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INTRODUCTION

The full mathematical description of a many-body quantum system is encrypted in
the renowned Schrédinger equation (SE).

Such equation, however, features both a many-body interaction operator, which
brings in the unsolved classical many-body problem, and the quantum kinetic en-
ergy operator, which increases the complexity of the equation. Its closed-form
solution is therefore practically unreachable.

Since roughly a century, the goal of the electronic structure theory community
has been that of finding more accurate and more compact ways to approximate the
solution to the SE, i.e. the wave function, or the electronic properties which depend
on it, in order to achieve a deeper understanding of matter at the electronic scale.

Notwithstanding their communal goal, electronic structure methods have been
traditionally characterised by a sort of dichotomy, namely that between the so-
called Wave Function-based methods and Density Functional Theory (DFT).

Simplistically, while the formers construct different ansatz for the N-electron
wave function which can be optimised variationally, DFT rephrases the problem
posed by the SE in terms of a physical observable: the electron density.

Both approaches have their own strengths and drawbacks and, in some sense,
they complement each other. In recent years, the number of works where these
approaches conflate has been increasing (references [1-3] are just a few examples).

This work is mainly focused on Density Functional Theory.

OVERVIEW OF THE THESIS AND MAIN CONTRIBUTIONS

The first three chapters of this thesis form its theoretical backbone. In particular,
chapter 1 reviews fundamentals of Density Functional Theory, chapter 2 gives a
detailed presentation of the conditional amplitude formalism and of its relevance in
the context of DFT and chapter 3 illustrates the theory of strictly correlated elec-
trons from a physical perspective, still mentioning some more mathematical aspects,
and reviews its most important applications to physical and chemical problems.
In chapter 4, we assess a particular class of density functional approximations,
based on the idea of interpolating between the weak- and the strong-interaction
limit of DFT, on the quite challenging case of gold and silver clusters of small
to medium size. This class of functionals had been previously extensively tested
only on main-group chemistry [4]. Our results show that although not spectacu-
larly accurate, this class of functionals performs quite well for atomization energies
calling for a self-consistent implementation in the future. In fact, a renovated in-
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terest for such functionals has been demonstrated by very recent works [5, 6]. The
results of the assessment conducted in our work, as well as in similar studies on
different test sets [4, 7], indicate that their performances are optimal when used
as a correlation correction to the Hartree-Fock (HF) method (see table 4.2). Such
unexpected outcome prompted us into exploring the possibility of adopting adia-
batic connection interpolations also in the context of HF theory. We began by
investigating its strong-interaction limit providing first formal results in chapter 5.
We show, for example, that the minimizer of the asymptotic Hamiltonian of eq 5.8
is a functional of the HF density alone (eq 5.9) and find exact relations between
the strong-interaction limit of the HF and of the DFT adiabatic connection inte-
grands (eq 5.17).

In chapters 6 and 7, we focus on the response part of the KS potential. This
component is typically heavily misrepresented by standard functionals. Our contri-
butions in this topic comprise a relation (eq 6.29) between two different definitions
of response potentials (eq 2.54 and 6.18) and the derivation of the response poten-
tial in the strong-interaction limit of DFT (eq 6.38), satisfying an interesting sum
rule in the N-electron 1D (eq 7.16) and spherical two-electron (eq 7.20) cases.

Furthermore, the study of a simple 1D model for a stretched heteronuclear
molecule highlights several similarities between the KS and the SCE potentials
in the dissociation limit. For instance, we find that the location of the maxima of
both potentials coincides (see fig 6.10) and corresponds to the distance at which
the density integrates to one (eq 6.51) clarifying how the Hartree-XC potential
can correctly dissociate a bond into fragments with integer number of electrons.
We also show how the shape of the co-motion function (see sec 3.3) becomes inde-
pendent of the internuclear distance, R, for large R (saturation phenomenon) and
retains information on the relation between the asymptotic decays of the fragment
densities (see fig 6.12 and eq 6.53) which is reminiscent of the behaviour of the
exact Hartree-XC potential. Finally, we signal the presence of a secondary peak
in the kinetic potential, vk, (eq 2.19), located far away on the side of the more
electronegative fragment (fig 6.13).

