditions.

The introduction of this new approach enabled the integration of all such information into a specific

constraint (of a different kind), relating several variables (e.g. representing trajectory point values,

parameter values, trajectory maximum value, etc). Such variables may subsequently be used in other

constraints of the model. The specific method used for pruning its variable domains can be combined

with the pruning methods associated with the other constraints within an overall propagation algorithm

for reducing the bounds of all model variables.

The application of a constraint propagation algorithm for pruning the variable domains of a

constraint system can be regarded as enforcing some form of local-consistency, since it depends on the

pruning methods associated with each individual constraint. The quality of such local-consistency, that

is, the pruning that may be achieved, is highly dependent on the ability of these pruning methods

(narrowing functions) for discarding value combinations that are inconsistent with the respective

constraint.

Enforcing local-consistency turned out to be insufficient to support decision in practical problems

that include differential equations. If uncertainty is included in the differential model, the domain

pruning achieved by such techniques would not, in general, be sufficient to allow safe decisions since

a wide range of possibilities would still be possible after propagation.

The main reason for this poor performance derives from the non-linearity of the differential

equations. In case of parametric differential equations, parameter uncertainty is quickly propagated

and increased along the whole trajectory. Such behaviour is not a consequence of the enclosure

method adopted but rather an effect of the non-linearity of the differential equation which in the

extreme case of chaotic differential equations prevent any reasonable, long-term, trajectory calculation

(even without any significant initial uncertainty).

Insufficiency of local-consistency was already recognised in many practical problems not involving

differential equations. In continuous domains, stronger consistencies were proposed for dealing with

such problems. These are higher order generalisations of local-consistency criteria (Hull or

INTRODUCTION

4

Box-consistency for continuous domains) enforced by algorithms that interleave constraint

propagation with techniques for the partition of the variable domains.

However, for many practical differential problems, such stronger consistency criteria are still not

adequate for decision support. Either the pruning is unsatisfactory or the respective enforcing

algorithms are too costly (computationally). Consequently, a complementary goal of this work

proposes a new strong consistency criterion particularly suited to decision support with differential

models, by presenting an adequate trade-of between domain pruning and computational effort.

This new strong consistency criterion, Global Hull-consistency, is a generalisation of

Hull-consistency to the whole set of constraints, which is regarded as a single global constraint. The

criterion relies on the basic concept of a canonical solution, aiming at finding the smallest domains

enclosure that includes all canonical solutions. Several alternative algorithms are proposed for

enforcing Global Hull-consistency and an effort was made to provide implementations able to supply

any-time pruning results. This is particularly useful in the context of decision support where the

domain pruning is not the ultimate goal in itself (the computation may be interrupted whenever

pruning is sufficient to make safe decisions).

All the proposed enforcing algorithms combine constraint propagation with domains partition, and

terminate whenever they find canonical solutions bounding each edge of the current domains box. To

anticipate the finding of canonical solutions, and eventually the termination of the algorithm, it seemed

natural to extend such algorithms with local search capabilities.

In this work we thus propose a local search approach that can be easily integrated with constraint

propagation and domains partition. It is based on a technique commonly adopted in multidimensional

root finding over the reals, namely, line search minimisation along a vector obtained by the

Newton-Raphson method. In the context of a constraint system, the points of the search space are

complete real valued instantiations of all its variables and the search is directed towards the

simultaneous satisfaction of all its constraints.

All the extensions to the interval constraints framework were proposed in the context of integrating

biophysical models within decision support. It would be important to validate our approach in the

sense that it provides an important contribution along such a direction. Consequently, the final goal of

this work is the application of our proposals to practical problems of decision support based on

biophysical models.

In this work we have developed a prototype application that integrates all the proposed extensions

to the interval constraints framework, and uses it for solving problems in different biophysical

domains. In particular, the problems addressed (the diagnosis of diabetes, the tuning of drug design

and the study of epidemics) are representative of the kind of applications our approach is suited for.

INTRODUCTION

5

1.1 Contributions

This work extends the interval constraints framework to handle differential equations. It provides a

new approach to model differential equations (subsection 1.1.1), a new consistency criterion for

pruning the variable domains (subsection 1.1.2), and a new approach for integrating local search

(subsection 1.1.3). A prototype was implemented and applied to practical biophysical problems with

good results (subsection 1.1.4).

1.1.1 Interval Constraints for Differential Equations

The interval constraints framework is extended with a new formalism to handle ordinary differential

equations (ODEs): the Constraint Satisfaction Differential Problem (CSDP). In this formalism, ODEs

are included as constraints, together with other restrictions further required on its solution functions.

Such restrictions may incorporate in the constraint model all the information traditionally associated

with differential problems, namely, initial and boundary conditions. Moreover, the expressive power

of this framework is extended to represent several other conditions of interest that cannot be handled

by classical approaches. These include maximum, minimum, time, area, first, and last restrictions.

The CSDP framework includes a solving procedure for pruning the domains of its variables. A

constraint may be defined as a CSDP and integrated with other constraints, using its solving procedure

as a safe narrowing function. This allows, for the first time, the full integration of ODEs and related

information within a constraint model.

1.1.2 Global Hull-consistency – A Strong Consistency Criterion

A new strong consistency criterion, dubbed Global Hull-consistency, is introduced for pruning the

domains of the constraint variables.

Several different approaches are proposed for enforcing Global Hull-consistency:

• A higher order consistency approach with algorithm (n+1)B-consistency;

• Backtrack search approaches that include algorithms BS0, BS1, BS2, and BS3;

• Ordered search approaches that include algorithms OS1 and OS3;

• A tree structured approach, based on the TSA algorithm.

The TSA algorithm, the most competitive of the above algorithms, maintains a binary tree

representation of the search space and allows for dynamic focussing on specific relevant regions,

losing no information previously obtained in the pruning process.

1.1.3 Local Search for Interval Constraint Reasoning

A local search approach is proposed for integration with constraint reasoning in continuous domains.

Despite their success in solving optimisation problems, local search techniques have not been applied

for constraint reasoning with continuous domains. The link with the constraint model is achieved

through the specification of a multidimensional function, defined for each point of the search space,

quantifying at each component the “distance” from satisfying a required constraint.

INTRODUCTION

6

The originality of the approach is to confine the local search procedure to specific boxes of the

search space, relying on the generic branch and bound strategy of the constraint reasoning algorithm to

overcome problems traditionally found in the local optimisers (local optimum traps).

1.1.4 Prototype Implementation: Applications to Biophysical Modelling

A prototype application has been implemented integrating all the proposed extensions to the interval

constraints framework. It is written in C++ and based on the interval constraint language

OpAC [Gou00] (for enforcing box-consistency) and the software packages FADBAD [BS96] and

TADIFF [BS97] (for the automatic generation of Taylor coefficients).

Three applications to biophysical modelling illustrate the potential of the proposed framework:

• The diagnosis of diabetes based on a parametric differential model of the glucose/insulin

regulatory system;

• The tuning of drug design supported on a two-compartment differential model of the oral

ingestion/gastro-intestinal absorption process;

• An epidemic study based on a parametric differential model for the spread of an infectious

disease within a population.

1.2 Guide to the Dissertation

The dissertation is organised into two parts. The first one addresses the interval constraints framework,

its basic concepts and techniques, together with our proposals, which can be incorporated in the

framework independently from the context of differential equations. The second part is concerned with

the representation of differential equations and their integration in the interval constraints framework.

Part I: INTERVAL CONSTRAINTS

Chapters 2 to 5 overview the interval constraints framework. In Chapter 2 we describe the Constraint

Satisfaction Problem paradigm in general and characterise the particular features associated with

continuous domains. Chapter 3 addresses interval analysis, focussing on the methods and properties

that are useful for the interval constraints framework. Chapter 4 explains the constraint propagation

techniques and how they take advantage from interval methods. Chapter 5 overviews the consistency

criteria usually enforced in continuous domains. Chapter 6 discusses maintaining Global

Hull-consistency as an alternative consistency criteria. Chapter 7 describes the integration of a local

search procedure within the interval constraint propagation. Chapter 8 presents the experimental

results.

Chapter 2: Constraint Satisfaction Problems

The generic paradigm of a Constraint Satisfaction Problem (CSP) is introduced, its main concepts are

defined, and a solving procedure is presented in terms of a search process over a domains lattice. The

special case of CSPs with continuous domains is addressed, leading to the basic notions of interval

INTRODUCTION

7

domains and Continuous Constraint Satisfaction Problems (CCSPs). Intervals are identified as

elementary objects for representing continuous domains, their basic operations are defined, and

different notions of interval approximations are presented. The interval concept is extended to the

multidimensional case, leading to the definition of boxes. The generic solving procedure for CSPs is

refined to CCSPs by considering the specificity of the continuous domains.

Chapter 3: Interval Analysis

Interval arithmetic is presented as an extension of real arithmetic for real intervals. Its basic operators

are defined together with their evaluation rules and algebraic properties. Interval functions are

introduced as the interval counterparts of real functions which can be represented by means of interval

expressions. The soundness of the evaluation of interval expressions is stressed. The key concept of an

interval extension of a real function, widely used in the interval constraints framework, is defined and

related to the sound evaluation of its range. Several important forms of interval extensions are

addressed, and the general properties of their intersection and decomposition are discussed. The

overestimation problem, known as the dependency problem, regarding the evaluation of an interval

expression is identified, and its absence is noted when the expression does not contain multiple

occurrences of the same variable. The main interval methods used in interval constraints are presented.

The interval Newton method is described and its fundamental properties analysed.

Chapter 4: Constraint Propagation

Constraint propagation for pruning the variable domains is described together with enforcing

algorithms based on narrowing functions associated with the constraint set. The attributes of such

narrowing functions are identified and the main properties of the resulting constraint propagation

algorithms are derived accordingly. The main methods used in the interval constraint framework for

associating narrowing functions with constraints are presented. Their common strategy of considering

each projection with respect to each constraint variable is stressed, and their extensive use of interval

analysis techniques for guaranteeing the correctness of the resulting narrowing functions is

emphasised. In particular, the constraint decomposition method and the Newton constraint method are

fully described.

Chapter 5: Partial Consistencies

Local consistency is defined as a property that depends exclusively on the narrowing functions

associated with the constraint set. The main local consistency criteria used in continuous domains,

Interval-, Hull- and Box-consistency, are defined and identified as approximations of Arc-consistency

used in finite domains. The methods for enforcing such criteria are discussed: being Hull- and

Box-consistency associated with the constraint decomposition method, and the Newton constraint

method, respectively. The insufficiency of enforcing local consistency on some problems is illustrated.

Higher order consistency criteria are then defined as generalisations of the local consistency criteria,

and a generic enforcing algorithm is presented.

INTRODUCTION

8

Chapter 6: Global Hull-Consistency

Global Hull-consistency is proposed as an alternative consistency criterion in continuous domains.

Several approaches are devised for enforcing Global Hull-consistency. A suggested approach

((n+1)B-consistency) is based on existing higher order consistency criteria and the corresponding

generic enforcing algorithm. Four different alternative approaches (BS0, BS1, BS2, and BS3) are

proposed based on backtrack search over the space of possibilities. Two additional approaches (OS1

and OS3) are derived from the modification of the backtrack search into an ordered search of the space

of possibilities. A final approach (TSA) is proposed based on a binary tree representation of the search

space. For each of the above approaches the respective enforcing algorithm is explained and its

termination and correctness properties justified.

Chapter 7: Local Search

A local search procedure is proposed for integration with the interval constraints framework. It is

based on a line search minimisation along a direction determined by the Newton-Raphson method. All

the underlying algorithms used by the approach are fully explained, and the termination and

convergence global properties are derived. Alternative local search approaches are suggested and

discussed. The integration of the proposed local search procedure with Global Hull-consistency

enforcement is presented for each of algorithms discussed in the previous chapter.

Chapter 8: Experimental Results

Preliminary results on the application of the Global Hull-consistency criterion are presented. The need

for strong consistency requirements such as Global Hull-consistency is illustrated with simple

examples where weaker alternatives are clearly insufficient. A more realistic problem based on data

from the USA census is fully discussed. It aims at finding parameter ranges of a logistic model such

that the difference between the predicted and the observed values does not exceed some predefined

threshold. The pruning and time results obtained with the Global Hull-consistency approach (with TSA

algorithm) are compared with those obtained by enforcing 2B-, 3B-, and 4B-consistency. Similar

comparisons are presented on the different problem of finding the structure of a (very simple) protein

from distance constraints among its atoms. The integration of local search within the best Global Hull

enforcing algorithms is discussed on another instance of the protein structure problem.

Part II: INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

Chapter 9 introduces Ordinary Differential Equations (ODEs) and reviews the existing approaches for

solving problems with ODEs. In chapter 10 we present our proposal of Constraint Satisfaction

Differential Problems (CSDPs) for integrating differential equations within the interval constraints

framework. Chapter 11 describes the procedure that is proposed for solving CSDPs. Chapter 12 tests

our proposal on several biomedical problems for decision support with ODEs. In chapter 13

conclusions are discussed and future work is suggested.

INTRODUCTION

9

Chapter 9: Ordinary Differential Equations

Ordinary differential equations and initial value problems (IVPs) are presented. Solutions of ODEs

and IVPs are defined. Classical numerical approaches for solving IVPs are reviewed. Taylor series

methods are addressed in more detail. Different sources of errors and its consequences in numerically

solving an IVP are discussed. Interval approaches for solving IVPs are reviewed. Interval Taylor

Series (ITS) methods are fully described. The existing approaches that apply interval constraints for

ODE solving are reviewed. The early constraint approaches that maintain an extensive constraint

network along the ODE trajectory are described. The recent proposals for solving IVPs with constraint

propagation techniques are surveyed.

Chapter 10: Constraint Satisfaction Differential Problems

The Constraint Satisfaction Differential Problem (CSDP) is presented as a special kind of CSP for

handling differential equations with related additional information expressed as a set of restrictions. Its

definition is given and its expressive power illustrated with the definition and explanation of each

possible restriction type. The Continuous CSP framework is extended for the inclusion of a new kind

of constraint defined as a CSDP. The concept of canonical solution is redefined for such extended

context and its consequences on Global Hull-consistency are discussed. The integration of CSDP

constraints with local search is explained. The modelling capabilities of the extended framework are

illustrated for representing parametric ODEs, interval valued properties and properties depending on

the combination of different components of an ODE system.

Chapter 11: Solving a CSDP

The procedure proposed for solving a CSDP is described as a constraint propagation algorithm, based

on a set of narrowing functions associated with its constraints, that maintains a safe enclosure for the

whole set of possible ODE solutions. The representation of such an enclosure is explained and the

narrowing functions for enforcing each type of CSDP restriction are fully characterised. Additional

narrowing functions, based on reliable Interval Taylor Series methods, are defined for further reducing

the uncertainty of the ODE trajectory. The combination of all such different narrowing functions into

the constraint propagation algorithm is explained and the termination and correctness properties of the

solving procedure are derived.

Chapter 12: Biomedical Decision Support with ODEs

The extended interval constraints framework is applied to biomedical decision support problems based

on differential models. In a first problem, a parametric differential model of the glucose/insulin

regulatory system is used for supporting the diagnosis of diabetes during a glucose tolerance test

(GTT). This example illustrates the use of value restrictions for modelling initial and boundary

conditions (provided by the blood exams) and their integration for reducing the parameter ranges

allowing for decisions based on some non-linear combination of these parameters. In a second

problem, the tuning of a drug design is supported based on a two-compartment differential model of

INTRODUCTION

10

its oral ingestion/gastro-intestinal absorption process. This example illustrates the usefulness of the

integration in the constraint model of other important restrictions such as maximum, minimum, area,

and time restrictions. The last problem is based on a parametric differential model for the spread of an

infectious disease within a population. An epidemic study is accomplished for predicting the effects of

an infectious disease and determining the vaccination rate necessary to guarantee some desirable

conditions. This example illustrates the expressive power of non-conventional restrictions, such as first

and last restrictions, and its inclusion into a more complex differential model for which there are no

analytical solution forms.

Chapter 13: Conclusions and Future Work

The contributions of this work are analysed, some open problems are identified, and directions for

future work are set.

Part I

INTERVAL CONSTRAINTS

INTERVAL CONSTRAINTS

13

Chapter 2

Constraint Satisfaction Problems

A constraint is a way of specifying a relation that must hold between certain variables. By restricting

the possible values that variables can take, it represents some partial information about these variables,

and can be regarded as a restriction on the space of possibilities.

Mathematical constraints are precise specifiable relations among variables, each ranging over a

given domain, and are a natural way for expressing regularities upon the underlying real-world

systems and their mathematical abstraction.

Many problems of the real world can thus be modeled as constraint satisfaction problems (CSPs), in

particular, problems involving inaccurate data or partially defined parameters. The CSP is a classic

Artificial Intelligence paradigm whose theoretical framework was introduced in the seventies [Wal72,

Mon74, Mac77].

A CSP is defined by a set of variables each with an associated domain of possible values and a set

of constraints on subsets of the variables. A constraint specifies which values from the domains of its

variables are compatible. These can be done explicitly, by presenting the consistent or inconsistent

value combinations, or implicitly, by means of mathematical expressions or computable procedures

determining these combinations. A solution to the CSP is an assignment of values to all its variables,

which satisfies all the constraints.

More formally we will use the following general definitions (similar to definitions used by other

authors [Apt99, Jea98]).

Definition 2-1 (Constraint). A constraint c is a pair (s,ρ), where s is a tuple1 of m variables

<x1, x2, …, xm>, the constraint scope, and ρ is a relation of arity m, the constraint relation. The relation

ρ is a subset of the set of all m-tuples of elements from the Cartesian product D1×D2×…×Dm where Di

is the domain of the variable xi:

ρ ⊆ {<d1, d2, …, dm> | d1 ∈ D1, d2 ∈ D2, …, dm ∈ Dm}

1 Tuples with m elements t1, t2, …, tm will be written in the form <t1, t2, …, tm>.

CONSTRAINT SATISFACTION PROBLEMS

14

The tuples in the constraint relation (ρ) indicate the allowed combinations of simultaneous values for

the variables in the scope. The length of these tuples (m) is called the arity of the constraint.

Definition 2-2 (Constraint Satisfaction Problem). A CSP is a triple P=(X,D,C) where X is a tuple of

n variables <x1, x2, …, xn>, D is the Cartesian product of the respective domains D1×D2×…×Dn, i.e.

each variable xi ranges over the domain Di, and C is a finite set of constraints where the elements of

the scope of each constraint are all elements of X.

In order to give a formal definition for the satisfaction of a particular constraint, it is necessary to

identify from a tuple of elements (associated with all the CSP variables) those that are associated with

the variables of the scope of the constraint. This is achieved by tuple projection with respect to the

variables of the scope.

Definition 2-3 (Tuple Projection). Let X=<x1,x2,…,xn> be a tuple of n variables, and d=<d1,d2,…,dn>

a tuple2 where each element di is associated with the variable xi. Let s=<xi1
,xi2

,…,xim
> be a tuple of m

variables where 1≤ ij ≤ n. The tuple projection of d wrt s, denoted d[s], is the tuple:

d[s] = <di1
,di2

,…,dim
>

A tuple satisfies a constraint if and only if its projection wrt the scope of the constraint is a member of

the constraint relation.

Definition 2-4 (Constraint Satisfaction). Let P=(X,D,C) be a CSP. Let (s,ρ) be a constraint from C

and d an element of D:

d satisfies (s,ρ) iff3 d[s] ∈ ρ

A tuple is a solution of the CSP if and only if it satisfies all the constraints.

Definition 2-5 (Solution). A solution to the CSP P=(X,D,C) is a tuple d∈D that satisfies each

constraint c∈C, that is:

d is a solution of P iff ∀c∈C d satisfies c

Two important notions in constraint satisfaction problems are those of consistency and equivalence.

2 For simplicity, the same notation is used either if the element of di represents a particular value or a set of values from the

domain of variable xi.
3 iff stands for: if and only if

INTERVAL CONSTRAINTS

15

Definition 2-6 (Consistency). A CSP P=(X,D,C) is consistent iff it has at least one solution (otherwise

it is inconsistent):

P is consistent iff ∃d∈D d is a solution of P

Definition 2-7 (Equivalence). Two constraint satisfaction problems with the same tuple of variables

P=(X,D,C) and P’=(X,D’,C’) are equivalent iff both have the same set of solutions:

P and P’ are equivalent iff

∀d∈D (d is a solution of P ⇒ d is a solution of P’) ∧

∀d’∈D’ (d’ is a solution of P’ ⇒ d’ is a solution of P)

The definition of equivalence between two CSPs assumes that both of them have the same tuple X of

variables, however these could easily be extended to the case where they both have the same set of

variables. Moreover, it could be extended to the case where the set of variables of one CSP is a subset

of the set of variables of the other CSP. In this case they would be equivalent wrt this subset if it is

possible to define a bijective function between the set of solutions of each CSP mapping solutions that

share the values of all the common variables4.

2.1 Solving a Constraint Satisfaction Problem

A CSP can have one, several or no solutions. In many practical applications the modeling of a problem

as a CSP is embedded in a larger decision process. Depending on this decision process it may be

desirable to determine whether a solution exists (verify the consistency of the CSP), to find one

solution, to compute the space of all solutions of the CSP, or to find an optimal solution relative to a

given objective function.

Solving a CSP can be seen as a search process over the lattice of the variable domains. For a given

CSP (X,D,C) let us consider the complete domain lattice L defined by the elements obtained from the

power set of D partially ordered by set inclusion (⊆) and closed under arbitrary intersection (∩) and

union (∪). Figure 2.1 shows an example of a CSP P (with finite domains) and figure 2.2 the

corresponding domain lattice L.

Figure 2.1 An example of a CSP with finite domains. The figure represents the two axes x1 and x2, the
four points are the domain set, the circumferences are the two constraints (inside c1 and outside c2).
The solutions are the two points (<0,-1> and <1,-1>) inside the dashed area.

4 This extension will be later used, in subsection 4.2.1, for defining equivalent CSPs obtained by constraint decomposition,

which includes necessarily new variables.

P=(<x1,x2>,D1×D2,{c1,c2})

D1={0,1} D2={0,-1}

c1≡x1
2+ x2

2≤4 c2≡(x1-1)2+(x2-1)2≥4
c1

c2

x1

x2

CONSTRAINT SATISFACTION PROBLEMS

16

Figure 2.2 Domain lattice of the previous example partially ordered by set inclusion (⊆).

The search procedure starts at the top of the domain lattice (the original domain D) and navigating

over the lattice elements it will eventually stop, returning one of them. If it returns the bottom element

(the empty set {}) then the CSP has no solution.

In the example of figure 2.1 the returned element should be:

(i) {<0,-1>} or {<1,-1>} if the goal is to find at least one solution;

(ii) {<0,-1>,<1,-1>} if the goal is to compute the space of all solutions;

(iii) {<0,-1>} if the goal is to find the solutions that minimize x1
2+ x2

2.

The navigation over the lattice elements usually alternates pruning with branching steps and ends

whenever a stopping criterion is satisfied.

2.1.1 Pruning

The pruning consists on jumping from an element of the lattice to a smaller element (with respect to

the set inclusion partial order) as a result of applying an appropriate filtering algorithm which

eliminates some value combinations that are inconsistent with the constraints. All lattice elements

containing value combinations that were eliminated in the pruning step will not be considered any

further. The elements remaining form a sub-lattice with non-eliminated value combinations as a top

element.

Figure 2.3 shows the result of applying a pruning step on the top element of the domain lattice of

the above example. The combination of values x1=0 and x2=0, proved to be inconsistent with the

constraints by some filtering algorithm, is absent in the resulting lattice.

{<0,0>,<0,-1>,<1,0>,<1,-1>}

{<0,0>,<0,-1>,<1,0>} {<0,0>,<0,-1>,<1,-1>} {<0,0>,<1,0>,<1,-1>} {<0,-1>,<1,0>,<1,-1>}

{<0,0>,<0,-1>} {<0,0>,<1,0>} {<0,0>,<1,-1>} {<0,-1>,<1,0>} {<0,-1>,<1,-1>} {<1,0>,<1,-1>}

 {<0,0>} {<0,-1>} {<1,0>} {<1,-1>}

 {}

INTERVAL CONSTRAINTS

17

Figure 2.3 Pruning some value combinations. From the top element of a lattice (A), a new top element
(A’) is obtained. In the example <0,0> was proved inconsistent by a filtering algorithm.

The filtering algorithm must guarantee that no possible solution is eliminated from the set of value

combinations of the original lattice element. If the filtering algorithm were complete, all inconsistent

combinations of values would be deleted and so, the new top element would contain all the solution

space. However this is not generally the case, and several inconsistent combinations may still remain

(in the example, combination <1,0> is inconsistent but it was not detected in the pruning step).

2.1.2 Branching

The branching step may be applied when the pruning step fails to further eliminate inconsistent

combinations of values. The idea is to split a set of value combinations into smaller sets (two or more),

for which the pruning step will hopefully result in better filtering. In the domains lattice the branching

step corresponds to consider separately smaller elements whose union is the original element.

Figure 2.4 illustrates this for the above example, where the top element {<0,-1>,<1,0>, <1,-1>} was

split into two smaller elements {<0,-1>} and {<1,0>,<1,-1>} for future consideration.

Figure 2.4 Branching a lattice element (A) into smaller elements (A1 and A2). The original element is
the union of all the new smaller elements (A=A1∪A2).

{<0,0>,<0,-1>,<1,0>,<1,-1>}

{<0,0>,<0,-1>,<1,0>} {<0,0>,<0,-1>,<1,-1>} {<0,0>,<1,0>,<1,-1>} {<0,-1>,<1,0>,<1,-1>}

{<0,0>,<0,-1>} {<0,0>,<1,0>} {<0,0>,<1,-1>} {<0,-1>,<1,0>} {<0,-1>,<1,-1>} {<1,0>,<1,-1>}

{<0,0>} {<0,-1>} {<1,0>} {<1,-1>}

 {}

A

A’

 {<0,-1>,<1,0>,<1,-1>}

{<0,-1>,<1,0>} {<0,-1>,<1,-1>} {<1,0>,<1,-1>}

 {<0,-1>} {<1,0>} {<1,-1>}

 {}

A

A1

A2

CONSTRAINT SATISFACTION PROBLEMS

18

2.1.3 Stopping

The search over the different branches may be done concurrently or by some backtracking mechanism

until a stopping criterion is attained. This stopping criterion may be the achievement of the intended

goal (find one, all or the best solution) or the satisfaction of some specific properties imposed to avoid

the complexity explosion of the search procedure.

Figure 2.5 shows the final results after searching each branch of the previous example.

Figure 2.5 Stopping the search when the goal of finding all solutions (A1 and A2) is achieved. The
result is the top element (A=A1∪A2) of the remaining lattice.

In the example of figure 2.5, <0,-1> and <1,-1> were proved to be solutions of the CSP and <1,0> was

proved to be inconsistent, thus, if the goal was to compute the solution space, the final result would be

the top element {<0,-1>,<1,-1>} of the remaining lattice.

2.2 Constraint Satisfaction Problems With Continuous Domains

The notion of CSP was initially introduced to address combinatorial problems over finite domains.

Thus in the original framework the domains of the variables were expected to be finite sets. However,

the above definitions are general enough to represent constraint satisfaction problems with either finite

or infinite domain sets.

Numeric CSPs (NCSPs), initially proposed by Davis in [Dav87], are extensions of the earlier CSP

framework to address variables with continuous domains. In our formalization NCSPs are a special

kind of CSPs where the constraints cannot be given extensionally, they must be specified as numeric

relations, and the domains are either integer domains or continuous domains.

Definition 2.2-1 (Numeric Constraint Satisfaction Problem). A NCSP is a CSP P=(X,D,C) where

i) ∀Di∈D Di⊆ℤ ∨ Di⊆ℝ
ii) ∀(s,ρ)∈C ρ is defined as a numeric relation between the variables of s

Further restrictions, either on the allowed variable domains or on the kind of numeric expressions used

for specifying the numeric relations, may be imposed to address subclasses of problems and eventually

to take advantage of their specific properties. For example, if only linear equations over the real

A

A1 A2

 {<0,-1>,<1,0>,<1,-1>}

{<0,-1>,<1,0>} {<0,-1>,<1,-1>} {<1,0>,<1,-1>}

 {<0,-1>} {<1,0>} {<1,-1>}

 {}

INTERVAL CONSTRAINTS

19

numbers are allowed then the subclass of linear constraint satisfaction problems could be considered

and some particular methods for solving systems of linear equations would be used. However, the

expressive power of these restricted classes of CSPs would be decreased, possibly preventing the

modeling of some important relationships among the problem variables. If only linear constraints are

allowed, problems with non-linear relations between variables could not be easily represented.

Continuous CSPs (CCSPs), are an important subclass of NCSPs where all variable domains are

continuous real intervals and all the numeric relations are equalities and inequalities. The following

formal definition is based on [HF96]

Definition 2.2-2 (Continuous Constraint Satisfaction Problem). A CCSP is a CSP P=(X,D,C)

where each domain is an interval of ℝ and each constraint relation is defined as a numerical equality

or inequality:

i) D=<D1,…,Dn> where Di is a real interval (1≤ i≤ n)
ii) ∀c∈C c is defined as ec⋄0 where ec is a real expression5 and ⋄∈ {≤,=,≥}

The CCSP framework is powerful enough to model a wide range of problems, in particular physical

systems whose components may be described as sets of continuous valued variables, and whose

relations among these variables may be defined by numerical equalities or inequalities, eventually with

uncertain parameters.

2.2.1 Intervals Representing Unidimensional Continuous Domains

In CCSPs, the initial domains associated with the variables are infinite sets of real numbers called real

intervals. The following is a general definition for any real interval, either open, half-open or closed

interval.

Definition 2.2.1-1 (R-interval). A real interval is a connected set of reals. Let a≤b be reals, the

following notations for representing real intervals will be used:

[a..b] ≡ {r ∈ ℝ | a ≤ r ≤ b } (a..b) ≡ {r ∈ ℝ | a < r < b }

(a..b] ≡ {r ∈ ℝ | a < r ≤ b } [a..b) ≡ {r ∈ ℝ | a ≤ r < b }

[a..+∞) ≡ {r ∈ ℝ | a ≤ r } (a..+∞) ≡ {r ∈ ℝ | a < r }

(-∞..b] ≡ {r ∈ ℝ | r ≤ b } (-∞..b) ≡ {r ∈ ℝ | r < b }

(-∞..+∞) ≡ ℝ ∅ ≡ {}

The notation <a..b> will represent a nonempty real interval of any of the defined forms.

In practice, computer systems are restricted to represent a finite subset of the real numbers, the

floating-point numbers. Several authors [Lho93, BMV94, VMK97, HEW98] have defined the set of

CONSTRAINT SATISFACTION PROBLEMS

20

machine numbers (F-numbers) as the set of floating-point numbers augmented with the two infinity

symbols (-∞ and +∞). In the formal definition we will also include the real number 0 which is always

a member of the set of floating-points.

Definition 2.2.1-2 (F-numbers). Let F be a subset of ℝ containing the real number 0 as well as

finitely many other reals, and two elements (not reals) denoted by -∞ and +∞:

F = {r0,…,rn} ∪ {-∞,+∞} with 0 ∈ {r0,…,rn} ⊂ ℝ
The elements of F are called F-numbers.

F is totally ordered: any two real elements of F are ordered as in ℝ; for all real element r, -∞<r<+∞. If

f is an F-number f- and f+ are the two F-numbers immediately below and immediately above f in the

total order (-∞-=-∞ and +∞+=+∞; -∞+ is the smallest real in F and +∞- is the largest real in F).

Given the above definition, we can now define the subset of real intervals that can be represented by

a particular machine as the set of real intervals bounded by F-numbers (F-intervals).

Definition 2.2.1-3 (F-interval). An F-interval is a real interval ∅ or <a..b> where a and b are

F-numbers. In particular, if b=a or b=a+ then <a..b> is a canonical F-interval.

Figure 2.6 illustrates the above concepts, showing a degenerate6 and an half-open R-interval ([r1..r1]

and (r2..r3] respectively), and two F-intervals ([a..b] and [c..d]). [a..b] is a canonical F-interval because

a and b are consecutive F-numbers in the total order (b=a+).

Figure 2.6 R-intervals and F-intervals.

5 Real expressions will be defined later in section 3.2 (definition 3.2-1). Constraints expressed as e1⋄e2 are also considered

since they can be rewritten into the form e1 - e2 ⋄ 0.
6 Degenerate intervals [r..r] (either R-intervals or F-intervals) may also be denoted as [r], {r} or even r if it is clear in the

context that it is an interval and not a real value.

ℝ

F

F-intervals

R-intervals

r1 r2 r3

a b c d-∞ +∞

[r1..r1] (r2.. r3]

[a..b] [c..d]

canonical

degenerate

• • • • • • • • • • • • • • • • • • •

INTERVAL CONSTRAINTS

In the rest of this work we further restrict the nonempty F-intervals to the forms with the closed

bounds whenever the bound is a real value ([a..b], [a..+∞), (-∞..b] and (-∞..+∞) with a and b real

values)7. However, the framework can be naturally extended to consider any of the real interval forms

defined in 2.2.1-1 (see [BGG99] and [CDR99] for a detailed discussion on this issue).

2.2.2 Interval Operations and Basic Functions

All the usual set operations, namely, intersection (∩), union (∪) and inclusion (⊆), may also be

applied on intervals, either R-intervals or F-intervals, since intervals are connected sets of real values.

A particularly useful operation between two intervals is the union hull (⊎) where the result is the

smallest interval containing all the elements of both interval arguments. The resulting interval is only

different from the normal union operation when the intersection of the two arguments is the empty set,

in which case all real values between the two interval arguments (not belonging to any of them) are

also included.

Definition 2.2.2-1 (Union Hull). Let I1=<
1
a1..b1>1

 and I2=<
2
a2..b2>2

 be two intervals, either R-intervals

or F-intervals. The union hull operation (⊎) is defined as:

I1∪I2 if I1∩I2≠∅

I1⊎I2= <
1
a1..b2>2

if ∀r1∈I1
∀r2∈I2

 r1<r2

<
2
a2..b1>1

if ∀r1∈I1
∀r2∈I2

 r2<r1

Several basic functions with an interval argument are usually defined for obtaining the extreme values

(left, cleft, right and cright), the mid value (center) or the size (width) of an interval.

Definition 2.2.2-2 (Interval Basic Functions). Let [a..b] be a closed interval, either an R-interval or

an F-interval. The following basic functions return a real value and are defined as:

left([a..b]) = a right([a..b]) = b

center([a..b]) = (a+b)/2 width([a..b]) = b-a

Let [a..b] be a closed F-interval. The following basic functions return a canonical F-interval and are

defined as:

[a] if a=b [b] if a=b

Th

7 The

resp
cleft([a..b]) =

[a..a+] if a<b

e union hull operation together with the inter

 notation [a..b] will be generically used to represen
ectively (-∞..b], [a..+∞) and (-∞..+∞).
cright([a..b]) =
21

[b-..b] if a<b

val basic functions are exemplified in figure 2.7.

t any F-interval where [-∞..b], [a..+∞] and [-∞..+∞] denote

CONSTRAINT SATISFACTION PROBLEMS

22

Figure 2.7 Interval operations and basic functions.

2.2.3 Interval Approximations

For any real number r we will denote by r the largest F-number not greater than r and r the

smallest F-number not lower than r. Any real interval can be associated to an F-interval which is the

closest approximation that can be represented by a particular machine.

Definition 2.2.3-1 (RF-interval approximation). Let IR=<a..b> be a real interval. The RF-interval

approximation of IR, denoted Iapx(IR), is the smallest F-interval including IR (IR ⊆ Iapx(IR)):

Iapx(IR)=[a ..b]8.

In the special case where IR is a single real {r}=[r..r] then Iapx(IR)=[r ..r].

The definition of RF-set approximation extends the above definition to represent any set of real values,

either connected or not.

Definition 2.2.3-2 (RF-set approximation). Let SR be a set of real values defined by the union of n

real intervals (SR=IR1∪…∪IRn). The RF-set approximation of SR, denoted Sapx(SR), is the set defined

by the union of the n corresponding RF-interval approximations:

Sapx(SR) = Iapx(IR1) ∪…∪ Iapx(IRn)

If in the above definition the union operation is substituted by the union hull operation then, the result

is the smallest F-interval containing all the elements of a set of reals.

Definition 2.2.3-3 (RF-hull approximation). Let SR be a set of real values defined by the union of n

real intervals (SR=IR1∪…∪IRn). The RF-hull approximation of SR, denoted Ihull(SR), is the F-interval

defined by:

Ihull(SR) = Iapx(IR1) ⊎…⊎ Iapx(IRn)

ℝ

F

F-intervals

center([c..d]) right([c..d])

a b c d-∞ +∞

[a..b] [c..d]

[a..b] ⊎ [c..d]

cright([c..d])cleft([c..d])

left([c..d])

• • • • • • • • • • • • • • • • • • •

INTERVAL CONSTRAINTS

23

Figure 2.8 summarizes the above interval approximation definitions.

Figure 2.8 Interval approximation.

2.2.4 Boxes Representing Multidimensional Continuous Domains

Extending to several dimensions the concepts of an R-interval and F-interval, we will get respectively

the notions of an R-box and F-box.

Definition 2.2.4-1 (R-box). An R-box BR with arity n is the Cartesian product of n R-intervals and is

denoted by <IR1,…,IRn> where each IRi is an R-interval:

BR = {<r1, r2, …, rm> | r1 ∈ IR1, r2 ∈ IR2, …, rn ∈ IRn}

Definition 2.2.4-2 (F-box). An F-box BF with arity n is the Cartesian product of n F-intervals and is

denoted by <IF1,…,IFn> where each IFi is an F-interval:

BF = {<r1, r2, …, rm> | r1 ∈ IF1, r2 ∈ IF2, …, rn ∈ IFn}

In particular, if all the F-intervals IFi are canonical then BF is a canonical F-box.

During the solving process of a CCSP several value combinations between the variables may be

discarded from the original domains box. Moreover, each variable domain may no longer be a

connected set of real values but rather a disconnected set corresponding to the union of multiple

connected sets.

Some approaches [Hyv92, SH92] consider structures composed of several F-intervals to represent

each variable domain. In [Hyv92] a sequence of disjunct F-intervals is organized in a structure called a

division. In [SH92] a hierarchical arrangement of F-intervals constitutes a taxonomy. In these

approaches the space of possibilities of several variables is represented by the set of the structures

(divisions or taxonomies) associated with each variable and corresponds to the set of F-boxes obtained

by all combinations of the possible F-intervals from the variable domains.

8 Extending the notation -∞ and +∞ to denote respectively -∞ and +∞.

F-intervals

Iapx([r1.. r1]) Iapx((r2..r3])

Sapx([r1..r1] ∪ (r2..r3])

Ihull([r1..r1] ∪ (r2..r3])

ℝ

F

r1 r2 r3

r1 r1 r2 r3-∞ +∞
• • • • • • • • • • • • • • • • • • •

CONSTRAINT SATISFACTION PROBLEMS

24

In [HF96] the feasible space between k variables is represented by 2k-trees. A 2k-tree is a

hierarchical decomposition of the solution space into k-arity F-boxes which summarizes the subset of

constraints between the k variables.

In most interval constraint approaches the basic structures are F-intervals and the solutions space is

represented by enclosing F-boxes. In particular a single real value is represented by a canonical

F-interval and the assignment of a single real value to each variable of a set of variables is represented

by a canonical F-box. Consequently, canonical F-boxes are the closest representations of CCSP

solutions. In practice, if the system is not able to prove the inconsistency of a canonical F-box then the

box may contain a real solution that is not accessible due to precision limitations. We will call a

canonical solution of a CCSP any canonical F-box that cannot be proved inconsistent (wrt to the

CCSP) either because it contains solutions or due to approximation errors in the evaluation of the

constraint set.

Definition 2.2.4-3 (Canonical Solution). Let P=(X,D,C) be a CCSP. Let BF be a canonical F-box

included in D (BF⊆D) and Ec(BF) denote the F-interval obtained by the evaluation of the expression

Ec with argument BF 9.

BF is a canonical solution of P iff ∀c∈C ∃r∈Ec(BF) r⋄0

2.2.5 Solving Continuous Constraint Satisfaction Problems

In a CCSP P=(X,D,C), since the initial variable domains are infinite sets (real intervals), the domains

lattice obtained from the power set of D, is also infinite. Thus the search process for solving a CCSP is

theoretically performed over an infinite space. In practice, due to the computer limitations for

representing real values, only a finite subset of the domains lattice is representable, and so, the

navigation process is limited to these elements. The search procedure starts at the top of the domain

lattice10 and navigates over the accessible elements of the lattice until eventually stoping, returning one

of them. The accessible elements of the lattice are those representable by an F-box or by the union of

several F-boxes.

The pruning step consists on jumping from an element A of the lattice to a smaller element A’, both

representable by an F-box or by the union of several F-boxes. Despite dealing with F-boxes, the

filtering algorithm must still guarantee that no possible real solution is lost, that is, any solution in A

must also be in A’. Nevertheless, the filtering algorithm may be unable to prune some inconsistencies

due to the limited representation power (i.e., if the solution set in A is not representable then the best

pruning achievable is its tightest representable approximation which include several inconsistent real

valued combinations). For example, if the only solution of a CCSP asserts the real value π to a

9 Each constraint c is defined as Ec⋄0 with ⋄∈ {≤,=,≥} (see definition 2.2-2). The evaluation of expressions with interval

arguments will be addressed later in section 3.2.
10 In practice, if D=D1×D2×…×Dn then D’=Iapx(D1)×Iapx(D2)×…×Iapx(Dn) will be the top element of the domain lattice defined

as the power set of D’.

INTERVAL CONSTRAINTS

25

variable then the best possible pruning is the canonical F-box including such π value for that variable,

which also includes other nearby values that do not belong to any solution of the CCSP.

The branching step consists on splitting an element A of the lattice into n smaller elements A1,…,An,

each representable by an F-box or by the union of several F-boxes. The union of all the smaller

elements must be equal to the original element.

To simplify the domains representation, most solving strategies impose that the only lattice

elements considered in the pruning and branching steps are representable by single F-boxes (as

opposed to a union of F-boxes). Pruning corresponds to narrowing the original F-box into a smaller

one where the lenghts of some F-intervals are decreased by the filtering algorithm (eventually being

zeroed, proving the original F-box to be inconsistent). The branching step usually consists on splitting

the original F-box into two smaller F-boxes by splitting one of the original variable domains around

an F-number (usually the F-number nearest to the mid value of the F-interval representing the

domain).

With the above restriction on the search procedure, and noting that the top lattice element (the

starting point of the search) is representable by a single F-box, all navigation is performed over the

subset of the lattice elements representable by single F-boxes (the reachable sub-lattice). Nevertheless,

the final result may be any representable lattice element, since it corresponds to the union of all

elements remaining at the end of the search process.

Despite being a finite search space, the domains lattice of a CCSP usually contains a huge number

of elements, and any strategy to navigate over it must be aware that the underlying real valued search

space is infinite. To be effective, a solving strategy cannot rely exclusively on branching expecting the

splitting process to stop eventually because the search space is finite. In fact, the splitting process is

theoretically guaranteed to stop but the combinatorial number of necessary splits usually prevents such

stopping from being achieved in a reasonable amount of time. One approach often adopted imposes

conditions on the branching process, for instance, branching may only be performed on lattice

elements with some variable domains larger11 than a predefined threshold and this may only be done

by splitting one of this domains.

2.3 Summary

In this chapter the paradigm of the Constraint Satisfaction Problem (CSP) was introduced and the

particular case of Continuous CSPs was presented. Intervals were introduced as the elementary objects

for representing continuous domains and boxes as their multidimensional counterpart. Several interval

basic functions and operators were defined and different notions of interval approximation were given.

The following chapter will address interval analysis, focussing in the methods and properties that are

useful for the interval constraints framework.

11 If the domain is represented by an F-interval [a..b] its size may be given by its width b-a; if the domain is represented by

the union of F-intervals its size may be given by the sum of their widths.

INTERVAL CONSTRAINTS

27

Chapter 3

Interval Analysis

Interval Analysis was introduced by Moore [Moo66] with the purpose of providing upper and lower

bounds for the effects of mathematical computation errors arising from different sources, rounding

errors, approximating errors and uncertainty data errors. The main goal is to perform interval

arithmetic operations to achieve sound mathematical computations over intervals (instead of reals). A

major concern in Interval Analysis is to develop interval algorithms that make the interval bounds as

narrow as possible.

The original goal of interval constraints [Cle87] was to address the incorrectness of numerical

computations due to the floating-point representation of real numbers, offering a sound computation

model based on interval arithmetic. Additionally, the soundness of interval arithmetic computations

provided the right tools for defining sound filtering algorithms to prune the variable domains when

solving CCSPs. Hence, the pruning step is a proof that the real valued combinations removed from the

original variable domains do not belong to a solution of the CCSP and the validation of this proof is

guaranteed by the soundness of interval arithmetic. Moreover, efficient interval methods developed in

Interval Analysis (e.g. the interval Newton method) are used in interval constraints to implement

efficient filtering algorithms.

3.1 Interval Arithmetic

Interval arithmetic is an extension of real arithmetic for real intervals. The basic operations of real

arithmetic, sum, difference, product and quotient, are redefined for real intervals. The intended

meaning of these operations between pairs of intervals is the set obtained by applying them to all pairs

of real numbers, one from each of the two intervals. The following formal definition is based on the

original one given by Moore [Moo66].

INTERVAL ANALYSIS

28

Definition 3.1-1 (Basic Interval Arithmetic Operators). Let I1 and I2 be two real intervals (bounded

and closed)1. The basic arithmetic operations on intervals are defined by:

I1 Φ I2 = { r1 Φ r2 | r1 ∈ I1 ∧ r2 ∈ I2} with Φ ∈ {+,-,×,/}

except that I1/I2 is not defined if 0∈I2.

Accordingly to the above definition a set of algebraic rules may be defined to evaluate the result of

any basic arithmetic operation on intervals in terms of formulas for its bounds.

Definition 3.1-2 (Evaluation Rules for the Basic Operators). Let [a..b] and [c..d] be two real

intervals (bounded and closed):

[a..b] + [c..d] = [a+c..b+d] [a..b] - [c..d] = [a-d..b-c]

[a..b] × [c..d] = [min(ac,ad,bc,bd)..max(ac,ad,bc,bd)]

[a..b] / [c..d] = [a..b] × [1/d..1/c] if 0∉[c..d]

Interval arithmetic is thus a generalization of real arithmetic. In the extreme case where both interval

operands are degenerate (i.e. a single real number of the form [r..r]) interval arithmetic reduces to

ordinary real arithmetic. Most algebraic properties of real arithmetic also hold for interval arithmetic.

However, the distributive law is an important exception.

Definition 3.1-3 (Algebraic Properties of the Basic Operators). Let I1, I2, I3 and I4 be real intervals

(bounded and closed). The following algebraic properties hold for the basic interval operations:

Commutativity: I1+I2=I2+I1 (interval addition)

I1×I2=I2×I1 (interval multiplication)

Associativity: (I1+I2)+I3=I1+(I2+I3) (interval addition)

(I1×I2)×I3=I1×(I2×I3) (interval multiplication)

Neutral Element: I1+[0..0]=I1 (interval addition)

I1×[1..1]=I1 (interval multiplication)

Subdistributivity: I1×(I2+I3)⊆I1×I2+I1×I3

Inclusion Monotonicity: I1⊆I3 ∧ I2⊆ I4 ⇒ I1ΦI2 ⊆ I3Φ I4

(with: Φ∈{+,-,×,/} and I3ΦI4 defined)

Figure 3.1 shows an example of the subdistributivity property. The evaluation of both sides of the

subdistributivity expression (I1×(I2+I3) and I1×I2+I1×I3) is performed in parallel for a particular case

(I1=[0..1], I2=[2..3] and I3=[-2..-1]) by consecutively applying the evaluation rules defined in 3.1-2.

1 in definition 2.2.1-1 it would correspond to the form [a..b].

INTERVAL CONSTRAINTS

29

Figure 3.1 An example of subdistributivity.

The key idea of interval arithmetic is that despite the different sources of error in arithmetic

computations the correct real values are always within the bounds of the resulting real interval. One of

these error sources is the limitation of computer systems to the floating-point representation of real

numbers. The solution of interval arithmetic is to represent real numbers as F-intervals (the F-interval

approximation of a real number) and to evaluate the basic interval arithmetic rules by outward

rounding. The outward rounding forces the result of any basic interval arithmetic operation to be an

F-interval which is the F-interval approximation of the real interval that would be obtained by

evaluating the corresponding rule with infinite precision. The following is the redefinition of the four

basic interval arithmetic rules with outward rounding evaluation.

Definition 3.1-4 (Outward Rounding Evaluation Rules of the Basic Operators). Let [a..b] and

[c..d] be two F-intervals (bounded and closed):

[a..b] + [c..d] = [a+c..b+d] [a..b] - [c..d] = [a-d.. b-c]

[a..b] × [c..d] = [min(ac, ad, bc, bd)..max(ac, ad, bc, bd)]

[a..b] / [c..d] = [a..b] × [1/d..1/c] if 0∉[c..d]

Outward rounding preserves the inclusion monotonicity property of interval arithmetic. In the

following, if Φ is a basic interval arithmetic operator then Φapx denotes the corresponding outward

evaluation rule. For an m-ary basic interval arithmetic operator Φ and the real intervals I1,…,Im:

Φapx(I1,…,Im)=Iapx(Φ(I1,…,Im)). Moreover, when mentioning the interval arithmetic evaluation to be

performed with infinite precision, this corresponds to the unrealistic extreme situation where all real

numbers are also F-numbers and so: ∀r∈ℝ r = r = r making Φapx(I1,…,Im)=Φ(I1,…,Im).

The correctness of the interval arithmetic computations is guaranteed by the inclusion monotonicity

property because, if the correct real values are within the operand intervals then the correct real values

resulting from any interval arithmetic operation must also be within the resulting interval. Moreover,

the computation of any interval arithmetic expression (a successive composition of arithmetic

operations over real intervals) will preserve the correct real values within the final resulting interval.

The inclusion monotonicity property of the interval arithmetic expressions (for the basic arithmetic

operators +, -, × and /) and its consequences on the correctness of the interval arithmetic computations

were firstly addressed by Moore in [Moo66].

I1=[0..1]

I2=[2..3]

I3=[-2..-1]

[0..3] + [-2..0]

I1×(I2+I3)

[0..1]×([2..3]+[-2..-1])

[0..1] × [0..2]

[0..2]

I1×I2+I1×I3

[0..1]×[2..3]+[0..1]×[-2..-1]

[-2..3]⊆

⊆

INTERVAL ANALYSIS

30

3.1.1 Extended Interval Arithmetic

Later generalizations of Moore’s work included: extensions on the definition of the division operator;

extensions on the forms of real intervals allowed as operator arguments; and extensions on the set of

basic interval operators allowed in the arithmetic expressions.

The redefinition of the division operator, allowing the division by an interval containing zero,

implies the consideration of unbounded intervals and the redefinition of other operators with possible

unbounded arguments. The resulting arithmetic, called extended interval arithmetic, was first

suggested in [Han68] and in [Kah68] and later modified in [Nov93] and [Rat96]. In these approaches

the division operator was restricted to bounded interval arguments.

If unbounded intervals are allowed as arguments of the division operation then the resulting interval

is no longer guaranteed to be a closed interval. For example, if the numerator is the degenerate interval

[1..1] and the denominator is the unbounded interval [1..+∞) then the resulting real interval is half

open [1..1]/[1..+∞)=(0..1]. The generalization of the extended interval arithmetic to F-intervals, not

necessarily closed, was proposed in [HJE99].

In the interval arithmetic framework it is assumed that the result of any interval operator is a single

real interval. This was true for the original definitions (3.1-1 and 3.1-2) of the basic interval operators

but in extended interval arithmetic the result may be the union of two disjunct real intervals. For

example [4..8]/[-2..1]=(-∞..-2]∪[4..+∞). In many approaches the pair of disjoint real intervals is

replaced by the smallest single interval containing their union (their union hull as defined in 2.2.2-1).

In the previous example the result would be (-∞..+∞). Other solution proposed in [Old89] is based on

the observation that the pair of disjoint real intervals is normally only required for intersection with

another single interval2. Thus an additional three-argument operation could be considered representing

the common operation (I1/I2)∩I3, and the result would be the smallest real interval containing it.

Internally the implementation of the operator (the rules defining the bounds of the resulting interval)

would consider the possible disjoint result of I1/I2. However the final result would be a single interval.

If in the previous example the result of the division were to be intersected with [0..10] then the final

real interval would be [4..10] (as opposed to [0..10] obtained by the other approaches).

Similarly, several other elementary functions (exp, ln, power, sin, cos) may be included as basic

interval arithmetic operators. The definition of rules for these new operators may benefit from the

study of the monotonic properties of these functions within their domains of application. For example,

the exponential unary-operator (exp) may be defined by the rule exp([a..b])=[exp(a)..exp(b)] since the

exponential function is increasing monotonic in ℝ.

2 see interval Newton method.

INTERVAL CONSTRAINTS

31

3.2 Interval Functions

The sound evaluation of interval functions is perhaps the major contribution of Interval Analysis

within the Interval Constraints framework. In order to understand this contribution it is necessary to

make explicit the difference between a function (either a real or interval function) and the expression

used to represent it in terms of the arithmetic operators, variables and constants. Although a function

may be represented by several equivalent expressions, the interval arithmetic evaluation of these

expressions may yield different interval results due to its approximate nature. Nevertheless, the

soundness of interval arithmetic guarantees that all these intervals contain the intended correct

function results. The following are formal definitions of real/interval expressions, and how they may

be used to represent real/interval functions.

Definition 3.2-1 (Real and Interval Expressions). An expression E is an inductive structure defined

in the following way:

(i) a constant is an expression;

(ii) a variable is an expression;

(iii) if E1,…,Em are expressions and Φ is a m-ary basic operator then Φ(E1,…,Em) is an expression;

A real expression is an expression with real constants, real valued variables and real operators. An

interval expression is an expression with real interval constants, real interval valued variables and

interval operators.

If x1, x2 and x3 are real valued variables then (x1+x2)×(x3-π) is a real expression with three binary real

operators (+, × and -) and a real constant (π). If X1 and X2 are real interval valued variables then

(X1+cos([0..π]×X2)) is an interval expression with two binary interval operators (+ and ×), a unary

interval operator (cos) and an interval constant ([0..π]). Note that the above definition does not restrict

a constant to be representable by an F-number or an F-interval (in both previous examples π and [0..π]

are non-representable constants). To improve readability, a degenerate interval constant [a..a] will be

represented within the interval expressions as a real constant a.

Definition 3.2-2 (Real and Interval Functions). A function is a mapping from elements of a set (the

domain) to another set (the codomain). The subset of the codomain consisting on those elements that

are mapped by the function is called the range of the function. In an n-ary real function, f, the elements

of the domain are n-ary tuples of real values and the elements of the codomain are real values. The

range of a real function f over a domain D is denoted f*(D). In an n-ary interval function, F, the

elements of the domain are n-ary tuples of real intervals (R-boxes) and the elements of the codomain

are real intervals. An n-ary function may be represented by an expression, where each occurrence of

the ith function argument is designated by a variable. The real expression representing the real function

f is denoted by fE and its variables by xi. The interval expression representing the interval function F is

denoted by FE and its variables by Xi.

INTERVAL ANALYSIS

32

Several different real expressions may represent the same real function. This is a direct consequence of

the properties of the real operators used in the expression. For example, the real expression

fE1
≡(x1+x2)×(x3-π) and the real expression fE2

≡((x1×x3)+(x2×x3))-((π×x1)+(π×x2)) both represent the

same real function f due to the distributive and commutative properties of the addition (+) and

multiplication (×) real operators.

However, the floating-point evaluation of a real expression for a particular tuple of real values is not

guaranteed to return the correct real value (the element of the codomain associated with the tuple in

the real function represented by the expression) but an F-number approximation of it. Moreover,

different expressions representing the same function may yield different approximations of the correct

real value, and without further numerical analysis it is not possible to assess the accuracy of the

approximations.

When an interval expression FE is used to represent an interval function F then this function maps

an R-box into the smallest real interval containing all the real values that would be obtained for each

real valued combination within the interval domains of the R-box.

Definition 3.2-3 (Semantic of an Interval Expression3). Let F be the n-ary interval function

represented by the interval expression FE, and B an n-ary R-box. The interval, denoted by F(B),

obtained by applying the interval function F to B, is the smallest real interval containing the range

f*(B) of the real function f over B:

f*(B)={f(<r1,…,rn>) | <r1,…,rn>∈B}⊆F(B) ∧ ∀<a..b> f*(B)⊆<a..b> ⇒ F(B)⊆<a..b>

The real function f is expressed by the real expression fE which is obtained by replacing in FE each

interval variable Xi by the real variable xi and each interval operator by the corresponding real

operator.

Interval arithmetic provides a method for evaluating an interval expression by substituting each

variable by its interval domain and applying recursively the basic operator evaluation rules. The

evaluation process may be seen as an interval function as well, once it maps R-boxes into R-intervals

(in particular into F-intervals).

Definition 3.2-4 (Interval Arithmetic Evaluation of an Interval Expression). Let F be the n-ary

interval function represented by the interval expression FE, and B an n-ary R-box. The interval

arithmetic evaluation of FE with respect to B is an interval function recursively defined as:

Iapx(I) if FE ≡ I (I is an interval constant)

FE(B)= Iapx(B[Xi]) if FE ≡ Xi (Xi is an interval variable)

Φapx(E1(B),…, Em(B)) if FE ≡ Φ(E1,…,Em) (Φ is an interval operator)

3 This definition assumes that the interval expression does not contain any interval constants. Otherwise, if there are m

interval constants, then f should have m more arguments with the domains defined by the interval constants.

INTERVAL CONSTRAINTS

33

We will denote an interval expression with a subscripted capital letter (FE) which is also the name of

the interval function defined by its interval arithmetic evaluation (as in definition 3.2-4). The capital

letter (F) refers to the intended interval function that is represented by the interval expression (as in

definition 3.2-3).

The interval arithmetic evaluation of an interval expression provides a sound computation of the

interval function represented by the expression.

Theorem 3.2-1 (Soundness of the Interval Expression Evaluation)4. Let FE be an interval

expression representing the n-ary interval function F, and B an n-ary R-box. The interval arithmetic

evaluation of FE with respect to B is sound:

F(B) ⊆FE(B)

Figure 3.2 illustrates the intended interval function F that is represented by the expression

FE ≡ X1×([0.5..1.5]-X1). Any interval obtained with a degenerate interval argument F([r]) corresponds

in the figure to a vertical bar within the two solid lines. The intervals F([0.5]), F([1.0]), F([1.5]) and

F([2.0]) are explicitly represented in the figure. For non degenerate interval arguments I=[a..b] the

result F(I) may be obtained by projecting on the vertical axis all the possible intervals obtained by any

degenerate arguments within I (F([r]) ∀r∈[a..b]). This process is exemplified for the argument

I=[0.5..2.0] (the arrowhead dashed lines represent the intervals projection). The interval obtained by

the interval arithmetic evaluation of the expression FE with the same argument I=[0.5..2.0] is also

shown in figure. As expected, and accordingly to theorem 3.2-1, the evaluated interval encloses the

intended interval: F ([0.5..2.0])=[-3.0..0.5625] ⊆ FE([0.5..2.0])=[-3.0..2.0].

Figure 3.2 The intended interval function represented by an interval expression.

4 The demonstrations of theorem 3.2-1 and the other theorems of Interval Arithmetic are presented in Appendix A.

FE(I)

-1.0

-3.0

0.5 2.01.51.0 2.50.0-0.5

-4.0

-2.0

0.0

-5.0

1.0

2.0

F([0.5])
F([1.0])

F([1.5])

F([2.0])

F(I)

I = [0.5..2.0]

FE ≡ X1 × ([0.5..1.5] – X1)

INTERVAL ANALYSIS

34

3.2.1 Interval Extensions

An important concept relating interval functions with real functions is that of interval extension.

Definition 3.2.1-1 (Interval Extension of a Real Function). Let f be an n-ary real function with

domain Df, and F an n-ary interval function. The interval function F is an interval extension of the real

function f iff:

∀<r1,…,rn>∈Df
 f(<r1,…,rn>)∈ F(<[r1..r1],…,[rn..rn]>)

Thus, if F is an interval extension of f then each real value mapped by f must lie within the interval

mapped by F when the argument is the corresponding R-box of degenerate intervals. Consequently, F

provides a sound evaluation of f in the sense that the correct real value is not lost. Moreover, the

interval arithmetic evaluation of any expression representing an interval extension of a real function

provides a sound evaluation for its range and is itself an interval extension of the real function.

Theorem 3.2.1-1 (Soundness of the Evaluation of an Interval Extension). Let F be an interval

extension of an n-ary real function f, FE an interval expression representing F, and B be n-ary R-box.

Then, both F(B) and FE(B), enclose the range of f over B:

f*(B) ⊆ F(B) ⊆ FE(B)

Figure 3.3 shows an example of a function f represented by the real expression fE ≡ x1–x1
2
, together with

the interval function F presented in the previous example. Clearly F (and also FE) is an interval

extension of f since f(r)∈F([r]) for any real value r (the thick solid line is always within the two thin

solid lines). In addition, figure 3.3 illustrates the enclosing for the range of function f (with the

argument x1 between 0.5 and 2.0) obtained by both, the interval extension F and the interval arithmetic

evaluation of its expression FE: f*([0.5..2.0])=[-2.0..0.25] ⊆ F([0.5..2.0]) ⊆ FE([0.5..2.0]).

Figure 3.3 An interval extension of an interval function.

-1.0

-3.0

0.5 2.01.51.0 2.50.0-0.5

-4.0

-2.0

0.0

-5.0

1.0

2.0

FE(I) F(I)

FE ≡ X1 × ([0.5..1.5] – X1)

f*(I)

fE ≡ x1 – x1
2

f(x1)

I = [0.5..2.0]

INTERVAL CONSTRAINTS

35

A particular interval extension of a real function, called Natural interval extension, is directly obtained

from the real expression representing it.

Definition 3.2.1-2 (Natural Interval Expression). If fE is a real expression representing the real

function f, then its natural interval expression Fn is obtained by replacing in fE: each real variable xi by

an interval variable Xi; each real constant k by the real interval [k..k], and each real operator by the

corresponding interval operator.

Theorem 3.2.1-2 (Natural Interval Extension). Let fE be a real expression representing the real

function f, and Fn be the natural interval expression of fE. The interval function F represented by Fn is

the smallest interval enclosure for the range of f and the interval arithmetic evaluation of Fn is an

interval extension of f denominated Natural interval extension with respect to fE.

As seen before, several equivalent real expressions may represent the same real function f.

Consequently, the natural interval extensions wrt these equivalent real expressions are all interval

extensions of f.

Figure 3.4 shows three equivalent real expressions (fE1
, fE2

 and fE3
) that represent the same real

function f presented in the previous example and their natural interval expressions (FE1
, FE2

 and FE3

respectively). The interval function F is the intended function represented by any of these interval

expressions and, accordingly to theorem 3.2.1-2, is the smallest interval enclose for the range of f (in

the figure this is illustrated for I=[0.5..2.0] with f*(I)=F(I)=[-2.0..0.25]). The interval arithmetic

evaluation of different forms of interval extensions of f may lead to different accuracy for the resulting

interval (the width of the interval may be different). Figure 3.4 shows the different enclosures obtained

by the three different extensions for the range of function f (with the argument x between 0.5 and 2.0).

Figure 3.4 Natural interval extensions of a real function wrt three equivalent real expressions.

-1.0

-3.0

-4.0

-2.0

0.0

1.0

2.0

FE2
(I) f*(I)

f E1
 ≡ x1 – x1

2

f(x)

0.5 2.01.51.0

I = [0.5..2.0]

FE1
 ≡ X1 – X

1
2

f E2
 ≡ x1 × (1.0 – x1) FE2

 ≡ X1 × (1.0 – X1)

f E3
 ≡ 0.25 - (x1 – 0.5)2 F E3

 ≡ 0.25 - (X1 – 0.5)2

FE3
(I) F(I)

FE1
(I)

INTERVAL ANALYSIS

36

Additionally, because any interval extension evaluation returns an interval enclosure for the range of f,

the intersection of different extension evaluations will possibly provide a better enclosure.

Theorem 3.2.1-3 (Intersection of Interval Extensions). Let F1 and F2 be two n-ary interval functions

and B an n-ary R-box. Let F be an n-ary interval function defined by: F(B)=F1(B)∩F2(B). If F1 and F2

are interval extensions of the real function f, then F is also an interval extension of f.

Moreover, the overestimation of the enclosure may be reduced if, instead of evaluating an expression

over an R-box, the box is firstly split into sub-boxes (whose union is the original R-box) and the union

of all the intervals obtained by the separate evaluation of each sub-box is considered.

Theorem 3.2.1-4 (Decomposed Evaluation of an Interval Extension). Let F be an interval extension

of the n-ary real function f, and FE an interval expression representing F. Let B, B1 and B2 be n-ary

R-boxes. If B=B1∪B2 then:

F(B) ⊆ FE(B1)∪FE(B2) ⊆ FE(B)

Figure 3.5 exemplifies the decomposed evaluation of the interval expression FE1
. It is shown that by

dividing the argument I=[0.5..2.0] into I1=[0.5..1.25] and I2=[1.25..2.0] the overestimation of the F(I)

enclosure is reduced: F(I) ⊆ FE1
(I1)∪FE1

(I2) ⊆ FE1
(I).

Figure 3.5 The decomposed evaluation of an interval expression.

The quality of the enclosure for the ranges of a real function depends on the way that its interval

extension is expressed. When a variable occurs repeatedly in an interval expression, its interval

arithmetic evaluation usually produces an overestimated result due to the problem known as the

dependency problem.

-1.0

-3.0

-4.0

-2.0

0.0

1.0

2.0

f(x1)

f E1
 ≡ x1 – x1

2
FE1

 ≡ X1 – X
1
2

F(I)

FE1
(I)

FE1
(I2)

FE1
(I1)

FE1
(I1) ∪ FE1

(I2)

0.5 2.01.51.0

I = [0.5..2.0]

I2 = [1.25..2.0]
I1 = [0.5..1.25]

INTERVAL CONSTRAINTS

37

Definition 3.2.1-3 (Dependency Problem). In the interval arithmetic evaluation of an interval

expression, each occurrence of the same variable is treated as a different variable. The dependency

between the different occurrences of a variable in an expression is lost.

Informally, if each basic interval operator is able to compute the exact ranges for its interval

arguments then the overestimation of the interval arithmetic evaluation must be a consequence of

considering real valued combinations where different occurrences of the same variable are assigned

with different real values. No overestimation would be obtained if an interval expression, where no

variable occurs more than once, is evaluated with infinite precision. This is expressed in an important

theorem of Interval Analysis, firstly proved by Moore [Moo66].

Theorem 3.2.1-5 (No Overestimation Without Multiple Variable Occurrences). Let FE be an

interval expression representing the n-ary interval function F, and B an n-ary R-box. If FE is an

interval expression in which each variable occurs only once then:

F(B) = FE(B) (with exact interval operators and infinite precision arithmetic evaluation)

In the example of figure 3.4 we can see that no overestimation is obtained with the interval arithmetic

evaluation of expression FE3
 because in this expression variable X1 occurs only once.

For a particular real function the best interval extensions, in terms of minimal overestimation, are

those that minimize the effects of the dependency problem. Although it is often impossible to get

interval extensions without repeated variable occurrences, interval extensions with fewer multiple

occurrences are usually preferable.

Several typical forms of interval extensions studied in interval analysis were used in interval

constraints to take advantage of their specific properties. In the following we will consider different

forms of interval extensions for univariate real functions, however these forms can be easily extended

for the multivariate case (see [Han92] for further details on this issue).

Centered forms, introduced by Moore in [Moo66], may be used to get tighter enclosures when the

interval domains of the variables are sufficiently small. The key idea is that for any real function f

there is a real function g such that:

f(x1) = f(c)+g(x1-c) where c is a real value at which f is defined.

For an original expression fE representing f and a particular interval I, a generic procedure is

described in [Moo66] to obtain an expression fc representing f(c)+g(x1-c), with c defined as the center

of I (c=center(I)). The Centered interval extension of f wrt this interval I is the Natural interval

extension Fc of the expression obtained by algebraically simplifying the expression fc. Fc is an interval

extension of f since it is an interval extension of fc which is equivalent to fE.

Consider function f represented by the real expression fE≡x1–x1
2
 (see figures 3.3 through 3.5). An

equivalent representation of f for a given interval I=[a..b] is fc≡c–c2+(x1–c)×((1–(a+b))–(x1–c)). For the

particular interval [0.5..2], the center c is 1.25 and the Centered interval extension Fc is expressed by

-0.3125+(X1-1.25)×(–X1–0.25) whose evaluation results in the interval [–2.375..1.75] (which is a better

INTERVAL ANALYSIS

38

enclosure of f*([0.5..2]) than the obtained by the natural interval extension of x1–x1
2
). For the particular

interval [0..1] the center c is 0.5 and the Centered interval extension Fc is expressed by 0.25-(X1-0.5)2

whose evaluation results in the interval [0..0.25] (which is the exact range f*([0..1])). Note that the

Centered interval extensions are not guaranteed to be inclusion monotonic since the interval

expression of Fc is different for different interval arguments.

It was proved in [Han69] that a Centered interval extension approximates the range of a function

quadratically as the width of the interval argument tends to zero. This property makes them

particularly useful when the width of the interval is small. With large intervals the enclosure obtained

by the Centered interval extension may be even worst than the obtained by the Natural interval

extension of the original form.

Another class of centered forms is derived from the mean value theorem [AH83, RR84].

Consider a univariate function f differentiable over the interval I. By the mean value theorem, for

any real value r∈I and a fixed c∈I there is a ξ between r and c such that:

f(r)= f(c)+f’(ξ)×(r-c) where f’ is the derivative of f

Let F and F’ be interval extensions of f and f’ respectively. By definition of an interval extension

f(c)∈F([c]) and f’(ξ)∈F’([ξ])⊆F’(I) thus:

∀r∈I f(r) ∈ F([c])+F’(I)×(r-c)

The interval function Fm defined by F([c])+F’(I)×(I-c) where c=center(I) is called the Mean Value

interval extension of f wrt I. The above property guarantees that Fm is a interval extension of f for

interval I (see definition 3.2.1-1). The Mean Value interval extension Fm depends on the evaluation of

the interval extension F’ chosen for the derivative of f. Different expressions for F’ lead to different

values for the mean value form.

In the case of a real function f represented by the real expression x1–x1
2
, consider the interval

extensions F and F’ represented respectively by X1–X1
2
 and 1–2X1. The Mean Value interval extension

of f for a given interval I is expressed by c–c2+(1–2X1)×(X1-c) where c=center(I). For the particular

interval [0.5..2], Fm is expressed by -0.3125+(1–2X1)×(X1-1.25) whose evaluation results in the

interval [-2.5625..1.9375]. For the particular interval [0..1], Fm is expressed by 0.25+(1-2X1)×(X1-0.5)

whose evaluation results in the interval [–0.25..0.75].

The Mean Value interval extension, which is proved to be inclusion monotonic, is easier to compute

than the Centered interval extension (does not require any algebraic manipulations) and possesses the

quadratic approximation property too [AH83, RR84].

The Mean Value interval extension is just a special case of the Taylor interval extension, which can

be derived from the Taylor series expansion of a function f about a point c. Assuming that f has

continuous derivatives f(i) of any order i≤m+1 within interval I then, for any real value r∈I and a fixed

c∈I there is a ξ∈I such that:

)!1(

)()(

!

)()(
)()(

)1(1

1

)(

+
−

+
−

+=
++

=
∑ m

fcr

i

cfcr
cfrf

mmm

i

ii ξ

INTERVAL CONSTRAINTS

39

Let F and F(i) with 1≤i≤m+1 be interval extensions of f and f(i) respectively. The Taylor interval

extension of order m of the real function f wrt I is the interval function, denoted Ft(m), and defined by:

[] []
)!1(

)()(

!

