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Chapter 11
Relating Emerging Network Behaviour
to Network Structure

Abstract Emerging behaviour of a network is a consequence of the network’s
structure. However, it may often not be easy to find out how this relation between
structure and behaviour exactly is. In this chapter, results are presented on how
certain properties of network structure determine network behaviour. The network
structure characteristics considered include both connectivity characteristics in terms
of being strongly connected, and aggregation characteristics in terms of properties of
combination functions to aggregate multiple impacts on a state. In particular, results
are found for networks that are strongly connected and combination functions that are
strictly monotonically increasing and scalar-free. This class of combination functions
includes linear combination functions such as scaled sum functions but also nonlinear
ones such as Euclidean combination functions of any order n and scaled geometric
mean combination functions. In addition, some results are found on how timing
characteristics affect final outcomes of the network behaviour.

Keywords Network structure � Social contagion � Asymptotic network behavior �
Social convergence � Mathematical analysis

11.1 Introduction

The emerging behaviour of networks is often considered an interesting and
sometimes fascinating consequence of the network’s structure. Although the
emerging behaviour is entailed by the network structure, finding the relation
between network structure and network behaviour may be a real challenge. Often
simulations under varying settings of the structure characteristics are used to reveal
just a glimpse of this relation. But sometimes it is possible to find out how certain
properties of the emerging behaviour can be derived in a mathematical manner from
certain characteristics of the network structure. In this chapter such cases are shown,
using the Network-Oriented Modeling approach from Chap. 2 and (Treur 2016b,
2019) as a vehicle. This approach enables to derive theoretical results that predict
emerging behavior that is observed in specific cases of simulations.
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Network structure is in principle described by a number of characteristics that, as
considered here, concern: (1) connectivity characteristics, describing how different
parts of the network connect, (2) aggregation characteristics, describing how
multiple connections to the same node are handled, and (3) timing characteristics,
describing how fast network states change over time. For temporal-causal networks,
more specifically, such characteristics relate to connection weights defining the
connectivity, combination functions defining aggregation of the impacts of multiple
states on a given state, and speed factors defining the speed of change of a state. The
challenge then is to find out how properties of connection weights, combination
functions and speed factors relate to emerging behavior.

In particular, in this chapter it will be addressed what behaviour emerges con-
cerning equilibrium states that are reached; for example:

• What are bounds between which in the end equilibrium values of states occur?
• How much variation occurs for these equilibrium values?
• Under which conditions a common equilibrium value for the different states

occurs?

Answers for such questions can be relevant, for example, to predict the spread of
information or opinions, or social contagion of emotions; e.g. (Bosse et al. 2015;
Castellano et al. 2009).

As a result of the mathematical analysis performed, a number of properties of a
network structure have been identified such that any network with a structure
satisfying these properties show similar emerging behavior. These structure prop-
erties include connectivity characteristics of the network and aggregation charac-
teristics in terms of properties of combination functions used to aggregate the
impact of multiple incoming connections to a node. The identified properties of the
combination functions define a class of functions most of which are nonlinear,
although linear functions are still included. Among the nonlinear ones are Euclidean
combination functions of any order n, and scaled geometric mean combination
functions. Examples of combination functions that do not belong to this class are
minimum and maximum combination functions and logistic sum combination
functions. Also some results are presented on how timing characteristics of the
network affect the outcomes of the network’s behaviour.

In this chapter, in Sect. 11.2 basic concepts are introduced. Section 11.3 shows
simulation examples of the emerging behaviour phenomena that can be observed.
In Sect. 11.4 properties of network structure are defined that are relevant for the
considered types of emerging behaviour. Section 11.5 discusses a number of results
for the relation between network structure and network behaviour addressing the
questions above. These have been proven mathematically; proofs are included in
Chap. 15, Sect. 15.6. Section 11.6 examines a further set of simulations, this time
with focus on Euclidean, scaled geometric mean and scaled maximum combination
functions. A result is found relating Euclidean combination functions of very high
order n to scaled maximum combination functions. Section 11.7 is a final
discussion.
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11.2 Conceptual and Numerical Representation
of a Network

The modeling perspective (Treur 2016b, 2019) used in this chapter, interprets
connections in a network in terms of causality and dynamics; see Chap. 2. In the
temporal-causal networks used, nodes in a network are interpreted as states that
vary over time, and the connections are interpreted as causal relations that define
how each state can affect other states over time. To define such a network structure,
three main elements have to be addressed:

(a) connectivity (the connections in the network)
(b) aggregation (how multiple connections to one node are aggregated)
(c) timing (how timing of the different states takes place).

These three notions determine the characteristics of the network structure. For
temporal-causal networks they are modeled by connection weights, combination
functions, and speed factors, respectively, which is summarized as:

(a) Connectivity

• connection weights from a state X to a state Y, denoted by xX,Y

(b) Aggregation

• a combination function for each state Y, denoted by cY(..)

(c) Timing

• a speed factor for each state Y, denoted by ηY.

Based on these, a conceptual representation of a temporal-causal network model
includes labels for connection weights, combination functions, and speed factors;
see the upper part (first 5 rows) of Table 11.1. Note that in the current chapter only
networks with nonnegative connection weights are considered.

Combination functions are similar to the functions used in a static manner in the
(deterministic) Structural Causal Model perspective described, for example, in (Pearl
2000). However, here they are used in a dynamic manner. For example, (Pearl 2000),
p. 203, denotes nodes by Vi and the functions corresponding to combination functions
by fi. Pearl (2000) also points at the problem of underspecification for aggregation of
multiple connections, as in the often used graph representations the role of combi-
nation functions fi for nodesVi, is lacking, and they are therefore not a full specification
of the network structure.

To provide sufficient flexibility, for each state a specific combination function
can be chosen to specify how multiple causal impacts on this state are aggregated.
A number of standard combination functions are available as options in the com-
bination function library currently including up to tens of functions, but also new
functions can be added to the library.
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The lower part of Table 11.1 shows the numerical representation describing the
dynamics of a temporal-causal network by difference equations, defined on the
basis of the network structure as described by the upper part of that table. Thus
dynamic semantics is associated in a numerical-mathematically defined manner to
any conceptual temporal-causal network specification. This provides a well-defined
relation between network structure and network dynamics at the base level. The
difference equations in Table 11.1 last row can be used both for simulation and for
mathematical analysis. In Fig. 11.1 the basic relation between structure and
dynamics is indicated by the horizontal arrow in the lower part representing the
base level; see also in Chap. 2, Fig. 2.6. The upper part will be addressed in
Sects. 11.4, 11.5 and 11.6.