In the last chapter, we investigate the feasibility of introducing a position-
dependent mass carefully devised such that a non-interacting auxiliary system
endowed with this mass can deliver the same kinetic energy density as the inter-
acting one. It turns out that there is plenty of freedom to realise such matching,
in addition to several fundamental questions. We discuss different possible set-
tings and illustrate them for simple cases to show advantages and disadvantages
of each one.

Atomic units are adopted throughout this thesis.

vi



THE DENSITY AS BASIC VARIABLE

In the time-independent framework, an exhaustive description of a many-body
quantum system can be accomplished by solving the time-independent Schrédinger
equation (SE)

H|Y) = E|¥) (1.1)
where H is the operator for the total energy of the system.

In the Born-Oppenheimer and non-relativistic approximations and considering iso-
lated atomic matter, H can be written as

. N V % N NM g
H=-) — - (1.2)
; 2 ,‘JZ>,‘ |rz_rj| ;;h‘z Ryl
—_
T Vee Vexr

where N is the number of electrons, M that of the nuclei, and Z4 are the nuclear
charges.

It is quite self-evident that, even after simplifying the physical interacting
Hamiltonian as in eq 1.2, the solution to eq 1.1 is still a highly complicated math-
ematical object, living in a highly multidimensional space, (IR3®ZZ)N, where the
“extra" degree of freedom, possessed by each electron on top of its spatial freedom,
is a fundamental characteristic of quantum particles: their so-called “spin".
Anyhow, as scientists or merely as observers, we are used to measure and interact
with matter in three dimensions or four if we include passing of time. In a way, the
fact that we can reproduce results and that we rely on previous measurements or
previously observed effects to shape matter into technology is somehow an indica-
tion that, for all the purposes we are concerned with, (R®® Zg)N is a way redundant
control space.



1. THE DENSITY AS BASIC VARIABLE

In some way, a smaller, 3(or 4)-dimensional mathematical object has to be a suffi-
cient tool in our hands to understand what we see and make predictions on what
we have not yet explored experimentally.

This naif idea was formulated in mathematical terms by P. Hohenberg and W. Kohn
in 1964 [8] (HK) and since then, the electron probability density has been recog-
nized as the most natural minimally-dimensional mathematical object that would
serve this scope.

The electron probability density, or just (electron) density, is defined as

n(r) = (P|A|P) = mef(ra,xz,u- xn)Pdodxs - dxy (1.3)

with 7 = Zi.vé‘(ri -r), |¥)=Y¥Y(ro,x, - ,Xpn), X; = r;o, the spatial and spin coor-
dinates of the electrons, where we have taken electron 1 as the reference electron
dropping the subscript, i.e. x; =x, and it measures the probability of finding any
of the N electrons in a specific point in space with arbitrary spin’ while the other
electrons have arbitrary position and spin.?

Early attempts to use the density as a basic variable were present in the elec-
tronic structure theory community long before HK was published [10-12] and in this
sense HK was also presented as an exactification of these intuition-based works.
However, quite elegant arguments for the use of the density as a basic variable
were already put forward and attributed to spectroscopist E. Bright Wilson> and
hold for the particular, yet of major importance, case of an external potential of
Coulomb type, in other words for a Hamiltonian of the likes of eq 1.2.

What E. Bright Wilson pointed out is that, since the density

i. integrates to the total number of electrons;
i.. has cusps located at the position of the nuclei;

iii. satisfies the cusp condition:

, 0
lr_]]l{l}ll_»[)(a +ZZA) n(r)=0; (1.4)

1 Whereas n(x) = N[I¥x,x2, - ,xN)Izdxz~-~de measures the probability of finding an electron in a
specific point in space and with a certain spin.

2Note that here we stick to the following normalization of the N-electron wavefunction:
fl‘l’lzdxlmde =1, which is the most commonly encountered; however a different normalization
might be more consistent with the probability interpretation of the (square modulus of the) N-electron
wavefunction [9] and would change the normalisation constant in the definition of the density from N
to ﬁ

3There is no “formal" attribution to E. Bright Wilson: rather, the theoretical chemist N. C. Handy
bothered noting down in the literature (see refs [13, 14]) a personal communication from his colleague
R. B. Parr narrating that the spectroscopist commented on W. Kohn presentation in 1965 bringing up
the arguments mentioned.