)()(
)(1

)1(1
1

1

)(
1

+
−

+
−

+
++

=
∑ m

XFcX

i

cFcX
cF

mmm

i

ii

where c=center(I)

The Taylor expansion guarantees that Ft(m) is a interval extension of f for interval I, and in the

particular case of m=0, the Taylor interval extension Ft(0) is the Mean Value interval extension Fm.

In the previous example, F(2) is –2 and F(i) is 0 for i>2. Consequently, the Taylor interval extension

of order m≥1 for a given interval I is expressed by c–c2+(1–2c)×(X1-c)-(X1-c)2 where c=center(I). For

the particular interval [0.5..2], Ft(m) (with m≥1) is expressed by -0.3125–1.5×(X1-1.25)-(X1-1.25)2

whose evaluation results in the interval [–2..0.8125]. For the particular interval [0..1], Ft(m) (with m≥1)

is expressed by 0.25-(X1-0.5)2 whose evaluation results in the interval [0..0.25].

Non centered forms, as the distributed form, are also used in interval constraints [VMK97]. An

univariate real function f is expressed in the distributed form fd if:

∑
=

≡
k

i

n
id

ixrf
1

1 where ri and ni are real and natural numbers, respectively, and ni≠nj if i≠j

The Distributed interval extension Fd of a real function f is the Natural interval extension of its

distributed form. Not all real functions can be expressed in the distributed form and so not all real

functions have a Distributed interval extension. However, distributed forms can be used for the

canonical representation of polynomials. The enclosures obtained by the Distributed interval extension

are often worst than those obtained by the Natural interval extension of the original expression since it

imposes several (k) occurrences of the same variable, possibly increasing the dependency problem.

The use of the Distributed interval extension in interval constraints is justified, not by the precision of

the obtained enclosures, but rather by its efficiency w.r.t. the constraint techniques that will be

discussed in the next chapter, in particular, the constraint Newton method (subsection 4.2.2).

In the case of the example that has been presented, the real expression fE≡x1–x1
2 is already in the

distributed form, and so the Distributed interval extension Fd of the real function f is its Natural

interval extension expressed by X1–X1
2
. As can be seen in figure 3.4 this extension (FE1

 in the figure)

obtains less accurate enclosures of the range of f for the interval [0.5..2.0] than the other non

distributed interval extensions (FE2
 and FE3

).

3.3 Interval Methods

Interval methods for finding roots of equations with one variable are frequently used in interval

constraints due to its efficiency and reliability. In particular, the interval Newton method, a

generalization of the Newton’s method for finding zeros of real functions, is the most commonly used

since it presents several remarkable properties quite useful for filtering algorithms.

INTERVAL ANALYSIS

40

Extensions of the univariate root finding methods to the multivariate case are rarely used in interval

constraints as they are more complex to implement. Instead interval propagation techniques are used,

generally with better performance. However, in some situations, they can be effectively applied. In

particular, in cases where the search space is a small box enclosing a single root, multivariate interval

methods may be quite useful either for isolating the root or for proving its existence and uniqueness.

3.3.1 Univariate Interval Newton Method

The interval Newton method for searching zeros of univariate functions, introduced by Moore in

[Moo66], is based on the mean value theorem which can be formulated as:

∃ξ∈[a..b] f(r1)-f(r2)=(r1-r2)×f’(ξ) (a=min(r1,r2) and b=max(r1,r2))

where f is a real function, continuous in [a..b] and differentiable in (a..b).

Let I be a closed real interval containing both r1 and r2. If the real function f is continuous and

differentiable in I then from the mean value theorem:

∀r1,r2∈I ∃ξ∈I f(r1)-f(r2)=(r1-r2)×f’(ξ)

If there is a zero of f in I (∃r0∈I f(r0)=0), let us represent it by r0 and instanciate the universal

quantifier for r2 with it in the above first order formula:

∀r1∈I ∃ξ∈I f(r1) = (r1-r0)×f’(ξ)

Instanciating r1 with any real value c within I, for example its mid value (c=center(I)):

∃ξ∈I f(c)=(c-r0)×f’(ξ)

Solving the equation for r0 and considering
)(

)(
)(

xf

cf
cxg

′
−= we obtain:

∃ξ∈I [(r0 = g(ξ) ∧ f’(ξ)≠0) ∨ (f(c)=0 ∧ f’(ξ)=0)]

Which is equivalent to:

(f(c)≠0 ∨ ∀r∈I f’(r)≠0) ⇒ ∃ξ∈I (r0 = g(ξ)∧ f’(ξ)≠0)

The universal quantified condition ∀r∈I f’(r)≠0 expresses that the real value zero does not belong

to the range of f’over I. Similarly, the right side of the implication ∃ξ∈I (r0 = g(ξ)∧ f’(ξ)≠0) implies

that r0 must be within the range of g over I. Consequently we will finally get the following formula:

(f(c)≠0 ∨ 0∉f’*(I)) ⇒ r0 ∈g*(I) (1)

From the above implication we can conclude that, if there is a zero r0 of f within I and if the left side

of the implication is true, then r0 must also be within the range g*(I) of the real function g over the

interval I. Thus, in this case, and according to theorem 3.2.1-1, any zero of f within I must also be

within any extension G of the real function g. Moreover, if I⊆G(I) when the left side of the implication

is false then, in all cases, it follows that whenever a zero of f is within I then it must be also within

G(I): ∀r0∈I f(r0)=0 ⇒ r0 ∈G(I).

INTERVAL CONSTRAINTS

41

The interval Newton method consists on applying function G over a real interval I and intersecting

the result with the original interval to obtain a set S with the guarantee that if a zero is within I then it

must also be within S. (S=I∩G(I)).

The extension G of the real function g originally proposed in [Moo66], is the Newton function:

Definition 3.3.1-1 (Newton Function). Let f be a real function, continuous and differentiable in the

closed real interval I, and f’ its derivative. Let F and F’ be interval extensions of f and f’, respectively.

Let c be the mid value of the interval I (c=center(I)). The interval Newton function N with respect to f

is: [] []
)(

)(
)(

IF

cF
cIN

′
−=

In the original proposal the interval division operator was not defined if the denominator was an

interval containing zero (see definition 3.1-1). Thus the Newton function was not defined if 0∈F’(I)

and so, it could only be applied when the left side of the implication in (1) was true because if 0∉F’(I)

then necessarily 0∉f’*(I) (according to theorem 3.2.1-1: f’*(I) ⊆ F’(I)).

The Newton method would then consist on iterating the following Newton step only on intervals

where the Newton function was defined.

Definition 3.3.1-2 (Newton Step). Let f be a real function, continuous and differentiable in the closed

real interval I. Let N be the Newton function with respect to f. The Newton step function NS with

respect to f is:

NS(I) = I ∩ N(I)

If division by intervals containing zero is not allowed, then the result of the Newton function is a

single interval. Consequently the result of the Newton step is also a single interval (NS(I)⊆I) and the

successive iteration of Newton steps until a fix point is obtained may be defined as an interval

narrowing function NN (narrowing because NN(I)⊆I).

Definition 3.3.1-3 (Newton Narrowing)5. Let f be a real function, continuous and differentiable in the

closed real interval I. Let NS be the Newton step function with respect to f. The Newton narrowing

function NN with respect to f is:

∅ if NS(I)=∅

NN(I) = I if NS(I)=I

NN(NS(I)) if NS(I)⊂I

5 This definition assumes that the result of the Newton step function is always an interval.

INTERVAL ANALYSIS

42

The original restriction on the domain of definition for the Newton function restrained the Newton

narrowing to intervals where the Newton function is defined. Whenever an interval failed that

restriction the narrowing could not be applied to the entire interval and further analysis would require

its partition.

With extended interval arithmetic the division by an interval containing zero became possible and

unrestricted approaches for the application of the Newton function were firstly proposed in [Ale68]

and [Han78]. Extended interval arithmetic not only guarantees that the Newton function N is an

extension of the real function g if the left side of the implication in (1) is true but also, in the special

case where it is false it guarantees that I⊆N(I). This last property derives from the fact that if it is false

then f(c)=0 and 0∈f’*(I), consequently both F([c]) and F’(I) contain zero, and the evaluation of

F([c])/F’(I) would return the interval (-∞,+∞) so, in this case, I⊆N(I)=(-∞,+∞).

Using extended interval arithmetic, the result of the Newton function is not guaranteed to be a

single interval. As seen in section 3.1, the division by an interval containing zero may yield the union

of two intervals. In this case the Newton function is not even an interval function in the form of

definition 3.2-2 since it does not map an R-box into a single interval. Several different strategies were

devised to deal with this problem.

One strategy is to work with the two obtained intervals and, in the Newton step, intersect their union

with the original interval. If the result of the intersection is a single interval, the Newton narrowing can

normally continue. Otherwise, the union hull (⊎) of the obtained intervals could be considered6 or

else, the two obtained intervals would have to be considered separately. Other strategy is to redefine

the extended interval arithmetic division rules to always obtain a single interval. If the result were the

union of two intervals then the result is redefined to be the single interval obtained by their union hull.

Figure 3.6 shows an example of the application of the interval Newton method for isolating a zero

of a real function within an interval. The real function f (solid line) is the same presented in figures 3.3

through 3.5, represented by the expression fE ≡ x1–x1
2
 and the initial interval that is narrowed without

loosing any zero of f is [0.5..2.0]. The derivative of f is function f’ (dashed line) represented by the

expression f’E ≡ 1–2x1. The Natural interval extensions of f and f’ are FE ≡ X1–X1
2
 and F’E ≡ 1–2X1,

respectively. The Newton function N is defined according to the definition 3.3.1-1. The table in figure

3.6 summarizes the results obtained by successive application of the Newton step7. In each line i is

shown the current interval (Ii), the intervals needed to compute the Newton function ([ci], FE([ci]) and

F’E(Ii)) and the interval obtained by applying the Newton function to the current interval (N(Ii)). The

initial interval (I0) is [0.5..2.0] and for each line i>0 the current interval is updated accordingly to the

Newton step Ii = Ii-1 ∩ N(Ii-1). The process stops at line 4 since I5 = I4 ∩ N(I4) = I4 (see definition

3.3.1-3 of the Newton narrowing function). As can be seen in the figure, the Newton narrowing with

6 As suggested in section 3.1, the whole Newton step function could be considered a interval arithmetic operator internally

implemented with the extended interval arithmetic rules.

INTERVAL CONSTRAINTS

43

argument [0.5..2.0] quickly converges to the unique zero of the real function f within this interval:

NN([0.5..2.0])= [1.000..1.000].

i Ii [cI] FE([cI]) F’E(Ii) N(Ii)

0 [0.500..2.000] {1.250} [-0.313..-0.312] [-3.000..0.000] [-∞..1.146]

1 [0.500..1.146] {0.823} [0.145..0.146] [-1.292..0.000] [0.936..+∞]

2 [0.936..1.146] {1.041} [-0.042..-0.042] [-1.292..-0.872] [0.991..1.009]

3 [0.991..1.009] {1.000} [0.000..0.000] [-1.018..-0.982] [1.000..1.000]

4 [1.000..1.000] {1.000} [0.000..0.000] [-1.000..-1.000] [1.000..1.000]

[] []
)(

)(
)(

iE

iE
ii IF

cF
cIN

′
−=

Figure 3.6 An example of the application of the interval Newton method.

The remarkable properties of the interval Newton method, specially suited for filtering algorithms will

be addressed in the following theorems (firstly formulated by Moore [Moo66]).

Theorem 3.3.1-1 (Soundness of the Interval Newton Method with Roots). Let f be a real function,

continuous and differentiable in the closed real interval I. If there exists a zero r0 of f in I then r0 is also

in N(I), NS(I) and NN(I), where N, NS and NN are respectively the Newton function, the Newton step

function and the Newton narrowing function with respect to f:

∀r0 ∈I f(r0)=0 ⇒ r0 ∈N(I) ∧ r0 ∈NS(I) ∧ r0 ∈NN(I)

The above theorem guarantees the soundness of the Newton narrowing function (and its interval

arithmetic evaluation) for narrowing the search space of a possible zero of a real function. If a zero of

a function is searched within I then it may be searched within NN(I) which is possibly a narrower

interval. This narrowing is a proof that no zero of the function was within the discarded values of I.

Theorem 3.3.1-2 (Soundness of the Interval Newton Method without Roots). Let f be a real

function, continuous and differentiable in the closed real interval I. If NS(I)=∅ or NN(I)=∅ (where NS

and NN are respectively the Newton step function and the Newton narrowing function with respect to

f) then there is no zero of f in I:

NS(I)=∅ ∨ NN(I)=∅ ⇒ ¬∃r0∈I f(r0)=0

7 It is assumed in all the interval arithmetic evaluations that the distance between any two consecutive F-numbers is the

constant 0.001 (for any F-number f: f+-f- = 0.001)

I≥4

-1.0

-3.0

-4.0

-2.0

0.0

1.0

2.0

f(x1)

f E ≡ x1 – x1
2

FE ≡ X1 – X
1
2

0.5 2.01.51.0

f’E ≡ 1 – 2x1 F’E ≡ 1 – 2X1

I0

I1
I2

I3

[cI] = [center(Ii)]

f’(x1)

INTERVAL ANALYSIS

44

The above theorem guarantees that whenever the result of the Newton narrowing function (or its

interval arithmetic evaluation) is the empty set (NN(I)=∅), I does not provedly contains any zero of

the real function.

Despite its soundness, the method is not complete, that is, in case of non existence of a root within

an R-box, the result of the Newton narrowing function is not necessarily the empty set. Therefore

obtaining a non empty set does not guarantee the existence of a root. However, in some cases, the

Newton method may guarantee the existence of a root. The next theorem is due to Hansen [Han69]:

Theorem 3.3.1-3 (Interval Newton Method to Prove the Existence of a Root). Let f be a real

function, continuous and differentiable in the closed real interval I. Let N be the Newton function wrt

f. If the result of applying the Newton function to I is included in I then there exists a zero of f in I:

N(I) ⊆ I ⇒ ∃r0∈I f(r0)=0

The convergence theorem, adapted from [Han78], assures that the interval arithmetic evaluation of any

Newton narrowing function is guaranteed to stop:

Theorem 3.3.1-4 (Convergence of the Interval Newton Method). Let f be a real function,

continuous and differentiable in the closed real interval I. The interval arithmetic evaluation of the

Newton narrowing function (NN) with respect to f will converge (to an F-interval or the empty set) in

a finite number of Newton steps (NS).

The following two theorems address the efficiency of the interval Newton method. They are adapted

from the original ones, formulated by Moore [Moo66] and Hansen [Han92] respectively.

Theorem 3.3.1-5 (Efficiency of the Interval Newton Method - Quadratic). Let f be a real function,

continuous and differentiable in the closed real interval I. Let f’ be the derivative function of f and F’

its interval extension. Let NS be the Newton step function with respect to f. If f has a simple zero r0 in I

and 0∉F’(I) then the Newton narrowing (with infinite precision arithmetic) is asymptotically error-

squaring, i.e. there is an interval I0 ⊆ I containing r0 and a positive real number k such that:

width(NS(n+1)(I0)) ≤ k×(width(NS(n)(I0))
2 w/ NS(n)(I)=NS(NS(n-1)(I)) and NS(1)(I)=NS(I)

Theorem 3.3.1-6 (Efficiency of the Interval Newton Method - Geometric). Let f be a real function,

continuous and differentiable in the closed real interval I. Let f’ be the derivative function of f. Let F

and F’ be respectively interval extensions of f and f’. Let c be the mid value of the interval I

(c=center(I)). Let NS be the Newton step function with respect to f. If 0∉F([c]) and 0∉F’(I) then:

width(NS(I)) ≤ 0.5×width(I)

INTERVAL CONSTRAINTS

45

The first of the two efficiency theorems states that convergence may be quadratic for small intervals

around a simple zero of the real function whereas the second theorem says that even for large intervals

the rate of convergence may be reasonably fast (geometric).

In the above presentation we assume that the interval Newton’s method is applied to a real function

as defined in 3.2-2. However, the method can be naturally extended to deal as well with real functions

that include parametric constants represented by intervals [Han92]. In this case, the intended meaning

is to represent the family of real functions defined by any possible real valued instantiation for the

interval constants. The existence of a root means that there is a real valued combination, among the

variable and all the interval constants, that zeros the function.

Figure 3.7 shows an example of the application of the interval Newton method for enclosing the

zeros of the family of functions defined by f(x1)=x1×([0.5..1.5]-x1). Any instantiation of the interval

constant with a real value within [0.5..1.5] produces a function whose graphic lies within the two solid

lines represented in the figure (a particular instantiation with the real value 1 is represented in figure

3.3). Consequently, the interval arithmetic evaluations of FE ≡ X1 ×([0.5..1.5]-X1) and

F’E ≡ [0.5..1.5]-2X1 define interval extensions for this family of functions and their derivatives,

respectively. The zeros of this family of functions are explicitly represented in the figure as a point

{0.0} and a thick horizontal line [0.5..1.5]. At the bottom of the figure are represented 4 cases of the

application of the Newton narrowing function with different initial intervals (the precision

assumptions are the same as in the example of figure 3.6). In the first case the initial interval was

[-0.5..0.2] and the unique zero was successfully enclosed within a canonical F-interval [0..0.001]. In

the second case the initial interval was [0.3..1.0] which could not be narrowed because both FE([0.65])

and F’E([0.3..1.0]) include zero. In the third case the initial interval was [1.1..1.8] and the right bound

was updated to 1.554. In the fourth case the initial interval was [1.9..2.6] and it was proven that there

is no zero within this interval.

Figure 3.7 The interval Newton method for enclosing the zeros of a family of functions.

 [1.1..1.8]

-1.0

-3.0

0.5 2.01.51.0 2.50.0-0.5

-4.0

-2.0

0.0

-5.0

1.0

I0

FE ≡ X1 × ([0.5..1.5] – X1)

NN(I0)

 [-0.5..0.2] [0.3..1.0] [1.9..2.6]

 [0..0.001] [0.3..1.0] [1.1..1.554] ∅

F’E ≡ [0.5..1.5] – 2X1

INTERVAL ANALYSIS

46

3.3.2 Multivariate Interval Newton Method

The interval Newton method extended for the multivariate case may be used to solve systems of n

equations of the form:

fi(B)=0, where i=1,…,n and B is an n-ary R-box.

Similarly to the reasoning for the univariate case, it is possible to conclude that all solutions of the

above system must lie within the set S defined in vector notation by:

S = {y∈B: f(c)+J(x)(y-c)=0, x ∈B} where c∈B and J is the Jacobian of f.

The idea is the same of the univariate method, that is, to define a Newton function whose result, when

applied to an R-box, includes all the possible solutions of the system within that box. Intersecting the

result with the original box and iterating the process, the search space will be eventually reduced.

The formal definitions of the Newton step and Newton narrowing functions (NS and NN) are almost

identical to the univariate case (definitions 3.3.1-2 and 3.3.1-3 respectively) except that their mappings

are, in the n dimensional case, from n-ary R-boxes into n-ary R-boxes. The definition of the Newton

function distinguishes the various multidimensional interval Newton methods.

In the first proposal [Moo66] the Newton function was a direct extension of that for the univariate

case, written in vector notation as:

N(B) = C – V(B)F(C)

where: B is an n-ary R-box; C is a degenerate R-box including the mid point of B; F is a vector with

elements Fi which are interval extensions of fi and; V(B) is an interval matrix containing the inverse of

every real matrix within J(B) (the extension of the Jacobian matrix of f).

In order to compute the interval matrix V(B) the nonsingularity of the matrices within J(B) was

required, implying that the method can only be directly applied (without split) if there is at most one

isolated root within B.

Other proposals avoid the accurate computation of the inverse interval matrix which is a quite

complex process and not always achievable. Instead, these proposals, use efficient interval

approximation methods to solve, for N(B), the linear equation F(C)+J(B)(N(B)-C)=0, which defines

an enclosing box for the solution set. The resulting Newton function may return less accurate

enclosing boxes but it can be applied without restrictions and computed more efficiently. The first

proposal, due to Krawczyk [Kra69] and called the Krawczyk method, was later improved by Hansen

and Sengupta [HS81] with a faster method known as the Hansen and Sengupta Gauss-Seidel method.

The properties presented before for the unidimensional case may be extended to the interval

Newton methods for the multidimensional case. An exception is made for the efficiency properties of

which only the asymptotic quadratic convergence was proven [AH83] for the special case where the

inverse interval matrix V(B) can be obtained. This last property makes the multidimensional interval

Newton methods particular effective for narrowing small boxes enclosing a single root, whose

existence may eventually be proven during the narrowing process (see theorem 3.3.1-3). However, for

large boxes, the narrowing achieved by these methods apparently does not justify the computational

costs of their implementation, at least compared with competing constraint propagation techniques.

INTERVAL CONSTRAINTS

47

3.4 Summary

In this chapter, interval analysis techniques relevant for the interval constraints framework were

introduced. Interval arithmetic and its main properties were presented. Interval functions and interval

expressions were defined and related with the sound evaluation of the range of a real function through

the basic concept of an interval extension of the real function. The properties of interval extensions

were analysed and several important forms identified. The interval Newton method, widely used in the

interval constraints framework, was described and its fundamental properties analysed. The next

chapter will address constraint propagation approaches which extensively use interval analysis

techniques to guarantee their correctness.

INTERVAL CONSTRAINTS

49

Chapter 4

Constraint Propagation

The filtering algorithms used in Interval Constraints for pruning the variable domains are based on

constraint propagation techniques initially developed in Artificial Intelligence for finite domains. They

use partial information expressed by a constraint to eliminate some incompatible values from the

domain of the variables within the scope of the constraint. Once the domain of a variable is reduced,

this information is propagated to all constraints with that variable in their scopes, which must be

checked again possibly to further reduce the domains of the other constrained variables. The constraint

propagation is terminated when a fixed-point is attained, that is, the variable domains can not be

further reduced by any constraint.

In the next section the propagation process is described as successive reduction of variables

domains by successive application of narrowing functions associated with the constraints of the CCSP.

The properties of the propagation algorithm are derived from the properties of the narrowing functions

used for pruning the variable domains.

In the interval constraints framework, a set of narrowing functions is associated to each constraint

of the CCSP. The evaluation of each narrowing function is accomplished by algorithms based on

Interval Analysis techniques. Section 4.2 discusses the main approaches used to associate narrowing

functions to constraints and the algorithms used for their evaluation.

4.1 The Propagation Algorithm

The overall functioning of the propagation algorithm used for pruning the variable domains is based

on narrowing functions. A narrowing function is a mapping between elements of the domains lattice

where the new element is obtained from the original by eliminating some value combinations

incompatible with a particular constraint of the CCSP.

CONSTRAINT PROPAGATION

50

Definition 4.1-1 (Narrowing Function). Let P=(X,D,C) be a CCSP. A narrowing function NF

associated with a constraint c=(s,ρ) (with c∈C) is a mapping between elements of 2D (DomainNF⊆2D

and CodomainNF⊆2D)1 with the following properties (where A is any element of DomainNF):

P1) NF(A)⊆A (contractance)

P2) ∀d∈A d∉NF(A) ⇒ d[s]∉ρ (correctness)

Property P1 from the above definition assures that the new element is not larger (wrt set inclusion)

than the original element, which guarantees that a fixed-point will be eventually reached when the

narrowing functions are successively applied. Property P2 guarantees the correctness of the

application of a narrowing function since every value combination eliminated does not satisfy the

constraint c (see definition 2-4) and so, cannot be a solution of the CCSP.

Monotonicity and idempotency are additional properties common to most of the narrowing

functions used in interval constraints. Several authors [OV93, BG96] denominate narrowing operators

the narrowing functions which satisfy both monotonicity and idempotency (or at least monotonicity

[Ben96]).

Definition 4.1-2 (Monotonicity and Idempotency of Narrowing Functions). Let P=(X,D,C) be a

CCSP. Let NF be a narrowing function associated with a constraint of C. Let A1 and A2 be any two

elements of DomainNF. NF is respectively monotonic and idempotent iff the following properties hold:

P3) A1 ⊆ A2 ⇒ NF(A1) ⊆ NF(A2) (monotonicity)

P4) NF(NF(A1)) = NF(A1) (idempotency)

An important concept related with the narrowing functions is the notion of a fixed-point. For a

particular element of the domain of a narrowing function, the set of all fixed-points smaller (wrt set

inclusion) than this element may be defined.

Definition 4.1-3 (Fixed-Points of Narrowing Functions). Let P=(X,D,C) be a CCSP. Let NF be a

narrowing function associated with a constraint of C. Let A be an element of DomainNF. A is a

fixed-point of NF iff:

NF(A) = A.

The set of all fixed-points of NF within A, denoted Fixed-PointsNF(A), is the set:

Fixed-PointsNF(A) = { Ai ∈ DomainNF | Ai ⊆ A ∧ NF(Ai) = Ai }

The following theorem, based on [OV93], asserts that the union of all fixed-points of a monotonic

narrowing function within an element of its domain is itself a fixed-point which is the greatest

fixed-point within the element.

1 We further impose that for any narrowing function the domain and the codomain must be the same subset of the

representable elements of 2D (the reachable sub-lattice - see sub-section 2.2.5).

INTERVAL CONSTRAINTS

51

Theorem 4.1-1 (Union of Fixed-Points)2. Let P=(X,D,C) be a CCSP. Let NF be a monotonic

narrowing function associated with a constraint of C, and A an element of DomainNF. The union of all

fixed-points of NF within A, denoted ∪Fixed-PointsNF(A), is the greatest fixed-point of NF in A:

∪Fixed-PointsNF(A)∈Fixed-PointsNF(A)

∀Ai ∈Fixed-PointsNF(A) Ai ⊆ ∪Fixed-PointsNF(A)

From the above theorem it is possible to prove that the contraction resulting from the application of a

monotonic narrowing function to an element of its domain is limited by the greatest fixed-point within

the element. In other words, no value combination included in the greatest fixed-point may be

discarded in the contraction. Moreover, if the monotonic narrowing function is idempotent, the result

of the contraction is precisely the greatest fixed-point within the element of application.

Theorem 4.1-2 (Contraction Applying a Narrowing Function). Let P=(X,D,C) be a CCSP. Let NF

be a monotonic narrowing function associated with a constraint of C and A an element of DomainNF.

The greatest fixed-point of NF within A is included in the element obtained by applying NF to A:

∪Fixed-PointsNF(A) ⊆ NF(A)

In particular, if NF is also idempotent then:

∪Fixed-PointsNF(A) = NF(A)

In the interval constraints framework, each constraint originates several narrowing functions

responsible for the elimination of some incompatible value combinations. Function prune,

implemented in pseudo-code in figure 4.1, describes the overall propagation algorithm which applies

successively each narrowing function until a fixed-point is attained. The algorithm is an adaptation of

the original propagation algorithm AC3 [Mon74] used for solving CSPs with finite domains.

function prune(a set Q of narrowing functions, an element A of the domains lattice)
(1) S ← ∅ ;
(2) while Q ≠ ∅ do
(3) choose NF ∈ Q;
(4) A’ ← NF(A) ;
(5) if A’ = ∅ then return ∅ ;
(6) P ← { NF’ ∈ S: ∃x∈RelevantNF’

 A[x] ≠ A’[x] } ;

(7) Q ← Q ∪ P ; S ← S \ P ;
(8) if A’ = A then Q ← Q \ {NF} ; S ← S ∪ {NF} end if;
(9) A ← A’ ;
(10) end while
(11) return A ;

end function

Figure 4.1 The constraint propagation algorithm.

2 The theorems presented in this Chapter are proved in Appendix B.

CONSTRAINT PROPAGATION

52

The first argument Q of the function prune is a set of narrowing functions initially composed of all the

narrowing functions associated with the constraints of the CCSP. The second argument A is initially

instantiated with an element of the domains lattice representing the original variable domains (before

applying the propagation algorithm). The result is a smaller (or equal) element of the domains lattice.

The algorithm is based on a cycle (lines 2-10) where, in each step of the cycle, A is narrowed by

applying a narrowing function NF selected from Q. During the whole process, set S contains the

narrowing functions for which A is necessarily a fixed-point and set Q contains the remaining

narrowing functions. Initially there are no guarantees on whether the original domains A is a fixed-

point of any narrowing function and so S is empty (line 1) and Q contains all the narrowing functions.

The following is an explanation of the sequence of actions executed at each step of the cycle. If Q is

the empty set then A is a fixed-point for all the narrowing functions and it cannot be further pruned by

them, so the cycle is terminated (line 2) and A is returned (line 11). If Q is not empty then one of its

elements NF, chosen accordingly to a selection criterion (line 3), is applied to A with result A’ (line 4).

If this is the empty set then it is proved that there is no possible value combination within A capable of

satisfying the constraint associated with NF and the execution is terminated (line 5)3 returning ∅,

which means that A does not contain any solution of the CCSP. Otherwise P is defined (line 6) as a

subset of S composed of all the elements of S for which A’ is no longer guaranteed to be a fixed-point.

These elements, which are the narrowing functions with relevant variables4 whose domains were

changed by applying NF to A, must be moved from S to Q (line 7). If A’ is a fixed-point of NF (which

is guaranteed if A=A’)5 then NF must be moved from Q to S (line 8). Finally, A is updated with the

new narrowed set of domains A’ (line 9), the current cycle ends (line 10) and a new step cycle restarts

(line 2).

From the properties of the narrowing functions it is possible to prove that the propagation algorithm

terminates and is correct. Moreover, if all the narrowing functions are monotonic then the propagation

algorithm is confluent (the result is independent from the selection criteria used in line 3) and

computes the greatest common fixed-point included in the initial domains.

Theorem 4.1-3 (Properties of the Propagation Algorithm). Let P=(X,D,C) be a CCSP. Let set S0 be

a set of narrowing functions (obtained from the set of constraints C). Let A0 be an element of

DomainNF (where NF∈S0) and d an element of D (d∈D). The propagation algorithm prune(S0, A0)

(defined in figure 4.1) terminates and is correct:

∀d ∈ A0
 d is a solution of the CCSP ⇒ d ∈ prune(S0, A0)

If S0 is a set of monotonic narrowing functions then the propagation algorithm is confluent and

computes the greatest common fixed-point included in A0.

3 Actually, line 5 is only written for clarity, in practice it could be dropped since the empty set is a fixed-point of any

narrowing function and in the end the result would be the same.
4 Let NF be a narrowing function associated with a constraint c=(s,ρ). We will say that a variable x is relevant wrt NF

(x∈RelevantNF) iff x is an element of s.
5 Knowing that NF is idempotent, A’ is necessarily a fixed-point of NF, and the if condition of line 8 may be dropped.

INTERVAL CONSTRAINTS

53

Although, in the case of monotonic narrowing functions, the selection criterion is irrelevant for the

pruning obtained by the propagation algorithm, it may be very important for the efficiency of the

propagation. In [LGR96, LGR98] problems of slow convergence of the propagation algorithm are

associated with cyclic phenomena (in the successive application of the narrowing functions) and a

revised propagation algorithm is suggested for identifying and simplifying such cyclic phenomena

dynamically (dynamically adapting the selection criterion).

4.2 Associating Narrowing Functions to Constraints

In the interval constraints framework, a set of narrowing functions associated with a constraint of the

CCSP is defined by considering its projections with respect to each variable in the scope of the

constraint.

The projection function identifies from a real box B (representing a set of value combinations

between the variables of the scope s of a constraint c=(s,ρ)) all the possible values of a particular

variable xi∈s for which there is a value combination belonging to the constraint relation ρ.

Definition 4.2-1 (Projection Function). Let P=(X,D,C) be a CCSP. The projection function with

respect to a constraint c=(s,ρ)∈C and a variable xi∈s, denoted πxi

ρ
, obtains a set of real values from a

real box B (with B∈2D[s]) and is defined by:

πxi

ρ
(B) = { d[xi] | d ∈ρ ∧ d ∈ B } = (ρ ∩ B)[xi]

Clearly, all value combinations within B with xi values outside πxi

ρ
(B) are guaranteedly outside the

relation ρ and so they do not satisfy the constraint c.

Figure 4.2 gives an example of a CCSP P with a constraint x1×(x2-x1)=0 and shows the sets obtained

by applying its projection functions on the real box B=<[-0.5..2.5],[0.5..1.5]>.

Figure 4.2 An example of a constraint and its projection functions.

x2

x1

x1 = 0 x1 = x2

B

0 0.5 1.5

0.5

1.5

πx1

ρ
(B) = {0} ∪ [0.5..1.5]

πx2

ρ
(B) = [0.5..1.5]

c ≡ x1×(x2-x1) = 0

P = (X,D,C) = (<x1,x2>,D1×D2,{c})

D1=[-1..3] D2 =[-0.5..2]

B =<[-0.5..2.5],[0.5..1.5]>

ρ = { <x1,x2>∈D | x1×(x2-x1) = 0 }

c = (<x1,x2>,ρ)

CONSTRAINT PROPAGATION

54

Any solution of the constraint must be a point within the line x1=0 or within the line x1=x2 (thin solid

lines in the figure). These points within the real box B define the segments represented in the figure as

thick solid lines within the grey rectangle. The projections of these segments with respect to each

variable are the sets obtained by applying the respective projection function to B.

Given the above definition, a box-narrowing function may be defined which narrows the domain of

one variable xi∈s from a box B (representing all the variables of the CCSP) eliminating some values of

xi not belonging to πxi

ρ
(B[s]).

Definition 4.2-2 (Box-Narrowing Function). Let P=(X,D,C) be a CCSP (with X=<x1,…,xi,…,xn>). A

box-narrowing function with respect to a constraint (s,ρ)∈C and a variable xi∈s is a mapping, denoted

BNFxi

ρ
, that relates any F-box B=<Ix1

,…, Ixi
,…, Ixn

> (B⊆D) with the union of m (1≤m) F-boxes,

defined by:

BNFxi

ρ
(<Ix1

,…, Ixi
,…, Ixn

>) = <Ix1
,…, I1,…, Ixn

> ∪ … ∪ <Ix1
,…, Im,…, Ixn

>

satisfying the property:

π xi

ρ
(B[s]) ⊆ I1 ∪ … ∪ Im ⊆ Ixi

The box-narrowing functions satisfy both properties of the narrowing functions: contractance follows

from the property I1 ∪ … ∪ Im ⊆ Ixi
 (the only changed domain is smaller than the original) and

correctness follows from the property πxi

ρ
(B[s]) ⊆ I1 ∪ … ∪ Im (the eliminated combinations have xi

values outside the projection function). However these properties are not enough for making them

narrowing functions (see definition 4.1-1) since they are not guaranteed to be closed under

composition (a box-narrowing function may only be applied to a single F-box but the result may be

the union of several disjoint F-boxes).

Most approaches solve the above problem by imposing that the result of applying a box-narrowing

function to an F-box must be a single F-box. This can always be achieved by substituting the union

operations of definition 4.2-2 by union hull operations (see definition 2.2.2-1). With this restriction a

box-narrowing function is a narrowing function accordingly to definition 4.1-1 and may be applied

within the propagation algorithm. Moreover, the complete set of narrowing functions may be obtained

by considering a box-narrowing function associated with each variable of each constraint of the CCSP.

Other approaches [Hyv92, SH92] that consider structures for representing unions of F-boxes (see

subsection 2.2.4), define each narrowing function as a function that applies a box-narrowing function

to each F-box represented in the structure. The result is the union of several F-boxes (which is

representable by a structure) each one smaller than the original (contractance) and containing the same

set of solutions (correctness).

What still remains to be explained is how to obtain an enclosure of a projection function which is

necessary to define the associated box-narrowing function. Because the goal is to narrow as much as

INTERVAL CONSTRAINTS

55

possible the original domain loosing no solutions, the best possible enclosure is the RF-set

approximation (see definition 2.2.3-2) of the set of reals that would be obtained by the projection

function. This best possible enclosure cannot be easily obtained for all kinds of constraints so, several

interval constraint approaches transform the original CCSP into an equivalent one (see definition 2-7)

where all the constraints are in a suitable form for obtaining such enclosure. This method is known as

the constraint decomposition method to emphasise the decomposition of a complex constraint into a

set of primitive constraints. An alternative approach, denoted here as the constraint Newton method, is

to handle directly the original set of constraints and for each one obtain a coarser approximation of the

enclosing set by applying an algorithm that alternates bisection with Newton steps (see subsection

3.3.1). Both methods will be described in the next two sub-sections whereas complementary

alternatives will be addressed in subsection 4.2.3.

4.2.1 Constraint Decomposition Method

The constraint decomposition method [Hyv92, SH92, Lho93, BO97] was the original technique used

for defining box-narrowing functions capable of narrowing a variable domain into the RF-set

approximation (or at least the RF-hull approximation) of the set obtained by the respective projection

function. It is based on the transformation of complex constraints into an equivalent set of primitive

constraints whose projection functions can be easily computed.

Definition 4.2.1-1 (Primitive Constraint). Let ec be a real expression with at most one basic operator

(see definition 3.2-1) and with no multiple occurrences of its variables. Let e0 be a real constant or a

real variable not appearing in ec. The constraint c is a primitive constraint iff it is expressed as:

ec ⋄ e0 with ⋄ ∈ {≤,=,≥}

A set of primitive constraints can be easily obtained from a non-primitive constraint. Recall that by

definition 2.2-2 any constraint of a CCSP is expressed in the form ec⋄0 (where ec is a real expression

and ⋄∈ {≤,=,≥}) and the only reason why it is not a primitive constraint is that the real expression ec

may contain more than one basic operator or may contain multiple occurrences of the same variable.

However, if there are n basic operators within expression ec, then n-1 basic operators must be within

the expressions that are arguments of the other basic operator (see the recursive definition 3.2-1 of a

real expression). Thus, the original constraint may be decomposed by considering new variables (and

new equality constraints), one for each of these arguments containing basic operators. The whole set

of primitives may be obtained by repeating this process until all constraints contain at most one basic

operator. Similarly, for each multiple occurrence of the same variable a new variable may be

considered together with a new equality constraint. Alternatively, constraints with multiple

occurrences of the same variables could be solved in order to obtain a single occurrence of each

CONSTRAINT PROPAGATION

56

variable, which is always possible because, after the previous decomposition, these constraints contain

at most a single basic operator.

Consider the CCSP P presented in figure 4.2 which includes the single constraint c≡ x1×(x2-x1)=0.

The constraint is not primitive since it contains two basic arithmetic operators and the variable x1

occurs twice. Applying the decomposition technique described above, the new variable x3 is

introduced for representing the second argument of the multiplication operator and the primitive

constraints c1≡ x1×x3=0 and c2≡ x2-x1=x3 are obtained. The CCSP P=(<x1,x2>,D1×D2,{c}) may thus be

transformed into the equivalent CCSP P’=(<x1,x2,x3>,D1×D2×[-∞..+∞],{c1,c2}) where all the

constraints are primitive.

The next step of the constraint decomposition method is to solve algebraically each primitive

constraint wrt each variable in the scope and to define an interval function enclosing the respective

projection function. This is always possible because the constraints are primitive. However an extra

care must be taken due to the indefinition of some real expressions for particular real valued

combinations (for example: x1×x2=x3 is not equivalent to x1=x3/x2 if x2 and x3 are both zero, in which

case the expression x3/x2 is not defined). The later problem is naturally handled by considering the

natural interval extension of the obtained real function, which includes all the defined real valued

combinations (in the above example X1⊆X3/X2).

Definition 4.2.1-2 (Inverse Interval Expression). Let c=(s,ρ) be a primitive constraint expressed in

the form ec⋄e0 where ec≡e1 or ec≡Φ(e1,…,em) (Φ is an m-ary basic operator and ei a variable from s or

a real constant). The inverse interval expression of c with respect to ei, denoted ψei, is the natural

interval expression of the expression obtained by solving algebraically, wrt ei, the equality ec=e0 if c is

an equality or ec=e0+k if c is an inequality (with k≤0 for inequalities of the form ec≤e0 and k≥0 for

inequalities of the form ec≥e0).

Table 4.1 shows the inverse interval expressions of primitive constraints with no operators or with one

of the four basic arithmetic operators defined in 3.1-1. The inverse interval expressions associated with

primitive constraints including other basic operators could be defined similarly.

Table 4.1 Inverse interval expressions of some primitive constraints.

ψe1
ψe2

ψe3 ⋄∈{≤,=,≥}
e1+e2⋄e3 (E3+K)-E2 (E3+K)-E1 (E1+E2)-K ei is a real variable or a real constant

e1-e2⋄e3 (E3+K)+E2 E1-(E3+K) (E1-E2)-K Ei is the natural interval extension of ei

e1×e2⋄e3 (E3+K)/E2 (E3+K)/E1 (E1×E2)-K [-∞..0] if ⋄ ≡ ≤

e1/e2⋄e3 (E3+K)×E2 E1/(E3+K) (E1/E2)-K K= [0..0] if ⋄ ≡ =

e1⋄e2 (E2+K) E1-K [0..+∞] if ⋄ ≡ ≥

INTERVAL CONSTRAINTS

57

Table 4.2 presents the inverse interval expressions associated with the primitive constraints of the

decomposed CCSP P’ described in the previous example.

Table 4.2 Inverse interval expressions of c1≡ x1×x3=0 and c2≡ x2-x1=x3.

ψe1
ψe2

ψe3

x1×x3=0 0/X3 0/X1 X1×X3

x2-x1=x3 X3+X1 X2-X3 X2-X1

The inverse interval expression wrt a variable allows the definition of the projection function of the

constraint wrt to that variable.

Theorem 4.2.1-1 (Projection Function based on the Inverse Interval Expression). Let P=(X,D,C)

be a CCSP. Let c=(s,ρ)∈C be an n-ary primitive constraint expressed in the form ec⋄e0 where ec≡e1 or

ec≡Φ(e1,…,em) (with Φ an m-ary basic operator and ei a variable from s or a real constant). Let ψxi be

the inverse interval expression of c with respect to the variable xi (ei ≡ xi). The projection function πxi

ρ

of the constraint c wrt variable xi is the mapping:

πxi

ρ
(B) = ψxi(B) ∩ B[xi] where B is an n-ary real box

An enclosure of the projection function wrt a variable xi is obtained by firstly applying the evaluation

rules of the basic operators (see section 3.1) to obtain the respective inverse interval expression ψxi

with the real box B, and secondly by intersecting the result with the projection of B wrt xi.

Table 4.3 shows the projection functions obtained by this method for the primitive constraints of the

previous example.

Table 4.3 Projection functions of c1≡ x1×x3=0 and c2≡ x2-x1=x3.

x1×x3=0 x2-x1=x3

πx1

ρ
(<I1,I3>) = (0/I3) ∩ I1 πx1

ρ
(<I1,I2,I3>) = (I2-I3) ∩ I1

πx3

ρ
(<I1,I3>) = (0/I1) ∩ I3 πx2

ρ
(<I1,I2,I3>) = (I3+I1) ∩ I2

πx3

ρ
(<I1,I2,I3>) = (I2-I1) ∩ I3

The soundness of the interval evaluation rules guarantees the enclosure of the projection function.

However, the quality of this enclosure depends on the evaluation rules used (as discussed in section

3.1) and the restrictions imposed on the result (a single F-interval or the union of multiple F-intervals).

The best possible enclosure (the RF-set approximation of the projection function) is obtainable by

using extended interval arithmetic and allowing the result to be composed of multiple F-intervals.

CONSTRAINT PROPAGATION

58

The inclusion monotonicity property of interval arithmetic evaluation guarantees the monotonicity

of the box narrowing functions defined by the decomposition method.

In the case of the above example, the interval evaluations will always result in a single F-interval

and so these could directly define the narrowing functions that will be considered by the propagation

algorithm for pruning the variable domains of the decomposed CCSP P’ (see Table 4.4).

Table 4.4 Narrowing functions of CCSP P’=(<x1,x2,x3>,D1×D2×[-∞..+∞],{x1×x3=0, x2-x1=x3})

NF1 BNFx1

ρ
(<I1,I2,I3>) = <(0/I3) ∩ I1,I2,I3>

x1×x3=0
NF2 BNFx3

ρ
(<I1,I2,I3>) = <I1,I2,(0/I1) ∩ I3>

NF3 BNFx1

ρ
(<I1,I2,I3>) = <(I2-I3) ∩ I1,I2,I3>

x2-x1=x3 NF4 BNFx2

ρ
(<I1,I2,I3>) = <I1,(I3+I1) ∩ I2,I3>

NF5 BNFx3

ρ
(<I1,I2,I3>) = <I1,I2,(I2-I1) ∩ I3>

If the original goal is, according to the CCSP P=(<x1,x2>,D1×D2,{x1×(x2-x1)=0}), to prune F-box

B=<I1,I2>∈D1×D2, then, using the decomposition method, the narrowing is executed on the

decomposed CCSP P’=(<x1,x2,x3>,D1×D2×[-∞..+∞],{x1×x3=0, x2-x1=x3}) by applying the propagation

algorithm (prune) to the initial F-box B1=<I1,I2,[-∞..+∞]> and using the narrow functions defined in

table 4.4. From the resulting F-box B1’=<I1’,I2’,I3’> a box B’=<I1’,I2’> can be obtained by considering

only the domains of the variables appearing in the original CCSP P. Table 4.5 summarises the pruning

results obtained by this method for four different initial domains.

Table 4.5 Examples of the application of the decomposition method on a CCSP. The CCSP is

P=(<x1,x2>,D1×D2,{x1×(x2-x1)=0}) and Q={NF1,NF2,NF3,NF4,NF5} (see table 4.4).

B=<I1,I2> B’=<X1’,X2’>

I1 I2

prune(Q,<X1,X2,[-∞..+∞]>)
I1’ I2’

Case 1: [-0.5..2.5] [0.5..1.5] <[-0.5..2.5],[0.5..1.5],[-2.0..2.0]> [-0.5..2.5] [0.5..1.5]

Case 2: [0.25..1.0] [0.5..1.5] <[0.5..1.0],[0.5..1.0],[0..0]> [0.5..1.0] [0.5..1.0]

Case 3: [-1.0..0.25] [0.5..1.5] <[0..0],[0.5..1.5],[0.5..1.5]> [0..0] [0.5..1.5]

Case 4: [-1.0..-0.25] [0.5..1.5] ∅ ∅

Note that in the first case the original variable domains could not be pruned by the decomposition

method. However, in this case, the smallest box within B that encloses all the CCSP solutions is

<[0.0..1.5],[0.5..1.5]> (as can be checked in figure 4.2). In the other three cases the results obtained

were the narrowest possible results without loosing solutions (in particular, in case 4, it was proven

that box B is inconsistent).

INTERVAL CONSTRAINTS

59

4.2.2 Constraint Newton Method

Instead of decomposing each complex constraint into a set of primitive constraints, the constraint

Newton method [BMV94, VMK97] manipulates complex constraints as a whole by using a technique

based on the interval Newton’s method for searching the zeros of univariate functions (see 3.3.1).

The approach is based on a set of auxiliary functions, that we will denote interval projections, one

for each variable of each constraint.

Definition 4.2.2-1 (Interval Projection). Let P=(X,D,C) be a CCSP. Let c=(s,ρ)∈C be an n-ary

constraint expressed in the form ec⋄0 (with ⋄∈{≤,=,≥} and ec a real expression). Let B be an n-ary

F-box. The interval projection of c wrt xi∈s and B is the function, denoted ∏xi

ρB
, represented by the

expression obtained by replacing in ec each real variable xj (xj≠xi) by the interval constant B[xj].

The interval projections, ∏x1

ρB
 and ∏x2

ρB
, associated with the constraint x1×(x2-x1)=0 and an F-box

B=<[-0.5..2.5],[0.5..1.5]> (see example of figure 4.2) are the family of univariate real functions

represented by the expressions x1×([0.5..1.5]-x1) and [-0.5..2.5]×(x2-[-0.5..2.5]), respectively.

From the properties of the interval projections, a strategy is devised for obtaining an enclosure of

the respective projection function.

Theorem 4.2.2-1 (Properties of the Interval Projection). Let P=(X,D,C) be a CCSP. Let c=(s,ρ)∈C

be an n-ary constraint and B an n-ary F-box. Let ∏xi

ρB
 be the interval projection of c wrt variable xi∈s

and B. The following properties are necessarily satisfied:

(i) if ⋄ ≡ “=” then ∀r∈B[xi] r∈πxi

ρ
(B) ⇒ 0∈∏xi

ρB
([r])

(ii) if ⋄ ≡ “≤” then ∀r∈B[xi] r∈πxi

ρ
(B) ⇒ left(∏xi

ρB
([r])) ≤ 0

(iii) if ⋄ ≡ “≥” then ∀r∈B[xi] r∈πxi

ρ
(B) ⇒ right(∏xi

ρB
([r])) ≥ 0

We will say that a real value r satisfies the interval projection condition if the right side of the

respective implication (i), (ii) or (iii) is satisfied.

Property (i) claims that in equality constraints each element of a projection function wrt a variable

must be a zero of the interval projection, that is, zero must be within the interval obtained by its

evaluation. Properties (ii) and (iii) claim that in inequality constraints each element of a projection

function wrt a variable when evaluated by the complex interval projection will produce an interval

where at least some elements are smaller/larger (or equal) than zero.

The key idea of the strategy used in the constraint Newton method is to search for the leftmost and

the rightmost elements of the original variable domain satisfying the interval projection condition. The

next theorem guarantees that these elements define an interval that contains the projection function.

CONSTRAINT PROPAGATION

60

Theorem 4.2.2-2 (Projection Function Enclosure based on the Interval Projection). Let

P=(X,D,C) be a CCSP. Let c=(s,ρ)∈C be an n-ary constraint, B an n-ary F-box and xi an element of s.

Let a and b be respectively the leftmost and the rightmost elements of B[xi] satisfying the interval

projection condition. The following property necessarily holds:

πxi

ρ
(B) ⊆ [a..b]

From the above theorem, the natural strategy to obtain a new left (right) bound is firstly to verify the

interval projection condition in the left (right) extreme of the original variable domain and secondly,

only in case of failure, to search for the leftmost (rightmost) zero of the interval projection. This

strategy assumes the continuity of the interval projection function since in case of failure of an

inequality condition, it assumes that the leftmost (rightmost) element satisfying the interval projection

condition must be a zero of the interval projection.

Figure 4.3 presents the pseudocode of function narrowBounds, which implements this narrowing

strategy. It uses the function intervalProjCond for verifying whether the interval projection condition

is satisfied at the original interval bounds and uses the searchLeft and searchRight functions for

finding new bounds. The unique argument of the function narrowBounds is an F-interval representing

the domain of a variable xi. The result is a smaller F-interval enclosing the projection function (or the

empty set if it is proved that the interval projection condition cannot be satisfied).

function narrowBounds(an F-interval [a..b])
(1) if a = b then if intervalProjCond([a]) then return [a] else return ∅; end if; end if;

(2) if not intervalProjCond([a..a+]) then a ← searchLeft([a+..b]);
(3) if a = ∅ then return ∅;
(4) if a = b then return [b];

(5) if not intervalProjCond([b-..b]) then b ← searchRight([a..b-]);
(6) return [a..b];
end function

Figure 4.3 The narrowing algorithm for finding an enclosure of the projection function.

The algorithm works as follows. If the original F-interval [a..b] is degenerate (line 1) then, it either

satisfies the interval projection condition and cannot be further narrowed or it doesn’t and the empty

set is returned because the constraint cannot be satisfied. If [a..b] is not degenerate then the algorithm

proceeds (line 2) by inspecting the satisfiability of the interval projection condition in the left bound

([a..a+]) and, in case of failure, a is updated to the left bound of the leftmost canonical interval (within

[a+..b]) that zeros the interval projection. If there are no zeros (line 3), the constraint cannot be

satisfied and the empty set is returned. If the only zero is the right bound b (line 4) then the degenerate

F-interval [b] is returned. Otherwise the algorithm proceeds (line 5) by inspecting the satisfyability of

the interval projection condition within the right bound ([b-..b]) and, in case of failure, b is updated to

the right bound of the rightmost canonical interval (within [a..b-]) that zeros the interval projection. In

INTERVAL CONSTRAINTS

61

this case, the empty set cannot be returned since the left canonical bound is a zero of the interval

projection, and so, the F-interval [a..b] is returned (line 6).

Function intervalProjCond is described in figure 4.4. It uses the interval projection ∏xi

ρB
 and

assumes that the constraint is expressed in the form ec⋄0. Its unique argument is a canonical

F-interval I and the result is a boolean which is set to false iff it can be proved that the interval

projection condition cannot be satisfied by any real value within I.

function intervalProjCond(a canonical F-interval I)

(1) [a..b] ← ∏xi

ρB
(I);

(2) case ⋄ of
(3) “=”: return 0∈[a..b];
(4) “≤”: return a≤0;
(5) “≥”: return b≥0;
(6) end case;

end function

Figure 4.4 The function that verifies if the interval projection condition may be satisfied.

In line 1 the interval projection function is evaluated for the canonical F-interval I and the result is the

interval [a..b]. Lines 3, 4 and 5 verify if the appropriate interval projection condition (see theorem

4.2.2-1) may be satisfied for a real value within I returning true in that case and false otherwise.

The algorithm for searching for the leftmost zero of an interval projection is specified in function

searchLeft, implemented in pseudocode in figure 4.5 (function searchRight is defined similarly). The

algorithm is analogous to the ShrinkLeft and LNAR algorithms proposed in [BMV94] and [VMK97]

respectively. It uses the interval projection function ∏xi

ρB
 and an associated Newton Narrowing

function NN as described in subsection 3.3.1 (see definition 3.3.1-3).

function searchLeft(an F-interval I)
(1) Q ← {I};
(2) while Q ≠ ∅ do
(3) choose I1 ∈ Q with the smallest left bound (∀I∈Q left(I1)≤ left(I));

(4) Q ← Q \ {I1};

(5) if 0∈∏xi

ρA
(I1) then

(6) I1 ← NN(I1);
(7) if I1 ≠ ∅ then
(8) I0 ← cleft(I1); I1 ← [right(I0)..right(I1)];

(9) if 0∈∏xi

ρB
(I0) then return left(I0);

(10) else Q ← Q ∪ {[left(I1)..center(I1)], [center(I1) ..right(I1)]}; end if;
(11) end if;
(12) end if;
(13) end while;
(14) return ∅;

end function

Figure 4.5 The algorithm for searching the leftmost zero of an interval projection.

CONSTRAINT PROPAGATION

62

The only argument I of the function searchLeft is an F-interval representing the domain of the variable

xi where the search takes place. The returned result is either the empty set if it is proven that there are

no zeros of ∏xi

ρB
 within I, or else is an F-number a satisfying: 0∈∏xi

ρB
([a..a+]).

The algorithm is based on a recurring cycle (lines 2 through 13) where, in each cycle, a partition I1

of the original interval I (I1⊆I) is inspected for its leftmost zero of ∏xi

ρB
. During the whole process, a

set Q will contain partitions of the original interval that might include zeros of ∏xi

ρB
. This set is

initialised with the whole original interval I (line 1). If Q becomes empty then it is proved that there

are no zeros of ∏xi

ρB
 within I and so the cycle terminates and the empty set is returned (line 14). If Q is

not empty then its member with the smallest left bound is chosen for inspection (line 3) and is

removed from Q (line 4). The inspection of an interval I1 proceeds as follows. Line 5 verifies if zero is

contained in the interval evaluation of ∏xi

ρB
 with I1 as argument. In case of failure, I1 cannot contain a

zero of ∏xi

ρB
 (see theorem 3.2-2) and will not be further considered (a new cycle begins). In case of

success, I1 might contain zeros of ∏xi

ρB
 and so, the Newton Narrowing function is applied (line 6) for

obtaining a smaller interval without losing any existing zero (see theorem 3.3.1-1). Line 7 verifies if

the obtained interval is not empty. If it is empty then I1 cannot contain a zero of ∏xi

ρB
 (see theorem

3.3.1-2) and a new cycle begins. Otherwise a canonical F-interval I0 (enclosing the left bound of I1) is

isolated for inspection (line 8). If zero is contained in the interval evaluation of ∏xi

ρB
 with I0 as

argument then the left bound of I0 is returned (line 9); else I1 is split at its mid point and both intervals

are added to Q (line 10).

The algorithm, which takes advantage from the efficiency of the Interval Newton method (see

theorems 3.3.1-5 and 3.3.1-6), is correct and terminates.

Correctness is guaranteed in the sense that the returned real value is smaller (or equal) than any

possible real value within the original domain that is a zero of the interval projection function. On the

one hand, the fact that sub-regions of the original domain are only discarded by applying the Newton

Narrowing function guarantees that no existing zero is lost. On the other hand, the returned real value

is the left bound of a canonical F-interval I0 that “zeros” ∏xi

ρB
 (its interval evaluation contains zero)

and this value is smaller than any real value contained in any partition in Q6.

However, the fact the interval evaluation of ∏xi

ρB
(I0) contains zero does not guarantee that the left

bound of I0 is a zero of the function (the returned real value may not be the leftmost zero of the

function). Moreover, it does not even guarantee the existence of a real value within I0 that zeros the

function (it could be a consequence of the approximate nature of interval arithmetic evaluation).

6 Due to the splitting strategy (line 9) and the choosing criterion (line 3), all values of the inspected partition I1 are smaller (or

equal) than any value of any other partition in Q

INTERVAL CONSTRAINTS

63

Termination is guaranteed because at each cycle a sub-region of the original domain is discarded or

split into two smaller sub-regions which is a finite process that necessarily ends when canonical sub-

regions are obtained.

As a consequence of the above properties of the searchLeft/searchRight functions, the interval

obtained by applying the narrowBounds function to a domain of variable xi within a box B, necessarily

encloses the interval [a..b] whose bounds are the leftmost and the rightmost elements of B[xi]

satisfying the interval projection condition. Hence, and accordingly to theorem 4.2.2-2, the

narrowBounds function computes an enclosure of the projection function:

πxi

ρ
(B) ⊆ [a..b] ⊆ narrowBounds(B[xi])

In the unrealistic case where the interval arithmetic evaluations were performed with infinite

precision, [a..b] is the interval obtained by the narrowBounds function. However, in this case, the

termination property of the searchLeft/searchRight functions is no longer guaranteed.

The box narrowing functions defined by the narrowBounds functions are not guaranteed to be

monotonic. On the one hand, the Newton Narrowing functions used in the searchLeft/searchRight

functions are non monotonic since the Newton function (definition 3.3.1-1) is not monotonic (due to

its dependence on the centre of an interval). On the other hand, they may be able to prove the

non-existence of zeros on entire sub-regions of a domain where the interval evaluation of particular

canonical intervals within this region may be insufficient to discard this possibility. Consequently, the

interval obtained by the narrowBounds function is not necessarily the smallest interval containing all

canonical intervals whose evaluation satisfy the interval projection condition. It may be even smaller

than this interval because, during the narrowing process, the Newton Narrowing functions may be able

to prove that some of these canonical intervals cannot satisfy the interval projection condition.

However, with infinite precision, the monotonicity of the narrowBounds functions is guaranteed

since the obtained interval is bounded by the leftmost and the rightmost elements of the original

interval satisfying the interval projection condition.

Consider the example of the CCSP P=(<x1,x2>,D1×D2,{x1×(x2-x1)=0}) presented in figure 4.2.

Using the constraint Newton method, since there is no need to decompose the unique constraint into

primitives, the pruning results over the original box B=<[-0.5..2.5],[0.5..1.5]> are much better than the

obtained by the previous method. The following is a step by step description of the application of the

narrowBounds function for narrowing the domain of variable x1. As in the example of figure 3.6, it is

assumed a three digits precision, that is, the distance between two consecutive F-numbers is 0.001.

The narrowBounds function is applied over the original interval [-0.5..2.5] with the associated

interval projection ∏x1

ρB
 represented by the expression x1×([0.5..1.5]-x1) (represented in figure 3.2).

Since the original interval is not degenerate, the intervalProjCond function is applied to its left

canonical bound [-0.5..-0.499]. Because 0∉∏x1

ρB
([-0.5..-0.499])=[-1..-0.499], this bound does not

CONSTRAINT PROPAGATION

64

satisfy the interval projection condition and the search for a new left bound within [-0.499..2.5] is

accomplished by function searchLeft.

Table 4.6 summarises the process, each line illustrating the principal actions executed at each cycle

within the searching algorithm described in figure 4.5. The first column shows the set of interval

partitions that are considered at the beginning of the cycle. The second column is the verification that

the leftmost interval partition I1 may contain zeros of the interval projection (fig. 4.5, line 5). The third

column is the interval obtained by applying the Newton Narrowing function to this partition (fig. 4.5,

line 6) where the Newton function is defined accordingly definition 3.3.1-1 with FE ≡ X1–X1
2
 and

F’E ≡1–2X1 (see example of figure 3.6). The fourth column is the verification if the left canonical

bound of the previously obtained interval may contain zeros of the interval projection (fig. 4.5, line 9).

Table 4.6 Searching a new left bound for x1 within the interval [-0.499..2.5].

searchLeft([-0.499..2.5])

Q={I1,...,In} 0∈∏xi

ρB
(I1) NN(I1) 0∈∏xi

ρB
(I0)

{[-0.499..2.5]} 0∈[-5..4.998] [-0.499..2.5] 0∉[-0.998.. -0.497]

{[-0.498..1.001],[1.001..2.5]} 0∈[-0.995..2] [-0.498..1.001] 0∉[-0.997.. -0.496]

{[-0.497..0.252],[0.252..1.001],[1.001..2.5]} 0∈[-0.992..0.504] [0..0.001] 0∈[0..0.002]

return 0

In the first two cycles, the Newton Narrowing function was unable to reduce the leftmost interval and

the algorithm proceeded by considering smaller partitions. However, in the third cycle, the Newton

Narrowing function was powerful enough to isolate a canonical zero of the interval projection. The

final returned value is the left bound (0) of this canonical interval.

After verifying that 0∉∏x1

ρB
([2.499..2.5])=[-5..-2.497], the search for a new right bound was

performed similarly, by applying function searchRight to the interval [0..2.499], obtaining the new

bound 1.501. Consequently, the final result obtained by the narrowBounds function for narrowing the

domain [-0.5..2.5] of variable x1 is the new and smaller interval [0..1.501].

The pruning achieved by using the constraint Newton method to solve any of the cases presented in

table 4.5 is identical to the pruning achieved by the decomposition method. An exception is the first

case, presented above, where the x1 domain was narrowed into a smaller interval [0..1.501] which is a

fairly good approximation of [0..1.5] (the smallest interval enclosing the projection function –see

figure 4.2).

4.2.3 Complementary Approaches

Several variations of the two basic methods for obtaining box-narrowing functions have been

considered. The idea is to take advantage of the properties of these methods when applied to

constraints that are expressed in a particular form.

A modification of the Newton’s method, firstly presented in [VMK97], is to use other interval

extensions of the interval projection function associated with a constraint.

INTERVAL CONSTRAINTS

65

As defined in the previous subsection, the interval projection is a univariate function obtained from

the original constraint expression by a process similar to the one presented in the definition of the

natural interval extension (see definition 3.2-6) except that some variables are replaced by their

interval values. Consequently, the interval arithmetic evaluation of this function with an interval

argument, which computes an enclosure of the function range, corresponds to the evaluation of its

natural interval extension. If instead of this natural interval extension, other interval extension

(expressed in some other form) is considered, then its interval arithmetic evaluation would still

compute an enclosure of the function range (see section 3.2). Moreover, the quality of this enclosure is

dependent on the form of the interval extension.

Pascal V. Hentenryck et al propose in [VMK97] the use of the Distributed and the Taylor7 interval

extensions together with the natural interval extension for obtaining different enclosures of the interval

projection function. This way, different box-narrowing functions are simultaneously defined wrt the

same variable of the same constraint and may be applied at different stages of the pruning process

accordingly to their specific properties.

A modification of the decomposition method, presented in [Hyv92] and known as global tolerance

propagation, does not require the complete decomposition of the whole set of constraints into

primitive constraints. It transforms the original set of constraints into an equivalent one where for each

constraint (not necessarily primitive) the inverse interval expressions can be easily computed by

interval arithmetic evaluations. Moreover, for enforcing global consistency it is sufficient to obtain a

set of constraints whose variables are not connected circularly to each other by a chain of mutually

different constraints [Hyv92].

 In practice, this equivalent set of constraints is often impossible to obtain, either due to algebraic

limitations or the imprecision of the interval arithmetic evaluations, and the approach may only be

applied in a few special situations.

Another modification to the general basic methods is the introduction of a pre-processing phase

preceding the definitions of the box-narrowing functions. The goal is to define an equivalent CCSP by

applying symbolic rewriting techniques over the original set of constraints. The obtained equivalent

CCSP will be expressed in a more suitable form for applying efficiently the narrowing propagation

algorithm.

Benhamou in [Ben96] characterised the pre-processing techniques in terms of constraint rewriting

operators. Practical proposals for applying these techniques aim at improving propagation efficiency

by introducing redundant constraints. In particular, for CCSPs addressing the solution of multivariate

polynomials over the reals, rewriting approaches were defined where Grobner bases are computed

[BG96] (or partially computed [BG97]) from the original set of constraints.

7 The Taylor interval extension does not require the usage of the narrowBounds function because it can be solved wrt the

variable. However it requires that the constraint must be of the form Ec=0 where Ec denotes a function which has
continuous partial derivatives [VMK97].

CONSTRAINT PROPAGATION

66

Another variation based on the two basic methods for obtaining box-narrowing functions was

presented in [BGG99]. In this work, the authors developed an algorithm, denoted HC4revise, capable

of implementing a narrowing function associated with any complex constraint without decomposing it.

Moreover, the narrowing results achieved by HC4revise are the same as those that would be obtained

if the decomposition method were applied to this constraint and the narrowing propagation executed

with the resulting box-narrowing functions. This allowed the implementation of a more efficient

algorithm, denoted HC4, with the same results as the decomposition method, which does not require

the decomposition of complex constraints into primitives.

Based on the HC4revise algorithm, a complementary approach was proposed in [BGG99], which

may take advantage of the way that a complex constraint is expressed. The idea is that having an

algorithm, such as the HC4revise algorithm, that does not require decomposing complex constraints,

makes it possible to combine the essence of both basic methods, and choose either one or the other,

according to the form of the expression of the interval projection.

The evaluation error of the interval projection function is a consequence of the dependency problem

(see definition 3.2-7) and so, when there are no multiple occurrences of the same variable (the unique

variable) the HC4revise may be applied without introducing errors, otherwise, the Newton’s method

may be preferable. The resulting algorithm, denoted BC4, integrate the efficiency of the HC4revise

algorithm (and efficacy without dependency) with the efficacy of the Newton’s method for the

narrowing propagation of complex constraints.

Finally, some approaches [SKL97], complementary to the box-narrowing functions associated with

each variable of each constraint, consider narrowing functions capable of narrowing several variable

domains simultaneously.

These functions are based on the multivariate interval Newton’s method (see subsection 3.3.2) and

require the grouping of constraints into a square subsystem (the number of considered constraints

equals the total number of variables within their scopes) which can be seen as a single complex

constraint. Despite the inherent complexity of this multivariate approach, it may be particularly

effective where the projection approaches may fail, namely, in pruning space regions in the

neighbourhood of a root [SKL97].

4.3 Summary

In this chapter the generic constraint propagation algorithm was described in terms of narrowing

functions associated with the constraint set. Its properties were derived from the properties of the

narrowing functions. The main methods used in the interval constraint framework for associating

narrowing functions to constraints were presented. Their extensive use of interval analysis techniques

for guaranteeing correctness of the resulting narrowing functions was emphasised. The next chapter

defines local consistency as a property that depends exclusively on the narrowing functions associated

with the constraint set, and overviews the main consistency criteria used in continuous domains.

INTERVAL CONSTRAINTS

67

Chapter 5

Partial Consistencies

The fixed-points of a set of narrowing functions associated with a constraint characterize a local

property enforced among the variables of the constraint scope. Such property is called local

consistency since it depends exclusively on the narrowing functions associated with a single (local)

constraint and defines the value combinations that are not pruned by them (consistent). Section 5.1

characterizes the main types of local consistency types used in continuous domains.

Local consistency is a partial consistency, in the sense that imposing it on a CCSP is not sufficient

to remove all inconsistent value combinations among its variables. Stronger higher order consistency

requirements may be subsequently imposed establishing global properties over the variable domains.

Higher order consistencies will be discussed in section 5.2.

5.1 Local Consistency

Local consistencies used for solving CCSPs are approximations of arc-consistency, a local consistency

developed in Artificial Intelligence [Mac77, Mon74] for solving CSPs with finite domains. A

constraint is said to be arc-consistent wrt a set of value combinations iff, within this set, for each value

of each variable of the scope there is a value combination of these variables that satisfy the constraint.

Definition 5.1-1 (Arc-Consistency). Let P=(X,D,C) be a CSP. Let c=(s,ρ) be a constraint of the CSP

(c∈C). Let A be an element of the power set of D (A∈2D). The constraint c is arc-consistent wrt A iff:

∀xi∈s ∀di∈A[xi] ∃d∈A[s] (d[xi]=di ∧ d ∈ρ)

which, extending the definition of a projection function to any element of 2D, is equivalent to:

∀xi∈s A[xi] = { d[xi] | d ∈ρ ∩ A[s] } = πxi

ρ
(A[s])

Consider the example of figure 4.2 with box B1=<[-0.5..2.5],[0.5..1.5]>, box B2=<[0..1.5],[0.5..1.5]>

and the element A=<[0..0],[0.5..1.5]>∪<[0.5..1.5],[0.5..1.5]>. In this example the variables of the

CCSP are all represented in the constraint scope s=<x1,x2> thus B1[s]=B1, B2[s]=B2 and A[s]=A. The

boxes B1 and B2 are not arc-consistent since, in both, there are x1 values (for example x1=0.25) without

PARTIAL CONSISTENCIES

68

any corresponding x2 value satisfying the constraint (πx1

ρ
(B1)=πx1

ρ
(B2)={0}∪[0.5..1.5] is different from

their respective domains B1[x1]=[-0.5..2.5] and B2[x1]=[0..1.5]). However, element A is arc-consistent

because πx1

ρ
(A)=A[x1]={0}∪[0.5..1.5] and πx2

ρ
(A)=A[x2]=[0.5..1.5].

In continuous domains, arc-consistency cannot be obtained in general due to machine limitations for

representing real numbers. In practice, each real value must be approximated by a canonical F-interval

and so, the best possible approximation of arc-consistency wrt a set of real valued combinations is the

RF-set approximation of each variable domain within this set.

This is the idea of interval-consistency, which can be defined by replacing, in the definition of

arc-consistency, the notion of a real value by the notion of a canonical F-interval. A constraint is said

to be interval-consistent wrt a set of real valued combinations iff for each canonical F-interval

representing a sub-domain of a variable there is a real valued combination of the variables of the scope

satisfying the constraint.

Restricting F-intervals to closed form, a non degenerate canonical F-interval will only be

considered within a variable domain if there is a real valued combination satisfying the constraint in its

interior. However, due to the closed form imposition, a degenerate canonical F-interval will be

considered either if there is a real valued combination satisfying the constraint with this value for that

variable or if this real valued combination is within the interior of the adjacent canonical F-intervals.

Definition 5.1-2 (Interval-Consistency). Let P=(X,D,C) be a CCSP. Let c=(s,ρ) be a constraint of the

CCSP (c∈C). Let A be an element of the power set of D (A∈2D). The constraint c is interval-consistent

wrt A iff:

∀xi∈s ∀[a..a+]⊆A[xi] ∃d∈A[s] (d[xi]∈(a..a+) ∧ d∈ρ) ∧

∀[a]⊆A[xi] ∃d∈A[s] (d[xi]∈(a-..a+) ∧ d∈ρ) (where a is an F-number)

which, extending the definition of a projection function to any element of 2D, is equivalent to:

∀xi∈s A[xi] = Sapx({ d[xi] | d ∈ ρ ∩ A[s] }) = Sapx(πxi

ρ
(A[s]))

Consider again the example of figure 4.2 and a three digits machine precision. The boxes B1 and B2 of

the previous example, which were not arc-consistent, are also not interval-consistent since they

include, in the domain of x1, non degenerate canonical F-intervals with no corresponding x2 value in its

interior satisfying the constraint (for example [0.250..0.251]⊆B2[x1]⊆B1[x1] and if x1∈(0.250..0.251)

there is no x2 value satisfying the constraint). The element A of the previous example, which was arc-

consistent, is also interval-consistent since it is representable by a three digits machine precision and

so Sapx(πx1

ρ
(A))=πx1

ρ
(A)=A[x1] and Sapx(πx2

ρ
(A))=πx2

ρ
(A)=C[x2]. However, the box

B3=<[0.5..π/2],[0.5..π/2]>, which is arc-consistent, is not representable and the smallest

interval-consistent F-box including B3 is B3’=<[0.5..1.571],[0.5..1.571]>.