Table 11.1 Conceptual and numerical representations of a temporal-causal network model)

Concept Conceptual
representation

Explanation

States and
connections

X, Y, X ! Y Describes the nodes and links of a network structure
(e.g., in graphical or matrix format)

Connection weight xX,Y The connection weight xX,Y 2 [−1, 1] represents the
strength of the causal impact of state X on state
Y through connection X ! Y

Aggregating
multiple impacts
on a state

cY(..) For each state Y (a reference to) a combination function
cY(..) is chosen to combine the causal impacts of other
states on state Y

Timing of the
effect of causal
impact

ηY For each state Y a speed factor ηY � 0 is used to
represent how fast a state is changing upon causal
impact

Concept Numerical representation Explanation

State values over
time t

Y(t) At each time point t each
state Y in the model has
a real number value,
usually in [0, 1]

Single causal
impact

ImpactX,Y(t) = xX,Y X(t) At t state X with a
connection to Y has an
impact on Y, using
connection weight xX,Y

Aggregating
multiple causal
impacts

aggimpactY ðtÞ
¼ cY impactX1 ;Y ðtÞ; . . .; impactXk ;Y ðtÞ

� �
¼ cY xX1 ;YX1ðtÞ; . . .;xXk ;YXkðtÞ

� �
The aggregated causal
impact of k � 1 states
X1, …, Xk on Y at t, is
determined using
combination function
cY(..)

Timing of the
causal effect

YðtþDtÞ ¼ YðtÞþ
gY aggimpactY ðtÞ � YðtÞ½ �Dt
¼ YðtÞþ
gY cY xX1 ;YX1ðtÞ; . . .;xXk ;YXkðtÞ

� �� YðtÞ� �
Dt

The causal impact on
Y is exerted over time
gradually, using speed
factor ηY; here the Xi are
all k � 1 states with
outgoing connections to
state Y
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Often used examples of combination functions are the identity function id(.) for
states with impact from only one other state, the scaled maximum and minimum
function smaxk(..) and smink(..), the scaled sum function ssumk(.), and the scaled
geometric mean function sgeomeank(.), all with scaling factor k, and the advanced
logistic sum combination function alogisticr,s(..) with steepness r and threshold s:

idðVÞ ¼ V

smaxkðV1; . . .;VkÞ ¼ maxðV1; . . .;VkÞ=k
sminkðV1; . . .;VkÞ ¼ minðV1; . . .;VkÞ=k
ssumkðV1; . . .;VkÞ ¼ V1 þ � � � þVkð Þ=k

sgeomeankðV1; . . .;VkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1 � . . . � Vk

k
k

r

alogisticr;sðV1; . . .;VkÞ ¼ 1
1þ e�r V1 þ ��� þVk�sð Þ �

1
1þ ersÞ

� �
1þ e�rsð Þ

ð11:1Þ

In addition to the above functions, generalising the scaled sum function, a
Euclidean combination function is defined as

eucln;kðV1; . . .;VkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vn
1 þ � � � þVn

k

k
n

r
ð11:2Þ

where n is the order (which can be any positive natural number but also any
positive real number), and k is again a scaling factor. Note that indeed for n = 1
(first order) we get the scaled sum function

eucl1;kðV1; . . .;VkÞ ¼ ssumkðV1; . . .;VkÞ ð11:3Þ

For n = 2 it is the second-order Euclidean combination function defined by

eucl2;kðV1; . . .;VkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
1 þ � � � þV2

k

k

r
ð11:4Þ

Conceptual Representation: 
Network Structure

Numerical Representation: 
Network Dynamics

Properties of the
Network Structure

Properties of Emerging 
Network Behaviour

Fig. 11.1 Bottom layer: the conceptual representation defines the numerical representation. Top
layer: properties of network structure entail properties of emerging network behaviour
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This second-order Euclidean combination function often occurs in aggregating the
error value in optimisation and in parameter tuning using the root-mean-square
deviation (RMSD).

For very high values of the order n the limit of an nth order normalised
Euclidean function with scaling factor

kðnÞ ¼ xX1;Y
n þ � � � þxXk ;Y

n ð11:5Þ

is a normalised scaled maximum function with scaling factor
max xX1;Y ; . . .;xXk ;Y

� �
:

lim
n!1 eucln;kðnÞ V1; . . .;Vkð Þ ¼ smaxmax xX1 ;Y ;::;xXk ;Yð Þ V1; . . .;Vkð Þ ð11:6Þ

This will be shown both by simulation and by mathematical analysis later in
Sect. 11.6.

11.3 Examples of a Network’s Emerging Behaviour

In this section a few examples of a Social Network for social contagion are dis-
cussed. They all concern a fully connected network.

11.3.1 The Example Social Network

The example network is shown in Fig. 11.2 and has connection weights and speed
factors as shown in the role matrices in Box 11.1, with initial values shown in
Table 11.2. This is actually the same example as used in Chap. 2 for a first analysis.