2



1.1. HOHENBERG-KOHN THEOREM(S)

it encodes all the ingredients (N, R4 and M, and Z,) that specifies the Hamiltonian
in eq 1.2. In this sense HK was, more than an exactification of references [10-12],
an extension of Bright Wilson's arguments allowing for a unique mapping between
an electron probability density and an external potential of any kind, paving the
way for much further developments.

1.1. HOHENBERG-KOHN THEOREM(S)

Traditionally, the fundamental results proven and published in reference [8] are
referred to as the “Hohenberg-Kohn theorem(s)'(HK).*

Let us start by considering the Hamiltonian in eq 1.2 and define the one-body
external potential v as v(r) :Z%hf_ﬁﬂ so that Vy; :Z?/ v(r;.
For a fixed number of electrons, fixing a particular one-body external potential®
up to an additive constant, ¢, determines the ground state (GS) wavefunction, ¥,
satisfying eq 1.1 and generating the corresponding density, via eq 1.3.
In formulas, the mapping

vie— ¥Y—n (1.5)

is the trivial one.

The invertibility of 1.5 is proven in sec. | of [8]

The inversion of the left half of 1.5, i.e. ¥ — v+¢, is quite immediate (and not
dealt with explicitly in the paper), since two different wavenfunctions, ¥ and ¥/,
are necessarily solutions to two different SE unless v—v' = E—E’. To show that
explicitly, let us write

N

T+ Vee+ZV(r,-))\P=E‘P (1.6)
i

R R N

T+ Vee“'ZV/(ri))\P/:E,\P, (1.7)
i

Assuming that v and v’ differ by more than an additive constant and deliver the
same GS wavefunction, ¥ = ¥, leads to contradiction by subtraction of eqs 1.6
and 1.7.

4Such “theorem” is typically presented in textbooks as having a first and a second part of the proof,
although this is not an original distinction of the authors. Quite hilariously, which part of the total
proof is what and sometimes even if there are two theorems rather than one or which part among the
results published in HK is the theorem, varies from textbook to textbook! Without giving a specific
numbering, we will mainly stick to the original paper [8] and to the widely appreciated reference book
on density functional theory referenced in [15].

5| et us reiterate that, according to eq 1.2, fixing the external potential translates into fixing the number,
M, the position, Ry, and the charges, Z4, of the nuclei — which is a representative external potential
for an isolated molecular/metallic system —, however the external potential can be kept completely
general as long as it is a one-body local potential, Veyr :Zév v(r;).




1. THE DENSITY AS BASIC VARIABLE

The inversion of the right half of 1.5, i.e. n— P9 is less direct but the proof
is astonishingly simple and it's again by reductio ad absurdum.

Defining W = argmin(¥|H|¥) and ¥} = argmin(¥|H'|¥) — where “¥Ya.s." stands
Yas.— N Yas.— N
for a 'search over all antisymmetric wavefunctions’ — by the minimal property of

the GS (“variational principle")

Ey (ol HIWo) < (¥o| HIP) (1.8)

(Pol HIWo) < (Pl H' +V - V')

(PolT + Vee Wo) +fn(r)v(r)dr <E, +fn’(r) (v(r) -V (r)dr
and, by interchanging the roles of primed and unprimed quantities,
Ey < Ep +fn(r) (v'(r) - v(r))dr. (1.9)

If we now assume that two different wavefunctions, ¥’ and W, both lead to the
same density, n' = n, then we can add up eqgs 1.8 and 1.9 and conclude

Eo+ Ey < Eg+E, (1.10)

which is a contradiction therefore proving the invertibility of the mapping.
The invertibility of the mapping means that the expectation value of an operator
A in the GS wavefunction is also a functional of the GS density

Alngl = (¥olnollAlolno)).” (1.17)

In sec. Il of HK, the universal functional, F[n], is defined
Fln] = (Y [nl|T + Voo P[nl). (1.12)

The universal functional is defined only for v-representable densities, n:3v — n,
by which we mean densities that are GS of an (interacting) Hamiltonian with

6This part of the proof is the only one that requires modification if we are dealing with degenerate
ground states, see next footnote

7In the case of degenerate ground states, it may happen that, although ¥ # W', the inequality become
an equality (Eg = E}) and therefore the unique mapping n — ¥ is no longer established as there is
no contradiction (relation 1.10). However since this circumstance can only be met if Eg = E(’], which
means only if the different ¥ and ¥’ come from the same potential, v, the mapping n — v can still be
established and, via the potential, we can access the GS energy as well as the set of all degenerate
GS wavefunctions coming from that potential, {‘P(‘)[v]}, but we cannot use the density as basic variable
to get to all observables that depend specifically on the wavefunction (for example the spin) as this
latter no longer maps to one specific GS wavefunction among the set of possible ones. See [15-18]
for further reference.



