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a b s t r a c t 

This paper analyses Chinese postman games with multi-located players, which generalize Chinese post- 

man games by dropping the one-to-one relation between edges and players. In our model, we allow play- 

ers to be located on more than one edge, but at most one player is located on each edge. The one-to-one 

relation between edges and players is essential for the equivalence between Chinese postman-totally bal- 

anced and Chinese postman-submodular graphs shown in the literature. We illustrate the invalidity of 

this result in our model. Besides, the location of the post office has a relevant role in the submodularity 

and totally balancedness of Chinese postman games with multi-located players. Therefore, we focus on 

sufficient conditions on the assignment of players to edges to ensure submodularity of Chinese postman 

games with multi-located players, independently of the associated travel costs. Moreover, we provide 

some insights on the difficulty of finding necessary conditions on assignment functions to this end. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

In this paper, we analyse Chinese postman games with multi-

located players (cpmlp games), which generalize Chinese post-

man games. In a Chinese postman problem, a postman has to

visit a group of customers located at the edges of a graph start-

ing and ending in a specific node, referred to as the post office.

One can see it as a service provider that has to visit a group

of clients. Usually, there are travelling costs associated with the

visit. The relevant question is, then, how to reduce the travel costs

of visiting all customers. When the customers have to pay for

these costs, a second question arises: how to divide the travel

costs among all customers. The analysis of the operational research

problem dates back to Mei-Ko Kwan (1960) , Mei-Ko Kwan (1962) ,

and Edmonds and Johnson (1973) , while the allocation problem

was first addressed in a game-theoretical framework in Hamers,

Borm, van de Leensel, and Tijs (1999) . In their work, they repre-

sent the city by a graph and assume a one-to-one relation be-

tween the set of customers and the set of edges of the graph.

They introduce Chinese postman games by defining the value of

a group of customers (or coalition) as the minimum cost over

all possible walks for the coalition. Here, a walk is a tour that

starts at the post office, visits each customer, and goes back to

the post office at the end. Moreover, they illustrate that Chi-
∗ Corresponding author. 
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ese postman games need not be balanced in general, although

hey are always balanced when the underlying graph is a bridge-

onnected Euler graph (or weakly Euler graph in the terminology

f Granot, Hamers, & Tijs, 1999 ). Following the work of Hamers

t al. (1999) , Hamers (1997) shows that Chinese postman games

re always submodular when the underlying graph is a weakly

uler graph cycle. Granot et al. (1999) further investigate Chinese

ostman games in the same framework as Hamers et al. (1999) .

hey define Chinese postman-submodular, Chinese postman-totally

alanced, and Chinese postman-balanced graphs. A graph G is

hinese postman-submodular if any associated Chinese postman

ame with underlying graph G is submodular, independently of the

ost office location and of the travel costs. Similarly, they define

hinese postman-totally balanced and Chinese postman-balanced

raphs. They show the equivalence between undirected weakly

yclic graphs, Chinese postman-submodular graphs, and Chinese

ostman-totally balanced graphs. Further, they show that the class

f undirected Chinese postman-balanced graphs is the class of

eakly Euler graphs. Following Granot et al. (1999) and Granot and

amers (2004) analyse the equivalence between Chinese postman-

ubmodular (as well as balanced and totally balanced) graphs and

raveling salesman-submodular (respectively, balanced and totally

alanced) graphs. Granot, Hamers, Kuipers, and Maschler (2011) al-

ow for edges not to be assigned to players. They investigate the

lass of graphs for which the associated Chinese postman game is

alanced and the players on a road always pay exactly the cost of

he road at each core point, independently of the location of the

ost office and the travelling costs. 

https://doi.org/10.1016/j.ejor.2020.01.062
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2020.01.062&domain=pdf
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1 Here and further, for any vector x ∈ R N , we denote x (S) := 

∑ 

x i . 
In this paper, we drop the one-to-one relation between the

et of customers (from now on players) and the set of edges.

he one-to-one relation between players and some relevant fea-

ure of an underlying operational-research problem is common

o the literature of OR-games (cf. Borm, Hamers, & Hendrickx,

001 ). Lately, this one-to-one relation has been dropped as in

alleja, Estévez-Fernández, Borm, and Hamers (2006) and Estévez-

ernández, Borm, Calleja, and Hamers (2008) in the context of se-

uencing games, Miquel, van Velzen, Hamers, and Norde (2006) in

he context of fixed tree games, and Miquel, van Velzen, Hamers,

nd Norde (2009) in the context of assignment games. 

In our cpmlp model, a player can be present in more than one

dge, but no edge can have more than one player. Moreover, we

lso allow for an edge to have no players, in which case we call it

 public edge. As an example of this generalization, we can con-

ider a courier company that needs to deliver packages to several

ompanies. A specific company may have several locations where

he delivery of all its packages can take place and, afterwards,

he company will internally redistribute the packages to the cor-

ect destination. In this way, the courier company only needs to

isit one location of each company. We show, contrary to the re-

ults in Granot et al. (1999) , that cpmlp games with underlying

ndirected weakly cyclic graphs do not need to be submodular.

oreover, we show that submodularity and totally balancedness

re not equivalent concepts any longer. Furthermore, the location

f the post office in the graph plays a relevant role in total bal-

ncedness and submodularity of the associated cpmlp games. This

hortcoming leads us to focus on conditions on the assignment

f players to edges that ensure submodularity of the associated

pmlp game. Given an undirected rooted graph G, an assignment

f players to edges is submodular if the associated cpmlp game is

lways submodular, independently of the travel costs. Here, we re-

trict our analysis to weak cycles since Chinese postman games in

he framework of Granot et al. (1999) are a special case of cpmlp

ames. We give sufficient conditions for an assignment of players

o edges to be submodular for trees. Moreover, using these condi-

ions, we also provide sufficient conditions for an assignment of

layers to edges to be submodular for cycles and for weak cy-

les. Unfortunately, these requirements are not necessary as well.

e give insightful examples that outline the complexity of find-

ng necessary conditions for submodular assignments of players to

dges. 

Chinese postman games with a tree as underlying graph are re-

ated to fixed tree games. Given a rooted weighted undirected tree,

e can consider both an associated Chinese postman game and an

ssociated fixed tree game. In a Chinese postman game, the players

re located in the edges while in a fixed tree game, the players are

ocated in the nodes. Reallocating a player in a node to the inci-

ent edge that is used in the path going from the root to the node,

he value of a coalition in the Chinese postman game is twice

he value of that same coalition in the fixed tree game. Therefore,

oth games share the same properties. Miquel et al. (2006) anal-

se fixed tree games with multi-located players as a generalization

f fixed tree games. They allow players to be located in more than

ne node except for players located in leaf nodes (nodes with no

ollowers). Moreover, each leaf is occupied by a player, that is, it

annot be left empty. By imposing these restrictions, they ensure

hat the whole tree will be used by the grand coalition. They show

hat fixed tree games with multi-located players are always sub-

odular. Therefore, given a rooted tree, every assignment function

hat assigns every edge incident with a leaf to players owning only

ne edge are submodular. Reversely, if we drop the restriction in

iquel et al. (2006) about leafs being owned by players that do

ot have multiple locations, we can translate the condition on pair-

ise tree-admissibility with respect to the post office to fixed tree

ames with multi-located players. 
The structure of the paper is as follows. Section 2 gives the pre-

iminary definitions and results used in the remaining of the paper.

ection 3 introduces Chinese postman games with multi-located

layers and motivates the analysis of submodular assignment of

layers to edges. Section 4 is devoted to submodular assignments

f players to edges for trees, while Section 5 follows suit for cycles,

nd Section 6 for weak cycles. 

. Preliminaries 

A cooperative (cost) game in characteristic function form is a

air ( N, c ) where N is a finite set of players and c : 2 N → R sat-

sfies c(∅ ) = 0 . In general, c ( S ) represents the value of coalition S ,

hat is, the joint costs that are incurred by the coalition when its

embers decide to cooperate. A cooperative game is a tool used

o solve an allocation problem: how to share the total costs arising

rom the cooperation of all players. One highly accepted solution

oncept within game theory is the core of a game. The core of

 game ( N , c ), Core ( c ), is the set of efficient allocations of c ( N )

o which no coalition can reasonably object (cf. Gillies, 1953 ). For-

ally, 1 

ore (c) = { x ∈ R 

N | x (N) = c(N) , x (S) ≤ c(S) for all S ⊂ N} . 
A game ( N , c ) is balanced (see Bondareva, 1963; Shapley, 1967 )

f, and only if, it has a nonempty core. A game ( N , c ) is totally bal-

nced if for each coalition S ⊂ N , the subgame ( S , c S ) is balanced,

here c S is the restriction of c to S . A game ( N , c ) is monotonic if

or every S , T ⊂ N with S ⊂ T , c ( S ) ≤ c ( T ). A game ( N , c ) is subaddi-

ive if for every S , T ⊂ N with S ∩ T = ∅ , c(S ∪ T ) ≤ c(S) + c(T ) . An

mportant class of (totally) balanced games is the class of submod-

lar (or concave) games. A game ( N , c ) is submodular (or con-

ave ) if for every i ∈ N and every S ⊂ T ⊂ N �{ i }, c(S ∪ { i } ) − c(S) ≥
(T ∪ { i } ) − c(T ) . 