Fig. 11.2 The example
social network
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Box 11.1 Role matrices for the example network

mb       
base 

connectivity
1 2 3 4 5 6 7 8 9

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X2 X1 X3 X4 X5 X6 X7 X8 X9 X10

X3 X1 X2 X4 X5 X6 X7 X8 X9 X10

X4 X1 X2 X3 X5 X6 X7 X8 X9 X10

X5 X1 X2 X3 X4 X6 X7 X8 X9 X10

X6 X1 X2 X3 X4 X5 X7 X8 X9 X10

X7 X1 X2 X3 X4 X5 X6 X8 X9 X10

X8 X1 X2 X3 X4 X5 X6 X7 X9 X10

X9 X1 X2 X3 X4 X5 X6 X7 X8 X10

X10 X1 X2 X3 X4 X5 X6 X7 X8 X9

mcfw
combination 

function 
weights

1 2

eucl alogistic

X1 1
X 2 1
X3 1
X4 1
X5 1
X6 1
X7 1
X8 1
X9 1
X10 1

mcw 
connection   

weights
1 2 3 4 5 6 7 8 9

X1 0.25 0.1 0.25 0.25 0.25 0.2 0.1 0.25 0.2

X2 0.1 0.25 0.15 0.2 0.1 0.1 0.25 0.15 0.25

X3 0.2 0.25 0.25 0.1 0.25 0.2 0.1 0.25 0.2

X4 0.1 0.2 0.1 0.2 0.25 0.15 0.25 0.15 0.2

X5 0.2 0.1 0.2 0.15 0.25 0.2 0.05 0.2 0.1

X6 0.15 0.2 0.15 0.8 0.25 0.2 0.15 0.1 0.2

X7 0.1 0.15 0.1 0.25 0.2 0.1 0.25 0.2 0.15

X8 0.25 0.25 0.25 0.15 0.1 0.25 0.2 0.15 0.8

X9 0.25 0.25 0.1 0.25 0.2 0.25 0.15 0.1 0.2

X10 0.1 0.25 0.15 0.25 0.15 0.1 0.25 0.25 0.15

function
mcfp

parameter

1 2
eucl alogistic

1 2 1 2

X1 1 1.85
X2 1 1.55
X3 1 1.8
X4 1 1.6
X5 1 1.45
X6 1 2.2
X7 1 1.5
X8 1 2.4
X9 1 1.75
X10 1 1.65

ms
speed

factors
1

X1 0.8
X2 0.5
X3 0.8
X4 0.5
X5 0.5
X6 0.5
X7 0.8
X8 0.5
X9 0.5
X10 0.5

11.3.2 Three Simulations with Different Emerging
Behaviour

For this example Social Network simulations have been performed for two types of
combination functions: scaled sum and advanced logistic sum combination func-
tions. In Sect. 11.6 similar simulations will be shown for scaled geometric mean,
Euclidean, and scaled maximum combination functions. Figure 11.3 shows three
different example simulations (all with step size Dt = 0.25):

Table 11.2 Initial values for the example

Initial values
X1 X 2 X3 X4 X5 X6 X7 X8 X9 X10

0.1 0.3 0.9 0.8 0.5 0.6 0.85 0.05 0.25 0.4
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Fig. 11.3 The example network of Fig. 11.2 with a upper graph: advanced logistic sum
combination functions with steepness r = 1.5, threshold s = 0.3 (no common equilibrium value),
b middle graph: normalised scaled sum functions (common equilibrium value), c lower graph:
normalised scaled sum functions with constant X4 (at 0.8) and X8 (at 0.05) (no common value)
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• in the upper graph advanced logistic sum combination functions are used,
• in the middle graph normalized scaled sum functions, and
• in the lower graph scaled sum functions while two states are independent and

remain constant.

It turns out that in one of the three cases convergence to a common equilibrium
value takes place, but not in the other two cases; instead some (imperfect) form of
clustering seems to take place. How can we explain these differences from the
structure of the networks? This question will be answered in Sect. 11.5.

11.4 Relevant Network Structure Characteristics

As explained in Sect. 11.2 and Table 11.1 the basic difference equations describing
network dynamics relate to network structure. This covers the lower part of
Fig. 11.1. As emerging behaviour shows itself over longer time durations, and the
difference equations describe the very small steps in the dynamics, to relate
emerging network behaviour to network structure, the gap between these small
steps and longer time durations has to be bridged. How that can be done is dis-
cussed in the current section and in Sect. 11.5. Here it is discussed which properties
of network structure (see Fig. 11.1, left upper corner) underly the behavioural
differences (right upper corner in Fig. 11.1) shown in Sect. 11.3 and Fig. 11.3.
Proofs can be found in Chap. 15, Sect. 15.6.

Properties of all three main elements of the network’s structure (connectivity,
aggregation, and timing) have turned out relevant as determining factors for the
network’s emerging behaviour. Properties of the network’s aggregation are
expressed by combination functions, and properties of the network’s connectivity
are expressed by the connections and their weights. First, in Sect. 11.4.1 the rele-
vant properties of combination functions for aggregation are addressed, and next in
Sect. 11.4.2 relevant properties of the network’s connectivity. In Sect. 11.5.4 the
third main element of a network’s structure determining the network’s behaviour,
namely timing, is analysed as well.

11.4.1 Relevant Network Aggregation Characteristics
in Terms of Properties of Combination Functions

For the combination functions describing the network’s aggregation characteristics,
the following properties are relevant. Whether or not they are fulfilled can make
differences in emerging behaviour of the type shown in Fig. 11.3.
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Definition 1 (Properties of combination functions)

(a) A function c(..) is called nonnegative if c(V1, …, Vk) � 0 for all V1, …, Vk

(b) A function c(..) respects 0 if V1, …, Vk � 0 ) [c(V1, …,
Vk) = 0 , V1 = ��� = Vk = 0]

(c) A function c(..) is called monotonically increasing if

Ui �Vi for all i ) c U1; . . .;Ukð Þ� c V1; . . .;Vkð Þ

(d) A function c(..) is called strictly monotonically increasing if

Ui �Vi for all i; andUj\Vj for at least one j ) c U1; . . .;Ukð Þ\c V1; . . .;Vkð Þ

(e) A function c(..) is called scalar-free if c(aV1, …, aVk) = ac(V1, …, Vk) for all
a > 0

In Table 11.3 it is shown which functions have which of the properties (c) to
(e) from Definition 1. The following propositions are useful to prove that certain
combination functions have the above properties.

Proposition 1 Linear combinations with positive coefficients of functions that are
(strictly) monotonic or scalar-free also are (strictly) monotonic or scalar-free,
respectively.

Proposition 2 Any function composed of monotonically increasing or decreasing
functions including an even number of monotonically decreasing functions is
monotonically increasing. The same holds for strictly monotonically increasing or
decreasing.

Proposition 3 For every n > 0 a Euclidean combination function of nth degree is
strictly monotonic, scalar-free, symmetric and respects 0.