1.2. THE LEvY-LIEB AND LEVY FUNCTIONALS

external potential v.
The total GS energy of a system is rewritten as the following functional of the
density

Ey[n] =F[n]+fn(r)v(r)dr (1.13)

Vylnl
where the subscript v highlights that the expression of the density functional for the
energy of a system on the Lh.s. of the equation depends on the external potential
in the way shown on the r.h.s.
The variational principle is then introduced in the context of density functionals,
Le.
Ey[nol = (Polnol | H,[Wolnoly < (¥[nllH,|¥[nl) = E,[n] (1.14)

where the equal sign only holds for n = ny, with ng the ground state density of the
Hamiltonian with external potential v.

Equation 1.14 tells us that the density functional for the energy of a system delivers
the lowest possible value if and only if the input density is the ground state one.
Of course, this variational principle is of lesser use than the one in terms of the
wavefunction as we actually do not know the exact functional form of E,[n].
Knowing it, one could in principle obtain the the GS energy of the Hamiltonian with
external potential v by minimising eq 1.14 under the constraint that the density
stays properly normalised

6:(” {El,[n]—,u(fn(r)dr—N)}:O (1.15)
Introducing eq 1.13 into eq 1.15
T M G * (116
we also derive
vinol(r) = —621”] n:no(r)+u (1.17)

which tells us that the external potential is the functional derivative of the HK
functional evaluated at the GS density associated with that potential minus a
constant shift.

1.2. THE LEVY-LIEB AND LEVY FUNCTIONALS

The variational principle of eq 1.14 suggests that — for a given external potential—
we can find the minimum GS density and energy by performing a search over all
suitable densities

Eyy[nol = n}lm (F[n] +fn(r)v0(r)dr). (1.18)

Jv—n




1. THE DENSITY AS BASIC VARIABLE

where ng is the minimizer. The formal simplicity of this search is hampered by
the fact that the constraints guaranteeing that the search only hit (interacting)
v-representable densitiesare mathematically involved and not known in general.
To achieve a much easier characterization of the densities entering the constrained
search for the GS enerqy, the domain of the universal functional, F,® was extended
by Levy [19, 20] by introducing the Levy-Lieb functional, F |, later shown by Lieb
to have a minimum [21]. The Levy-Lieb functional is defined as

Fi[n]:= ggr;lmh Veel ¥) (1.19)
and defines a corresponding energy functional
Ey[n]=F[n] +fn(r)v(r)dr (1.20)
Via F|| the constrained search for the GS energy is now split in two steps
Ey, (1] :ilr}f(\lglilz(‘l’lf"+‘7€el‘l’)+fn(r) vo(r)dr) (1.21)

where we are searching over N-representable densities, i.e. densities that can
be generated by some wavefunction. The advantage over eq 1.18 is that the set
of N-representable densities is characterized explicitly [22]: any density which
is non-negative (n=0), normalisable and with a finite Weiszacker kinetic energy
functional (n(r)% € H') belongs to the set. Note that the space of v-representable
densities is a subset of that of N-representable ones. Moreover the functional F |
is not convex thus its minimum could be a local one. To avoid this inconvenient
property, Lieb defined a different but related functional, F [21].

In order to introduce F, let us first discuss how the HK functional, Fyk, has to be
modified in order to account for degenerate ground states.

For a g-fold degenerate GS multiplet {|\¥;), i =1,---g} each of the possible states
forming the multiplet may deliver a different density n;.

Let us define the density matrix operator, D

q q
DZZAH\PI')(‘IJA Z/liZI 0< A;=<1 (1.22)
i=1 i=1

and the GS expectation value of any operator, O

(0)=TrDO (1.23)

8 It is common to label the functional “F" of eq 1.12 as “Fyk ', where the subscript stands for “Hohenberg-
Kohn', to distinguish it from other similar functionals that were introduced afterwards (see later
discussion).