An (undirected) graph G is a pair ( V , E ) in which V is

he finite set of nodes and E ⊂ {{ v , w } ⊂ V : v 
 = w } is the set

f edges. In general, given a graph G, V (G) and E (G) denote the set

f nodes and the set of edges of G, respectively. For v ∈ V and e ∈ E ,

e say that v and e are incident if v ∈ e, and edges ( v ) denotes the

et of edges that are incident with v . 
A walk , ω, from node v to w is an alternating sequence

f nodes and edges, w 0 , e 1 , w 1 , . . . , w q −1 , e q , w q , where w 0 = v ,
 q = w, and e l = { w l−1 , w l } for every l ∈ { 1 , . . . , q } . For notational

onvenience, we sometimes describe a walk ω as a sequence

f nodes w 0 , w 1 , . . . , w q −1 , w q , with { w l−1 , w l } ∈ E for every l ∈
 1 , . . . , q } . G ( ω) denotes the associated graph with set of nodes

 w 0 , w 1 , . . . , w q } and set of edges { e 1 , . . . , e q } , which we denote by

 ( ω) and E ( ω), respectively. Walks ( v , w ) denotes the set of walks

rom v to w . A closed walk is a walk with w 0 = w q . 

A path , π , from node v to w is a walk in which no node is re-

eated. G ( π ) denotes the corresponding graph with set of nodes

 ( π ) and set of edges E ( π ). Paths ( v , w ) denotes the set of paths

rom v to w . It is well known that from any walk between two dis-

inct nodes, we can always construct a path between those nodes

cf. Rahman, 2017 ). 

A cycle , C , is a walk w 0 , e 1 , w 1 , . . . , w q −1 , e q , w q , with w 0 = w q

nd where w 1 , . . . , w q are distinct. With minor abuse of language,

e refer to a cycle C as the graph with nodes V ( C ) and edges E ( C ).

n a cycle, every node has exactly two incident edges and every

air of distinct nodes can be connected by exactly two paths. A

ooted cycle C with root v 0 ∈ V (C) is a cycle where node v 0 is sin-

led out. 

Given a graph G, a subset V 

′ of V (G) is called connected if for

very v , w ∈ V ′ , there is a path from v to w using only nodes of
i ∈ S 
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Fig. 1. Decomposition of a weak cycle into trees and cycles. 

Fig. 2. Cpmlp problem in Example 3.1 . 
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V 

′ . A subset V 

′ of V (G) is called maximally connected or compo-

nent if V 

′ is connected and for any w ∈ V (G) \ V ′ , V ′ ∪ { w } is not

connected. 

A graph G = (V, E) is a forest if it has no cycles and a tree

if it is a connected forest. In a tree, two distinct nodes are con-

nected by exactly one path. Given u, v ∈ V, we denote by π( u, v )
the unique path connecting both nodes. A rooted tree G = (V, E)

with root v 0 ∈ V is a tree where node v 0 ∈ V is singled out. 

A graph G = (V, E) is a weak cycle if it is a connected graph

and each edge belongs to at most one cycle. A cycle belonging to

a weak cycle is called a leaf if it has at most one node with more

than two incident edges ( C 2 is a leaf cycle in Fig. 1 ). A rooted weak

cycle G = (V, E) with root v 0 ∈ V is a weak cycle where node v 0 ∈ V 

is singled out. The rooted weak cycle G can be decomposed into

a union of rooted trees and rooted cycles which set of edges are

pairwise disjoint. Formally, given G a weak cycle, let C 1 , . . . , C r be

the cycles contained in G and let V 1 , . . . , V s be the components of

(V (G) , E(G) \ ( ⋃ r 
l=1 E(C l ))) that are not singletons, that is, | V l | ≥ 2

for l ∈ { 1 , . . . , s } . For l ∈ { 1 , . . . , s } , let T l be the tree with node set

V l and edge set E l = {{ v , w } ∈ E | v , w ∈ V l } and let v ∗
l 

be the node

that is always visited in any walk from v 0 to any node in V l . Then,

T l is a rooted tree with root v ∗
l 
, l ∈ { 1 , . . . , s } . Moreover, for any

l ∈ { 1 , . . . , r} , let w 

∗
l 
∈ V ( C l ) be the node that is always visited in any

walk from v 0 to any node in C l . Then, C l is a rooted cycle with root

w 

∗
l 
, l ∈ { 1 , . . . , r} . Therefore, G can be seen as a union of rooted cy-

cles (C l , w 

∗
l 
) , l = 1 , . . . , r, and rooted trees (T l , v ∗l ) , l = 1 , . . . , s, with

E (C 1 ) , . . . , E (C r ) , E (T 1 ) , . . . , E (T s ) pairwise disjoint (see Fig. 1 ). 

Let G be a weak cycle and let ω be a closed walk in G. The

associated graph G( ω) is also a weak cycle. Moreover, we can al-

ways construct another closed walk ω̄ that have the same nodes

and edges than ω and such that each edge belonging to a cycle

of G( ω) appears exactly once in ω̄ , while all other edges appear

exactly twice. In this case, G(ω) = G( ̄ω ) . We say that ω̄ is an es-
ential walk . Conversely, associated with each connected subset

 

′ ⊂ V (G), we can always construct a closed essential walk ω sat-

sfying: (i) V (ω) = V ′ and (ii) E(ω) = {{ u, v } ∈ E(G) | u, v ∈ V ′ } . We

ay that a closed essential walk ω satisfying these two conditions

s a walk associated with V 

′ . Obviously, there might be more than

ne walk associated with V 

′ . 

. Chinese postman games with multi-located players 

In this section, we introduce Chinese postman games with

ulti-located players. For this, we first need to formally introduce

hinese postman problems with multi-located players. 

In a Chinese postman problem with multi-located players

cpmlp problem), a postman, starting from the post office, has to

isit a (finite) set N of customers (or players) in a city and return

o the post office at the end. The map of the city is represented by

 graph G and the players are located in the edges of the graph.

ere, a player may be located on more than one edge, but on each

dge, only one player may be located. Associated with each edge,

here is a non-negative cost. The cpmlp problem consists in finding

 walk at minimal cost that visits all players at least on one loca-

ion. Formally, a cpmlp problem is a 5-tuple (G , v 0 , t, N, p ) where

 is the graph representing the map of the city; v 0 is the node

here the post office is located; t : E(G) → R + is the cost function

n the edges of G; N is the set of players; and p : E (G) → N ∪ {0}

s a function placing players on edges, where p(e ) = i, i ∈ N , means

hat player i is located on edge e ∈ E (G), and p(e ) = 0 means that

o player is located on edge e ∈ E (G). If p(e ) = 0 for e ∈ E (G), we say

hat edge e is public . 

Next to the optimization problem, we consider an allocation

roblem: how to divide the minimal cost of visiting all players

mong them. To solve this problem, we consider Chinese postman

ames with multi-located players (cpmlp games). Before the for-

al introduction, we give some new concepts. Let S ⊂ N be a coali-

ion of players and assume that the postman only has to visit the

layers in S . We define an S -walk as a closed walk that visits all

layers in S at least once (that is, the postman visits at least one

dge of each player in S ). An S -walk starts and finishes in v 0 , may

isit the same edge more than once, and may visit edges not as-

igned to members of S . We denote the set of all S -walks by W ( S ).

The cpmlp game , ( N , c ), associated to the cpmlp problem

(G , v 0 , t, N, p) is defined by 

(S) = min 

{ 

q ∑ 

l=1 

t(e l ) | v 0 , e 1 , w 1 . . . , w q −1 , e q , v 0 ∈ W(S) 

} 

or every S ⊂ N . It is readily verified that ( N , c ) is monotonic and

ubadditive. 

Given a cpmlp problem (G , v 0 , t, N, p) and a player i ∈ S , there

ay exist edges assigned to i that can only be visited using other

dges that are also occupied by i . Hence, i ’s ownership of these

dges is not relevant for our game since any S -walk visiting them,

lready visits other edges of i . These edges are redundant for the

efinition of the game and can be considered public. 