INTERVAL CONSTRAINTS

69

Interval-consistency was one of the first local consistency types used in continuous domains

[Hyv92, SH92]. It can only be enforced on primitive constraints (decomposition method) where the

RF-set approximation of the projection function can be obtained by using extended interval arithmetic.

Structures, like divisions in [Hyv92] and taxonomies in [SH92], must be considered for representing

each variable domain as a non-compact set of real values. The narrowing functions are defined from

the application of a box-narrowing function to each F-box obtained by all possible F-interval

combinations between the domains represented in each structure.

In practice, the enforcement of interval-consistency can be applied only to small problems [Hyv92].

In order to maintain the RF-set approximation of the projection functions, the number of

non-contiguous F-intervals represented within each structure may grow exponentially, requiring an

unreasonably number of computations for each box-narrowing function.

Because it may be computationally too expensive to keep a structure for representing multiple F-

intervals, the approximations of arc-consistency most widely used in continuous domains assume the

convexity of the variable domains, in order to represent them by single F-intervals.

Hull-consistency (or 2B-consistency), firstly introduced by Lhomme in [Lho93] and extensively

used in continuous domains [Ben95, HEW98, BO97], is a coarser approximation of arc-consistency

than interval-consistency, which requires the satisfaction of the arc-consistency property only at the

bounds of the F-intervals that represent the variable domains.

A constraint is said to be hull-consistent wrt an F-box iff, for each bound of the F-interval

representing the domain of a variable there is a real valued combination of the variables of the scope

satisfying the constraint. Due to machine limitations for representing real numbers, the notion of a

bound of an F-interval must be extended to a canonical bound (an extreme canonical F-interval) which

also includes all non-representable real values within two consecutive F-numbers.

The definition of hull-consistency can be derived from the definition of interval-consistency by

simply considering, for each variable domain, the two extreme canonical F-intervals instead of all

possible canonical intervals. Consequently, the hull-consistency approximation of arc-consistency wrt

a set of real valued combinations is the RF-hull approximation of each variable domain within this set.

Definition 5.1-3 (Hull-Consistency). Let P=(X,D,C) be a CCSP. Let c=(s,ρ) be a constraint of the

CCSP (c∈C). Let B be an F-box which is an element of the power set of D (B∈2D). The constraint c is

hull-consistent wrt B iff:

∀xi∈s ∃dl∈B[s] (dl[xi]∈[a..a+) ∧ dl∈ρ) ∧

∃dr∈B[s] (dr[xi]∈(b-..b] ∧ dr∈ρ) (where B[xi]=[a..b])

which is equivalent to:

∀xi∈s B[xi] = Ihull({ d[xi] | d ∈ ρ ∩ B[s] }) = Ihull(πxi

ρ
(B[s]))

PARTIAL CONSISTENCIES

70

In the previous example (with three digits machine precision) box B1 is not hull-consistent because

within the x1 bounds there are no corresponding x2 values satisfying the constraint (for example, if

x1∈[-0.500..-0.499) there is no x2 value satisfying the constraint). However, box B2 is hull-consistent

since, for example, if x1=0.000∈[0.000..0.001), any x2 value satisfies the constraint and if

x1=1.500∈(1.499..1.500], then x2=1.500 satisfies the constraint (and similarly wrt the domain of the

other variable). Element A and real box B3 are not F-boxes, so the hull-consistency criterion is not

applicable in these cases. Box B3’, which was interval-consistent, is also hull-consistent since any

interval-consistent box is hull-consistent. In this case, πxi

ρ
(B[s]) must be a single F-interval and so

Sapx(πxi

ρ
(B[s]))=Ihull(πxi

ρ
(B[s])).

The existing approaches to enforce hull-consistency are all based on the constraint decomposition

method where the RF-hull approximation of the projection function of each primitive constraint is

obtained by using extended interval arithmetic complemented with union hull operations to avoid

multiple disjoint F-intervals.

The major drawback of this decomposition approach is the worsening of the locality problem,

which is a direct consequence of the dependency problem (see definition 2.2.2-7). The existence of

intervals satisfying a local property on each constraint does not imply the existence of value

combinations satisfying simultaneously all of them. When a complex constraint is subdivided into

primitive constraints this will only worsen this problem due to the addition of new variables and the

consequent loss of dependency between values of related variables. Hull-consistency enforcement is

particularly ineffective if the original constraints contain multiple occurrences of the same variables.

An example of the bad results obtained by the decomposition approach was given in subsection

4.2.1 for pruning the domains of box B=<[-0.5..2.5],[0.5..1.5]> (figure 4.2). As seen above, box B is

not hull-consistent. However, the enforcement of hull-consistency in the decomposed CCSP did not

prune its domains (<[-0.5..2.5],[0.5..1.5],[-2.0..2.0]> is hull-consistent in the decomposed CCSP – see

table 4.5, case 1).

The drawbacks of the decomposition approach motivated the constraint Newton method, which can

be applied directly to complex constraints. The local consistency achieved by this method, known as

box-consistency and firstly characterized in [BMV94], has been successfully used in many

applications on continuous domains [VMK97, VMD97]. It was developed with the goal of providing a

better trade-off between efficiency (of the enforcing algorithm) and pruning (of the variable domains).

Box-consistency is a coarser approximation of arc-consistency than hull-consistency. Instead of

requiring the existence of a consistent real valued combination within each bound of each scope

variable, it replaces the real valued combination by an enclosing box and requires a weaker form of

consistency. The box is formed by the respective bound together with the F-intervals of the other

variables of the scope. The weaker form of consistency is associated with a particular interval

INTERVAL CONSTRAINTS

71

extension of the left side (ec) of the constraint (ec⋄0) and is satisfied iff the F-interval obtained by

applying this interval extension to the box contains at least a real value satisfying the constraint1.

Definition 5.1-4 (Box-Consistency). Let P=(X,D,C) be a CCSP. Let c=(s,ρ) be a constraint of the

CCSP (c∈C) expressed in the form ec⋄0 (with ⋄∈{≤,=,≥} and ec a real expression). Let FE be an

interval expression representing an interval extension F of the real function represented by ec. Let B be

an F-box which is an element of the power set of D (B∈2D). c is box-consistent wrt B and FE iff:

∀xi∈s ∃r1∈FE(B1) r1⋄0 ∧ ∃r2∈FE(B2) r2⋄0

where B1 and B2 are two F-boxes such as:

B1[xi]=cleft(B[xi]), B2[xi]=cright(B[xi]) and ∀xj∈s (xj≠xi⇒B1[xj]=B2[xj]=B[xi]).

With three digits machine precision, the constraint c≡x1×(x2-x1)=0 is not box-consistent wrt

B1=<[-0.5..2.5],[0.5..1.5]> and the interval extension represented by X1×(X2-X1) since

0∉[-0.5..-0.499]×([0.5..1.5]-[-0.5..-0.499])=[-1..-0.498]. However, the constraint is box-consistent wrt

B2=<[0..1.5],[0.5..1.5]> and the same interval extension because, wrt variable x1,

0∈[0..0.001]×([0.5..1.5]-[0..0.001]) and 0∈[1.499..1.5]×([0.5..1.5]-[1.499..1.5]), and, wrt variable x2,

0∈[0..1.5]×([0.5..0.501]-[0..1.5]) and 0∈[0..1.5]×([1.499..1.5]-[0..1.5]).

Notice that the notion of box-consistency is always associated with a particular interval extension of

the left hand side of the constraint. Enforcing box-consistency with different interval extensions may

lead to different pruning results. However, if a constraint is hull-consistent wrt an F-box, it must also

be box-consistency wrt the same F-box for any possible interval extension. The reason is that,

independently from the interval extension used, the weaker form of consistency required by

box-consistency is always satisfied when consistency required by hull-consistency is satisfied.

Although box-consistency is weaker than hull-consistency for the same constraint, in practice, the

enforcement of box-consistency may achieve better pruning results since it may be directly applied to

complex constraints whereas hull-consistency is only enforced in primitive constraints implying the

previous decomposition of a complex constraint (see, in subsection 4.2.2, the better results obtained by

the constraint Newton method for pruning the domains of box B=<[-0.5..2.5],[0.5..1.5]>).

For primitive constraints box-consistency and hull-consistency are equivalent if the interval

extension used in box-consistency does not contain multiple occurrences of the same variable and its

evaluation is computed with infinite precision. This was proved in [CDR98] and is a consequence of

the absence of the dependency problem in the evaluation of the interval extension, which guarantees

that no overestimation error is made with infinite precision.

1 The satisfaction of this weaker form of consistency for a consistent real valued combination is guaranteed by the soundness

properties of interval extensions and their evaluations (theorem 3.2-2).

PARTIAL CONSISTENCIES

72

For complex constraints box-consistency is stronger than hull-consistency applied on the primitive

constraints obtained by decomposition [CDR98]. This is a consequence of the amplification of the

locality problem induced by the constraint decomposition. Enforcement of a consistency criterion

directly to a complex constraint is necessarily stronger (or equal) than its enforcement on the primitive

constraints obtained by the decomposition of the constraint. In particular, this is the case for the

box-consistency criterion, and because for primitive constraints box-consistency and hull-consistency

are equivalent, box-consistency on complex constraints must be stronger (or equal) than

hull-consistency on the respective primitive constraints.

Nevertheless, the pruning obtained by box-consistency is often insufficient for non linear

constraints. If there are several uncertain variables, the Newton method to enforce box-consistency

aims at tightening the bounds of each one substituting the other variables by their F-interval domains.

Hence, if there are n uncertain variables, it is still necessary to work with n univariate functions with

n-1 interval values. Depending on the complexity of the constraint, the uncertainty of the n-1 interval

values may cause a wide range of possible values for the univariate functions, preventing possible

domain reduction.

Consider again constraint c≡x1×(x2-x1)=0 and a different interval extension of its left side

represented by FE’≡X1×(2X2-(X1+X2)). Note that the real function f represented by fE≡x1×(x2-x1) is the

same represented by fE’≡x1×(2x2-(x1+x2)) (the real expressions are equivalent) and FE’ is the natural

interval expression of fE’ and consequently an interval extension of f. Constraint c, which was not

box-consistent wrt B1=<[-0.5..2.5],[0.5..1.5]> and FE, is box-consistent wrt B1 and FE’. Using the

interval expression FE’ (instead of FE) for verifying the criterion for each bound of each variable, the

uncertainty of the interval values allows a wider range of possible values. For example, the condition

on the left bound of variable x1 is now satisfied since 0∈FE’(<[-0.5..-0.499],[0.5..1.5]>)=[-1.5..0.001].

Generalising the concept of local consistency from a constraint to the set of constraints of a CCSP,

we can say that a CCSP P=(X,D,C) is locally consistent (interval, hull or box-consistent) wrt a set of

real valued combinations A∈2D iff all its constraints are locally consistent wrt A. Since the propagation

algorithm obtains the greatest common fixed-point (of the monotonic narrowing functions) included in

the original domains, then the result of applying the propagation algorithm to a set A∈2D is the largest

subset A’⊆A for which each constraint is locally consistent.

Definition 5.1-5 (Local-Consistency). Let P=(X,D,C) be a CCSP. Let A be an element of the power

set of D (A∈2D). P is locally-consistent wrt A iff:

∀c∈C c is locally-consistent wrt A

Let S be a set of monotonic narrowing functions associated with the constraints in C which enforce a

particular local consistency by constraint propagation:

P is locally-consistent wrt prune(S,A)

∀A’⊆A (P is locally-consistent wrt A’ ⇒ A’⊆ prune(S,A))

INTERVAL CONSTRAINTS

73

When only local consistency techniques are applied to non-trivial problems the achieved reduction of

the search space is often poor (a problem called early quiescence in [Dav87]).

Consider the CCSP represented in figure 5.1 where there are two real variables, x1 and x2 with

values ranging within [-5..5] and two constraints, c1≡x1
2
+x2

2
−2

2
≤0 and c2≡(x1−1)

2
+(x2−1)

2
−2.5

2
≥0. The

thick solid square is the initial domain box. The two circumferences represent the two constraints. The

grey area represents the complete set of solutions. The thin solid square is the box obtained by

enforcing a local consistency, either box-consistency (with the natural interval extensions represented

by FE1
≡X1

2
+X2

2
-2

2
 and FE2

≡(X1−1)
2
+(X2−1)

2
-2.5

2
 respectively) or hull-consistency (on the decomposed

problem). The dashed square is the smallest F-box enclosing all solutions within the initial box.

Figure 5.1 Insufficient pruning achieved by local consistency enforcement.

The figure shows that the local consistency criterion cannot prune the search space inside the smaller

circumference – the pruning is the same as it would be without the constraint associated with the

larger circumference. Depending on the decision problem to solve, this may be irrelevant or, on the

contrary, it may justify the enforcement of a stronger consistency.

5.2 Higher Order Consistency

Better pruning of the variable domains may be achieved if, complementary to a local property, some

(global) properties are also enforced on the overall constraint set.

As in local consistency, higher order consistency types used in continuous domains are

approximations of similar concepts originally developed for solving CSPs over finite domains. The

most general concept to capture a global property among the overall constraint set of a CSP is the

definition of strong k-consistency given by Freuder in [Fre78].

A CSP is k-consistent (k≥2) iff any consistent instantiation of k-1 variables can be extended by

instantiating any of the remaining variables. A CSP is strongly k-consistent if it is i-consistent for all

i≤k.

In particular, strong 2-consistency corresponds to arc-consistency (see definition 4.3-1) and

hull-consistency (see definition 4.3-3) can be seen as an approximation of strong 2-consistency

Initial box

Smallest box enclosing all
solutions within the initial box

Box obtained by enforcing a local
consistency on the initial box

x1

x2

-5
-5

5

5

PARTIAL CONSISTENCIES

74

restricted to the bounds of the variable domains (that is why the original denomination was

2B-consistency: B for bounds).

Similarly, higher order consistency types used in continuous domains are approximations of strong

k-consistency (with k>2) restricted to the bounds of the variable domains.

Strong 3-consistency adapt path-consistency, a higher order extension of arc-consistency [Mac77,

Mon74], to continuous domains. Specifically, 3B-consistency [Lho93] and Bound-consistency

[PV98], are generalisations of hull and box-consistency respectively. In both, the property enforced on

the overall constraint set is the following: if the domain of one variable is reduced to one of its bounds

then the obtained F-box must contain a sub-box for which the CCSP is locally consistent (hull or box-

consistency respectively).

The following is a generic definition for the consistency types used in continuous domains.

Accordingly to this definition local consistency is just a special case of the generic kB-Consistency

with k=2.

Definition 5.2-1 (kB-Consistency). Let P=(X,D,C) be a CCSP. Let A be an element of the power set

of D (A∈2D) and k an integer number.

P is 2B-Consistent wrt A iff P is locally-consistent wrt A

∀k>2 P is kB-Consistent wrt A iff

∀xi∈X (∃A1⊆B1
 P is (k-1)B-Consistent wrt A1 ∧ ∃A2⊆B2

 P is (k-1)B-Consistent wrt A2)

where B1 and B2 are two elements of the power set of D such that:

B1[xi]=cleft(B[xi]), B2[xi]=cright(B[xi]) and ∀xj∈X (xj≠xi⇒B1[xj]=B2[xj]=B[xi]).

In the rest of this work we will denote by kB-Hull-consistency and kB-Box-consistency the cases

where the local consistency enforced is respectively Hull- and Box-consistency. If k=2 the

designation kB may be omitted and the generic term Local-consistency may be used to designate an

unspecified type of local consistency. kB-Hull-consistency corresponds to the notion of

kB-consistency proposed by Lhomme in [Lho93] and 3B-Box-consistency corresponds to the notion

of Bound-consistency introduced in [PV98].

The algorithms to enforce these stronger consistencies interleave constraint propagation with search

techniques. The price to pay for stronger consistency is thus the growth in computational cost of the

enforcing algorithm, limiting the practical applicability of such criteria.

Figures 5.2 and 5.3 present an algorithm for enforcing kB-Consistency, either kB-Box-consistency

or kB-Hull-consistency. The algorithm is a generalisation of the 3B-consistency algorithm proposed in

[Lho93] with some improvements suggested in [BMB01]. The input is the order k, a CCSP P=(X,D,C)

and an F-box B⊆D. The output is the largest kB-Consistent F-box within B or the empty set if it is

proved that there is no such box.

INTERVAL CONSTRAINTS

75

The main function named kB-consistency uses an auxiliary function with the same name but an

extra parameter (size). This auxiliary function computes the largest F-box within F-box B with the

following property: if the domain of one variable is reduced to its leftmost/rightmost subinterval (with

width not exceeding size) then the obtained F-box must contain a sub-box for which the CCSP is

(k-1)B-Consistent2. Therefore, when size is small enough to force such subintervals to be canonical,

the auxiliary function computes the largest kB-Consistent F-box within B.

function kB-consistency(an integer k≥2, a CCSP P=(X,D,C), an F-box B)
(1) if k=2 then return prune(set of NF from C,B);
(2) size ← largestWidth(B);
(3) repeat
(4) size ← size/2;
(5) B ← kB-consistency(size,k,P,B);
(6) if B = ∅ then return ∅;
(7) until canonical(size,B);
(8) return B;

end function

Figure 5.2 The generic kB-consistency algorithm.

The main kB-consistency function (figure 5.2) first checks (line 1) whether the enforcement of a local

consistency (if k=2) is sufficient and, in that case, it calls the propagation algorithm with the

appropriate set of narrowing functions for enforcing the local criterion (Box-consistency or

Hull-consistency). Otherwise, if the enforcement of an higher order consistency is required, the size

value is initialised with the largest domain width within the original F-box (line 2) and smaller values

are subsequently considered (line 4) for improving the domain reduction computed by the auxiliary

kB-consistency function (line 5). The procedure terminates when the box is proved to be inconsistent

returning the empty set (line 6) or when the size value is smaller enough to assure the kB-consistency

wrt the current F-box B (line 7), in which case this box is returned (line 8).

Clearly, the generic kB-consistency algorithm is correct and terminates if the auxiliary

kB-consistency function terminates and computes the largest kB(size)-Consistent F-box within B.

2 In the following this property will be denoted kB(size)-Consistency.

PARTIAL CONSISTENCIES

76

function kB-consistency(F-number size, an integer k≥2, a CCSP P=(<x1,…,xn>,D,C), an F-box B)
(1) if k=2 then return prune(set of NF from C,B);
(2) for j = 1 to 2n do mem[j] ← universalBox;
(3) j ← 1; unfixedBounds ← 2n;
(4) while unfixedBounds>0 do

(5) if mem[j] ⊈ B then
(6) fixed ←FALSE;
(7) repeat
(8) if isOdd(j) then
(9) i ← (j+1)/2;
(10) I1 ← [left(B[xi])..min(right(B[xi]),left(B[xi])+size)];
(11) I2 ← [min(right(B[xi]),left(B[xi])+size)..right(B[xi])];
(12) else
(13) i ← j/2;
(14) I1 ← [max(left(B[xi]),right(B[xi])-size)..right(B[xi])];
(15) I2 ← [left(B[xi])..max(left(B[xi]),right(B[xi])-size)];
(16) end if;
(17) B[xi] ← I1;
(18) mem[j] ← kB-consistency(size,k-1,P, mem[j] ∩ B);
(19) B[xi] ← I1 ∪I2;
(20) if mem[j] ≠ ∅ then
(21) fixed ←TRUE;
(22) adjustBound(j,mem[j],B);
(23) else
(24) if left(I2) = right(I2) then return ∅;
(25) B[xi] ← I2;
(26) mem[j] ← universalBox;
(27) unfixedBounds ← 2n;
(28) B’ ← kB-consistency(size,k-1,P,B);
(29) if B’= ∅ then return ∅;
(30) for l = 1 to 2n do adjustBound(l,B’,B);
(31) end if;
(32) until fixed
(33) end if;
(34) unfixedBounds ← unfixedBounds-1;
(35) if j = 2n then j ← 1; else j ← j +1; end if;
(36) end while;
(37) return B;

end function

Figure 5.3 The auxiliary kB-consistency function used by the generic algorithm.

The auxiliary kB-consistency function (figure 5.3) also calls the propagation algorithm if local

consistency is all that is required (line 1). Otherwise, all 2n bounds of the n variables must be fixed

(narrowed) in a round robin fashion until the kB(size)-Consistency property is achieved (while cycle

from line 4 to line 36).

In order to narrow a particular variable bound (lines 6-32), a sub-box is considered (lines 9-11,17

for the left bound and 13-15,17 for the right bound) where the domain of that variable is reduced to its

leftmost/rightmost subinterval with width equal to size (if the original domain is smaller than size then

the whole box is considered). The possibility of (k-1)B(size)-Consistency is verified for this sub-box

(line 18) and if it succeeds (line 20) the bound j may have to be adjusted in line 22 (the procedure

INTERVAL CONSTRAINTS

77

adjustBound(j,B’,B) verifies if the value of the bound j in B’ is different from the one in B, in which

case the later is updated and mem[j] is reinitialized into the universalBox). In case of failure the

sub-box is discarded from the original box (line 25) and, after narrowing the remaining F-box (lines

28-30), the next leftmost/rightmost subinterval is considered for the same variable bound until its

satisfaction (line 20) or the complete elimination of the original box (line 24).

Once a particular variable bound is changed, all the other variable bounds must be checked again

(line 27) to guarantee that the while cycle (lines 4-36) only terminates when (k-1)B(size)-Consistency

is satisfied simultaneously for all bounds. The above procedure assures the correctness of the

algorithm and termination is guaranteed due to the fact that after any 2n steps of the while cycle either

all the bounds are fixed (and the algorithm terminates) or at least one bound is reduced (and after a

finite number of such reductions the original box will be completely discarded).

The mem vector of F-boxes, one for each variable bound (initialized with the universalBox where

every variable domain ranges between -∞ and +∞), implements the improvements suggested in

[BMB01] to the original algorithm. The idea is to memorize the result of the previous bound reduction

(line 18) and use it in the next reduction attempt for the same bound, either by guaranteeing the

property satisfaction without checking (in line 5, if mem[j]⊆B the bound is not narrowed) or, by

reducing the subbox that is checked (in line 18, (k-1)B(size)-Consistency is verified in mem[j]∩B

instead of in B).

All the consistency criteria used in continuous domains, either local or higher order consistencies, are

partial consistencies. The adequacy of a partial consistency for a particular CCSP must be evaluated

taking into account the trade-off between the pruning it achieves and its execution time. Moreover, it

is necessary to be aware that the filtering process is performed within a larger procedure for solving

the CCSP and it may be globally advantageous to obtain faster, if less accurate, results.

5.3 Summary

In this chapter Interval-, Hull- and Box-consistency were identified as the main local consistency

criteria used in continuous domains. Their definitions were presented and the methods for enforcing

them discussed. Higher order consistency criteria were defined as generalisations of the local

consistency criteria, and a generic enforcing algorithm was presented. In the next chapter Global Hull-

consistency is proposed as an alternative consistency criterion in continuous domains. Several

alternative enforcing algorithms are suggested and their properties derived.

INTERVAL CONSTRAINTS

79

Chapter 6

Global Hull-Consistency

The pruning of the search space achieved by local consistency techniques on non-trivial problems is

often poor. Nevertheless, the computational cost of enforcing stronger consistencies may limit their

practical applicability.

In this context we propose a strong consistency criterion, Global Hull-consistency, and show that its

use in some such problems has reasonable computational costs. The need for a strong consistency

requirement originated on solving constraint problems which include parametric ordinary differential

equations [CB99a, CB99b, CB00], which will be addressed in part II.

The key idea of Global Hull-consistency is to generalise local Hull-consistency criterion to a higher

level, by considering the set of all constraints as a single global constraint. Hence, it must guarantee

arc-consistency at the bounds of the variable domains for this single global constraint: if a variable is

instantiated with the value of one of its bounds then there must be a consistent instantiation of the

other variables, and this complete instantiation is a solution of the CCSP.

If real values could be represented with infinite precision, Global Hull-consistency would be similar

to the notion of e-consistency (e- for external) presented in [CDR99b]. In this case, enforcing Global

Hull-consistency (or e-consistency) on a real box corresponds to obtaining the smallest external real

box enclosing all solutions of a CCSP within the original box.

 However, due to limitations of the representation of real values, the result of enforcing Global

Hull-consistency on a box of domains must be an F-box, enclosing the real box obtained by enforcing

e-consistency. These limitations prevent the enforcing algorithms from dealing directly with real

valued instantiations, requiring them to operate with their canonical F-box approximations. Because

within a canonical solution there might be a solution of the CCSP (and this possibility cannot be

discarded due to the system limitations), the best thing that can be done is to guarantee that for each

bound of each variable there is a canonical F-box instantiation which is a canonical solution. This is

formalised in the following definition of Global Hull-consistency.

GLOBAL HULL-CONSISTENCY

80

Definition 6-1 (Global Hull-Consistency). Let P=(X,D,C) be a CCSP. Let B be an F-box which is an

element of the power set of D (B∈2D). P is Global Hull-consistent wrt B iff:

∀xi∈X ∃Bl⊆B (Bl[xi]=cleft(B[xi]) ∧ Bl is a canonical solution of P) ∧

∃Br⊆B (Br[xi]=cright(B[xi]) ∧ Br is a canonical solution of P)

Any strategy to enforce Global Hull-consistency must be able to localise the canonical solutions

within a box of domains that are extreme with respect to each bound of each variable domain. Global

Hull-consistency is the strongest criterion for narrowing a box of domains into a single smaller F-box

that looses no possible solution. Narrowing the obtained F-box further would necessarily exclude one

extreme canonical solution, possibly discarding a solution.

Figure 6.1 shows the box obtained by enforcing Global Hull-consistency on the example presented

in figure 5.1. The small boxes (1, 2, 3 and 4) represent the extreme canonical solutions (wrt each

variable bound) that were found by the enforcing algorithm.

Figure 6.1 Pruning achieved by enforcing Global Hull-consistency.

The obtained F-box is an approximation of the smallest real box enclosing the solution space and the

quality of the enclosure depends on the width of the canonical F-boxes (the available precision for the

representation of two consecutive real values). Narrowing this F-box further would result in the

elimination of at least one of the extreme canonical solutions (1, 2, 3 or 4) and all the real solutions

that it might contain.

The existing constraint systems developed for continuous domains are able to enforce some kind of

partial consistency (usually Local-consistency or eventually 3B-Consistency) and use it for isolating

solutions of a CCSP through a branch and bound strategy, implementing a backtrack search of the

space of possibilities (see chapter 2). Thus, the ultimate goal of these systems is to find individual

solutions and not to enclose the complete solution space within a single box.

In CCSPs where the number of solutions is small the strategy aiming at identifying them all could

be used for enforcing Global Hull-consistency, and the resulting box should enclose the complete set

of solutions. However, in the case of under-constrained CCSPs, the huge number of solutions (usually

Smallest box enclosing all
solutions within the initial box

Box obtained by enforcing a local
consistency on the initial box

Box obtained by enforcing a Global
Hull-consistency on the initial box

x1

x21

2

4

3

INTERVAL CONSTRAINTS

81

infinite in continuous domains) makes this strategy inadequate and specialised algorithms are needed

for enforcing Global Hull-consistency within reasonable computational costs.

In the rest of this chapter several algorithms will be presented for enforcing Global

Hull-consistency. The next section discusses the relations between Global Hull-consistency and kB-

Consistency and shows how the former can be obtained by an algorithm that enforces an appropriate

higher order consistency. Section 6.2 addresses algorithms which can be easily implemented by the

existing backtrack search systems without significant modifications of their propagation mechanisms.

Section 6.3 proposes the substitution of backtrack search by ordered search and discusses which of the

previous algorithms may profit from it. Section 6.4 presents a specialised algorithm which uses a

binary tree for the representation of the search space and includes a local search procedure for

anticipating the localisation of extreme canonical solutions.

6.1 The Higher Order Consistency Approach

If a CCSP contains only a single variable then enforcing a Local-consistency (2B-Consistency), either

Hull-consistency or Box-consistency, is sufficient to guarantee that each bound is a canonical solution

of the CCSP and so, the resulting box is Global Hull-consistent. The reason for this is that according to

the definitions of Hull and Box-consistency (definitions 5.1-3 and 5.1-4) if the variable is instantiated

with its leftmost/rightmost canonical subinterval then each constraint must be satisfied (in the sense

that within the interval obtained by its interval arithmetic evaluation there is a real value satisfying the

constraint). Because there is only one variable in the CCSP, its instantiation is a complete instantiation

which satisfies all the constraints and, consequently, is a canonical solution of the CCSP.

When a CCSP contains two variables, enforcing 3B-Consistency guarantees that if the domain of

one variable is reduced to one of its (canonical) bounds the resulting F-box (with at most one

non-canonical domain) must contain a sub-box for which the CCSP is locally consistent (see definition

5.2-1). But if this sub-box is locally consistent, the instantiation of the non-canonical domain to one of

its bounds satisfies all the constraints and, consequently, there is at least a canonical solution within

the sub-box. Therefore, enforcing 3B-Consistency on a CCSP with two variables guarantees Global

Hull-consistency.

The above property between Global Hull-consistency and kB-Consistency may be generalised for

any number of variables occurring in a CCSP and is formalised in the following theorem.

Theorem 6.1-1 (Equivalence between Global Hull-consistency and (n+1)B-Consistency). Let

P=(X,D,C) be a CCSP with n variables (X=<x1,…,xn>). Let B be an F-box which is an element of the

power set of D (B∈2D). The following property necessary holds:

P is Global Hull-consistent wrt B iff P is (n+1)B-Consistent wrt B

GLOBAL HULL-CONSISTENCY

82

6.1.1 The (n+1)B-consistency Algorithm

Given theorem 6.1-1, a straightforward approach for enforcing Global Hull-consistency is to use the

kB-consistency algorithm (Chapter 5, section 5.2) and choose an appropriate value for the order k (it

must be equal to the number of variables plus one).

Figure 6.2 illustrates this approach whose algorithm will be denoted (n+1)B-consistency to

emphasise its dependency on the number of variables of the CCSP.

function (n+1)B-consistency(a CCSP P=(<x1,…,xn>,D1×…×Dn,C), an F-box B)
(1) return kB-consistency(n+1,P,B);

end function

Figure 6.2 The (n+1)B-consistency algorithm.

The input is a CCSP P with n variables and an F-Box B (with B⊆<Iapx(D1),…, Iapx(Dn)>). The result

(line 1) is the largest (n+1)B-Consistent F-box within B (which is equivalent to the largest Global

Hull-consistent F-box within B) or the empty set if it is proved that there is no such box. The

correctness of the algorithm is guaranteed by theorem 6.1-1.

6.2 Backtrack Search Approaches

Most interval constraint systems provide a search mechanism (alternating pruning and branching

steps) which implements a backtracking search for obtaining canonical solutions. The pruning is

normally achieved by enforcing some Local-consistency (Hull/Box-consistency or eventually

3B-Consistency) but it can be generalised for any kB-Consistency criterion (with 1<k≤n+1, n being

the number of variables). The branching is normally achieved by choosing a variable domain

(according to a split strategy) and to separately consider the two boxes obtained by dividing this

domain at the mid point. In order to keep track of search space regions that may contain canonical

solutions, a stack of F-boxes is maintained and explored throughout backtracking.

Figure 6.3 presents the function backtrackSearch which implements this generic algorithm. It

assumes that the pruning is achieved by the kB-consistency function with some predefined value for

the order k and a predefined type of local consistency (Hull or Box-consistency). It also assumes that

the branching is implemented by procedure splitBox according to some, not shown, split strategy (LW,

RR or xi) and a side (LEFT or RIGHT). The procedure receives the F-box to split and returns the

branches that will be explored subsequently. The split strategy determines the variable to split: if LW,

the chosen variable is that with the largest domain width; if RR, each variable is chosen accordingly to

a round-robin strategy; and if xi, variable xi is chosen if its domain is not canonical, otherwise one of

the other split strategies is used. The side determines which branch will be explored first.

Function backtrackSearch has two arguments, the first is a CCSP P and the second a stack S of

F-boxes where the canonical solutions of P will be searched from. The second argument is also an

output argument returning the remaining values of S, which account for the reduction of the search

INTERVAL CONSTRAINTS

83

space achieved during the search. The result of the function is a canonical solution of P within one of

the F-boxes of S or the empty set if no such canonical solution exists.

function backtrackSearch(a CCSP P=(X,D,C), inout a stack S of F-boxes)
(1) while S.size()>0 do
(2) B ← S.pop();
(3) B ← kB-consistency(P,B);
(4) if B ≠ ∅ then
(5) if isCanonical(B) then return B;
(6) splitBox(B,B1,B2);
(7) S.push(B2);
(8) S.push(B1);
(9) end if;
(10) end while;
(11) return ∅;

end function

Figure 6.3 The generic backtrack search algorithm for finding canonical solutions.

During the execution of the backtrackSearch function the stack S of F-boxes representing the

remaining search space is maintained by a set of functions which implement the usual stack

operations: size returns the number of elements; pop returns the top element and removes it from the

stack; push adds a new top element.

The function is implemented as a while cycle (lines 1-10) executed as long as there are F-Boxes in

the stack (line 1) and no canonical solution was found. If the stack becomes empty then there are no

more canonical solutions and the empty set is returned (line 11). Otherwise the top element is removed

from the stack (line 2) and narrowed by the pruning function (line 3). If it is inconsistent then nothing

is done in this cycle and a new one is started with the next top element. If the resulting box is

canonical then a canonical solution has been found and the box is returned (line 5). Otherwise, if the

pruning function could not discard the F-box obtaining a smaller F-box which is not canonical then

the box is split by the splitBox function (line 6) and the two resulting F-boxes are added to the top of

the stack (lines 7 and 8).

The algorithm is correct and terminates. On the one hand, the narrowing of the search space is

achieved by enforcing a partial consistency requirement (kB-Consistency) which does not eliminate

canonical solutions. On the other hand, the split of the boxes that cannot be further pruned guarantee

that canonical F-boxes are eventually analysed, either reducing the search space (if such boxes violate

the partial consistency criterion), or returning the canonical solution found. The finite number of

canonical F-boxes within any search space guarantees termination of the algorithm.

The following subsections present four different algorithms, based on the above generic backtrack

search mechanism, for enforcing Global Hull-consistency.

GLOBAL HULL-CONSISTENCY

84

6.2.1 The BS0 Algorithm

The simplest backtracking algorithm, BS0, for enforcing Global Hull-consistency on an F-box uses

backtrackSearch for finding all the solutions within the box and returns the smallest F-box enclosing

them.

The algorithm is presented in Figure 6.4. The input is a CCSP P and an F-Box B (with

B⊆<Iapx(D1),…, Iapx(Dn)>). The result is the smallest F-box containing all the canonical solutions

within B (which is equivalent to the largest Global Hull-consistent F-box within B) or the empty set if

B does not contain any canonical solutions.

function BS0(a CCSP P=(X,D1×…×Dn,C), an F-box B)
(1) S ← B;
(2) Bsol ← backtrackSearch(P,S);
(3) if Bsol = ∅ then return ∅ else Bin ← Bsol;
(4) repeat
(5) Bsol ← backtrackSearch(P,S);

(6) if Bsol ≠ ∅ then Bin ← Bin ⊎ Bsol;
(7) until Bsol = ∅;
(8) return Bin;

end function

Figure 6.4 The BS0 algorithm.

The algorithm maintains an inner box Bin that is the smallest box enclosing all the currently found

canonical solutions. When all the canonical solutions have been found this inner box must be the

largest Global Hull-consistent F-box within the original domains and is returned as the final result of

the algorithm (line 8).

A stack S of F-boxes is initialised with the single box B (line 1) and a canonical solution is searched

through backtracking on this stack (line 2). If no canonical solution is found the empty set is returned;

otherwise, the inner box is initialised to the obtained canonical solution (line 3). The algorithm

proceeds with a repeat cycle, where new solutions are searched within the remaining search space

(line 5) and the inner box is enlarged to include them (line 6)1, until there are no more solutions

(line 7).

The correcteness of the algorithm is guaranteed by the correcteness of the backtrackSearch

algorithm and by definition 6-1 which implies that the smallest box containing all the canonical

solutions is the largest Global Hull-consistent F-box.

Termination is guaranteed by the termination of the backtrackSearch function that reduces the finite

search space in each invocation (at least the box associated with the new canonical solution is removed

from S) thus requiring a finite number of steps of the repeat cycle.

1 The symbol ⊎ represents the union hull operation - see definition 2.2.2-1.

INTERVAL CONSTRAINTS

85

6.2.2 The BS1 Algorithm

The previous brute-force algorithm blindly searches for new canonical solutions ignoring those

already found. Consequently, many space regions which are searched are irrelevant to Global

Hull-consistency. In particular, canonical solutions inside the inner box (which encloses all known

solutions) are useless regarding Global Hull-consistency.

The backtrack search algorithm, BS1, thus avoids searching regions within the inner box. To achieve

this, it separately searches extreme canonical solutions with respect to each variable bound and adds a

new constraint whenever a new canonical solution is found to narrow the relevant search space.

Figure 6.5 presents the algorithm. The input is a CCSP P and an F-Box B⊆<Iapx(D1),…, Iapx(Dn)>,

and the result is the largest Global Hull-consistent F-box within B or the empty set if it does not

contain any canonical solutions.

function BS1(a CCSP P=(<x1,…,xn>,D1×…×Dn,C), an F-box B)
(1) S ← B; splitSide ← LEFT;
(2) Bsol ← backtrackSearch(P,S);
(3) if Bsol = ∅ then return ∅ else Bin ← Bsol;
(4) for i=1 to n do
(5) while left(B[xi]) < left(Bin[xi]) do
(6) Bsol ← backtrackSearch((<x1,…,xn>,D1×…×Dn,C∪{xi ≤ left(Bin[xi])}),S);
(7) if Bsol = ∅ then B[xi] ← [left(Bin[xi])..right(B[xi])];

(8) else Bin ← Bin ⊎ Bsol ; end if;
(9) end while;
(10) S ← B; splitSide ← RIGHT;
(11) while right(B[xi]) > right(Bin[xi]) do
(12) Bsol ← backtrackSearch((<x1,…,xn>,D1×…×Dn,C∪{xi ≥ right(Bin[xi])}),S);
(13) if Bsol = ∅ then B[xi] ← [left(B[xi])..right(Bin[xi])];

(14) else Bin ← Bin ⊎ Bsol ; end if;
(15) end while;
(16) S ← B; splitSide ← LEFT;
(17) end for;
(18) return Bin;

end function

Figure 6.5 The BS1 algorithm.

Similarly to BS0, function BS1 maintains an inner box Bin that is returned as the final result when a

solution exists (line 18).

The initialisation of the stack S of F-boxes (line 1), the search for a first canonical solution (line 2)

and the initialisation (line 3) of the inner box (or returning of the empty set) are identical to BS0.

However, BS1 proceeds by considering each variable domain separately (the for cycle between lines 4

and 17), to search the extreme canonical solutions with respect to its left (lines 5-9) and right (lines

11-15) bounds.

The search for the leftmost canonical solution for a variable is executed in a while cycle (lines 5-9)

within the regions of the current search space where this variable has values which are less than any

known solution (line 6). While new solutions are found, the inner box is updated to enclose them

GLOBAL HULL-CONSISTENCY

86

(line 8) and the cycle continues. Eventually, the last canonical solution found is the leftmost solution

and the original search box is updated accordingly (line 7) terminating the cycle. The search for the

rightmost solution is similar.

Before every search for an extreme canonical bound, the search space S must be reinitialised with

the current domains box (lines 1, 10 and 16) in order to disregard all the previous additional

constraints that were considered for restraining the search space in other search contexts and the side

branching option used by function backtrackSearch is redefined towards the appropriate direction

(variable splitSide).

The algorithm is correct since each while cycle obtains an extreme canonical solution wrt the

variable under consideration. This is achieved in a finite number of steps because the backtrack search

either fails, terminating the algorithm at once with the correct result, or finds a new solution and

reduces the finite search space for the following iteration.

6.2.3 The BS2 Algorithm

The key idea of the next algorithm, BS2, (suggested by Frédéric Benhamou in a personal

communication), is to control the branching strategy to direct the search towards the extreme

canonical solutions. Instead of constraining the search space whenever a new canonical solution is

found, the branching strategy guarantees that the first solution found is already an extreme canonical

solution with respect to some variable bound. The search is separately executed for each bound of

each variable domain and the branching options, of strategy and side, adopted by function

backtrackSearch, are explicitly controlled by variables splitStrategy and splitSide, respectively

Figure 6.6 illustrates the BS2 algorithm. The input is a CCSP P and an F-Box B

(B⊆<Iapx(D1),…,Iapx(Dn)>), and the result is the largest Global Hull-consistent F-box within B or the

empty set if it does not contain any canonical solutions.

function BS2(a CCSP P=(<x1,…,xn>,D1×…×Dn,C), an F-box B)
(1) S ← B;
(2) splitStrategy ← x1; splitSide ← LEFT; Bsol ← backtrackSearch(P,S);
(3) if Bsol = ∅ then return ∅ else Bin ← Bsol;
(4) for j=2 to 2n do
(5) if isOdd(j) then
(6) splitSide ← LEFT; i ← (j+1)/2;
(7) B[xi-1] ← [left(B[xi-1])..right(Bin[xi-1])];
(8) else
(9) splitSide ← RIGHT; i ← j/2;
(10) B[xi] ← [left(Bin[xi])..right(B[xi])];
(11) end if;
(12) S ← B;
(13) splitStrategy ← xi; Bsol ← backtrackSearch(P,S);

(14) Bin ← Bin ⊎ Bsol;
(15) end for;
(16) return Bin;

end function

Figure 6.6 The BS2 algorithm.

INTERVAL CONSTRAINTS

87

When the splitStrategy and the splitSide are respectively xi and LEFT/RIGHT, the backtrackSearch

function returns the leftmost/rightmost canonical solution wrt the variable xi. Consider the stack S of

F-boxes, representing the search space at a given moment, as a sequence of k F-boxes B1,…,Bk, with

Bk its top element. If S is obtained from an original F-box B after several iterations of the while cycle

of the backtrackSearch function and during the process only variable xi was split then for any two

consecutive F-boxes within S, Bj and Bj+1, right(Bj+1[xi])≤left(Bj[xi]) if splitSide=LEFT and

right(Bj[xi])≤left(Bj+1[xi]) if splitSide=RIGHT. Thus, if there are no other split variables, when a

solution is found, it must be the result of narrowing the top element into a canonical box and so any xi

value must be smaller/larger or equal than any other xi value of any other F-box implying that the

canonical solution is the leftmost/rightmost canonical solution wrt the variable xi. With an xi split

strategy the only possible cases where the split variable is not xi is when the domain of xi is already

canonical and so both subboxes will have the same xi domain which must contain the smallest/largest

possible value for xi within S. Therefore, with an xi split strategy, the search space at any given

moment may be represented as a sequence of k+m F-boxes B1,…,Bk,Bk+1,…,Bk+m, with Bk+m its top

element and where all the Bk+1,…,Bk+m boxes have the same smallest/largest xi canonical domain (for

some m≥0) and for any two consecutive F-boxes Bj and Bj+1, with 1<j≤k, right(Bj+1[xi])≤left(Bj[xi]) if

splitSide=LEFT and right(Bj[xi])≤left(Bj+1[xi]) if splitSide=RIGHT. Thus, in any case, if a solution is

found within the top element it must be the leftmost/rightmost canonical solution wrt the variable xi.

During the whole execution of the BS2 algorithm, exactly 2n canonical solutions are found (if there

are any canonical solutions, otherwise the empty set is returned in line 3), one for each variable bound,

and the enclosing inner box Bin that is maintained (line 14) is returned in the end (line 16).

After the initialisation of the stack S of F-boxes with the original box (line 1), the branching options

set the search for the leftmost canonical solution of variable x1 (line 2). Then, the algorithm proceeds

by separately searching the extreme canonical solutions of the remaining 2n-1 variable bounds (for

cycle, in lines 4-15).

The search for the leftmost (rightmost) canonical solution wrt a particular variable is executed by a

single function call to the backtrackSearch algorithm over the current domains box (line 13) whose

branching options (variable and side) must be appropriately set (lines 13 and 6/9).

Before every new search for an extreme canonical bound, the current search space S must be set to

the current domains box (line 12) that considers the latest update on its bounds (lines 7/10).

Clearly the algorithm terminates (it does not contain any possibly infinite cycles and the

backtrackSearch function terminates) and is correct. As proved before, with an xi split strategy for a

particular split side, left or right, the first canonical solution found by the generic backtrack search

algorithm is the leftmost/rightmost.

6.2.4 The BS3 Algorithm

All previous approaches independently search for each extreme variable bound. In BS1, the addition of

new constraints improve the search by preventing search on irrelevant space regions. In BS2, the

GLOBAL HULL-CONSISTENCY

88

branching strategy exploits a partition on the search space that guarantees that the canonical solutions

found are indeed extreme canonical solutions.

The last of the backtrack search algorithms, BS3, tries to reuse the computational effort as much as

possible within the limitations imposed by a stack data structure for representing the search space. It is

a branch and bound algorithm where the extreme canonical solutions with respect to each bound of

each variable domain are searched simultaneously within a round robin scheme.

The basic idea is to maintain an outer box that includes all possible canonical solutions and an inner

box that is the smallest box enclosing all currently found canonical solutions. The search for extreme

canonical bounds is restricted to the region between these two boxes.

The algorithm stops when the inner box equals the outer box returning it as the largest box within

the original domains satisfying the Global Hull-consistency criterion.

Figure 6.7 shows BS3. From a CCSP P and an F-Box B, the function BS3 computes the largest

Global Hull-consistent F-box within B or the empty set if it does not contain any canonical solutions.

function BS3(a CCSP P=(<x1,…,xn>,D1×…×Dn,C), an F-box B)
(1) S ← B; Bsol ← backtrackSearch(P,S);
(2) if Bsol = ∅ then return ∅ else Bin ← Bsol; Bout ← B; end if;
(3) repeat
(4) fixed ← TRUE;
(5) for j=1 to 2n do
(6) if isOdd(j) then
(7) i ← (j+1)/2;
(8) splitSide ← LEFT;
(9) I12 ←[left(Bout[xi])..left(Bin[xi])]; I3 ←[left(Bin[xi])..right(Bout[xi])];
(10) I1 ←[left(I12)..center(I12)];I2 ←[center(I12)..right(I12)];
(11) else
(12) i ← j/2;
(13) splitSide ← RIGHT;
(14) I12 ←[right(Bin[xi])..right(Bout[xi])]; I3 ←[left(Bout[xi]).. right(Bin[xi])];
(15) I1 ←[center(I12)..right(I12)]; I2 ←[left(I12)..center(I12)];
(16) end if;
(17) if width(I12) > 0 then
(18) fixed ← FALSE;
(19) B1 ← Bout; B1[xi]← I1; S ← B1; Bsol ← backtrackSearch(P,S);
(20) if Bsol = ∅ then
(21) Bout[xi] ← I2 ∪ I3;
(22) if width(I2) > 0 then
(23) B2 ← Bout; B2[xi]← I2; S ← B2; Bsol ← backtrackSearch(P,S);

(24) if Bsol = ∅ then Bout[xi] ← I3; else Bin ← Bin ⊎ Bsol end if;
(25) end if;

(26) else Bin ← Bin ⊎ Bsol end if;
(27) end if;
(28) end for;
(29) until fixed;
(30) return Bin;

end function

Figure 6.7 The BS3 algorithm.

INTERVAL CONSTRAINTS

89

Initially, the generic backtrack search mechanism is applied to the original box to obtain a first

canonical solution (line 1). If no canonical solution is found then the CCSP has no solutions and the

empty set is returned. Otherwise the inner box is initialised to the canonical solution and the outer box

is initialised to the original box (line 2).

The algorithm searches extreme canonical solutions for each variable bound in round robin until all

of them are found. This is implemented as a for cycle (lines 5-28) (with 2n iterations, one for each

bound) within a repeat cycle (lines 3-29) which terminates when the inner box equals the outer box,

returning it (line 30).

In each iteration for searching the left/right bound of a particular variable xi the following steps are

accomplished.

Firstly, the branching option of side (splitSide) is set appropriately (lines 8/13).

Secondly two F-intervals, I12 and I3, are considered, where the first defines the portion with values

smaller/larger than the left/right bound of the inner box and the second contains the remaining values

(lines 9/14). Interval I12 is subsequently split at its mid point originating two subintervals I1 and I2

(lines 10/15).

If the width of I12 is zero, the inner and outer boxes have equal bounds, that of the extreme

canonical solution already found, and nothing else needs to be done in the iteration. Otherwise (line

17), the relevant search space is set to that between the inner and the outer boxes. More precisely, to

an F-box equal to the outer box but for the domain of xi. To improve efficiency, a canonical solution is

searched within this search space, with the domain of xi firstly set to I1 (line 19) and subsequently set

to I2 (line 23). If no canonical solution is found, the xi domain of outer box is updated to the remaining

interval (lines 21 and 24 respectively). Otherwise the inner box is updated to include the newly found

canonical solution (lines 24 and 26 respectively).

Notice that each iteration for a left/right bound of a particular variable xi eliminates at least half of

the relevant search space. In fact, the search space is divided into two halves, the F-boxes B1 and B2. If

a canonical solution is found within B1 then the inner box is enlarged to include it and F-box B2 will be

considered no further. Otherwise, B1 is eliminated from the search space.

The algorithm is correct and terminates. Correcteness is guaranteed by the correcteness of the

backtrackSearch algorithm and because the termination of the repeat cycle implies that for every

bound it is proved that there are no more canonical solutions outside the inner box (which is returned

in the end). Termination is guaranteed by the reduction of the finite search space performed at each

iteration.

6.3 Ordered Search Approaches

All the previous algorithms use a generic backtrack search mechanism for finding individual canonical

solutions, in order to enforce Global Hull-consistency. Thus the ultimate goal is not merely finding

canonical solutions but among them the most extreme with respect to a variable bound. However, the

GLOBAL HULL-CONSISTENCY

90

simple generic backtrack search mechanism makes no preferences on the order in which the boxes of

the search space are explored, following the natural backtracking sequence.

If an ordered search is performed instead, the Global Hull-consistency enforcing algorithms might

anticipate the exploration of preferable space regions, thus compensating the extra computational cost

of such strategy.

The algorithms in the following subsections are variations of the backtrack searching algorithms

that use instead a generic ordered search mechanism for finding canonical solutions.

The generic ordered search mechanism is implemented by the function orderedSearch represented

in figure 6.8. Its overall functioning is similar to the backtrackSearch function except that in this case

the search space is represented by a different data structure, which is a list of F-boxes sorted by a

particular variable bound. It is assumed that the variable and the bound are determined by the global

parameters orderedVariable and orderedSide respectively.

The function orderedSearch has two arguments, the first is a CCSP P and the second an ordered list

L of F-boxes where the canonical solutions of P will be searched. The second argument is also an

output argument allowing multiple calls to this function with the side effect of reducing the remaining

search space. If the orderedSide parameter is set to LEFT/RIGHT, then the F-boxes within L are in

ascending/descending order of their left/right bounds of the domain of the variable defined in the

orderedVariable parameter. The result of the orderedSearch function is a canonical solution of P

within one of the F-boxes of L or the empty set if there are no such canonical solutions.

function orderedSearch(a CCSP P=(X,D,C), inout an ordered list L of F-boxes)
(1) while L.size()>0 do
(2) B ← L.pop_front();
(3) B ← kB-consistency(P,B);
(4) if B ≠ ∅ then
(5) if isCanonical(B) then return B;
(6) splitBox(B,B1,B2);
(7) L.insertOrdered(B2);
(8) L.insertOrdered(B1);
(9) end if;
(10) end while;
(11) return ∅;

end function

Figure 6.8 The generic ordered search algorithm for finding canonical solutions.

During the execution of the orderedSearch function the ordered list L of F-boxes representing the

remaining search space is maintained by a set of functions which implement the usual list operations:

size returns the number of elements; pop_front returns the first element and removes it from the list;

insertOrdered adds a new element in its appropriate position with respect to the order determined by

the orderedVariable and orderedSide parameters.

The only differences between this algorithm and the backtrackSearch algorithm result from the

maintenance of the different data structures for representing the search space. The pop and push

INTERVAL CONSTRAINTS

91

functions, which are typical for stack data structures, are replaced, in the orderedSearch algorithm, by

the pop_front and insertOrdered functions, which are common in list data structures.

The algorithm is correct and terminates due to the same reasons that guarantee the correcteness and

termination of the backtrackSearch algorithm. The only difference between the algorithms is the order

in which the F-boxes are explored and this cannot affect their correcteness or termination properties.

The following two subsections present ordered search algorithms which are variations of the BS1

and BS3 backtrack search algorithms. Algorithms BS0 and BS2 would not profit from an ordered search.

In algorithm BS0 every F-box must be explored and so it is indifferent the order by which this is

accomplished. In algorithm BS2, the stack of F-boxes used in each backtrackSearch function remains

ordered due to the branching strategy, and no specialised data structure for that purpose is needed.

6.3.1 The OS1 Algorithm

BS1 may benefit from an ordered search since finding better (wrt to a variable bound) canonical

solutions improves the pruning of the search space.

The modified algorithm, OS1, is obtained from the original BS1 function (see figure 6.5) by calling

function orderedSearch (lines 2, 6 and 12) whose parameters must be previously defined. The

orderedSide parameter must be set instead of the now useless splitSide parameter (lines 1, 10 and 16).

The orderedVariable parameter is initialised to variable x1 (line 1) and updated to the current variable

xi at the beginning of each iteration of the for cycle (between lines 4 and 5).

Again the correctness and termination of the OS1 algorithm are guaranteed by the correctness and

termination of the BS1 algorithm since the only difference between them is the order by which the

F-boxes are explored.

6.3.2 The OS3 Algorithm

The BS3 algorithm may also take advantage from an ordered search in that better (wrt to a variable

bound) canonical solutions may cause a faster approximation of the inner box towards the outer box.

The new algorithm, OS3, is obtained from the original BS3 function (see figure 6.7) by simply

calling (in lines 19 and 23) function orderedSearch whose parameters must be previously set. The

orderedSide parameter must be set instead of the splitSide parameter (lines 8 and 13). The

orderedVariable parameter is updated to the current variable xi before the function call in lines 19 and

23.

The correctness and termination of the OS3 algorithm are guaranteed by the correctness and

termination of the BS3 algorithm.

GLOBAL HULL-CONSISTENCY

92

6.4 The Tree Structured Approach

In all previous algorithms the search for a different variable bound does not take full advantage from

the search for previous bounds. The main reason for such behaviour is that the data structures used for

representing the search space, either a stack or a list of F-boxes, are optimised during the search for a

particular bound and cannot be easily reused in the search for different bounds.

Alternatively, a different data structure for the representation of the search space may be used,

which is simultaneously optimised with respect to each variable bound, enabling an efficient search on

any of these dimensions. In this section we present a tree data structure for the representation of the

complete search space which is complemented by a set of ordered lists, one for each variable bound, to

keep track of the relevant F-boxes and the actions that must be executed on each of them.

The next subsections describe the data structure in more detail, and its use by an improved tree

structured algorithm (TSA) for enforcing Global Hull-consistency.

6.4.1 The Data Structures

Besides the inner box, the F-box enclosing all known canonical solutions already used before, the

basic data structures maintained by the algorithm are a binary tree and a vector of ordered lists.

Each node of the binary tree is an F-box which represents a sub-region of the search space that may

contain solutions of the CCSP. By definition, each parent box is the smallest F-box enclosing its two

children. Consequently, the union of all leaves of the binary tree determines the complete search space

and the root of the tree defines the smallest F-box enclosing it.

The binary tree of F-boxes is maintained by the following set of basic operations: size returns the

number of elements; delete(B) removes leaf B from the tree; update(B,B1) changes the value of leaf B

into B1; split(B,B1,B2) turns leaf B into the parent box of two new leaves B1 and B2.

The vector of ordered lists has 2n elements (where n is the number of variables of the CCSP) each

being an ordered list associated with each bound of each variable. Each element of a list is a pair

(F-box, Action) where Action is a label representing the next action (PRUNE, SEARCH or SPLIT) to

perform on the F-box. The list associated with the left (right) bound of variable xi maintains the leafs

of the binary tree in ascending (descending) order of their left (right) bounds for the xi domain.

The ordered lists are maintained by the following set of basic operations: size returns the number of

elements; front returns the first element; delete(B) removes the element with F-box=B;

insertOrdered(B) adds a new element (B,PRUNE) in its appropriate position; deleteOrdered(B)

removes all the elements with F-boxes following F-box=B in the ordered list; update(B,A) changes

into A the Action label of the element with F-box=B; reset(B) changes into PRUNE the Action labels

of all the elements in the list whose F-box is intersected by B;

The coordination between the different data structures is guaranteed by a set of procedures,

illustrated in figures 6.10 and 6.11, and is based on the notion of relevance which is related with the

inner box basic structure and is implemented by the functions in figure 6.9. To avoid oversized lists of

INTERVAL CONSTRAINTS

93

parameters, it is assumed that the basic data structures are accessed through global variables, namely,

Bin, T and L to represent respectively, the inner box, the binary tree and the vector of ordered lists.

The notion of relevance with respect to a variable bound is a key concept in the enforcing algorithm.

Only regions of the search space outside the inner box (that encloses all the known canonical

solutions) are relevant. Therefore before exploring a particular F-box, it is necessary to check whether

this F-box includes some relevant region with respect to a variable bound, and eventually to extract it

from the F-box. Figure 6.9 presents a function (isRelevant) for checking the relevance of an F-box

with respect to a variable bound and a complementary function (relevantSubbox) to extract the

relevant sub-box. Both functions have two arguments, an F-box B and a bound represented by an

integer value j between 1 and 2n (where n is the number of variables).

function isRelevant(an F-box B, a bound j)
(1) if Bin=∅ then return TRUE;
(2) if isOdd(j) then i ← (j+1)/2; return left(B[xi])<left(Bin[xi]);
(3) else i ← j/2; return right(B[xi])>right(Bin[xi]);

end function

function relevantSubbox(an F-box B, a bound j)
(1) B1 ← B;
(2) if Bin ≠ ∅ then
(3) if isOdd(j) then i ← (j+1)/2; B1[xi] ← [left(B[xi])..min(right(B[xi]),left(Bin[xi]))];
(4) else i ← j/2; B1[xi] ← [max(left(B[xi]),right(Bin[xi]))..right(B[xi])];
(5) return B1;

end function

Figure 6.9 The relevance of an F-box with respect to a variable bound.

Function isRelevant returns a boolean value indicating if B is relevant with respect to the bound j.

When the inner box is empty (i.e. no canonical solutions were found yet) all boxes are relevant with

respect to any variable bound, and so the true value is returned (line 1). Otherwise, since bound j refers

to the left/right bound of variable xi, box B is relevant if the left/right bound of its xi domain lies

outside the inner box (lines 2/3).

Function relevantSubbox assumes that B is relevant and returns the largest sub-box for which all the

values of the xi domain are outside the inner box (smaller/larger for a left/right bound of variable xi).

When the inner box is empty, the whole box is relevant and is returned without changes (line 1

followed by line 5). Otherwise, it returns the original box B discarding the right/left subinterval of its

xi domain which lies inside the inner box (lines 3/4).

Whenever a new canonical solution is found, the inner box must be enlarged to enclose it, and the

ordered lists associated with each variable bound must be updated to remove irrelevant elements.

Moreover, if the relevant search region of some element is narrowed, the next action to be executed

over it must be a prune (propagating the domain reduction of the search region).

GLOBAL HULL-CONSISTENCY

94

Figure 6.10 shows the procedure updateInnerBox to enclose a new canonical solution into the inner

box Bin. Its unique argument is a canonical F-box Bsol representing the new found canonical solution.

procedure updateInnerBox(a canonical F-box Bsol)

(1) if Bin = ∅ then Bnew ← Bsol ; else Bnew ← Bin ⊎ Bsol ; end if;
(2) for j=1 to 2n do
(3) if isRelevant(Bnew,j) then
(4) L[j].deleteOrdered(Bnew);
(5) L[j].reset(Bnew);
(6) end if
(7) end for
(8) Bin ← Bnew;

end procedure

Figure 6.10 The procedure that updates the inner box to enclose new canonical solutions.

Procedure updateInnerBox firstly computes the new inner box Bnew: an enlargement of the current

inner box Bin that encloses the new canonical solution (line 1).

Subsequently, for each variable bound (the for cycle lines 2-7), if the inner box changed that bound

(line 3), the ordered list associated with it is updated accordingly. All its elements that became

irrelevant are eliminated (line 4) and the Action label of those with a changed relevant sub-box is reset

to PRUNE (line 5). Finally the inner box is updated with the new value (line 8).

The procedures illustrated in figure 6.11 coordinate the changes, on the binary tree and on the vector

of ordered lists, that result from the deletion, narrowing and branching of a leaf of the tree.

procedure deleteLeaf(an F-box B)
(1) T.delete(B);
(2) for j=1 to 2n do if isRelevant(B,j) then L[j].delete(B);

end procedure

procedure narrowLeaf(an F-box B, an F-box B1)
(1) T.update(B,B1);
(2) for j=1 to 2n do
(3) if isRelevant(B,j) then L[j].delete(B);
(4) if isRelevant(B1,j) then L[j].insertOrdered(B1);
(5) end for;

end procedure

procedure branchLeaf(an F-box B, an F-box B1, an F-box B2)
(1) T.split(B,B1,B2);
(2) for j=1 to 2n do
(3) if isRelevant(B,j) then L[j].delete(B);
(4) if isRelevant(B1,j) then L[j].insertOrdered(B1);
(5) if isRelevant(B2,j) then L[j].insertOrdered(B2);
(6) end for;

end procedure

Figure 6.11 The procedures for deleting, narrowing and branching a leaf of the binary tree.

When a leaf is deleted from the tree, any associated element in the ordered lists must also be removed.

When a leaf is narrowed, any associated element may be reordered and eventually eliminated if it

INTERVAL CONSTRAINTS

95

becomes irrelevant. When a leaf is split into two new leaves, then its associated elements must be

removed and two new elements considered for insertion in the lists. The first argument of all the

procedures in figure 6.11, deleteLeaf, narrowLeaf and branchLeaf, is a leaf of the binary tree (an F-

box). The second argument of procedures narrowLeaf and branchLeaf, and the third argument of

procedure branchLeaf are F-boxes, B1 and B2, which are sub-boxes of B.

All three procedures firstly change the binary tree (line 1) and subsequently consider the ordered list

associated with each variable bound and change their elements if needed (the for cycle).

The changes on the binary tree are respectively, to remove leaf B from the binary tree (deleteLeaf),

to update the value of leaf B into B1 (narrowLeaf) and to make leaf B as the parent box of the two new

leaves B1 and B2 (branchLeaf).

The changes on each ordered list are the following: if B is a relevant box (wrt the bound associated

with the ordered list) then the element of the list with F-box=B is removed (deleteLeaf: line 2;

narrowLeaf and branchLeaf: line 3); if B1 is a relevant box then procedures narrowLeaf and

branchLeaf (line 4) insert a new element with F-box=B1 in the appropriate position; if B2 is a relevant

box then procedure branchLeaf (line 5) inserts a new element with F-box=B2 in the appropriate

position.

6.4.2 The Actions

The tree structured algorithm for enforcing Global Hull-consistency alternates prune, search and split

actions performed over specific sub-regions (F-boxes) of the current search space. The pruning of an

F-box is achieved by enforcing a kB-Consistency criterion (either kB-Hull-consistency or

kB-Box-consistency). The search action is performed with the goal of finding a canonical solution

within an F-box (previously pruned) and may be implemented as a simple check of an initial guess or

as a more complete local search procedure (see next chapter). The split of an F-box (previously

searched) is done by splitting one of its variable domains at the mid point.

Any action is performed over some leaf of the binary tree, and in particular over a subbox which

must be relevant with respect to some variable bound. Its consequences must be propagated

throughout the data structures maintained by the algorithm. The resulting procedures implementing the

prune, search and split actions are presented in figures 6.12-14.

The first action, PRUNE, must be performed before any other action in order to reduce the relevant

search space.

Figure 6.12 shows procedure pruneAction, which has three arguments. The first, Bt, is the leaf of the

binary tree where the pruning takes place. The second, B, is a subbox of Bt on which the

kB-Consistency requirement is enforced. The last argument, integer j, represents the bound for which

the sub-box B is relevant. The search space discarded in the pruning is removed from the binary tree.

This may imply to eliminate, narrow or branch leaves from the tree, which is achieved by procedures

deleteLeaf, narrowLeaf and branchLeaf previously presented.

GLOBAL HULL-CONSISTENCY

96

procedure pruneAction(an F-box Bt, an F-box B, a bound j)
(1) B’ ← kB-consistency(P,B);
(2) if B’ = ∅ then
(3) if Bt=B then deleteLeaf(Bt); else narrowLeaf(Bt,Bt\B); end if
(4) else
(5) if B’=B then L[j].update(Bt, SEARCH);
(6) else
(7) if Bt=B then narrowLeaf(Bt,B’); else branchLeaf(Bt,B’,Bt\B); end if
(8) L[j].update(B’, SEARCH);
(9) end if
(10) end if

end procedure

Figure 6.12 The procedure for pruning a subbox of a leaf of the binary tree.

Initially, pruneAction narrows the subbox B into B’ through the kB-consistency algorithm (line 1).

If the result is the empty set (line 2) then subbox B must be completely discarded from the binary

tree (line 3): if B is the whole leaf Bt, then it must be removed; if it is only a part of Bt, this leaf must

be narrowed to Bt\B obtained by removing B from Bt.

If the pruning of sub-box B did not narrow the box (line 5) then the next action to be executed over

leaf Bt wrt bound j must be a SEARCH. Thus, in the ordered list associated with bound j, the Action

label of the element with F-box=Bt is changed into SEARCH (line 5).

Otherwise, if sub-box B is narrowed into the non empty F-box B’ then, either B is the whole leaf Bt,

which must be narrowed into B’, or B is a fraction of the leaf Bt, which must be branched into B’ and

the F-box remaining after removing B from Bt (line 7). In either case, since the new leaf B’ was

already pruned wrt to bound j, the respective Action label is changed into SEARCH (line 8).

The next action is the search action, which must only be performed over a space region if this region

cannot be further pruned. This action precedes the split action in order to avoid unnecessary over

branching of the binary tree.

Figure 6.13 shows the searchAction procedure with the same three arguments: a leaf of the binary

tree Bt, its subbox B where the search takes place, and an integer value j representing the searched

bound. It is assumed that the search for a canonical solution of the CCSP P within the F-box B is

accomplished by the searchSolution function which may be implemented as a simple check of an

initial guess or as local search procedure. Together with the CCSP P and the F-box B, the

searchSolution function includes a third argument specifying the bound j, to allow its implementation

in the context of finding an extreme canonical solution with respect to this variable bound (the details

of the searchSolution function will be presented in the next chapter).

procedure searchAction(an F-box Bt, an F-box B, a bound j)
(1) Bsol ← searchSolution(P,B,j);
(2) if Bsol ≠ ∅ then updateInnerBox(Bsol); else L[j].update(Bt,SPLIT); end if

end procedure

Figure 6.13 The procedure for searching a canonical solution within a subbox of a binary tree leaf.

INTERVAL CONSTRAINTS

97

Initially procedure searchAction uses the searchSolution function to search a canonical solution of P

within subbox B (line 1). If a new canonical solution is found then the inner box must be updated to

enclose it (line 2). Otherwise, the next action to perform over leaf Bt wrt bound j must be a split action.

Thus, in the ordered list associated with bound j, the Action label of the element with F-box=Bt is

changed into SPLIT (line 2).

The last action is the split action, which must only be performed over a space region if this region

cannot be further pruned and the search for a canonical solution within it had failed.

Figure 6.14 presents the splitAction procedure. It has three arguments, a leaf of the binary tree Bt, its

subbox B that is going to be split, and a bound j. It is assumed that there is a splitBox procedure

identical to the one described in section 6.2 for branching an F-box B into two subboxes B1 and B2

(except that it contains an additional output parameter indicating which variable domain was split).

procedure splitAction(an F-box Bt, an F-box B, a bound j)
(1) if isOdd(j) then i ← (j+1)/2; splitSide ← LEFT; else i ← j/2; splitSide ← RIGHT; end if;
(2) splitBox(B,B1,B2,xk);
(3) if i≠k then I ← B1[xk]; B1 ← Bt; B1[xk] ← I;
(4) branchLeaf(Bt,B1,Bt\B1);

end procedure

Figure 6.14 The procedure to split a subbox of a binary tree leaf.

Initially the procedure splitAction determines which variable xi and which side splitSide is associated

with bound j (line 1). Then, the splitBox procedure is used to split the subbox B into B1 and B2 (line 2).

If the split variable xk is not that associated with bound j, then all the domains of box B1, except the

domain of variable xk, are redefined to their respective values in the leaf Bt (line 3). Finally, the leaf Bt

is branched into B1 and the F-box remaining after removing B1 from Bt (line 4). Note that the

redefinition of B1 in line 3 is necessary since otherwise the search space remaining after removing B1

from Bt (Bt\B1) would not be necessarily an F-box.

6.4.3 The TSA Algorithm

The TSA algorithm for enforcing Global Hull-consistency takes advantage of the binary tree

representation of the search space which allows the dynamic focussing on specific relevant regions

without losing information previously obtained in the pruning process.

Within a round-robin fashion, the most relevant sub-region, with respect to each variable bound, is

chosen for performing an adequate action. As a result, the binary tree structure will evolve updating

the most relevant sub-regions and the respective adequate actions (see previous subsections). The

algorithm stops when there are no more relevant space regions to analyse, that is, all the search space

is contained within the inner box (or is proved that there are no canonical solutions).

Figure 6.15 shows the TSA algorithm. From a CCSP P and an F-Box B (B⊆<Iapx(D1),…, Iapx(Dn)>),

function TSA computes the largest Global Hull-consistent F-box within B or the empty set if it does

not contain any canonical solutions.

GLOBAL HULL-CONSISTENCY

98

function TSA(a CCSP P=(<x1,…,xn>,D1×…×Dn,C), an F-box B)
(1) Bin ← ∅; T ← B;
(2) for j=1 to 2n do L[j] ← (B,PRUNE);
(3) repeat
(4) fixed-point ← TRUE;
(5) for j=1 to 2n do
(6) if T.size()=0 then return ∅;
(7) if L[j].size()>0 then
(8) fixed-point ← FALSE;
(9) (Bt,Action) ← L[j].front();
(10) B ← relevantSubbox(Bt,j);
(11) if Action=PRUNE then pruneAction(Bt,B,j);
(12) if Action=SEARCH then searchAction(Bt,B,j);
(13) if Action=SPLIT then splitAction(Bt,B,j);
(14) end if
(15) end for;
(16) until fixed-point=TRUE;
(17) return Bin;

end function

Figure 6.15 The TSA algorithm.

At the beginning, the data structures are initialised: the inner box is empty (line 1); the binary tree

contains only a single box with the original domains (line 1); each ordered list associated with each

variable bound contains a single element which points to the unique leaf of the tree and defines the

next adequate action to be a prune action (line 2).

The algorithm proceeds by alternating, the most relevant action with respect to each variable bound

until all canonical bounds are found. This is implemented as a for cycle (lines 5-15) (with 2n

iterations, one for each bound) within a repeat cycle (lines 3-16) which only terminates when the inner

box encloses all the search space (returned at line 17), or the search space becomes empty (line 6).