6



1.2. THE LEvY-LIEB AND LEVY FUNCTIONALS

where the trace operation for any operator is defined as

8

TrO =Y (@;10|D;) (1.24)
1

~.
I

and {|®;)} is any complete set of states.
If we choose the complete set to be the degenerate GS multiplet {|¥;), i =
1,---q} then
o) q
(0y =Y (;|DOI®;) =Y A;(¥;10[¥;) (1.25)
i=1 i=1
from which it is immediate to see that the non-degenerate case is included as the
special case where 1; =1.
If, furthermore, O = 7 we can extend the definition of the density in 1.3 to ensembles

q q
n(ry=) Ai¥ilal¥Y;)y =Y A;ni(r). (1.26)
i=1 i=1

As mentioned in footnote 7, it can be shown that each multiplet of degenerate
ground states is associated to only one potential and thus the set of correspond-
ing GS densities is said to be ensemble-v-representable (Ev), therefore we can
unambiquously define the ensemble-HK-functional, Fgpk

Fenk[nl =TrDin] (T + Vee) (1.27)

on the set of Ev-densities and extend the energy functional to degenerate ground
states

Ey[n] = Fepk[nl +fn(r)v(r)dr=TrD[n]I§l,,. (1.28)

Again, the set of Ev-representable densities, the sole kind of densities that should
enter in a minimisation of E,[n], is difficult to characterise.

In other words, we run into a similar problem as that encountered for the non-
degenerate case and a similar way around is found by extending the domain of
Frpk to all EN-representable densities, meaning all the ensemble densities that
can be generated by some density matrix,

Fi[n):=minTrD (T + V), (1.29)
D—n

where eq 1.29 defines the Lieb functional F. We are now also able to write a
proper variational principle, i.e.

Ey,[no) =irnlf(FL[n]+fn(r)v0(r)dr). (1.30)




1. THE DENSITY AS BASIC VARIABLE

1.3. KOHN-SHAM SCHEME: BYPASSING THE HARDEST PROB-

LEM

The basic idea of Kohn and Sham [23] (1965) essentially builds up on the suc-
cess of Hartree Fock theory and resides in adopting an auxiliary “non-interacting"
quantum system (the KS system), endowed with a fermionic wavefunction treating
the electrons as described by single-particle functions (KS orbitals).

Compared to Hartree Fock theory, Kohn-Sham-DFT (KS-DFT) has the most
noticeable merit of being still an exact Density Functional Theory, since all inter-
action effects of the original quantum system are enclosed in the auxiliary one by
means of an effective local potential, called the KS potential, vs.

Its enormous success stems from bypassing the hardest technical problem in
the field, namely that of finding a reasonably accurate representation of the kinetic
energy explicitly in terms of the electron density.

Instead of tackling such problem, KS-DFT approach is that of simply sticking
to the non-intuitive purely quantum mechanical expression of the kinetic energy
operator for which a wave function is needed, and treat the remainder problem as a
pure density functional. The kinetic energy expression proposed is still necessarily
a density functional by virtue of the HK theorem(s) but in an implicit, highly non
trivial way.

Formally, KS-DFT relies on an essential condition, namely, the composition of
two bijective mappings between two local potentials and a unique GS density

Ve Nn<— U (1.31)

A density allowing for 1.31 is said to be both interacting and non-interacting v-
representable.

Only for such densities, we can establish the connection between the KS picture
and the interacting one, via egs 1.43 and 1.49.

Whether the two domains coincide is still an open issue. It has been shown
(see reference [21] and references therein) that it is always possible to find a
non-interacting Ev-representable density, ng, that approximates any interacting
Ev-representable density, nyg, arbitrarily closely, i.e. for every € >0, the p-norm of
their difference is lesser or equal than ¢

llne—noll, < € (1.32)

with p=1 and p=3.

The above property is enough to provide a sound theoretical basis for numerical
implementations of the Kohn-Sham scheme, see refs [15, 17, 18, 21, 24] for more
extended discussions.