The following example illustrates redundant edges. 

xample 3.1. Let (G , v 0 , t, N, p) be the cpmlp problem described in

ig. 2 . There, and in the remaining, the numbers in boldface rep-

esent the players located on the edge (or 0 if the edge is pub-

ic) and the non-boldface numbers represent the cost of the edges.

ere, edge { v 8 , v 12 } is redundant for player 1 since edge { v 4 , v 6 } is
lways visited in any walk starting at v 0 and including { v 8 , v 12 } .
imilarly, edge { v 10 , v 13 } is redundant for player 3 , and edges

 v 6 , v 9 } and { v 7 , v 10 } are redundant for player 4 . 

♦
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Fig. 3. Cpmlp problem and reduced cpmlp problem in Example 3.1 . 

Fig. 4. Cpmlp problem in Example 3.2 . 
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Formally, given a cpmlp problem (G , v 0 , t, N, p) , we associate

he reduced cpmlp problem , ( G, v 0 , t, N, p 

r ) , where p r is define d

s follows: p r (e ) = i with i ∈ N if p(e ) = i and there exist at least

ne walk ω ∈ W({ i }) such that e ∈ E ( ω) and p( ̄e ) 
 = i for every ē ∈
(ω) \ { e } ; otherwise, p r (e ) = 0 . We denote by M( G , v 0 , t, N, p 

r )
he set of players that own multiple edges according to p r . For-

ally, 

(G , v 0 , t, N, p r ) = { i ∈ N | | (p r ) −1 (i ) | > 1 } . 
f no confusion is to be expected, we denote M instead of

(G , v 0 , t, N, p r ) . We denote by ( N , c r ) the cpmlp game associ-

ted to (G , v 0 , t, N, p r ) . Fig. 3 illustrates how to obtain the reduced

pmlp problem in Example 3.1 . 

The following result is straightforward and, therefore, the proof

s omitted. 

heorem 3.1. Let (G , v 0 , t, N, p) be a cpmlp problem, let

(G , v 0 , t, N, p r ) be the reduced cpmlp problem, and let ( N , c )

nd ( N , c r ) be the corresponding cpmlp games. Then, c = c r . 

If p is a one-to-one relation with N , that is, p −1 (0) = ∅ and

 p −1 (i ) | = 1 for every i ∈ N , then, both the cpmlp problem and cor-

esponding game coincide with the Chinese postman problem and

he corresponding game introduced in Hamers et al. (1999) . Granot

t al. (1999) study Chinese postman-balanced, Chinese postman-

otally balanced, and Chinese postman-submodular (cp-balanced,

p-totally balanced, and cp-submodular) graphs for Chinese post-

an games. A graph is cp-submodular if the corresponding Chi-

ese postman game is always submodular, independently of the
dge costs and the post office location. Similarly, they define cp-

alanced and cp-totally balanced graphs. In Granot et al. (1999) ,

ach edge belongs to one player and each player has exactly one

dge. They obtain the following result. 

heorem 3.2. ( Granot et al., 1999 ) Let G be a connected undirected

raph. Then, the three following statements are equivalent: 

(i) G is weakly cyclic, 

(ii) G is cp-submodular, 

(iii) G is cp-totally balanced. 

The following examples illustrate that Theorem 3.2 does not

old if the one-to-one relation between the set of edges and the

et of players is violated. First, we give an example of a cpmlp

ame associated to a cpmlp problem with a weak cycle that is not

alanced. 

xample 3.2. Let (G , v 0 , t, N, p) be the cpmlp problem described in

ig. 4 . Here, p r = p. 

The associated cpmlp game has values: c({ 1 } ) = c({ 2 } ) =
({ 3 } ) = 4 , c({ 1 , 2 } ) = c({ 1 , 3 } ) = c({ 2 , 3 } ) = 6 and c(N) = 10 . The

ame is not balanced. To see this, suppose that x ∈ Core( c ). Then,

 1 + x 2 + x 3 = 10 and x 1 + x 2 ≤ 6 , x 1 + x 3 ≤ 6 , x 2 + x 3 ≤ 6 . Adding

ll inequalities together, we have 

0 = 2(x 1 + x 2 + x 3 ) = x 1 + x 2 + x 1 + x 3 + x 2 + x 3 ≤ 6 + 6 + 6 = 1

hich establishes a contradiction to our premise x ∈ Core( c ). Thus,

 N , c ) is not balanced and, therefore, neither totally balanced, nor

ubmodular. However, if the post office is situated at any other

ode, then, the associated cpmlp-game is submodular. ♦

Second, we give an example of a cpmlp game associated to a

pmlp problem with a weak cycle that is totally balanced, but not

ubmodular. 

xample 3.3. Let (G , v 0 , t, N, p) be the cpmlp problem described in

ig. 5 . Here, p r = p. 

The associated cpmlp game has values: c({ 1 } ) = c({ 3 } ) = 4 ,

({ 2 } ) = c({ 1 , 2 } ) = 6 , c({ 1 , 3 } ) = c({ 2 , 3 } ) = 8 and c(N) = 10 . The

ame is totally balanced since it has a nonempty core (for exam-

le, (4, 2, 4) ∈ Core( c )) and all subgames have a nonempty core, too.

owever, it is not submodular. Take i = 1 , S = { 2 } , and T = { 2 , 3 } .
hen, 

({ 1 , 2 } ) − c({ 2 } ) = 0 
≥ 2 = c({ 1 , 2 , 3 } ) − c({ 2 , 3 } ) . 



462 A. Estévez-Fernández and H. Hamers / European Journal of Operational Research 285 (2020) 458–469 

Fig. 5. Cpmlp problem in Example 3.3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Notions of predecessors and followers in a rooted tree. 
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In fact, the game is not submodular since player 2 is visited on

his edge { v 1 , v 2 } for coalitions {2}, {1, 2}, and {1, 2, 3}, while he is

visited on his edge { v 3 , v 4 } for coalition {2, 3}. However, if the post

office is situated at any other node, the associated cpmlp-game is

submodular. ♦

As illustrated in the examples above, as soon as we drop the

one-to-one relation between the set of edges of the underlying

graph and the set of players, Theorem 3.2 does not hold and the

position of the post office plays a relevant role. In the remain-

ing, we study sufficient conditions on the assignment of players

to edges in order to ensure submodularity of the corresponding

cpmlp game, independently of the cost function at hand. One of

the admissibility conditions will be that all assignment functions

that are a one-to-one function between the set of edges and the

set of players are admissible. Due to this, it follows that the only

graphs that combined with an admissible assignment function pro-

vide submodular cpmlp games are weakly cyclic (as seen in Granot

et al., 1999 ). 

Let G be a rooted graph with root v 0 and let N be a finite set.

The assignment function p : E (G) → N ∪ {0} is submodular if for

every cost function t : E(G) → R + , the cpmlp game ( N , c ) associ-

ated to the cpmlp problem (G , v 0 , t, N, p) is submodular. 

4. Submodular assignment functions for trees 

In this section, we analyse restrictions on the assignments of

players in trees to obtain submodularity of cpmlp games. Let

(G , v 0 , t, N, p) be a cpmlp problem where G is a tree (tree-cpmlp

problem). Given a coalition S ⊂ N and a walk ω ∈ W( S ), it is readily

seen that the associated graph, G( ω), is a tree. Since we are inter-

ested in walks that visit all players in S at minimum cost, we can

restrict our analysis to essential closed walks. Then, we can write

the value of coalition S ⊂ N as 

c(S) = min 

ω∈ W (S) 

2 

∑ 

e ∈ E(ω) 

t(e ) . 

As illustrated in Examples 3.2 and 3.3 , we encounter problems

with submodularity of tree-cpmlp games when a player can be vis-

ited in different edges depending on the coalition at hand. Next,

we define pairwise tree-admissibility with respect to the post of-

fice of an assignment function, which will be a sufficient condition

to obtain submodularity of tree-cpmlp games. First, we need to in-

troduce some preliminary notation. 

Let G be a rooted tree with root v 0 and let v ∈ V (G) . We denote

by Pr ( v ) the set of predecessors of v , that is, the set of nodes that
recede v in the path from v 0 to v . Formally, 

r (v ) = { u ∈ V | u 
 = v , u ∈ V (π(v 0 , v )) } . 
e denote Pr ( v )= Pr (v ) ∪ { v } . This induces a partial order ≤ G de-

ned by 

 ≤G w if v ∈ Pr (w ) . 

esides, we write v < G w if v ≤G w and v 
 = w . It follows that

r (v 0 ) = ∅ and v 0 ∈ Pr (v ) for every v ∈ V (G) \ { v 0 } . We denote by

ol ( v ) the set of nodes that have v as a predecessor. Formally, 

ol (v ) = { u ∈ V | v < G u } . 
e denote Fol ( v )= Fol (v ) ∪ { v } . Certainly, Fol (v ) may be empty.

et v ∈ V and e = { v 1 , v 2 } ∈ E be such that v 1 < G v 2 , v 1 , v 2 ∈ Fol (v ) .
hen, there exists a unique ˜ e = { v , ̃  v } ∈ edges (v ) , v < G ˜ v , such that

˜  ∈ E(π(v , v 2 )) . Clearly, ˜ e may be e . We define the rooted tree

 ( v , e ) = (V ( v , e ) , E( v , e ) ) with root v by 

 (v , e ) = { v } ∪ Fol ( ̃ v ) and E(v , e ) = {{ u, w } ∈ E | u, w ∈ V (v , e ) }
urely, G(v , e ) = G(v , ̃  e ) . 