Each iteration of the for cycle is only executed if the associated ordered list is not empty (line 7),

otherwise the respective extreme bound would have already been found. If the bound was not found

yet then, its most relevant leaf Bt and the respective next action Action are determined from the first

element of the associated ordered list (line 9). Subsequently, a relevant subbox is computed by the

relevantSubbox function (line 10) and the appropriate action is performed on it (line 11, 12 or 13).

The correcteness of the algorithm is guaranteed by the correcteness of the kB-Consistency function

for pruning the search space and the properties of the ordered lists which only become empty when the

respective canonical bound is found. Since the algorithm only terminates when all the lists become

empty, this guarantees that all the canonical bounds have been found when the algorithm stops.

The algorithm is guaranteed to terminate since at least after 3 iterations performing different actions

on the same leaf of the binary tree, either the relevant search space is reduced (either by the prune or

the search action) or the leaf is split into two smaller leafs. After a finite number of these iterations the

relevant search space must necessarily be reduced since the leafs eventually become canonical, and

either the prune or the search action must then succeed. Since the relevant search space is finite,

eventually it will be completely eliminated, terminating the algorithm.

INTERVAL CONSTRAINTS

99

6.5 Summary

In this chapter Global Hull-consistency was proposed as an alternative consistency criterion in

continuous domains. Several different approaches were suggested for enforcing Global

Hull-consistency, their enforcing algorithms were explained and its termination and correctness

properties were derived. In the next chapter a local search procedure is proposed for interval

constraints and its integration with the Global Hull-consistency enforcing algorithms is described.

INTERVAL CONSTRAINTS

101

Chapter 7

Local Search

The definition of Global Hull-consistency, demanding the existence of extreme canonical solutions

with respect to each variable bound, requires enforcement strategies not only to prune the search

space, proving the non-existence of canonical solutions, but also to localise canonical solutions within

a box.

In the approaches of the previous chapter, whereas the pruning of the search space is achieved by a

specialised partial consistency enforcement algorithm, the localisation of new canonical solutions has

no specific method and is a consequence of reducing a sub-region of the search space into a canonical

box that cannot be further pruned1.

However, the enforcing algorithms that maintain an inner box enclosing all the known canonical

solutions, might benefit from anticipating the localisation of new canonical solutions since the outward

relevant search space would be reduced as a result of the enlargement of these inner box.

Consequently, these algorithms could take advantage from the integration of a specialised approach

for searching new canonical solutions.

A natural approach for searching new canonical solutions is to apply local search techniques. Local

search techniques navigate through points of the search space by inspecting some local properties of

the current point, and choosing a nearby point to jump to. In the CCSP context, the points of the search

space are complete real valued instantiations of all its variables (degenerated F-boxes) and the

navigation should be oriented towards the simultaneous satisfaction of all its constraints (the solutions

of the CCSP).

Local search techniques are commonly used for solving optimisation problems, which may be seen

as CSPs where the goal is to find solutions that optimise (minimise or maximise) an objective

function. In general, these are based on numerical methods working on floating point arithmetic

[DS83, GMW81, MW93] for efficiently obtaining local optimisers, which may be embedded within an

interval branch and bound approach [Moo79, Ske74, Han92, IF79, RR88, Jan92, CGM93] to

guarantee global optimality.

1 An exception must be made to the TSA algorithm which includes the searchSolution function for finding new solutions.

LOCAL SEARCH

102

Within the context of Global Hull-consistency enforcement, the goal is not necessarily to minimise

a given objective function but rather to satisfy the set of constraints of a CCSP. Nevertheless, from

some initial point chosen within an F-box, a floating point numerical method may be used for

converging to another point of the F-box which is a local minimiser of some function representing

how “distant” is a point from satisfying all the constraints2.

In the next section a local search approach is proposed for integration with the Global

Hull-consistency enforcement algorithms described in the previous chapter. In section 7.2 alternative

local search approaches are analysed. Section 7.3 discusses which algorithms could benefit from such

integration and how this could be implemented.

7.1 The Line Search Approach

The local search approach proposed for finding canonical solutions within an F-box is a line search

approach, that is, the movement is always done along lines of the multidimensional space. From a

particular current point, a convenient direction must be defined, determining a line on which the new

point is searched. The chosen direction is obtained by the Newton-Raphson method for

multidimensional root finding of nonlinear systems of equations. The new chosen point along this

direction must lie within the original F-box and ensure a sufficient decrease of the distance function.

Figure 7.1 presents function searchSolution that implements the local search approach. It uses the

kB-consistency algorithm for verifying if a canonical F-box is a canonical solution of the CCSP.

Function Newton-Raphson (explained in the next subsection) calculates the vector that defines the line

search direction and function lineMinimisation (presented in the subsection 7.1.2) computes a new

point along that line. Function searchSolution has three arguments, a CCSP P, an F-box B (with

B⊆<Iapx(D1),…, Iapx(Dn)>), and a bound j. The output is a canonical solution of P within B or the

empty set if no solution was found.

function searchSolution(a CCSP P=(<x1,…,xn>,D1×…×Dn,C), an F-box B, a bound j)
(1) for i=1 to n do r[i] ← center(B[i]);
(2) if isOdd(j) then r[(j+1)/2] ← left(B[(j+1)/2]); else r[j/2] ← right(B[j/2]); end if;
(3) repeat

(4) for i=1 to n do if r[i]≠ right(B[i]) then Bsol[i] ← [r[i]..r[i]+] else Bsol[i] ← cright(B[i]);
(5) if kB-consistency(P,Bsol) ≠ ∅ then return Bsol;
(6) rold ← r;
(7) δr ← Newton-Raphson(P,B,j,r);
(8) r ← lineMinimisation(P,B,r,δr);
(9) until rold = r ;
(10) return ∅;

end function

Figure 7.1 The local search algorithm.

2 In the following this function will be denoted the distance function.

INTERVAL CONSTRAINTS

103

Initially a starting point (a degenerate F-box) within the search box B is chosen to be the current point

r. If the goal is to find the left (right) bound of variable xi, the point is the mid point of the box (line 1)

except that the ith domain is instantiated with the smallest (largest) xi value within B (line 2). This

heuristic bias the search towards the extreme bound that characterises the context in which the search

is performed.

The remainder of the algorithm (lines 3 through 9) is a repeat cycle that implements the local

navigation from point to point until a convergence point is reached (line 9) or a canonical solution is

found (line 5).

At each iteration of the repeat cycle, the current point is firstly enlarged into a non-degenerate

canonical box (line 4). If the empty set is not obtained when the kB-consistency algorithm is applied to

this canonical box then it must be a canonical solution and is returned (line 5). Otherwise, the current

point is saved (line 6) and a multidimensional vector is obtained based on the Newton-Raphson

method for multidimensional root finding (line 7). Subsequently, a minimisation process obtains a new

point inside the search box and within the line segment defined by the current point and the point

obtained by applying the multidimensional vector to the current point (line 8).

A convergence point is reached when the next point is the same as the previous one. In this case the

repeat cycle terminates (line 9) and the empty set is returned (line 10).

The algorithm is correct in that it either returns a canonical solution within the search box

(guaranteed by the application of the kB-consistency algorithm) or the empty set.

The algorithm terminates since the lineMinimisation function ensures the minimisation of the

distance function for which any solution of the CCSP is a zero, and the convergence to a local

minimum is detected in line 9 terminating the repeat cycle.

7.1.1 Obtaining a Multidimensional Vector - the Newton-Raphson Method

The ultimate goal of obtaining a multidimensional vector is to apply it to the current point to find a

solution of a CCSP. The idea is to reduce the problem of finding a solution of a CCSP into the

problem of finding a root of a multidimensional vector function F, which can be tackled by an

appropriate numerical method, such as the Newton-Raphson Method [OR70, SB92].

If the vector function F is defined in such a way that a zero of each element Fi satisfies some

constraint form the CCSP (and a non zero value implies that the constraint is not satisfied) then, any

zero of F must satisfy simultaneously all the associated constraints.

In the case of equality constraints, the associated element on the vector function may be defined by

the real expression of the left hand side of the constraint. For example, if the CCSP has two equality

constraints c1 ≡ x1
2
+x2

2
-1=0 and c2 ≡ x1×(x2-x1)=0 then F1 ≡ x1

2
+x2

2
-1 and F2 ≡ x1×(x2-x1) would define a

vector function F whose zeros are solutions of the CCSP.

If there are inequality constraints in the CCSP then they will only be included in the vector function

if they are not satisfied in the current point. If an inequality constraint is already satisfied in the current

point then, there is no advantage in forcing it to became zero (transforming the inequality into an

LOCAL SEARCH

104

equality constraint). On the contrary, if the inequality is not yet satisfied then at least the zero value

must be obtained for its satisfaction. Consider the example of figure 5.1 with two inequality

constraints c1 ≡ x1
2
+x2

2
−2

2
≤0 and c2 ≡ (x1−1)

2
+(x2−1)

2
−2.5

2
≥0. If the current point is (2.0,2.0) satisfying

none of the constraints, then the vector function would be defined by the elements F1 ≡ x1
2
+x2

2
−2

2
 and

F2 ≡ (x1−1)
2
+(x2−1)

2
−2.5

2
. However, at the current point (0.0,0.0) only constraint c2 is not satisfied and

consequently, the vector function would only contain the single element F1 ≡ (x1−1)
2
+(x2−1)

2
−2.5

2

associated with it.

Figure 7.2 shows how function F could be obtained for a particular current point. The two

arguments are the CCSP P and a degenerated F-box r representing the current point.

function defineFunction(a CCSP P=(<x1,…,xn>,D1×…×Dn,{c1,…,cm}), a degenerated F-box r)
(1) i=0;
(2) for j=1 to m do
(3) case cj ≡
(4) ej = 0: i ← i + 1; Fi ≡ ej;
(5) ej ≤ 0: if left(Ej(r))>0 then i ← i + 1; Fi ≡ ej; end if;
(6) ej ≥ 0: if right(Ej(r))<0 then i ← i + 1; Fi ≡ ej; end if;
(7) end case;
(8) return F;

end function

Figure 7.2 The definition of the vector function F.

The algorithm is a for cycle (lines 2 through 7), where each of the CCSP constraints is analysed for

deciding whether it must be associated with a component of the vector function F.

For equality constraints (line 4), a new component of the vector function is defined by the real

expression of the left hand side of the constraint expression. Otherwise, (lines 5 or 6), the new

component is only added to the vector function if the constraint is not satisfied at the current point,

that is, its approximate interval arithmetic evaluation (represented as Ej(r)) does not satisfy the

constraint.

Once obtained the multidimensional function F, a multidimensional vector δr, corresponding to one

step of the Newton-Raphson iterative method for multidimensional root finding, is computed. The

Newton-Raphson method is known to rapidly converge to a root given a sufficiently good initial

guess. Local quadratic convergence was firstly proved by Runge in 1899 and later, under more general

assumptions by Kantorovich in 1948. The book by Ortega and Rheinboldt [OR70] is a classical

reference for many of the convergence theoretical results of the Newton-Raphson method.

The method aims at computing a multidimensional real vector δr (the Newton vector) which

applied to the current point r reaches a root of the multidimensional function:

F(r+δr) = 0 (1)

Expanding the multidimensional function F in Taylor series around the current point r, and

neglecting the higher order terms, the following approximation is obtained:

F(r+δr) = F(r) + J(r)δr (2) (where J(r) is the Jacobian matrix at point r)

INTERVAL CONSTRAINTS

105

which, due to 1, may be rewritten as:

 J(r)δr = -F(r) (3)

A solution of (3) in order to δr, is an estimation of the corrections to the current point r that move

all functions Fi closer to zero, simultaneously. Equation (3) represents a linear system with n

unknowns (the δr value with respect to each variable) and m algebraic equations (one for each

component of the vector function F). Depending on the number of linear independent equations, the

system may have zero, one or several solutions. Since there are no guarantees about the non-

singularity of the Jacobian matrix J(r), it may be impossible to solve the system by inverting it by a

classical method as the Gauss-Jordan elimination or LU decomposition.

Hence, it is convenient to use a numerical technique called Singular Value Decomposition (SVD)

adequate for any set of linear equations. The numerical aspects of the SVD technique are discussed in

Golub and Van Loan’s textbook [GV96] whereas practical implementational issues may be found in

[Dem97]. Efficient implementations of the SVD technique are presented in [FMM77] (Fortran

version) and [PTV92] (C version) which are based on the original algorithm introduced by Golub and

Reinsch in [GR71], whereas a new algorithm is presented in [GDD94].

The basic concepts of the SVD technique are introduced next, and its potential application for

finding a suitable multidimensional vector is discussed subsequently.

A singular value decomposition of a matrix A∈ℝm×n is a factorisation of the form:

A = UΣVT

where U∈ℝm×m and V∈ℝn×n are both orthogonal matrices (UTU=I and VTV=I), and Σ∈ℝm×n is a matrix

where all the non-diagonal elements Σi,j (i≠j) are zero. The diagonal elements Σi,i (denoted σi) are non-

negative, and are called the singular values of A and the columns of U and V are the left and right

singular vectors. The singular values of a matrix are uniquely defined, but not the corresponding

orthogonal matrices.

Any matrix A∈ℝm×n, either singular or non-singular, may be factorised into an SVD where the

diagonal elements of Σ (the singular values) are in descending order (σi≥σj if i≤j), the first r

(r≤min(m,n)) being positive and the others zero. The value r is the rank of the matrix A (the number of

independent rows or columns). The right singular vectors that are columns vi of V whose same-

numbered singular values σi are zero define an orthonormal basis V0 for the null space of A, which is

the subspace of ℝn defined by all the elements x that satisfy Ax=0.

Any matrix A∈ℝm×n, either singular or non-singular, has a unique pseudoinverse A†∈ℝn×m (a formal

definition of a matrix pseudoinverse may be found in [SB92]), that can be obtained from its SVD by:

A† = VΣ†UT

where Σ†∈ℝn×m is a matrix where all the non-diagonal elements Σ†
i,j (i≠j) are zero and the diagonal

elements Σ†
i,i (denoted σ†

i) are zero if the respective singular value σi is zero, or 1/σi otherwise. When

LOCAL SEARCH

106

A is a square and non-singular matrix, its pseudoinverse coincides with its inverse, that is, A† = A-1.

Consider the generic linear system:

Ax=b with A∈ℝm×n, b∈ℝm and x∈ℝn

Such system may have zero, one or infinitely many solutions. A least-squares solution of the system

is a vector ~ x∈ℝn, that minimises the least-squares distance between Ax and b, that is:

22
min~ bAxbxA

nx
−=−

ℜ∈

When there are solutions, one or many, the least-squares solutions are the real solutions of the

system (0~
2
=− bxA).When there are no solutions, the least-squares solutions are the vectors, among

all the possible vectors, that, although not solving the system, provide the closest approximation of the

right hand side.

The least-squares solution of minimal norm is the smallest vector x̂ which is a least-squares solution

of the system:

2~2

~minˆ xx
x

=

For any linear system Ax=b there is always a unique least-squares solution of minimal norm x̂ ,

which may be obtained by multiplying the pseudoinverse of matrix A and the right hand side vector b:

x̂ = A†b

From the SVD, not only the pseudoinverse A† may be computed, allowing the computation of the

least-squares solution of minimal norm x̂ , but also an orthonormal basis V0 for the null space of A may

be defined, allowing the assessment of other least-squares solutions. This last observation results from

the fact that any vector obtained by adding a linear combination of the vectors within V0 to x̂ must

give an equal approximation of the right hand side b and so, it must also be a least-squares solution of

the system. If V0 contains k vectors, v1, …,vk, for any linear combination α1, …,αk:

A(x̂ + α1v1 + …+ αkvk)= A x̂ + α1Av1 + …+ αkAvk= A x̂ + 0 + …+ 0 = A x̂

Moreover, based on the factorisation of the matrix A into UΣVT it is easy to assess whether the

least-squares solution of minimal norm x̂ obtained is a real solution of the system, or a mere

approximation. In fact, the original system may be transformed into a diagonal system:

Ax=b ⇔ UΣVTx=b ⇔ U TUΣVTx=U Tb ⇔ ΣVTx=U Tb ⇔ Σz=d with z=VTx and d=U Tb

and a solution of the diagonal system exists if and only if di=0 whenever σi=0 or i>n.

In the context of the Newton-Raphson method, the linear system J(r)δr=-F(r) must be solved to

estimate the corrections δr to the current point r that approximates F to zero. We must take into

account that the quality of the approximation given by the Taylor series of equation 2 will in general

decrease when larger neighbourhoods around the current point are considered.

INTERVAL CONSTRAINTS

107

If the system has one or more solutions, the application of the SVD technique to calculate the

pseudoinverse J(r)† of the jacobian matrix and computing the least-squares solution of minimal norm

δr=-J(r)†F(r), results in the smallest solution vector, corresponding to the smallest correction leading

to a zero of F according to the approximation of equation 2. In this case, besides finding solutions of

the system, that one requiring smaller corrections is chosen, since the quality of the approximation

given by the equation is probably better.

If the system has no solutions, the least-squares solution of minimal norm δr=-J(r)†F(r) computed

by the SVD is the smallest vector of those that give the best possible correction leading to a zero of F

according to the approximation of equation 2. Since, in this particular case, the search seems to be

approaching a non-zero local minimum, it may be preferable to choose some other least-squares

solution, which could be obtained by adding to δr a linear combination of the right singular vectors

that define an orthonormal basis for the null space of J(r). Moreover, this linear combination could be

determined to maximise/minimise the extreme bound that characterises the local search context.

The complete algorithm for obtaining the multidimensional vector is implemented as function

Newton-Raphson presented is figure 7.3. From a CCSP P, an F-box B representing the search box, a

bound j representing the local search context, and a degenerate F-box r representing the current point,

it computes the multidimensional vector δr based on the Newton-Raphson method. The algorithm uses

function defineFunction for the definition of the vector function F that must be associated with a

CCSP at a given point. A function defineJacobian computes the Jacobian matrix at a given point and a

procedure SVD computes the SVD factorisation of a matrix. This procedure has four arguments, the

first is an input argument representing the original matrix Jr, and the remaining are output arguments

representing the matrices U, Σ and V such that Jr = UΣVT. A function hasSolution is used for verifying

whether the linear system has a solution based on the relevant information (Σ and d) about the

equivalent diagonal system (Σz=d). A function defineOrthonormalBasis is used to, based on the

singular values in Σ, extract from the set of right singular vectors V those that constitute an

orthonormal basis V0 of the null space. A function linearCombination is used for obtaining a linear

combination of these vectors in order to redirect the vector δr towards the bound j of the search box B.

function Newton-Raphson(a CCSP P, an F-box B, a bound j, a degenerated F-box r)
(1) F ← defineFunction(P,r);
(2) Jr ← defineJacobian(F,r);
(3) SVD(Jr,U,Σ,V);
(4) d ← -UTF(r);
(5) δr ← VΣ†d;
(6) if not hasSolution(Σ,d) then
(7) V0 ← defineOrthonormalBasis(Σ,V);
(8) δr ← δr + linearCombination(B,j,r,δr,V0);
(9) end if
(10) return δr;

end function

Figure 7.3 The algorithm that computes the Newton-Raphson vector.

LOCAL SEARCH

108

Initially the vector function F, associated to the CCSP P at the current point r is defined (line 1). Then

its Jacobian matrix Jr at that point is computed (line 2) and decomposed by the SVD procedure (line 3)

obtaining the matrices U, Σ and V such that Jr=UΣVT.

The computation of the least-squares solution of minimal norm of the linear system J(r)δr=-F(r),

which is δr=J(r)†(-F(r))=VΣ†UT(-F(r)), is performed in two stages: firstly d=UT(-F(r)) is computed

(line 4) and then the remaining δr=VΣ†d is calculated (line 5). The reason for these two steps is to

separately obtain vector d, which will be used by the hasSolution function (line 6) to verify whether

the linear system has real solutions.

If the obtained vector δr is not a solution of the linear system then an orthonormal basis V0 of the

null space is extracted from the vector within V (line 7), and other least-squares solution is obtained by

adding to δr a linear combination of these vectors (line 8).

Finally the obtained multidimensional vector δr is returned (line 10).

Figure 7.4 illustrates the multidimensional vectors obtained at different points of the search space for

the example presented in figure 5.1, with the two inequality constraints c1 ≡ x1
2
+x2

2
−2

2
≤0 and

c2 ≡ (x1−1)
2
+(x2−1)

2
−2.5

2
≥0.

Figure 7.4 The multidimensional vectors obtained at different points of the search space.

If the current point is outside both circumferences (P1 to P4) then c1 is the only constraint unsatisfied (a

solution must be inside the smaller circumference) and the Newton vector points towards the centre of

the smaller circumference.

Similarly, if the current point is inside both circumferences (P5, P6) then c2 is the only constraint

unsatisfied (a solution must be outside the larger circumference) and the Newton vector points

outwards the larger circumference (with a direction opposite to the centre of the circumference).

If both constraints are unsatisfied (P7 to P10) then the Newton vector is some weighted combination

of the two previous cases. In the particular case where x1=x2 (P10), the resulting linear system has no

solutions and the set of least-squares solutions define a straight line like the dotted line presented in

the figure. Which of these points will be chosen for defining the multidimensional vector, depends

upon the search box and the extreme bound which is being searched. In the example, if the search box

(if max x1∈[0..4])

(if min x1∈[0..4])

P1 P2

P3

P4

P5

P6

P7

P8

P9

P10

INTERVAL CONSTRAINTS

109

constrain the values of the variable x1 to be between 0 and 4 then the multidimensional vector points to

(4,0) or (0,4) depending on whether the goal is to find its upper or its lower bound, respectively.

The Newton-Raphson method requires the computation of a Jacobian matrix at each of the points

considered during the search. Besides implying the existence of the first derivatives at each of these

points with respect to each variable, its computation may be expensive, depending on the number of

variables. An alternative strategy could be based on a Secant method such as the Broyden’s method

[Bro65] which works with cheaper approximations of the Jacobian matrix and still preserves similar

convergence properties.

7.1.2 Obtaining a New Point

One problem of the Newton’s iterative method is that it may fail convergence if the initial guess is not

good enough (see [OR70]). To correct this we followed a globally convergent strategy that guarantees

some progress toward the minimisation of the distance function at each iteration. This kind of strategy

is often combined with the Newton-Raphson method originating the modified Newton method. The

idea is that while such methods can still fail by converging into a local minimum of the distance

function, they often succeed where the Newton-Raphson method alone fails convergence.

The distance function that must be minimised at each iteration of the method is defined at each

point r as the Euclidian vector norm
2

)(rF of the vector function F(r) associated with the point (see

previous subsection). With the above definition, the distance function has exactly the same zeros as

the vector function F. Thus, a zero of the distance function is a solution of the CCSP whereas a non

zero value gives a measure of how distant a point is from satisfying simultaneously all the constraints.

If there are one or more solutions of the linear equation J(r)x = -F(r) then the Newton vector δr

defines a descent direction for the distance function, that is, the inner product between the gradient of

the distance function and the Newton vector δr is always negative. This can be easily verified since the

gradient of the distance function is:

()
2

2
1

2)(

)()(
)()()(

rF

rJrF
rFrFrF

T
T =∇=∇

which multiplied by the Newton vector gives:

2
2)(

)()(
)(

rF

rrJrF
rrF

T δ
δ =∇

If δr is a solution of the equation then J(r)δr must be equal to -F(r) and so:

()
2

2

2

2

22
2

)(
)(

)(

)(

)()(

)(

)()(
)(rF

rF

rF

rF

rFrF

rF

rFrF
rrF

TT

−=−=−=
−

=∇ δ

which is necessary a negative value since the Euclidian vector norm
2

)(rF is always positive.

LOCAL SEARCH

110

In the particular case where there are no solutions for J(r)x = -F(r), vector δr is no longer

guaranteed to be a descent direction for the distance function since J(r)δr is not -F(r) but rather some

approximation of it (which may be represented as -F(r)+e where e is a vector whose size is minimised

at each least-squares solution of the system). In this case the inner product between the gradient of the

distance function and the Newton vector δr is:

() ()
22

2)(

)()(

)(

)()(
)(

rF

erFrF

rF

erFrF
rrF

TT −
−=

+−
=∇ δ

which is only negative if:

() 0)()(
1

2 >−∑
=

m

i
iii erFrF

Since, the size of the vector e is minimised at each least-squares solution of the system the odds are

that the above inequality is satisfied. Moreover, since in this particular case a suitable linear

combination of the right singular vectors will be used to choose some other least-squares solution,

different from the minimal norm, the above inequality could be used as an additional constraint to

enforce the resulting vector to be a descent direction for the distance function.

If the Newton vector δr defines a descent direction for the distance function
2

)(rF then it is

guaranteed that it is always possible to obtain along that direction a point closer to a zero of F (in the

sense that its distance function value is smaller than the current one). This new point must lie in the

segment defined by:

r + λδr with λ∈[0..1]

The strategy to obtain the new point consists on trying different λ values, starting with the largest

possible value without exceeding the search box limits, and backtracking to smaller values until a

suitable point is reached. If the current point is close enough to the solution then the Newton step has

quadratic convergence. Otherwise a smaller step is taken still directed towards a solution (or a mere

local minimum of the distance function), guaranteeing convergence.

Since the current point r must be within the search box B, constraining the new point to be within

the search box limits is the same as imposing

ri + λδri ∈ B[xi]

for each variable xi (1≤i≤n). Defining αi associated to each xi as:

[]

[]

=

1,
)(

min

1

1,
)(

min

i

i

i

i

i

r

xBright

r

xBleft

δ

δ

α

if δri<0

if δri=0

if δri>0

INTERVAL CONSTRAINTS

111

The new point is kept inside the search box, when λ does not exceed any of these αi values:

λ∈[0..)(min
1

i
ni
α

≤≤
]

Instead of changing the maximum value of λ, an equivalent alternative is to keep the λ value

between 0 and 1 but to adjust the Newton vector δr by multiplying it by the constant)(min
1

i
ni
α

≤≤
.

With this adjusted Newton vector, the backtrack search consists on starting at λ=1 and trying

consecutively smaller values of λ until an acceptance criterion is achieved or a convergence point is

reached.

The acceptance criterion should not only guarantee that the new point decreases the distance

function, but also that it avoids a too slow convergence rate (see [DS83]). The latter can be achieved

by requiring the average rate of decrease of the distance function
22

)()(rFrrF −+ λδ to be at least

some fraction kaccept∈[0..1] of the initial rate decrease rrF δ
2

)(∇ .

A convergence point is reached when the value of λ nears the canonical precision, making the

canonical approximations of r and r + λδr indistinct. A practical criterion is to consider that a

convergence point is reached whenever the value of λ is smaller than some predefined threshold kstop

(close to the canonical precision).

The choice of the consecutively smaller values of λ to be considered during the backtracking search

should be based on some model for the function g(λ) defined as:

g(λ) =
2

)(rrF λδ+ with rrFg δ
2

)()0(∇=′

If a quadratic model is used then:

g(λ) = aλ2 + bλ + c and g’(λ) = 2aλ + b

From the value of g at λ1 (a previous value of λ) the following equations are obtained:

g(0) = a02 + b0 + c g’(0) = 2a0 + b

g(λ1) = aλ1
2 + bλ1 + c

which define the quadratic model:

)0()0(
)0()0()(

)(2
2
1

11 gg
ggg

g +′+
−′−

= λλ
λ

λλ
λ

The value of λ that minimises the above quadratic function can be easily computed by calculating

the unique zero of its derivative:

))0()0()((2

)0(

11

2
1

min ggg

g

−′−
′

−=
λλ

λ
λ

With this quadratic model, the value of λ that should be considered after λ1 is λmin. Since, in

general, there are no guarantees about the value λmin, it is convenient, in order to avoid too smaller or

too larger steps, to bound the next λ value relatively to the previous value λ1. For example, λ could be

LOCAL SEARCH

112

forced to be between 0.1λ1 and 0.5λ1 by choosing λmin if it is within this range or the closest of these

bounds otherwise.

If instead of a quadratic model, a cubic model or other higher order model is used for representing

function g, then a similar approach would have to be considered. In this case, the complete

characterisation of the model would require the knowledge of the function value at several previous

values of λ (k-1 values of λ different from zero for a k order model).

The function presented in figure 7.5 implements a backtracking search along the line segment

defined by the current point and the Newton vector. From a CCSP P, an F-box B representing the

search box, a degenerate F-box r representing the current point and a degenerate F-box δr representing

the Newton vector, it computes the next point to jump to. The algorithm uses function defineFunction

(see previous subsection) for the definition of vector function F associated to a CCSP at a given point.

It is assumed that functions quadraticModel and cubicModel compute the minimum of an univariate

function G assuming a quadratic or a cubic model respectively. These functions need as input the

values of G and its derivative at point zero, as well as the value of G at one or two other points, for the

quadratic and the cubic models, respectively (see [PTV92] for a practical implementation of these

functions).

function lineMinimization(a CCSP P, an F-box B, a degenerated F-box r, a degenerated F-box δr)
(1) F ← defineFunction(P,r); G0 ← F(r);
(2) αmin ← 1;
(3) for i=1 to n do
(4) if δri<0 then αmin ← min(αmin,left(B[xi])/δri) end if;
(5) if δri>0 then αmin ← min(αmin,right(B[xi])/δri) end if;
(6) end for;
(7) δr ←αminδr ;
(8) 0G ′ ←

2
)(rF δr ;

(9) if 0G ′ ≥ 0 then return r;

(10) λ ← 1;
(11) repeat;
(12) F ← defineFunction(P,r+λδr); Gλ ← F(r+λδr);
(13) if Gλ < G0 + kaccept λ 0G ′ then return r+λδr;

(14) if λ = 1 then λnew ← quadraticModel(G0, 0G ′ ,λ,Gλ);

(15) else λnew ← cubicModel(G0, 0G ′ ,λ,Gλ,λprev,Gλprev);

(16) λprev ←λ; Gλprev ← Gλ;
(17) λ ← max(λnew,0.1λprev); λ ← min(λ,0.5λprev);
(18) until λ< kstop;
(19) return r;

end function

Figure 7.5 The algorithm that computes a new point along the Newton’s vector direction.

Initially vector function F, associated with the CCSP P at the current point r is defined and its value

G0 is computed (line 1). Subsequently, the Newton vector δr is adjusted in order to guarantee that the

new point is within the search box B. The minimum of the αi values associated to each variable xi is

determined (lines 2 through 6) and the Newton vector δr is updated by multiplying it by the obtained

INTERVAL CONSTRAINTS

113

value (line 7). The slope 0G ′ at the current point in the direction of the Newton vector is calculated

(line 8) and, if nonnegative, the algorithm stops returning the current point r (line 9).

The backtrack search along the Newton’s vector direction is implemented as a repeat cycle (lines

11-18). At each iteration of the cycle, a λ value is tested and if it does not meet the acceptance

criterion (according to the definition given previously in the current subsection) a new λ value is

calculated for the next iteration. The verification of the acceptance criterion implies the redefinition of

the vector function F associated with the respective point r+λδr and the computation of its value Gλ

(line 12). If the acceptance criterion is satisfied then the new point r+λδr is returned (line 13).

Otherwise a new λ value is calculated, which minimises the function G according to its quadratic (line

14 - only used for the first iteration) or cubic (line 15) model. The previous values of λ and Gλ are

saved (line 16) and the new λ value is guaranteed to be between 0.1 and 0.5 of the previous λ value

(line 17).

The repeat cycle is exited either when a new point satisfying the acceptance criterion is found

(line 13) or when the λ value is smaller than the predefined threshold kstop (line 18). In this last case,

the current point r, which is a convergence point, is returned (line 19).

The algorithm is correct since it either returns a new point with an associated value of the distance

function smaller than at the current point (this is guaranteed by the acceptance criterion) or it returns

the current point if no better point was found.

The algorithm terminates because at each iteration of the repeat cycle the λ value is at least halved

and in a finite number of iterations the decrease of the λ value is such that is necessary smaller than

the threshold kstop.

Figure 7.6 illustrates the new points obtained by applying the lineMinimization algorithm on the

multidimensional vectors exemplified in figure 7.4. The dashed lines represent the original Newton

vectors and the crosses are the points associated with λ values that did not satisfy the acceptance

criterion. It is assumed that the search box is big enough to include the complete Newton vector

(except in the case where x1 must be minimised or maximised between 0 and 4).

Figure 7.6 The new points obtained by the lineMinimization algorithm over the vectors of figure 7.4.

(if max x1∈[0..4])

(if min x1∈[0..4])

×

×

×

×

×

P1 P2

P3

P4

P5

P6

P7

P8

P9

P10

LOCAL SEARCH

114

As shown in the figure, only for points in the first quadrant, the new point obtained is not the same

obtained by applying the complete Newton vector. These points are too far from a solution of the

CCSP for the quadratic approximation implicit in the Newton method to be effective, and a smaller

step in Newton’s direction is preferable. On the contrary, the other points are close enough of a

solution so that the full Newton step is the best choice, eventually leading to quadratic convergence

towards a solution.

Figure 7.7 shows the number of iterations of the complete local search algorithm (function

searchSolution), necessary for reaching a convergence point (assuming a 4 digits precision) by starting

at each of the previous points. It is assumed that the search box is big enough to include all the full

Newton vectors computed during the local search.

Figure 7.7 Convergence o

The number of necessary iterations is shown abo

this is closer to a solution of the CCSP. Moreover

may be partitioned into four different regions (r

points share the same convergence behaviour.

From any starting point within the regions R1

closest point of the arcs A1 or A2, respectively.

excluding the dotted line bordering these two reg

points P1 or P2, respectively. In the particular cas

convergence point may be to a solution near po

search: P1 if either the x1 left bound or the x2 right

the x2 left bound is searched.

Consequently, for this particular CCSP, from a

the local search algorithm converges towards the

local minimum.

3 To be precise, the singular point (1,1) must also be included

1

3

4

4
5

R

f the

ve th

, for

epre

 or R

If th

ions

e wh

int P

 bou

ny s

 clo

 in th

4

2

R2
R

A1

A2
P1
P

1

1

3

 loc

e re

this

sent

2, t

e st

, the

ere

1 o

nd i

tarti

sest

is cas
4

4

a

sp

 p

e

he

ar

n

 t

r

s

n

 s

e

8

l

a

d

ti

 t

h

P

 s

g

o

 a
8

sea

ecti

rtic

 in

con

ng

he

e st

2 d

earc

 poi

luti

nd n
R

rch algorithm.

ve starting point, and is smaller when

ular CCSP, the complete search space

the figure as R1 through R4) whose

vergence point is a solution near the

point is within the regions R3 or R4,

convergence points are solutions near

arting point is in the dotted line3, the

epending on the context of the local

hed; P2 if either the x1 right bound or

nt and with a big enough search box,

on of the CCSP, being trapped in no

ot within region R1.

INTERVAL CONSTRAINTS

115

The introduction of the line search minimisation along the Newton’s vector direction is justified to

achieve a globally convergent behaviour which could not be guaranteed by the Newton-Raphson

method alone. However, since the local search is to be integrated within a branch and bound algorithm

orienting and constraining the search into the most relevant regions of the search space, a globally

convergent behaviour is desirable but not strictly necessary.

An alternative strategy could be to use the line minimisation algorithm exclusively for keeping the

new point within the search box bounds and ignoring all the backtracking search along the Newton’s

vector. These simplified version would still present quadratic convergence for good initial guesses and

would rapidly fail for starting points distant from the CCSP solutions.

7.2 Alternative Local Search Approaches

An alternative to the proposed local search approach based on the Newton-Raphson method for

multidimensional root finding, could be based on the collapsing of the multiple dimensions into a

single one by considering a nonnegative scalar function whose zeros are solutions of the CCSP. One

such function could be the distance function defined in the previous subsection.

Once reduced the problem into an unconstrained multivariate minimisation problem, an efficient

minimisation method [DS83] could be applied for searching the solutions of the CCSP. The choice of

the more appropriate method should take into account the computational effort required for the

calculation of the first derivatives of the scalar function and the storage required.

An efficient method not requiring the computation of derivatives is Powell’s method [Bre73], with a

storage requirement of order n2 (where n is the number of variables). Alternative methods, both

requiring the computation of first derivatives, are the Conjugate Gradients methods (Fletcher-Reeves

algorithm [FR64], Polak-Ribiere algorithm [PR69]) and the Quasi-Newton methods (Davison-

Fletcher-Powell algorithm [FP63], Broyden-Fletcher-Goldfarb-Shanno algorithm [Fle70]), with a

storage requirement of order n and n2, respectively.

The major drawback of these alternative local search strategies is that the early collapsing of the

various dimensions of the vector function, whose components represent each unsatisfied constraint,

implies the lack of information about each individual constraint and makes them more vulnerable to

local minima. Strictly following a descent path of a scalar function such as the distance function often

ends up in a local minimum which cannot be improved by local refinement.

 However, since the local search is to be integrated within a branch and bound algorithm, the

convergence to local minima is not restrictive, making any efficient local search strategy also

competitive.

To avoid the convergence to local minima that are not solutions of the CCSP, other alternative

approaches could be based on strategies used for solving constrained optimisation problems [GM75,

Fle87, Ber99], namely Penalty methods or Lagrange-Multiplier methods. These methods reduce the

constrained problems into one or a sequence of unconstrained multivariate minimisation problems by

adding to the objective function terms that reflect the violation of each constraint.

LOCAL SEARCH

116

The Penalty methods [FM90], which are easier to implement, introduce for each violated constraint

a penalisation term, whose degree of penalisation must be tuned either before of during the

optimisation process. This tuning is not trivial since too large penalties may result in a very irregular

search space whereas too small penalties may lead convergence to unfeasible points.

The Lagrange-Multiplier methods [Ber82], widely used for their numerical stability and accuracy,

use Lagrange multipliers to combine the constraints with the original objective function obtaining a

new multivariate function denoted Lagrangian function. All the minima of the Lagrangian function are

minima of the original objective function which are guaranteed to satisfy the set of constraints. The

price to pay for such nice properties is the increase on the number of variables that must be considered

for the unconstrained minimisation of the Lagrangian function. Besides the original variables an

additional variable (the respective Lagrange multiplier) is introduced for each constraint.

In our context, which does not explicitly requires the minimisation of a particular objective

function, such optimisation methods could be applied, either by considering the distance function as

the original objective function to minimise, or by performing an optimisation with respect to the

variable bound that characterises the context of the local search.

Nevertheless, any of the above alternative approaches would still require the adoption of some

strategy to bound the local search within the original search box limits. In the line search method this

was accomplished by the line minimisation algorithm which avoided the larger Newton steps that

escaped the search box limits. The possible drawback of such strong restriction, eventually avoiding

the convergence to a solution just because the search path is not entirely contained in the search box, is

largely compensated within the branch and bound context that guides the search to the most relevant

subregions of the search space.

7.3 Integration of Local Search with Global Hull-Consistency Algorithms

The local search algorithm was originally conceived for providing the TSA algorithm with a

specialised method for the localisation of new canonical solutions within a search box. In this

algorithm the local search function searchSolution is naturally integrated as a step of the searchAction

procedure (see figure 6.13).

The integration of the local search algorithm with the other enforcing algorithms presented in the

previous chapter may be accomplished by minor changes in their generic search mechanisms

(backtrackSearch or orderedSearch).

The functions backtrackSearch (figure 6.3) and orderedSearch (figure 6.8) may easily

accommodate the local search algorithm by including a new argument j for representing the search

context and by changing line 5 into:

(5) Bsol ← searchSolution(P,B,j); if Bsol ≠ ∅ then return Bsol;

This approach may be adopted for the integration of the local search with the backtrack search

algorithms BS1 and BS3 as well as with their ordered modifications OS1 and OS3, respectively.

INTERVAL CONSTRAINTS

117

A similar approach could be used for integrating local search with the BS0 and BS2 algorithms.

However, the BS0 algorithm does not profit from local search since no inner box is maintained, and

with the above change, the BS2 algorithm could no longer guarantee that the first canonical solution

found by the generic search is the leftmost/rightmost (which is a crucial property for the correcteness

of the algorithm).

In order to allow a correct integration with the BS2 algorithm the first canonical solution found must

be an extreme bound and so, the generic search should not terminate whenever a new solution is

found, but rather when this solution is extreme with respect to the search context.

Figure 7.8 presents the function backtrackSearchWithLocalSearch, which is a modified version of

the backtrackSearch function to integrate the local search algorithm, that may be used by any of the

backtrack search algorithms (including the BS2 algorithm). It is identical to the original

backtrackSearch function of figure 6.3 except that it includes an additional third argument, the bound

j, to represent the context of the local search, and the original lines 5-6 are replaced by the lines 5-16.

It assumes that all the algorithms use a splitStrategy LW (largest width) or RR (round robin) except

the BS2 algorithm that uses a splitStrategy xi (identifying the variable that must be firstly split).

function backtrackSearchWithLocalSearch(a CCSP P=(X,D,C), inout a stack S of F-boxes, a bound j)

(1) while S.size()>0 do
(2) B ← S.pop();
(3) B ← kB-consistency(P,B);
(4) if B ≠ ∅ then
(5) Bsol ← searchSolution(P,B,j);
(6) if Bsol ≠ ∅ then
(7) if splitStrategy = LW or splitStrategy = RR then return Bsol;
(8) if splitSide = LEFT and splitStrategy = xi then
(9) if left(Bsol[xi])= left(B[xi]) then return Bsol;
(10) else B1 ← B; B1[xi] ← [left(B[xi])..left(Bsol[xi])]; B2 ← Bsol; end if;
(11) end if;
(12) if splitSide = RIGHT and splitStrategy = xi then
(13) if right(Bsol[xi])= right(B[xi]) then return Bsol;
(14) else B1 ← B; B1[xi] ← [right(Bsol[xi])..right(B[xi])]; B2 ← Bsol; end if;
(15) end if;
(16) else splitBox(B,B1,B2); end if;
(17) S.push(B2);
(18) S.push(B1);
(19) end if;
(20) end while;
(21) return ∅;

end function

Figure 7.8 The modified generic backtrack search algorithm with local search.

The overall functioning of the backtrackSearchWithLocalSearch is similar to the backtrackSearch

function except that a canonical solution is searched through a call to the local search function (line 5)

and if a new solution is found (line 6), its consequences must be processed (lines 7-15). If the

algorithm is not the BS2 algorithm then the backtrack search terminates returning the new canonical

LOCAL SEARCH

118

solution (line 7). In the case of the BS2 algorithm (lines 8-13) with a splitStrategy xi, the backtrack

search only terminates if the new solution is the leftmost/rightmost wrt xi (line 9/13); otherwise (line

10/14), the two new F-boxes to include in the stack are the new canonical solution B2 and the sub-box

B1 of B that remains relevant after considering this new solution (notice that B1 is inserted at the top of

the stack and so, the new canonical solution will only appear at the top if B1 contains no solutions).

 The correcteness and termination properties of the algorithm may be derived similarly to the case

of the original backtrackSearch function as long as the searchSolution function is correct and

terminates.

7.4 Summary

In this chapter a local search procedure based on a line search minimisation along a direction

determined by the Newton-Raphson method was proposed for integration with the interval constraints

framework. Its integration with Global Hull-consistency enforcement was presented for each of

algorithms suggested in the previous chapter. In the next chapter preliminary results obtained with the

application of Global Hull-consistency criterion are presented and compared with weaker consistency

alternatives. The integration of local search within the best Global Hull enforcing algorithms is also

illustrated on a simple problem.

INTERVAL CONSTRAINTS

119

Chapter 8

Experimental Results

In the context of decision making the trade-of between precision in the definition of the solution space

and the computational efforts required to achieve it must be a major concern when solving CCSPs. In

this context, our proposed approach to enforce a Global Hull-consistency may be an appropriate

choice, achieving acceptable precision with relatively low computational cost. Such effort depends of

course on the algorithms used to enforce such consistency. Among the set of algorithms we developed,

the one that integrates constraint propagation within a tree-structured representation of the domain

(algorithm TSA presented in section 6.4), has clearly shown the best performance.

In this chapter we present results obtained by imposing Global Hull-consistency in a number of

problems and compare them with those obtained with (various levels of) alternative high order

consistency requirements. In the first section a simple example motivates the need for strong

consistency requirements such as Global Hull-consistency. Sections 8.2 and 8.3 present two practical

examples illustrating the benefits of using TSA for enforcing Global Hull-consistency. In section 8.4

we compare the efficiency of TSA with the other algorithms for enforcing Global Hull-consistency

presented in chapter 6, and address the potential benefit of including local search.

We implemented all Global Hull-consistency and kB-consistency (section 5.2) algorithms, based on

the procedures for achieving 2B-consistency (Box-consistency) available in the OpAC library (a C++

interval constraint language [Gou00]), and executed in a Pentium III computer at 500 MHz with

128 Mbytes memory.

8.1 A simple example

To understand the pitfalls often arisen with kB-consistency we have considered a small problem

consisting of two constraints:

x2 + y2 ≤ 1 and x2 + y2 ≥ 2

Of course, the two constraints are unsatisfiable. Figure 8.1 illustrates the problem, which requires

the solutions to be within the inner circle (first constraint) and outside the outer circle (second

constraint).

EXPERIMENTAL RESULTS

120

Figure 8.1 A simple unsatisfiable constraint problem.

However, 2B-consistency (Box-consistency) does not detect such inconsistency, merely pruning the

initial unbounded domains of the variables to the interval [-1.001..1.001] (with 10-3 precision). With

these domains (obtained by applying 2B-consistency to the first constraint) the second constraint does

not prune the domain of any of its variables when the other is fixed to any of its bounds. Of course,

x = ±1 is only compatible with y = 0 in the first constraint whereas it requires y = ± 1 in the second,

but the local nature of 2B-consistency does not detect this situation. Since there are only 2 variables

involved, 3B-consistency is equivalent to Global Hull-consistency and detects the inconsistency.

With an increased number of variables the insufficiency of 2B-consistency also arises in higher

order consistencies. For example, in the following problem

x2 + y2 + z2 ≤ 2 and x2 + y2 + z2 ≥ 3

rather than detecting inconsistency, as Global Hull-consistency does, 3B-consistency prunes the

variables to [-1.001 .. 1.001] whereas 2B-consistency performs even worse, pruning the domains to

[−1.416..1.415].

In general, the difference obtained with kB-consistency and Global Hull-consistency is not so

significant, but still different bounds are obtained.

For example with the slightly modified problem

x2 + y2 + z2 ≤ 2 and (x-0.5)2 + y2 + z2 ≥ 2.25

the results obtained are shown in Table 8.1. Both 2B- and 3B-consistency, although faster than Global

Hull-consistency, report quite inaccurate upper bounds for variable x.

Table 8.1 Pruning domains in a trivial problem.

2B 3B Global Hull
x [-1.416 .. 1.415] [-1.415 .. 1.002] [-1.415 .. 0.001]
y [-1.416 .. 1.415] [-1.415 .. 1.415] [-1.415 .. 1.415]
z [-1.416 .. 1.415] [-1.415 .. 1.415] [-1.415 .. 1.415]

t (ms) 10 50 1860

x

y

x2 + y2 = 1

x2 + y2 = 2

2B-consistency

INTERVAL CONSTRAINTS

121

8.2 The Census Problem

The Census problem models the variation with time of a population with limited growth by means of a

parametric differential equation (logistic). The equation has an analytical solution of the form:

() kex

ekx
tx

rt

rt

+−
=

1
)(

0

0

Given a set of observations v0,…,vn at various time points t0,…,tn, the goal of the problem is to adjust

the parameters x0, r and k of the equation to the observations.

We used the USA Census over the years 1790 (normalised to 0) to 1910 with a 10 year period.

Table 8.2 shows the population values observed at those time points.

Table 8.2 US Population (in millions) over the years 1790 (0) to 1910 (120).

ti 0 10 20 30 40 50 60 70 80 90 100 110 120
vi 3.929 5.308 7.239 9.638 12.866 17.069 23.191 31.433 39.818 50.155 62.947 75.994 91.972

Figure 8.2 illustrates the problem showing its best fit solution (x0 = 4.024, r = 0.031 and k = 198.2).

Such solution minimises the expression: ()∑ −
i

ii vtx 2)(

Figure 8.2 The best fit solution for the USA Census problem.

In order to adjust the parameters of the logistic equation to the observations, instead of searching for

the best fit solution, we considered as acceptable a distance of up to ±1 (million) between each

observed value vi and the respective predicted value x(ti). This is achieved by imposing the following

constraint1 at each observed time point ti:

() kex

ekx
x

i

i

rt

rt

i
+−

=
1001.0

0

001.0
0 with xi∈[vi−1..vi+1]

1 The parameter r, with much smaller values than the other parameters, is re-scaled into the interval [1..100] by multiplying it

by a factor of 0.001 (its best fit value is now 31.0).

Census USA

0

20

40

60

80

100

120

140

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

Population
(millions)

Time (years)

EXPERIMENTAL RESULTS

122

In Table 8.3 we show the results of enforcing 2B-, 3B- and Global Hull-consistency on this problem

(with 10-3 precision). The table shows the poor pruning results achieved by 2B-consistency alone, and

the much better pruning achieved by Global Hull-consistency with respect to 3B-consistency.

Table 8.3 Comparing 2B-, 3B- and Global Hull-consistency in the Census problem.

2B 3B Global Hull
xo [2.929 .. 4.930] [2.929 .. 4.862] [3.445 .. 4.547]
k [1.1 .. 1000] [102.045 .. 306.098] [166.125 .. 260.401]
r [1.1 .. 100] [27.474 .. 39.104] [28.683 .. 33.714]

t(ms) 10 56 990 458 840

Although this improvement is achieved at the cost of a much longer execution time (about 8 times

slower than 3B), it is important to notice that OS3 and TSA algorithms for achieving Global

Hull-consistency are anytime algorithms, and good results may be obtained much earlier.

Table 8.4 shows that the pruning achieved by Global Hull, at approximately 30% of the execution

time spent with 3B enforcing algorithm, is already significantly better than it. For similar execution

times (about 1 minute), the pruning is almost as good as the final one.

Table 8.4 Comparing anytime GH and 3B in the Census problem.

Global Hull Global Hull Global Hull 3B
xo [3.445 .. 4.547] [3.040 .. 4.775] [3.142 .. 4.567] [2.929 .. 4.862]
k [166.125 .. 260.401] [129.863 .. 282.040] [148.153 .. 261.157] [102.045 .. 306.098]
r [28.683 .. 33.714] [27.777 .. 36.730] [28.646 .. 35.296] [27.474 .. 39.104]

t (ms) 458 840 15 030 55 110 56 990

Figure 8.3 illustrates such pruning results. The black area represents the uncertainty about the

trajectory of a logistic function with the parameters ranging within the box obtained by enforcing

Global Hull-consistency on this problem (the second column of table 8.4). A slightly wider uncertainty

(with the extra dark-gray area) is obtained if the Global Hull-consistency enforcing algorithm is

interrupted after 1 minute of execution time (the time for enforcing 3B-consistency). However, a much

wider uncertainty (with the extra light-gray area) must be considered if the box is obtained by

enforcing 3B-consistency (the last column of table 8.4).

Figure 8.3 Comparing 3B with GH, and GH with similar execution time (about 1’).

Census USA

0

20

40

60

80

100

120

140

160

180

200

17
90

18
00

18
10

18
20

18
30

18
40

18
50

18
60

18
70

18
80

18
90

19
00

19
10

Population
(millions)

Time (years)

3B(1’)

GH(1’)GH(8’)

INTERVAL CONSTRAINTS

123

Also notice that, since there are only 3 variables, imposing 4B-consistency provides the same final

results than Global Hull-consistency. However, as shown in the table 8.5, the algorithm is much

slower. The table compares the pruning achieved during the CPU execution time. The values are given

as a percentage of the area of the box obtained by Global Hull with respect to the area of the box

obtained by 4B at the same execution times (both with 10-3 precision).

Table 8.5 Comparing anytime GH and 4B in the Census problem.

GH/4B 27.1% 43.0% 67.3% 81.6% 100%
t (min) 0.25 1 8 16 180

When the Global Hull algorithm stops, after about 8 minutes of CPU time, it obtains a domains box

that is approximately 2/3 of current box of the 4B algorithm (at the same time). The equivalent

pruning results, which are theoretically achievable, take in practice about 22 times more CPU time

with the 4B algorithm than with the Global Hull algorithm.

Finally we compare the performance of the TSA algorithm with different precision requirements,

namely, 10-3, 10-6, 10-9 and 10-12. Table 8.6 shows the results where the unit of time is the execution

time with 10-3 precision. The first row indicates the precision ε required; the second row shows the

time t0 at which the pruning results were already identical to those obtained with 10-3 precision; the

third row presents the total execution time tfinal; and the fourth row indicates the storage used by the

algorithm in terms of the maximum number of F-boxes considered.

Table 8.6 Comparing GH with different precision requirements in the Census problem.

ε 10-3 10-6 10-9 10-12

t0 1 1.2 1.7 2.4
tfinal 1 2.9 5.0 7.5

F-boxes 1290 2938 4711 6314

Clearly, for this problem, there is not an explosion of execution time or storage requirements with

increasing precision requirements. Both, time and storage, seem to increase linearly with the number

of significant digits required. Moreover, if we consider the uncertainty obtained with 10-3 precision,

identical results may be obtained much before the ending of the algorithm.

8.3 Protein Structure

The next problem we report is a simplification of that of finding the structure of a protein from

distance constraints, e.g. obtained from Nuclear Magnetic Resonance data (see [KB99, KB02]). The

simplified problem uses Euclidean distance constraints similar to those presented in section 8.1 above,

where variables xi, yi and zi represent the centres of atom ai.

In this problem, we place 6 atoms, whose centres must all be, at least, 1Å apart. For some atom

pairs, the square of the distances are provided and shown in table 8.7.

EXPERIMENTAL RESULTS

124

Table 8.7 Square distances between pairs of atoms of the protein.

Atoms a1 a2 a3 a4 a5 a6

a1 2 4 - 4 4
a2 2 2 4 2 -
a3 4 2 2 4 4
a4 - 4 2 2 2
a5 4 2 4 2 -
a6 4 - 4 2 -

To solve the problem we placed 3 atoms (a1-a3) arbitrarily in the XY plane and the distances allow that

the other 3 atoms are either above the plane (positive Z) or the corresponding quiral solution below the

plane (negative Zs).

In table 8.8 we show the pruning achieved on the values of atoms a4 to a6 by 2B-, 3B- and Global

Hull-consistency (as before, results with 4B-consistency are similar to those with Global Hull but take

much longer to obtain).

Table 8.8 Comparing 2B, 3B and GH in the Protein problem.

2B 3B Global Hull
x4 [-1.001 .. 1.415] [-0.056 .. 0.049] [-0.004 .. 0.004]
y4 [0.585 .. 3.001] [1.942 .. 2.047] [1.996 .. 2.004]
z4 [-1.415 .. 1.416] [-1.415 .. 1.415] [-1.415 .. 1.415]
x5 [-0.415 .. 2.001] [0.998 .. 1.002] [0.999 .. 1.001]
y5 [-0.001 .. 2.001] [0.999 .. 1.001] [0.999 .. 1.001]
z5 [-1.415 .. 1.416] [-1.415 .. 1.415] [-1.415 .. 1.415]
x6 [-2.001 .. 2.001] [-1.110 .. 1.053] [-1.008 .. -0.992]
y6 [-0.001 .. 2.001] [-0.894 .. 1.169] [0.999 .. 1.001]
z6 [-2.001 .. 2.001] [-1.483 .. 1.483] [-1.420 .. 1.402]

t (ms) 10 7 380 62 540

Given the uncertainty in the Z value of the atoms, neither 2B- nor 3B-consistency could prune the size

of their other dimensions to the amount that Global Hull-consistency does. The most important

difference between 3B- and Global Hull-consistency lies on atom a6. Whereas the x6 and y6 are

“fixed” (respectively at around –1 and 1) by Global Hull, 3B-consistency could not prune the value of

these variables beyond the typical [–1 .. 1] interval.

8.4 Local Search

In the above experiments Global Hull-consistency was enforced with the TSA algorithm without local

search, a precision ε = 10-3 and an underlying 2B-consistency procedure. To check whether the above

timings were truly representative of Global Hull enforcement, we decided to test the efficiency of the

different algorithms presented in chapter 6.

The results presented in Table 8.9 refer to another instance of the Protein structure (with 8 atoms),

more representative of the kind of problems Global Hull is aimed at, in that they have many adjacent

solutions, i.e. the final domains of all variables are relatively large.

INTERVAL CONSTRAINTS

125

Table 8.9 Comparing various Global Hull-consistency enforcing algorithms.

Time (s) Max Storage (F-boxes)

k LS ε =10-1 ε =10-2 ε =10-3 ε =10-1 ε =10-2 ε =10-3

 n 7.34 600+ 600+ 407 55711 63465
2

 y 87.52 78.48 600+ 407 414 25580

 n 23.57 139.84 600+ 27 339 1584OS1

3
 y 12.80 50.39 191.41 2 15 51

 n 2.99 11.37 600+ 30 47 60
2

 y 14.97 38.46 600+ 14 16 24

 n 41.01 150.21 359.69 22 37 53BS2

3
 y 19.14 75.98 234.65 3 8 25

 n 5.19 600+ 600+ 132 66410 63445
2

 y 23.29 20.72 600+ 51 104 25037

 n 25.51 185.99 600+ 19 695 1676OS3

3
 y 13.08 45.41 162.50 2 10 32

 n 10.16 60.96 600+ 332 6786 76506
2

 y 44.79 47.59 600+ 221 621 16764

 n 42.52 184.38 600+ 52 207 843TSA
3

 y 38.63 97.88 275.85 99 185 392

The first thing to notice is the importance of the precision used. Of course, with less precision, all

algorithms are faster, since less canonical F-boxes are considered. More interestingly, as precision

increases (smaller ε) local search becomes more important. The reason for this is that with larger

canonical F-boxes the underlying 2B-consistency algorithm does not prune them and so accepts them

as canonical solutions, making the local search for “real” solutions useless. With higher precision,

canonical F-boxes are smaller and the 2B-consistency algorithm does not detect solutions as easily, as

the pruning of most F-boxes does not result into canonical F-boxes. Hence, the advantage of local

search in such situations.

Local search is also shown to improve the memory requirements, since it often finds solutions near

the intended bounds of the variables in the F-boxes under consideration, rather than simply bisecting

them (thus originating additional boxes).

Memory requirements are also much lower when the underlying enforcement procedure is

3B-consistency (rather than 2B), as the pruning achieved in any F-box is much more significant.

Because of its better pruning, and despite its higher complexity, enforcing 3B-consistency provides in

general better results than 2B-consistency, as precision increases.

Regarding the variety of Global Hull-consistency enforcing algorithms, their differences are less

evident. Given the discussion above it might be important to impose some thresholds on the execution

time of the algorithms, in which case the OS1 and BS2 have the disadvantage of not being anytime

algorithms. Although OS3 proved better than TSA in this problem, this behaviour is not observed

consistently in other problems, and TSA offers the advantage of keeping a tree-based compact

description of the feasible space, which is very convenient for an interactive use as envisaged in

[HF96]. Moreover, and although not visible in the table, the anytime results of TSA are consistently

better than those obtained with OS3.

EXPERIMENTAL RESULTS

126

8.5 Summary

In this chapter our proposals were tested on simple examples such as the USA census problem and the

protein structure problem. The pruning and time results obtained with the Global Hull-consistency

approach (with TSA algorithm) were compared with those obtained by enforcing 2B-, 3B- and

4B-consistency. The integration of local search within the best Global Hull enforcing algorithms was

discussed. This ends the first part of this dissertation. The next part is dedicated to handling constraints

over ordinary differential equations, where the constraint methods discussed so far will be used.

Part II

INTERVAL CONSTRAINTS FOR
DIFFERENTIAL EQUATIONS

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

129

Chapter 9

Ordinary Differential Equations

Differential equations are equations involving derivatives. Ordinary Differential Equations (ODEs)

involve derivatives with respect to a single independent variable. The order of an ODE is determined

by the highest derivative appearing in the equation.

A first-order ODE will be generically represented as:

)),((ttyf
dt

dy
=

where, for historical reasons, the independent variable, often associated with time, is denoted as t. If it

is clear from the context, the above representation may be shortened to:

),(tyfy =′

A system of n first-order ODEs is the set of equations:

),,...,(

...

),,...,(

1

111

tyyfy

tyyfy

nnn

n

=′

=′

which, if there is no ambiguity with the single equation case, may be represented in vector notation as:

),(tyfy =′ with

′

′

=′

ny

y

y ...
1

 and

=

),,...,(

...

),,...,(

),(

1

11

tyyf

tyyf

tyf

nn

n

Any explicit1 differential equation of order m defined as:

),,...,,,()1()(tyyyyfy mm −′′′=

may be transformed into an equivalent system of m first-order ODEs:

),(tzfz =′ with

′
′

′

=′
−

m

m

z

z

z

z
1

1

...
 and

=

),,...,,(

...
),(

21

2

tzzzf

z

z

tzf

m

m

1 A differential equation is called explicit if the highest derivative is isolated in the left-hand side.

ORDINARY DIFFERENTIAL EQUATIONS

130

Given the above property we will only consider, without loss of generality, systems of first-order

ODEs and will denote them as ODE systems.

Definition 9-1 (ODE system). An ODE system O is a system of n first-order ODEs defined as:

),(tyfy =′ with

′

′

=′

ny

y

y ...
1

 and

=

),,...,(

...

),,...,(

),(

1

11

tyyf

tyyf

tyf

nn

n

When the independent variable t does not appear explicitly in function f, that is,)(yfy =′ , the ODE

system is called autonomous2.

An ODE system may be regarded as a restriction on the sequence of values that y can take over t.

Informally, for any particular instantiation of y and t, it determines the evolution of y at time t

associated with an increment of t. An ODE system does not determine a unique sequence of values of

y associated with t; it rather characterises a family of functions whose slope must satisfy the equations

for all values of t. This family of functions are the solutions of the ODE system.

Definition 9-2 (Solution of an ODE system). Consider an ODE system O as defined in 9-1. The

function

=

)(

...

)(

)(
1

ts

ts

ts

n

 is a solution of O wrt the interval [t0..t1] iff: ∀t∈[t0..t1])),((ttsf
dt

ds
=

In order to uniquely identify a particular function from the solutions of an ODE system, further

information must be added. Traditionally this is accomplished either by completely specifying the

value of y associated with a particular value of t (initial condition), or by partially specifying the value

of y associated with different values of t (boundary conditions).

Given an ODE system and a value for y at a given t0, the initial value problem (IVP) aims at

determining the value of y for other values of t. A solution of the ODE system that satisfies the initial

condition is a solution of the IVP.

Definition 9-3 (Solution of an IVP). Consider the IVP I defined by the ODE system O as expressed

in 9-1 and the initial condition

==

0

10

00 ...)(

nv

v

yty . Function

=

)(

...

)(

)(
1

ts

ts

ts

n

 is a solution of I wrt an

interval [ta..tb] that includes t0 iff 00)(yts = ∧ ∀t∈[ta..tb])),((ttsf
dt

ds
=

2 Any ODE system with n equations may be transformed into an equivalent autonomous system with n+1 equations by

replacing any occurrence of t with a new dependent variable yn+1 and by adding the associated derivative equation: y’n+1=1.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

131

In general it is not possible to solve an IVP analytically, that is, the function s(t) that is the solution of

the IVP cannot be represented in a closed-form expression. Consequently, several approaches have

been proposed for solving this kind of problems numerically.

The classical numerical approaches attempt to compute numerical approximations of the solution

s(t) at some discrete points of t. These methods, addressed in the next section, are usually very

efficient but do not provide any guarantee on the accuracy of the approximations or even the existence

of a unique solution.

Interval approaches, discussed in section 9.2, attempt to produce bounds for the solution s(t) not

only at some discrete points of t but also for all the continuous range of intermediate values between

any two consecutive discrete points. These methods, also known as validated methods, verify the

existence and uniqueness of a solution for the IVP.

The relative unpopularity of the direct application of interval methods to ODE problems (at least

compared with their numerical alternatives) stems from the additional computational effort required

and, in many early approaches, to the insufficient tightness provided by the enclosing bounds. To

overcome such difficulties, research has been carried out to take advantage of the efficiency and

soundness of constraint technique, as overviewed in section 9.3.

9.1 Numerical Approaches

Classical numerical approaches for solving the initial value problem consider a sequence of discrete

points t0, t1, …, tm for which the solution is approximated. The distances hi=ti+1-ti between two

consecutive points do not need to be equally spaced. At each new point ti+1, the solution s(ti+1) is

approximated by a value si+1 computed from the approximated values at the previous points. Whether

this computation requires only the most recent value (si) or also other earlier values (si-1, si-2, …)

qualifies if the method is a single-step or a multistep method.

A k-step method provides a formula that approximates the solution function at the next discrete

point ti+1 which may be generically3 represented as:

),...,(11 jkii sss +−+ Φ= where j=i or j=i+1

If the approximate value si+1 does not appear in the right-hand side of the equation (j=i), the formula

is explicit and its evaluation is straightforward. Otherwise (if j=i+1), the formula is implicit since its

evaluation may involve solving the above vector equation (a system of possibly nonlinear equations)

where si+1 appears in both sides.

To avoid solving the vector equation, some methods, known as predictor-corrector methods, use

both an explicit formula and an implicit formula. Initially, the explicit (predictor) formula is used to

obtain a first value approximation for si+1. Then the implicit (corrector) formula is used, with the si+1

of the right-hand side replaced by the predicted value, to obtain a final improved value.

3 For simplicity, the values of the discrete points of t are not explicitly represented as arguments of the function Φ.

ORDINARY DIFFERENTIAL EQUATIONS

132

Although there are many variations within the different numerical methods for solving IVPs they

may be classified into four general categories: Taylor series, Runge-Kutta, multistep and extrapolation

methods.

Taylor series methods are single-step methods that use the Taylor series expansion of the solution

function around a point, to obtain an approximation of its value at the next point. This series is

computed up to a given order, requiring the evaluation of higher order derivatives of the function.

Runge-Kutta methods are single-step methods that approximate the Taylor series methods without

requiring the evaluation of derivatives of the solution function beyond the first. This is accomplished

at the expense of several evaluations of the first derivative of the solution function, whose expression

is given by the ODE. The idea is to compute a linear combination of this function at different points to

match as much as possible the Taylor series up to some higher order.

Multistep methods use a polynomial of degree k-1 to approximate either the solution function (as in

backward differentiation methods) or its derivative (as in Adams methods). The coefficients of the

polynomial are determined from the values of the approximated function at k different points. Implicit

or explicit formulas for approximating the value of the solution function at the next point ti+1 may be

obtained depending on whether this point is considered in the determination of the polynomial

coefficients.

In contrast to the previous methods, extrapolation methods (as the Bulirsch-Stoer method [BS66,

SB92]), consider larger steps (non-infinitesimal) between consecutive discrete points of t. To compute

the approximation of the solution function at the discrete point ti+1 from the previous one, ti, a

single-step method is used to integrate the differential equation along the interval [ti..ti+1] considering

an increasing sequence of finer and finer substeps. During this process an interpolating polynomial or

rational function is constructed through the computed intermediate values and in the end the value at

ti+1 is extrapolated to a zero substep size.

A detailed overview of the above numerical methods may be found in many text books dealing with

the numerical solution of initial value problems. Classical books on this subject are [Hen62, Har64,

Gea71] and more recent overviews can be found in [HNW91, Lam91, Sha94]. Several public domain

software packages provide efficient implementations of the numerical methods, in particular for the

Runge-Kutta (as the RKSUITE [BGS92]) and the multistep methods (as the VODE [BBH89]). For

practical discussions on the software implementation see also [SG75, FMM77, PTV92, AP98].

In the next subsection the Taylor series methods will be addressed in more detail. Subsection 9.1.2

discusses the different sources of errors and its consequences in solving an IVP numerically.

9.1.1 Taylor Series Methods

The simplest single-step methods are based on the Taylor series expansion of the solution function. If

the solution s(t) of an ODE system, as defined in 9-2, is a function which is p times continuously

differentiable on the closed interval [ti..ti+1] and p+1 times differentiable on the open interval (ti..ti+1),

then, from the Taylor theorem, we have:

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

133

)(
)!1(

)(
!

)()()1(
1

1

)(
1 ξ+

+

=
+ +

+

+= ∑ p

pp

k
i

k
k

ii s
p

h
ts

k

h
tsts with h = ti+1 - ti and ξ ∈ [ti..ti+1]

Since s(t) is a solution of the ODE system (wrt the interval [ti..ti+1]), then, from definition 9-2,

∀t∈[ti..ti+1])),((ttsfdtds = , and so:

∀k∈[1..p+1])),(()()1()(ttsfts kk −=

Hence, the Taylor series expansion may be rewritten as:

)),((
)!1(

)),((
!

)()()(
1

1

)1(
1 ξξsf

p

h
ttsf

k

h
tsts p

pp

k
ii

k
k

ii +
+

+=

+

=

−
+ ∑ with h=ti+1-ti and ξ ∈[ti..ti+1]

If, additionally, s(p+1) is continuous throughout the closed interval [ti..ti+1], it must be bounded on

that interval and so, the last term of the Taylor series expansion is also bounded on [ti..ti+1], being of

order O(hp+1).

Consequently, a Taylor method of order p can be obtained by neglecting this last term, providing

the following formula that approximates the value si+1 of the solution function at the next discrete

point ti+1 given its approximated value si and at the previous point ti:

∑
=

−
+

+=

p

k
ii

k
k

ii tsf
k

h
ss

1

)1(
1),(

!
 with h = ti+1 - ti

The total derivatives of f may be computed recursively in terms of its partial derivatives. Since the

vector function f, as defined in 9-1, is composed by n elementary functions fi(y1,…,yn,t), the total

derivatives may be obtained component wise as:

t

tyyf
y

y

tyyf
tyyf ni

n

m
m

m

ni
ni ∂

∂
+

′

∂
∂

=′ ∑
=

),,...,(),,...,(
),,...,(1

1

1
1

t

tyyf
tyyf

y

tyyf ni
n

m
nm

m

ni

∂
∂

+

∂

∂
= ∑

=

),,...,(
),,...,(

),,...,(1

1
1

1

t

tyyf
tyyf

y

tyyf
tyyf n

k
i

n

m
nm

m

n
k

i
n

k
i ∂

∂
+

∂
∂

=
−

=

−

∑
),,...,(

),,...,(
),,...,(

),,...,(1
)1(

1
1

1
)1(

1
)(

with

=
),,...,(

...

),,...,(

),(

1
)(

1
)(

1
)(

tyyf

tyyf

tyf

n
k

n

n
k

k .

In the special case of autonomous ODE systems, t does not appear explicitly in f, so neither does the

last term of the above definition of the total derivatives.

Despite the existence of quite efficient methods for the automatic generation of the Taylor

coefficients for autonomous ODE systems (see section 9.3), the Taylor series methods are not as

competitive as other numerical methods such as the Runge-Kutta which do not require higher

derivative evaluations (they do not even require the existence of such derivatives). Hence, existing

software packages for solving numerically an IVP do not usually employ Taylor series methods.

ORDINARY DIFFERENTIAL EQUATIONS

134

Nevertheless, methods based on the Taylor series (not neglecting the last term) seem to be more

suitable for interval approaches, which aim at computing reliable interval bounds for the enclosure of

the solution function.

9.1.2 Errors and Step Control

The ultimate goal of a numerical approach for solving an IVP over an interval range of t is to

approximate as much as possible its solution at some discrete points placed along that interval.

Usually, by starting at point t0 (whose solution value is known: s(t0)=y0) an increasing (decreasing)

sequence of discrete points is considered by adjusting the step size (the gap between two consecutive

discrete points) as the calculation proceeds. The purpose of this adaptive step size policy is to keep

some control over the accuracy of the approximation with minimum computational effort.

Since this effort is proportional to the total number of discrete points considered, such points should

be separate from each other as much as possible. However, too wide gaps may lead to unacceptable

approximation errors.

There are two different sources of errors for the numerical solution of an IVP: the discretization

error (also known as truncation error) and the computational error. Whereas the first depends

exclusively on the properties of the numerical method adopted, the second is due to round-off errors

and errors committed in the approximated evaluation of implicit formulas.

The approximation error committed at a new point ti+1 is partially caused in the current step (from ti

to ti+1) by the chosen method, and partially due to propagation of errors made at previous steps (from t0

to ti). Accordingly, there are two measures of the discretization error, the local discretization error and

the global discretization error.