1.3. KOHN-SHAM SCHEME: BYPASSING THE HARDEST PROBLEM

1.3.1. KINETIC ENERGY FUNCTIONAL MINIMISATION9

The kinetic energy of a “non-interacting" system (by which we mean a system
without two-body or higher many-body operators) can be calculated from the ex-
pression

1
Tl i) =—= Z<‘I’ IV %) -5 f dx [ V75 ],

1Y
=5 L WiV, (1.33)
i=1

where the ; are generic single particle wavefunctions (orbitals) from which the
N-electron Slater determinant, Wy, is constructed and ¥ is the corresponding one-
body-reduced density matrix (1IRDM). Note that the last equality only follows if
we choose an orthogonal set of orbitals (which we do for convenience) and that
the ground state wavefunction of a non-interacting system can typically, but not
always,'? be expressed as a single Slater determinant.

Let us now optimize the set of orbitals in order to attain the minimum kinetic
energy possible under the constraints of its orthormality and that of a prescribed
density, delivered from the set according to eq 1.3.

To perform an independent minimization, we write the Lagrangian

Lol 9}, vg, €] := Ts[{, 97} —Zéi]-(<u7,-|u7,->—6ij)
I,j

+fﬁs(r) (Z|u7i|2—n) (r)dr, (1.34)

with Z i€ij the Lagrange multipliers enforcing orthonormality (integral condition)
and 7 the Lagrange multiplier enforcing the prescribed density at each point in
space (local condition).

Setting the Lagrangian first-order variation, 8L, to zero

_, 6L, 5Ln ~ 6L, XN 6L
0=0L, = SV +00—r 5é dx, 1.35
n Zf( l 6"’* 6@1 w1+ Vs 6173 +; 1]6 ”)(X) ( )

and considering that we want eq 1.35 satisfied for any arbitrary variation 6v},6v;,6 Us
and 6¢€;;, we have four equations for the four functional derivatives

9This derivation is closely inspired to the lecture notes authored by Dr. KJ.H. Giesbertz

10For cases where the single Slater determinant description cannot deliver the prescribed density see
references [17, 25, 26]
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5L, 1, . N

Tw(x)_’(_iv +vs(r))wi(x)=2_ei,~w,-(x) (1.36)
i J

5L 1 . N,

6—J(x) — (—Evz + ﬁs(r))wi (%) =} &iv; (x) (1.37)

0= ! J

5Ly, o,

(Z M)(r)—» 2wl | (r) = n(r) (1.38)
o i,o

L o

e Wil =0 (1.39)
ij

that need to be simultaneously satisfied.

The matrix of the coefficients, € can be symmetric (both Hermitian and real-
valued) since the Lagrangian must be real-valued and the inner product used is
Hermitian. Therefore, we can diagonalise it. Moreover, given that all the Lagrange
multipliers are real-valued, and the order of conjugation and differentiation can be
interchanged, eq 1.36 already contains eq 1.37 which can therefore be discarded.

In the end, we obtain the canonical KS equations

1
(—§v2+ vs(r))u/i(x) =€y (X), (1.40)

where eq 1.40 is expressed as converged to the fixed point at which {17;} — {w;[nl},
€ — {e;[n]}, and U5 — vg[n).

The total GS energy of the non-interacting system is simply the sum of the N-
lowest eigenvalues

N
Esln] =(@[nl|H|®[n]) =Y _e;[n] (1.41)
i
with Hylnl = T+ XN vglnl(r;).

1.3.2. CONNECTION TO THE INTERACTING SYSTEM
The usefulness as well as the derivation itself of eqs 1.40 hinge on the assumption
that a v, exists that enforce the equivalence between the density of the non-
interacting system and a desired one, eq 1.38, typically the one of the interacting
problem. If it does not exist then the Lagrangian of eq 1.34 does not have a
minimum. If it does exist, however, we can ask ourselves what are the connections
between the non-interacting system and the interacting one.