The following example illustrates the introduced notions. 

xample 4.1. Let (G , v 0 , t, N, p) be the cpmlp problem described

n Fig. 6 . The set of predecessors of v 6 is Pr (v 6 ) = { v 0 , v 4 } . The set

f followers of v 6 is Fol (v 6 ) = { v 8 , v 9 , v 12 } . Let e = { v 8 , v 12 } . Then,

˜  = { v 6 , v 8 } is the incident edge with v 6 belonging to π(v 6 , v 12 )

nd 

(v 6 , { v 8 , v 12 } ) = G(v 6 , { v 6 , v 8 } ) , 
hich is encircled in the graph in Fig. 6 . ♦

Let (G , v 0 , t, N, p) be a tree-cpmlp problem. We say that p is

airwise tree-admissible with respect to v 0 if for every v , w ∈
 (G) , every e ∈ edges (v ) with e ⊂ Fol (v ) , and every f ∈ edges (w )

ith f ⊂ Fol (w ) such that E(v , e ) ∩ E(w, f ) = ∅ , at least one of the

ollowing conditions is satisfied: 

1. min {| p r (E(v , e )) ∩ N| , | p r (E(w, f )) ∩ N|} = 1 , 

2. p r (E(v , e )) ∩ N = p r (E(w, f )) ∩ N with | p r (E(v , e )) ∩ N| = 2 , 

3. p r (E(v , e )) ∩ p r (E(w, f )) ∩ N = ∅ . 
Clearly, if p is a one-to-one relation with N , condition (iii) is

lways satisfied. 
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Fig. 7. Cpmlp problem in Example 4.2 . 
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Before stating the main result of this section, we need to pro-

ide a preliminary result. It turns out that if p is pairwise tree-

dmissible with respect to v 0 , for each coalition S , there exists

n optimal essential walk that visits each player in S exactly once

ith respect to p r . 

emma 4.1. Let (G , v 0 , t, N, p) be a tree-cpmlp problem with p pair-

ise tree-admissible with respect to v 0 . Then, for every S ⊂ N , there

xists an optimal S-walk ˆ ω ∈ W(S) such that |{ e ∈ E( ̂  ω ) | p r (e ) =
 }| = 1 for every i ∈ S. 

roof. Let ω ∈ W( S ) be an optimal S -walk and assume that there

xist e 1 , e 2 ∈ E ( ω) such that p r (e 1 ) = p r (e 2 ) = i, i ∈ S . We may as-

ume that every edge in ω appears exactly twice. We construct

ptimal walks ω 

1 , ω 

2 , . . . , ω 

m ∈ W(S) such that ω 

m is in the con-

itions of the lemma. 

Let i 1 ∈ S with |{ e ∈ E(ω) | p r (e ) = i 1 }| = k 1 ≥ 2 . We construct

nother optimal walk ω 

1 such that |{ e ∈ E(ω 

1 ) | p r (e ) = i 1 }| = 1 .

et e 1 , . . . , e k 1 ∈ E(ω) be the edges in ω that belong to i 1 ac-

ording to p r and let e l = { u l , v l } with u l < G v l . Assume, with-

ut loss of generality, that e 1 
∈ 

⋃ k 1 
l=2 

E(u l , e l ) . Define V 1 = V (ω) \
( 
⋃ k 1 

l=2 
(V (u l , e l ) \ { u l } )) and let ω 

1 be a closed walk associated with

 

1 that starts and finishes in v 0 . We now consider two cases:

i) | p r (E(u l , e l )) ∩ N| = 1 for every l ∈ { 2 , . . . , k 1 } and (ii) | p r ( E ( u l ,

 l )) ∩ N | > 1 for l ∈ { 1 , . . . , k ′ } with 1 < k ′ ≤ k 1 . 

(i) | p r (E(u l , e l )) ∩ N| = 1 for every l ∈ { 2 , . . . , k 1 } . 
In this case, the sets E(u 1 , e 1 ) , . . . , E(u k 1 , e k 1 ) satisfy condi-

tion 1 of pairwise tree-admissibility with respect to v 0 and

it readily follows that ω 

1 is feasible for S since i 1 is still vis-

ited in edge e 1 and we only delete either public edges, or

edges that are owned by i 1 . Moreover, by optimality of ω 

and construction of ω 

1 , we have that ω 

1 is also optimal. 

(ii) | p r ( E ( u l , e l )) ∩ N | > 1 for l ∈ { 1 , . . . , k ′ } with 1 < k ′ ≤ k 1 . 

Condition 3 of pairwise tree-admissibility with re-

spect to v 0 cannot hold when considering the

sets E(u 1 , e 1 ) , . . . , E(u k ′ , e k ′ ) since i 1 ∈ p r (E(u l , e l )) ∩
p r (E(u 

l̄ 
, e 

l̄ 
)) ∩ N for each l, ̄l ∈ { 1 , . . . , k 1 } . Then, we are

in conditions 2 or 1 of pairwise tree-admissibility with re-

spect to v 0 and | p r (E(u l , e l )) ∩ N| = 1 for l ∈ { k ′ + 1 , . . . , k 1 } .
By condition 2 of pairwise tree-admissibility with respect

to v 0 , it follows that p r (E(u l , e l )) ∩ N = { i 1 , j} with j ∈ N

for every l ∈ { 1 , . . . , k ′ } . If j ∈ p r ( E ( u l , e l )) ∩ p r ( E ( ω)) for some

l ∈ { 1 , . . . , k ′ } , assume, without loss of generality, that

j ∈ p r ( E ( u 1 , e 1 )) ∩ p r ( E ( ω)). Then, it readily follows that ω 

1 

is feasible for S since i 1 and j are still visited in edge e 1 
and in E ( u 1 , e 1 ) ∩ E ( ω 

1 ), respectively, and we only delete

either public edges, or edges that are owned by i 1 or by j .

Moreover, by optimality of ω and construction of ω 

1 , we

have that ω 

1 is also optimal. 

If |{ e ∈ E(ω 

1 ) | p r (e ) = i }| = 1 for every i ∈ S , then, we are done.

therwise, we repeat the above procedure for i 2 ∈ S with |{ e ∈
(ω 

1 ) | p r (e ) = i 2 }| > 1 . In this way, we construct ω 

2 such that

 

2 ∈ W( S ), ω 

2 optimal, and |{ e ∈ E(ω 

2 ) | p r (e ) = i l }| = 1 , l = 1 , 2 .

uccessively, we construct ω 

m satisfying ω 

m ∈ W( S ), ω 

m optimal,

nd |{ e ∈ E(ω 

m ) | p r (e ) = i }| = 1 for every i ∈ S . Clearly, the proce-

ure ends in a finite number of steps since S is finite. �

The following example illustrates the necessity of pairwise tree-

dmissibility with respect to the post office in Lemma 4.1 . 

xample 4.2. Let (G , v 0 , t, N, p) be the cpmlp problem described in

ig. 7 . Here, p r = p. 

The assignment function is not pairwise tree-admissible since

p r (v 0 , { v 0 , v 1 } ) = { 1 , 2 } and p r (v 0 , { v 0 , v 3 } ) = { 1 , 3 } and, therefore,

either of the three conditions is satisfied. Moreover, the graph

ssociated to any optimal N -walk is G and, therefore, 1 is always
isited twice (otherwise either player 2, or player 3 would not be

isited). ♦

heorem 4.2. Let G be a rooted tree with root v 0 and let N be a

nite set. If p : E (G) → N ∪ {0} is pairwise tree-admissible with respect

o v 0 , then, p is submodular. 

roof. Let t : E(G) → R + be a cost function. We show that the

pmlp game ( N , c ) associated to the cpmlp problem (G , v 0 , t, N, p)

s submodular. Namely, we show that for every i ∈ N and every

 ⊂ T ⊂ N �{ i }, 

(S ∪ { i } ) + c(T ) ≥ c(T ∪ { i } ) + c(S) . (1)

otice that if either c(S ∪ { i } ) = c(T ∪ { i } ) , or c(T ) = c(T ∪ { i } ) ,
hen, the above inequality is satisfied by monotonicity of ( N ,

 ). Therefore, we only need to verify the inequality when both

 ( S ∪ { i }) < c ( T ∪ { i }) and c ( T ) < c ( T ∪ { i }). We distinguish between

wo cases: i ∈ N �M and i ∈ M . 