The properties (a) and (b) are basic properties silently assumed to hold for all
combination functions considered here. Sometimes combination functions are
defined in such a way that (a) automatically holds:

c� V1; . . .;Vkð Þ ¼ c V1; . . .;Vkð Þ if c V1; . . .;Vkð Þ� 0
0 otherwise

Properties (d) and (e) define a specific class of combination functions; this class
includes all Euclidean combination functions and geometric mean combina-
tion functions, but logistic sum combination functions do not belong to this class,
as they are not scalar-free. Also maximum-based combination functions do not
belong to this class as they are monotonic but not strict. A number of results on
emerging behaviour will be discussed for this class in particular; note that most
functions in this class are nonlinear.

See Table 11.3 for which functions have which of the properties (c) to (e) from
Definition 1.

260 11 Relating Emerging Network Behaviour to Network Structure



Proposition 4 (Proportional outcomes)
If in a temporal-causal network all combination functions are scalar-free and in
some Scenario 1 the initial values for the states are a factor q times the initial values
in a Scenario 2, then for every t the state values in Scenario 1 are q times the
corresponding state values in Scenario 2, assuming ηYDt � 1 for all states Y. This
also holds for the equilibrium values when an equilibrium is reached.

Proposition 5 (Order preservation)
If in a temporal-causal network all combination functions are monotonically
increasing and in some Scenario 1 the initial values for the states are � the initial
values in a Scenario 2, then for every t the state values in Scenario 1 are � the
corresponding state values in Scenario 2, assuming ηYDt � 1 for all states Y. This
also holds for the equilibrium values when an equilibrium is reached. Similarly for
decreasing.

Definition 2 (normalised network)
A network is normalised or uses normalised combination functions if for each state
Y it holds cY xX1;Y ; . . .;xXk ;Y

� � ¼ 1, where X1,…, Xk are the states from
which Y gets its incoming connections.

This normalisation can be achieved in two ways:

(1) normalisation by adjusting the combination functions

If any combination function cY(..) is replaced by c′Y(..) defined as

c0Y V1; . . .;Vkð Þ ¼ cY V1; . . .;Vkð Þ=cY xX1;Y ; . . .;xXk ;Y
� � ð11:7Þ

then the network is normalised: c0A xX1;Y ; . . .;xXk ;Y
� � ¼ 1

(2) normalisation by adjusting the connection weights

For scalar-free combination functions also normalisation is possible by adapting the
connection weights; define

Table 11.3 Characteristics
of Definition 1 for the
example combination
functions

(c) (d) (e)

id(.) + + +

ssumk(..) + + +

eucln,k(..) + + +

smin(..) + – +

smax(..) + – +

sgeomeank(..) for Vi > 0 + + +

alogisticr,s(..) + + –
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x0
Xi;Y ¼ xXi;Y=cY xX1;Y ; . . .;xXk ;Y

� � ð11:8Þ

Then the network becomes normalised; indeed cY x0
X1;Y ; . . .;x

0
Xk ;Y

	 

¼ 1.

For different example functions, following normalisation (1) above, their nor-
malised variants are given by Table 11.4.

11.4.2 Relevant Network Connectivity Characteristics:
Being Strongly Connected

Another important determinant for emerging behaviour is formed by the network’s
connectivity characteristics, in particular in how far the network has paths con-
necting any two states:

Definition 3 (reachable, strongly connected and symmetric network)

(a) State Y is reachable from state X if there is a directed path from X to Y with
nonzero connection weights and speed factors.

(b) A network is connected if between every two states there is a (nondirected) path
with nonzero connection weights and speed factors. It is strongly connected if
any state Y is reachable from any state X.

(c) A network is fully connected if for any states X, Y there is a (direct) connection
from X to Y.

(d) A network is called weakly symmetric if for all nodes X and Y it holds
xX,Y = 0 , xY,X = 0 or, equivalently: xX,Y > 0 , xY,X > 0. The network is
called fully symmetric if xX,Y = xY,X for all nodes X and Y. An adaptive net-
work is called continually (weakly/fully) symmetric if at all time points it is
(weakly/fully) symmetric.

(e) A state Y is called independent if for any incoming connection with connection
weight xX,Y > 0 the speed factor of Y is 0 (or no incoming connections exist).

Note that an independent state is not reachable from any other state. The term
independent means that its behaviour over time is not affected by the other states.
Either its value can remain constant (when the speed factor is 0), or it can show any
autonomously defined dynamics (see, for example, state X6 in Fig. 11.4).

Definition 4 (symmetric combination function)
A combination function is symmetric in a subset S of its arguments if for any
U1, …, Uk is obtained from V1, …, Vk by a permutation of the arguments in S, it
holds c(U1, …, Uk) = c(V1, …, Vk). It is fully symmetric if S is the set of all
arguments.
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11.5 Results Relating Emerging Behaviour to Network
Structure

This section focuses on the emerging behaviour properties and how they relate to
the main structure characteristics connectivity, aggregation, and timing. From these,
the first two were discussed in Sect. 11.4, and the third one, timing, will be dis-
cussed in Sect. 11.5.4 below. In the current section, it will be shown how properties
of these three elements entail properties of emerging behaviour (the horizontal
arrow in the upper part of Fig. 11.1). First a few basic definitions and results; see
also (Treur 2016a).

11.5.1 Basic Definitions and Results

Definition 5 (stationary point and equilibrium)
A state Y has a stationary point at t if dY(t)/dt = 0. The network is in equilibrium
at t if every state Y of the network has a stationary point at t.

Applying this for the specific differential equation format for a temporal-causal
network model, a more specific criterion can be formulated in terms of the network
structure characteristics xX,Y, cY(..), ηY:

Lemma 1 (Criterion for a stationary point in a temporal-causal network)
Let Y be a state and X1, …, Xk the states from which state Y gets its incom-
ing connections. Then Y has a stationary point at t if and only if ηY = 0 or
cY xX1;YX1ðtÞ; . . .;xXk ;YXkðtÞ
� � ¼ YðtÞ.
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Fig. 11.4 How the dynamics of one independent state X6 affects all states over time
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The following proposition and theorem show that for normalised scalar-free
combination functions, always when all states have the same value (for example,
initially), an equilibrium occurs. For proofs, see Chap. 15, Sect. 15.6.