Let us define the equivalent of the Levy-Lieb functional for a system without
interaction

Tslnl = min (¥ T1W) = Ty (], g7 7)) (1.42)

10



1.3. KOHN-SHAM SCHEME: BYPASSING THE HARDEST PROBLEM

and let us rewrite the total GS energy of a system, eq 1.13, as
Ey[n] = Ts[n]+ F[n] — Ts[n] +V|[n] (1.43)
—-LHxc

where we have introduced the energy term, Epy. called the “Hartree-exchange-
correlation”, which can be further decomposed

Erixc[n] = (T + Vee — Ts)[n] = (Tc + U + Uxc) [n] = (U + Exc) [n] (1.44)

where Te =T~ Ty, Ue = Vee— U and Ulnl = § [ 208 drdy'.
Using eqs 1.15 and 1.43, we write

_0Ey(n] 6 Ts[nl 6 Epxclnl

r)= + +v|(r 1.45
on ) on on ) ( )
Now we rewrite %, using % = vy and defining
6 Exc(n]

Vye i= ——— 1.46

o= (1.46)
as % = vy + Uye and evaluate % using that, at the optimal orbitals and
multipliers,

Ts[n] = Lyl{y;(nl,y; [nl}, vs[nl, €(n]]. (1.47)

The derivative %Ln" is then simply
n

6 Lpl{yilnl, v} [nl}, vsinl, elnl]
on n

= (1.48)

by virtue of the stationarity conditions which makes all derivatives vanish but the

term 6;; |n = —fvs[n](r’)‘s”—(r’)dr’ which depends explicitly on the density.

on(r)
Combining egs 1.45, 1.46 and 1.48 we find

Vs=UVH+ Uxc+V— U (1.49)

where a convenient way to fix the gauge freedom in the constant shift is to set all
potentials as vanishing asymptotically, {vyg, vye, v}(Ir| — 00) ~ 0.

By virtue of eq 1.49, we are now able to solve eq 1.40 self-consistently without
knowing the target density in advance: information on the target density in any
standard KS self-consistent code is introduced via input of an external potential, v.

vgi) = UH[n(”] + vxc[nm] +v (1.50)

n(i+1)

argmin(Ts[n] +f ygi)(r)n(r)dr) (1.51)
n

1"
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At convergence this iterative procedure delivers the same density as the one
from which the fictitious external potential, vs, was constructed (a fixed point).
Moreover, supposing that we know the exact form of the functional E,. and of its
functional derivative vy, the converged density and the total energy calculated
either from eq 1.43 or from

N
Ey[n] =Z€i[n]+Ech[n]—vaxc(r)n(r)dr (1.52)

with vgxe = v+ vxe, would be exactly (numerical errors excepted) that of the
interacting system. In practice, however, one needs to build approximations for
these related unknown functionals: Ey; and vye.

1.4. THE DENSITY-FIXED ADIABATIC CONNECTION FORMAL-

ISM
The density-fixed adiabatic connection formalism is a very powerful and long-
established tool to construct approximation for the exchange-correlation energy
[27-30]. Consider the A-dependent Levy-Lieb functional’! where the interaction is
scaled by a real and positive coupling parameter A, namely

Fyln] = Wﬁn}lc}qT+7Lffee|\{'>, (1.53)

assuming that n is v-representable for all A, one can write a series of A-dependent
Hamiltonian with fixed density

Hy =T+ AV, + V4, (1.54)
where V2= YN vA(r;) and
OF)(n
v ol (r) = — Aln] (r) (1.55)
on lIn=ngy

is the local external potential that delivers the prescribed density as the ground-

state density of Hamiltonian 1.54 at each A, L.e. ny(r) = ni(r) = n(r), and ¥y (x1,---, XN)

is the ground state wavefunction of Hamiltonian 1.54 at each A.
Equation 1.55 is derived in analogy with eq 1.17 in the usual assumption of v-
representability of n at all A.
By applying the following basic theorem of calculus
LoF,

Fi-Fy=| —=dA 1.56
1-Fo= | = (1.56)

" From now on we shall always use the Levy-Lieb functional unless otherwise specified, thus, for
notational simplicity, we shall only write “F" implying “Fj | ".

12



1.4. THE DENSITY-FIXED ADIABATIC CONNECTION FORMALISM

and considering that

0F), 0H,
Y (Wl A 1), (1.57)

by virtue of the stationarity of ¥, w.r.t. (H,), we find
1
T+ Vee—Ts”:f (P Voel W) dA (1.58)
0

which by comparison with eq 1.44 gives a compact and exact formula for the
exchange-correlation (XC) energy

1
Excln] =f Wy ln]dA (1.59)
0

where the density functional W) is defined as
Wy lnl = (P[0l Ve W a[n]) - Uln]. (1.60)

W) is referred to as the adiabatic connection integrand.
A number of exact properties of the adiabatic connection integrand are known.
Following the derivation in [31], we start by writing