Case 1 : i ∈ N �M . 

Before showing this case, we need to fix some notation. Let

 ∈ N �M and R ⊂ N (notice that i may, or may not, belong to R ). We

enote by e (i ) = { u (i ) , v (i ) } , with u (i ) < G v (i ) , the unique edge

ssigned to i according to p r . We denote by ˆ ω R ∈ W (R) an opti-

al walk for R under the conditions of Lemma 4.1 , that is, every

dge in ˆ ω R appears exactly twice and |{ e ∈ E( ̂  ω ) | p r (e ) = j}| = 1

or every j ∈ R . For j ∈ R �{ i }, we denote e ( j, R) = { u ( j, R) , v ( j, R) } ,
ith u ( j, R ) < G v ( j, R ) , the unique edge in ˆ ω R assigned to j by

 

r . We denote by v (i, j, R) the “last common node” in the paths

(v 0 , u (i )) and π(v 0 , u ( j, R )) . Formally, v (i, j, R ) ∈ V (π(v 0 , u (i ))) ∩
 (π(v 0 , u ( j, R ))) with v ≤G v (i, j, R ) for every v ∈ V (π(v 0 , u (i ))) ∩
 (π(v 0 , u ( j, R ))) . Clearly, v (i, j, R ) is well defined since v 0 ∈
 (π(v 0 , u (i ))) ∩ V (π(v 0 , u ( j, R ))) . Moreover, v (i, j, R ) ∈ V ( ̂  ω R ) . Fi-

ally, we denote v (i, R) the “last node” among all v (i, j, R ) . For-

ally, v (i, R ) ∈ { v (i, j, R ) | j ∈ R \ { i }} with v (i, j, R ) ≤G v (i, R ) for

very j ∈ R �{ i } (see Fig. 8 ). 

Fix ˆ ω S∪{ i } and ˆ ω T . We construct feasible walks ω S ∈ W( S ) and

 T ∪ { i } ∈ W( T ∪ { i }) such that ∑ 

 ∈ E( ̂ ω S∪{ i } ) 
t(e ) + 

∑ 

e ∈ E( ̂ ω T ) 

t(e ) = 

∑ 

e ∈ E(ω T∪{ i } ) 
t(e ) + 

∑ 

e ∈ E(ω S ) 

t(e ) , 

n which case, 

(S ∪ { i } ) + c(T ) = 2 

( ∑ 

e ∈ E( ̂ ω S∪{ i } ) 
t(e ) + 

∑ 

e ∈ E( ̂ ω T ) 

t(e ) 

) 

= 2 

( ∑ 

e ∈ E(ω T∪{ i } ) 
t(e ) + 

∑ 

e ∈ E(ω S ) 

t(e ) 

) 

≥ c(T ∪ { i } ) + c(S) 

here the inequality follows by feasibility of both ω S and ω T ∪ { i } .
o do this, we distinguish between two situations: (1.1) v (i, S ∪
 i } ) ≤G v (i, T ) and (1.2) v (i, T ) < G v (i, S ∪ { i } ) . 
1.1) v (i, S ∪ { i } ) ≤G v (i, T ) . 

Clearly, v (i, T ) ∈ V ( ̂  ω S∪{ i } ) since v (i, T ) ∈ π(v 0 , v (i )) . Besides,

(v (i, T ) , e (i )) ∩ E( ̂  ω T ) = ∅ by definition of v (i, T ) . By definition

f v (i, S ∪ { i } ) , the edges in E(v (i, T ) , e (i )) ∩ E( ̂  ω S∪{ i } ) are only used

o visit i . Then, p r (E(v (i, T ) , e (i )) ∩ E( ̂  ω S∪{ i } )) ∩ (S ∪ { i } ) = { i } . De-

ne 

 

S = { v (i, T ) } ∪ 

(
V ( ̂  ω S∪{ i } ) \ V (v (i, T ) , e (i )) 

)
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Fig. 8. Notions of special nodes in the proof of Theorem 4.2 . 
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and 

 

T ∪{ i } = V ( ̂  ω T ) ∪ V 

(
v (i, T ) , e (i ) 

)
and let ω R be a closed walk associated with V 

R that starts and fin-

ishes in v 0 , and visits each edge exactly twice, for R ∈ { S , T ∪ { i }}. It

follows that ω S ∈ W( S ), ω T ∪ { i } ∈ W( T ∪ { i }), and ∑ 

e ∈ E( ̂ ω S∪{ i } ) 
t(e ) + 

∑ 

e ∈ E( ̂ ω T ) 

t(e ) = 

∑ 

e ∈ E(ω T∪{ i } ) 
t(e ) + 

∑ 

e ∈ E(ω S ) 

t(e ) . 

(1.2) v (i, T ) < G v (i, S ∪ { i } ) . 
By definition of v (i, S ∪ { i } ) , the edges in E(v (i, T ) , e (i )) ∩

E( ̂  ω S∪{ i } ) are also used to visit players in S . Let U be the set of

players in S that are visited in E(v (i, T ) , e (i )) according to ˆ ω S∪{ i } ,
that is, 

 = p r 
(
E ( v (i, T ) , e (i ) ) ∩ E( ̂  ω S∪{ i } ) 

)
∩ S 
 = ∅ . 

Clearly, U ⊂ S ⊂ T and v (i, j, T ) ≤G v (i, T ) for every j ∈ U by def-

inition of v (i, T ) . Recall that { e ∈ E( ̂  ω R ) | p r (e ) = j} = { e ( j, R ) }
for every j ∈ R by selection of ˆ ω R , with R ∈ { S ∪ { i }, T }. No-

tice that | p r (E(v (i, T ) , e (i ))) ∩ N| ≥ 2 since i ∈ p r (E(v (i, T ) , e (i )))

and U 
 = ∅ . Let j ∈ U . Then, e ( j, S ∪ { i } ) ∈ E(v (i, T ) , e (i )) while

e ( j, S ∪ { i } ) 
∈ E(v (i, j, T ) , e ( j, T )) . Moreover, | p r (E(v (i, T ) , e (i ))) ∩
N| ≥ 2 since i, j ∈ p r (E(v (i, T ) , e (i ))) . Since i ∈ N �M , condition 2

of pairwise tree-admissibility of p with respect to v 0 does

not hold for E(v (i, T ) , e (i )) and E(v (i, j, T ) , e ( j, T )) . Since j ∈
p r (E(v (i, T ) , e (i ))) ∩ p r (E(v (i, j, T ) , e ( j, T ))) , condition 3 of pair-

wise tree-admissibility of p with respect to v 0 does not hold

for E(v (i, T ) , e (i )) and E(v (i, j, T ) , e ( j, T )) . Therefore, condition 1

of pairwise tree-admissibility of p with respect to v 0 must hold

for E(v (i, T ) , e (i )) and E(v (i, j, T ) , e ( j, T )) . Then, the edges in

E(v (i, j, T ) , e ( j, T )) ∩ E( ̂  ω T ) are only used to visit j for every j ∈ U .

Define 

 

S = 

(
{ v (i, T ) } ∪ 

(
V ( ̂  ω S∪{ i } ) \ V (v (i, T ) , e (i )) 

))
∪ 

( ⋃ 

j∈ U 

(
V (v (i, j, T ) , e ( j, T )) ∩ V ( ̂  ω T ) 

))
and 

 

T ∪{ i } = 

(
{ v (i, j, T ) | j ∈ U} ∪ 

(
V ( ̂  ω T ) \ 

⋃ 

j∈ U 
V ( v (i, j, T ) , e ( j, T ) ) 

)

∪ 

(
V (v (i, T ) , e (i )) ∩ V ( ̂  ω S∪{ i } ) 

)
. 

Let ω R be a closed walk associated with V 

R that starts and finishes

in v 0 and visits each edge exactly twice, for R ∈ { S , T ∪ { i }}. It follows

that ω S ∈ W( S ), ω T ∪ { i } ∈ W( T ∪ { i }), and ∑ 

e ∈ E( ̂ ω S∪{ i } ) 
t(e ) + 

∑ 

e ∈ E( ̂ ω T ) 

t(e ) = 

∑ 

e ∈ E(ω T∪{ i } ) 
t(e ) + 

∑ 

e ∈ E(ω S ) 

t(e ) . 
Case 2 : i ∈ M . 