Proposition 6 Suppose a network with nonnegative connections has normalised
scalar-free combination functions.

(a) If X1, …, Xk are the states from which Y gets its incoming connections, and
X1(t) = ��� = Xk(t) = V for some common value V, then also cY xX1;YX1ðtÞ; . . .;

�
xXk ;YXkðtÞÞ ¼ V .

(b) If, moreover, the combination functions are monotonic, and V1 � X1(t), …,
Xk(t) � V2 for some values V1 and V2, then also V1 � cY xX1;YX1ðtÞ; . . .;

�
xXk ;YXkðtÞÞ�V2 and if ηY Dt � 1 and V1 � Y(t) � V2 then V1 � Y
(t + Dt) � V2.

Theorem 1 (common state values provide equilibria)
Suppose a network with nonnegative connections is based on normalised and
scalar-free combination functions. Then the following hold.

(a) Whenever all states have the same value V, the network is in an equilibrium state.
(b) If for every state for its initial value V it holds V1 � V � V2, then for all t for

every state Y it holds V1 � Y(t) � V2. In an achieved equilibrium for every
state for its equilibrium value V it holds V1 � V � V2.

11.5.2 Common Equilibrium Values for Acyclic
and Strongly Connected Networks

In this section the focus is on networks with neat connectivity properties, namely
being acyclic or being strongly connected. For these types some results are discussed
below. However, also for any network connectivity good results are possible, but
these results depend on the network’s connectivity structure in terms of its strongly
connected components. Those more general results are addressed in Chap. 12.

Theorem 1 does not tell whether other types of equilibria, where the values are not
the same, are possible as well, for example, as shown in the first and third graph in
Fig. 11.3. In subsequent theorems it is shown that in many cases no other types of
equilibria occur. As afirst case, consider a networkwithout cycles. Then the following
theorem has been proven by applying induction over the acyclic graph connections
starting from the independent states and thereby using Proposition 6 and Lemma 1.

Theorem 2 (equilibrium states provide common state values; acyclic case)
Suppose an acyclic network with nonnegative connections is based on normalised
and scalar-free combination functions.
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(a) If in an equilibrium state the independent states all have the same value V, then
all states have the same value V.

(b) If, moreover, the combination functions are monotonic, and in an equilibrium
state the independent states all have values V with V1 � V � V2, then all
states have values V with V1 � V � V2.

Next, a basic Lemma for dynamics of normalised networks with combination
functions which are monotonically increasing and scalar-free.

Lemma 2 Let a normalised network with nonnegative connections be given with
combination functions that are monotonically increasing and scalar-free; then:

(a)

(i) If for some node Y at time t for all nodes X with xX,Y > 0 it holds
X(t) � Y(t), then Y(t) is decreasing at t: dY(t)/dt � 0.

(ii) If the combination functions are strictly increasing and a node X exists
with X(t) < Y(t) and xX,Y > 0, and the speed factor of Y is nonzero, then
Y(t) is strictly decreasing at t: dY(t)(t)/dt < 0.

(b)

(i) If for some node Y at time t for all nodes X with xX,Y > 0 it holds
X(t) � Y(t), then Y(t) is increasing at t: dY(t)/dt � 0.

(ii) If, the combination function is strictly increasing and a node X exists with
X(t) > Y(t) and xX,Y > 0, and the speed factor of Y is nonzero, then Y(t) is
strictly increasing at t: dY(t)(t)/dt > 0.

Using Lemma 1 and 2 the following proposition has been proven for strongly
connected networks with cycles.

Theorem 3 (common equilibrium state values; strongly connected case)
Suppose the network has normalised, scalar-free and strictly monotonic combina-
tion functions, then:

(a) If the network is strongly connected, then in an equilibrium state all states have
the same value.

(b) Suppose the network has one or more independent states and the subnetwork
without these independent states is strongly connected. If in an equilibrium
state all independent states have values V with V1 � V � V2, then all states
have values V with V1 � V � V2. In particular, when all independent states
have the same value V, then all states have this same value V.

Using Lemma 1 and 2 the following slightlymore general theoremhas been proven
for (connected) networks with cycles and possibly with an independent state.

Theorem 4 (equilibrium states provide common state values)
Suppose a (possibly cyclic) network with nonnegative connections is based on
normalised, strictly monotonically increasing and scalar-free combination func-
tions, then:

266 11 Relating Emerging Network Behaviour to Network Structure



(a) If in an equilibrium state, a state Y with nonzero speed factor has highest state
value or lowest state value, then all states X from which Y is reachable have the
same equilibrium state value as Y.

(b) Suppose except for at most one independent state, every state Y is reachable
from all other states X. Then in an equilibrium state all states have the same
state value.

(c) Under the conditions of (b) the equilibrium state is attracting, and the common
equilibrium state value is between the highest and lowest previous or initial
state values.

Theorems 2, 3 and 4 can be applied to many cases and then prove that all states
converge to the same value. For example, this explains why for the second simu-
lation in Fig. 11.3 convergence to one common value takes place, but not for the
first and third case. For the first case this is because it does not satisfy the scalar-free
condition, and the for the third case because it does not satisfy the condition on
reachability: one exceptional independent state is allowed but not two, as occurs in
the third example in Fig. 11.3.

As an illustration for another function satisfying the above conditions of being
scalar-free and strictly monotonically increasing, in Fig. 11.5 a simulation example
is shown for a normalised scaled geometric mean function. This function is indeed
scalar free, monotonically increasing, and strictly monotonically increasing as long
as the values are nonzero. So by Theorem 3 a common equilibrium value may be
expected.

As predicted by Theorems 1 and 3 all state values indeed end up in the same
value and this value is between the minimal and maximal initial values.

11.5.3 The Effect of Independent States on a Network’s
Emerging Behaviour

The one exceptional independent state allowed in Theorem 4(b) can have any
independently preset constant value, and all other state values converge to this
value. But it is also possible to give this state an autonomous pattern over time that
converges to some limit value V for t ! ∞. Then over time all state values will
more or less follow this pattern and end up in the same equilibrium value V, all
according to Theorem 4(b); see Fig. 11.4. Therefore:

Corollary 1 Assume the conditions of Theorem 4 hold, and one state X is inde-
pendent, forwhich its value over time is described by the function f(t), soX(t) = f(t) for
all t. If lim

t!1 f ðtÞ ¼ V , then this V is the common equilibrium value for all states.