The local discretization error is the error committed in one step by the approximation method

assuming that the previous values were exact and the absence of computational errors. If si and si+1 are

approximations of the correct solution values s(ti) and s(ti+1), computed by the numerical method at

two consecutive points, the local discretization error di+1, from ti to ti+1, is given by:

)(111 +++ −= iii tusd

where u is the solution function of an IVP with the original ODE and the initial condition ii stu =)(.

The global discretization error is the error accumulated along the whole sequence of discrete points

(starting at the initial condition point t0) again in the absence of computational errors. If si is the

approximation of the correct solution value s(ti), computed by the numerical method along the

sequence of discrete points t0,…, ti, the global discretization error ei accumulated so far is given by:

)(iii tsse −=

Figure 9.1 illustrates the notions of local and global discretization errors associated with two

different IVPs. The initial condition is defined at point t0, and the approximated solution is computed

at three subsequent discrete points, t1, t2 and t3. The local discretization errors in each of these points

are represented as d1, d2 and d3, respectively. The correct solution function is line s(t) and functions

ui(t) are the solutions of similar IVPs with initial conditions y(ti)=si, respectively. The global

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

135

discretization error accumulated at t3, represented as e3, is compared with the sum off all the previous

local errors.

(a) yy λ=′ (b) yy λ−=′

Figure 9.1 Local and global discretization errors for an unstable (a) and a stable (b) differential
equation. In both equations λ is a positive real value.

The concept of stability is associated with the effect of local errors on global errors. Instability occurs

when small local errors introduced during the approximation procedure are magnified into larger

global error (as in Figure 9.1a). On the contrary, when local errors introduced are attenuated into a

smaller global error, the problem is called stable (Figure 9.1b). Unfortunately nonlinear ODE systems

are often unstable, at least in some regions.

The best that can be expected from any numerical method for solving an IVP is to maintain the

inherent behaviour of the actual solution. An unstable problem cannot become stable by any numerical

method. However, instability may be introduced by the numerical method in originally stable regions

of the actual solution. Avoiding such instabilities may require the introduction of additional

restrictions limiting the length of the step sizes.

Roughly speaking, the global error of an approximation corresponds to a sum of local errors

weighted by factors associated with the stability of the equation and, in particular, with the numerical

method adopted. In practice, the control of the approximation accuracy is achieved by controlling the

local error up to a specified tolerance and keeping an estimation of the global error within acceptable

bounds. These estimations, which may be more or less sophisticated, are all based on assumptions

about the global behaviour of the numerical method for solving the IVP, but do not provide any

guarantee on the actual accuracy of the approximation.

Computational errors, which are of a more random nature, increase the difficulty in defining correct

global error estimates, specially for unstable problems. Moreover, this effect imposes practical

limitations on the reduction of the step size. In general, when the step size is decreased, the global

discretization error is decreased by the same factor raised to some power p (where p is defined as the

order of the method), thus reducing the global error. However, more steps are required for covering

the same interval of t. If the step size becomes too small, the accumulation of computational errors

eventually exceed the reductions achieved on the local discretization errors. Consequently, smaller

step sizes eventually become useless to reduce the global error, limiting in practice the maximum

precision attainable for the computed approximation of the actual solution.

d1

t1

d1

d2

d2

d3

d3

t0 t0 t1t2 t2t3 t3

e3

d1+d2+d3

d1+d2+d3

e3

y0
y0

s(t)

u1(t)

u2(t)
u3(t)

u1(t)

u2(t)

u3(t)

s(t)

ORDINARY DIFFERENTIAL EQUATIONS

136

9.2 Interval Approaches

The first interval approaches for solving initial value problems had their sources in the interval

arithmetic framework introduced by Moore [Moo66]. They use interval arithmetic to calculate each

approximation step explicitly, keeping the error term within appropriate interval bounds.

Discretization and computational errors are thus encapsulated within bounds of uncertainty around the

true solution function. In addition to providing guaranteed enclosures of the actual solution function,

interval methods also verify the existence of a unique solution for the IVP.

Most interval methods for solving IVPs [Moo66, Krü69, Eij81, Loh88, Rih94, Sta97, Ned99] are

explicit methods based on Taylor series since this provides a simple form for the error term which can

be bound as long as some enclosure of the actual solution function is provided. Moreover, the Taylor

series coefficients can be efficiently computed through automated differentiation techniques, and both

the step size and the order of the method may be easily modified during the approximation process.

Changes on the step size do not require recomputing these coefficients, and to increase or decrease the

order of the method it is sufficient to add or delete Taylor series terms.

In the mentioned approaches, each step between two consecutive points ti and ti+1 generally consists

of two phases. The first validates the existence of a unique solution and calculates an a priori

enclosure of it between the two points. In the second phase, a tighter enclosure of the solution function

at point ti+1 is obtained through interval arithmetic over a chosen numerical approximation step, with

the error term bound as a result of the enclosure of the previous phase.

The next subsection presents the main ideas of the Interval Taylor Series (ITS) methods and how

they take advantage from the automatic generation of the Taylor coefficients. Subsections 9.2.2 and

9.2.3 summarise the principal techniques used by ITS methods during, respectively, the first and the

second phases of the enclosing steps.

It is worth mentioning that, alternatives to the explicit interval Taylor series approaches were

recently proposed. An implicit interval method based on the Taylor expansion was proposed by Rihm

in [Rih98]. An interval Hermite-Obreschkoff method which outperforms the explicit interval Taylor

series methods was proposed by Nedialkov in [Ned99, NJ99] for improving the quality of the

enclosures obtained at the second phase. In [BM98] Berz and Makino present a method, known as

Taylor model, based on Taylor series expansions on both time and the initial conditions for solving

IVPs, and the framework was extended later for dealing with implicit ODEs and differential algebraic

equations [HBM01]. Work on Runge-Kutta interval methods has been carried out by Hartmann and

Petras, and presented at ICIAM’99 [Har99] and SCAN’2000 [Pet00].

Some widely used software was developed based on the above interval methods. Lohner’s AWA

program [Loh87, Loh88], written in Pascal-XSC [KKN92], and Stauning’s ADIODES package

[Sta97], written in C++, were the first public domain implementations of the explicit interval Taylor

series methods. Nedialkov’s VNODE [Ned99, NJ00, NJ02], also written in C++, is a more recent

package that includes an implementation of the interval Hermite-Obreschkoff method. Berz’s COSY

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

137

INFINITY [Ber97] is a software package designed for beam physics applications, in a Pascal like

language, which provides an efficient implementation of the Taylor model approach.

9.2.1 Interval Taylor Series Methods

Similarly to the traditional numerical Taylor Series methods (see subsection 9.1.1), ITS methods, are

based on the Taylor series expansion of the solution function s(t) around point ti:

)(
)!1(

)(
!

)()()1(
1

1

)(
1 ξ+

+

=
+ +

+

+= ∑ p

pp

k
i

k
k

ii s
p

h
ts

k

h
tsts with h = ti+1 - ti and ξ ∈ [ti..ti+1]

However, instead of neglecting the error term, ITS methods use interval arithmetic to obtain reliable

enclosures not only for the error term but also for every term of the series, allowing the computation of

a reliable enclosure of the solution function at the point ti+1.

Usually, and without loss of generality, the ITS methods assume that the ODE system is

autonomous and rewrite the above equation into:

[] []))(())(()()(11

1
1 ξsfhtsfhtsts pp

p

k
i

kk
ii

++

=
+ ++= ∑ with h = ti+1 - ti and ξ ∈ [ti..ti+1]

where []))((i
k tsf denotes the kth Taylor coefficient of function s at the point ti:

[] ())(
!

1
)())(()(

i
k

kii
k ts

k
tstsf ==

For any k (>0) differentiable function g(t) the relation between its kth Taylor coefficient and the

(k-1)th Taylor coefficient of its derivative may be expressed as:

() () 11

1

1

1
)()(

1
)(

)!1(

11
)(

)!1(

11
)(

!

1
)(−−

−

−

−
′=′

−
=

−
== kiik

k

ik

k

i
k

ki tg
k

tg
dt

d

kk
tg

dt

d

dt

d

kk
tg

k
tg

Since function s is the solution of an ODE system)(yfy =′ , each kth Taylor coefficient of s at

point ti may be computed from the (k-1)thTaylor coefficient of its derivative expressed by the ODE:

[] () 1))((
1

))((−= kii
k tsf

k
tsf

Vector function f, as defined in 9-1, is composed by n elementary functions fi(y1,…,yn), and its

k-Taylor coefficient may be obtained component wise:

()
()

()

=

knn

kn

k

yyf

yyf

yf

),...,(

...

),...,(

)(

1

11

In [Moo66], Moore proposed a simple procedure for the automatic generation of Taylor coefficients

of a given function. The method, applicable to functions expressed as in definition 3.2-1, allows the

reliable computation of the Taylor coefficients up to a desired order. An efficient implementation of

this method may be found at the public domain software package TADIFF [BS97] (implemented in

C++).

ORDINARY DIFFERENTIAL EQUATIONS

138

The procedure defines recursive rules associated with each of the basic operators (and elementary

functions) and use, as base of recursion, the fact that ())()(0 yfyf = . For example, the rules

associated with the basic arithmetic operators (+, -, × and /) are:

() () ()kkk yhygyhyg)()()()(+=+ () () ()kkk yhygyhyg)()()()(−=−

() () ()∑
=

−=×
k

r
rkrk yhygyhyg

0

)()()()(() ()

−=

 ∑
= −

k

r rk
rr

k yh

yg
ygyg

yhyh

yg

1)(

)(
)()(

)(

1

)(

)(

 From this set of rules it is always possible to compute the k-Taylor coefficient (with k>0) of a

function through decomposition. Note that when the function cannot be further decomposed (is

expressed as a variable or a constant) its kth Taylor coefficient can be obtained from the (k-1)th Taylor

coefficient of its derivative. The derivative of constant functions is 0 and so is the corresponding kth

Taylor coefficient. Otherwise, if the function is represented as a variable, and in the case of an

autonomous ODE system)(yfy =′ , the variable must be an yi and its kth Taylor coefficient may be

computed from:

() () () 111),...,(
11

−− =′= knikiki yyf
k

y
k

y

An efficient method using the above rules for computing the Taylor coefficients up to an order p

firstly considers the Taylor coefficients of order k=0 for any variable and constant appearing in the

expressions, then computes the kth Taylor coefficients for their compositions (accordingly to the

expressions) and increments the order k=k+1, repeating the process until k=p.

The above computations may be performed either in real arithmetic (with finite precision), with real

values representing the variables yi and the constants appearing in the expressions, or in interval

arithmetic where interval enclosures for these values are used instead. Whereas in the former an

approximation of the Taylor coefficients is obtained, in the later reliable enclosures are computed.

With reliable enclosures for the Taylor coefficients, interval extensions (as defined in 3.2.1-1) of the

Taylor series expansion of ODE solution functions may be computed. This is extensively used in ITS

methods not only for enclosing the value, at point ti+1, of a single solution function s(t) with initial

condition s(ti)=si, but also to enclose such value for the set of solution functions whose values at the

point ti are within interval Si.

9.2.2 Validation and Enclosure of Solutions Between two Discrete Points

Usually the validation and enclosure of solutions of an ODE system between two discrete points ti and

ti+1 is based on the Banach fixed-point theorem and the application of the Picard-Lindelöf operator

(see [NJC99, Sta96] for details).

The following theorem (proved in [Eij81, Loh88]) may be used for defining a first order enclosure

method based on the (first-order) interval Picard operator.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

139

Theorem 9.2.2-1 (Interval Picard Operator). Let O be the autonomous ODE system of n equations

defined by)(yfy =′ . Let f be continuous and with first order partial derivatives over t∈[ti..ti+1]. Let Si

and S be n-ary real boxes with Si⊆S. Let F be an interval extension of f. The interval Picard operator Φ

is a vector interval function:

Φ(S) = Si + [0..h]F(S) with h = ti+1 - ti

If Φ(S)⊆S then for every si∈Si, the IVP defined by O and the initial condition y(ti)=si has a unique

solution s and ∀t∈[ti..ti+1] s(t)∈Φ(S)

Based on the interval Picard operator, algorithms to obtain an enclosure for the set of solution

functions whose values at ti are within the box Si may be described as follows. Firstly, a desired step

size h is chosen together with an initial guess S0 for the enclosure (with Si⊆S0). Then the interval

Picard operator is applied to obtain the box S = Φ(S0). If S=Φ(S0)⊆S0 then, by theorem 9.2.2-1, S is an

enclosure for the set of solution functions between ti and ti+h. Otherwise, two different strategies may

be recursively applied: either the initial guess S0 is inflated to enclose more solutions of the ODE for

the same step size; or the step size is reduced to satisfy Φ(S0)⊆S0 (note that for a small enough step h

this property can always be satisfied). The final result of such algorithms is a box S[i..i+1] and a step size

h (not necessarily the initially one) for which the box is an enclosure of the set of solution functions

whose values at ti are within the box Si.

Several ITS proposals [Krü69, Eij81, Loh88, Sta97] rely on the use of a first order enclosure

method for the validation and enclosure of ODE solutions at its first phase. The major drawback of

these approaches is that the step size restriction imposed by the (first-order) interval Picard operator is

often much more severe than the limitations imposed in the second phase, based on higher order

Taylor series expansions.

Alternative higher order enclosure methods were also proposed for this first phase, allowing larger

step sizes more compatible with the second phase algorithms. A polynomial enclosure method was

proposed by Lohner in [Loh95] and several high-order Taylor series enclosure methods [CR96,

Ned99, NJP01] were proposed after the original work of Moore [Moo66]. The main advantage of the

latter proposals is the possible reuse of the Taylor coefficients computations in both the first and the

second phases of the ITS method.

9.2.3 Computation of a Tight Enclosure of Solutions at a Discrete Point

Once obtained an enclosure box S[i..i+1] of the set of solutions between two points, ti and ti+1, a

straightforward ITS method for computing a tight enclosure at ti+1 is directly based on:

[] []
[])()(1..

11

1
1 +

++

=
+ ++= ∑ ii

pp
p

k
i

kk
ii SFhSFhSS with h = ti+1 - ti

ORDINARY DIFFERENTIAL EQUATIONS

140

where Si and Si+1 are enclosing boxes at points ti and ti+1 respectively, and F[k](B) is a reliable enclosure

(computed as described in subsection 9.2.1) of the kth Taylor coefficient of the solution function at

any point within the box B (∀y∈B f[k](y)∈F[k](B)).

The above method usually leads to large overestimations of the enclosing box at point ti+1. Since

this box is computed from Si (the enclosing box at point ti) enlarged as a result of the addition of the

other Taylor terms, from ti to ti+1 the size of the enclosing box cannot decrease as it would be expected

if, for example, the ODE system is stable within that region (see figure 9.1b).

A better approach is to use a Mean Value interval extension of the Taylor series with respect to the

box Si. This form, presented in subsection 3.2.1 of chapter 3 for scalar interval functions, can be easily

extended component wise for vector interval functions. In this case, a method known as the ITS direct

method is obtained:

[] []
[]

[])(),()()(
1

1..
11

1
1 cSSfJhISFhcFhcS i

p

k
i

kk
ii

pp
p

k

kk
i −×

++++= ∑∑

=
+

++

=
+ with h = ti+1-ti

where c is the mid point of box Si and J(f[k],Si) is the Jacobian of f[k] evaluated at box Si. The Jacobian

may be obtained by automatic differentiation of the Taylor coefficient [BS96, BS97].

The above form allows the decrease in size of consecutive enclosing boxes and provides a quadratic

approximation (see subsection 3.2.1), quite advantageous when the boxes are small. However, the

overestimation of enclosing boxes at the consecutive points may accumulate as the integration

proceeds (a phenomenon known as the wrapping effect) and lead to unreasonable results.

In [Eij81] and [Ned99] it is shown that the overestimation made in one step of the ITS direct

method for the last two terms of the expression which contains interval arguments, that is,

[]
[])(1..

11
+

++
ii

pp SFh and [])(),(
1

cSSfJhI i

p

k
i

kk −×

+∑

=

, is)(2+phO and O(h×width(Si)
2),

respectively.

A consequence of this analysis is that whereas the error induced by the first term may be controlled

by adjusting the step size and the order of the method, on the contrary, the error induced by the last

term is highly dependent on the initial box Si, which may be oversized due to previous errors. This

dependency on the size of Si may be insignificant for initial conditions represented as points or small

boxes but may become quite significant with the accumulation of errors during the integration process.

In interval methods for solving IVPs, the accumulation of errors at each integration step is

magnified by the effect of always enclosing (wrapping) the set of solutions at each discrete point

within boxes regardless of its correct shape. In practice this means that, at each step, besides the

overestimation due to the interval arithmetic evaluation of some interval extension (such as the above

Mean Value form) of the real set of solutions, additional overestimation is introduced because entire

boxes must be considered for representing the domains.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

141

Several strategies have been proposed for reducing the overestimation and, in particular, for

handling the wrapping effect [Moo66, Krü69, Eij81, Loh88, Rih94]. They choose an interval

extension of the Taylor series suitable for the interval arithmetic evaluation (for example minimizing

the multiple occurrences of the interval variables) complemented with an effective enclosing method

for representing the intermediate values of the set of solutions. The most successful enclosing methods

(the Lohner’s QR-Factorization method [Loh87, Loh88] and its simplifications [NJ01]) are based on

changes of the coordinate system at each step of the integration process, aiming at reducing as much as

possible the overestimation of the representation of domains by means of boxes.

9.3 Constraint Approaches

The application of the interval constraints framework for validated ODE solving was firstly suggested

by Older [Old94] and Hickey [Hic94]. Both approaches are extensions of the constraint programming

language CLP(BNR) [OB93, BO97] for handling constraints expressed as ODE systems. They

represent an ODE system by a constraint network determined by a set of discrete points of t and the

restrictions between the respective enclosing boxes derived from a chosen approximation step (as in

the interval approaches).

In these early approaches, the goal was not to improve efficiency (compared to the interval

approaches) but rather to extend the generality of a constraint approach. Once an ODE system is

translated into a constraint network, the solving mechanism of a constraint language such as

CLP(BNR) may efficiently propagate any restriction imposed on any of its variables (see chapter 4).

Hence, not only can IVPs be solved, but also any additional information (e.g. final or boundary

conditions) may propagate throughout the constraint network, reducing the enclosures, with the

guarantee that no possible ODE solution function is lost.

The major drawbacks of both approaches, which limit its practical application on real world

problems, are the huge number of constraints that must be maintained in the constraint network and

the required specification of additional a priori information about the solutions of the ODE system.

More recently, the research group of Jansen, Deville and Van Hentenryck developed a new

alternative constraint satisfaction approach to ODEs [DJV98, JDV99, JVD01a, JVD01b]. Their goal is

to extend the interval approaches with constraint propagation techniques to enhance the quality of the

enclosure bounds for the solution of the IVP and to improve the efficiency of the computations.

Therefore, their work focuses on overcoming the main difficulties presented by the interval

approaches for IVPs and not on the full integration of ODE systems into the interval constraint

framework.

The next subsections summarise the main characteristics of each of these constraint approaches.

ORDINARY DIFFERENTIAL EQUATIONS

142

9.3.1 Older’s Constraint Approach

The constraint approach proposed by Older in [Old94] allows the definition of an ODE4 as an interval

arithmetic expression F(S,T) which is extensively used for the generation of interval constraints

(processed by the CLP(BNR) language) relating an enclosure S for the set of solution values at a

discrete point t (or an interval T of values of t) with an enclosure of its derivative.

In order to solve an ODE problem, in addition to the specification of the ODE, it is also required the

definition of the initial and final integration points, t0 and tf respectively, the number d of recursive

subdivisions that will be considered between these points, and an a priori enclosure S[0..f] for the set of

solution functions between these points.

Between the initial and final integration points, a sequence of 2d –1 equally spaced intermediate

points are considered. Two interval variables, Si and Fi, representing enclosures of solution values and

of its derivatives, are associated with each discrete point ti and the respective interval constraints ci are

generated restraining their possible value combinations according to the ODE specification:

 ci ≡ Fi = F(Si,ti)

Moreover, between each two consecutive discrete points ti and ti+1, two additional constraints, ci,i+1

and ci..i+1, are generated based on second order Taylor series expansions around these points. With

h=ti+1-ti the second order Taylor series expansions of a solution function of the ODE around ti and ti+1

are:

)),((
2

)),(()()(11

2

1 ξξsf
h

ttshftsts iiii ′++=+ with ξ1 ∈ [ti..ti+1]

)),((
2

)),(()()(22

2

111 ξξsf
h

ttshftsts iiii ′+−= +++ with ξ2 ∈ [ti..ti+1]

Taking the difference between the two above equations, it follows:

() ())),(()),((
4

)),(()),((
2

1
)()(2211

2

111 ξξξξ sfsf
h

ttsfttsfhtsts iiiiii ′−′++=− +++

which is an equation relating the values of a solution function and of its derivative at the two discrete

points ti and ti+1.

A reliable enclosure R[i..i+1] of the difference ())),(()),((2211 ξξξξ sfsf ′−′ appearing in the last

term of the equation may be obtained from the interval evaluation of the derivative of f with the

argument)(ξs replaced by the a priori enclosure S[0..f] and ξ replaced by the interval [ti..ti+1]. If the

result of such evaluation is an interval F’[i..i+1] then the magnitude of the difference, which is between

two real values belonging to this interval, cannot exceed its width. Consequently a reliable enclosure is

given by the interval R[i..i+1]=[-width(F’[i..i+1])..width(F’[i..i+1])].

Reliable enclosures for s(ti), s(ti+1), f(s(ti),ti) and f(s(ti+1),ti+1) are represented by the interval

variables Si, Si+1, Fi and Fi+1 that were initially associated with the points ti and ti+1.

4 For simplicity a single differential equation is considered, as in the original work. However, this framework can be easily

extended component wise for ODE systems.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

143

Given these reliable enclosures for each term of the above equation, a first constraint ci,i+1 is directly

obtained:

() []()1..

2

111, 42

1
++++ ++=−≡ iiiiiiii R

h
FFhSSc

Moreover, generalizing the equation for any intermediate point of t between ti and ti+1, and

representing the enclosure for ∀t∈[ti..ti+1] s(t) by a new interval variable S[i..i+1] initialised with the a

priori enclosure S[0..f], a second constraint ci..i+1 is obtained:

[] [] [] []() []
[]()1..

2

11..1..1.. 4

..0
)..,(..0

2

1
+++++ ++=−≡ iiiiiiiiiiii R

h
ttSFFhSSc

With this approach the problem of integrating an ODE is transformed into a CCSP with:

(i) 3×2d+2 variables, Si (0≤i≤2d), Fi (0≤i≤2d) and S[i..i+1] (0≤i<2d);

(ii) 3×2d+1 constraints, ci (0≤i≤2d), ci,i+1 (0≤i<2d) and ci..i+1 (0≤i<2d).

There are several drawbacks with this constraint approach. Firstly, the number d of subdivisions must

be specified in advance and the interpolation points must be homogeneously distributed along the

whole interval of integration. Thus, the approach has no error control mechanism and is insensitive wrt

the stability of the differential equation (see subsection 9.1.2).

Secondly, given the lack of an error control mechanism, the number d of subdivisions needs often to

be very large, leading to a constraint network with a huge number of variables and constraints, which

is difficult to handle, even for a specialised constraint programming language such as CLP(BNR).

Thirdly, the constraints between any two consecutive discrete points contain an interval constant

R[i..i+1] which is only computed once and is not updated by propagation, even when the range of the

enclosure S[i..i+1] for the set of solution functions between these points is changed.

Finally, the approach is highly dependent on the specification of a tight enough a priori enclosure

S[0..f] for the set of solution functions between the initial and the final integration points. This is a main

problem since there is usually no clue for the specification of such enclosure which must hold along

the whole interval of integration. Moreover, if the values of the solution functions vary considerably

along this interval then there is no single tight enclosure for the complete interval, limiting the

practical applicability of such approach.

9.3.2 Hickey’s Constraint Approach

Independently from Older’s work, Hickey in [Hic94] proposed a somewhat similar constraint

approach for solving constrained ODE problems. It shares the same ideas of associating interval

variables for representing the enclosures of solutions and their derivatives at discrete points of t (or

between two consecutive points) and generating constraints to bound its possible values. However,

instead of considering only enclosures for the solution function and its first derivative, it considers

enclosures for all the derivatives of the solution function up to a given order and uses constraints based

on Taylor series expansions whose remainder term does not exceed that order.

ORDINARY DIFFERENTIAL EQUATIONS

144

From the specification of the ODE5, together with a sequence of integration points (between t0 and

tf) and an integer p (representing the maximum order of the Taylor expansions used for generating

constraints), the following variables are considered (for which a priori enclosures may be specified):

(i) Si, iS ′ , iS ′′ ,…,)(p
iS associated with each discrete point ti (0≤i≤f) and representing the

enclosures for s(ti) , f(s(ti),ti) , f’(s(ti),ti) ,…,)),(()1(
ii

p ttsf − respectively;

(ii) []1.. +iiS , []1.. +′ iiS , []1.. +′′ iiS ,…, []
)1(
1..

+
+

p
iiS associated with each interval [ti..ti+1] (0≤i<f) and

representing the enclosures for ∀t∈[ti..ti+1]s(t) , ∀t∈[ti..ti+1]f(s(t),t) , ∀t∈[ti..ti+1]f’(s(t),t) ,…,

∀t∈[ti..ti+1])),(()(ttsf p respectively;

Expressions for each of the derivatives associated with the above variables are computed through

automated differentiation and the corresponding constraints are generated, relating its value at each

point (ti) or interval ([ti..ti+1]).

Between each two consecutive discrete points ti and ti+1, several additional constraints are generated

based on Taylor series expansions around these points. For any pair of integers k and m such that

0≤k≤m≤p, the following four constraints are generated6 (assuming that the solution function s is p+1

times continuous differentiable and h=ti+1-ti):

≡+
mk

iic ,
1, []

)1(
1..

1

0

)()(
1)!1(!

+
+

+−−

=

+
+ +−

+

= ∑ m

ii

kmkm

j

jk
i

j
k

i R
km

h
S

j

h
S

≡+
mk

iic ,
,1

() ()
[]

)1(
1..

1

0

)(
1

)(

)!1(!
+
+

+−−

=

+
+ +−

−
+

 −
= ∑ m

ii

kmkm

j

jk
i

j
k

i R
km

h
S

j

h
S

[] ≡+
mk

iiic ,
1,, []

[] []
[]

)1(
1..

1

0

)()(
1..)!1(

..0

!

..0 +
+

+−−

=

+
+ +−

+

= ∑ m

ii

kmkm

j

jk
i

j
k

ii R
km

h
S

j

h
S

[] ≡++
mk

iiic ,
1,,1 []

[] []
[]

)1(
1..

1

0

)(
1

)(
1..)!1(

0..

!

0.. +
+

+−−

=

+
++ +−

−
+

 −
= ∑ m

ii

kmkm

j

jk
i

j
k

ii R
km

h
S

j

h
S

where the []
)1(

1,
+
+

m
iiR are different interval variables representing the enclosure []

)1(
1,
+
+

m
iiS . These new

variables are introduced to avoid the narrowing of the remainder term as a result of propagation of the

Taylor series expansion. This narrowing can only be achieved through the last two constraints and is

propagated to the remainder terms via an additional unidirectional CLP(BNR) constraint defined as:

≡m
ic []

)1(
1,
+
+

m
iiR is []

)1(
1,
+
+

m
iiS

Note that the constraint p
iic ,0

1, + is the natural interval extension of the Taylor series expansion of

order p around ti, which is the base of the ITS methods (see subsection 9.2.1). Note also that the ranges

of the variables []
)1(
1..

+
+

p
iiS are not constrained, implying the specification of their a priori enclosures.

5 Again only a single differential equation is considered. The generalization for ODE systems is straightforward.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

145

This approach presents the same general drawbacks of the previous approach. It lacks an error

control mechanism, generates a huge constraint network and requires the specification of the

integration points and tight a priori enclosures for the values that each variable can take along the

whole interval of integration.

9.3.3 Jansen, Deville and Van Hentenryck’s Constraint Approach

The approach proposed by Janssen et al [DJV98, JDV99, JVD01a, JVD01b] is a more direct extension

of interval approaches for solving IVPs. It does not translate the IVP into a CCSP through a constraint

network, but rather follows the traditional methods. It performs the integration step by step, from the

initial to the final integration point, using reliable interval methods improved with constraint

propagation techniques.

Each integration step is quite similar to the two phases process of the interval methods. Firstly, the

validation and enclosure of solutions between the two discrete points is achieved by a first order

enclosure method based on the interval Picard operator (cf. 9.2.2). Afterwards, a tight enclosure of the

solution at the next discrete point is computed. The novelty of the approach is the subdivision of this

second phase into a predictor process, for computing an initial enclosure, and a pruning (corrector)

process, for narrowing this enclosure, both based on constraint techniques.

The predictor process is based on a traditional ITS method for the generation of an interval extension

of the Taylor series (see subsection 9.2.3). In particular, [DJV98] suggests the ITS direct method

complemented with a co-ordinate transformation strategy, based on Lohner’s QR-factorisation method

[Loh87], to reduce the wrapping effect.

As a result, some (vector) interval expression E(Si,S[i..i+1],ti,ti +1) is obtained for the computation of an

enclosure Si+1 at the next point ti+1 from the enclosure at the previous point ti and the enclosure S[i..i+1]

between the two points obtained in the first phase.

 A major difficulty of the interval methods is the overestimation obtained from the direct interval

evaluation of such expression. In this approach, the overestimation is reduced by the application of

constraint techniques for the decomposed evaluation of the interval expression (see theorem 3.2.1-4),

and several such techniques are proposed [DJV98].

A first technique is based on the piecewise interval extension of the solution function, defined as the

smallest enclosure for the expression E(Si,S[i..i+1],ti,ti +1) when evaluated at each element of Si:

Si+1 = Bhull({E(Bhull(si),S[i..i+1],ti,ti +1) | si∈Si })

where Bhull(S) is the smallest F-box enclosing S.

To compute such enclosure, 2n unconstrained optimisation problems are generated for finding the

minimum/maximum possible value of each component of Si+1. For the practical implementation of

these optimisation problems, an appropriate constraint programming language such as Numerica

[VMD97] is used.

6 In practice, these constraint are generated in a different form, more suitable for the interval arithmetic evaluation.

ORDINARY DIFFERENTIAL EQUATIONS

146

Since the above multidimensional optimisation problems may be computationally expensive,

alternative coarser approximations of the piecewise interval extension were proposed, using

projections into a smaller number of variables.

A box-piecewise interval extension is defined as the intersection on every component j of the

piecewise interval extensions obtained when all the other components are replaced by the respective

interval constants:

Si+1= I
nj≤≤1

Bhull({E(<I1,…, Ij-1, Iapx(rj), Ij+1,…, In>,S[i..i+1] ,ti,ti +1) | rj∈Ij }) with Si = <I1,…, In>

Despite providing a less accurate enclosure, this is computationally less expensive, only requiring

the solution of unidimensional unconstrained optimisation problems.

Other alternative techniques lie half-way between the two extreme alternatives above. If instead of

using projections into a single component, any k components are considered then, box(k)-piecewise

interval extensions may be obtained from the solution of k-dimensional optimisation problems.

For the pruning process, two alternative techniques were proposed: a one-step method which uses the

forward step backwards [DJV98] and a multistep method that uses Hermite interpolation polynomials

[JDV99, JVD01a, JVD01b].

The one-step method generates a constraint cj from each component j of the vector interval

expression E, which is the same used in the predictor process but applied backwards (from ti+1 to ti),

and enforces box-consistency wrt the enclosure Si+1:

cj ≡ Ij = Ej(Si+1,S[i..i+1],ti+1,ti) with Si = <I1,…, In>

The multistep method aims at narrowing the predicted enclosure Si+1 for the solution functions at

time ti+1 from the knowledge about reliable enclosures at k previous discrete points. It is based on the

fact that if a real function at ti-k+1,…,ti,ti+1 passes through si-k+1,…,si,si+1, with the derivatives

s’i-k+1,…,s’i,s’i+1, then there is a unique polynomial of degree 2k+1, the Hermite polynomial, which

simultaneously interpolates both the real function and its derivative at these points (see [SB92] for

details). Moreover, it is possible to bind the error of the Hermite polynomial for the approximation of

the real function at some t∈[ti-k+1..ti+1] and so, it is possible to derive an interval extension of the

original real function based on the Hermite polynomial. Consequently, denominating

HP(Si-k+1,…,Si,Si+1,t) the Hermite interval polynomial obtained from enclosures at k+1 discrete points

(and their respective derivative satisfying the ODE) the following relation holds for any solution

function s of the ODE:

∀t∈[ti-k+1..ti+1] s(ti-k+1)∈Si-k+1 ∧ … ∧ s(ti+1)∈Si+1 ⇒ s(t) ∈ HP(Si-k+1,…,Si,Si+1,t)

Additionally, through differentiation on HP, an interval extension DHP of the derivative of any

solution function s may be obtained:

∀t∈[ti-k+1..ti+1] s(ti-k+1)∈Si-k+1 ∧ … ∧ s(ti+1)∈Si+1 ⇒
dt

tds)(
 ∈ DHP(Si-k+1,…,Si,Si+1,t)

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

147

The multistep pruning methods use the interval expressions HP and DHP together with the interval

expression F defining the ODE to generate a set of constraints based on:

DHP(Si-k+1,…,Si,Si+1,t) = F(HP(Si-k+1,…,Si,Si+1,t),t)

which can be rewritten in a suitable Mean Value form (see [JDV99]). By choosing a particular value

for t∈[ti-k+1..ti+1], and enforcing box-consistency (or other type of consistency) on the enclosure Si+1,

this box may be effectively narrowed.

The method is improved in [JVD01a] by considering several successive multistep constraints

together for pruning simultaneously several enclosing boxes. The best choice of the particular value

for t∈[ti-k+1..ti+1] is independent from the ODE and may be precomputed before the integration process

starts [JVD01b]. Experimental results on several benchmarks were presented confirming the

advantages of the constraint approach compared with the best interval approaches.

9.4 Summary

In this chapter ordinary differential equations and initial value problems were introduced. Classical

numerical approaches for solving IVPs were overviewed, and sources of errors and its consequences

were discussed. Interval approaches for solving IVPs were reviewed and, in particular, Interval Taylor

Series methods were fully described. The existing approaches that apply interval constraints for ODE

solving were surveyed. In the next chapter our proposal of Constraint Satisfaction Differential

Problems for handling differential equations is presented.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

149

Chapter 10

Constraint Satisfaction Differential Problems

In this work, we propose an interval constraint approach for dealing with differential equations, by

considering each ODE system together with related additional information as a special kind of CSP.

We will refer such approach as a Constraint Satisfaction Differential Problem (CSDP).

Whereas in a CCSP the values of all the variables are real numbers and their domains are sets of

real numbers represented by real intervals, in a CSDP there is a special variable whose values are

functions and whose domain is a set of functions. Such special variable is named the solution variable

and represents the functions that are solutions of the ODE system and satisfy all the additional

restrictions.

The other variables of the CSDP are all real valued variables, and will be denoted as restriction

variables, which represent each of the required restrictions. Solving the CSDP may be seen as a correct

narrowing procedure for reducing the domains of the restriction variables without loosing any possible

solution.

The full integration of a CSDP within a CCSP (as defined in 2.2-2) is accomplished by sharing

common variables (the restriction variables of the CSDP) and by considering the CSDP as a special

constraint restraining the possible value combinations of those variables. For pruning the domains of

its variables, this constraint has an associated narrowing function derived from the procedure for

solving the CSDP.

This chapter characterises a CSDP. The next section identifies its variables and restrictions. Section

10.2 addresses its integration within a larger CCSP framework. Section 10.3 discusses some modelling

issues. The procedure for solving a CSDP is presented in the next chapter.

10.1 CSDPs are CSPs

A CSDP is a CSP with a special variable (the solution variable xODE), a special constraint (the ODE

constraint cODE) and other constraints and variables for representing additional required restrictions.

Before presenting the definition of a CSDP, the special variable and constraint must be characterised

together with the type of constraints allowed for the representation of additional restrictions.

CONSTRAINT SATISFACTION DIFFERENTIAL PROBLEMS

150

Let S[t0..t1] be the set of all n-ary vector functions s from the real interval [t0..t1] to n:

S[t0..t1] = { s | s : [t0..t1] ⊂ → n }

The association of an n-ary ODE system),(tyfy =′ (as defined in 9-1) with a real interval [t0..t1]

may be seen as a restriction on the set of functions S[t0..t1] to a subset defined by those functions that are

solutions of the ODE system with respect to [t0..t1] (as defined in 9-2). This is represented in the CSP

framework (see definitions 2-1 and 2-2) by considering the solution variable xODE with the initial

domain DODE = S[t0..t1] and the ODE constraint cODE=(<xODE>, ρODE) where

ρODE = {<s>∈DODE | ∀t∈[t0..t1])),((ttsf
dt

ds
= }

The specification of additional information, such as initial conditions, boundary conditions, or other

more complex restrictions on the ODE solutions is represented in the CSP framework by a finite set of

binary constraints, denoted ODE restrictions. Each of these ODE restrictions cr=(<xODE,xi>,ρr) defines

a relation ρr between the solution variable xODE and some other interval variable xi of the CSDP. The

relation ρr must be defined through a function r : S[t0..t1] → in the following way:

ρr = {<s,v>∈<DODE,Di> |)(srv = }

In the following subsection we will define several such functions to account for value, maximum,

minimum, time and area restrictions. First we present a formal definition of a CSDP that summarises

the above concepts.

Definition 10.1-1 (CSDP). Let),(tyfy =′ be an n-ary ODE system as defined in 9-1. Let [t0..t1] be a

real interval and S[t0..t1] be the set of all n-ary vector functions from the real interval [t0..t1] to n. A

CSDP is a CSP P=(X,D,C) (see definition 2-2) where:

X =<xODE,x1,…,xm>

D =<DODE,D1,…,Dm> with DODE=S[t0..t1] and Di (1≤i≤m) real intervals

C ={cODE} ∪ Cr

and:
cODE=(<xODE>, ρODE) with

ρODE = {<s>∈<DODE> | ∀t∈[t0..t1])),((ttsf
dt

ds
= }

∀cr∈Cr
 cr=(<xODE,xi>,ρr) with 1≤i≤m , ρr = {<s,v>∈<DODE,Di> |)(srv = } and r : S[t0..t1] →

xODE is called the solution variable, cODE is called the ODE constraint, each variable xi (1≤i≤m) is

called a restriction variable and each constraint cr∈Cr is called an ODE restriction.

The following subsections describe different typical ODE restrictions which can be combined together

within the same CSDP for the specification of many common ODE problems. Several examples of

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

151

CSDPs will be presented for illustration purposes. They are all based on one of the two following

ODE systems and their respective CSDPs.

Example P1:

The first example is the unary ODE system)()(tyty −=′ defined for t∈[0.0..4.0]. This is represented

by CSDP P1=(<xODE>,<DODE>,{cODE}) where:

DODE = S[0.0..4.0] = { s | s : [0.0..4.0] → }

cODE=(<xODE>, ρODE) with ρODE = {<s>∈DODE | ∀t∈[0.0..4.0])()(tsts −=′ }

Without further constraints, CSDP P1 has an infinite number of solutions which may be represented

analytically as s(t) = tke− for any real number k. Figure 10.1 shows CSDP P1 together with some of its

solutions.

Figure 10.1 CSDP P1, representing the ODE system)()(tyty −=′ for t∈[0.0..4.0].

Example P2:

The second ODE system is the following binary system1 defined for t∈[0.0..6.0]:

)(7.0)(11 tyty −=′

)(
5

)2ln(
)(7.0)(212 tytyty −=′

This is represented by CSDP P2=(<xODE>,<DODE>,{cODE}) where:

DODE = S[0.0..6.0] = { s | s : [0.0..6.0] → 2 }

cODE=(<xODE>, ρODE)

ρODE = {<s>∈DODE | ∀t∈[0.0..6.0] ()(7.0)(11 tsts −=′ ∧)(
5

)2ln(
)(7.0)(212 tststs −=′)}

Again, without further constraints, CSDP P2 has an infinite number of solutions. These solutions

may be represented analytically as:

+
−

== −−

−

btat

at

ekek

ekab

ts

ts
ts

21

1

2

1)1(

)(

)(
)(

where a = 0.7, b =
5

)2ln(
, and k1, k2 are real numbers.

1 See section 12.2 for a “physical” justification of the ln(2)/5 constant.

0.0 1.0 2.0 4.03.0
0.0

1.0

0.5
s(t)

t

P1 = (<XODE>,<DODE>,{cODE})

DODE = S[0.0..4.0] = { s | s : [0.0..4.0] → }

cODE=(<XODE>, ρODE)

ρODE = {<s>∈DODE | ∀t∈[0.0..4.0])()(tsts −=′ }

tkets −=)(

XODE

(k∈)

CONSTRAINT SATISFACTION DIFFERENTIAL PROBLEMS

152

Figure 10.2 shows CSDP P2 together with some of its solutions. For keeping the illustration in two

dimensions, each component (s1 and s2) of each solution (s) is represented in a different graphic

sharing the same time axis (in the graphics corresponding solutions share the same line type).

Figure 10.2 CSDP P2, representing a binary ODE system for t∈[0.0..6.0].

In the following subsections, the short notation “P with C and D” is used to designate a CSDP similar

to P but with the additional constraints (and respective variables) appearing in C. The initial domains

of the new restriction variables are specified in D.

10.1.1 Value Restrictions

An initial condition, which together with an ODE system defines an IVP (see definition 9-3), specifies

the value that a solution of the ODE system must have at a particular point of t. Hence, if s is such

solution and tp such time point, the initial condition specifies a value sj(tp) for each component sj

(1≤j≤n) of s at point t=tp. A boundary condition is similar to an initial condition, except that only a

proper subset of the components of s are specified.

 In a CSDP, initial and boundary conditions are represented by a set of constraints denoted Value

restrictions. Each of these constraints is an ODE restriction that relates an ODE solution with the value

of one of its components at a particular point of t.

Definition 10.1.1-1 (Value restrictions). Let CSDP P=(X,D,C) be defined as in 10.1-1. Let j be an

integer (1≤j≤n) representing a component of the n-ary system, tp∈[t0..t1] a real value representing a

point of t, cr∈Cr an ODE restriction and xi its restriction variable.

(i) cr is a Value restriction wrt j and tp, denoted Valuej,tp
(xi), iff: r(s) = sj(tp)

Consider the IVP determined by the ODE of CSDP P1 (see figure 10.1) and the initial condition

0.1)0.0(=y . This IVP is represented by a CSDP similar to P1 but with an extra restriction variable x1

t

0.0 1.0 2.0 4.03.0 5.0 6.0
0.0

1.0

0.5

1.5

0.0

1.0

0.5

1.5

s1(t)

s2(t)

P2 = (<XODE>,<DODE>,{cODE})

DODE = { s | s : [0.0..6.0] → 2 }

cODE = (<XODE>, ρODE)

ρODE = {<s>∈DODE | ∀t∈[0.0..6.0]
()(7.0)(11 tsts −=′ ∧

)(
5

)2ln(
)(7.0)(212 tststs −=′)}

+
−

== −−

−

btat

at

ekek

ekab

ts

ts
ts

21

1

2

1)1(

)(

)(
)(

XODE

(k1,k2∈)

with a=0.7 and b=ln(2)/5

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

153

with the interval domain D1=[1.0] and an extra value restriction Value1,0.0(x1), which associates this

variable with the value of the 1st (and unique) component of the solution at t=0.0. Additionally, if we

are interested in the value of the solution of the above IVP at t=4.0, then a new restriction variable x2

and a new value restriction Value1,4.0(x2), associating that variable with such value, are required.

Since there is no a priori information about this value, the initial domain D2 of the new restriction

variable is the interval [−∞..+∞]. The result is CSDP P1a as follows:

P1a = P1 with {Value1,0.0(x1) ,Value1,4.0(x2)} and {D1=[1.0],D2=[−∞..+∞]}

CSDP P1a has a single solution < te− ,1.0, 0.4−e >, shown in figure 10.3. Therefore, solving problem

P1a completely would narrow D2 from [−∞..+∞] to [0.4−e] which is the required value at t=4.0.

Figure 10.3 CSDP P1a, representing the IVP: 0.1)0.0(=y and)()(tyty −=′ for t∈[0.0..4.0].

A real interval I (or a real box B for multidimensional ODE systems) may be used instead for the

specification of the initial condition at some point tp of t. In this case a solution of the ODE must have

at time tp a value within interval I (or within box B). This can be easily accommodated in the CSDP

framework by considering the interval I as the initial domain of the respective variable restriction (or,

in the multidimensional case, by initializing each variable restriction with the correspondent

component of B).

Considering the previous example with []0.1..5.0)0.0(=y (instead of 0.1)0.0(=y), the solutions of

this problem may be expressed analytically as s(t) = tke− for any k∈[0.5..1.0]. CSDP P1b, illustrated

in figure 10.4, represents the problem.

Figure 10.4 CSDP P1b, representing the IVP: []0.1..5.0)0.0(=y and)()(tyty −=′ for t∈[0.0..4.0].

tets −=)(

0.4−e

1.0

0.0 1.0 2.0 4.03.0

s(0.0) =

= s(4.0)

X1

X2

XODE

t

s(t)

P1a = P1 with {Value1,0.0(X1) ,Value1,4.0(X2)}

 and {D1=[1.0],D2=[−∞..+∞]}

0.0 1.0 2.0 4.03.0

1.0

0.5

X1 = s(0.0) tkets −=)(

XODE

(k∈[0.5..1.0])

t

s(t)

X2 = s(4.0) = [0.5 0.4−e ..1.0 0.4−e]

P1b = P1 with {Value1,0.0(X1) ,Value1,4.0(X2)}

 and {D1=[0.5..1.0],D2=[−∞..+∞]}

CONSTRAINT SATISFACTION DIFFERENTIAL PROBLEMS

154

The grey area in the figure represents the set of all solutions of P1b. Solving this CSDP, would narrow

D2 from [−∞..+∞] to [0.5 0.4−e ..1.0 0.4−e], the smallest interval containing all the real values of these

solutions at time t=4.0.

A boundary value problem may be derived from CSDP P2 (see figure 10.2) by adding boundary

restrictions specifying the value of the solutions components at different points of time. The

specification of real values for y2 at any two different time points tp1 and tp2 completely determines the

values of k1 and k2 of the analytical solution, restricting the infinite set of solutions of P2 to a single

solution.

For example, let us consider the boundary conditions y2(0.0)=0.75 and y2(6.0)=1.0 for the ODE

system of CSDP P2, for which we are interested in solution values at time t=3.0. This new CSDP,

P2a, is derived from P2 by adding one value restriction for each boundary condition and two more

value restrictions (for obtaining the solution value of each component at time t=3.0). Figure 10.5

illustrates the problem and shows its single solution.

Figure 10.5 CSDP P2a, representing a b

Similarly to the previous examples, instead of real valu

specification of the boundary conditions.

10.1.2 Maximum and Minimum Restrictions

Traditionally, the numerical problems dealing with ODEs

which, as we have seen in the previous subsection, can be

through an adequate set of Value restrictions.

However, thinking of an ODE solution as a continuous v

each of its components as a continuous real function, se

imposed.

t
0.0 1.0 2.0 4.03.0 5.0 6.0

0.0

0.5

1.5

0.0

1.0

0.5

1.5

s1(t)

s2(t)

P2a = P2 with {Value2,0.0(X1) ,

Value2,6.0(X2) ,

Value1,3.0(X3) ,

Value2,3.0(X4)}

 and { D1=[0.75],
D2=[1.0],
D3=[−∞..+∞],
D4= [−∞..+∞]}

+
−

== −−

−

btat

at

ekek

ekab

ts

ts
ts

21

1

2

1)1(

)(

)(
)(

ba

b

ee

e
k

0.60.6

0.6

1
75.00.1

−−

−

−

−
=

k2 = 1.0 − k1

a=0.7 b=ln(2)/5

with:

3

4

2

1

XODE
X

X

X
1.0
X

oundary value problem.

es, interval values may be used for the

 are initial and boundary value problems,

easily represented in the CSDP framework

ector function, and in particular thinking of

veral other conditions of interest may be

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

155

Important properties of a continuous function are its maximum and minimum values. In the CSDP

framework, a Maximum restriction is an ODE restriction that relates an ODE solution component with

its maximum value within an interval of time2. A Minimum restriction is similar.

Definition 10.1.2-1 (Maximum and Minimum restrictions). Let CSDP P=(X,D,C) be defined as in

10.1-1. Let j be an integer (1≤j≤n) representing a component of the n-ary system, [tp0..tp1]⊆[t0..t1] be a

real interval, cr∈Cr be an ODE restriction and xi its restriction variable.

(i) cr is a Maximum restriction wrt j and [tp0..tp1] (denoted Maximumj,[tp0..tp1](xi)) iff:

r(s) = sj(tp) with tp∈[tp0..tp1] and ∀t∈[tp0..tp1] sj(t) ≤ sj(tp)

(ii) cr is a Minimum restriction wrt j and [tp0..tp1] (denoted Minimumj,[tp0..tp1](xi)) iff:

r(s) = sj(tp) with tp∈[tp0..tp1] and ∀t∈[tp0..tp1] sj(t) ≥ sj(tp)

Consider CSDP P2 (figure 10.2) with boundary condition s1(0.0)=1.25 specifying the value of the first

solution component at t=0.0 and an additional restriction requiring the maximum value of the second

solution component between t=1.0 and t=3.0 to lie within interval [1.1..1.3]. Moreover, let us assume

that we are interested in the value of the second solution component at t=6.0.

Figure 10.6 illustrates the problem, CSDP P2b, showing its solutions (represented in the figure by

the grey area).

Figure 10.6 CSDP P2b, representing a problem with a Maximum restriction.

By solving CSDP P2b exactly, domain D2 would be narrowed from [−∞..+∞] to the smallest interval

containing the second component values at time t=6.0 of all possible solutions.

2 In finite domains a similar type of constraint, the global commulative constraint, may be imposed for requiring that the

usage of some resource cannot exceed some threshold during some interval of time.

t

0.0 1.0 2.0 4.03.0 5.0 6.0

s1(t)

s2(t)

P2b = P2 with {Value1,0.0(X1) ,

Value2,6.0(X2) ,

Maximum2,[1.0..3.0](X3) ,

 and {D1=[1.25],
D2=[−∞..+∞],
D3=[1.1..1.3]}

X1

X2

X3

0.0

1.0

0.5

1.5

0.0

1.0

0.5

1.5

CONSTRAINT SATISFACTION DIFFERENTIAL PROBLEMS

156

10.1.3 Time and Area Restrictions

Other important property of a continuous real function, particularly useful for modelling many

biophysical problems, regards the length of time in which its value remains above/below some

predefined threshold. In this case, we are no longer interested in some particular value of the function,

but rather to compute the time during which its value exceeds (or not) the threshold.

A Time restriction is an ODE restriction that captures such property from an ODE solution

component given an interval of time T (specifying where to consider the time) and a threshold k. Such

restriction is defined through a real function r which is a unity integral over a region determined by

those points within T that satisfy the goal.

Definition 10.1.3-1 (Time restrictions). Let CSDP P=(X,D,C) be defined as in 10.1-1. Let j be an

integer (1≤j≤n) representing a component of the n-ary system, [tp0..tp1]⊆[t0..t1] a real interval,

⋄∈{≤,≥}, k a real value, cr∈Cr be an ODE restriction and xi its restriction variable.

(i) cr is a Time restriction wrt j, [tp0..tp1] and ⋄k (denoted Timej,[tp0..tp1],⋄k(xi)) iff:

∫= R
dtsr)(with R = { t∈[tp0..tp1] | sj(t) ⋄ k }

The previous definition for the real function r may be generalised to other integrand functions to

represent other properties of an ODE solution component. In particular, the area above (or under) the

specified threshold may be obtained if the integrand measures the distance between the function value

and this threshold value. This leads to the following definition of the Area restrictions.

Definition 10.1.3-2 (Area restrictions). Let CSDP P=(X,D,C) be defined as in 10.1-1. Let j be an

integer (1≤j≤n) representing a component of the n-ary system, [tp0..tp1]⊆[t0..t1] a real interval,

⋄∈{≤,≥}, k a real value, cr∈Cr be an ODE restriction and xi its restriction variable.

(i) cr is an Area restriction wrt j, [tp0..tp1] and ⋄k (denoted Areaj,[tp0..tp1],⋄k(xi)) iff:

∫ −=
R

j dtktssr)()(with R = { t∈[tp0..tp1] | sj(t) ⋄ k }

The following is an example of a CSDP that adds Time and Area restrictions to CSDP P2b (figure

10.6). It requires that at least half of the time (between 0.0 and 6.0) the second solution component has

a value no less than 1.1. Moreover, we are interested in the area of the solutions (the second

component) above that threshold. This is represented by CSDP P2c illustrated in figure 10.7 (only the

graphic of the second component s2(t) is shown in the figure; the first component is as in figure 10.6).

This CSDP includes Time and Area restrictions, which are associated with new restriction variables x4

and x5, respectively. For imposing the required Time restriction, x4 is initialised to an interval whose

left bound is half of the total time (the right bound is the total time). Variable x5, initially unbounded,

represents the value of the required areas of all possible CSDP solutions.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

157

Figure 10.7 CSDP P2c, representing a problem with Time and Area restrictions.

The set of solutions of P2c is restricted by the Time restriction to the grey area represented in figure

10.7 (smaller than that in figure 10.6), since solving P2c exactly, narrows the final domains of x2 and

x3 with respect to problem P2b. Figure 10.7 also shows the final domains of the Time variable x4

(whose right bound was reduced from 6.0 to b) and the Area variable x5 (where c is the area between

the lower curve and the straight line k; and d is the area above that line and between the two curves).

10.1.4 First and Last Value Restrictions

The final important properties of real functions that we will represent as ODE restrictions are related

with particular points of time for which the value of the real function satisfies some criterion.

First (Last) Value restrictions relates an ODE solution component sj with the first (last) point of

time tp (within some interval tp∈[tp0..tp1]) such that the criterion is satisfied for sj(tp). If the criterion

cannot be satisfied by any of those points the restriction fails. The possible criteria are the sj(tp) to be

less or equal, or greater or equal, than some predefined threshold k.

The real function r which defines such restriction is itself defined in two complementary and

exclusive parts. If there is no point within the interval [tp0..tp1] satisfying the criterion then it returns a

value outside this interval (+∞/-∞), which will make the constraint unsatisfiable. If there is one or

more points within the interval [tp0..tp1] satisfying the criterion then one of them must be the first (last),

which is returned. In this case, for any precedent (subsequent) point the criterion cannot be satisfied.

Definition 10.1.4-1 (First and Last Value restrictions). Let CSDP P=(X,D,C) be defined as in

10.1-1. Let j be an integer (1≤j≤n) representing a component of the n-ary system, [tp0..tp1]⊆[t0..t1] a real

interval, ⋄∈{≤,≥}, k a real, cr∈Cr be an ODE restriction and xi its restriction variable.

(i) cr is a First Value restriction wrt j, [tp0..tp1] and ⋄k (denoted firstValuej,[tp0..tp1],⋄k(xi)) iff:

r(s) =
 +∞ if ∀t∈[tp0..tp1] ¬(sj(t) ⋄ k)

tp if tp∈[tp0..tp1], sj(tp) ⋄ k and ∀t∈[tp0..tp1] (t < tp ⇒ ¬(sj(t) ⋄ k))

(ii) cr is a Last Value restriction wrt j, [tp0..tp1] and ⋄k (denoted lastValuej,[tp0..tp1],⋄k(xi)) iff:

r(s) =
 -∞ if ∀t∈[tp0..tp1] ¬(sj(t) ⋄ k)

tp if tp∈[tp0..tp1], sj(tp) ⋄ k and ∀t∈[tp0..tp1] (t > tp ⇒ ¬(sj(t) ⋄ k))

P2c = P2b with { Time2,[0.0..6.0],≥1.1(X4),

Area2,[0.0..6.0],≥1.1(X5)}

 and { D4=[3.0..6.0],
D5=[−∞..+∞]}

t

0.0 1.0 2.0 4.03.0 5.0 6.0

s2(t)
X2

X3

0.0

1.0

0.5

1.5

k

b

c

d
a

X4=[a..b]

X5=[c..c+d]

CONSTRAINT SATISFACTION DIFFERENTIAL PROBLEMS

158

Consider the example in figure 10.4 (CSDP P1b) with an additional First Value restriction requiring

that, within time interval [0.0..2.0], the first solution value not exceeding 0.25 occurs sometime

between 1.0 and 2.0. This is represented in CSDP P1d of figure 10.8 where, associated with the First

Value restriction, a new restriction variable x3 was introduced with domain D3=[1.0..2.0].

Figure 10.8 CSDP P1d, representing a problem with a First Value restriction.

The grey area, representing the set of possible solutions, is reduced, comparatively to CSDP P1b,

which implies the narrowing of x1 and x2 variable domains. Moreover, the final right bound of variable

x3 is also reduced since the Value restrictions prevent any solution from having its first value not

exceeding 0.25 after time t=ln(4.0).

10.1.5 First and Last Maximum and Minimum Restrictions

A natural extension of the First (Last) Value restrictions is to consider the special case where the

threshold k is the maximum or minimum value of the real function. In this case the defining function r

no longer needs to be defined in parts since within any interval [tp0..tp1] there must exist a point that

maximises (minimises) the real function.

Definition 10.1.5-1 (First and Last Maximum and Minimum restrictions). Let CSDP P=(X,D,C)

be defined as in 10.1-1. Let j be an integer (1≤j≤n) representing a component of the n-ary system and

[tp0..tp1]⊆[t0..t1] an interval. Let cr∈Cr be an ODE restriction and xi its restriction variable.

(i) cr is a First Maximum restriction wrt j and [tp0..tp1] (firstMaximumj,[tp0..tp1](xi)) iff:

r(s) = tp with tp∈[tp0..tp1] and ∀t∈[tp0..tp1] [(sj(t) ≤ sj(tp)) ∧ (t < tp ⇒ sj(t) < sj(tp))]

(ii) cr is a First Minimum restriction wrt j and [tp0..tp1] (firstMinimumj,[tp0..tp1](xi)) iff:

r(s) = tp with tp∈[tp0..tp1] and ∀t∈[tp0..tp1] [(sj(t) ≥ sj(tp)) ∧ (t < tp ⇒ sj(t) > sj(tp))]

(iii) cr is a Last Maximum restriction wrt j and [tp0..tp1] (lastMaximumj,[tp0..tp1](xi)) iff:

r(s) = tp with tp∈[tp0..tp1] and ∀t∈[tp0..tp1] [(sj(t) ≤ sj(tp)) ∧ (t > tp ⇒ sj(t) < sj(tp))]

(iv) cr is a Last Minimum restriction wrt j and [tp0..tp1] (lastMinimumj,[tp0..tp1](xi)) iff:

r(s) = tp with tp∈[tp0..tp1] and ∀t∈[tp0..tp1] [(sj(t) ≥ sj(tp)) ∧ (t > tp ⇒ sj(t) > sj(tp))]

0.0 1.0 2.0 4.03.0

1.0

0.5

X1 = [0.25e..1.0]

t

s(t)

X2 = [0.25 0.3−e ..1.0 0.4−e]

P1d = P1b with {firstValue1,[0.0..2.0],≤0.25(X3)}

 and {D3=[1.0..2.0]}

0.25

X3 = [1.0..ln(4.0)]

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

159

10.2 Integration of a CSDP within an Extended CCSP

In the previous section, a CSDP is defined as a CSP specialised in the specification of constraints

restraining the set of possible solutions of an ODE system, and consequently, the possible values of

the restriction variables associated with properties of such solutions. Each of these properties is

characterised by a function r which associates a real value to each possible solution of the ODE

system. Hence, the restriction variables are real valued variables and their domains are represented as

real intervals.

In section 2.2, a CCSP is defined as a CSP specialised in the specification of constraints as

numerical equalities or inequalities, restraining the set of possible values of real variables with initial

domains ranging over real intervals.

Since the restriction variables are similar to the variables of a CCSP, the CCSP framework may be

extended to allow the specification of constraints as CSDPs, sharing some CCSP variables. A CSDP

may be seen as a constraint (see definition 2-1), where the constraint scope is the set of its restriction

variables and the constraint relation is the set of their possible combination values from the whole set

of solutions (as defined in 2-5) of the CSDP. The following definition formalises an extended CCSP,

including constraints specified as CSDPs.

Definition 10.2-1 (Extended Continuous Constraint Satisfaction Problem). An extended CCSP is a

CSP P=(X,D,C=CCCSP ∪CCSDP) where each domain is an interval of and each constraint relation is

defined either as a numerical equality or inequality, or as a constraint satisfaction differential problem:

i) D=<D1,…,Dn> where Di is a real interval (1≤ i≤ n)

ii) ∀c∈CCCSP c is defined as ec⋄0 where ec is a real expression and ⋄∈ {≤,=,≥}

iii) ∀c∈CCSDP c=(s,ρ) is defined as a CSDP (<xODE,x1’,…,xm’>,D’,C’)

where s=<x1’,…,xm’>⊆X, D’=D[s] and ρ = {d[s] | d∈D’ ∧ ∀(sc,ρc)∈C’ d[sc]∈ρc }

The next chapter presents a procedure for handling a CSDP, aiming at pruning the domains of its

restriction variables, implemented as a function solveCSDP. From an F-box representing the domains

of the restriction variables, it returns a smaller F-box where some value combinations that can be

proved to be inconsistent with the CSDP are discarded.

Hence, when a CSDP is used for the definition of an extended CCSP constraint, a function NFCSDP

may be associated to it to discard the same value combinations of its scope variables that would be

discarded by the solveCSDP function. As long as the solveCSDP function is correct, not eliminating

any possible CSDP solution, and contracting, returning a smaller F-box, the associated function

NFCSDP is a narrowing function for the CCSP according to definition 4.1-1.

The following definition formalises a narrowing function NFCSDP associated with a constraint

defined by a CSDP. The solveCSDP function is used for narrowing the domains of a subset of the

CONSTRAINT SATISFACTION DIFFERENTIAL PROBLEMS

160

CCSP variables, namely those belonging to the scope of the constraint, that is, the restriction variables

of the CSDP. The other variable domains are unchanged.

Definition 10.2-2 (CSDP Narrowing Functions). Let P=(X,D,C=CCCSP∪CCSDP) be an extended CCSP

as defined in 10.2-1. Each constraint c=(s,ρ)∈CCSDP defined as a CSDP (X’,D’,C’) with a solving

procedure solveCSDP, has associated the following narrowing function:

(i) NFCSDP(A) = A’ (with A’ ⊆ A ⊆ D)

where B = solveCSDP(A[s]) (with B ⊆ A[s] ⊆ D’[s])

∀xj∈X ((xj∈s ⇒ A’[xj]=B[xj]) ∧ (xj∉s ⇒ A’[xj]= A[xj]))

These additional narrowing functions associated with the CSDP constraints, together with the

narrowing functions associated with the numerical constraints, completely characterise the set of

narrowing functions of an extended CCSP. This set may be used by a constraint propagation algorithm

(such as the prune function of figure 4.1) for pruning the domains of the extended CCSP variables.

As discussed in chapter 5, the set of narrowing functions together with a constraint propagation

algorithm characterise a local property denoted local consistency. Moreover, higher order consistency

requirements may be imposed through an algorithm (such as the kB-consistency function in figure 5.2)

interleaving search techniques with the above constraint propagation algorithm. A generic definition

of kB-Consistency (definition 5.2-1) was given for including all the consistency types commonly

required in CCSPs (when k=2 it designates local consistency). This definition applies equally well to

the case of extended CCSPs as long as local consistency is regarded, not as pure hull-consistency or

pure box-consistency, but rather as the local property enforced by the constraint propagation algorithm

with the set of narrowing functions associated to the constraints of the extended CCSP.

The definition of Global Hull-Consistency (definition 6-1) can also be applied to extended CCSPs if

the definition of a canonical solution (definition 2.2.4-3) is redefined for this context. Moreover, any

algorithm (such as those from chapter 6), for enforcing Global Hull-Consistency can be directly

applied in this context except that the local search procedure must be able to deal with CSDP

constraints. The next two subsections address respectively the redefinition of canonical solutions and

the adaptation of the local search procedure for extended CCSPs.

10.2.1 Canonical Solutions for Extended CCSPs

In an extended CCSP, since a new type of constraints defined as CSDPs is allowed, in addition to

defining how a canonical F-box may satisfy a numerical constraint, it is also necessary to define how

it satisfies a CSDP constraint. In the formal definition below, a canonical box satisfies a constraint if it

cannot be proved that the box does not contain any real valued combination, for the variables of the

constraint scope, satisfying the constraint relation. In the case of a CSDP constraint, it is satisfied by a

canonical box if it cannot be proved that the box does not contain solutions of the CSDP, that is, if the

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

161

empty set is not obtained when the narrowing function associated to the CSDP constraint is applied to

the box.

Definition 10.2.1-1 (Canonical Solution of an extended CCSP). Let P=(X,D,C) be an extended

CCSP as defined in 10.2-1. Let B⊆D be a canonical F-box and ec(B) denote the F-interval obtained by

the interval evaluation of expression ec with argument B.

B is a canonical solution of P iff :
i) ∀c∈C c is defined as ec⋄0 ⇒ ∃r∈ec(B) r⋄0

ii) ∀c∈C c is defined as a CSDP ⇒ NFCSDP(B) ≠ ∅

where ec is a real expression, ⋄∈{≤,=,≥} and NFCSDP is the CSDP narrowing function defined in

10.2-2

There are some important consequences of the above definition regarding the extent of domain

pruning that may be achieved by enforcing Global Hull-Consistency with different precision

requirements.

In a CCSP with numerical constraints alone, due to the properties of the interval arithmetic

evaluation (in particular theorem 3.2.1-4), it is expected that smaller intervals are obtained when

evaluating an interval expression (such as ec in the definition of the constraint c) with smaller

arguments. This implies that, considering a larger finite set of F-numbers (see definition 2.2.1-2), and

consequently smaller canonical F-boxes, the evaluation of the constraint expressions with canonical

arguments becomes more precise, decreasing the likelihood of its wrong classification as canonical

solutions. In the limit, with infinite precision arithmetic, a canonical solution is equivalent to a real

valued solution. Because by definition, the pruning of domains achieved by enforcing Global

Hull-Consistency is bound by canonical solutions, better results may be obtained with smaller

canonical F-boxes. In the limit, with infinite precision arithmetic, the smallest box enclosing all real

solutions would be obtained.

However, this desirable effect is not guaranteed in the case of extended CCSPs. In fact, even with

infinite precision arithmetic, a complete real valued instantiation of its variables could be considered a

canonical solution without satisfying some CSDP constraint.

One reason for such phenomenon derives from the approximate nature of any procedure based on

ODE interval approaches (presented in section 9.2) for solving the CSDP. Since the CSDP narrowing

function is based on this solving procedure, it is impossible to discard non solution instantiations

which are enclosed within the safe bounds computed by such procedure.

Another reason for the phenomenon derives from the limitations of the particular procedure used for

solving the CSDP. For example, a solving procedure (like that presented in the next chapter) for

computing a safe enclosure for the ODE solutions of a CSDP, requires the initial trajectory to be

bound at least at one time point of the ODE trajectory (otherwise the interval step method cannot be

applied at any point, preventing the reduction of the trajectory uncertainty − see next chapter, third

CONSTRAINT SATISFACTION DIFFERENTIAL PROBLEMS

162

section). As a consequence, if the above requirement is not satisfied with a real (or interval) valued

instantiation of the CSDP variables (even if such instantiation theoretically implies the elimination of

the trajectory uncertainty) the solving procedure is unable to prune any trajectory enclosures.

In order to minimise the wrong labelling of canonical boxes as canonical solutions of an extended

CCSP, each CSDP constraint should satisfy the solving requirement specified in definition 10.2.1-3.

Before presenting such definition, the concept of a CSDP solving relaxation is introduced.

Definition 10.2.1-2 (CSDP Solving Relaxation). Let c=(s,ρ) be a constraint defined as a CSDP

P=(<xODE,x1,…,xm>,D,C). CSDP P’=(X’=<xODE,x1
(1),x1

(2),…,x1
(k1),…,xm

(1),xm
(2),…,xm

(km)>,D’,C’) is the

solving relaxation of P iff it is obtained from P by:

(i) Renaming each variable xi into xi
(1),xi

(2),…,xi
(ki) where ki is the number of ODE restrictions in C

containing xi in its scope.

(ii) Redefining C to C’ according to the renaming introduced in (i).

(iii) Unbounding the restriction variables: ∀xi
∀k∈[1..ki] D’[xi

(k)]=[−∞..+∞].

In P’ there is one and only one ODE restriction ci
(k)∈C’ for each restriction variable xi

(k). The set s’ of

all its restriction variables contains N =∑
=

m

i
ik

1

elements.

Definition 10.2.1-3 (CSDP Solving Requirement). Let constraint c=(s,ρ) be defined as a CSDP

P=(X,D,C) and P’=(X’,D’,C’) be its solving relaxation. Constraint c satisfies the CSDP solving

requirement iff there is a minimal subset sb of restriction variables s’ such that for every F-box B⊆D’

where ∀x∈X’ ((x∈sb⇒B[x] is degenerate)∧(x∉sb⇒B[x]=D’[x])):

(i) CSDP (X’,B,C’) has a single solution

(ii) the result of applying the solving procedure to CSDP (X’,B,C’) is a bound F-box:

B’=solveCSDP(B[s’]) ⇒ ∀x∈s’ ((left(B’[x]) ≠ −∞) ∧ (right(B’[x]) ≠ +∞))

The set of variables sb is denoted the solving base and the set se of remaining restriction variables is

denoted the evaluated set (sb∪se=s’ and sb∩se=∅).

The first requirement guarantees that with infinite precision arithmetic it is theoretically decidable

whether a canonical box satisfies the CSDP constraint. The second requirement guarantees that the

solving procedure may contribute for such decision returning a safe approximation enclosure for every

variable domain.

For the solving procedure of the next chapter, the CSDP solving requirement could be easily

achieved by imposing that at least one point tp has Value restrictions Valuej,tp
(xi) for all the trajectory

components. The set of restriction variables would define the solving base of its solving relaxation.

Note that such imposition does not imply the specification of initial bounds for the domains of these

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

163

variables, and if some CSDP does not satisfy the solving requirement, an equivalent CSDP could be

considered by introducing extra Value restrictions with new unbounded restriction variables.

If the CSDP solving requirement is satisfied by every CSDP constraint belonging to an extended

CCSP, the improvement of the pruning results with precision is similar to that discussed for CCSPs

(differing only in the limit: even with infinite precision arithmetic, the smallest box enclosing all real

solutions would never be obtained).

10.2.2 Local Search for Extended CCSPs

As explained in chapter 7, the local search procedures navigate throughout points of the search space,

inspecting some local properties of the current point to select a nearby point to jump to. In the CCSP

context, such navigation is oriented towards the simultaneous satisfaction of all its constraints.

The search approach presented in section 7.1 is based on the definition of a vector function F(r).

When evaluated in a particular point r of the search space (a degenerate F-box) it returns a real value

Fj(r) for at each component j, which represents the amount by which some CCSP constraint is violated

at that point. The goal is thus to reach a point that zeroes all function components simultaneously.

From the Jacobian matrix J(r) of such function at that point (which summarises the effects on the

function of small local changes at the current point) a procedure was devised to compute a new better

point.

The integration of a CSDP constraint implies the addition of extra components on the vector

function F(r) and the Jacobian matrix J(r). These extra components may be obtained as long as the

CSDP solving requirement is satisfied.

As in the case of a non extended CCSP, the values of the vector function F(r) must be computed

from the evaluation of each constraint at the current point r. However, in the case of a CSDP

constraint, such evaluation no longer returns a single value, but rather a set of values (grouped in a

box) representing the deviations from each ODE restriction associated with a variable from the

evaluation set (see definition 10.2.1-3). The input of this evaluation is the set of values from the

solving base variables at the current point. The following is a formal definition for the evaluation of a

CSDP constraint at some point r.