Fix ˆ ω S∪{ i } and ˆ ω T . Let e ( i , S ∪ { i }) be the unique edge owned

y i that is visited in ˆ ω S∪{ i } . Consider the tree-cpmlp problem

(G , v 0 , t, N, p̄ ) with p̄ defined as 

p̄ (e ) = 

⎧ ⎨ 

⎩ 

p(e ) if p(e ) 
 = i, 

p(e )(= i ) if e = e (i, S ∪ { i } ) , 
0 otherwise, 

nd let (N, ̄c ) be the corresponding tree-cpmlp game. By definition

f p̄ , it follows that p̄ is pairwise tree-admissible with respect

o v 0 , i ∈ N \ M(G , v 0 , t, N, p̄ ) , c̄ (S ∪ { i } ) = c(S ∪ { i } ) , c̄ (T ) = c(T ) ,

¯ (S) = c(S) , and c̄ (T ∪ { i } ) ≥ c(T ∪ { i } ) . Then, 

(S ∪ { i } ) + c(T ) = c̄ (S ∪ { i } ) + c̄ (T ) 

≥ c̄ (S) + c̄ (T ∪ { i } ) ≥ c(S) + c(T ∪ { i } ) 

here the first inequality is a direct consequence of Case 1 of this

roof. �

Pairwise tree-admissibility with respect to the post office is a

ufficient, but not necessary condition for submodularity of an as-

ignment function for tree-cpmlp games. When considering a “lin-

ar city” with clients situated to the right and left of the post of-

ce as in Fig. 9 , the associated cpmlp game is always submodular,

s shown in Theorem 4.3 . 

heorem 4.3. Let N = { 1 , . . . , n } be a finite set of players. Let G be

he rooted tree with root v 0 and p be the assignment function given

n Fig. 9 . Then, p is submodular. 

roof. Let n ≥ m . If m = 1 , then, p is pairwise tree-admissible

ith respect to v 0 and, by Theorem 4.2 , submodular. Therefore,

e can assume m ≥ 2. If n = m = 2 , then, p is also pairwise

ree-admissible with respect to v 0 and, by Theorem 4.2 , sub-

odular. Therefore, we can assume m ≥ 2 and n ≥ 3. Then,

 is not pairwise tree-admissible with respect to v 0 since

 p r (E(v 0 , { v 0 , v 1 } )) | = m ≥ 2 , | p r (E(v 0 , { v 0 , w 1 } )) | = n ≥ 3 , and

p r (E(v 0 , { v 0 , v 1 } )) ∩ p r (E(v 0 , { v 0 , w 1 } )) 
 = ∅ . 
Let i ∈ N and R ⊂ N �{ i }. Then, 

(R ∪ { i } ) = 

{
c({ 1 , . . . , i } ) if R ∩ { i + 1 , . . . , n } = ∅ , 
c(R ) if R ∩ { i + 1 , . . . , n } 
 = ∅ . 

et S ⊂ T ⊂ N �{ i }. If T ∩ { i + 1 , . . . , n } = ∅ , 
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Fig. 9. Cpmlp problem in Theorem 4.3 . 

Fig. 10. Cpmlp problem in Example 4.3 . 
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Fig. 11. Cpmlp problem and reduced cpmlp problem in Example 5.1 . 
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(S ∪ { i } ) − c(S) = c({ 1 , . . . , i } ) − c(S) ≥ c({ 1 , . . . , i } ) − c(T ) 

= c(T ∪ { i } ) − c(T ) , 

nd if T ∩ { i + 1 , . . . , n } 
 = ∅ , 
(S ∪ { i } ) − c(S) ≥ 0 = c(T ∪ { i } ) − c(T ) , 

here both inequalities follow by monotonicity of ( N , c ). �

Theorem 4.3 also holds if players are allowed to be located on

ore than one edge at each side of the post office. However, the

roof heavily relies on each player having the same “set of follow-

rs” at each side of the post office. This makes relevant that nec-

ssary and sufficient conditions for submodularity of assignment

unctions need to include the relative order of the players in the

dges. Therefore, looking at the set of players in edges of the type

(v , e ) is not enough and aiming for necessary and sufficient con-

itions becomes too cumbersome. In any case, the relative order of

layers in the graph is not the only important element to find nec-

ssary and sufficient conditions for submodularity of assignment

unctions. We illustrate this in the following example. 

xample 4.3. Let (G , v 0 , t, N, p) be the cpmlp problem described in

ig. 10 . Here, p r = p. 

The assignment function is not pairwise tree-admissible with

espect to v 0 since p r (v 0 , { v 0 , v 1 } ) = { 1 , 2 , 3 } and p r (v 0 , { v 0 , v 4 } ) =
 1 , 2 , 3 } and, therefore, neither of the three conditions is satisfied.

ere, the “set of followers” of player i ∈ N are the same to the

ight and to the left of the post office. However, ( N , c ) is not con-

ave since for i = 2 , S = { 1 } , and T = { 1 , 3 } , we have c({ 1 , 2 } ) −
({ 1 } ) = 4 − 2 
≥ 6 . 4 − 4 . 2 = c({ 1 , 2 , 3 } ) − c({ 1 , 3 } ) . ♦
. Submodular assignment functions for cycles 

In this section, we analyze cpmlp games where the underlying

raph is a cycle (cycle-cpmlp games). We extend the concept of

airwise tree-admissibility with respect to the post office to cy-

les. Just as in Section 4 , our conditions on assignment functions

re sufficient for submodularity on cycles. The following example

oints out a fundamental reason for a cycle-cpmlp game not to be

ubmodular. 

xample 5.1. Let (G , v 0 , t, N, p) be the cpmlp problem described in

ig. 11 . 

The edge { v 2 , v 3 } is never visited by any coalition. There-

ore, the associated cpmlp game coincides with the game in

xample 3.3 , which is not submodular. ♦

Let (G , v 0 , t, N, p) be a cpmlp problem where G is a cycle (cycle-

pmlp problem). By deleting an edge of G, we obtain a rooted

ree (a line). Formally, given e ∈ E (G), let G { e } be the rooted tree,
ith root v 0 , defined by V ( G { e } ) = V (G) and E( G { e } ) = E(G) \ { e } .
et p { e } and t { e } denote the restriction of p and t to E( G { e } ) , re-

pectively. Hence, ( G { e } , v 0 , t { e } , N, p { e } ) is a tree-cpmlp problem (a

line-cpmlp” problem). 

We can now define admissibility with respect to the post of-

ce. Let (G , v 0 , t, N, p) be a cycle-cpmlp problem. An assignment

unction p is admissible with respect to v 0 if p { e } is pairwise tree-

dmissible with respect to v 0 for every e ∈ E (G). For a rooted cycle

(G , v 0 ) , adm (G , v 0 ) denotes the set of admissible assignment func-

ions with respect to v 0 . 
The assignment function p in Example 5.1 is, clearly,

ot admissible with respect to v 0 since for e = { v 2 , v 3 } ,
p r { e } (E(v 0 , { v 0 , v 1 } )) = { 1 , 2 } and p r { e } (E(v 0 , { v 0 , v 4 } )) = { 2 , 3 } ,

hich violates pairwise tree-admissibility with respect to v 0 for

 { e } . 

heorem 5.1. Let G be a rooted cycle with root v 0 and let N be a

nite set. If p ∈ adm (G , v 0 ) , then, p is submodular. 

roof. Let t : E(G) → R + be a cost function. We show that the

ycle-cpmlp game ( N , c ) associated to the cycle-cpmlp problem

(G , v 0 , N, t, p) is submodular. Namely, we show that for every i ∈ N

nd every S ⊂ T ⊂ N �{ i }, 

(S ∪ { i } ) + c(T ) ≥ c(T ∪ { i } ) + c(S) . 

f either c(S ∪ { i } ) = c(T ∪ { i } ) , or c(T ) = c(T ∪ { i } ) , then, the above

nequality is satisfied by monotonicity of ( N , c ). Therefore, we only

eed to verify the inequality when both c ( S ∪ { i }) < c ( T ∪ { i }) and

 ( T ) < c ( T ∪ { i }). 

Let ˆ ω S∪{ i } ∈ W(S ∪ { i } ) be an optimal S ∪ { i }-walk and let ˆ ω T ∈
(T ) be an optimal T -walk. Since c ( S ∪ { i }) < c ( T ∪ { i }), we have 

(i) E( ̂  ω S∪{ i } ) 
 = E(G) ; 

(ii) each edge in E( ̂  ω S∪{ i } ) is visited exactly twice in the walk

ˆ ω S∪{ i } . 

Moreover, c ( T ) < c ( T ∪ { i }) implies 

(iii) E( ̂  ω T ) 
 = E(G) ; 

(iv) each edge in E ( T ) is visited exactly twice in the walk ˆ ω T ; 

(v) i 
∈ p r (E( ̂  ω T ) ). 