Corollary 1 is illustrated by Fig. 11.5 where X6 is an independent state and has
dynamics based on f ðtÞ ¼ b2 þ b1e�a2 t sin 2pa1tð Þ with a1 = 0.03, a2 = 0.035,
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b1 = 0.5, b2 = 0.6. Here the outgoing connections of X6 have been increased
according to Table 11.5 to get a stronger effect.

Figure 11.6 shows two cases in which condition (b) of Theorem 4 is not ful-
filled: there are two independent states. In the upper graph X3 and X7 are constant at
values 0.85 and 0.9, respectively, and all other equilibrium values turn out to end up
between these values. In the lower graph, X1 and X8 are constant at values 0.1 and
0.05, respectively, and also here all other equilibrium values turn out to end up
between these values. So, even if these two states both have very low or very high
values, still the other state values end up between these values. Note that as in
Fig. 11.3c, here the equilibrium values are not equal, although in this case they are
close to each other. This is consistent with Theorems 3 and 4.

Theorem 3(b) shows that under the conditions assumed there, all equilibrium
value are in between the highest and lowest initial values of independent states,
which is illustrated in Fig. 11.6.

More about this can be found when also the role of timing is taken into account
as modeled by speed factors.
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Fig. 11.5 Example simulation for the normalised scaled geometric mean function

Table 11.5 Adjusted weights (Compared to Box 11.1) of outgoing connections from X6

Connection weights X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X6 0.6 0.9 0.7 0.95 0.9 0.8 0.7 0.8 0.9
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11.5.4 How Timing Affects a Common Equilibrium Value

Taking also timing into account, as modeled by speed factors, the following
Theorem 5 is a further refinement of the above. It shows that under some
assumptions any value between the highest and lowest initial value can be the
common equilibrium value.
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Fig. 11.6 How multiple independent states affect all equilibrium values
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Theorem 5 (Variability of the common equilibrium value)
Suppose a connected network with n states and only nonnegative connections is
based on normalised, strictly monotonically increasing and scalar-free combination
functions, then:

(a) A function eqf: [0, 1]2n ! [0, 1] exists that assigns in an achieved equilibrium
the common equilibrium value VXi

¼ V of the states to the values of the speed
factors gXi

, i = 1, …, n, and the initial state values VXi , i = 1, …, n of all states:

eqf gX1
; . . .; gXn

;VX1 . . .:;VXn

� � ¼ VXi
¼ V for all i

(b) This function eqf gX1
; . . .; gXn

;VX1 . . .:;VXn

� �
is surjective: every value V 2 [0,

1] can occur as some achieved equilibrium value
V ¼ eqf gX1

; . . .; gXn
;VX1 . . .:;VXn

� �
. More specifically, it holds:

(i) For any value V 2 [0, 1] and any values of speed factors gX1
; . . .; gXn

, initial
values VX1 . . .:;VXn exist such that

V ¼ eqfðgX1
; . . .; gXn

;VX1 . . .:;VXnÞ ¼ V

(ii) For any initial values VX1 . . .;VXn , values of speed factors gX1
; . . .; gXn

exist
such that

V ¼ eqf gX1
; . . .; gXn

;VX1 . . .;VXn

� � ¼ VXi

(iii) Moreover, if it is assumed that eqf gX1
; . . .; gXn

;VX1 . . .;VXn

� �
is a continuous

function of the speed factors gX1
; . . .; gXn

, then for any initial values
VX1 . . .:;VXn , and any value V with min VX1 . . .;VXnð Þ�V �max VX1 . . .;VXnð Þ,
values of speed factors gX1

; . . .; gXn
exist such that

V ¼ eqf gX1
; . . .; gXn

;VX1 . . .;VXn

� � ¼ V

Theorem 5 shows that both the initial values and the speed factors affect the
common equilibrium value. Note that Theorem 5b) (iii) depends on the assumption
that the common equilibrium value is a continuous function of the speed factors.
This will depend on characteristics of the combination functions, but it is not clear
by which types of combination functions this assumption is satisfied, in addition to
being normalised, strictly monotonically increasing and scalar-free combination
functions. Should they be continuous? Differentiable? With continuous partial
derivatives which are bounded? Or smooth of a certain order, maybe even of
infinite order? These are still open questions. However, as illustrated in Fig. 11.7,
Theorem 5b) (iii) at least has been confirmed in simulation experiments.
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Here for any arbitrary choice for V by adapting values of speed factors in a
smooth manner always such values could be determined such that V became the
common equilibrium value V, thereby clearly showing experimentally that the
function eqf(..) was continuous.
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Fig. 11.7 How any value can become a common equilibrium value by using appropriate speed
factors (here normalised scaled sum functions were used)
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An example of this for normalised scaled sum functions where two speed factors
(of X3, resp. X8) are adapted is shown in Fig. 11.7. The upper graph shows the
pattern when the speed factor of X3 is 0.001, and the middle graph when the speed
factor of X8 is 0.001. In both cases the common equilibrium value is quite close to
the initial value of X3 resp. X8. Next, an arbitrary value V = 0.7 in between was
chosen. It was found that for speed factor 0.04 for X3 and 0.645 for X8 the common
equilibrium value was 0.700001. See lower graph in Fig. 11.7. This illustrates
Theorem 5b) (iii).

11.5.5 Emerging Behaviour for Fully Connected Networks

The theorems above all only apply to combination functions that are scalar free,
such as Euclidean combination functions and scaled geometric mean combination
functions. The advanced logistic sum combination function is also often used; it is
not scalar free, so we don’t have discussed any results for that type of function yet.
But at least some result has been obtained without the scalar free assumption,
summarized in Theorem 6. Here the combination functions are assumed symmetric
and (not necessarily strictly) monotonically increasing; the logistic sum combina-
tion function satisfies that condition. However, in this case there is an additional
condition on the connection weights: they all should be equal, and the network
should be fully connected. This result still applies to Euclidean combination
functions as well, but, also to logistic sum combination functions, and maximum
and minimum combination functions, which indeed are symmetric and monotonic
combination functions.