Definition 10.2.2-1 (CSDP Evaluation). Consider an extended CCSP (X,D,C) and a degenerate

F-box r⊆D. Let c∈C be a constraint defined as a CSDP P and its solving relaxation P’=(X’,D’,C’)

with the solving base sb and the evaluated set se (the set of its restriction variables is s’=sb∪se).

Let B⊆D’[s’] be an F-box where ∀xi
(k)∈s’ ((xi

(k)∈sb⇒B[xi
(k)]=r[xi])∧(xi

(k)∉sb⇒B[xi
(k)]=D’[xi

(k)])).

Let B’=solveCSDP(B).

The evaluation of constraint c at point r, denoted evaluationCSDP(r), is the degenerate F-box E⊆D’[se]

where: ∀xi
(k)∈se E[xi

(k)] = center(B’[xi
(k)]−r[xi]).

CONSTRAINT SATISFACTION DIFFERENTIAL PROBLEMS

164

For each CSDP constraint, the values of the new components of the vector function F at the current

point r are given by its evaluation box at that point. Moreover, their derivatives with respect to any

CCSP variable xi may be approximately computed by re-evaluating the constraint at a nearby point

where only the xi domain is increased by a small amount h. The next definition characterises the new

components of the vector function F and its Jacobian J, associated with each CSDP constraint.

Definition 10.2.2-2 (F(r) and J(r) values associated with a CSDP constraint). Consider an extended

CCSP (X=<x1,…,xn>,D,C) and a degenerate F-box r⊆D. Consider a constraint c∈C defined as a CSDP

P and its solving relaxation P’ with the evaluated set se.

Let fxj
(r) denote the value of some variable xj of se obtained from the evaluation of c at point r:

 fxj
(r) = evaluationCSDP(r)[xj] for every xj∈se.

Let h>0 be a small real value and rxi+h be an n-ary degenerate F-box where:

∀x∈X ((x=xi ⇒ rxi+h[x]=r[x]+h) ∧ (x≠xi ⇒ rxi+h[x]=r[x])).

For each variable xj of se, a new component j of the vector function F is associated and defined as:

Fj(r) = fxj
(r)

The derivatives of such function at point r with respect to each variable xi of X (which define the new

line j of the Jacobian J(r)) are approximated by:

 Jji(r) =

 −
=

+

h

rfrf
rf

dx

d jij

j

xhxx
x

i

)()(
)(

In practice, besides the evaluation at the current point r, only k more CSDP evaluations (where k is the

number of solving base variables sb) are required for computing all the new components of F and J

associated with the CSDP (the evaluation at point rxi+h is only necessary if xi∈sb). Otherwise, either xi

does not belong to the scope of the CSDP constraint (i.e. fxj
(rxi+h) = fxj

(r) and Jji(r) = 0) or it belongs to

its evaluated set se, in which case fxj
(rxi+h) = fxj

(r) − h and Jji(r) = −1.

With the introduction of components derived from each CSDP constraint in the vector function F

and its Jacobian matrix J, the local search methods described in chapter 7 may be applied to extended

CCSPs.

10.3 Modelling with Extended CCSPs

This section discusses modelling capabilities of the extended CCSPs framework that take advantage of

the integration of CSDP constraints and may be used for solving many real world problems.

In the next subsection, the parametric specification of ODE systems is addressed together with

possible application to problems with fitting constraints. Subsection 10.3.2 discusses the

representation of properties which are usually associated with the ODE systems but are naturally

expressed as interval values. Subsection 10.3.3 discusses the possibilities derived from the

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

165

combination of several ODE solution components and its application to the representation of periodic

and distance constraints.

10.3.1 Modelling Parametric ODEs

In the definition of an ODE system (definition 9-1) it was assumed that function f depends exclusively

on y(t) and t. However, many important ODE problems are based on a parametric specification of the

function f, which may also depend on several parameters ranging within predefined interval bounds.

The semantics of such specification is the characterisation of the derivative of y as a family of

functions, each one corresponding to a particular instantiation of these parameters.

Let),,(tpyfy =′ with

′

′

=′

ny

y

y ...
1

and

=

),,...,,,...,(

...

),,...,,,...,(

),,(

11

111

tppyyf

tppyyf

tpyf

knn

kn

be a parametric

n-ary ODE system with k parameters p1∈I1,..., pk∈Ik. The function

=

)(

...

)(

)(
1

ts

ts

ts

n

 is one of its

solutions with respect to the interval [t0..t1] iff:

∃p1∈I1
,…,∃pk∈Ik (p=[p1,...,pk] ∧∀t∈[t0..t1]),),((tptsf

dt

ds
=).

Since along the whole trajectory, between t0 and t1, the values of each parameter remain constant

(its time derivative is zero), the above parametric system may be equivalently represented by a non

parametric ODE system with n+k equations:

),(tzfz =′ with

′

′
′

′

=′

k

n

p

p
z

z

z

...

...

1

1

 and

=

0

...

0
),,...,,,...,(

...

),,...,,,...,(

),(11

111

tppzzf

tppzzf

tzf nnn

nn

together with the boundary restrictions p1(tp)∈I1 ∧ ... ∧ pk(tp)∈Ik for some time point tp∈[t0..t1].

Any k-parametric n-ary ODE system (such as the),,(tpyfy =′ above), may thus be modelled by a

CSDP with a non parametric ODE system of n+k equations (such as shown above with),(tzfz =′)

and k additional Value restrictions Valuen+j,tp
(xj) with initial domains Dj=Ij (1≤j≤k).

An equivalent alternative to such representation would change the ODE constraint definition (see

definition 10.1-1) to allow a direct representation of the parametric ODE system. This would imply the

extension of its scope for the inclusion of k additional real valued variables xp1,…,xpk and the

redefinition of its constraint relation:

cODE=(<xODE,xp1,…,xpk>, ρODE)

ρODE = {<s,p1,...,pk>∈<DODE,Dp1,…,Dpk> | p=[p1,...,pk] ∧∀t∈[t0..t1]),),((tptsf
dt

ds
= }.

CONSTRAINT SATISFACTION DIFFERENTIAL PROBLEMS

166

The domains of the new variables xp1,…,xpk would be initialized by the respective parameter

ranges: Dp1=I1,...,Dpk=Ik. Such representation has the advantage of avoiding the introduction of new

dimensions on the ODE system, but the disadvantage of introducing new variables into the ODE

constraint scope and consequently on any narrowing function associated to it.

For simplicity, it is assumed in the next chapter that a CSDP is defined as in 10.1-1, and so, the first

alternative is adopted for modelling parametric ODE problems.

Consider, for example, the parametric ODE fitting problem defined by the k-parametric unary

system),,(tpyfy =′ (with t∈[t0..t1] and p=[p1,...,pk]∈I1×...×Ik) and the set of m observed values

y(tpi)=vtpi
 (with tp1= t0, tpm= t1 and ∀1≤i≤m tpi∈[t0..t1]).

The CSDP (X=<xODE,x1,...,xk,xp1,...,xpm>,D=<DODE,D1,...,Dk,Dp1,...,Dpm>,C={cODE,c1,...,ck,cp1,...,cpm})

where:

DODE = { s | s : [t0..t1] → k+1 } and cODE=(<xODE>, ρODE)

ρODE = {<s>∈DODE | ∀t∈[t0..t1])),(),...,(),(()(211 ttststsfts k=′ ∧ 0)(2 =′ ts ∧...∧ 0)(1 =′ + tsk }

∀1≤i≤k Di=Ii and ci = Valuei+1,t0
(xi) ∀1≤i≤m Dpi=[−∞..+∞] and cpi = Value1,tpi

(xpi)

may be used for the definition of a CSDP constraint c=(<x1,...,xk,xp1,...,xpm>,ρ) relating the predicted

values xpi at each time point tpi with some real valued instantiation of the k parameters (represented by

the real variables x1,...,xk) of the system),,(tpyfy =′ .

An extended CCSP with such CSDP constraint together with other numerical constraints including

the xp1,...,xpm variables and the respective observed values vp1,...,vpm could be used for modelling a

variety of fitting problems.

For instance, several important statistical quantities, such as the total sum of squares (SSTot), the

residual sum of squares (SSRes), the regression sum of squares (SSReg) and the coefficient of

determination (R2) could be easily encapsulated into the respective real valued variables through the

addition of the numerical constraints:

xTot = ()∑
=

−
m

i
pi vv

1

2 xRes = ()∑
=

−
m

i
pipi xv

1

2 xReg = ()∑
=

−
m

i
pi vx

1

2 xR2 =
Tot

g

x

xRe
with ∑

=

=
m

i
pivv

1

With such constraints, fitting problems requiring these quantities to range within predefined bounds

can be modelled by the appropriate specification of the initial domains of these variables. Enforcing

some consistency requirement on the resulting extended CCSP, the initial parameter domains are

pruned by eliminating some values for which the requirements cannot be satisfied.

Other less usual constraints, such as particular time point requirements, could also be easily added,

with the guarantee that no excluded parameter value can satisfy all the constraints. Moreover, a best fit

constrained problem could be modelled by such extended CCSP with a solving procedure for

searching solutions that optimise some predefined criterion.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

167

10.3.2 Representing Interval Valued Properties

As stated previously, each ODE restriction of a CSDP associates a restriction variable to some real

valued property of some component of the ODE solutions. However, since the components of the

ODE solutions are real functions defined along an interval of time, some of their properties are

interval valued properties that cannot be expressed as single real values.

For example, the set of all the function values within an interval of time is an interval valued

property of a real function (ranging along that interval of time) that cannot be expressed by a single

real value. Such property, Valuej,T(x), would be a variant of the Value restriction corresponding to the

union of this real valued property along the whole interval of time T:

U
Tt

txx
∈

= where ∀t∈T Valuej,t(xt)

Since by definition, the restriction variable of a CSDP and all variables of a CCSP (and an extended

CCSP) must be real valued variables, interval valued properties cannot be modelled by a single

variable.

For integrating interval valued properties into a CSDP (and consequently into an extended CCSP),

their intervals must be represented by pairs of real valued variables identifying its upper and lower

bounds. Thus, any such property must be modelled by a pair of ODE restrictions associating one real

variable to its maximum possible value and other real variable to its minimum possible value.

For example, the set of all the function values within an interval of time T can be modelled by a

Maximum restriction for identifying its upper bound and a Minimum restriction for identifying its

lower bound:

Maximumj,T(xmaxT) and Minimumj,T(xminT)

In an extended CCSP with a CSDP constraint that represents an interval valued property with two

extreme real variables xmaxT and xminT, other important information can be modelled by the addition of

further numerical constraints including those variables.

For instance, a particular real value within the interval associated with the property could be

modelled by the real variable xinT through the additional pair of numerical constraints:

xminT ≤ xinT and xinT ≤ xmaxT

The maximum distance (amplitude) between the two extremes of the property interval could be

modelled by the real variable xampT through the additional pair of numerical constraints:

xampT = xmaxT − xminT and xampT ≥ 0

The center of the property interval could be modelled by the real variable xmedT through the

additional numerical constraint:

2
minmax TT

medT
xx

x
+

=

Similarly to the case of Maximum and Minimum restrictions, First and Last restrictions (either

Value, Maximum or Minimum) may be combined together for defining the smallest interval

containing all the time points that satisfy the respective condition.

CONSTRAINT SATISFACTION DIFFERENTIAL PROBLEMS

168

10.3.3 Combining ODE Solution Components

An important modelling issue of the CSDP framework is the possibility of combining several

equations of an ODE system into a new equation that is added to the system as a new component. This

may be used for modelling properties that do not depend exclusively on a single component of the

original system but rather on some composition of a subset of its components.

Consider, for example, some vector function y(t). The function is periodic if there is a positive

constant k such that y(t+k)=y(t) for all t. The smallest value of k that satisfies the previous condition is

called the period of the function.

Suppose that the vector function is represented as an homogeneous n-ary ODE system)(yfy =′

(within an interval of time [t0..t1] where t0=0) with the initial value condition y(0)=y0. In order to

associate a real variable to the value of the period of such function it is necessary to identify the first

point of time tp (greater than 0) such that y(tp)=y0.

This is similar to the definition of a First Value restriction (see subsection 10.1.4), except that in this

case the condition y(tp)=y0 does not refer to a single component but rather requires that the equality

must hold simultaneously for all the components of the n-ary system.

However, the n-ary system may be transformed into an equivalent system with an extra component

whose value at any time t represents the square of the distance between the vector y(t0)=y0 and y(t).

This extra component defined by ()∑ −=+

n

i
iin ytyty 2

1)0()()(is added as the n+1 component:

()() ()()∑∑ −=−′=′ +
n

i
iii

n

i
iiin ytytfytytyty)0()()(2)0()()(2)(1

together with the initial value yn+1(0)=0. With this new component the period of y(t) could be

associated with the real valued variable xπ by the ODE restriction3: firstValuen+1,[t0+ε..t1],≤0(xπ)

With the same kind of technique it is possible to model the distance at any time point between the

trajectories of two different ODEs which may be used for imposing proximity requirements that will

eventually lead to some adjustments on their parameters.

10.4 Summary

In this chapter the CSDP framework was characterised. The different types of restrictions supported

by the framework were defined and illustrated with simple modelling examples. Continuous CSPs

were extended for the inclusion of a new kind of constraint defined as a CSDP. The integration of

CSDP constraints with the Global Hull-consistency criterion and with local search procedures was

discussed. The next chapter presents a solving procedure for pruning the domains of the CSDP

variables taking its restrictions into account.

3 ε is some small positive value necessary for avoiding that the first time value satisfying the condition is at t=0.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

169

Chapter 11

Solving a CSDP

The solving procedure for CSDPs must maintain a safe enclosure for the whole set of possible ODE

solutions based on the interval approaches described in chapter 9 (section 9.2). This enclosure, used

for the representation of a subset of the domain DODE of the solution variable xODE, will be called the

ODE trajectory.

The solving algorithm is based on the improvement of the quality of such ODE trajectory (the

reduction of the enclosing uncertainty), combined with the enforcement of the ODE restrictions

through a constraint propagation algorithm (similar to the one presented in chapter 4, figure 4.1). A set

of narrowing functions (see definition 4.1-1) associated with the ODE restrictions and the ODE

constraint are the basis of such algorithm.

For each ODE restriction a pair of narrowing functions are defined: one reduces the domain of the

restriction variable according to the ODE trajectory and the other decreases the uncertainty of the

ODE trajectory according to the domain of the restriction variable.

Two narrowing functions are additionally included for reducing the uncertainty of the ODE

trajectory: one propagates any domain narrowing along the trajectory, from a time point to a

neighbouring point; the other links two consecutive time points through the application of an interval

step method. Moreover, for each ODE restriction, a narrowing function may also be associated with

the ODE constraint for improving the ODE trajectory, aiming at reducing the uncertainty of its

restriction variable domain.

The next section describes the ODE trajectory, its implementation and functions for accessing and

changing its contents. The narrowing functions associated with each type of ODE restrictions are

presented in section 11.2. Section 11.3 presents the narrowing functions for reducing the uncertainty

of the ODE trajectory. Section 11.4 describes how the previous set of narrowing functions is

integrated in the constraint propagation algorithm for narrowing the domains of the CSDP variables.

11.1 The ODE Trajectory

An ODE trajectory TR is implemented as a tuple of 4 ordered lists TR=<TP,TG,TF,TB>.

SOLVING A CSDP

170

A first list, TP, defines a sequence of k trajectory time points tp along the interval of time [t0..t1]

(associated with the CSDP, cf. definition 10.1-1) together with the corresponding n-ary boxes,

representing enclosures for the ODE solution values at those points. The first and last time points of

such list are t0 and t1 respectively.

A second list, TG, defines the sequence of k−1 trajectory time gaps (between each pair of

consecutive time points, tpi and tpi+1, of the previous list) and the associated n-ary boxes representing

enclosures for the ODE solution values between those points.

The third and fourth lists, TF and TB, are auxiliary lists, representing at each trajectory time point tp

the enclosure for the ODE solution value when the interval step method was lastly applied from tp to

the next or to the previous point, respectively. This forward and backward information are used

exclusively in the definition of appropriate narrowing functions for the ODE trajectory through the

successive application of the interval step method over different pairs of consecutive time points (see

section 11.3).

The boxes associated with the elements of these lists are represented respectively as TP(tp),

TG([tpi..tpi+1]), TF(tp) and TB(tp).The intervals associated with the component j (1≤ j≤n) of the previous

boxes are represented respectively as TPj(tp), TGj([tpi..tpi+1]), TFj(tp) and TBj(tp).

Figure 11.1 shows an example of an ODE trajectory (the forward and backward information is

omitted) representing a safe enclosing of the set of possible ODE solutions of CSDP P2b (see figure

10.6). The set of possible ODE solutions is illustrated by a single line for its first component s1 and by

the grey area for its second component s2. The ODE trajectory is defined through a sequence of seven

time points and the time gaps in between. For each component, the intervals associated to each time

point and time gap are represented, respectively, as a vertical line and a dashed rectangle.

Figure 11.1 An ODE trajectory enclosing the ODE solutions of the CSDP P2b.

The ODE trajectory of figure 11.1 represents a subset of the DODE ,defined in figure 10.2, containing

all functions whose components are continuous functions enclosed by the rectangles and crossing all

t

0.0 1.0 2.0 4.03.0 5.0 6.0

s2(t)

0.0

1.0

0.5

1.5

s1(t)

0.0

1.0

0.5

1.5

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

171

the vertical lines. This definition includes any possible ODE solution and so this ODE trajectory is a

safe enclosing for the set of ODE solutions for CSDP P2b.

In general, an ODE trajectory TR=<TP,TG,TF,TB> may be viewed as a finite representation of an

infinite set of triples <s,sf,sb> of functions from DODE satisfying the enclosures associated with the

respective time points and gaps1:

(i) For every trajectory time point tp: s(tp)∈TP(tp), sf(tp)∈TF(tp) and sb(tp)∈TB(tp).

(ii) For every trajectory time gap [tpi..tpi+1]: ∀t∈[tpi..tpi+1]s(t)∈TG([tpi..tpi+1]).

During the solving process, the current ODE trajectory TR=<TP,TG,TF,TB> is modified by the

narrowing functions associated with the constraints of the CSDP. Each individual change of the

trajectory is either the narrowing of some box (associated with a time point or gap) or the addition of a

new time point (and subsequent reformulation of the ordered lists).

The assignments TP(tp) ← S and TPj(tp) ← I will be used to denote respectively, the association of a

box S to the time point tp of TP and the association of an interval I to the component j of the time point

tp of TP (similar denotations will be used for assignments of the lists TG, TF and TB). “TR with C”

will be used as a short notation for an ODE trajectory TR’ obtained from TR after performing all the

assignments specified in C.

Procedures insert(TP(tp)=S) and delete(TP(tp)), respectively, introduce a new time point tp in the

ordered list of points of TP (initially associated with the box S), and remove one such time point from

the list (similar denotation will be used for the lists TG, TF and TB).

Some of the narrowing functions are defined through the values of the ODE trajectory. The data of an

ODE trajectory TR=<TP,TG,TF,TB> may be accessed through the following set of auxiliary functions

(where tp0 and tp1, with tp0 ≤ tp1, are two trajectory time points and j is one of its components; to

simplify the notation, the F-interval is omitted if it denotes the entire sequence of points [t0..t1]):

(i) Functions timePoints[tp0..tp1](TR), leftPointsj,[tp0..tp1](TR) and rightPointsj,[tp0..tp1](TR), return a

list of F-numbers representing for each point tp∈[tp0..tp1] of TR, its time value tp, the left bound

of its j-th component, left(TPj(tp)), and the right bound of its j-th component, right(TPj(tp)),

respectively.

(ii) Function timeGaps[tp0..tp1](TR) returns a list of F-intervals representing each gap

[tpi..tpi+1]⊆[tp0..tp1] of TR.

(iii) Functions leftGapsj,[tp0..tp1](TR) and rightGapsj,[tp0..tp1](TR), return a list of F-numbers

representing for each gap [tpi..tpi+1]⊆[tp0..tp1] of TR, the left bound of its j-th component

left(TGj([tpi..tpi+1])), and the right bound of its j-th component, right(TGj([tpi..tpi+1])).

As usual, min(L) and max(L) return the minimum and maximum values from a list L of F-numbers.

1 This view is consistent with the narrowing functions definition 4.1-1, if the effect on the xODE domain of each narrowing

function application is the elimination of some such triples without discarding any possible solution function s.

SOLVING A CSDP

172

At the beginning of the solving process, the ODE trajectory TR is initialised with function

initialiseTrajectory() that:

(i) Introduces a time point for the tp of each Value restriction and for the tp0 and tp1 of each of the

other ODE restrictions (as defined in the previous chapter).

(ii) For the First and Last Value restrictions (subsection 10.1.4) and for the First and Last Maximum

and Minimum restrictions (subsection 10.1.5), the initial left and right bounds of the associated

restriction variable are also considered as initial time points.

(iii) Each of the time points and respective time gaps is associated to an n-ary box with all its

components unbounded.

Considering again the example of CSDP P2b, whose ODE restrictions are Value1,0.0(x1),

Value2,6.0(x2) and Maximum2,[1.0..3.0](x3), function initialiseTrajectory() returns, an ODE trajectory

TR=<TP,TG,TF,TB> with:

(i) the time points 0.0, 1.0, 3.0 and 6.0 associated to the boxes:
TP(0.0) = TP(1.0) = TP(3.0) = TP(6.0) = <[−∞..+∞],[−∞..+∞]>
TF(0.0) = TF(1.0) = TF(3.0) = TF(6.0) = <[−∞..+∞],[−∞..+∞]>
TB(0.0) = TB(1.0) = TB(3.0) = TB(6.0) = <[−∞..+∞],[−∞..+∞]>

(ii) the time gaps [0.0..1.0], [1.0..3.0] and [3.0..6.0] associated to the boxes:
TG([0.0..1.0])=TG([1.0..3.0])=TG([3.0..6.0])=<[−∞..+∞],[−∞..+∞]>

11.2 Narrowing Functions for Enforcing the ODE Restrictions

According to definition 4.1-1, the narrowing functions associated with the ODE restrictions must

satisfy the contractness and correctness properties.

The contractness property is easily guaranteed by preventing the enlargement of any interval

domain, either from a restriction variable or from a component of any box of the ODE trajectory. The

insertion of a new time point cannot enlarge the subset of functions represented by the ODE trajectory

since it represents an additional restriction to such functions (assuming, of course, that when inserting

a point tp∈[tpi..tpi+1] the boxes associated to the two new gaps TG([tpi..tp]) and TG([tp..tpi+1]) are

included in the box associated with the whole gap TG([tpi..tpi+1])).

For a narrowing function that reduces the domain of an ODE restriction variable, the correctness

property may be achieved by identifying, within the ODE trajectory, the functions that maximise and

minimise the values of such variable and guaranteeing that its new domain includes those values.

When a narrowing function reduces the trajectory uncertainty from the domain I of a restriction

variable, this reduction is achieved through the narrowing of one or more boxes of the ODE trajectory

(namely the interval component j associated with the ODE restriction). Correctness is guaranteed if

considering in isolation each narrowed interval (without any other interval reductions), there are no

discarded functions with a value (of the restriction variable) within I.

The definition of narrowing functions in the following subsections are based on the above

properties.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

173

11.2.1 Value Narrowing Functions

From definition 10.1.1-1, the ODE restriction Valuej,tp
(xi) relates a function with the value of its j

component at time tp. If TR=<TP,TG,TF,TB> is an ODE trajectory representing a set of possible

functions, then those that maximise/minimise the value of its j component at time tp must have this

value equal to right(TPj(tp))/left(TPj(tp))2 (values for the restriction variable xi outside the interval

TPj(tp) cannot be associated with any function represented in the ODE trajectory TR). On the other

hand, if the values for the restriction variable xi lie within F-interval Ii, any function whose j’s

component value at time tp is outside Ii may be safely discarded from the ODE trajectory.

The above reasoning justifies the following formal definition for the narrowing functions associated

with a Value restriction. The definition (and all the following subsequent narrowing function

definitions) represents any domain element A of a narrowing function NF, (A⊆D for a CSDP (X,D,C)),

as a tuple where only the relevant variable domains are shown. All the other domains are kept

unchanged by NF.

Definition 11.2.1-1 (Value Narrowing Functions). Let CSDP P=(X,D,C) be defined as in 10.1-1. Let

TR=<TP,TG,TF,TB> be the ODE trajectory representing the domain of xODE and Ii the domain of xi.

The ODE Value restriction c≡Valuej,tp
(xi)∈C (as defined in 10.1.1-1) has associated the following pair

of narrowing functions:

(i) NF1(<TR,…,Ii,…>) = <TR,…,TPj(tp)∩Ii,…>

(ii) NF2(<TR,…,Ii,…>) = < TR with {TPj(tp) ← TPj(tp)∩Ii},…,Ii,…>

If an enclosure TPj(tp) of some component j of the trajectory TR becomes empty at some point tp then

TR can no longer represent any function and the domains box that includes TR (and represents the

Cartesian product of its components) also becomes empty.

The previous definition could be exemplified with narrowing functions for the Value restrictions of

CSDP P2b. For instance, for the ODE trajectory enclosure of figure 11.1, narrowing function NF1

associated with the restriction Value2,6.0(x2) would narrow an initially unbounded domain of x2 to the

interval TP2(6.0) (represented as the vertical line of the second component graphic at time 6.0).

Conversely, if an interval I2 represents the domain of x2 then, narrowing function NF2 could narrow the

associated interval TP2(6.0) of the ODE trajectory into TP2(6.0)∩I2. If, by any of the above narrowing

operations, the empty set is obtained then the ODE restriction cannot be satisfied and the CSDP has no

solutions.

11.2.2 Maximum and Minimum Narrowing Functions

According to definition 10.1.2-1, the ODE restriction Maximumj,[tp0..tp1](xi) relates a function with the

maximum value of its j component within time interval [tp0..tp1]. If TR=<TP,TG,TF,TB> is an ODE

2 Note that, due to the initialisation procedure, tp must be a time point of the ODE trajectory. Similarly, any point used in the

definition of any narrowing function is, due to the initialisation procedure, within the time points of the ODE trajectory.

SOLVING A CSDP

174

trajectory representing a set of possible functions then their maximum value within [tp0..tp1] cannot

exceed the maximum of the right bounds of their j component enclosures (possibly corresponding to

several time points and gaps) within that interval. Moreover, since for every time point tp∈[tp0..tp1] of

TR all functions must have its j component value within the interval TPj(tp), they must have some

value not less than the maximum of the left bounds of these intervals. On the other hand, if the values

for the restriction variable xi lie within the F-interval Ii, then any function whose j component has

values higher than right(Ii) within the time interval [tp0..tp1] may be safely discarded from the ODE

trajectory.

A similar reasoning, but with respect to the minimum value, may be used for deriving the narrowing

functions associated with the ODE restriction Minimumj,[tp0..tp1](xi). Both are formally defined as

follows.

Definition 11.2.2-1 (Maximum and Minimum Narrowing Functions). Let CSDP P=(X,D,C) be

defined as in 10.1-1. Let TR=<TP,TG,TF,TB> be an ODE trajectory representing the domain of xODE, Ii

the domain of xi and c∈C a Maximum or Minimum restriction (as defined in 10.1.2-1).

If c≡Maximumj,[tp0..tp1](xi), let a=max(leftPointsj,[tp0..tp1](TR)), b=max(rightGapsj,[tp0..tp1](TR)) and

I=[−∞..right(Ii)].

If c≡Minimumj,[tp0..tp1](xi), let a=min(leftGapsj,[tp0..tp1](TR)), b=min(rightPointsj,[tp0..tp1](TR)) and

I=[left(Ii)..+∞].

The ODE restriction c has associated the following pair of narrowing functions:

(i) NF1(<TR,…,Ii,…>) = <TR,…,[a..b]∩Ii,…>

(ii) NF2(<TR,…,Ii,…>) = < TR’,…,Ii,…>

where TR’ = TR with {∀tp∈timePoints[tp0.. tp1](TR) TPj(tp) ← TPj(tp) ∩ I,

 ∀[tpi..tpi+1]∈timeGaps[tp0..tp1](TR) TGj([tpi..tpi+1]) ← TGj([tpi..tpi+1]) ∩ I }

Figure 11.2 illustrates the above definition for the narrowing functions associated with restriction

Maximum2,[1.0..3.0](x3) to CSDP P2b for the ODE trajectory TR represented in figure 11.1.

Figure 11.2 Narrowing functions associated with a Maximum restriction.

t

0.0 1.0 2.0 4.03.0 5.0 6.0

s2(t)

0.0

1.0

0.5

1.5

a

b

[a..b]
right(I3)

I

−∞

⇓

I3

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

175

The figure shows the values of a and b for the definition of the narrowing function NF1. It is clear that

the maximum value of any trajectory function within the time interval [1.0..3.0] cannot be outside the

dashed box, upper bounded by b=max(rightGaps2,[1.0..3.0](TR)) and lower bounded by

a=max(leftPoints2,[1.0..3.0](TR)). On the other hand, if the interval I3=[1.1..1.3] represents the domain

of x3 then, any value of the second solution component represented by TR cannot exceed 1.3 (within

the time interval [1.0..3.0]) and so the NF2 narrowing function may discard the region of the ODE

trajectory (represented in the figure as rectangles and vertical lines within the dashed box) above this

value, that is, outside [−∞..1.3].

11.2.3 Time and Area Narrowing Functions

To simplify the specification of the narrowing functions associated with the Time and Area

restrictions, two auxiliary functions Time⋄k(I) and Area⋄k(I) are defined (where ⋄∈{≤,≥} and k is a

real number) for representing respectively, the values of time and area that will be considered at some

time gap. The argument I of these functions represents the possible solution values along the time gap.

The argument ⋄k specifies a filtering condition. We are only interested in solution values within the

interval I⋄k which is I≥k=[k..+∞] or I≤k=[−∞..k].

The definitions of the Time⋄k(I) and Area⋄k(I) functions, below, consider 3 different situations:

[1] if I⊆I⋄k |I − [k]| if I⊆I⋄k

Time⋄k (I) = [0] if I∩I⋄k=∅ Area⋄k (I) = [0] if I∩I⋄k=∅

[0]⊎[1] otherwise [0]⊎|I − [k]| otherwise

If all the solution values satisfy the condition (I⊆I⋄k), function Time⋄k(I) returns the degenerate

interval [1] specifying that the whole width of the time gap must be considered. Function Area⋄k(I)

returns an interval, bounded by the maximum and minimum distances of the solution values to

threshold k.

If none of the solution values satisfy the condition (I∩I⋄k=∅), both functions return the degenerate

interval [0] specifying that there is nothing to be considered.

If some solution values satisfy the condition and others do not (I ⊈ I⋄k) ∧ (I ∩ I⋄k ≠ ∅) then, both

functions must take into account that there are possible solution values that must be considered, as in

the first case, and there are possible solution values that should not be considered, as in the second

case. This is represented by returning the union hull of the intervals returned in the previous cases.

Figure 11.3 illustrates function Area≥k(I) when applied to each of the above possible cases. The

width of the rectangle represents the time gap and the height the possible solution values I.

SOLVING A CSDP

176

Figure 11.3 The three possible cases for the definition of the Area≥k(I) function.

The auxiliary functions Time⋄k(I) and Area⋄k(I) are used for the specification of the narrowing

function associated with the Time and Area restrictions. Note that for these restrictions no narrowing

function can be defined to reduce the uncertainty of an ODE trajectory from the domain of the

restriction variable. Both Time and Area values are compound from the function values for every time

point within an interval of time and the existence of high or low peaks for a short period of time

cannot be prevented. These do not affect significantly the overall area/time to be considered, but avoid

a safe narrowing of any interval enclosing.

Definition 11.2.3-1 (Time and Area Narrowing Functions). Let CSDP P=(X,D,C) be defined as in

10.1-1. Let TR=<TP,TG,TF,TB> be the ODE trajectory representing the domain of xODE, Ii the domain

of xi, and c∈C a Time or Area restriction (as defined in 10.1.3-1 and 10.1.3-2, respectively).

If c ≡ Timej,[tp0..tp1],⋄k(xi), let F(X) ≡ Time⋄k(X). If c ≡ Areaj,[tp0..tp1],⋄k(xi), let F(X) ≡ Area⋄k(X).

The ODE restriction c has associated the following narrowing function:

(i) NF1(<TR,…,Ii,…>) = <TR,…, (Σ Iapx((tpi+1−tpi)×F(TGj([tpi..tpi+1])))) ∩ Ii,…>

[tpi..tpi+1] ∈ timeGaps[tp0..tp1](TR)

Figure 11.4 illustrates the Time and Area narrowing functions for CSDP P2c (see figure 10.8),

assuming that TR is the ODE trajectory represented in figure 11.1 (only the enclosing bounds

associated with the time gaps are represented in figure 11.4)

Figure 11.4 Time and Area narrowing functions for CSDP P2c.

t

0.0 1.0 2.0 4.03.0 5.0 6.0

s2(t)

0.0

1.0

0.5

1.5
k=1.1

I ⊆ I≥k

 (I ⊈ I≥k) ∧ (I ∩ I≥k ≠ ∅)

I ∩ I≥k = ∅

I≥k

k

+∞

left(I) − k

right(I) − k

|I − [k]|
right(I) − k

[0]⊎ |I − [k]|

I

I

I
[0]

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

177

From the narrowing function associated with restriction Time2,[0.0..6.0],≥1.1(x4), x4 is guaranteed to

be between 0 and the length of the horizontal solid line. From the narrowing function associated with

restriction Area2,[0.0..6.0],≥1.1(x5), x5 will lie between 0 and the value of the dashed area.

11.2.4 First and Last Value Narrowing Functions

The specification of narrowing functions associated with the First and Last Value restrictions is based

on the auxiliary function timeEnclosurej,[tp0..tp1] where j is an integer representing a solution

component and [tp0..tp1] is an F-interval representing an interval of time.

The function is defined in the pseudocode of figure 11.5. In addition to the solution component j

and the interval of time [tp0..tp1], it has three arguments: an ODE trajectory TR, an F-interval I and a

label type ∈ {first, last}. If the label type is set to first/last then it returns the smallest interval of time

[a..b] which may be obtained by narrowing [tp0..tp1] without discarding any value of t which may be

the first/last of any function f represented by the component j of TR such that f(t)∈I.

function timeEnclosurej,[tp0..tp1](an ODE trajectory TR=<TP,TG,TF,TB>, an F-interval I,

a label type ∈ {first, last})
(1) a ← +∞; b ← −∞;
(2) LGaps ← timeGaps[tp0..tp1](TR);

(3) repeat
(4) [tpi..tpi+1] ←LGaps.pop_front();
(5) if TGj([tpi..tpi+1]) ∩ I ≠ ∅ then a ← tpi; end if;
(6) until a≠+∞ or LGaps.size()=0;
(7) if a=+∞ then return ∅;
(8) LGaps ← timeGaps[a..tp1](TR);

(9) repeat
(10) [tpi..tpi+1] ←LGaps.pop_back();
(11) if TGj([tpi..tpi+1]) ∩ I ≠ ∅ then b ← tpi+1; end if;
(12) until b≠−∞;
(13) LPoints ← timePoints[a..b](TR);

(14) repeat
(15) if type≡first then tp ←LPoints.pop_front(); else tp ←LPoints.pop_back();
(16) if TPj(tp) ⊆ I then
(17) if type≡first then return [a..tp]; else return [tp..b]; end if;
(18) end if;
(19) until LPoints.size()=0;
(20) return [a..b];

end function

Figure 11.5 The definition of the timeEnclosure function.

The correctness of such function is achieved by firstly discarding all the extreme left (lines 2-6) and

right (lines 8-12) time intervals [tpi..tpi+1] where the values of all the associated functions are

guaranteedly outside I (for which TGj([tpi..tpi+1])∩I = ∅). Secondly, the obtained interval [a..b] is

further narrowed. If the label type is set to first (last) this interval can be safely narrowed to [a..tp]

([tp..b]) (lines 13-19) if somewhere in the sequence of time (tp∈[a..b]) it is guaranteed that the value of

SOLVING A CSDP

178

any represented function is within I (if TPj(tp)⊆I). In this case, and given the continuity of any function

f represented by component j of TR, the value t which is the first (last) time such that f(t)∈I must be

within such interval, that is, t∈[a..tp] (t∈[tp..b]).

On the other hand, the knowledge that the value of the restriction variable xi, of a First/Last Value

restriction must be within the real interval Ii, may be used to safely discard from the ODE trajectory

TR any function with values satisfying the condition ⋄k before/after that interval of time. If the

first/last value of Ii does not coincide with first/last value of the relevant time interval [tp0..tp1] then, by

continuity, any function at that extreme point of Ii either equals k or does not satisfy the condition ⋄k.

Definition 11.2.4-1 formalises the pair of narrowing functions associated with First and Last Value

restrictions.

Definition 11.2.4-1 (First and Last Value Narrowing Functions). Consider CSDP P=(X,D,C) as

defined in 10.1-1. Let TR=<TP,TG,TF,TB> be an ODE trajectory representing the domain of xODE, Ii

the domain of xi and c∈C a First or Last Value restriction (as defined in 10.1.4-1). Let I be an interval

with all the real values satisfying ⋄k, and Ī its complement: I=[k..+∞] and Ī=[−∞..k] if ≥k; or

I=[−∞..k] and Ī=[k..+∞] if ≤k.

If c≡firstValuej,[tp0..tp1],⋄k(xi), let type=first, a=left(Ii) and Tout=[tp0..a].

If c≡lastValuej,[tp0..tp1],⋄k(xi), let type=last, a=right(Ii) and Tout=[a..tp1].

The ODE restriction c has associated the following pair of narrowing functions:

(i) NF1(<TR,…,Ii,…>) = <TR,…, timeEnclosurej,Ii
(TR,I,type),…>

∅ if ∃tp≠a∈timePointsTout
(TR) TPj(tp) ⊆ I ∨

(ii) NF2(<TR,…,Ii,…>) = (width(Tout)>0 ∧ TPj(a) ∩Ī= ∅)
< TR’,…,Ii,…> otherwise

where TR’ = TR with { ∀tp≠a ∈timePointsTout
(TR) TPj(tp) ← TPj(tp) ∩ Ī,

TPj(a) ← TPj(a) ∩ Ī (if width(Tout)>0),
∀[tpi..tpi+1]∈timeGapsTout

(TR) TGj([tpi..tpi+1]) ← TGj([tpi..tpi+1]) ∩ Ī }

Figure 11.6 illustrates the narrowing functions associated with the First Value restriction

firstValue1,[0.0..2.0],≤0.25(x3) of CSDP P1d (see figure 10.9) and the ODE trajectory TR represented

in the figure by the vertical solid lines and the dashed rectangles.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

179

Figure 11.6 First Value narrowing functions for CSDP P1d.

Function timeEnclosure1,[0.0..2.0](TR,I,first) first excludes from interval [0.0..2.0] the first three

interval gaps for which all the associated rectangles are guaranteedly above 0.25, and then it excludes

all times after t=1.5 since at this point the condition s(t)≤0.25 is already satisfied. On the other hand, if

the domain variable x3 is Ii = [1.0..2.0] then the ODE trajectory is narrowed, namely the rectangle

associated with time gap [0.7..1.0] and the vertical line of t=1.0 are reduced by discarding any region

outside Ī.

11.2.5 First and Last Maximum and Minimum Narrowing Functions

The definition of narrowing functions associated with the First and Last Maximum and Minimum

restrictions is similar to the previous definition. The main difference is that in this case there is no

previous knowledge about a value k determining the condition ⋄k that must be satisfied. This value,

the maximum or minimum value of any possible function of component j of TR, lies within an interval

which can be computed similarly to definition 11.2.2-1.

According to this definition, and regarding time interval [tp0..tp1], the maximum of any function

represented by component j of TR must be between k0=max(leftPointsj,[tp0..tp1](TR)) and

max(rightGapsj,[tp0..tp1](TR)). However, if Ii⊆[tp0..tp1] is the domain of xi that must contain the

maximum of any such function, then this maximum cannot exceed k1=max(rightGapsj,Ii
(TR)).

Consequently, the maximum of any function must be between k0 and k1. This allows the definition of

the interval I0=[k0..+∞] to contain any possible maximum value, the interval I=[k1..+∞] to be greater or

equal than any function value within Ii and its complement Ī=[−∞..k1] to contain any possible value of

any function within Tout (where Tout, defined as in definition 11.2.4-1, represents the interval of time

within [tp0..tp1] that precedes/succeeds the subinterval Ii). A symmetrical reasoning may be used for

obtaining the intervals I, Ī and I0 in the case of a Minimum restriction.

The following formal definition, for the narrowing functions associated with the First and Last

Maximum and Minimum restrictions, is based on definition 11.2.4-1, but using intervals I, Ī and I0 as

defined above and an auxiliary function extremeEnclosurej,[tp0..tp1]. This is similar to function

0.0 1.0 2.0 4.03.0

1.0

0.5

t

s(t)
k=0.25

Ī

+∞
timeEnclosure1,[0.0..2.0](TR,I,first)

Ii

I

−∞

a

Tout

SOLVING A CSDP

180

timeEnclosurej,[tp0..tp1] but without the lines 13 to 19 (this is a consequence of working with intervals

for representing TPj(tp) which give no guarantees regarding its value being a maximum or a minimum

value). Moreover, note that the special case for t=a no longer exists since, from the definition of Ī, we

always have TPj(a) ∩Ī = TPj(a).

Definition 11.2.5-1 (First and Last Maximum and Minimum Narrowing Functions). Consider

CSDP P=(X,D,C) as defined in 10.1-1. Let TR=<TP,TG,TF,TB> be the ODE trajectory representing

the domain of xODE, Ii the domain of xi and c∈C an ODE restriction as defined in 10.1.5-1. If c is a

First/Last Maximum restriction, let k0=max(leftPointsj,[tp0..tp1](TR)), k1=max(rightGapsj,Ii
(TR)),

I=[k1..+∞], Ī=[−∞..k1] and I0=[k0..+∞]. If c is a First/Last Minimum restriction, let

k0=min(rightPointsj,[tp0..tp1](TR)), k1=min(leftGapsj,Ii
(TR)), I=[−∞..k1], Ī=[k1..+∞] and I0=[−∞.. k0].

If c≡firstMaximumj,[tp0..tp1](xi), let type=first, a=left(Ii) and Tout=[tp0..a].

If c≡firstMinimumj,[tp0..tp1](xi), let type=first, a=left(Ii) and Tout=[tp0..a].

If c≡lastMaximumj,[tp0..tp1](xi), let type=last, a=right(Ii) and Tout=[a..tp1].

If c≡lastMinimumj,[tp0..tp1](xi), let type=last, a=right(Ii) and Tout=[a..tp1].

The ODE restriction c has associated the following pair of narrowing functions:

(i) NF1(<TR,…,Ii,…>) = <TR,…, extremeEnclosurej,Ii
(TR,I0,type),…>

(ii) NF2(<TR,…,Ii,…>)

=

 ∅ if ∃tp≠a∈timePointsTout
(TR) TPj(tp) ⊆ I

< TR’,…,Ii,…> otherwise

where TR’ = TR with { ∀tp≠a ∈timePointsTout
(TR) TPj(tp) ← TPj(tp) ∩ Ī,

∀[tpi..tpi+1]∈timeGapsTout
(TR) TGj([tpi..tpi+1]) ← TGj([tpi..tpi+1]) ∩ Ī }

11.3 Narrowing Functions for the Uncertainty of the ODE Trajectory

The uncertainty of the ODE trajectory may be decreased by narrowing functions associated with the

ODE constraint, based on two basic functions: pruneGap and insertPoint.

The pruneGap function aims at reducing the set of possible ODE solutions that may link two

consecutive points along the sequence of time points. To maintain the correctness, this reduction is

achieved through a safe interval step method (cf. chapter 9).

The insertPoint function introduces a new time point in the sequence of time points. Although not

decreasing the ODE trajectory uncertainty on its own, it may lead to important overall reductions

when combined with the previous function.

Figure 11.7 shows the pseudocode of function pruneGap. It has 4 arguments, the ODE trajectory

TR, a vector function f(S,t) defining the ODE system (see definition 9.1), and two F-numbers ti and tj

(with ti≠tj). It returns an ODE trajectory removing from the set of possible ODE solutions of TR, those

discarded by the interval step method applied between time points ti and tj.

The interval step method is represented in the figure as a procedure intervalStep. The first 4

arguments input the vector function f(S,t), the enclosure box TP(ti) associated in the ODE trajectory

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

181

for the time ti, and the specification of the initial and final time points, ti and tj respectively. The

procedure returns a time point tk (between ti and tj) and safe enclosures Sk and Sik for the possible

solution values, at tk and between ti and tk, respectively. It is assumed that the Sik enclosure is the result

of some enclosure method (cf. 9.2.2) that firstly tries the validation of the whole time gap between ti

and tj (with tk=tj) according to some predefined error tolerances (local and global), and reducing the

gap size in case of failure. The Sk enclosure is achieved by the subsequent application of some

appropriate interval method (cf. 9.2.3), and the whole process may be repeated until the given

tolerance is satisfied.

function pruneGap(an ODE trajectory TR=<TP,TG,TF,TB>, a vector function F(S,t), F-numbers ti, tj)
(1) intervalStep(F(S,t),TP(ti),ti,tj,Sik,Sk,tk);
(2) Tij ← [min(ti,tj)..max(ti,tj)]; Tik ← [min(ti,tk)..max(ti,tk)];
(3) if tk = ti then return TR; end if;
(4) if tk ≠ tj then
(5) if ti < tj and not TF(ti)=Unbound then TF(ti) ← TP(ti); return TR; end if;
(6) if ti > tj and not TB(ti)=Unbound then TB(ti) ← TP(ti); return TR; end if;
(7) if nmbPoints(TR) = MaxPoints then return TR; end if;
(8) TR ← insertPoint(TR,Tij,tk);
(9) end if;
(10) if ti < tj then TF(ti) ← TP(ti); if Sk ⊆ TB(tk) then TB(tk) ← Sk; end if; end if;
(11) if ti > tj then TB(ti) ← TP(ti); if Sk ⊆ TF(tk) then TF(tk) ← Sk; end if; end if;
(12) if TP(tk) ∩ Sk = ∅ or TG(Tik) ∩ Sik = ∅ then return ∅;
(13) TP(tk) ← TP(tk) ∩ Sk; TG(Tik) ← TG(Tik) ∩ Sik;
(14) return TR;

end function

Figure 11.7 The definition of the pruneGap function.

Firstly, the intervalStep procedure is called from ti to tj (line 1). If ti is smaller than tj, the interval

method is applied in the forward time direction, otherwise it is applied in the backward time direction.

Subsequently, the time gaps Tij and Tik are defined (line 2), to represent, respectively, the whole

time gap and its subset validated by the interval method.

If the validation procedure fails (tk=ti), the ODE trajectory is returned unchanged (line 3).

If the validation procedure does not fail but can not validate the whole time gap (tk≠tj) then there are

3 possibilities (lines 5-8): either the validation was previously achieved3 and nothing else is done

except updating the respective forward/backward information (lines 5/6); or the maximum number of

points (MaxPoints) has been reached and the ODE trajectory is returned unchanged (line 7); or a new

time point tk is inserted by the insertPoint function (line 8).

Finally, if the procedure did not terminate before, lines 10 through 13 update the ODE trajectory TR

according to the enclosures obtained by the interval step method validation from ti to tk. Lines 10 and

11 are responsible for updating the forward/backward information (represented by the TF and TB lists,

respectively) which keep track of the point enclosures used in the latest application of the interval step

method. If the interval method was applied in the forward direction (line 10), point ti of the TF list is

3 Unbound is used to denote an n-ary F-box with all its elements unbounded: [−∞..+∞].

SOLVING A CSDP

182

updated with the current enclosure TP(ti), and point tk of the TB list is updated if it contains the

obtained enclosure Sk
4. Similarly, line 11 updates the TF and TB lists if the interval method was

applied in the backward direction. Line 13 updates the ODE trajectory enclosures at point tk (TP(tk))

and at the validated time gap (TG(Tik)) according to the obtained enclosures (after verifying in line 12

that none of these new enclosures becomes empty).

Function insertPoint is shown in figure 11.8. It has 3 arguments, the ODE trajectory TR, an

F-interval [tpi..tpi+1] and an F-number tk (with tpi<tk<tpi+1). It returns an ODE trajectory representing the

same set of possible ODE solutions as TR, but including a new time point tk within time gap [tpi..tpi+1],

replaced by the new time gaps [tpi..tk] and [tk..tpi+1].

function insertPoint(an ODE trajectory TR=<TP,TG,TF,TB>, an F-interval [tpi..tpi+1], an F-number tk)

(1) Sij ← TG([tpi..tpi+1]);
(2) insert(TP(tk)=Sij); insert(TF(tk)=Unbound); insert(TB(tk)=Unbound);
(3) delete(TG([tpi..tpi+1])); insert(TG([tpi..tk])= Sij); insert(TG([tk..tpi+1])=Sij);
(4) return TR;

end function

Figure 11.8 The definition of the insertPoint function.

The enclosures associated with the new time point and the new time gaps are initialised with the

enclosure associated with the previous entire gap. Since no forward or backward interval step method

was yet applied starting at the new time point this information is kept unbound.

All narrowing functions described in the next subsections are based on the selection of an appropriate

time gap from the ODE trajectory and subsequent application of one or both the above basic functions

to such gap.

11.3.1 Propagate Narrowing Function

If an enclosure for the ODE solutions at some time point is reduced by any narrowing function, the

reapplication of the interval step method over the adjacent time gaps may further prune these gaps.

Moreover, the repeated application of the interval step method triggered by the reduction of the

enclosures, propagates this pruning along the ODE trajectory gaps, previously validated with larger

starting enclosures.

The propagate narrowing function tries to prune the ODE trajectory through the reapplication of the

interval step method over some time gap. This is heuristically chosen to contain the time point with the

largest enclosure reduction since the previous application of the interval step method.

Figure 11.9 shows the pseudocode of function propagateTrajectory, used for the definition of the

propagate narrowing function. It has 2 arguments, the ODE trajectory TR and a vector function F(S,t)

(required by function pruneGap). It returns the trajectory TR possibly pruned by the interval step

method applied from ti to tj. These time points are the bounds of a time gap chosen from the existing

4 This is justified for preventing the subsequent pruning in the opposite direction without an enclosure smaller than Sk.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

183

ODE trajectory by function choosePropagationGap (if no time gap is chosen by such function then

the ODE trajectory is returned unchanged).

function propagateTrajectory (an ODE trajectory TR, a vector function F(S,t))
(1) if choosePropagationGap(TR,ti,tj) then return pruneGap(TR,F(S,t),ti,tj); else return TR; endif;

end function

Figure 11.9 The definition of the propagateTrajectory function.

Function choosePropagationGap is shown in figure 11.10. It has an ODE trajectory TR as input

argument and two F-numbers ti and tj as output arguments. If it finds some time gap to propagate then

it succeeds and outputs ti and tj with the time gap bounds, otherwise it fails.

function choosePropagationGap(an ODE trajectory TR=<TP,TG,TF,TB>, out F-numbers ti, tj)
(1) bestP ← 1-MinProp;
(2) LGaps ← timeGaps(TR);
(3) repeat
(4) [tpi..tpi+1] ←LGaps.pop_front();
(5) if TF(tpi)≠Unbound then

(6) w = ∏
≤≤ nj1

width(TPj(tpi))/width(TFj(tpi));

(7) if w < bestP then ti ← tpi; tj ← tpi+1; bestP ← w; end if;
(8) end if;
(9) if TB(tpi+1)≠Unbound then

(10) w = ∏
≤≤ nj1

width(TPj(tpi+1))/width(TBj(tpi+1));

(11) if w < bestP then ti ← tpi+1; tj ← tpi; bestP ← w; end if;
(12) end if;
(13) until LGaps.size()=0;
(14) if bestP = 1-MinProp then return false; else return true; end if;

end function

Figure 11.10 The definition of the choosePropagationGap function.

The goal of function choosePropagationGap is to chose the best starting point and direction (from ti to

tj) to reapply the interval step method, comparing the current enclosure at the starting point TP(ti) and

the enclosures TF(ti) and TB(ti) at the previous application of the interval step method. The strategy

adopted is to choose the starting point and direction with the smallest ratio between the sizes of the

current and the previous enclosures.

Firstly (line 1), a threshold for deciding whether an enclosure reduction is propagated is initialised

(MinProp is some positive value smaller than 1 indicating the minimum enclosure reduction necessary

for triggering the propagation). Then, each time gap is analysed within a repeat cycle (lines 3-13) and

the function succeeds if the ratio of the best choice is smaller than the defined threshold (line 14).

Each cycle computes for some time gap [tpi..tpi+1] where the interval step method has already been

applied (lines 5 and 9 ensure this) the ratios associated with the reapplication of the method starting at

tpi in the forward direction (line 6) and starting at tpi+1 in the backward direction (line 10). The best

choice is updated whenever the associated ratio becomes smaller (lines 7 and 11).

SOLVING A CSDP

184

The formal definition of the propagate narrowing function relies on function propagateTrajectory to

reduce the uncertainty of ODE trajectory. The first argument of such function is the current value of

the ODE trajectory TR, and the second argument is an interval vector function f(S,t), which defines the

ρODE relation of the ODE constraint according to definition 10.1-1.

Definition 11.3.1-1 (Propagate Narrowing Function). Let CSDP P=(X,D,C) be defined as in 10.1-1

and TR be the ODE trajectory representing the domain of xODE. The ODE constraint cODE∈C has

associated the following propagate narrowing function:

(i) NFpropagate(<TR,…>) = <propagateTrajectory(TR,f(S,t)),…>

11.3.2 Link Narrowing Function

Whereas the propagate narrowing function reapplies the interval step method over some previously

validated time gap, the link narrowing function tries to validate (link) some time gap for which the

interval step method was never applied in either direction. As a consequence, besides the safe

elimination from the ODE trajectory of functions incompatible with the ODE constraint, the time gap

may become completely or partially validated (in this case, a new time point is inserted as described

earlier).

Figures 11.11 and 11.12 show the pseudocode of function linkTrajectory and the auxiliary function

chooseUnlinkedGap which are quite similar in structure to functions propagateTrajectory and

choosePropagationGap, respectively.

function linkTrajectory(an ODE trajectory TR, a vector function F(S,t))
(1) if chooseUnlinkedGap(TR,ti,tj) then return pruneGap(TR,F(S,t),ti,tj); else return TR; end if;

end function

Figure 11.11 The definition of the linkTrajectory function.

function chooseUnlinkedGap(an ODE trajectory TR=<TP,TG,TF,TB>, out F-numbers ti, tj)
(1) bestW1 ← +∞; bestW2 ← +∞;
(2) LGaps ← timeGaps(TR);
(3) repeat
(4) [tpi..tpi+1] ←LGaps.pop_front();
(5) if TF(tpi)=Unbound and TB(tpi+1)=Unbound then
(6) w1 ← max1≤j≤n(width(TPj(tpi))); w2 ← max1≤j≤n(width(TPj(tpi+1)))

(7) if w2<w1 then w←w2; w2 ← w1; w1 ← w; d ← backward; else d ← forward; end if;
(8) if w1 < bestW1 or (w1 = bestW1 and w2 < bestW2) then
(9) bestW1 ←w1; bestW2 ← w2; direction ← d; T ← [tpi..tpi+1];
(10) end if;
(11) end if;
(12) until LGaps.size()=0;
(13) if bestW1 = +∞ then return false;
(14) if direction = forward then ti ←left(T); tj ← right(T); end if;
(15) if direction = backward then ti ←right(T); tj ← left(T); end if;
(16) return true;

end function
Figure 11.12 The definition of the chooseUnlinkedGap function.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

185

The main difference is that the time gap chosen by the function chooseUnlinkedGap must be some

unlinked gap (where no interval step method was ever applied in either direction). The goal of

function chooseUnlinkedGap is to pick the best time gap (starting point and direction: from ti to tj)

where to apply, for the first time, the interval step method. The chosen gap is that with the lowest

uncertainty on the current enclosures at the starting point TP(ti) and ending point TP(tj) (line 6). The

direction is defined accordingly (line 7).

During the repeat cycle (line 3-11) where each non linked (ensured in line 5) time gap is considered,

whenever the smallest uncertainty w1 is smaller than any previously found (or equal but with the other

bound uncertainty w2 smaller) the best choice is updated (lines 8-10).

If at the end of the cycle no time gap was chosen, the function fails (line 13). Otherwise it updates ti

and tj with the bounds of the chosen gap according to the defined direction (lines 14 and 15) and

succeeds (line 16).

The formal definition of the link narrowing function is based on function linkTrajectory to reduce

the uncertainty of ODE trajectory. As in the case of the propagate narrowing function, the first

argument is the current value of the ODE trajectory TR, and the second argument is an interval vector

function f(S,t), which defines the ρODE relation.

Definition 11.3.2-1 (Link Narrowing Function). Let CSDP P=(X,D,C) be defined as in 10.1-1 and

TR be the ODE trajectory representing the domain of xODE. The ODE constraint cODE∈C has associated

the following link narrowing function:

(i) NFlink(<TR,…>) = < linkTrajectory(TR,f(S,t)),…>

11.3.3 Improve Narrowing Functions

When the whole ODE trajectory is completely validated through the application of the interval step

method at every time gap, the precision of the enclosures obtained for each time point agrees with the

error tolerances imposed on the method. However, even with accurate precision on the time point

enclosures, there are no guarantees about the quality of the enclosures associated with the time gaps

that represent the set of ODE solution functions. The reason is that the representation of the time gap

enclosures as intervals (rectangles in the two dimensional visualization) makes them unsuitable for an

accurate representation of the intermediate function values, in particular if the function is increasing or

decreasing (or both) along the time gap. To minimize this effect it is necessary to partition the time

gap into a set of smaller subintervals and compute the new enclosures associated with each one (if

some of these new enclosures is smaller than the original enclosure then the uncertainty around the

ODE trajectory is reduced).

All the narrowing functions responsible for reducing the domain of a restriction variable (except the

Value narrowing functions) depend on time gap enclosures of the ODE trajectory (see subsections

11.2.2 through 11.2.5). Therefore, by reducing such time gap enclosures, the restriction variable

domain may eventually be narrowed. This is the goal of an improve narrowing function, that is, to

reduce some time gap enclosure that may later trigger some other narrowing function associated with

SOLVING A CSDP

186

an ODE restriction and reduce the domain of a restriction variable. The reduction of the time gap

enclosure is achieved through the insertion of a new intermediate time point within the gap and the

subsequent application of the interval step method linking this point with its adjacent neighbours.

Within a CSDP there are several improve narrowing functions (one for each ODE restriction, except

Value restrictions) which, according to definition 4.1-1, are associated with the ODE constraint (in the

sense that the values discarded by such functions are those proved incompatible with the ρODE relation

through the reapplication of the interval step method).

In order to decide whether it is worth to improve the ODE trajectory enclosure with respect to some

ODE restriction and to choose the most adequate time gap some heuristic values are needed. In the

following we will use function heuristicValue to obtain such heuristics. This function, which has 3

input arguments, an ODE trajectory TR, an ODE restriction c and an F-interval T, returns an heuristic

value for the domain of the restriction variable of c that is expected when the segment of TR included

in T is enclosed with maximum precision.

The rational for the implementation of such heuristic function is to consider an evaluation procedure

similar to the procedure used for pruning the domain of the restriction variable of c from the ODE

trajectory TR, which is applied on a changed trajectory TR’. This trajectory is identical to TR except on

the enclosures of the time gaps included in T. Such enclosures are replaced with smaller enclosures

that are expected to be obtained when T is enclosed with maximum precision (above the lines

connecting the lower bounds and under the lines connecting the upper bounds of consecutive point

enclosures). A possible implementation of the heuristicValue function is exemplified in figure 11.13

for the case where the restriction c is a Maximum restriction (other cases are similar).

function heuristicValue(an ODE trajectory TR, an ODE restriction c, an F-interval T)

(1) if c≡Maximumj,[tp0..tp1](xi) then

(2) a ← −∞; b ← −∞;
(3) LGaps ← timeGaps[tp0..tp1](TR);

(4) repeat
(5) [tpi..tpi+1] ←LGaps.pop_front();
(6) if [tpi..tpi+1] ⊆ T then upper ← max(right(TRj(tpi)),right(TRj(tpi+1)));
(7) else upper ← right(TRj([tpi..tpi+1])); end if;
(8) lower ← max(left(TRj(tpi)),left(TRj(tpi+1)));
(9) if upper > b then b ← upper;
(10) if lower > a then a ← lower;
(11) until LGaps.size()=0;
(12) end if;

∶ ∶
(…) return [a..b];

end function

Figure 11.13 The definition of the heuristicValue function.

The only difference with respect to definition 11.2.2-1 is in lines 6-7. Whenever a gap lies within T

the computed maximum value is given by the maximum of the respective points upper bound instead

of the entire gap upper bound.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

187

Figure 11.14 shows the pseudocode of function improveTrajectory, used for the definition of the

improve narrowing function. It has 4 arguments, the first 2 are the ODE trajectory TR and a vector

function F(S,t). The third and fourth arguments are an F-interval I and an ODE restriction c, where I

represents the current domain of the restriction variable of c. It returns the ODE trajectory TR pruned

by the application of the interval step method for linking a new time point that is inserted within some

chosen time gap.

function improveTrajectory(an ODE trajectory TR, a vector function F(S,t),
 an F-interval I, an ODE restriction c)

(1) if nmbPoints(TR) = MaxPoints then return TR;
(2) Ih ← heuristicValue(TR,c,[t0..t1]);
(3) ∆left ← left(Ih) − left(I);
(4) ∆right ← right(I) − right(Ih);
(5) if ∆left ≤ ε and ∆ right ≤ ε then return TR;
(6) if chooseInsertionGap(TR,c,T) then
(7) ti ← left(T); tk ← center(T); tj ← right(T);
(8) TR ← insertPoint(TR,T,tk);
(9) TR ← pruneGap(TR,F(S,t),ti,tk);
(10) if TR ≠ ∅ then TR ← pruneGap(TR,F(S,t),tj,tk); end if;
(11) end if;
(12) return TR;

end function

Figure 11.14 The definition of the improveTrajectory function.

Initially, the number of points considered in the ODE trajectory TR is checked. If it has already

reached its maximum value (MaxPoints), TR is returned unchanged (line 1).

Lines 2-5 subsequently check whether it is worth to improve the ODE trajectory enclosure with

respect to the ODE restriction c. The heuristicValue function (line 2) predicts the best possible

narrowing of the domain Ih of the restriction value that would be obtained if the whole ODE trajectory

enclosure were known with maximum precision. Then, this interval Ih is compared with the current

domain I of the restriction variable. The improvement procedure is abandoned (line 5) if the maximum

predicted gain does not exceed some predefined threshold ε in none of the bounds.

Otherwise, a time gap T is chosen by function chooseInsertionGap from the ODE trajectory (line 6),

and a new intermediate time point, the mid point of time gap T (line 7), is inserted (line 8), and linked

with its left bound (line 9). If the trajectory does not become empty, the time point is also linked to its

right bound (line 10).

Function chooseInsertionGap is illustrated in figure 11.15. Besides the ODE trajectory TR, it has an

ODE restriction c as input argument and outputs an F-interval T. If successful, T is updated with the

time gap from the ODE trajectory which, according to the heuristicValue function, would narrow the

most the domain of the restriction variable of c. It fails if any expected improvement on the ODE

trajectory uncertainty is not able to sufficiently narrow the restriction variable domain.

SOLVING A CSDP

188

function chooseInsertionGap(an ODE trajectory TR, an ODE restriction c, out an F-interval T)
(1) bestW ← 1; T ← ∅;
(2) I ← heuristicValue(TR,c,∅);
(3) LGaps ← timeGaps(TR);
(4) repeat
(5) G ←LGaps.pop_front();
(6) if not isCanonical(G) then
(7) IG ← heuristicValue(TR,c,G);
(8) w ← width(IG)/width(I);
(9) if w < bestW then T ← G; bestW ← w; end if;
(10) end if;
(11) until LGaps.size()=0;
(12) if T = ∅ then return false; else return true; end if;

end function

Figure 11.15 The definition of the choosePropagationGap function.

The value I for the restriction variable domain, that may be obtained from the ODE trajectory without

any further information, is computed by the heuristicValue function with the empty set as third

argument (line 2). The heuristic value IG for the restriction variable domain, obtained from the ODE

trajectory when considering the best predicted enclosure for some time gap G, is computed by the

heuristicValue function with the interval G as third argument (line 7). Since the heuristic value IG must

be included within the current value I, a measure for the best predicted narrowing associated with G is

given by the ratio between the widths of IG and I (line 8). Analysing all the non canonical time gaps

(line 6) within a repeat cycle (lines 4-11), the gap that minimises such ratio is chosen to update the

output variable T.

The formal definition of an improve narrowing function regarding an ODE restriction c is based on

function improveTrajectory where the first argument is the current value of the ODE trajectory TR, the

second argument is the interval vector function f(S,t), the third argument is the current domain Ii of the

constraint variable and the fourth argument is the ODE restriction cr.

Definition 11.3.3-1 (Improve Narrowing Functions). Let CSDP P=(X,D,C) be defined as in 10.1-1,

TR be the ODE trajectory representing the domain of xODE and Ii be the domain of xi. For each non

Value ODE restriction cr=(<xODE,xi>,ρr)∈C the ODE constraint cODE∈C has associated the following

improve narrowing function:

(i) NFimprove(cr)(<TR,…,Ii,…>) = <improveTrajectory(TR,F(S,t),Ii,cr),…,Ii,…>

11.4 The Constraint Propagation Algorithm for CSDPs

The constraint propagation algorithm for pruning the domains of the CSDP variables is derived from

the generic propagation algorithm for pruning the domains of the variables of a CCSP (see function

prune, illustrated in figure 4.1).

Since there are no guarantees of monotonicity for the narrowing functions associated with the

CSDP constraints, the order of their application may be crucial, not only for the efficiency of the

propagation but also for the pruning achieved.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

189

The strategy followed by the algorithm is to propagate as soon as possible any information related

with the restriction variables and delay as much as possible the application of the narrowing functions

for reducing the ODE trajectory uncertainty. The reason is that whereas the former are easy to deal

with and may provide fast domain pruning, the latter may be computationally more expensive as they

require the application of the interval step method.

Among the narrowing functions for the ODE trajectory uncertainty, the selection criterion favours

the propagate narrowing function for spreading as soon as possible any domain reduction achieved by

any other narrowing function. Moreover, since it does not make sense to try to improve an ODE

trajectory that is not completely validated, the link narrowing function is always preferred to any of

the improve narrowing functions.

Figure 11.16 shows the constraint propagation algorithm for CSDPs represented by function

pruneCSDP. The first argument Q is a set of narrowing functions composed of all the narrowing

functions associated with the constraints of the CSDP (see subsections 11.2 and 11.3). The second

argument A is an element of the domains lattice representing the original variable domains (before

applying the propagation algorithm). The result is a smaller (or equal) element of the domains lattice.

function pruneCSDP(a set Q of narrowing functions, an element A of the domains lattice)
(1) Q2 ← {NF ∈ Q: NF is a propagate, link or improve narrowing function}; Q1 ← Q \ Q2;
(2) S1 ← ∅ ; S2 ← ∅ ;
(3) while Q1 ∪ Q2 ≠ ∅ do
(4) if Q1 ≠ ∅ then choose NF ∈ Q1;
(5) else if NFpropagate ∈ Q2 then NF ← NFpropagate;
(6) else if NFlink ∈ Q2 then NF ← NFlink;
(7) else choose NF ∈ Q2;
(8) end if;
(9) A’ ← NF(A) ;
(10) if A’ = ∅ then return ∅ ;
(11) P1 ← { NF’ ∈ S1: ∃x∈RelevantNF’

 A[x] ≠ A’[x] } ;

(12) P2 ← { NF’ ∈ S2: ∃x∈RelevantNF’
 A[x] ≠ A’[x] } ;

(13) Q1 ← Q1 ∪ P1 ; S1 ← S1 \ P1 ;
(14) Q2 ← Q2 ∪ P2 ; S2 ← S2 \ P2 ;
(15) if NF ∈ Q1 then Q1 ← Q1 \ {NF} ; S1 ← S1 ∪ {NF};
(16) else if A’ = A then Q2 ← Q2 \ {NF} ; S2 ← S2 ∪ {NF};
(17) end if;
(18) A ← A’ ;
(19) end while
(20) return A ;

end function

Figure 11.16 The constraint propagation algorithm for CSDPs.

The structure of the algorithm is identical to the constraint propagation algorithm described in chapter

4. The main difference is that the set Q of narrowing functions is subdivided into two sets, Q2

containing all the narrowing functions associated with the ODE constraint and Q1 containing the

remainder (line 1). Similarly, two different sets, S1 associated with Q1 and S2 with Q2, are maintained

to keep track of the narrowing functions for which A is a fixed-point (lines 2,11-16). The selection

SOLVING A CSDP

190

criterion (line 4-8) only chooses a narrowing function from Q2 if Q1 is empty. In this case, it tries first

the propagate narrowing function (line 5), then the link narrowing function (line 6), and only as a last

option chooses it some improve narrowing function (line 7). After applying some narrowing function

NF from Q1 it is assumed that the obtained element A’ is a fixed-point of NF since all the narrowing

functions of Q1 are necessarily idempotent (line 15). Such assumption is not made for the narrowing

functions of Q2 and so, it must be verified if the new element A’ is equal to the previous element A

(line 16).

The algorithm is correct and terminates. The correctness of the algorithm derives from the

correctness of each narrowing function as proved in the case of the constraint propagation algorithm

for CCSPs. The termination of the algorithm is only guaranteed by the imposition of a maximum

number of points (MaxPoints) to consider for the ODE trajectory and can be proved by contradiction.

Suppose that the algorithm does not terminate. Then, there are always some narrowing functions for

which the current element A is not a fixed-point. If no new point is introduced in the ODE trajectory

TR (only the link and improve narrowing functions may insert new points in TR) then the number of

applications of the narrowing functions must be finite. This is justified because, in this case, either the

current element A is a fixed-point of a narrowing function (and it is not applied) or its application will

narrow some F-interval domain in the representation of A. Without considering new points, such

representation is always the same finite set of F-intervals, whose lattice is finite and, as in the CCSP

case, the process of obtaining a smaller element will necessary stop. So, the termination of the

algorithm is only problematic if new points are inserted in the ODE trajectory TR. However the

maximum number of points is limited to MaxPoints since, when this number is reached, both the link

and the improve narrowing functions do not insert new points. Consequently, if the algorithm did not

terminate before, then after reaching the maximum number of points no new point can be further

introduced and, as proved above, the number of additional applications of the narrowing functions

must be finite and the algorithm terminates.

The goal of a solving procedure for a CSDP is to prune as much as possible the initial domains of the

restriction variables I1,…,Im. This goal is achieved through function pruneCSDP with the ODE

trajectory TR previously initialised by function initializeTrajectory (as described in section 11.2). This

is illustrated in figure 11.17 in the pseudocode of function solveCSDP. From the initial domains of the

restriction variables I1,…,Im it either returns the empty set, or narrows them further through the

constraint propagation algorithm for CSDPs.

function solveCSDP(<I1,…,Im>)
(1) TR ← initializeTrajectory();
(2) A ← pruneCSDP(Q,< TR,I1,…,Im>);
(3) if A = ∅ then return ∅;
(4) if A = < TR’,I1’,…,Im’> then return <I1’,…,Im’>;

end function

Figure 11.17 The solving function associated with an CSDP.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

191

11.5 Summary

In this chapter a procedure was described for solving a CSDP based on constraint propagation over a

set of narrowing functions associated with the CSDP. An ODE trajectory was defined and represents

an enclosure of the ODE solution set. All the narrowing functions, either for enforcing the ODE

restrictions or for reducing the uncertainty of the ODE trajectory, were fully characterised. In the next

chapter the extended interval constraints framework is used for solving several problems in different

biomedical domains.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

193

Chapter 12

Biomedical Decision Support with ODEs

Biomedical models provide a representation of the functioning of living organisms, making it possible

to reason about them and eventually to take decisions about their state or adequate actions regarding

some intended goals. Parametric differential equations are general and expressive mathematical means

to model systems dynamics, and are suitable to express the deep modelling of many biophysical

systems. Notwithstanding its expressive power, reasoning with such models may be quite difficult,

given their complexity.