We distinguish between two cases: i ∈ N �M and i ∈ M . 

Case 1 : i ∈ N �M . 

Let e ( i ) be the unique edge assigned to i according to p r . 

If E( ̂  ω S∪{ i } ) ∪ E( ̂  ω T ) = E(G) , 

c(S ∪ { i } ) + c(T ) ≥ 2 

∑ 

e ∈ E(G) 

t(e ) ≥ c(S) + c(T ∪ { i } ) 
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Fig. 12. Cpmlp problems in Theorem 5.2 . 
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where the last inequality follows because going all around the cy-

cle is both an S -walk and a T ∪ { i }-walk. 

If E( ̂  ω S∪{ i } ) ∪ E( ̂  ω T ) 
 = E(G) , we can fix ē ∈ E(G) \ (E( ̂  ω S∪{ i } ) ∪
E( ̂  ω T )) . Let N̄ = p ē (E \ { ̄e } ) . Then, (G ē , v 0 , t ē , N̄ , p ē ) is a tree-cpmlp

problem and p ē is pairwise tree-admissible with respect to v 0 . Let

( ̄N , ̄c ) be the associated tree-cpmlp game. Then, by selection of

ē , c̄ (S ∪ { i } ) = c(S ∪ { i } ) , c̄ (T ) = c(T ) , c̄ (S) ≥ c(S) and c̄ (T ∪ { i } ) ≥
c(T ∪ { i } ) . Therefore, 

c(S ∪ { i } ) + c(T ) = c̄ (S ∪ { i } ) + c̄ (T ) 

≥ c̄ (S) + c̄ (T ∪ { i } ) ≥ c(S) + c(T ∪ { i } ) 
where the first inequality follows by Theorem 4.2 . 

Case 2 : i ∈ M . 

Since i ∈ M , i owns exactly two edges according to p r . Since

E( ̂  ω S∪{ i } ) 
 = E(G) , we can assume that i is only visited once in

ˆ ω S∪{ i } according to p r . Let e ( S ∪ { i }, i ) be this unique edge. Consider

the tree-cpmlp problem (G , v 0 , t, N, p̄ ) with p̄ defined by 

p̄ (e ) = 

⎧ ⎨ 

⎩ 

p(e ) if p(e ) 
 = i, 

p(e )(= i ) if e = e (S ∪ { i } , i ) , 
0 otherwise, 

and let (N, ̄c ) be the corresponding tree-cpmlp game. By defini-

tion of p̄ , it follows that p̄ is admissible with respect to v 0 , i ∈
N \ M(G , v 0 , t, N, p̄ ) , c̄ (S ∪ { i } ) = c(S ∪ { i } ) , c̄ (T ) = c(T ) , c̄ (S) = c(S) ,

and c̄ (T ∪ { i } ) ≥ c(T ∪ { i } ) . Then, 

c(S ∪ { i } ) + c(T ) = c̄ (S ∪ { i } ) + c̄ (T ) ≥ c̄ (S) 

+ ̄c (T ∪ { i } ) ≥ c(S) + c(T ∪ { i } ) 
where the first inequality is a direct consequence of Case 1 of this

proof. �

Just like in Section 4 , our admissibility condition for cycles is

a sufficient, but not necessary condition for submodularity of an

assignment function for cycle-cpmlp games. When considering a

“circular city” with clients situated to the right and left of the post

office as in Fig. 12 , the associated cpmlp game is always submod-

ular, as shown in Theorem 5.2 . 

Theorem 5.2. Let N = { 1 , . . . , n } be a finite set of players. Let G be

the rooted cycle with root v 0 and p be an assignment function as the

one in Fig. 12 . Then, p is submodular. 

Proof. Let t : E(G) → R + be a cost function. We show that the

cycle-cpmlp game ( N , c ) associated to the cycle-cpmlp problem

(G , v 0 , t, N, p) is submodular. Namely, we show that for every i ∈ N

and every S ⊂ T ⊂ N �{ i }, 

c(S ∪ { i } ) + c(T ) ≥ c(T ∪ { i } ) + c(S) . 

If either c(S ∪ { i } ) = c(T ∪ { i } ) , or c(T ) = c(T ∪ { i } ) , then, the above

inequality is satisfied by monotonicity of ( N , c ). Therefore, we only
eed to verify the inequality when both c ( S ∪ { i }) < c ( T ∪ { i }) and

 ( T ) < c ( T ∪ { i }). Let ˆ ω S∪{ i } ∈ W(S ∪ { i } ) be an optimal S ∪ { i }-walk

nd let ˆ ω T ∈ W(T ) be an optimal T -walk. Since c ( S ∪ { i }) < c ( T ∪ { i }),

e have 

(i) E( ̂  ω S∪{ i } ) 
 = E(G) ; 

(ii) each edge in E( ̂  ω S∪{ i } ) is visited exactly twice in the walk

ˆ ω S∪{ i } . 

Moreover, c ( T ) < c ( T ∪ { i }) implies 

(iii) E( ̂  ω T ) 
 = E(G) ; 

(iv) each edge in E ( T ) is visited exactly twice in the walk ˆ ω T ; 

(v) i 
∈ p r (E( ̂  ω T )) . 

If E( ̂  ω S∪{ i } ) ∪ E( ̂  ω T ) = E(G) , 

(S ∪ { i } ) + c(T ) ≥ 2 

∑ 

e ∈ E(G) 

t(e ) ≥ c(S) + c(T ∪ { i } ) 

here the last inequality follows because going all around the cy-

le is both an S -walk and a T ∪ { i }-walk. 

If E( ̂  ω S∪{ i } ) ∪ E( ̂  ω T ) 
 = E(G) , then, we can fix ē ∈ E(G) \
(E( ̂  ω S∪{ i } ) ∪ E( ̂  ω T )) . Let N̄ = p ē (E \ { ̄e } ) and let ( ̄N , ̄c ) be the

orresponding tree-cpmlp game. By definition of p̄ , it fol-

ows that c̄ (S ∪ { i } ) = c(S ∪ { i } ) , c̄ (T ) = c(T ) , c̄ (S) ≥ c(S) , and

¯ (T ∪ { i } ) ≥ c(T ∪ { i } ) . Then, (G ē , v 0 , t ē , N̄ , p r 
ē 
) is a “linear city” as

n Theorem 4.3 and 

(S ∪ { i } ) − c(S) = c̄ (S ∪ { i } ) − c̄ (S) 

≥ c̄ (T ∪ { i } ) − c̄ (T ) ≥ c(T ∪ { i } ) − c(T ) 

here the first inequality follows by Theorem 4.3 . �

. Submodular assignment functions for weak cycles 

In this section, we analyze cpmlp games where the underlying

raph is a weak cycle (weak cycle-cpmlp games). We extend the

oncept of pairwise tree-admissibility with respect to the post of-

ce to weak cycles. Just as in Section 4 , our conditions on assign-

ent functions are sufficient for submodularity on weak cycles.

he following two examples point out fundamental reasons for a

eak cycle-cpmlp game not to be submodular. 

xample 6.1. Let (G , v 0 , t, N, p) be the cpmlp problem described in

ig. 13 . The associated cpmlp game is given in Table 1 . This game

as a nonempty core ((0, 8, 4, 0) ∈ Core( c )), but is not submodular

ince for i = 2 , S = { 1 } , and T = { 1 , 3 } , c({ 1 , 2 } ) − c({ 1 } ) = 4 
≥ 8 =
({ 1 , 2 , 3 } ) − c({ 1 , 3 } ) . The game is not submodular since player 1

s visited on his edge { v 1 , v 2 } for coalitions {1, 2} and {1, 2, 3},

hile he is visited on his edge { v 1 , v 4 } for coalitions {1}, {1, 3},

nd {1, 2, 3}. ♦
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Fig. 13. Cpmlp problem and reduced cpmlp problem in Example 6.1 . 

Fig. 14. Cpmlp problem and reduced cpmlp problem in Example 6.2 . 

Table 1 

Coalitional values of the cpmlp game in Example 6.1 . 

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} 

c ( S ) 4 8 4 0 8 4 4 12 8 4 

S {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N 

c ( S ) 12 8 4 12 12 

Table 2 

Coalitional values of the cpmlp game in Example 6.2 . 