Theorem 6 Suppose in a network with nonnegative connections the combination
functions are symmetric and monotonically increasing and the network is fully
connected with equal weights: xX,Y = x for all X and Y. Then in an equilibrium
state all states have the same value.

11.6 Emerging Behaviour for Euclidean, Scaled
Maximum and Scaled Minimum Combination
Functions

In Sect. 11.3 example simulations were discussed only for scaled sum, advanced
logistic sum and scaled geometric mean combination functions. In the current
section also scaled maximum and minimum and Euclidean combination functions of
different orders are discussed in some more depth. At the end a relationship between
normalised Euclidean combination functions and normalised maximum combina-
tion functions is found in simulations and mathematically proven. The example used
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is the same as in Sect. 11.3 with characteristics and initial values shown in Box 11.1
and Table 11.2. Step size was Dt = 0.25.

11.6.1 Emerging Behaviour for Euclidean Combination
Functions of Different Orders

In this section simulations for the Euclidean combination functions of varying order
n are discussed, for higher values n = 2, 4, 10 and 100 (see Figs. 11.8 and 11.9),
and for a lower value n = 0.0001 (see Fig. 11.12). The following theorem is for
now only a conjecture, as a proof of it is complicated that increasing n leads to
increasing outcomes.

Theorem 7 (strictly monotonically increasing trend of eucl(n, V1, …, Vk) for n)
For equal state values between 0 and 1, the equilibrium values for normalised
Euclidean combination functions have a strictly monotonically increasing trend as
function of the order n.
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Fig. 11.8 Example simulations for the normalised Euclidean functions of order 2 and 4
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Theorem 7 is confirmed by the simulation examples shown in Figs. 11.8, 11.9
and 11.12.

In Fig. 11.8 the behavior is as expected from Theorems 1 and 3. Note that the
fourth order function gets a higher common final value than the second order, while
the second order one gets almost the same value as the first order one in Fig. 11.3.
To explore what happens if the order is increased further, also the 10th order and
100th order Euclidean functions were simulated; see Fig. 11.9.

The final value indeed increases with the order n. Will it still increase further
until 1? An answer for this comes in Sect. 11.6.2 when it is compared with the
simulation for the normalised scaled maximum function; see Fig. 11.10.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

100th order Euclidean example

X1 X2
X3 X4
X5 X6
X7 X8
X9 X10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10

10th order Euclidean example

X1 X2
X3 X4
X5 X6
X7 X8
X9 X10

Fig. 11.9 Example simulations for the normalised Euclidean functions of order 10 and 100
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11.6.2 Comparing Equilibrium Values for Euclidean
Combination Functions and Scaled Maximum
Combination Functions

Note that this pattern shown in Fig. 11.10 is not predicted by Theorem 3 or 4 as the
scaled maximum function is not strictly monotonically increasing. But it also does
not contradict these theorems as they do not formulate an if and only if relation.

Maybe a bit surprisingly, the pattern of the normalised maximum combination
function is very similar to the pattern for the 100th order Euclidean combination
function. Indeed, it has been found by mathematical proof that when the order n is
increased, the nth order Euclidean function approximates the normalised scaled
max function; see Theorem 8 below. To prove this, first in Lemma 3 a general
mathematical relation between radical and max expressions is shown.

Lemma 3 (Relating radical and max expressions)
Suppose a1; ::; ak are any nonnegative real numbers. Then

lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an1 þ � � � þ ank

n
p ¼ max a1; . . .; akð Þ

Theorem 8 Let for each n the normalised Euclidean combination function
eucln;kðnÞ V1; . . .;Vkð Þ be given with normalising factor k(n), and let the normalised
scaled maximum combination function smaxk V1; . . .;Vkð Þ be given with scaling
factor k. Then for all V1; . . .;Vk it holds

lim
n!1 eucln;kðnÞ V1; . . .;Vkð Þ ¼ smaxk V1; . . .;Vkð Þ
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Fig. 11.10 Example simulation for the normalised scaled maximum function
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where

kðnÞ ¼ xn
X1;Y þ � � � þxn

Xk ;Y

and

k ¼ max xX1;Y ; . . .;xXk ;Y
� �

For proofs, see Chap. 15, Sect. 15.6.

This Theorem 8 gives some kind of hint for why the graphs for the normalised
100th order Euclidean combination function and for the normalised scaled maxi-
mum combination function in Figs. 11.9 and 11.10 are very similar: they are almost
the same combination function. It also suggests that for higher orders than 100 the
final value will not become much higher, although Theorem 7 is no exact proof for
this point.

Returning to the issue that the scaled maximum function does not fulfil the
requirement of being strictly monotonically increasing, indeed there are cases in
which the conclusions of Theorem 3 do not apply. An example is the slightly
adjusted network shown in Box 11.2. Here this time the mutual connections
between X1, X2, and X3, and the mutual connections between X8, X9, and X10 all
have weight 1. The other weights remain the same.

Box 11.2 Role matrices showing adjusted mutual connection weights for X1,
X2, and X3, and for X8, X9, and X10

mb       
base 

connectivity
1 2 3 4 5 6 7 8 9

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X2 X1 X3 X4 X5 X6 X7 X8 X9 X10

X3 X1 X2 X4 X5 X6 X7 X8 X9 X10

X4 X1 X2 X3 X5 X6 X7 X8 X9 X10

X5 X1 X2 X3 X4 X6 X7 X8 X9 X10

X6 X1 X2 X3 X4 X5 X7 X8 X9 X10

X7 X1 X2 X3 X4 X5 X6 X8 X9 X10

X8 X1 X2 X3 X4 X5 X6 X7 X9 X10

X9 X1 X2 X3 X4 X5 X6 X7 X8 X10

X10 X1 X2 X3 X4 X5 X6 X7 X8 X9

mcw 
connection   

weights
1 2 3 4 5 6 7 8 9

X1 1 1 0.25 0.25 0.25 0.2 0.1 0.25 0.2

X2 1 1 0.15 0.2 0.1 0.1 0.25 0.15 0.25

X3 1 1 0.25 0.1 0.25 0.2 0.1 0.25 0.2

X4 0.1 0.2 0.1 0.2 0.25 0.15 0.25 0.15 0.2

X5 0.2 0.1 0.2 0.15 0.25 0.2 0.05 0.2 0.1

X6 0.15 0.2 0.15 0.8 0.25 0.2 0.15 0.1 0.2

X7 0.1 0.15 0.1 0.25 0.2 0.1 0.25 0.2 0.15

X8 0.25 0.25 0.25 0.15 0.1 0.25 0.2 1 1

X9 0.25 0.25 0.1 0.25 0.2 0.25 0.15 1 1

X10 0.1 0.25 0.15 0.25 0.15 0.1 0.25 1 1

In Fig. 11.11 simulation results are shown for the normalised scaled maximum
combination function. Now clustering takes place with the first group X1, X2, and X3