Analytical solutions are available only for the simplest models. Alternative numerical simulations

require precise numerical values for the parameters involved, which are usually impossible to gather

given the uncertainty on available data. This may be an important drawback since, given the usual

non-linearity of the models, small differences on the input parameters may cause important differences

on the output produced.

To overcome this limitation, Monte Carlo methods rely on a large number of simulations, that may

be used to estimate the likelihood of the different options under study. However, they cannot provide

safe conclusions regarding these options, given the various sources of errors that they suffer from,

both input precision errors and round-of errors accumulated in the simulations.

In contrast with such methods, constraint reasoning assumes the uncertainty of numerical variables

within given bounds and propagates such knowledge through a network of constraints on these

variables, in order to decrease the underlying uncertainty. To be effective it must rely on advanced

safe methods so that uncertainty is sufficiently bound as to be possible to make safe decisions.

The extended CCSP framework offers an alternative approach for modelling system dynamics with

uncertain data as a set of constraints and provides reliable reasoning methods for supporting safe

decisions. In this chapter, the expressive power of the extended CCSP framework is illustrated for

decision support in several examples from biomedicine: diagnosis of diabetes (section 12.1), tuning of

drug design (section 12.2) and epidemic studies (section 12.3).

BIOMEDICAL DECISION SUPPORT WITH ODES

194

12.1 A Differential Model for Diagnosing Diabetes

Diabetes mellitus prevents the body from metabolising glucose due to an insufficient supply of insulin.

A glucose tolerance test (GTT) is frequently used for diagnosing diabetes. The patient ingests a large

dose of glucose after an overnight fast and in the subsequent hours, several blood tests are made. From

the evolution of the glucose concentration a diagnosis is made by the physicians.

Ackerman and al [AGR69] proposed a well-known model for the blood glucose regulatory system

during a GTT, with the following parametric differential equations:

)()(
)(

21 thptgp
dt

tdg
−−=)()(

)(
43 tgpthp

dt

tdh
+−=

where g is the deviation of the glucose blood concentration from its fasting level;

h is the deviation of the insulin blood concentration from its fasting level;

p1, p2, p3 and p4 are positive, patient dependent, parameters.

Let t=0 be the instant immediately after the absorption of a large dose of glucose, g0, when the

deviation of insulin from the fasting level is still negligible. According to the model, the evolution of

glucose and insulin blood concentrations is described by the trajectory of the above ODE system, with

initial values g(0)=g0 and h(0)=0, and depends on the parameter values p1 to p4.

Figure 12.1 shows the evolution of the glucose concentration for two patients with a glucose fasting

level concentration of 110 mg glucose/100 ml blood. Immediately after the ingestion of an initial dose

of glucose, the glucose concentration increases to 190 (i.e. g0 = 190-110 = 80). The different

trajectories are due to different parameters.

Figure 12.1 Evolution of the blood gl

The general behaviour of the glucose trajectory (and insulin

eventually converges to, the fasting concentration level. T

given (in minutes) by:
231

2

ppp
T

+
=

π

A criterion used for diagnosing diabetes is based on th

diabetic patients. It is generally accepted that a value for

diabetes, otherwise normalcy is concluded.

We next show how the extended CCSP framework can be

possibly interrupting the sequence of blood tests if a safe dec

0

35

70

105

140

175

210

0 60 120 180 240 300 360 420 480

time (minutes)

g
lu

c
o

s
e

 (
m

g
/1

0
0

m
l)
 In case A (thick line), typical

normal values were used:
p1=0.0044 p2=0.04
p3=0.0045 p4=0.03

In case B (thin line), parameters p2

and p4 were reduced:
p2=0.03 p4=0.015
ucose concentration.

 trajectory as well) oscillates around, and

he natural period T of such trajectory is

4p

e natural period T, which is increased in

T higher than 4 hours is an indicator of

 used to support the diagnosis of diabetes,

ision can be made.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

195

12.1.1 Representing the Model and its Constraints with an Extended CCSP

The decision problem regarding the diagnosis of diabetes may be modelled by an extended CCSP with

a CSDP constraint and a numerical constraint.

The CSDP constraint relates the evolution of the glucose and insulin concentrations with the

trajectory values obtained through the blood tests. It is associated with the following ODE system S

based on the original system of differential equations but with the parameters included as new

components with null derivatives:

=′=′=′=′
+−=′
−−=′

≡
0)()()()(

)()()()()(

)()()()()(

6543

16252

24131

tstststs

tststststs

tststststs

S where s1≡g, s2≡h, s3≡p1, s4≡p2, s5≡p3, s6≡p4,

If n blood tests were made at times t1,…,tn, the constraint is defined by CSDP PSn, which includes

the ODE constraint enforcing the trajectories to satisfy ODE system S between t=0.0 and t=tn, together

with Value restrictions representing each known trajectory component value. Variables g0, h0, p1, p2, p3

and p4, are the initial values and variables gt1,…,gtn, the glucose values at times t1,…,tn.

CSDP PSn=(Xn,Dn,Cn) where:
Xn = < xODE, g0, h0, p1, p2, p3, p4, gt1 ,…, gtn>
Dn = <DODE, Dg0, Dh0, Dp1, Dp2, Dp3, Dp4, Dgt1, …, Dgtn >
Cn = { ODES, [0.0 .. tn](xODE), Value1, 0.0(g0), Value2, 0.0(h0),

Value3, 0.0(p1), Value4, 0.0(p2), Value5, 0.0(p3), Value6, 0.0(p4),
Value1, t1(gt1) ,…, Value1, tn(gtn) }

The numerical constraint is a simple equation relating the natural period with the ODE parameters

according to its defining expression. With n blood tests performed, the resulting extended CCSP is:

CSDP Pn=(X,D,C) where:
X = < g0, h0, p1, p2, p3, p4, gt1 ,…, gtn, T >
D = < Dg0, Dh0, Dp1, Dp2, Dp3, Dp4, Dgt1, …, Dgtn , DT>

C = { PSn(g0, h0, p1, p2, p3, p4, gt1 ,…, gtn), T = 2π/sqrt(p1p3+p2p4) }

Here and in the remainder of this chapter we will use the following denotation: if a CSDP constraint is

defined by the CSDP P=(<xODE,x1,…,xn><DODE,Dx1,…,Dxn>,C) then it will be referred in an extended

CCSP as P (<x’1,…,x’n>) where x’1,…,x’n are the CCSP variables that are shared by the CSDP.

12.1.2 Using the Extended CCSP for Diagnosing Diabetes

By solving the extended CCSP Pn with the initial variable domains set up to the available information,

the natural period T will be safely bounded, and a guaranteed diagnosis can be made if T is clearly

above or below the threshold of 240 minutes.

In the following we assume that the acceptable bounds for the parameter values are 50%

above/below the typical normal values (p1=0.0044, p2=0.04, p3=0.0045, p4=0.03) and study two

different patients, A and B, whose observed values agree with Figure 12.1.

BIOMEDICAL DECISION SUPPORT WITH ODES

196

The first blood test on patient A, performed 1 hour after the glucose ingestion, indicates a glucose

deviation from the fasting level concentration of –29.8 (an error of ±0.05 is always considered with

regard to the precision of the measuring process).

The extended CCSP P1 (with a single blood test) is solved by enforcing Global Hull-consistency on

the following initial variable domains:

Dp1=[0.0022..0.0066], Dp2=[0.0200..0.0600], Dp3=[0.0022..0.0068], Dp4=[0.0150..0.0450],

Dg0=[80.0], Dh0=[0.0], Dg60=[–29.85..–29.75], DT=[–∞..+∞]

Table 12.1 shows results for T obtained after 10, 30 and 60 minutes of CPU execution time1 (with

10-6 precision).

Table 12.1 Narrowing results obtained for patient A from the information of the first blood test.

10 minutes 30 minutes 60 minutes
T [140.5..233.3] [149.6..213.9] [154.9..206.0]

After 10 minutes of CPU time (in fact after 7 minutes), the natural period is proved to be smaller than

240 minutes and a normal diagnosis can be guaranteed with no need of further examinations. When

the next blood test were due, 60 minutes later, T was proved to be under 206, much less than the

threshold for diagnosing diabetes.

In patient B, the observed glucose deviation at the same first blood examination is 17.9. The initial

domains for the variables of P1 are thus the same of the previous case, except for the observed glucose

value Dg60=[17.85.. 17.95].

Enforcing Global Hull-consistency on P1 with such information alone, no safe diagnosis can be

attained before the next blood test (1 hour later). After 60 minutes of CPU time, T was proved to be

within [236.4..327.9] and both diagnoses, normal or diabetic, are still possible, though diabetes is quite

likely. Further information is required, and a second test is performed, indicating a glucose

concentration of -38.9. The extended CCSP P2 (two blood tests) is solved with the initial domains:

Dg60=[17.85..17.95], Dg120=[–38.95..–38.85], DT=[236.4..327.9]

In less than 20 minutes, T was proved to be above 240. One hour later, when the next examination

would be due, T is clearly above such threshold (T∈[245.0..323.8]), and the patient is safely diagnosed

as diabetic, requiring no further blood tests.

Note the importance of using a strong consistency requirement such as Global Hull-consistency.

Table 12.2 presents the narrowing results, for patient A and B, obtained by enforcing Global

Hull-consistency, together with those obtained by other strong consistency requirements such as 3B-

and 4B-consistency (all with 10-6 precision). Each row shows the narrowing of T domain achieved by

considering the number of blood tests specified in the first column, when the next blood examination

is due.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

197

Table 12.2 Narrowing of T domain achieved by enforcing 3B-, 4B- and Global Hull-consistency.

tests 3B 4B Global Hull tests 3B 4B Global Hull
1 [126.4..257.7] [144.8..222.0] [154.9..206.0] 1 [191.2..344.9] [211.8..340.7] [236.4..327.9]
2 [126.4..257.5] 2 [192.6..344.9] [228.9..340.7] [245.0..323.8]
3 [126.4..257.5] 3 [192.6..344.9] [232.1..339.9]

Patient A Patient B

Clearly, if 3B-consistency is enforced, the results obtained are insufficient to make any safe decision.

In fact, for both patients, even after the 3rd blood examination, no safe diagnosis can be made since, in

either cases, the interval obtained for the T domain contains the diagnosis threshold of 240 minutes.

Enforcing 4B-consistency (stronger than 3B-consistency) patient A can be safely diagnosed with the

information of the first examination alone, requiring no further blood tests. For this patient case, and

comparing with the Global Hull-consistency results, the reduction of the T domain is about 3 times

slower (only after 23 minutes can it be proved that the value of T is under 240) and 50% wider, but a

safe diagnosis still can be made. However, in the case of patient B, the pruning achieved (with T

domain about 40% wider than when enforcing Global Hull-consistency) is again insufficient to make a

safe diagnosis in time for avoiding further blood examinations.

12.2 A Differential Model for Drug Design

Pharmacokinetics studies the time course of drug concentrations in the body, how they move around it

and how quickly this movement occurs. Oral drug administration is a widespread method for the

delivery of therapeutic drugs to the blood stream. This section is based on the following two-

compartment model of the oral ingestion/gastro-intestinal absorption process (see [Spi92] and

[YSH96] for details):

)()(
)(

1 tDtxp
dt

tdx
+−=)()(

)(
21 typtxp

dt

tdy
−=

where x is the concentration of the drug in the gastro-intestinal tract;

y is the concentration of the drug in the blood stream;

D is the drug intake regimen; p1 and p2 are positive parameters.

The model considers two compartments, the gastro-intestinal tract and the blood stream. The drug

enters the gastro-intestinal tract according to a drug intake regimen, described as a function of time

D(t). It is then absorbed into the blood stream at a rate, p1, proportional to its gastro-intestinal

concentration and independently from its blood concentration. The drug is removed from the blood

through a metabolic process at a rate, p2, proportional to its concentration there.

The drug intake regimen D(t) depends on several factors related with the production of the drug by

the pharmaceutical company. We assume that the drug is taken on a periodic basis (every six hours),

1 The tests of this chapter were all performed on a Pentium III with 128MBytes RAM running at 500MHz. The CPU

execution times were divided by a factor of 3 to provide more realistic real time results that can be easily obtained by
up-to-date computer configurations.

BIOMEDICAL DECISION SUPPORT WITH ODES

198

providing a unit dosage that is uniformly dissolved into the gastro-intestinal tract during the first half

hour. Consequently, for each period of six hours the intake regimen is defined as:

0.65.0

5.00.0

0

2
)(

≤<
≤≤

=
t

t

if

if
tD

The effect of the intake regimen on the concentrations of the drug in the blood stream during the

administration period is determined by the absorption and metabolic parameters, p1 and p2.

Maintaining the above intake regimen, the solution of the ODE system asymptotically converges to a

six hours periodic trajectory called the limit cycle, shown in figure 12.2 for specific values of the ODE

parameters.

Figure 12.2 The periodic limit cycle with p1=1.2 and p2=ln(2)/5.

In designing a drug, it is necessary to adjust the ODE parameters to guarantee that the drug

concentrations are effective, but causing no significant side effects. In general, it is sufficient to

guarantee some constraints on the concentrations over a limit cycle.

One constraint is to keep the drug concentration at the blood within predefined bounds, namely to

prevent its maximum value (the Peak Concentration) to exceed a threshold associated with a side

effect. Other constraint imposes bounds on the area under the curve of the drug blood concentration

(known as AUC) guaranteeing that the accumulated dosage is high enough to be effective. Finally,

bounding the total time that such concentration remains above or under some threshold is an additional

requirement for controlling drug concentration during the limit cycle. Figure 12.3 shows maximum,

minimum, area (≥ 1.0) and time (≥1.1) values for the limit cycle of figure 12.2.

Figure 12.3 Maximum, minimum, area and time values at the limit cycle (p1=1.2 and p2=ln(2)/5).

We show below how the extended CCSP framework can be used for supporting the drug design

process. We will focus on the absorption parameter, p1, which may be adjusted by appropriate time

release mechanisms (the metabolic parameter p2, tends to be characteristic of the drug itself and cannot

0

0,5

1

0 1 2 3 4 5 6

0,5

1

1,5

0 1 2 3 4 5 6

x(t)
y(t)

t t

t

y(t)maximum

minimum

area (≥1)

time (≥1.1)

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

199

be easily modified). The tuning of p1 should satisfy the following requirements on the drug

concentration in the blood during the limit cycle, namely:

(i) Its “instantaneous” value bounded between 0.8 and 1.5;

(ii) Its area under the curve (and above 1.0) bounded between 1.2 and 1.3;

(iii) Its value above 1.1 should not last more than 4 hours.

12.2.1 Representing the Model and its Constraints with an Extended CCSP

The expressive power of the extended CCSP framework allows its use for representing the limit cycle

and the different requirements illustrated in figure 12.3. Due to the intake regimen definition D(t), the

ODE system has a discontinuity at time t=0.5, and is represented by two CSDP constraints, PS1 and

PS2, in sequence.

The first, PS1, ranges from the beginning of the limit cycle (t=0.0) to time t=0.5, and a second PS2, is

associated to the remaining trajectory of the limit cycle (until t=6.0). S1 and S2 are the corresponding

ODE systems, where p1 and p2 are included as new components with null derivatives and the intake

regimen D(t) is a constant:

=′=′
−=′
+−=′

≡
0)()(

)()()()()(

2)()()(

1

43

24132

131

tsts

tststststs

tststs

S

=′=′
−=′

−=′

≡
0)()(

)()()()()(

)()()(

2

43

24132

131

tsts

tststststs

tststs

S

The CSDP constraints for PS1 are defined as shown below (PS2 is similar). Besides the ODE constraint,

Value, Maximum, Minimum, Area and Time restrictions associate variables with different trajectory

properties relevant in this problem. Variables xinit, yinit, p1 and p2 are the initial trajectory values, and

xfin and yfin are the final trajectory values of the 1st and 2nd components. Variables ymax and ymin are the

maximum and minimum trajectory values of the 2nd component (drug concentration in the blood

stream) for this period. Variables ya and yt denote the area above 1.0 and the time above 1.1 of the 2nd

component in this same period.

CSDP PS1 = (X1,D1,C1) where:
X1=< xODE, xinit, yinit, p1, p2, xfin, yfin, ymax, ymin, ya, yt >
D1=<DODE, Dxinit, Dyinit, Dp1, Dp2, Dxfin, Dyfin, Dymax, Dymin, Dya, Dyt>
C1= { ODES1, [0.0 .. 0.5](xODE),

Value1, 0.0(xinit), Value2, 0.0(yinit), Value3, 0.0(p1), Value4, 0.0(p2),
Value1, 0.5(xfin), Value2, 0.5(yfin),
Maximum2, [0.0 .. 0.5](ymax), Minimum2, [0.0 .. 0.5](ymin),

Area2, [0.0 .. 0.5], ≥1.0(ya), Time2 ,[0.0 .. 0.5] , ≥1.1(yt)}

The extended CCSP P connects the two ODE segments in sequence by assigning the same variables

x05 and y05 to both the final values of PS1 and the initial values of PS2 (parameters p1 and p2 are shared

by both constraints). Moreover, the 6 hours period is guaranteed by the assignment of the same

variables x0 and y0 to both the initial values of PS1 and the final values of PS2. Besides considering all

the restriction variables (ymax,…,yt) of each ODE segment, new variables for the whole trajectory yarea

and ytime sum the values in each segment.

BIOMEDICAL DECISION SUPPORT WITH ODES

200

CCSP P=(X,D,C) where:
X = < x0, y0, p1, p2, x05, y05, ymax1, ymax2, ymin1, ymin2, ya1, ya2, yarea, yt1, yt2, ytime>
D = <Dx0,Dy0,Dp1,Dp2,Dx05,Dy05,Dymax1,Dymax2,Dymin1,Dymin2,Dya1,Dya2,Dyarea,Dyt1,Dyt2,Dytime>
C = { PS1(x0, y0, p1, p2, x05, y05, ymax1, ymin1, ya1, yt1),

PS2(x05, y05, p1, p2, x0, y0, ymax2, ymin2, ya2, yt2),
yarea = ya1 + ya2, ytime = yt1 + yt2 }

12.2.2 Using the Extended CCSP for Parameter Tuning

The tuning of drug design may be supported by solving P with the appropriate set of initial domains

for its variables. We will assume p2 to be fixed to a five-hour half live (Dp2=[ln(2)/5]) and p1 to be

adjustable up to about ten-minutes half live (Dp1=[0..4]). The initial value x0, always very small, is

safely bounded in interval Dx0=[0.0..0.5].

The assumptions about the parameter ranges together with the bounds imposed by the above

requirements justify the following initial domains for the variables of P (all the remaining variable

domains are unbounded):

Dx0= [0.0 .. 0.5], Dy0 = [0.8 .. 1.5], Dp1 = [0.0 .. 4.0], Dp2 = [ln(2)/5],

Dymax1=[0.8 .. 1.5], Dymax2=[0.8 .. 1.5], Dymin1=[0.8 .. 1.5], Dymin2 = [0.8..1.5],

Dyarea= [1.2 .. 1.3], Dytime= [0.0 .. 4.0]

Solving the extended CCSP P (enforcing Global Hull-consistency), with a precision of 10-3,

narrows the original p1 interval to [1.191..1.543] in less than 3 minutes. Hence, for p1 outside this

interval the set of requirements cannot be satisfied.

This may help to adjust p1 but offers no guarantees on specific choices within the obtained interval.

For instance, the two extreme canonical solutions for p1, [1.191.. 1.192] and [1.542..1.543], contain no

real solution, since when solving the problem with a higher precision (10-6 - which took about 18

minutes of CPU time), the domain of p1 is narrowed to [1.209233..1.474630] that does not include the

above canonical solutions (obtained with the lower 10-3 precision).

Nevertheless, using CCSP P with different initial domains, may produce guaranteed results for

particular choices of the p1 parameter values. For example, for p1∈[1.3..1.4] (an acceptable uncertainty

in the manufacturing process), and the following initial domains (the remaining are unbounded):

Dx0=[0.0..0.5], Dy0=[0.8..1.5], Dp1=[1.3..1.4], Dp2=[ln(2)/5]

Global Hull-consistency on P (with 10-3 precision) narrows the following, initially unbounded,

domains to:

ymin1∈[0.881..0.891], ymax1∈[1.090..1.102], yarea∈[1.282..1.300],

ymin2∈[0.884..0.894], ymax2∈[1.447..1.462], ytime∈[3.908..3.967].

Notwithstanding the uncertainty, these results do prove that with p1 within [1.3..1.4], all limit cycle

requirements are safely guaranteed (the obtained bounds are well within the requirements). Moreover,

they offer some insight on the requirements showing, for instance, the area requirement to be the most

critical constraint.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

201

The above bounds were obtained in about 13 minutes. However, faster results may be obtained if

the goal is simply to check whether the requirements are met. Since Global Hull-consistency is

enforced by an any time algorithm, its execution may be interrupted as soon as the requirements are

satisfied (10 minutes in this case).

A better approach in this case would be to prove that the CCSP P with the initial domains

Dx0=[0.0..0.5], Dy0=[0.8..1.5], Dp1=[1.3..1.4] and Dp2=[ln(2)/5] together with each of the following

domains cannot contain any solution (again, the remaining domains are kept unbound):

Dymax1=[1.5..+∞], Dymax2=[1.5..+∞], Dymin1=[−∞..0.8], Dymin2=[−∞..0.8],

Dyarea=[1.3..+∞], Dyarea=[−∞..1.2], Dytime=[4.0..+∞].

By independently proving that no solutions exist for the above 7 problems, which cover all non

satisfying possibilities, it is proved that all the requirements are necessarily satisfied. This was

achieved in less than 5 minutes.

Again the requirement of a strong consistency is important for obtaining good pruning results. A

possible alternative would be to enforce 3B-consistency. In this case, the initial domain of parameter

p1 would be narrowed from [0..4] to [1.158..1.577] which is 20% wider than the obtained with Global

Hull-consistency, but could be obtained faster (in about 1 minute and half). Despite providing the

same p1 domain reduction, 4B-consistency is not a good alternative for Global Hull-consistency since

it is 4 times slower (about 14 minutes of CPU execution time).

12.3 The SIR Model of Epidemics

The time development of epidemics is the subject of many mathematical models that have been

proved useful for the understanding and control of infectious diseases. The SIR model [Mur91] is a

well known model of epidemics which divides a population into three classes of individuals and is

based of the following parametric ODE system:

)()(
)(

tItrS
dt

tdS
−=)()()(

)(
taItItrS

dt

tdI
−=)(

)(
taI

dt

tdR
=

where S are the susceptibles - individuals who can catch the disease;

I are the infectives - individuals who have the disease and can transmit it;

R are the removed - individuals who had the disease and are immune or died;

r and a are positive parameters.

The model assumes that the total population N is constant (N=S(t)+I(t)+R(t)) and the incubation period

is negligible. Parameter r accounts for the efficiency of the disease transmission (proportional to the

frequency of contacts between susceptibles and infectives). Parameter a measures the recovery

(removing) rate from the infection.

Important questions in epidemic situations are: whether the infection will spread or not; what will

be the maximum number of infectives; when will it start to decline; when will it ends; and how many

people will catch the disease.

BIOMEDICAL DECISION SUPPORT WITH ODES

202

Figure 12.4 shows the number of susceptibles, infectives and removed as a function of time, as

predicted by the SIR model with S(0)=762, I(0)=1, R(0)=0, r=0.00218 and a=0.44. In this case, the

infection will spread up to a maximum number of infected of about 294 individuals (imax), starting to

decline after 6.5 days (tmax), ending after 22.2 days (tend) and affecting a total of 744 individuals (rend).

Figure 12.4 SIR model predictions with S(0)=762, I(0)=1, R(0)=0, r=0.00218 and a=0.44036.

Frequently, there is information available about the spread of a disease on a particular population. This

is usually gathered as series of time-infectives (ti,Ii) or time-removed (ti,Ri) data points together with

the values (t0,S0), (t0,I0) or (t0,R0) that initiated the epidemics on the population. An important problem

is to predict the behaviour of a similar disease (with similar parameter values) when occurring in a

different environment, namely with a different population size or a different number of initial

infectives.

The following study is based on data reported in the British Medical Journal (4th March 1978) from

an influenza epidemic that occurred in an English boarding school (taken from [Mur91]): a single boy

(from a total population of 763) initiated the epidemics and the evolution of the number of infectives,

available daily, from day 3 to day 14, is shown in table 12.3.

Table 12.3 Infectives reported during an epidemics in an English boarding school.

t 0 3 4 5 6 7 8 9 10 11 12 13 14
It 1 22 78 222 300 256 233 189 128 72 28 11 6

The goal of our study is to predict what would happen if a similar disease occurs in a different place,

say a small town with a population of about 10000 individuals. Moreover, if there is a vaccine to that

disease, what would be the vaccination rate necessary to guarantee that the maximum number of

infectives never exceeds some predefined threshold, for example, half of the total population.

12.3.1 Using the Extended CCSP for Predicting the Epidemic Behaviour

The first step for solving the above problem is to characterize an epidemic disease which is similar to

the one reported in the boarding school. The classical approach would be to perform a numerical best

fit approximation to compute the parameter values r’ and a’ that minimize the residual:

t

S(t)

I(t)

R(t)

Population

0

200

400

600

800

0 2 4 6 8 10 12 14 16 18 20 22 24
tmax

imax

tend

rend

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

203

()∑
=

−
m

j
jj IttI

1

2)(

where It1
,...,Itm

 are the infectives observed at times t1,...,tm, and I(t1),...,I(tm) their respective values

predicted by the SIR model with r=r’ and a=a’. In [Mur91] this method is used to compute r=0.00218

and a=0.44036 with a residual of about 4221 (figure 12.4 shows the best fit solution).

However, generating a single value for each parameter does not capture the essence of the problem

which is not to determine the most similar disease but rather to reason with a set of similar enough

diseases. Moreover such approach does not provide any sensitive analysis about the quality of the data

fitting, namely on the effects of small changes on the parameter values.

An alternative, possible in a constraints framework, is to relax the imposition of the “best” fit and

merely impose a “good” fit. This can be achieved either by considering acceptable errors εj for each

observed data and computing ranges for the parameters such that the distance between the model

predictions and the observed data does not exceed these errors or by imposing some upper bound on

the residual value (or any other measure of the unfitness of the model).

Either the first approach, known as the data driven inverse problem, or the second approach,

denoted here as the maximum residual problem, cannot be solved by classical constraint approaches

since the epidemic model has no analytical solution form.

However, both problems can be represented as extended CCSPs, P1 and P2, respectively, which

include a CSDP constraint PS, representing the evolution of the susceptibles and infectives during the

reported period of time (the first 14 days). The associated ODE system S is composed by the first two

components of the SIR model together with two extra components with null derivatives for

representing the parameters2:

=′=′
−=′

−=′

≡
0)()(

)()()()()(01.0)(

)()()(01.0)(

43

242132

2131

tsts

tstststststs

tstststs

S

CSDP PS contains several Value restrictions for associating variables with: the initial values of the

susceptible (s0) and infective (i0); the parameter values (r and a); and the values of the infective at

times 3,...,14 (i3,...,i14).

CSDP PS = (X,D,C) where:
X = < xODE, s0, i0, r, a, i3, …, i14 >
D = < DODE, Ds0, Di0, Dr, Da, Di3, …, Di14 >
C = { ODES, [0.0 .. 14.0](xODE),

Value1, 0.0(s0), Value2, 0.0(i0), Value3, 0.0(r), Value4, 0.0(a),
Value2, 3.0(i3), …, Value2, 14.0(i14) }

The extended CCSP P1, which represents the data driven inverse problem, contains a single

constraint defined as CSDP PS. The extended CCSP P2, which represents the maximum residual

2 In the equations r is multiplied by 0.01 re-scaling it to the interval [0..1] (its best fit value 0.00218 is re-scaled to 0.218).

BIOMEDICAL DECISION SUPPORT WITH ODES

204

problem, besides CSDP constraint PS, contains also a numerical constraint defining the residual (R)

from the variables i3,...,i14 and the observed values (represented as constants k3,...,k14).

 CCSP P1=(X1,D1,C1) where:
X1=< s0, i0, r, a, i3,…, i14 >
D1=< Ds0, Di0, Dr, Da, Di3,…, Di14 >
C1={ PS(s0, i0, r, a, i3,…, i14) }

CCSP P2=(X2,D2,C2) where:
X2=< s0, i0, r, a, i3,…, i14, R >
D2=< Ds0, Di0, Dr, Da, Di3,…, Di14, DR >
C2={ PS(s0, i0, r, a, i3,…, i14), R = Σ(ij−kj)

2 }

Assuming very wide initial parameter ranges (Dr=Da=[0..1]), the “good” fit requirement can now

be enforced by solving either P1 or P2 with appropriate initial domains for the remaining variables

(the values of the susceptible and infective are initialized accordingly to the report, Ds0=[762] and

Di0=[1]). In the case of P1, each Dij should be initialized with the interval [kj−εj..kj+εj] (for

example with εj=30). In the case of P2, all Dij are kept unbounded, but the residual initial domain DR

must be upper bounded (for example with DR=[0..4800]).

Enforcing Global Hull-consistency (with precision 10-6) on P1 with εj=30, the parameter ranges are

narrowed from [0..1] to r∈[0.214..0.222] and a∈[0.425..0.466] in about 50 minutes. Identical

narrowing would be obtained by enforcing Global Hull-consistency (with precision 10-6) on P2 with

DR=[0..4800]: r∈[0.213..0.224] and a∈[0.423..0.468].

As in the case of the preceding problems, the enforcing of less strong consistency requirements such

as 3B- or 4B-consistency is not a good alternative. For example, enforcing 3B-consistency on P1 the r

domain is only reduced to [0.143..0.495] (43 times wider than with Global Hull-consistency) and the

domain of a cannot be pruned at all. Enforcing 4B-consistency on P1 the domains reduction is similar

to the obtained with Global Hull-consistency, but the execution time is much slower (the execution

was interrupted after 5 hours of CPU time).

Once obtained the parameter ranges that may be considered acceptable to characterize epidemic

diseases similar to the one observed, the next step is to use them for making predictions in the new

context of a population of 10000 individuals.

In this case a single CSDP constraint PS’ represents the first two components of the model together

with ODE restrictions associating variables with the predicted values (besides the Value restrictions to

associate variables with the parameter values r and a and the initial values s0 and i0). A Maximum

restriction represents the infectives maximum value imax and a First Maximum restriction represents

the time of such maximum tmax. A Last Value restriction represents the duration tend of the epidemics as

the last time that the number of infectives exceeds 1. Finally a Value restriction represents the number

of people s25 that are still susceptible at a time (25) safely after the end of the epidemics.

CSDP PS´ = (X,D,C) where:
X = < xODE, s0, i0, r, a, imax, tmax, tend, s25 >
D = <DODE, Ds0, Di0, Dr, Da, Dimax, Dtmax, Dtend, Ds25 >
C = { ODES, [0.0 .. 25.0](xODE),

Value1, 0.0(s0), Value2, 0.0(i0), Value3, 0.0(r), Value4, 0.0(a),
Maximum2,[0.0..25.0](imax), firstMaximum2,[0.0..25.0](tmax),

lastValue2,[0.0..25.0],≥1.0(tend), Value1,25.0(s25) }

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

205

Solving such problem with the parameters ranging within the previously obtained intervals (for

example, Dr=[0.213..0.224] and Da=[0.423..0.468]), the initial value domains Ds0=[9999] and

Di0=[1], and all the other variable domains unbounded, the results obtained for these domains

indicated that:

imax∈[8939..9064] clearly suggesting the spread of a severe epidemics;

tmax∈[0.584..0.666] and tend∈[20.099..22.405] predicting that the maximum will occur during the

first 14 to 16 hours, starting then to decline and ending before the 10th hour of day 22;

s25 ∈[0..0.001] showing that everyone will eventually catch the disease.

If the administration of a vaccine is considered at a rate λ proportional to the number of susceptibles

then, the differential model must be modified into:

)()()(
)(

tStItrS
dt

tdS λ−−=)()()(
)(

taItItrS
dt

tdI
−=)()(

)(
tStaI

dt

tdR λ+=

The requirement that the maximum number of infectives cannot exceed half of the population is

represented by adding the numerical constraint imax≤5000. Solving this new CCSP with the λ initial

domain [0..1.5], its lower bound is raised up to 0.985 indicating that at least such vaccination rate is

necessary to satisfy the requirement.

12.4 Summary

In this chapter the potentiality of the extended interval constraints framework was tested for solving

decision problems based on differential models. The diagnosis of diabetes, the tuning of drug design

and an epidemic study were effectively supported. Such examples illustrated the expressive power of

CSDP restrictions strengthening the importance of our contribution for the integration of biophysical

models in decision support. In the next chapter the contributions of this work are analysed and

directions for future work are suggested.

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

207

Chapter 13

Conclusions and Future Work

In this chapter we overview each individual contribution of this work, discuss its usefulness and

applicability, and identify related directions for further research. In the last section we analyse the

global value of our contribution to the more ambitious goal of integrating biophysical models within

decision support.

13.1 Interval Constraints for Differential Equations

The interval constraints framework was extended to handle Constraint Satisfaction Differential

Problems (CSDPs), which, for the first time, provide the full integration of ordinary differential

equations in constraint reasoning. Many existing ordinary differential models may be represented as

CSDP constraints and combined with other constraints in a constraint model. Moreover, its expressive

power, enhanced with non-conventional restrictions, may encourage the development of new

differential models that cannot be handled by traditional techniques.

Previous versions of our approach were already proposed in [CB99a,CB99b,CB00], but they were

specially developed for handling initial value problems, and lacked the formalism and adequate

methodology for the integration of differential models into constraint reasoning. Only recently such an

integration could be achieved and evaluated by both the mathematical community [CB03a] and the

constraint community [CB03b]1, with positive results.

Despite its encouraging results the approach can still be further improved and several research

directions are worth exploring.

Firstly, new kinds of ODE restrictions could be considered. The type of restrictions considered in

the CSDP formalism were derived from our experience in the biomedical context, namely from the

representation needs evidenced by the underlying differential models. However, the expressive power

can be improved by allowing new types of restrictions more adequate for different kinds of differential

models. For instance, a new restriction could be considered for representing the period of an ODE.

1 “This paper is an interesting contribution to the handling of differential equations in constraint programming that goes

beyond simple initial values problems” (a citation from a reviewer of CP’2003).

CONCLUSIONS AND FUTURE WORK

208

Secondly, different representations of the ODE system could be supported. An assumption of our

approach is the continuity of the right hand side of the differential equations. When there are

discontinuities, a sequence of CSDP constraints is considered, new variables are added for

representing the restrictions at each continuous segment, and new constraints are included to combine

them and obtain its global value (see subsection 12.2.1). However, maximum, minimum, first and last

restrictions cannot be easily combined in numerical constraints without comparison operators. An

useful direction for research would be to extend the CSDP framework to allow the definition by

segments of the ODE system.

Thirdly, alternative solving procedures could be implemented. The procedure developed for solving

a CSDP relies on an Interval Taylor Series (ITS) method which was originally conceived for solving

initial value problems (IVPs), obtaining reliable enclosures along the ODE trajectory. One limitation

of our approach is a direct consequence of such a method, which requires that at least one time point

should be completely confined (even if within wide bounds). Research could be accomplished for

allowing other complementary solving methods. For instance, methods used for solving boundary

problems could be studied. Moreover, from the different reliable approaches for solving IVPs, the ITS

direct method (see subsection 9.2.3) was selected due to its simplicity of implementation rather than

its efficiency. The application of more competitive approaches, such as the Hermite-Obreschkoff

interval method [Ned99] or the Hermite interpolation constraint method [JVD01b], should be

considered, or alternatively, new Runge-Kutta interval methods could be developed.

13.2 Global Hull-consistency

The interval constraints framework was extended with the new consistency criterion of Global

Hull-consistency, for which several enforcing algorithms were developed. Among such algorithms, the

Tree Structured Algorithm (TSA) presented the best performances offering the advantages of keeping

a tree-based compact description of the feasible space and providing any-time results. Constraint

problems, for which weaker consistency criteria provide insufficient pruning of variable domains, may

be solved, with reasonable computing costs, by enforcing Global Hull-consistency. Such improvement

on domains pruning is especially important in problems that include differential equations (see chapter

12). In general, due to its complexity, the applicability of the Global Hull-consistency criterion is not

suitable for problems with a large number of variables.

The criterion of Global Hull-consistency was firstly introduced in [CB01], where only preliminary

results on a simple example were presented. The complete description of the various Global

Hull-consistency enforcing algorithms (presented in chapter 6) and their experimental results (as

discussed in chapter 8) was published in [CB02].

Several research directions can be envisaged for improving the constraint pruning techniques in

continuous domains and, in particular, for ameliorating our Global Hull-consistency approach.

Firstly, the underlying algorithm for enforcing Local-consistency can be further improved. The

local consistency criterion currently required is Box-consistency, which is enforced by the constraint

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

209

Newton method (see subsection 4.2.2). The method associates a narrowing function to each variable of

each constraint for reducing its domain bounds accordingly to the constraint. Since only a single

smaller box is required, the narrowing algorithm is exclusively concerned with the outer limits of the

variable domains. However, during the narrowing process unfeasible regions within each variable

domain may be detected. Such knowledge could be incorporated in the tree-based description of the

feasible space. Other related research directions would be the development of alternative or

complementary narrowing functions. For instance, any of the complementary approaches described in

4.2.3 could be considered for improving the domains pruning achieved through constraint propagation.

Secondly, the branching strategy of the Global Hull-consistency enforcing algorithms may be

refined. Currently, whenever a box is subdivided, two sub-boxes are considered, sharing all variable

domains of the original box, except the one with largest width, which is split by its mid point. Better

strategies could be implemented taking into account other domains to split, other split points, or even

more subdivisions. Such decision should be equated in the context of both the overall enforcing

algorithm requiring the subdivision and the underlying constraint propagation algorithm that will

eventually prune each sub-box.

Thirdly, the advantages of having a tree-based compact description of the feasible space could be

further explored. The tree structure representation of the search space is exclusively used by the TSA

algorithm for supporting the search without losing any previously obtained pruning information. An

interesting research direction would be to develop a visual interface tool for user interaction, based on

the current state of the domains tree. Such a tool could provide the user with a general perspective on

the feasible space, allowing for the interactive specification of sub-regions of interest which would be

further pruned by reinforcing Global Hull-consistency. A direct consequence of the generalisation of

this idea is the definition of even stronger consistency criteria based on the recursive enforcement of

Global Hull-consistency. Another appealing research area related with the domains tree and with both

of the above extensions is the parallel exploration of the different branches of the tree.

13.3 Local Search for Interval Constraint Reasoning

A local search procedure was developed for integration with constraint reasoning in continuous

domains. The local search is confined to specific boxes of the search space, relying on the generic

branch and bound strategy of the constraint reasoning algorithm to overcome local minimum. It can be

used for accelerating the finding of canonical solutions in CCSPs. In particular, the integration of local

search with the enforcement of Global Hull-consistency may be advantageous for reducing both the

overall execution time and the memory storage required.

The local search procedure was introduced in association with the Global Hull-consistency criterion

and described as an optional tool for enhancing its enforcing algorithms [CB01, CB02]. Not enough

testing was yet performed for identifying the kind of constraint problems where the application of

local search is advantageous. Future work should be done to evaluate the impact of local search in

continuous constraint programming and, in particular, for enforcing Global Hull-consistency.

CONCLUSIONS AND FUTURE WORK

210

The integration of local search in continuous constraint programming is a widely open research

area. In particular, our local search approach may be improved in several ways.

Firstly, the line search procedure may be modified. In the proposed approach, new points are

obtained through minimisation along the Newton vector, as long as they are kept inside the search box.

Since local minima are overcome by a generic branch and bound strategy, a natural variation could be

to skip the minimisation procedure and to take complete Newton steps bounded within the search box.

Another alternative that is worth further research could be to allow the search to evolve outside the

original search box.

Secondly, different kinds of local search procedures could be explored. Any of the alternatives

described in section 7.2 could be considered. For instance, the alternatives based on strategies for

solving constrained optimisation problems, such as Penalty methods and Lagrange-Multiplier

methods, seem to be the best candidates.

Thirdly, the integration of local search with the CSDP constraints can be improved. In the Jacobian

matrix, necessary for computing the Newton vector, the elements associated with variables of the

solving base of a CSDP constraint are computed approximately from the derivative definition (see

definition 10.2-7). Such a method implies an extra ODE evaluation on a nearby point, and is subject to

errors depending on the distance of such a point from the current one. A better alternative could be to

use the available information about the ODE system to obtain the partial derivatives with respect to

those variables.

13.4 Prototype Implementation: Applications to Biophysical Modelling

All the proposed extensions to the interval constraints framework were implemented in a prototype

application. The usefulness of the application for supporting decisions based on differential models

was tested in diverse biophysical domains. It proved to be a valuable supporting tool for the diagnosis

of diabetes, the tuning of drug design, and the study of epidemics. In general, its ability to handle

parametric differential models makes the approach potentially applicable on a wide range of problems,

namely, those requiring the integration of a dynamics model into decision support.

The practical application of our approach combines constraint reasoning with mathematical

modelling and biomedical knowledge. Consequently, an evaluation of the approach should verify its

correctness on these complementary perspectives. The results on biomedical decision support with

ODEs (chapter 12) were published in a constraint programming conference [CB03b], a mathematical

conference [CB03a], and a biomedical conference [CB03c].

With respect to the implementation of our prototype application many improvements are

conceivable. The application was developed for testing the feasibility of our approach and does not

pretend to be competitive with other well established constraint programming systems. Consequently,

an important practical issue is the full revision of the code for efficiency proposes.

Another important topic for further research is the tuning of the prototype parameters. Several

decisions with respect to the functioning of the underlying algorithms were left as parameters of the

INTERVAL CONSTRAINTS FOR DIFFERENTIAL EQUATIONS

211

prototype application and may be adjusted for each specific problem. Examples of such parameters are

the order of the Interval Taylor Series method, the error tolerances accepted, the maximum number of

time points considered, etc. A thorough study should be made to try to understand which parameter

values are more suitable for each particular problem.

Finally, the application of our approach for modelling other domains is an open area with a variety

of research possibilities. In particular, we plan to apply it to predator-prey models, neurophysiology

models, reaction kinetic models, satellite localisation models, and aerodynamic models.

13.5 Conclusions

The integration of deep biophysical models into decision support is a challenging goal, difficult to

accomplish, but fundamental for the development of model-based reasoning in biomedical domains.

Our work is a contribution towards that. Several differential models can now be used for decision

support through constraint reasoning. The constraint reasoning techniques were extended for a better

adequacy to such a demanding context of decision support based on complex non linear models.

However, there are still important research areas that may provide valuable contributions for

adapting constraint reasoning to such context.

The expressive power on the constraints framework can be further extended. Given the hybrid

nature of many biophysical models, combining real variables with integer and boolean variables,

integer constraints and conditional constraints should also be supported. Another possibility is to

provide a new domain type for representing functions as primary objects, allowing to reason about

their properties. This is an idea borrowed from the CSDP framework, where there is a variable for

representing a function and restrictions on its properties. Constraints on the maximum or minimum

values of a real function over some interval are not specific of differential equations, and should also

be handled in the case where the function is defined analytically.

Additionally, the representation of other kinds of differential equations could be supported by the

CSDP framework, broadening the spectrum of its potential applications. Ordinary differential

equations are the present scope of the CSDP framework. However, many differential models (e.g.

econometric models, flow models) cannot be represented by ODEs. An important area for future

research is the extension of the framework for handling other kinds of differential equations such as

Partial Differential Equations (PDEs) or Delay Differential Equations (DDEs).

Finally, constraint reasoning could be extended with probabilistic reasoning. In decision problems

there are often several possible options, all of them consistent with the constraint set. In practice,

whenever a decision is required, the choice is made based on the probability/likelihood of the possible

options. Uncertainty may be naturally represented in the constraints framework as intervals of possible

values. However, there is often also information about the distribution of the different value

possibilities, some values being more likely than others. Defining a distribution function for each

variable range and knowing how each individual contribution would be combined (for example,

assuming its independence), a global probability/likelihood value could be computed. Such knowledge

CONCLUSIONS AND FUTURE WORK

212

could be subsequently included in the constraint model and used for supporting probabilistic reasoning

based on the ranking of each canonical solution.

We believe that the relative unpopularity of constraint reasoning in continuous domains (at least

compared with finite domains) is essentially due to not providing what is needed in practice. Problems

in continuous domains are very demanding and solutions are required to be obtained efficiently. Users

are willing to sacrifice safety for speed. They are used to the traditional mathematical tools capable of

“quickly” providing approximations that are usually good enough for their needs. To change this

situation constraint programming must impose itself as a convincing better alternative. It must be able

to provide modelling and reasoning capabilities that go beyond what is traditionally offered by the

competing alternatives, namely supporting safe decisions with acceptable computational resources.

We hope that this work has been a valuable contribution in such a direction.

REFERENCES

213

References

[AGR69] E. Ackerman, L. Gatewood, J. Rosevar, and G. Molnar. Blood Glucose Regulation and

Diabetes. In: Concepts and Models of Biomathematics, Chapter 4:131-156, F. Heinmets

(Ed.), Marcel Dekker, 1969.

[Ale68] G. Alefeld. Intervallrechnung uber den Komplexen Zahlen und einige Anwendungen.

Ph.D. Thesis, University of Karlsrube, 1968.

[AH83] G. Alefeld, and J. Herzberger. Introduction to Interval Computations. Academic Press,

New York, USA, 1983.

[Apt99] K.R. Apt. The essence of constraint propagation. Theoretical Computer Science,

221(1-2):179-210, 1999.

[AP98] U.M. Ascher, and L.R. Petzold. Computer Methods for Ordinary Differential Equations

and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics,

Philadelphia, USA, 1998.

[BS96] C. Bendsten, and O. Stauning. FADBAD, a Flexible C++ Package for Automatic

Differentiation Using the Forward and Backward Methods, Technical Report 1996-x5-94,

Department of Mathematical Modelling, Technical University of Denmark, Lyngby,

Denmark, 1996.

[BS97] C. Bendsten, and O. Stauning. TADIFF, a Flexible C++ Package for Automatic

Differentiation Using Taylor Series, Technical Report 1997-x5-94, Department of

Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark, 1997.

[Ben95] F. Benhamou. Interval Constraint Logic Programming. In: Constraint Programming: Basics

and Trends, LNCS 910, 1-21, A. Podelski (Ed.), Springer-Verlag, 1995.

[Ben96] F. Benhamou. Heterogeneous Constraint Solving. In: Proceedings of 5th International

Conference on Algebraic and Logic programming (ALP’96), LNCS 1139, 62-76,

M. Hanus, and M. Rodriguez-Artalejo (Eds.), Springer-Verlag, Aachen, Germany, 1996.

[BGG98] F. Benhamou, F. Goualard, and L. Granvilliers. An Extension of the WAM for Cooperative

Interval Solvers. Technical Report, Department of Computer Science, University of

Nantes, France, 1998.

REFERENCES

214

[BGG99] F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. Revising Hull and Box

Consistency. In: Proceedings of International Conference on Logic Programming

(ICLP’99), 230-244, D. De Schreye (Ed.), MIT Press, Las Cruces, New Mexico,

USA, 1999.

[BG96] F. Benhamou, and L. Granvilliers. Combining Local Consistency, Symbolic Rewriting and

Interval Methods. In: Proceedings of 3rd International Conference on Artificial Intelligence

and Symbolic Mathematical Computation (AISMC-3), LNCS 1138, 144-159, J. Calmet,

J.A. Campbell, and J. Pfalzgraf (Eds.), Springer-Verlag, Steyr, Austria, 1996.

[BG97] F. Benhamou, and L. Granvilliers. Automatic Generation of Numerical Redundancies for

Non-Linear Constraint Solving. Reliable Computing, 3(3):335-344, 1997.

[BMV94] F. Benhamou, D. McAllester, and P. Van Hentenryck.. CLP(Intervals) revisited.

In: Proceedings of International Logic Programming Symposium (ILPS’94), 124-138,

M. Bruynooghe (Ed.), MIT Press, Ithaca, New York, USA, 1994.

[BO97] F. Benhamou, and W.J. Older. Applying Interval Arithmetic to Real, Integer and Boolean

Constraints. Journal of Logic Programming, 32(1):1-24, 1997.

[Ber82] D.P. Bertsekas. Constrained Optimisation and Lagrange Multiplier Methods, Academic

Press, New York, USA, 1982.

[Ber99] D.P. Bertsekas. Nonlinear Programming. (2nd Edition) Athena Scientific, Belmont, 1999.

[Ber97] M. Berz. COSY INFINITY version 8 reference manual. Technical Report MSUCL-1088,

National Superconducting Cyclotron Lab., Michigan State University, East Lansing,

Michigan, USA, 1997.

[BM98] M. Berz, and K. Makino. Verified Integration of ODEs and Flows Using Differential

Algebraic Methods on High-Order Taylor Models. Reliable Computing, 4:361-369, 1998.

[BMB01] L. Bordeaux, E. Monfroy, and F. Benhamou. Improved bounds on the complexity of

kB-consistency. In: Proceedings of 17th International Joint Conference on Artificial

Inteligence (IJCAI’2001), Volume 1, 640-650, B. Nebel (Ed.), M. Kaufmann Publishers

Inc., Seattle, Washington, USA, 2001.

[BGS92] R.W. Brankin, I. Gladwell, and L.F. Shampine. RKSUITE: a Suite of Runge-Kutta Codes

for the Initial Value Problem of ODEs. Softreport 92-S1, Department of Mathematics,

Southern Methodist University, Dallas, Texas, USA, 1992.

[Bre73] R.P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood

Cliffs, New Jersey, USA, 1973.

[BBH89] P.N. Brown, G.D. Byrne, and A.C. Hindmarsh. VODE: a Variable-coefficient ODE Solver.

SIAM Journal on Scientific Computing, 10(5):1038-1051, 1989.

[Bro65] C.G. Broyden. A Class of Methods for Solving Nonlinear Simultaneous Equations.

Mathematics of Computation. 19: 577-593, 1965.

[BS66] R. Bulirsch, and J. Stoer. Numerical treatment of ordinary differential equations by

extrapolation methods. Numerische Mathematik, 8(1): 1-13, 1966.

REFERENCES

215

[CGM93] O. Caprani, B.Godthaab, and K. Madsen. Use of a Real-Valued Local Minimum in Parallel

Interval Global Optimization. Interval Computations, 2:71-82, 1993.

[Cle87] J.G. Cleary. Logical Arithmetic. Future Computing Systems, 2(2):125-149, 1987.

[CDR98] H. Collavizza, F. Delobel, and M. Rueher. A Note on Partial Consistencies over

Continuous Domains. In: Proceedings of 4th International Conference on Principles and

Practice of Constraint Programming (CP’98), LNCS 1520, 147-161, M.J. Maher, and

J.-F. Puget (Eds.), Springer Verlag, Pisa, Italy, 1998.

[CDR99] H. Collavizza, F. Delobel, and M. Rueher. Comparing Partial Consistencies. Reliable

Computing, 5:1-16, 1999.

[CDR99b] H. Collavizza, F. Delobel, and M. Rueher. Extending Consistent Domains of Numeric

CSP. In: Proceedings of 16th International Joint Conference on Artificial Inteligence

(IJCAI’99), 406-413, T. Dean (Ed.), Morgan Kaufmann, Stockholm, Sweden, 1999.

[CR96] G.F. Corliss, and R. Rihm. Validating an A Priori Enclosure Using High-Order Taylor

Series. In: Scientific Computing, Computer Arithmetic and Validated Numerics:

Proceedings of the International Symposium on Scientific Computing, Computer

Arithmetic and Validated Numerics (SCAN’95), 228-238, G. Alefeld, A. Frommer, and

B. Lang (Eds.), Akademie Verlag, Wuppertal, Germany, 1996.

[Cru95] J. Cruz. Um Modelo Causal-Funcional para o Diagnóstico de Doenças Neuromusculares,

Masters Thesis in Informatics Engineering, Science and Technology Faculty of the New

University of Lisbon, Portugal, 1995.

[CBB99] J. Cruz, P. Barahona, and F. Benhamou. Integrating Deep Biomedical Models into Medical

Decision Support Systems: an Interval Constraint Approach. In: Proceedings of the

7th Joint European Conference on Artificial Intelligence in Medicine and Medical Decision

Making (AIMDM’99), LNAI 1620, 185-194, W. Horn, Y. Shahar, G. Lindberg, S.

Andreassen, J. Wyatt (Eds.), Springer, Aalborg, Denmark, 1999.

[CBF96] J. Cruz, P. Barahona, A. Figueiredo, M. Veloso, and M. Carvalho, DARE: A

Knowledge-Based System for the Diagnosis of Neuromuscular Disorders, Applications of

Artificial Intelligence, Advanced Manufacturing Forum, 1:29-40, J. Mamede, and

C. Pinto-Ferreira (Eds.), N. Scitec Publications, 1996.

[CB97] J. Cruz, and P. Barahona. A Causal-Functional Model Applied to EMG Diagnosis.

In: Proceedings of the 6th Conference on Artificial Intelligence in Medicine in Europe

(AIME’97). LNCS 1211, 249-260, E.T. Keravnou, C. Garbay, R.H. Baud, and J.C. Wyatt

(Eds.), Springer, Grenoble, France, 1997.

[CB99a] J. Cruz, and P. Barahona. An Interval Constraint Approach to Handle Parametric Ordinary

Differential Equations for Decision Support. In: Proceedings of the 5th International

Conference on Principles and Practice of Constraint Programming (CP’99), LNCS 1713,

478-479, J. Jaffar (Ed.), Springer, Alexandria, Virginia, USA, 1999.

REFERENCES

216

[CB99b] J. Cruz, and P. Barahona. An Interval Constraint Approach to Handle Parametric Ordinary

Differential Equations for Decision Support. In: Proceedings of the 2nd International

Workshop on Extraction of Knowledge from Data Bases (EKDB’99), associated with 9th

Portuguese Conference on Artificial Intelligence (EPIA’99), 93-108, F. Moura Pires,

G. Guimarães and A. Jorge (Eds.), Springer, Évora, Portugal, 1999.

[CB00] J. Cruz, and P. Barahona. Handling Differential Equations with Constraints for Decision

Support. In: Proceedings of the 3rd International Workshop on Frontiers of Combining

Systems (FroCoS’2000), LNAI 1794, 105-120, H. Kirtchner, and C. Ringeissen (Eds.),

Springer, Nancy, France, 2000.

[CB01] J. Cruz, and P. Barahona. A Global Hull Consistency with Local Search for Continuous

Constraint Solving. In: Proceedings of the 10th Portuguese Conference on Artificial

Intelligence (EPIA’2001). LNCS 2258, 349-362, P. Brazdil, and A. Jorge (Eds.), Springer,

Porto, Portugal, 2001.

[CB02] J. Cruz, and P. Barahona. Maintaining Global-Hull Consistency with Local Search for

Continuous CSPs. In: Proceedings of the 1st International Workshop on Global Constrained

Optimisation and Constraint Satisfaction (Cocos’02), Springer, Valbonne,

Sophia-Antipolis, France, 2002.

[CB03a] J. Cruz, and P. Barahona. Constraint Reasoning with Differential Equations.

In: Proceedings of the International Conference on Applied Numerical Analysis &

Computational Mathematics (NaCoM-2003), NaCoM-2003 Extended Abstracts, 38-41,

G. Psihoyios (Ed.), Wiley, Cambridge, UK, 2003.

[CB03b] J. Cruz, and P. Barahona. Constraint Satisfaction Differential Problems. In: Proceedings of

the 9th International Conference on Principles and Practice of Constraint Programming

(CP’03), LNCS, Springer, Cork, Ireland, 2003 (accepted for publication).

[CB03c] J. Cruz, and P. Barahona. Constraint Reasoning in Deep Biomedical Models.

In: Proceedings of the 9th Conference on Artificial Intelligence in Medicine (AIME’03),

LNAI, Springer, Cyprus, 2003 (accepted for publication).

[Dav87] E. Davis. Constraint Propagation with Interval Label. Artificial Intelligence, 32:281-331,

1987.

[Dem97] J.W. Demmel. Applied Numerical Linear Algebra. SIAM Publications, Philadelphia, 1997.

[DS83] J.E. Dennis, and R.B. Schnabel. Numerical Methods for Unconstrained Optimization and

Nonlinear Least Squares. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1983.

[DJV98] Y. Deville, M. Janssen, and P. Van Hentenryck. Consistency Techniques for Ordinary

Differential Equations. In: Proceedings of the 4th International Conference on Principles

and Practice of Constraint Programming (CP’98), LNCS 1520, 162-176, M. Maher, and

J.-F. Puget (Eds.), Springer, Pisa, Italy,1998.

REFERENCES

217

[Eij81] P. Eijgenraam. The Solution of Initial Value Problems Using Interval Arithmetic.

Mathematical Centre Tracts Nº144. Stichting Mathematisch Centrum, Amsterdam,

The Netherlands, 1981.

[FM90] A. V. Fiacco, and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained

Minimization Techniques. SIAM Publications, Philadelphia, USA, 1990.

[Fle70] R. Fletcher. A New Approach to Variable Metric Algorithms. Computer Journal,

13:317-322, 1970.

[Fle87] R. Fletcher. Practical Methods of Optimization, 2nd Edition, Wiley, Chichester & New

York, 1987.

[FP63] R. Fletcher, and M. Powell. A Rapidly Convergent Descent Method for Minimization.

Computer Journal, 6:163-168, 1963.

[FR64] R. Fletcher, and C. Reeves. Function Minimization by Conjugate Gradients. Computer

Journal, 7:149-154, 1964.

[FMM77] G.E. Forsythe, M.A. Malcolm, and C.B. Moler. Computer Methods for Mathematical

Computations. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1977.

[Fre78] E.C. Freuder. Synthesizing Constraint Expressions. In: Communications of the ACM

(CACM), 21(11):958-966, 1978.

[Gea71] C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations,

Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1971.

[GM75] P.E. Gill, and W. Murray. Numerical Methods for Constrained Optimization, Academic

Press, 1975.

[GMW81] P.E. Gill, W. Murray, and M. Wright. Practical Optimization, Academic Press, New York,

USA, 1981.

[GR71] G.H. Golub, and C. Reinsch. Singular Values Decomposition and Least Squares Solution.

Contribution I/10 in [WR71], 1971.

[GV96] G.H. Golub, and C.F. Van Loan. Matrix Computations, 3th Edition, Johns Hopkins

University Press, Baltimore and London, 1996.

[Gou00] F. Goualard. Langages et environnements en programmation par contraintes d'intervalles.

Ph.D. Thesis, Institut de Recherche en Informatique de Nantes, Université Nantes, Nantes,

France, 2000.

[GDD94] M. Gu, J.W. Demmel, and I. Dhillon. Efficient Computation of the Singular Value

Decomposition with Applications to Least Squares Problems. Technical Report

LBL-96201, Lawrence Berkeley National Laboratory, 1994.

[HNW91] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff

Problems, 2nd Edition, Springer-Verlag, Berlin, Germany, 1991.

[Han69] E. Hansen. Topics in Interval Analysis, Oxford University Press, London, UK, 1969.

[Han78] E. Hansen. A Globally Convergent Interval Method for Computing and Bounding Real

Roots. BIT 18:415-424, 1978.

REFERENCES

218

[Han92] E. Hansen. Global Optimization Using Interval Analysis. 2nd Edition, Marcel Dekker, New

York, USA, 1992.

[HS81] E. Hansen, and S. Sengupta. Bounding Solutions of Systems of Equations Using Interval

Analysis. BIT 21:203-211, 1981.

[Han68] R.J. Hanson. Interval Arithmetic as a Closed Arithmetic System on a Computer. Technical

Report 197, Jet Propulsion Laboratory, 1968.

[HF96] D. Sam-Haroud, and B.V. Faltings. Consistency Techniques for Continuous Constraints.

Constraints, 1(1-2):85-118, 1996.

[Har64] P. Hartman. Ordinary Differential Equations. John Wiley and Sons, New York, USA,

1964.

[Har99] M. Hartmann. Runge-Kutta Methods for the Validated Solution of ODEs. In: Proceedings

of the 4th International Congress on Industrial and Applied Mathematics (ICIAM’99), 202,

Edinburgh, Scotland, UK, 1999.

[Hen62] P. Henrici. Discrete Variable Methods in Ordinary Differential Equations. John Wiley &

Sons, New York, USA, 1962.

[Hic94] T.J. Hickey. CLP(F) and Constrained ODEs. In: Proceedings of the Workshop on

Constraint Languages and their use in Problem Modelling, ECRC Technical Report

ECRC-94-38, 69-79, Jourdan, Lim, and Yap (Eds.), 1994.

[HEW98] T.J. Hickey, M.H. van Emden, and H. Wu. A Unified Framework for Interval Constraints

and Interval Arithmetic. In: Proceedings of the 4th International Conference on Principles

and Practice of Constraint Programming (CP’98), LNCS 1520, 250-264, M. Maher, and

J.-F. Puget (Eds.), Springer, Pisa, Italy, 1998.

[HJE99] T.J. Hickey, Q. Ju, and M.H. van Emden. Interval Arithmetic: from Principles to

Implementation. Technical Report CS-99-202, Brandeis University, USA, 1999.

[HBM01] J. Hoefkens, M. Berz, and K. Makino. Verified High-Order Integration of DAEs and

Higher-Order ODEs. In: Scientific Computing, Validated Numerics and Interval Methods,

281-292, W. Kraemer, and J.W.V. Gudenberg (Eds.), Kluwer Academic Publishers,

Dordrecht, The Netherlands, 2001.

[Hyv92] E. Hyvönen. Constraint Reasoning based on Interval Arithmetic: the Tolerance Propagation

Approach. Artificial Intelligence, 58(1-3):71-112, 1992.

[IF79] K. Ichida, and Y. Fugii. An Interval Arithmetic Method for Global Optimization.

Computing, 23(1):85-97, 1979.

[JDV99] M. Janssen, Y. Deville, and P. Van Hentenryck. Multistep Filter Operators for Ordinary

Differential Equations. Proceedings of the 5th International Conference on Principles and

Practice of Constraint Programming (CP’99), LNCS 1713, 246-260, J. Jaffar (Ed.),

Springer, Alexandria, Virginia, USA, 1999.

[JVD01a] M. Janssen, P. Van Hentenryck, and Y. Deville. A Constraint Satisfaction Approach to

Parametric Differential Equations. In: Proceedings of the 17th International Joint

REFERENCES

219

Conference on Artificial Intelligence (IJCAI’2001), Volume 1, 297-302, B. Nebel (Ed.),

M. Kaufmann Publishers Inc., Seattle, Washington, USA, 2001.

[JVD01b] M. Janssen, P. Van Hentenryck, and Y. Deville. Optimal Pruning in Parametric Differential

Equations. In: Proceedings of 7th International Conference on Principles and Practice of

Constraint Programming (CP’01), LNCS 2239, 539-562, T. Walsh (Ed.), Springer-Verlag,

Paphos, Cyprus, 2001.

[Jan92] C. Jansson. A Global Optimization Method Using Interval Arithmetic. In: Proceeding of

the 3rd IMACS-GAMM Symposium on Computer Arithmetic and Scientific Computing

(SCAN’92), 259-268, L. Atanassova (Ed.), 1992.

[Jea98] P. Jeavons. Constructing Constraints. In: Proceedings of 4th International Conference on

Principles and Practice of Constraint Programming (CP’98), LNCS 1520, 2-16,

M.J. Maher, and J.-F. Puget (Eds.), Springer-Verlag, Pisa, Italy, 1998

[Kah68] W.M. Kahan. A More Complete Interval Arithmetic. Technical Report, University of

Toronto, Canada, 1968.

[KKN92] R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and C. Ullrich. Pascal-XSC: Language

Reference with Examples. Springer-Verlag, Berlin, Germany, 1992.

[Kra69] R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlershranken,

Computing, 4:187-201, 1969.

[KB99] L. Krippahl, and P. Barahona. Applying Constraint Propagation to Protein Structure

Determination. In: Proceedings of the 5th International Conference on Principles and

Practice of Constraint Programming (CP’99), LNCS 1713, 289-302, J. Jaffar (Ed.),

Springer, Alexandria, Virginia, USA, 1999.

[KB02] L. Krippahl, and P. Barahona. PSICO: Solving Protein Structures with Constraint

Programming and Optimisation, Constraints, 7(3-4):317-331, 2002.

[Krü69] F. Krückeberg. Ordinary Differential Equations. In: Topics in Interval Analysis, 91-97,

E. Hansen (Ed.), Clarendon Press, Oxford, UK, 1969.

[Lam91] J.D. Lambert. Numerical Methods for Ordinary Differential Systems. Wiley, London, UK,

1991.

[Lho93] O. Lhomme. Consistency Techniques for Numeric CSPs. In: Proceedings of the

13th International Joint Conference on Artificial Intelligence (IJCAI’1993), 232-238,

R. Bajcsy (Ed.), Morgan Kaufmann, Chambéry, France, 1993.

[LGR96] O. Lhomme, A. Gotlieb, M. Rueher, and P. Taillibert. Boosting the Interval Narrowing

Algorithm. In: Proceedings of the Joint International Conference and Symposium on Logic

Programming (JICSLP’96), 378-392, M.J. Maher (Ed.), MIT Press, Bonn, Germany, 1996.

[LGR98] O. Lhomme, A. Gotlieb, and M. Rueher. Dynamic Optimization of Interval Narrowing

Algorithms. Journal of Logic Programming, 37(1-3):165-183, 1998.

[Loh87] R.J. Lohner. Enclosing the solutions of ordinary initial and boundary value problems.

In: Computer Arithmetic: Scientific Computation and Programming Languages. 255-286,

REFERENCES

220

E.W. Kaucher, U.W. Kulisch, and C. Ullrich, (Eds.), Wiley-Teubner Series in Computer

Science, Stuttgart, Germany, 1987.

[Loh88] R.J. Lohner. Einschlieβung der Lösung Gewöhnlicher Anfangs- und Randwertaufgaben

und Anwendungen, Ph.D. Thesis, Universität Karlsruhe, Germany, 1988.

[Loh95] R.J. Lohner. Step Size and Order Control in the Verified Solution of IVP with ODEs.

In: Proceedings of International Conference on Scientific Computation and Differential

Equations (SciCADE’95), Stanford, California, USA, 1995.

[Mac77] A.K. Mackworth. Consistency in Network of Relations. Artificial Intelligence,

8(1):99-118, 1977.

[Mon74] U. Montanari. Networks of Constraints: Fundamental Properties and Applications to

Picture Processing. Information Science, 7(2):95-132, 1974.

[Moo66] R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1966.

[Moo79] R.E. Moore. Methods and Applications of Interval Analysis. SIAM, Studies in Applied

Mathematics 2, Philadelphia, USA, 1979.

[MW93] J.J. Moré, and S.J. Wright. Optimization Software Guide. SIAM, Frontiers in Applied

Mathematics 14, Philadelphia, USA, 1993.

[Mur91] J.D. Murray. Mathematical Biology, 2nd Edition, Springer, 1991.

[Ned99] N.S. Nedialkov. Computing Rigorous Bounds on the Solution of an Initial Value Problem

for an Ordinary Differential Equation. Ph.D. Thesis, Department of Computer Science,

University of Toronto, Canada, 1999.

[NJ99] N.S. Nedialkov, and K.R. Jackson. An Interval Hermite-Obreschkoff method for

Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary

Differential Equation. Reliable Computing 5(3), 289-310, 1999.

[NJ00] N.S. Nedialkov, and K.R. Jackson. ODE Software that Computes Guaranteed Bounds on

the Solution. In: Advances in Software Tools for Scientific Computing, 197-224, H.P.

Langtangen, A.M. Bruaset and E. Quak (Eds.), Springer-Verlag, 2000.

[NJ01] N.S. Nedialkov, and K.R. Jackson. A New Perspective on the Wrapping Effect in Interval

Methods for Initial Value Problems for Ordinary Differential Equations. In: Perspectives

on Enclosure Methods, 219-264, A. Facius, U. Kulisch, and R. Lohner (Eds.),

Springer-Verlag, Vienna, Austria, 2001.

[NJ02] N.S. Nedialkov, and K.R. Jackson. The Design and Implementation of an Object-Oriented

Validated ODE Solver. Submitted to Advances of Computational Mathematics, 2002.

[NJC99] N.S. Nedialkov, K.R. Jackson, and G.F. Corliss. Validated Solutions of Initial Value

Problems for Ordinary Differential Equations. Applied Mathematics and Computation

105(1):21-68, 1999.

[NJP01] N.S. Nedialkov, K.R. Jackson, and J.D. Pryce. An Effective High-Order Interval Method

for Validating Existence and Uniqueness of the Solution of an IVP for an ODE. Reliable

Computing 7(6):1-17, 2001.

REFERENCES

221

[Nov93] M. Novoa. Theory of Preconditioners for the Interval Gauss-Siedel Method and

Existence/Uniqueness Theory with Interval Newton Methods. Department of Mathematics,

University of Southwestern Louisiana, USA, 1993.

[Old89] W. Older. Interval Arithmetic Specification. Technical Report, BNR Computing Research

Laboratory, 1989.

[Old94] W. Older. Application of Relational Interval Arithmetic to Ordinary Differential Equations.

In: Proceedings of the Workshop on Constraint Languages and their use in Problem

Modelling, International Logic Programming Symposium, M. Bruynooghe (Ed.), Ithaca,

New York, USA, 1994.

[OB93] W. Older, and F. Benhamou. Programming in CLP(BNR). In: Proceedings of the

International Conference on Principles and Practice of Constraint Programming (PPCP’93),

228-238, Newport, Rode Island, USA, 1993.

[OV93] W. Older, and A. Vellino. Constraint Arithmetic on Real Intervals. In: Constraint Logic

Programming: Selected Research, 175-196, A. Colmerauer, and F. Benhamou (Eds.), MIT

Press, London, UK, 1993.

[OR70] J. Ortega, and W. Rheinboldt. Iterative Solution of Nonlinear Equations in Several

Variables. Academic Press, New York, USA, 1970.

[Pet00] K. Petras. Validating Runge-Kutta Methods for ODEs with Analytic Right-Hand Side. Oral

Communication at the International Symposium on Scientific Computing, Computer

Arithmetic and Validated Numerics (SCAN’00), Karlsruhe, Germany, 2000.

[PR69] E. Polak, and G. Ribiere. Note sur la Convergence de Methods de Directions Conjuges.

Revue Francaise Informat, Recherche Operationelle, 16:35-43, 1969.

[PTV92] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in C:

The Art of Scientific Computing, 2nd Edition, Cambridge University Press, 1992.

[PV98] J-F. Puget, and P. Van Hentenryck. A Constraint Satisfaction Approach to a Circuit Design

Problem. Journal of Global Optimization, 13:75-93, MIT Press, 1997.

[RR84] H. Ratschek, and J. Rokne. Computer Methods for the Range of Functions. Ellis Horwood

Limited, Chichester, UK, 1984.

[RR88] H. Ratschek, and J. Rokne. New Computer Methods for Global Optimization. Wiley, New

York, USA, 1988.

[Rat96] D. Ratz. On Extended Interval Arithmetic and Inclusion Monotonicity. Institut fur

Angewandte Mathematik, University of Karlsrube, Germany, 1996.

[Rih94] R. Rihm. Interval Methods for Initial Value Problems in ODEs. In: Topics in Validated

Computations: Proceedings of the IMACS-GAMM International Workshop on Validated

Computations, 173-207, University of Oldenburg, J. Herzberger, (Ed.), Elsevier Studies in

Computational Mathematics, Elsevier, Amsterdam, New York, USA, 1994.

[Rih98] R. Rihm. Implicit Methods for Enclosing Solutions of ODEs. Journal of Universal

Computer Science, 4(2): 202-209, 1998.