S {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} 

c ( S ) 12 14 17 0 18 23 12 17 14 17 

S {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N 

c ( S ) 23 18 23 17 23 
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To define admissibility of an assignment function in a cycle-

pmlp problem, we delete an edge of the cycle and check pairwise

ree-admissibility with respect to the post office in the correspond-

ng reduced tree-cpmlp problem. We see that this is not possible

nymore for weak cycle-cpmlp problems in Example 6.1 . The rea-

on is that the cycle in Fig. 13 has only two players according to

he reduced cpmlp problem. If instead of only two players, the cy-

le had at least three, we could find an edge which deletion would

iolate pairwise tree-admissibility with respect to the post office in

he corresponding reduced tree-cpmlp problem. A similar problem

rises in Example 6.2 

xample 6.2. Let (G , v 0 , t, N, p) be the cpmlp problem described in

ig. 14 . The associated cpmlp game is given in Table 2 . This game

as a nonempty core ((12, 0, 11, 0) ∈ Core( c )), but is not submodu-
ar since for i = 1 , S = { 2 } , and T = { 2 , 3 } , c({ 1 , 2 } ) − c({ 2 } ) = 4 
≥
 = c({ 1 , 2 , 3 } ) − c({ 2 , 3 } ) . Notice that the game is not submodular

ince player 2 is visited on his edge { v 3 , v 6 } for coalitions {2} and

1, 2}, while he is visited on his edge { v 2 , v 5 } for coalitions {2, 3}

nd {1, 2, 3}. ♦

To define admissibility of an assignment function for a weak

ycle-cpmlp, we transform the weak cycle-cpmlp problem into a

ree-cpmlp problem and check whether the corresponding assign-

ent function satisfies pairwise tree-admissibility with respect to

he post office. For this, we consider two types of operations:

eleting an edge (as in Section 5 ) and splitting of a node. Let

(G , v 0 , t, N, p) be a weak cycle-cpmlp problem and let C be a cycle

n G. Let v ∈ V (C) and e = { v , w } ∈ E(C) ∩ edges (v ) . The splitting of

 through edge e is done by duplicating v by v̄ and exchanging v
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Fig. 15. Splitting of v 1 through { v 1 , v 5 } and adaptation of t and p . 

Fig. 16. Cpmlp problem and reduced cpmlp problem in Example 6.3 . 
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by v̄ in e . Let ē = { ̄v , w } and Ē = (E \ { e } ) ∪ { ̄e } . We can adapt p and

t to p { v ,e } and t { v ,e } by defining 

p { v ,e } ( ̃  e ) = 

{
p( ̃  e ) if ˜ e ∈ Ē \ { ̄e } , 
p(e ) if ˜ e = ē , 

and 

t { v ,e } ( ̃  e ) = 

{
t( ̃  e ) if ˜ e ∈ Ē \ { ̄e } , 
t(e ) if ˜ e = ē . 

We can now define admissibility with respect to the post office.

First, we transform a weak cycle into several trees to which the

assignment function is adapted. Second, we check pairwise tree-

admissibility with respect to the post office of the adapted assign-

ment functions. 

Let (G , v 0 , t, N, p) be a weak cycle-cpmlp problem. Let

(T ∗
1 
, v ∗

1 
) , . . . , (T ∗s , v ∗s ) and (C ∗

1 
, w 

∗
1 
) , . . . , (C ∗r , w 

∗
r ) be the rooted

trees and rooted cycles, respectively, in the decomposition of

G. Assume that C 1 , . . . , C u are the leaves with | p r (E(C 1 )) | ≥
3 , . . . , | p r (E(C u )) | ≥ 3 . For every l ∈ { 1 , . . . , u } , fix e l ∈ E ( C l ) and for

every l ∈ { u + 1 , . . . , r} , fix v l ∈ V (C l ) and e l ∈ E(C l ) ∩ edges (v l ) . Let

G { e l } u l=1 
, { v l , e l } r l= u +1 

be the tree obtained by first deleting the edges

e 1 , . . . , e u and, subsequently, splitting v u +1 through e u +1 , . . . , v r 
through e r . Let p { e l } u l=1 

, { v l ,e l } r l= u +1 
and t { e l } u l=1 

, { v l ,e l } r l= u +1 
denote the

adaptation of p and t to E( G { e l } u l=1 
, { v l ,e l } r l= u +1 

) , respectively. Hence,

( G { e l } u l=1 
, { v l ,e l } r l= u +1 

, v 0 , t { e l } u l=1 
, { v l ,e l } r l= u +1 

, N, p { e l } u l=1 
, { v l ,e l } r l= u +1 

) is a tree-

cpmlp problem. The assignment function p is admissible with re-

spect to v 0 if p { e l } u l=1 
, { v l ,e l } r l= u +1 

is pairwise tree-admissible with re-

spect to v 0 for every selection e l ∈ E ( C l ), l ∈ { 1 , . . . , u } , v l ∈ V (C l )

and e ∈ E(C ) ∩ edges (v ) , l ∈ { u + 1 , . . . , r} . For a rooted weak cy-
l l l 
le (G , v 0 ) , adm (G , v 0 ) denotes the set of admissible assignment

unctions with respect to v 0 . 

xample 6.3. Let (G , v 0 , t, N, p) be the cpmlp problem de-

cribed in Example 6.2 . Clearly, p is not admissible with re-

pect to v 0 . Let C 1 be the cycle with nodes { v 1 , v 2 , v 3 } and

 2 be the cycle with nodes { v 2 , v 4 , v 5 } . Here, C 1 is no leaf

nd C 2 is a leaf with | p r (E(C 2 )) | = 2 . For C 1 , we fix v 2 and

 v 2 , v 3 } = e 1 , and for C 2 , we fix v 2 and { v 2 , v 5 } = e 2 . The

pmlp problems (G { v 2 ,e 1 } , { v 2 ,e 2 } , v 0 , t { v 2 ,e 1 } , { v 2 ,e 2 } , N, p { v 2 ,e 1 } , { v 2 ,e 2 } )
nd (G { v 2 ,e 1 } , { v 2 ,e 2 } , v 0 , t { v 2 ,e 1 } , { v 2 ,e 2 } , N, p r { v 2 ,e 1 } , { v 2 ,e 2 } ) are repre-

ented in Fig. 16 . 

We have 

p r { v 2 ,e 1 } , { v 2 ,e 2 } (E(v 1 , { v 1 , v 2 } )) = { 2 , 3 } , 
p r { v 2 ,e 1 } , { v 2 ,e 2 } (E(v 1 , { v 1 , v 3 } )) = { 1 , 2 } , 
hich violates pairwise tree-admissibility with respect to v 0 . ♦

Lemma 4.1 and Theorem 4.2 can be extended to weak cycle-

pmlp problems and admissible assignment functions with respect

o the post office. Lemma 6.1 states that if p is an admissible as-

ignment function with respect to the post office and a player i in

 coalition S is not located at any cycle, then, we can find an opti-

al walk for S such that i is visited in exactly one edge. The proof

ollows the same lines as the proof of Lemma 4.1 , but the techni-

alities increase considerably. For this reason, we omit the proof. 

emma 6.1. Let (G , v 0 , t, N, p) be a weak cycle-cpmlp problem with

p ∈ adm (G , v ) . Then, for every S ⊂ N , there exists an optimal walk
0 
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(p r ) −1 (i ) ∩ (∪ 

r 
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E(C l )) = ∅ . 
Next, we generalize Theorem 4.2 to weak cycle-cpmlp problems

nd admissible assignment functions with respect to the post of-

ce. Again, the proof of Theorem 6.2 follows the same lines as the

roof of Theorem 4.2 , but the technicalities increase enormously.

or this reason, we omit the proof. 

heorem 6.2. Let G be a rooted weak cycle with root v 0 and let N

e a finite set. If p ∈ adm (G , v 0 ) , then, p is submodular. 

. Concluding remarks 

In this paper, we analyze Chinese postman games with multi-

ocated players (cpmlp games) as a generalization of Chinese post-

an games. Contrary to Chinese postman games, the possibility

f a player owning more than one location invalidates the equiv-

lence between total balancedness and submodularity of cpmlp

ames. Remarkably, weak cycle graphs do not longer induce bal-

nced cplmp games, let alone submodular cpmlp games. We pro-

ide sufficient conditions for an assignment of players to edges to

nduce submodular cpmlp games for trees, cycles, and weak cy-

les, independently of the travel costs at hand. These conditions

re overly dependent on the post office location. In addition, we

rovide examples underlying the difficulty of achieving necessary

onditions as well. The relative order among the players with re-

pect to the post office seems to influence submodularity of cpmlp

ames. 

Cooperative games are a mathematical tool to solve allocation

roblems. Further research on finding stable allocations based on

he underlying graph and assignments of players for Chinese post-

an problems with multi-located players is desirable. Since sub-

odular games have a large and stable core with a well-defined

tructure (cf. Gillies, 1953; Shapley, 1971; Sharkey & Hill, 1982 ), the

ssignment conditions in this paper can be a good starting point. 
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