ending up in value 0.5415, the second group X8, X9, and X10 in value 0.325, and the
remaining group X4, X5, X6 and X7 in exactly 0.7. This shows that indeed
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Theorem 3 is not applicable for scaled maximum combination functions (because
that function is not strictly monotonous).

Note that for practical reasons of limited machine precision it is less straight-
forward to simulate this modified network for a 100th order Euclidean combination
function. The reason is that the 100th powers of the single impacts Vi,j = xXi,Xj

Xj(t) from different states Xi on Xj are of very different order of magnitude. They
may easily be a factor up to 1060 or more different, for example, and when added in
V1;j

100 þ � � � þVk;j
100 to form the aggregated impact

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1;j

100 þ � � � þVk;j
100

k
100

r

the contributions of the smaller terms are vanishing due to limited machine pre-
cision. So, then it is as if for X1, X2, and X3, and for X8, X9, and X10 a network is
simulated with only the connection weights 1 and the rest 0, so then clusters show
up in an artificial manner. To simulate this in a correct manner, machine precision
of at least 60 digits would be needed.

Returning to the Euclidean combination function and the original network
connectivity depicted in Box 11.1, also very small positive real numbers for n can
be explored. Figure 11.12 shows a simulation graph for n = 0.0001. It turns out that
this graph is practically equal to the one for the normalised scaled minimum
combination function. There may be a theorem similar to Theorem 8 but then for
n ! 0 and the minimum operator to explain this. For now, this is left open.

All in all, it turns out that by varying the order n from (close to) 0 to ∞, the
common equilibrium value for the states of the example network varies with n from
around 0.4 to around 0.7, where these boundaries are the values reached for the
normalised scaled minimum and maximum combination functions.
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Fig. 11.11 Example simulation for the normalised scaled maximum function for the modified
network of Box 11.2
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11.7 Discussion

Emerging behaviour of a network is a consequence of the characteristics of the
network structure, although it can be challenging to find out how this relation
between structure and behaviour exactly is. In this chapter a number of theorems
and proofs were presented on how certain identified properties of network structure
determine network behaviour, in particular concerning equilibrium values reached.
Parts of this chapter were adopted from (Treur 2018a). The considered network
structure characteristics include the main elements network connectivity charac-
teristics (in how far other states of the network are reachable from a given state),
network aggregation characteristics in terms of properties of combination func-
tions used to aggregate multiple impacts on a single state, and network timing
characteristics in terms of speed factors for the states. This challenge was addressed
using a Network-Oriented Modeling approach based on temporal-causal network
models (Treur 2016b, 2019), and the analysis they allow, as a vehicle; e.g., (Treur
2017). Within Mathematics the analysis of emerging behaviour of dynamical sys-
tems has a long history that goes back to (Picard 1891; Poincaré 1881); see also
(Brauer and Nohel 1969; Lotka 1956).

In the network literature the challenge to relate network behaviour to network
structure is usually only addressed for specific models and functions, where often
these functions are assumed linear. In the current chapter it was addressed in a more
general way for general properties of network structure covering a variety of models
or functions, also including various nonlinear functions such as nth order Euclidean
combination functions and scaled geometric mean combination functions. In this
way extra insight was obtained in what properties exactly make that specific net-
work structures lead to certain network behaviour.
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Fig. 11.12 Example simulation for the normalised Euclidean functions of order 0.0001, which
turns out to be practically equal to the outcome for the normalised scaled minimum function
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As an example, a special case of Theorem 3, for one specific model with one
specific combination function and speed factor, and just for fully connected net-
works appeared in (Bosse et al. 2015). In that paper it does not become clear what it
exactly is that makes that the considered model generates that type of emerging
behaviour. The much more general formulation presented and proven in Theorem 3
here is new. It shows that the structure-behaviour relation depends on the one hand
on connectivity of the network, but on the other hand also on aggregation (the ways
in which multiple impacts on a single state are aggregated), and on timing (how fast
states respond on impact they receive). It has been found that aggregation structure
properties for the combination functions such as strict monotonicity and being
scalar-free are crucial. These properties define a relatively wide class of functions
including linear (scaled sum) functions but mostly also nonlinear functions such as
Euclidean functions and product-based (scaled) geometric mean functions. It also
has been shown that networks with examples of combination functions not in this
class, such as logistic sum combination functions (not scalar-free) and maximum-
based combination functions (not strictly monotonic) do not show the same
behaviour.

Theorems 4 and 5 are also new and explore the bounds and range for the
equilibrium values reached. Theorem 6 first appeared in (Treur 2017) in the context
of an adaptive network to model a specific preferential attachment principle, but
actually covers the much more general setting as provided in the current chapter. In
(Hendrickx and Tsitsiklis 2013) also analysis of emerging behaviour was addressed,
but for a different class of networks.

Concerning connectivity, the work presented in the current chapter mainly
addresses strongly connected networks. As a next step, more general networks have
been addressed that may or may not be strongly connected. Analysis has been
performed based on such a network’s strongly connected components. Results have
been found for any network, without any condition on strong connectivity; see
Chap. 12 or (Treur 2018b).

In other further work, also for adaptive networks a similar challenge has been
addressed: how do certain properties of adaptation principles lead to certain types of
adaptive network behaviour. For example, adaptation based on a Hebbian learning
principle [see Chap. 14 or (Treur 2018d)], or based on a homophily principle [see
Chap. 13 or (Treur 2018c)] have been analysed, and properties of the combination
functions used have been identified that lead to certain expected behaviour for the
adaptive connection weights.
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