REFERENCES

222

[SKL97] A. Semenov, T. Kashevarova, A. Leshchenko, and D. Petunin. Combining Various

Techniques with the Algorithm of Subdefinite Calculations. In: Proceedings of the 3rd

International Conference on the Practical Application of Constraint Technology

(PACT'97), 287-306, London, UK, 1997.

[SG75] L.F. Shampine, and M.K. Gordon. Computer Solution of Ordinary Differential Equations:

the Initial Value Problem. W.H. Freeman and Company, San Francisco, USA, 1975.

[Sha94] L.F. Shampine. Numerical Solution of Ordinary Differential Equations. Chapman and Hall,

New York, USA, 1994.

[SH92] G. Sidebottom, and W.S. Havens. Hierarchical Arc Consistency for Disjoint Real Intervals

in Constraint Logic Programming. Computational Intelligence, 8(4):601-623, 1992.

[Ske74] S. Skelboe. Computation of Rational interval Functions. BIT, 14:87-95, 1974.

[Spi92] E. Spitznagel. Two-Compartment Pharmacokinetic Models. Consortium for Ordinary

Differential Equations Experiments Newsletter (C-ODE-E). Harvey Mudd College,

Claremont, California, USA, (1992).

[Sta96] O. Stauning. Enclosing Solutions of Ordinary Differential Equations.Technical Report

IMM-REP-1996-18, Department of Mathematical Modelling, Technical University of

Denmark, Lyngby, Denmark, 1996.

[Sta97] O. Stauning. Automatic Validation of Numerical Solutions. Ph.D. Thesis, Technical

University of Denmark, Lyngby, Denmark, 1997.

[SB92] J. Stoer, and R. Bulirsch. Introduction to Numerical Analysis. 2nd Edition, Springer, New

York, USA, 1992.

[VMK97] P. Van Hentenryck, D. McAllester, and D. Kapur. Solving Polynomial Systems Using a

Branch and Prune Approach. SIAM Journal of Numerical Analysis, 34(2): 797-827, 1997.

[VMD97] P. Van Hentenryck, L. Michel, and Y. Deville. Numerica: A Modeling Language for

Global Optimization. MIT Press, 1997.

[Wal72] D.L. Waltz. Generating Semantic Descriptions from Drawings of Scenes with Shadows.

Techical Report AI-TR-271, MIT, Cambridge, USA, 1972.

[WR71] J.H. Wilkinson, and C. Reinsch. Linear Algebra. Handbook for Automatic Computation II.

Springer, Berlin, Germany, 1971.

[YSH96] E.K. Yeargers, R.W. Shonkwiler, and J.V. Herod. An Introduction to the Mathematics of

Biology: with Computer Algebra Models. Birkhäuser, Boston, USA, 1996.

223

Appendix A

INTERVAL ANALYSIS THEOREMS

The demonstrations of the Interval Arithmetic theorems are based on several assumptions about the

basic interval arithmetic operators and their approximate evaluation. These assumptions are in

accordance with the original interval arithmetic proposal [Moo66] where division by an interval

containing zero was not considered. However to integrate the interval arithmetic theorems within the

broader context of extended interval arithmetic it would be necessary to extend the definitions of an

interval arithmetic operator and of the interval expression evaluation to handle multiple intervals1.

Assumption A-1 If Φ is an m-ary basic interval arithmetic operator then, for the real intervals I1,…,Im,

Φ(I1,…,Im) is the smallest real interval enclosing the set S obtained by applying it to m-tuples of real

numbers, one from each of the m intervals:

 S={Φ(r1,…,rm) | r1∈I1 ∧…∧ rm∈Im} ⊆ Φ(I1,…,Im) ∧ ∀I⊇S Φ(I1,…,Im) ⊆ I

In particular, if Φ is said to be able to compute the exact ranges within its interval arguments then:

 S={Φ(r1,…,rm) | r1∈I1 ∧…∧ rm∈Im} = Φ(I1,…,Im)

Assumption A-2 The basic interval arithmetic operators are all inclusion monotonic. If Φ is an m-ary

basic interval arithmetic operator then, for any real intervals I1,…,Im and I1’,…,Im’, the following

property holds:

∀1≤i≤m Ii’⊆Ii ⇒ Φ(I1’,…,Im’) ⊆ Φ(I1,…,Im)

Assumption A-3 If Φ is an m-ary basic interval arithmetic operator then, for the real intervals I1,…,Im,

its approximate evaluation Φapx(I1,…,Im) with the outward evaluation rules is defined as:

 Φapx(I1,…,Im)=Iapx(Φ(I1,…,Im))

In particular, when the interval arithmetic evaluation is said to be performed with infinite precision:

 Φapx(I1,…,Im)=Φ(I1,…,Im)

1 As discussed in subsection 3.1.1 multiple intervals may be originated from a division by an interval containing zero.

APPENDIX A

224

The following lemmas will be used in the demonstrations of the Interval Arithmetic theorems.

Lemma A-1 Let I1 and I2 be two real intervals. If I1∪I2 is a real interval then:

 Iapx(I1) ∪ Iapx(I2) = Iapx(I1∪I2)

Proof:
Let I1=<a..b> and I2=<c..d> with a≤d (this is always possible by choosing appropriately I1 and I2). If

I1∪I2 is a real interval then there cannot exist any real value r such that b<r<c (otherwise there would

be a gap within I1∪I2). Moreover, the smallest of the left bounds and the largest of the right bounds of

both intervals I1 and I2 must bound the real interval I1∪I2. Consequently its RF-interval approximation

is (see definition 2.2.3-1):

Iapx(I1∪I2) = [min(a,c)..max(b,d)] (1)

On the other hand, the RF-interval approximations of each interval I1 and I2 are:

Iapx(I1) = [a..b]

Iapx(I2) = [c..d]

Their union is necessarily a real interval because if it cannot exist any real value r such that b<r<c

then it also cannot exist any real value r such that b≤b<r<c≤c.

And so their union is:

Iapx(I1) ∪ Iapx(I2) =[a..b]∪[c..d] = [min(a,c)..max(b,d)] (2)

If a≤c then a≤c and so min(a,c)=a=min(a,c) else min(a,c)=c=min(a,c). So, in

both cases:

min(a,c)=min(a,c) (3)

If b≤d then b≤d and so max(b,d)=d=max(b,d) else max(b,d)=b=max(b,d) So, in

both cases:

 max(b,d)=max(b,d) (4)

From (3) and (4) it follows that the right sides of equations (1) and (2) are equal thus:

Iapx(I1) ∪ Iapx(I2) = Iapx(I1∪I2)

Lemma A-2 Let FE be an interval expression. Let B, B1 and B2 be n-ary R-boxes. If B=B1∪B2 then

FE(B1)∪FE(B2) is a real interval.

Proof:
Definition 3.2-1 gives an inductive definition for the set of all possible interval expressions: the two

base clauses (i and ii) specify that interval constants (I) and interval variables (Xi) are the basic

elements of the defined set; the inductive clause (iii) specifies how to generate additional elements

from existing elements E1,…,Em and an m-ary basic interval arithmetic operator Φ.

We will present an inductive proof that for every interval expression FE belonging to this set, the

property that FE(B1)∪FE(B2) is a real interval must hold (where B, B1 and B2 be n-ary R-boxes and

INTERVAL ANALYSIS THEOREMS

225

B=B1∪B2). The proof consists on a basis step which shows that the property holds for the basic

elements (FE(B1)∪FE(B2) is a real interval with FE≡I and with FE≡Xi) and an inductive step which

shows that if the property holds for some elements E1,…,Em (inductive hypothesis: Ei(B1)∪Ei(B2) is a

real interval with 1≤i≤m) then it holds for any elements generated from them by the inductive clause

(FE(B1)∪FE(B2) is a real interval with FE≡Φ(E1,…,Em)).

Basis Step

 Proof that FE(B1)∪FE(B2) is a real interval with FE≡I (where I is a real interval):

Accordingly to definition 3.2-4, in the case of FE≡I:

FE(B1) = FE(B2) = Iapx(I)

Consequently:

FE(B1)∪FE(B2) = Iapx(I)

which is a real interval (see definition 2.2.3-1of RF-interval approximation)

 Proof that FE(B1)∪FE(B2) is a real interval with FE≡Xi (where Xi is an interval valued variable):

Accordingly to definition 3.2-4, in the case of FE≡Xi:

FE(B1)=Iapx(B1[Xi])

FE(B2)=Iapx(B2[Xi])

Consequently:

FE(B1)∪FE(B2) = Iapx(B1[Xi]) ∪ Iapx(B2[Xi]) (1)

If B=B1∪B2 and B, B1 and B2 are n-ary R-boxes then:

∀1≤i≤m B[Xi]=B1[Xi]∪B2[Xi]

So, for any 1≤i≤m, B1[Xi]∪B2[Xi] is a real interval since B[Xi] is a real interval (see definition

2.2.4-1 of an R-box). Because B1[Xi] and B2[Xi] and both real intervals and their union is a real

interval then, by Lemma A1 it follows:

Iapx(B1[Xi]) ∪ Iapx(B2[Xi]) = Iapx(B1[Xi]∪B2[Xi]) (2)

From (1) and (2) it follows that:

 FE(B1)∪FE(B2) = Iapx(B1[Xi]∪B2[Xi])

 which is a real interval.

Inductive Step

 Proof that FE(B1)∪FE(B2) is a real interval with FE≡Φ(E1,…,Em) and Ei(B1)∪Ei(B2) real intervals

(1≤i≤m):

Accordingly to definition 3.2-4 in the case of FE≡Φ(E1,…,Em) and Assumption A3:

FE(B1)= Φapx(E1(B1),…, Em(B1)) = Iapx(Φ(E1(B1),…, Em(B1)))

FE(B2)= Φapx(E1(B2),…, Em(B2)) = Iapx(Φ(E1(B2),…, Em(B2)))

APPENDIX A

226

Consequently:

FE(B1) ∪ FE(B2) = Iapx(Φ(E1(B1),…, Em(B1))) ∪ Iapx(Φ(E1(B2),…, Em(B2))) (3)

But by Assumption A1:

S1={Φ(r1,…,rm) | r1∈ E1(B1) ∧…∧ rm∈ Em(B1)} ⊆ Φ(E1(B1),…, Em(B1)) (4)

S2={Φ(r1,…,rm) | r1∈ E1(B2) ∧…∧ rm∈ Em(B2)} ⊆ Φ(E1(B2),…, Em(B2)) (5)

The union of these two sets gives:

S1∪S2 = {Φ(r1,…,rm) | r1∈E1(B1)∪E1(B2) ∧…∧ rm∈Em(B1)∪Em(B2)} ⊆ Φ(E1(B1),…, Em(B1))

∪ Φ(E1(B2),…, Em(B2))

From the inductive hypothesis we know that each Ei(B1)∪Ei(B2) is a real interval denoted as IRi:

S1∪S2 = {Φ(r1,…,rm) | r1∈IR1∧…∧ rm∈IRm} ⊆ Φ(E1(B1),…, Em(B1)) ∪ Φ(E1(B2),…, Em(B2))

And again by Assumption A1, Φ(IR1,…,IRm) must be the smallest real interval enclosing S1∪S2:

S1∪S2 ⊆ Φ(IR1,…,IRm) ⊆ Φ(E1(B1),…, Em(B1)) ∪ Φ(E1(B2),…, Em(B2)) (6)

From (4), (5) and (6) we may conclude that Φ(E1(B1),…,Em(B1))∪Φ(E1(B2),…,Em(B2)) is

necessarily a real interval. This fact will be proved by contradiction where it is assumed that

Φ(E1(B1),…,Em(B1))∪Φ(E1(B2),…,Em(B2)) is not a real interval and a contradiction is proved:

Suppose Φ(E1(B1),…,Em(B1))∪Φ(E1(B2),…, Em(B2)) is not a real interval then Φ(IR1,…,IRm) which

is an interval must be a subset of Φ(E1(B1),…,Em(B1)) or a subset of Φ(E1(B2),…, Em(B2)). The reason

for this is that there is no way of some elements of the interval Φ(IR1,…,IRm) be within

Φ(E1(B1),…,Em(B1)) and other elements be within Φ(E1(B2),…, Em(B2)) without these two intervals be

connected (and their union be a real interval).

If Φ(IR1,…,IRm) ⊆ Φ(E1(B1),…, Em(B1)) then from (6):

S1∪S2⊆Φ(E1(B1),…, Em(B1))

But in (4) we said that Φ(E1(B1),…, Em(B1)) is the smallest real interval enclosing S1, so S1∪S2=S1,

which means that:

S2⊆S1

And from (4) and (5) because they are the smallest real intervals enclosing these sets:

Φ(E1(B2),…, Em(B2))⊆Φ(E1(B1),…, Em(B1))

which is contradictory with the assumption that Φ(E1(B1),…,Em(B1))∪Φ(E1(B2),…, Em(B2)) is not a

real interval.

If Φ(IR1,…,IRm) ⊆ Φ(E1(B2),…, Em(B2)) a similar reasoning may reach to the analogous conclusion

that Φ(E1(B1),…,Em(B1))⊆Φ(E1(B2),…,Em(B2)) which is contradictory with the assumption that

Φ(E1(B1),…,Em(B1))∪Φ(E1(B2),…, Em(B2)) is not a real interval.

Consequently Φ(E1(B1),…,Em(B1))∪Φ(E1(B2),…,Em(B2)) is necessarily a real interval. But if it is a

real interval and both, Φ(E1(B1),…,Em(B1)) and Φ(E1(B2),…,Em(B2)), are real intervals, then from

Lemma A1:

Iapx(Φ(E1(B1),…,Em(B1)))∪Iapx(Φ(E1(B2),…,Em(B2)))=Iapx(Φ(E1(B1),…,Em(B1))∪Φ(E1(B2),…,Em(B2)))

INTERVAL ANALYSIS THEOREMS

227

And from (3) it follows that:

FE(B1) ∪ FE(B2) = Iapx(Φ(E1(B1),…,Em(B1))∪Φ(E1(B2),…,Em(B2))

which is a real interval.

Lemma A-3 The RF-interval approximation of a real interval is inclusion monotonic, that is, for any

real intervals I and I’ the following property holds:

I’⊆I ⇒ Iapx(I’) ⊆ Iapx(I)

Proof:
Let I=<a..b> and I’=<a’..b’> be two real intervals. If I’⊆I then a≤a’ and b’≤b.

From definition 2.2.3-1 of RF-interval approximation we know that:

Iapx(I’)=Iapx(<a’..b’>)=[a’ ..b’] (1)

Iapx(I)=Iapx(<a..b>)=[a ..b] (2)

But a is the largest F-number not greater than a and so, because a≤a’, it must also be not greater

than a’. Consequently:

a ≤ a’ (3)

Similarly, b is the smallest F-number not lower than b and so, because b’≤b, it must also be not

lower than b’. Consequently:

b’ ≤ b (4)

From (1) and (2) together with (3) and (4) it follows:

Iapx(I’) ⊆ Iapx(I)

Lemma A-4 If Φ is an m-ary basic interval arithmetic operator then its approximate evaluation is

inclusion monotonic, that is, for any real intervals I1,…,Im and I1’,…,I m’, the following property holds:

∀1≤i≤m Ii’⊆Ii ⇒ Φapx(I1’,…,Im’) ⊆ Φapx(I1,…,Im)

Proof:
If ∀1≤i≤m Ii’⊆Ii, then from Assumption A3 we know that:

 Φapx(I1’,…,Im’)=Iapx(Φ(I1’,…,Im’)) (1)

 Φapx(I1,…,Im)=Iapx(Φ(I1,…,Im)) (2)

But due to the inclusion monotonicity property of the basic interval arithmetic operator Φ

(Assumption A3):

Φ(I1’,…,Im’) ⊆ Φ(I1,…,Im)

From the inclusion monotonicity property of the RF-interval approximation (Lemma A3):

Iapx(Φ(I1’,…,Im’)) ⊆ Iapx(Φ(I1,…,Im)) (3)

From (1) and (2) together with (3) it follows:

Φapx(I1’,…,Im’) ⊆ Φapx(I1,…,Im)

APPENDIX A

228

Lemma A-5 If FE be an interval expression representing the n-ary interval function F then its interval

arithmetic evaluation is inclusion monotonic, that is, for any two n-ary R-boxes B and B’, the

following property holds:

B’⊆B ⇒ FE(B’) ⊆ FE(B)

Proof:
Definition 3.2-1 gives an inductive definition for the set of all possible interval expressions: the two

base clauses (i and ii) specify that interval constants (I) and interval variables (Xi) are the basic

elements of the defined set; the inductive clause (iii) specifies how to generate additional elements

from existing elements E1,…,Em and an m-ary basic interval arithmetic operator Φ.

We will present an inductive proof that for every interval expression FE belonging to this set, the

inclusion monotonicity property must hold. The proof consists on a basis step which shows that the

property holds for the basic elements (FE≡I and FE≡Xi) and an inductive step which shows that if the

property holds for some elements E1,…,Em (inductive hypothesis: ∀1≤i≤m
Ei is inclusion monotonic)

then it holds for any elements generated from them by the inductive clause (FE≡Φ(E1,…,Em)).

Basis Step

 Proof that FE≡I is inclusion monotonic (where I is a real interval):

Accordingly to definition 3.2-4, in the case of FE≡I, for any two R-boxes B and B’:

FE(B) = FE(B’) = Iapx(I)

Consequently:

B’⊆B ⇒ FE(B’) ⊆ FE(B)

 Proof that FE≡Xi is inclusion monotonic (where Xi is an interval valued variable):

Accordingly to definition 3.2-4, in the case of FE≡Xi, for any two R-boxes B and B’:

FE(B’)=Iapx(B’[Xi]) (1)

FE(B)=Iapx(B[Xi]) (2)

But if B’⊆B then for every 1≤i≤m it follows:

B’[Xi] ⊆ B[Xi]

And from the inclusion monotonicity property of the RF-interval approximation (Lemma A3):

Iapx(B’[Xi]) ⊆ Iapx(B[Xi]) (3)

From (1) and (2) together with (3) it follows:

B’⊆B ⇒ FE(B’) ⊆ FE(B)

Inductive Step

 Proof that FE≡Φ(E1,…,Em) is inclusion monotonic (where ∀1≤i≤m
Ei is inclusion monotonic):

Accordingly to definition 3.2-4, in the case of FE≡Φ(E1,…,Em), for any two R-boxes B and B’:

FE(B’)= Φapx(E1(B’),…, Em(B’)) (4)

INTERVAL ANALYSIS THEOREMS

229

FE(B)= Φapx(E1(B),…, Em(B)) (5)

But if B’⊆B and for every 1≤i≤m Ei is inclusion monotonic it follows:

∀1≤i≤m
Ei(B’)⊆ Ei(B)

And from the inclusion monotonicity property of approximate evaluation of the basic interval

arithmetic operator (Lemma A4):

Φapx(E1(B’),…, Em(B’)) ⊆ Φapx(E1(B),…, Em(B)) (6)

From (4) and (5) together with (6) it follows:

B’⊆B ⇒ FE(B’) ⊆ FE(B)

Lemma A-6 If F is an n-ary interval function represented by interval expression FE then F is inclusion

monotonic, that is, for any two n-ary R-boxes B and B’, the following property holds:

B’⊆B ⇒ F(B’) ⊆ F(B)

Proof:
Let B’ and B be the two n-ary R-boxes <I1’,…,In’> and <I1,…,In> respectively (with B’⊆B).

Accordingly to definition 3.2-3, F(B’) and F(B) are the smallest real intervals containing respectively

the ranges f*(<I1’,…,In’,In+1,…,In+k>) and f*(<I1,…,In,In+1,…,In+k>) (where In+1,…,In+k are all the

interval constants appearing in FE) and f is expressed as fE ≡Φ(e1,…,em) (obtained by replacing in FE

each interval variable Xi by the real variable xi, each interval constant In+j by the real variable xn+j and

each interval operator by the corresponding real operator).

In this case the ranges f*(<I1’,…,In’,In+1,…,In+k>) and f*(<I1,…,In,In+1,…,In+k>) are:

f*(<I1’,…,In’,In+1,…,In+k>)= {f(d) | d∈<I1’,…,In’,In+1,…,In+k>} ⊆ F(B’) (4)

f*(<I1,…,In,In+1,…,In+k>)= {f(d) | d∈<I1,…,In,In+1,…,In+k>} ⊆ F(B) (5)

But if B’⊆B then for every 1≤i≤m it follows:

Ii’ ⊆ Ii

And so:

∀1≤i≤m d∈<I1’,…,In’,In+1,…,In+k>⇒ d∈<I1,…,In,In+1,…,In+k>

Consequently:

{f(d) | d∈<I1’,…,In’,In+1,…,In+k>}⊆{f(d) | d∈<I1,…,In,In+1,…,In+k>} (6)

Because F(B’) is the smallest real interval enclosing the range {f(d) | d∈<I1’,…,In’,In+1,…,In+k>}

(from (4)) and F(B) is also a real interval enclosing it (from (5) and (6)), it follows:

F(B’) ⊆ F(B)

APPENDIX A

230

Theorem 3.2-1 (Soundness of the Interval Expression Evaluation). Let FE be an interval expression

representing the n-ary interval function F. Let B be an n-ary R-box. The interval arithmetic evaluation

of FE with respect to B is sound:

F(B) ⊆FE(B)

Proof:
Definition 3.2-1 gives an inductive definition for the set of all possible interval expressions: the two

base clauses (i and ii) specify that interval constants (I) and interval variables (Xi) are the basic

elements of the defined set; the inductive clause (iii) specifies how to generate additional elements

from existing elements E1,…,Em and an m-ary basic interval arithmetic operator Φ.

We will present an inductive proof that for every interval expression FE belonging to this set, the

property F(B) ⊆FE(B) must hold (where F is the n-ary interval function represented by FE and B is an

n-ary R-box). The proof consists on a basis step which shows that the property holds for the basic

elements (F(B)⊆FE(B) with FE≡I and with FE≡Xi) and an inductive step which shows that if the

property holds for some elements E1,…,Em (inductive hypothesis: ∀1≤i≤m
Fi(B)⊆Ei(B) where Ei

represents Fi) then it holds for any elements generated from them by the inductive clause (F(B)⊆FE(B)

with FE≡Φ(E1,…,Em)).

Basis Step

 Proof that F(B)⊆FE(B) with FE≡I (where I is a real interval):

Accordingly to definition 3.2-3 (extended for allowing the representation of interval constants – see

footnote), in the case of FE≡I, F(B) is the smallest real interval containing the range f*(I) with f

expressed as fE ≡x1. By the definition of the range of a real function f over I:

f*(I)={f(r1) | r1∈I}

and in this particular case:

f*(I)={r1 | r1∈I}=I

Since I is a real interval, it is the smallest real interval containing the range f*(I) and so:

F(B)=I (1)

Accordingly to definition 3.2-4, in the case of FE≡I:

FE(B)=Iapx(I) (2)

Because IR⊆Iapx(IR) for any real interval IR (see definition 2.2.3-1), from (1) and (2) it follows:

F(B)⊆FE(B)

 Proof that F(B)⊆FE(B) with FE≡Xi (where Xi is an interval valued variable):

Accordingly to definition 3.2-3, in the case of FE≡Xi, F(B) is the smallest real interval containing the

range f*(I) with I=B[Xi] and f expressed as fE ≡xi. So, in this particular case:

f*(I)={ri | ri∈I}= I =B[Xi]

INTERVAL ANALYSIS THEOREMS

231

Since B[Xi] is a real interval, it is the smallest real interval containing the range f*(I) and so:

F(B)=B[Xi] (3)

Accordingly to definition 3.2-4, in the case of FE≡Xi:

FE(B)=Iapx(B[Xi]) (4)

From (3) and (4) it follows:

F(B)⊆FE(B)

Inductive Step

 Proof that F(B)⊆FE(B) with FE≡Φ(E1,…,Em) and ∀1≤i≤m
Fi(B)⊆Ei(B) (where Ei represents Fi):

Let B be the n-ary R-box <I1,…,In>. Accordingly to definition 3.2-3, if FE≡Φ(E1,…,Em) then F(B) is

the smallest real interval containing the range f*(B’) with B’=<I1,…,In,In+1,…,In+k> (where In+1,…,In+k

are all the interval constants appearing in FE) and f is expressed as fE ≡Φ(e1,…,em) (obtained by

replacing in FE each interval variable Xi by the real variable xi, each interval constant In+j by the real

variable xn+j and each interval operator by the corresponding real operator).

Let fi be the real function represented by ei, and si the variables appearing in ei (with 1≤i≤m). In this

case the range f*(B’) is:

f*(B’)= { f(d) | d∈B’} = {Φ(f1(d[s1]),…, fm(d[sm])) | d∈B’}

Moreover, the range of each fi over B’[si] (with 1≤i≤m) is:

fi
*(B’[si])={ fi(di) | di∈B’[si]}

and accordingly to definition 3.2-3, Fi(B) is the smallest real interval containing it:

fi
*(B’[si])⊆Fi(B)

Consequently:

f*(B’) = {Φ(f1(d[s1]),…, fm(d[sm])) | d∈B’} ⊆ {Φ(r1,…,rm) | r1∈F1(B) ∧…∧ rm∈Fm(B)}

But by Assumption A1:

f*(B’)⊆{Φ(r1,…,rm) | r1∈F1(B) ∧…∧ rm∈Fm(B)} ⊆ Φ(F1(B),…, Fm(B))

Because F(B) is the smallest real interval enclosing the range f*(B’) and Φ(F1(B),…, Fm(B)) is also

a real interval enclosing it:

F(B) ⊆ Φ(F1(B),…, Fm(B))

Assuming the inductive hypothesis, Fi(B)⊆Ei(B) (with 1≤i≤m), and from the inclusion monotonicity

of the basic interval operators (Assumption A2), it follows that:

F(B) ⊆ Φ(F1(B),…, Fm(B)) ⊆ Φ(E1(B),…, Em(B)) (5)

On the other hand, in the case of FE≡Φ(E1,…,Em) (see definition 3.2-4 and Assumption A3):

FE(B)= Φapx(E1(B),…, Em(B)) = Iapx(Φ(E1(B),…, Em(B))) (6)

From (5) and (6) it follows:

F(B)⊆FE(B)

APPENDIX A

232

Theorem 3.2.1-1 (Soundness of the Evaluation of an Interval Extension). Let F be an interval

extension of an n-ary real function f. Let FE be an interval expression representing F. Let B be an n-ary

R-box. Then, both F(B) and FE(B), enclose the range of f over B:

f*(B) ⊆ F(B) ⊆ FE(B)

Proof:

By the definition of the range f*(B) of a real function f over the n-ary R-box B:

f*(B) = { f(<r1,…,rn>) | <r1,…,rn>∈B} (1)

By definition 3.2.1-1, if F is an interval extension of f within B then:

∀<r1,…,rn>∈B f(<r1,…,rn>) ∈ F(<[r1..r1],…,[rn..rn]>)

If FE is an interval expression representing F then F must be inclusion monotonic (Lemma A6), so:

<[r1..r1],…,[rn..rn]>⊆B ⇒ F(<[r1..r1],…,[rn..rn]>) ⊆ F(B)

thus:

∀<r1,…,rn>∈B f(<r1,…,rn>) ⊆ F(B) (2)

From (1) and (2) it follows:

f*(B) = { f(<r1,…,rn>) | <r1,…,rn>∈B} ⊆ F(B)

and from theorem 3.2-1, F(B) ⊆ FE(B), consequently:

f*(B) ⊆ F(B) ⊆ FE(B)

Theorem 3.2.1-2 (Natural Interval Extension). Let fE be a real expression representing the real

function f. Let Fn be the natural interval expression of fE. The interval function F represented by Fn is

the smallest interval enclosing for the range of f and the interval arithmetic evaluation of Fn is an

interval extension of f denominated Natural interval extension with respect to fE.

Proof:

The intended meaning of an interval expression FE, as defined in 3.2-3, is to represent an interval

function F which applying to an R-box B obtains the smallest real interval containing the range, within

this box, of an associated real function. In the particular case of the Natural interval extension Fn with

respect to fE, the associated real function is the function represented by the real expression fE. Thus by

definition 3.2-3, F obtains the smallest interval enclosing for the range of f. Moreover, from theorem

3.2-1, F(B) ⊆ Fn(B), and so interval arithmetic evaluation of Fn is also an interval extension of f.

Theorem 3.2.1-3 (Intersection of Interval Extensions). Let F1 and F2 be two n-ary interval functions

and B an n-ary R-box. Let F be an n-ary interval function defined by: F(B)=F1(B)∩F2(B). If F1 and F2

are interval extensions of the real function f, then F is also an interval extension of f.

INTERVAL ANALYSIS THEOREMS

233

Proof:

By definition 3.2.1-1, if F1 and F2 are interval extensions of f within B then:

∀<r1,…,rn>∈B f(<r1,…,rn>)∈F1(<[r1..r1],…,[rn..rn]>)

∀<r1,…,rn>∈B f(<r1,…,rn>)∈F2(<[r1..r1],…,[rn..rn]>)

Consequently:

∀<r1,…,rn>∈B [f(<r1,…,rn>)∈F1(<[r1..r1],…,[rn..rn]>) ∧ f(<r1,…,rn>)∈F2(<[r1..r1],…,[rn..rn]>)]

which is equivalent to:

∀<r1,…,rn>∈B [f(<r1,…,rn>)∈F1(<[r1..r1],…,[rn..rn]>) ∩ F2(<[r1..r1],…,[rn..rn]>)]

and if F is the interval function defined by F(B)=F1(B)∩F2(B) then:

∀<r1,…,rn>∈B f(<r1,…,rn>)∈F(<[r1..r1],…,[rn..rn]>)

which proves (definition 3.2.1-1) that F is also an interval extension of f.

Theorem 3.2.1-4 (Decomposed Evaluation of an Interval Extension). Let F be an interval extension

of the n-ary real function f. Let FE be an interval expression representing F. Let B, B1 and B2 be n-ary

R-boxes. If B=B1∪B2 then:

F(B) ⊆ FE(B1)∪FE(B2) ⊆ FE(B)

Proof:

The proof of the above theorem is divided in two sub-proofs. In the first it is demonstrated that

FE(B1)∪FE(B2)⊆FE(B) whereas in the second sub-proof F(B)⊆FE(B1)∪FE(B2) is asserted.

 Proof that FE(B1)∪FE(B2)⊆FE(B) with B=B1∪B2 and FE an interval expression:

If B=B1∪B2 then B1⊆B and B2⊆B, and from the inclusion monotonicity property of the evaluation of

an interval expression FE (Lemma A5):

FE(B1) ⊆ FE(B)

FE(B2) ⊆ FE(B)

and consequently (carrying out the union of the two left sides and the two right sides):

FE(B1) ∪ FE(B2) ⊆ FE(B) ∪ FE(B) = FE(B)

 Proof that F(B)⊆FE(B1)∪FE(B2) with B=B1∪B2 and FE an interval expression representing F

which is an interval extension of the n-ary real function f:

Let B be the n-ary R-box <I1,…,In>. Accordingly to definition 3.2-3, if FE is an interval expression

representing F then F(B) is the smallest real interval containing the range g*(B’) of a real function

(not necessarily f) with B’=<I1,…,In,In+1,…,In+k> (where In+1,…,In+k are all the interval constants

appearing in FE)

If B=B1∪B2 (with B1=<I11,…,I1n> and B2=<I21,…,I2n>) then the range g*(B’) is:

g*(B’) = {g(<r1,…,rn,rn+1,…,rn+k>) | <r1,…,rn>∈B ∧ <rn+1,…,rn+k>∈<In+1,…,In+k>}

APPENDIX A

234

g*(B’) = {g(<r1,…,rn,rn+1,…,rn+k>) | <r1,…,rn>∈B1 ∧ <rn+1,…,rn+k>∈<In+1,…,In+k>}

∪{g(<r1,…,rn,rn+1,…,rn+k>) | <r1,…,rn>∈B2 ∧<rn+1,…,rn+k>∈<In+1,…,In+k>}

= g*(B1’) ∪ g*(B2’) (B1’=<I11,…,I1n,In+1,…,In+k > and B2’=<I21,…,I2n,In+1,…,In+k >)

But again, accordingly to definition 3.2-3, F(B1) and F(B2) are the smallest real intervals enclosing

g*(B1’) and g*(B2’) respectively, thus:

g*(B’) = g*(B1’) ∪ g*(B2’) ⊆ F(B1) ∪ F(B2)

By theorem 3.2.1-1 F(B1) ⊆ FE(B1) and F(B2) ⊆ FE(B2), so:

g*(B’) ⊆ F(B1) ∪ F(B2) ⊆ FE(B1) ∪ FE(B2)

From Lemma A2 we know that if B, B1 and B2 are n-ary R-boxes with B=B1∪B2 then

FE(B1)∪FE(B2) is a real interval. Because F(B) is the smallest real interval enclosing the range g*(B’)

and FE(B1)∪FE(B2) is also a real interval enclosing it:

F(B) ⊆ FE(B1)∪FE(B2)

Theorem 3.2.1-5 (No Overestimation Without Multiple Variable Occurrences). Let FE be an

interval expression representing the n-ary interval function F. Let B be an n-ary R-box. If FE is an

interval expression in which each variable occurs only once, then:

F(B) = FE(B) (with exact interval operators and infinite precision arithmetic evaluation)

Proof:

Definition 3.2-1 gives an inductive definition for the set of all possible interval expressions: the two

base clauses (i and ii) specify that interval constants (I) and interval variables (Xi) are the basic

elements of the defined set; the inductive clause (iii) specifies how to generate additional elements

from existing elements E1,…,Em and an m-ary basic interval arithmetic operator Φ.

We will present an inductive proof that for every interval expression FE belonging to this set, if FE

is an interval expression in which each variable occurs only once then F(B)=FE(B) (where F is the

n-ary interval function represented by FE, B is an n-ary R-box). During this proof it is assumed that

each basic interval operator appearing in FE is able to compute the exact ranges within its interval

arguments and all the interval arithmetic evaluations are performed with infinite precision. The proof

consists on a basis step which shows that the property holds for the basic elements (F(B)=FE(B) with

FE≡I and with FE≡Xi) and an inductive step which shows that if the property holds for some elements

E1,…,Em (inductive hypothesis: ∀1≤i≤m
Fi(B)=Ei(B) where Ei represents Fi) then it holds for any

elements generated from them by the inductive clause (F(B)=FE(B) with FE≡Φ(E1,…,Em)).

Basis Step

 Proof that F(B)=FE(B) with FE≡I (where I is a real interval):

INTERVAL ANALYSIS THEOREMS

235

Accordingly to definition 3.2-3 (extended for allowing the representation of interval constants – see

footnote), in the case of FE≡I, F(B) is the smallest real interval containing the range f*(I) with f

expressed as fE ≡x1. By the definition of the range of a real function f over I:

f*(I)={f(r1) | r1∈I}

and in this particular case:

f*(I)={r1 | r1∈I}=I

Since I is a real interval, it is the smallest real interval containing the range f*(I) and so:

F(B)=I (1)

Accordingly to definition 3.2-4, in the case of FE≡I:

FE(B)=Iapx(I)

Because we are assuming infinite precision arithmetic Iapx(I)=I and so:

FE(B)=Iapx(I)=I (2)

From (1) and (2) it follows:

F(B)=FE(B)

 Proof that F(B)=FE(B) with FE≡Xi (where Xi is an interval valued variable):

Accordingly to definition 3.2-3, in the case of FE≡Xi, F(B) is the smallest real interval containing the

range f*(I) with I=B[Xi] and f expressed as fE ≡xi. So, in this particular case:

f*(I)={ri | ri∈I}= I =B[Xi]

Since B[Xi] is a real interval, it is the smallest real interval containing the range f*(I) and so:

F(B)=B[Xi] (3)

Accordingly to definition 3.2-4, in the case of FE≡Xi:

FE(B)=Iapx(B[Xi])

Because we are assuming infinite precision arithmetic Iapx(B[Xi])=B[Xi] and so:

FE(B)=Iapx(B[Xi])=B[Xi] (4)

From (3) and (4) it follows:

F(B)=FE(B)

Inductive Step

 Proof that F(B)=FE(B) with FE≡Φ(E1,…,Em) and ∀1≤i≤m
Fi(B)=Ei(B) (where Ei represents Fi):

Let B be the n-ary R-box <I1,…,In>. Accordingly to definition 3.2-3, if FE≡Φ(E1,…,Em) then F(B) is

the smallest real interval containing the range f*(B’) with B’=<I1,…,In,In+1,…,In+k> (where In+1,…,In+k

are all the interval constants appearing in FE) and f is expressed as fE ≡Φ(e1,…,em) (obtained by

replacing in FE each interval variable Xi by the real variable xi, each interval constant In+j by the real

variable xn+j and each interval operator by the corresponding real operator).

Let fi be the real function represented by ei, and si the variables appearing in ei (with 1≤i≤m):

APPENDIX A

236

f*(B’)= { f(d) | d∈B’} = {Φ(f1(d[s1]),…, fm(d[sm])) | d∈B’}

Because there are no multiple occurrences of the Xi variables, each si must contain a different subset

(with no common variables) of the all set of variables. Consequently, if di denotes a tuple of real

values associated with the subset si, the range f*(B’) may be rewritten as:

f*(B’)={Φ(f1(d[s1]),…, fm(d[sm])) | d∈B’}={Φ(f1(d1),…, fm(dm)) | d1∈B’[s1] ∧…∧ dm∈B’[sm]}

The range of each fi over B’[si] (with 1≤i≤m) is:

fi
*(B’[si])={ fi(di) | di∈B’[si]}

Note that in the basis step it was proved that the range associated with each basic element (FE≡I and

with FE≡Xi) is a real interval. In the following we will prove that if the ranges fi
* associated with each

E1,…,Em are all real intervals then the range f* associated with FE≡Φ(E1,…,Em) must also be a real

interval. This will prove by induction that the range associated with any interval expression (in the

conditions of the theorem) is a real interval.

If the range fi
*(B’[si]) is a real interval then, accordingly to definition 3.2-3, Fi(B) must be exactly

this range since it is the smallest real interval containing it:

fi
*(B’[si])=Fi(B)

Consequently:

f*(B’)={Φ(f1(d1),…,fm(dm)) | d1∈B’[s1]∧…∧dm∈B’[sm]}={Φ(r1,…,rm) | r1∈F1(B)∧…∧rm∈Fm(B)}

But by Assumption A1, in the particular case that Φ is an m-ary basic interval operator which is

able to compute the exact ranges within its interval arguments:

f*(B’) = {Φ(r1,…,rm) | r1∈F1(B) ∧…∧ rm∈Fm(B)} = Φ(F1(B),…, Fm(B))

f*(B’) must be a real interval because it is defined as the result of a basic interval operation and the

result of a basic interval operation is a real interval (Assumption A1). This completes the proof that the

range associated with any interval expression (in the conditions of the theorem) is a real interval.

Because F(B) is the smallest real interval enclosing f*(B’) and Φ(F1(B),…, Fm(B)) is a real interval:

F(B) = Φ(F1(B),…, Fm(B))

Assuming the inductive hypothesis, Fi(B)=Ei(B) (with 1≤i≤m) it follows that:

F(B) = Φ(F1(B),…, Fm(B)) = Φ(E1(B),…, Em(B)) (5)

On the other hand, and accordingly to definition 3.2-4, in the case of FE≡Φ(E1,…,Em):

FE(B)= Φapx(E1(B),…, Em(B))

Because we are assuming infinite precision arithmetic, with Assumption A3:

FE(B) = Φapx(E1(B),…, Em(B)) = Φ(E1(B),…, Em(B)) (6)

From (5) and (6) it follows:

F(B)=FE(B)

237

Appendix B

CONSTRAINT PROPAGATION THEOREMS

The demonstrations of the first three Constraint Propagation theorems (4.1-1, 4.1-2 and 4.1-3) rely on

one of the following assumptions about the restrictions on the representation of the domains of the

variables of a CCSP (see subsection 2.2.5).

Assumption B-1 Let P=(X,D,C) be a CCSP where X is the n-ary tuple of variables <x1,…,xn> and D is

the Cartesian Product of their respective original domains D1×D2×…×Dn. The domains of the variables

of the CCSP must be represented by unions of n-ary F-boxes. The domain of any narrowing function

associated with any constraint of C is the set of all the elements within Iapx(D1)×Iapx(D2)×…×Iapx(Dn)

that are representable by the union of n-ary F-boxes.

Assumption B-2 Let P=(X,D,C) be a CCSP where X is the n-ary tuple of variables <x1,…,xn> and D is

the Cartesian Product of their respective original domains D1×D2×…×Dn. The domains of the variables

of the CCSP must be represented by single n-ary F-boxes. The domain of any narrowing function

associated with any constraint of C is the set of all the elements within Iapx(D1)×Iapx(D2)×…×Iapx(Dn)

that are representable by a single n-ary F-box.

The following assumption is used in the demonstration of theorem 4.2.1-1.

Assumption B-3 Let c=(s,ρ) be an n-ary primitive constraint of a CCSP P=(X,D,C) with s=<x1,…,xn>.

Let Φ be an m-ary basic operator and ei (with 0≤i≤m) a variable from s or the real constant kei
. Let vei

be either rj if ei is the variable xj or kei
 if ei is the constant kei

. Let ⋄∈{≤,=,≥} and K be a set of real

numbers defined as:

[0..+∞] if ⋄ ≡ ≤
K = [0] if ⋄ ≡ =

[-∞..0] if ⋄ ≡ ≥

If c is expressed in the form e1⋄e0 then it represents the relation (with n≤2):

ρ={<r1,…,rn>| r1∈D[x1]∧…∧rn∈D[xn]∧ ve1
=ve0

+k ∧ k∈K}

APPENDIX B

238

If c is expressed in the form Φ(e1,…,em)⋄e0 then it represents the relation (with n≤m+1):

ρ={<r1,…,rn>| r1∈D[x1]∧…∧rn∈D[xn]∧ Φ(ve1
,…, vem

)=ve0
+k ∧ k∈K}

and is assumed that for any 1≤i≤m there is a basic Φei
 operator such that:

ρ={<r1,…,rn>| r1∈D[x1]∧…∧rn∈D[xn]∧ Φei
(ve0

+k,ve1
,…,vei-1

,vei+1
,…,vem

)=vei
 ∧ k∈K}

The following lemmas will be used in the demonstrations of the Constraint Propagation theorems.

Lemma B-1 If the union of two fixed points, A1 and A2, of a monotonic narrowing function NF is an

element of its domain then it is also a fixed point:

∀A1,A2∈DomainNF
 NF(A1)=A1 ∧ NF(A2)=A2 ∧ A1∪A2∈DomainNF ⇒ NF(A1∪A2)= A1∪A2

Proof:

If NF is a monotonic narrowing function, because A1⊆A1∪A2 and both A1 and A1∪A2 are elements of

its domain then, from definition 4.1-2 (property P3) it follows:

NF(A1) ⊆ NF(A1∪A2)

Since A1 is a fixed point of the narrowing function, NF(A1)=A1 and, rewriting the left side:

A1 ⊆ NF(A1∪A2) (1)

If NF is a monotonic narrowing function, because A2⊆A1∪A2 and both A2 and A1∪A2 are elements of

its domain then, from definition 4.1-2 (property P3) it follows:

NF(A2) ⊆ NF(A1∪A2)

Since A2 is a fixed point of the narrowing function, NF(A2)=A2 and, rewriting the left side:

A2 ⊆ NF(A1∪A2) (2)

From (1) and (2), carrying out the union of the two left sides and the two right sides, it follows:

A1∪A2 ⊆ NF(A1∪A2) ∪ NF(A1∪A2)= NF(A1∪A2) (3)

On the other hand, due to the contractance property of any narrowing function (definition 4.1-1,

property P1):

NF(A1∪A2) ⊆ A1∪A2 (4)

Consequently, from (3) and (4), A1∪A2 must be a fixed point of NF:

NF(A1∪A2) = A1∪A2

Lemma B-2 If the elements of the domain of a monotonic narrowing function NF are those

representable by unions of n-ary F-boxes then the union of any two fixed points, A1 and A2, is also a

fixed point:

∀A1,A2∈DomainNF
 NF(A1)=A1 ∧ NF(A2)=A2 ⇒ NF(A1∪A2)= A1∪A2

Proof:

If A1 and A2, are both representable by unions of n-ary F-boxes then they can be rewritten as:

CONSTRAINT PROPAGATION THEOREMS

239

 A1=B1’ ∪…∪ Bk’

 A2=B1” ∪…∪ Bm”

Where each Bi’ (with 1≤i≤k) and each Bj” (with 1≤i≤k) are n-ary F-boxes.

Consequently, the union of these elements is:

A1 ∪ A2 = B1’ ∪…∪ Bk’ ∪ B1” ∪…∪ Bm”

Which is also representable by unions of n-ary F-boxes and so, is an element of the domain of the

narrowing function:

A1 ∪ A2 ∈ DomainNF

Therefore, from Lemma B1, it follows that A1 ∪ A2 is also a fixed point of the narrowing function:

NF(A1∪A2)= A1∪A2

Lemma B-3 If the elements of the domain of a monotonic narrowing function NF are those

representable by unions of n-ary F-boxes then the union of all its fixed points within an element A of

its domain is its greatest fixed point:

∪Fixed-PointsNF(A)∈Fixed-PointsNF(A)

∀Ai ∈Fixed-PointsNF(A) Ai ⊆ ∪Fixed-PointsNF(A)

Proof:

Consider the set of all fixed points of NF within an element A of its domain:

Fixed-PointsNF(A) = { Ai ∈ DomainNF | Ai ⊆ A ∧ NF(Ai) = Ai }

This set must be a finite set because the number of elements Ai of the domain of NF which are subsets

of A must be finite (see subsection 2.2.5). Thus if the number of its elements is m the set may be

represented as:

Fixed-PointsNF(A) = { Ai ∈ DomainNF | Ai ⊆ A ∧ NF(Ai) = Ai } = { A1,…, Am }

Consider the union of all the elements of the above set:

∪Fixed-PointsNF(A) = A1 ∪…∪ Am

Let A’ be the element of the domain of NF resulting from the union of Am-1 and Am:

A’ = Am-1 ∪ Am

 As seen in Lemma B2 the union of these two elements is also representable by unions of n-ary

F-boxes and so A’ must be an element of the domain of NF. A’ must be within A because both Am-1 and

Am are within A and, since Am-1 and Am are fixed points of NF, from Lemma B2, the element A’ is also

a fixed point of NF. Consequently it must be a member of the set of all fixed points of NF within A:

A’∈{ A1,…, Am }

So if we add the F-box A’ to the union of all fixed points of NF, it will have no effect:

∪Fixed-PointsNF(A) = A1 ∪…∪ Am = A1 ∪…∪ Am ∪ A’

But if A’=Am-1∪Am then the elements Am-1 and Am may be removed from the union of all fixed points

of NF without changing its result:

APPENDIX B

240

∪Fixed-PointsNF(A) = A1 ∪…∪ Am ∪ A’ = A1 ∪…∪ Am-2 ∪ A’

This way, the union of all fixed points of NF, which was represented by a union of m fixed points of

NF, is now equivalently represented by a union of m-1 fixed points of NF.

Repeating the above procedure m-1 times, the union of all fixed points of NF will be represented by

a single element of the domain of NF. This element must be a fixed point of NF (all the elements in

the union are fixed points of NF) and must be its greatest fixed point since it includes all the other

fixed points (it results from the union of all of them).

Lemma B-4 If the elements of the domain of a monotonic narrowing function NF are those

representable by a single n-ary F-box then the smallest F-box B enclosing any two fixed points, B1 and

B2, is also a fixed point:

∀B1,B2∈DomainNF
 NF(B1)=B1 ∧ NF(B2)=B2 ⇒ NF(B)=B

Proof:

Let the fixed points B1 and B2, be the n-ary F-boxes <I1’,…,In’> and <I1”,…,In”> respectively. If B is

the smallest F-box enclosing B1 and B2 then:

B=<I1’⊎I1”,…,In’⊎In”>

If NF is a monotonic narrowing function then, because B1 ⊆ B and B2 ⊆ B, it follows:

NF(B1) ⊆ NF(B)

NF(B2) ⊆ NF(B)

Because B1 and B2 are fixed points of NF, NF(B1)=B1 and NF(B2)=B2, hence:

B1 ⊆ NF(B) (1)

B2 ⊆ NF(B) (2)

We will prove by contradiction that the above F-box B must be a fixed point of NF. We will assume

that B is not a fixed point of NF and prove a contradiction.

Assuming that B is not a fixed point of NF then, due to the contractance property (definition 4.1-1,

property P1), NF(B) must be a proper subset of B (if equality holds then B would be a fixed point):

NF(B) ⊂ B

If <I1,…,In> denotes the F-box obtained by NF(B) then:

<I1,…,In> ⊂ <I1’⊎I1”,…,In’⊎In”>

and so there must be an i, between 1 and n, for which:

Ii ⊂ Ii’⊎Ii”

Let Ii=[a..b], Ii’=[a’..b’] and Ii”=[a”..b”] (these are all closed intervals since B, B’ and B” are

F-boxes) then, by definition 2.2.2-1 of union hull:

[a..b] ⊂ [a’..b’]⊎ [a”..b”] = [min(a’,a”)..max(b’,b”)] = [min(a’,a”)..max(b’, b”)]

Implying that one of the following inequalities must be true:

min(a’,a”) < a (3)

CONSTRAINT PROPAGATION THEOREMS

241

max(b’,b”) > b (4)

From (3) or (4) it follows that Ii’⊈ Ii or Ii”⊈ Ii because:

if (3) is true and a’≤a” then Ii’⊈ Ii

if (3) is true and a”≤a’ then Ii”⊈ Ii

if (4) is true and b’≤b” then Ii”⊈ Ii

if (4) is true and b”≤b’ then Ii’⊈ Ii

But if Ii’⊈ Ii then B1⊈NF(B) contradicting (1) and if Ii”⊈ Ii then B2⊈NF(B) contradicting (2). In

any case a contradiction is derived which proves that B must be a fixed point of NF.

Lemma B-5 If the elements of the domain of a monotonic narrowing function NF are those

representable by a single n-ary F-box then the union of all its fixed points within an element B of its

domain is its greatest fixed point:

∪Fixed-PointsNF(B)∈Fixed-PointsNF(B)

∀Bi ∈Fixed-PointsNF(B) Bi ⊆ ∪Fixed-PointsNF(B)

Proof:

Consider the set of all fixed points of NF within the F-box B:

Fixed-PointsNF(B) = { Bi ∈ DomainNF | Bi ⊆ B ∧ NF(Bi) = Bi }

This set must be a finite set because the number of F-boxes Bi which are subsets of an F-box B must

be finite (see subsection 2.2.5). Thus if the number of its elements is m the set may be represented as:

Fixed-PointsNF(B) = { Bi ∈ DomainNF | Bi ⊆ B ∧ NF(Bi) = Bi } = { B1,…, Bm }

Consider the union of all the elements of the above set:

∪Fixed-PointsNF(B) = B1 ∪…∪ Bm

Let B’ be the smallest F-box enclosing both Bm-1 and Bm. B’ must be within F-box B because both

F-boxes Bm-1 and Bm are within B. Moreover, since Bm-1 and Bm are fixed points of NF, from Lemma

B4, the F-box B’ is also a fixed point of NF. Consequently it must be a member of the set of all fixed

points of NF within B:

B’∈{ B1,…, Bm }

So if we add the F-box B’ to the union of all fixed points of NF, it will have no effect:

∪Fixed-PointsNF(B) = B1 ∪…∪ Bm = B1 ∪…∪ Bm ∪ B’

But if B’ encloses both Bm-1 and Bm then Bm-1∪Bm⊆B’ and so the F-boxes Bm-1 and Bm may be

removed from the union of all fixed points of NF without changing its result:

∪Fixed-PointsNF(B) = B1 ∪…∪ Bm ∪ B’ = B1 ∪…∪ Bm-2 ∪ B’

This way, the union of all fixed points of NF, which was represented by a union of m F-boxes (fixed

points of NF), is now equivalently represented by a union of m-1 F-boxes (also all of them fixed

points of NF).

APPENDIX B

242

Repeating the above procedure m-1 times, the union of all fixed points of NF will be represented by

a single F-box. This F-box must be a fixed point of NF (all the F-boxes in the union are fixed points of

NF) and must be its greatest fixed point since it includes all the other fixed points (it results from the

union of all of them).

Theorem 4.1-1 (Union of Fixed-Points). Let P=(X,D,C) be a CCSP. Let NF be a monotonic

narrowing function associated with a constraint of C. Let A be an element of DomainNF. The union of

all fixed-points of NF within A, denoted ∪Fixed-PointsNF(A), is the greatest fixed-point of NF within

A:

∪Fixed-PointsNF(A)∈Fixed-PointsNF(A)

∀Ai ∈Fixed-PointsNF(A) Ai ⊆ ∪Fixed-PointsNF(A)

Proof:

Let X be the n-ary tuple of variables <x1,…xn>.

If Assumption B1 is considered then, the elements of the domain of the monotonic narrowing

function NF are those representable by unions of n-ary F-boxes and so, from Lemma B3, the union of

all its fixed points within an element of its domain is its greatest fixed point.

If Assumption B2 is considered then, the elements of the domain of a monotonic narrowing

function NF are those representable by a single n-ary F-box then, from Lemma B5, the union of all its

fixed points within an element of its domain is its greatest fixed point.

In either case, it is proved that the union of all the fixed points of NF within an element of its

domain is its greatest fixed point.

Theorem 4.1-2 (Contraction Applying a Narrowing Function). Let P=(X,D,C) be a CCSP. Let NF

be a monotonic narrowing function associated with a constraint of C and A an element of DomainNF.

The greatest fixed-point of NF within A is included in the element obtained by applying NF to A:

∪Fixed-PointsNF(A) ⊆ NF(A)

In particular, if NF is also idempotent then:

∪Fixed-PointsNF(A) = NF(A)

Proof:

Let A’ be the union of all the fixed points of NF within element A:

A’= ∪Fixed-PointsNF(A)

From theorem 4.1-1 A’ is the greatest fixed point of NF within A, so it is a fixed point of NF:

NF(A’) = A’ (1)

But A’ is within element A:

A’ ⊆ A

Therefore, from the monotonicity property of a narrowing function (definition 4.1-2, property P3) it

follows:

CONSTRAINT PROPAGATION THEOREMS

243

NF(A’) ⊆ NF(A)

And from (1) NF(A’) is the same as A’ which proves that:

A’ ⊆ NF(A) (2)

In particular, if NF is also idempotent then from definition 4.1-2, property P4:

 NF(NF(A)) = NF(A)

Implying that NF(A) is a fixed point of the narrowing function NF. But from (2), if A’ is smaller or

equal than NF(A), it follows that the equality must hold:

 A’ = NF(A)

otherwise A’ would not be the greatest fixed point of NF within A.

Theorem 4.1-3 (Properties of the Propagation Algorithm). Let P=(X,D,C) be a CCSP. Let set S0 be

a set of narrowing functions (obtained from the set of constraints C). Let A0 be an element of

DomainNF (where NF∈S0) and d an element of D (d∈D). The propagation algorithm prune(S0, A0)

(defined in figure 4.1) terminates and is correct:

∀d ∈ A0
 d is a solution of the CCSP ⇒ d ∈ prune(S0, A0)

If S0 is a set of monotonic narrowing functions then the propagation algorithm is confluent and

computes the greatest common fixed-point included in A0.

Proof:

The propagation algorithm prune(S0,A0) (defined in figure 4.1) is a procedure that obtains smaller

domain elements Ai (see assumption B1 and B2) from an original element A0 by consecutively

applying narrowing functions from a set S0 (obtained from the constraints of the CCSP) until obtaining

an element An which is a fixed point of every narrowing function within S0.

Due to the contractance property of the narrowing functions (definition 4.1-1, property P1), the

propagation algorithm terminates. The reason is that due to contractance, a smaller (or equal)

representable element (accordingly to assumptions B1 or B2) is obtained from each application of a

narrowing function (Ai+1⊆Ai). Moreover, because the set of representable elements is finite (see

subsection 2.2.5) this procedure is guaranteed to stop.

Due to the correctness property of the narrowing functions (definition 4.1-1, property P2), the

propagation algorithm is correct. No solution is lost because the value combinations discarded by the

application of a narrowing function do not satisfy at least one constraint of the CCSP (the constraint

associated with the narrowing function).

When the algorithm stops, which was proved above, the obtained element An is a common fixed

point of every narrowing function within S0 (otherwise a narrowing function for which the element is

not a fixed point would be applied). Moreover, if all narrowing functions within S0 are monotonic then

An must be the greatest common fixed-point included in A0. Otherwise, if there would have been a

common fixed-point A’ included in A0 and greater than An (An⊂A’⊆A0) then, somewhere in the

narrowing sequence from A0 to An there would have been a step from Ai to Ai+1 such that:

APPENDIX B

244

Ai+1 ⊂ A’⊆ Ai

But in this case, A’ could not be a fixed point of the narrowing function NF for which NF(Ai)=Ai+1

because theorem 4.1-2 guarantees that NF(Ai) includes all the fixed points of NF within Ai. This fact

contradicts the assumption that A’ is a common fixed-point of every narrowing function within S0,

proving that An must be the greatest common fixed-point included in A0.

Because the above result was derived independently of the order for the application of the

monotonic narrowing functions within S0, it is valid to any particular order and so the propagation

algorithm is confluent and computes the greatest common fixed-point included in A0.

Theorem 4.2.1-1 (Projection Function based on the Inverse Interval Expression). Let P=(X,D,C)

be a CCSP. Let c=(s,ρ)∈C be an n-ary primitive constraint expressed in the form ec⋄e0 where ec≡e1 or

ec≡Φ(e1,…,em) (with Φ an exact m-ary basic operator and ei a variable from s or a real constant). Let

ψxi be the inverse interval expression of c with respect to the variable xi (ei ≡ xi). The projection

function πxi

ρ
 of the constraint c wrt variable xi is the mapping:

πxi

ρ
(B) = ψxi(B) ∩ B[xi] where B is an n-ary real box

Proof:

The projection function πxi

ρ
 of the constraint c wrt variable xi is, accordingly to definition 4.2-1:

πxi

ρ
(B) = (ρ ∩ B)[xi] (1)

We will prove for both cases, where the primitive constraint is either expressed in the form e1⋄e0 or

in the form Φ(e1,…,em)⋄e0, that:

πxi

ρ
(B) = ψxi(B) ∩ B[xi] (2)

 Proof that πxi

ρ
(B) = ψxi(B) ∩ B[xi] with c expressed as e1⋄e0:

Accordingly to Assumption B3, the relation represented by the constraint is (with n≤2):

ρ={<r1,…,rn>| r1∈D[x1]∧…∧rn∈D[xn]∧ ve1
=ve0

+k ∧ k∈K}

and so its intersection with the F-box B is:

ρ∩B ={<r1,…,rn>| r1∈D[x1]∩B[x1] ∧…∧rn∈D[xn]∩B[xn]∧ ve1
=ve0

+k ∧ k∈K}

Since the F-box B must be a subset of the original domains of the respective variables of the CCSP:

 B ⊆ D[s]

Implying that for each i (with 1≤i≤n) B[xi]⊆D[xi], and so D[xi]∩B[xi]=B[xi], consequently:

ρ∩B ={<r1,…,rn>| r1∈B[x1] ∧…∧rn∈B[xn]∧ ve1
=ve0

+k ∧ k∈K}

The projection of the above set with respect to the variable xi depends if this variable is the

expression e0 or is the expression e1.

If xi ≡ e0 then ve0
= ri (see Assumption B3) and so:

CONSTRAINT PROPAGATION THEOREMS

245

(ρ∩B)[xi]= { ri | r1∈B[x1] ∧…∧rn∈B[xn]∧ ve1
= ri +k ∧ k∈K}

which is equivalent to:

(ρ∩B)[xi]={ ri | r1∈B[x1]∧…∧rn∈B[xn]∧ ri = ve1
-k ∧ k∈K}

and may be rewritten as:

(ρ∩B)[xi]={ ve1
-k | r1∈B[x1]∧ …∧ri-1∈B[xi-1]∧ri+1∈B[xi+1]…∧rn∈B[xn]∧ k∈K } ∩ B[xi]

Considering Ie1
= B[xj] if e1≡xj or Ie1

= [ke1
]

if ei≡ke1

, from the definition 3.1-1 of the basic interval

arithmetic operator (-) (see also Appendix A, Assumption A1), it follows:

(ρ∩B)[xi]= (Ie1
-K) ∩ B[xi]

But Ie1
-K is the Natural interval extension of the real expression e1-k and so, accordingly to

definition 4.2.1-2, it corresponds to the interval arithmetic evaluation of the inverse interval expression

of c with respect to xi ≡e0, denoted by ψxi. Therefore we have proven that, for this case:

(ρ∩B)[xi] = ψxi(B) ∩ B[xi]

If xi ≡ e1 then ve1
= ri (see Assumption B3) and so:

(ρ∩B)[xi]= { ri | r1∈B[x1] ∧…∧rn∈B[xn]∧ ri = ve0
+k ∧ k∈K}

which may be rewritten as:

(ρ∩B)[xi]={ ve0
+k | r1∈B[x1]∧ …∧ri-1∈B[xi-1]∧ri+1∈B[xi+1]…∧rn∈B[xn]∧ k∈K } ∩ B[xi]

Considering Ie0
= B[xj] if e0≡xj or Ie0

= [ke0
]

if e0≡ke0

, from the definition 3.1-1 of the basic interval

arithmetic operator (+) (see also Appendix A, Assumption A1), it follows:

(ρ∩B)[xi]= (Ie0
+K) ∩ B[xi]

But Ie0
+K is the Natural interval extension of the real expression e0+k and so, accordingly to

definition 4.2.1-2, it corresponds to the interval arithmetic evaluation of the inverse interval expression

of c with respect to xi ≡e1, denoted by ψxi. Therefore we have proven that, for this case also:

 (ρ∩B)[xi] = ψxi(B) ∩ B[xi]

Consequently, if the above is true for any possible case then, from (1), we have proven that if c

expressed as e1⋄e0:

πxi

ρ
(B) = ψxi(B) ∩ B[xi]

 Proof that πxi

ρ
(B) = ψxi(B) ∩ B[xi] with c expressed as Φ(e1,…,em)⋄e0:

Accordingly to Assumption B3, the relation represented by the constraint is (with n≤m+1):

ρ={<r1,…,rn>| r1∈D[x1]∧…∧rn∈D[xn]∧ Φ(ve1
,…, vem

)=ve0
+k ∧ k∈K}

and so its intersection with the F-box B is:

ρ∩B ={<r1,…,rn>| r1∈D[x1]∩B[x1] ∧…∧rn∈D[xn]∩B[xn]∧ Φ(ve1
,…, vem

)=ve0
+k ∧ k∈K}

Since the F-box B must be a subset of the original domains of the respective variables of the CCSP:

APPENDIX B

246

 B ⊆ D[s]

Implying that for each i (with 1≤i≤n) B[xi]⊆D[xi], and so D[xi]∩B[xi]=B[xi], consequently:

ρ∩B ={<r1,…,rn>| r1∈B[x1] ∧…∧rn∈B[xn]∧ Φ(ve1
,…, vem

)=ve0
+k ∧ k∈K}

The projection of the above set with respect to the variable xi depends if this variable is the

expression e0 or is some expression ej with j between 1 and n.

If xi ≡ e0 then ve0
= ri (see Assumption B3) and so:

(ρ∩B)[xi]= { ri | r1∈B[x1] ∧…∧rn∈B[xn]∧ Φ(ve1
,…, vem

)=ri +k ∧ k∈K}

which is equivalent to:

(ρ∩B)[xi]={ ri | r1∈B[x1]∧…∧rn∈B[xn]∧ ri = Φ(ve1
,…, vem

)-k ∧ k∈K}

and may be rewritten as:

(ρ∩B)[xi]={Φ(ve1
,…, vem

)-k | r1∈B[x1]∧…∧ri-1∈B[xi-1]∧ri+1∈B[xi+1]…∧rn∈B[xn]∧k∈K} ∩ B[xi]

Considering Iei
= B[xj] if ei≡xj or Iei

=[kei
]

if ei≡kei

, from the definition of any exact basic interval

arithmetic operator (Φ) (see Appendix A, Assumption A1), it follows:

(ρ∩B)[xi]= (Φ(Ie1
,…, Iem

)-K) ∩ B[xi]

But Φ(Ie1
,…,Iem

)-K is the Natural interval extension of the real expression Φ(e1,…,em)-k and so,

accordingly to definition 4.2.1-2, it corresponds to the interval arithmetic evaluation of the inverse

interval expression of c with respect to xi ≡e0, denoted ψxi. Therefore we have proven that, in this case:

(ρ∩B)[xi] = ψxi(B) ∩ B[xi]

If xi ≡ ej, with j between 1 and n, then vej
= ri and from Assumption B3 there is a basic operator Φej

such that:

(ρ∩B)[xi]= { ri | r1∈B[x1] ∧…∧rn∈B[xn]∧ ri= Φej
(ve0

+k,ve1
,…,vej-1

,vej+1
,…,vem

) ∧ k∈K}

which may be rewritten as:

(ρ∩B)[xi]={Φej
(ve0

+k,ve1
,…,vej-1

,vej+1
,…,vem

)|

r1∈B[x1]∧…∧ri-1∈B[xi-1]∧ri+1∈B[xi+1]…∧rn∈B[xn] ∧ k∈K } ∩ B[xi]

Considering Iei
= B[xl] if ei≡xl or Iei

=[kei
]

if ei≡kei

, from the definition of any exact basic interval

arithmetic operator (Φ) (see Appendix A, Assumption A1), it follows:

(ρ∩B)[xi]= Φej
(Ie0

+K,Ie1
,…,Iej-1

,Iej+1
,…,Iem

) ∩ B[xi]

But Φej
(Ie0

+K,Ie1
,…,Iej-1

,Iej+1
,…,Iem

) is the Natural interval extension of the real expression

Φej
(e0+k,e1,…, ej-1,ej+1,…,em) and so, accordingly to definition 4.2.1-2, it corresponds to the interval

arithmetic evaluation of the inverse interval expression of c with respect to xi≡ej, denoted by ψxi.

Therefore we have proven that, for this case also:

CONSTRAINT PROPAGATION THEOREMS

247

 (ρ∩B)[xi] = ψxi(B) ∩ B[xi]

Consequently, if the above is true for any possible case then, from (1), we have proven that if c

expressed as Φ(e1,…,em)⋄e0:

πxi

ρ
(B) = ψxi(B) ∩ B[xi]

Theorem 4.2.2-1 (Properties of the Interval Projection). Let P=(X,D,C) be a CCSP. Let c=(s,ρ)∈C

be an n-ary constraint and B an n-ary F-box. Let ∏xi

ρB
 be the interval projection of c wrt variable xi∈s

and B. The following properties are necessarily satisfied:

(i) if ⋄ ≡ “=” then ∀r∈B[xi] r∈πxi

ρ
(B) ⇒ 0∈∏xi

ρB
([r])

(ii) if ⋄ ≡ “≤” then ∀r∈B[xi] r∈πxi

ρ
(B) ⇒ left(∏xi

ρB
([r])) ≤ 0

(iii) if ⋄ ≡ “≥” then ∀r∈B[xi] r∈πxi

ρ
(B) ⇒ right(∏xi

ρB
([r])) ≥ 0

We will say that a real value r satisfies the interval projection condition if the right side of the

respective implication (i), (ii) or (iii) is satisfied.

Proof:

Consider that the n-ary constraint c is expressed in the form fE⋄0. Let Fn be the Natural interval

extension of f with respect to fE (see definition 3.2.1-2). Let B be the n-ary F-box. <I1,…,In>. From

definition 4.2.2-1, the interval projection of c wrt xi∈s and B is:

∏xi

ρB
(I) = Fn(<I1,…,Ii-1,I,Ii+1,…,In >) (for every I⊆Ii)

Moreover, if Fn is an interval extension of f then from definition 3.2.1-1, it follows:

∀<r1,…,ri-1,r,ri+1,…,rn >∈B f(<r1,…,ri-1,r,ri+1,…,rn>) ∈ Fn(<[r1],…,[ri-1],[r],[ri+1],…,[rn]>) (1)

And due to the monotonicity property of the interval function Fn (Lemma A5 from Appendix A):

Fn(<[r1],…,[ri-1],[r],[ri+1],…,[rn]>)⊆ Fn(<I1,…,Ii-1,[r],Ii+1,…,In >) = ∏xi

ρB
([r]) (2)

From (1) and (2) it follows:

∀<r1,…,ri-1,r,ri+1,…,rn >∈B f(<r1,…,ri-1,r,ri+1,…,rn>) ∈ ∏xi

ρB
([r]) (3)

On the other hand, from definition 4.2-1, the projection function wrt c and a variable xi∈s is:

πxi

ρ
(B) = (ρ ∩ B)[xi]

and so, for every real value r within πxi

ρ
(B) there must be an tuple from B with xi=r satisfying c:

∀r∈B[xi] r∈πxi

ρ
(B) ⇒ ∃<r1,…,ri-1,r,ri+1,…,rn >∈B<r1,…,ri-1,r,ri+1,…,rn>∈ρ

which is equivalent to:

∀r∈B[xi] r∈πxi

ρ
(B) ⇒ ∃<r1,…,ri-1,r,ri+1,…,rn >∈B f(<r1,…,ri-1,r,ri+1,…,rn>)⋄0 (4)

Case ⋄ ≡ “=” then (4) is:

APPENDIX B

248

∀r∈B[xi] r∈πxi

ρ
(B) ⇒ ∃<r1,…,ri-1,r,ri+1,…,rn >∈B f(<r1,…,ri-1,r,ri+1,…,rn>)=0

If f(<r1,…,ri-1,r,ri+1,…,rn>) denotes the real value zero then, any interval including it includes zero.

Consequently, from (3), it follows the interval projection condition (i):

∀r∈B[xi] r∈πxi

ρ
(B) ⇒ 0∈∏xi

ρB
([r])

Case ⋄ ≡ “≤” then (4) is:

∀r∈B[xi] r∈πxi

ρ
(B) ⇒ ∃<r1,…,ri-1,r,ri+1,…,rn >∈B f(<r1,…,ri-1,r,ri+1,…,rn>)≤0

If f(<r1,…,ri-1,r,ri+1,…,rn>) denotes a real value less or equal than zero then, the left bound of any

interval including it must also be less or equal than zero. Consequently, from (3), it follows the

interval projection condition (ii):

∀r∈B[xi] r∈πxi

ρ
(B) ⇒ left(∏xi

ρB
([r])) ≤0

Case ⋄ ≡ “≥” then (4) is:

∀r∈B[xi] r∈πxi

ρ
(B) ⇒ ∃<r1,…,ri-1,r,ri+1,…,rn >∈B f(<r1,…,ri-1,r,ri+1,…,rn>)≥0

If f(<r1,…,ri-1,r,ri+1,…,rn>) denotes a real value greater or equal than zero then, the right bound of

any interval including it must also be greater or equal than zero. Consequently, from (3), it follows the

interval projection condition (iii):

∀r∈B[xi] r∈πxi

ρ
(B) ⇒ right(∏xi

ρB
([r]))≥0

Theorem 4.2.2-2 (Projection Function Enclosure based on the Interval Projection). Let

P=(X,D,C) be a CCSP. Let c=(s,ρ)∈C be an n-ary constraint, B an n-ary F-box and xi an element of s.

Let a and b be respectively the leftmost and the rightmost elements of B[xi] satisfying the interval

projection condition. The following property necessarily holds:

πxi

ρ
(B) ⊆ [a..b]

Proof:

If a and b are respectively the leftmost and the rightmost elements of B[xi] satisfying the interval

projection condition then outside this interval there are no elements of B[xi] satisfying this condition.

However, from theorem 4.2.2-1, any element of B[xi] within the projection function πxi

ρ
(B) must

satisfy the respective interval projection condition. Consequently outside the interval [a..b] there are

no elements of B[xi] within the projection function πxi

ρ
(B).

Since from definition 4.2-1 πxi

ρ
(B)= (ρ ∩ B)[xi] ⊆ B[xi] it follows:

πxi

ρ
(B) ⊆ [a..b]