(Hpy = (Hg (1.61)
(ﬁﬂr)l = (I:\Ilr)/v (162)

where (Hg) o = (¥ o/ |Hy|¥ o) by variational arguments.
Then we substitute Ay = Hy + (A —A) Ve + (V) — Vy) into the Lh.s. of 1.61, finding

<H/1’>/1’ + (A_/ll)“?eebl’ +f(l//1— vy)n= (I:I;L),l (163)

Finally, summing eq 1.63 and eq 1.62, we find

A=A ((Veedr = (Vee2) =0 (1.64)
eq 1.64 tells us that
Veedyr = Voeda if A= A (1.65)

and considering definition 1.60, it shows that Wy = W) if A= A’ or in other words
that W) is a monotonically decreasing function of A which can be written as

dw,
ar <0 (1.66)

12Since when the coupling parameter goes to zero, A =0, we recover all the KS quantities introduced
so far, the subscripts “s" and “0" will be used interchangebly hereafter unless otherwise specified.

13




1. THE DENSITY AS BASIC VARIABLE

assuming differentiability of the adiabatic connection integrand at any A.
Its small A expansion reads [32]

o0
Wy—olnl = Exln] + Y nESL" A1, (1.67)
n=2

where the first term is simply the exchange energy expression as defined in Hartree-
Fock theory applied to the KS orbitals (therefore becoming a density functional)

Ex=- dxdx’. (1.68)

N f vy 0y (x)y(x)
i=1,j>i lr—r'|
Because E, is order constant in A, it is also the value of W) when A =0, ie.
Ex = W().

The next terms, ESL", are the coefficients of the Gorling-Levy perturbation series
[32], which are very similar to the Maller-Plesset coefficients but contain extra
corrections coming from the constraint that the density be the target one at all
orders in A.

The first one of them is order linear in A and it corresponds to half the slope of

W, in zero, ES1? = WT‘; and is calculated from
v 2 1 5KS _ pHF 1 12
gy L g WV S - oy 169

4abij €q+€Ep—€i—€j ia €q—€;
where i,j,--- and a,b,--- are occupied and virtual KS orbitals, respectively, and

where 055 = vx(r) is the functional derivative of the exchange energy, v,(r) =

0L« (1), while 9/ is an integral kernel, namely (2% y;) 0 = [ vHF o, x)w; () dx’

. wi &)y (x)
with v3!F o x) = -2 ~L=—
uated on the KS orbitals."?
Subsequent terms grow in complexity and their computation is absent from the
literature.

The large A expansion of W) reads [34]

. As for the exchange energy, every term is eval-

Wi ool = Wl +%W;o[n1 b (1.70)

13R'Lgourouslg, to evaluate e.g. Wé, KS orbitals that are correct only up to first order, i.e. orbitals
coming from an EXX OEP procedure [33], are sufficient; and at every order it is sufficient to have
the orbitals coming from a localised potential exact up to the former order; of course the exact KS
orbitals (correct at all orders) would be perfectly fine.
However, a clear distinction has to be made among KS and HF orbitals: these latters come from
a non-local potential and do not enter in any of the expressions pertaining the DFT adiabatic
connection integrand.

14



1.4. THE DENSITY-FIXED ADIABATIC CONNECTION FORMALISM

where the density functionals Wy, and W., will be introduced and discussed in
chapter 3.

Let us only remark here that, because in the large A expansion there is no linear
term in A, despite its notation (now established in the literature), the coefficient of
the next leading order term does not correspond to the value of the slope of W,

Le. Wz M

o0 dA |} —oo’

Finally, W) satisfies the so-called Lieb-Oxford (LO) bound [35]
W, (n] z—cLofn(r)%dr (1.71)

At the state of the art, the LO constant, Cig, is known to be rigourously 1.4442 [36]<
Cio =1.6358 [37].
For a given density profile, the smallest value of W) (the largest one in magnitude)
is the quantity lim,laoo/lExc[n%] [38] where ny(r) is the uniformly scaled density,
defined as

ny(r) = yYin(yr). (1.72)

It also coincides with W, to be discussed in chapter 3.

For densities coming from different numbers of electrons, N, it can be proven that
the LO constant, Ci\(]), increases with N, Cll_\é < CII_\S’I, meaning that any value found
for finite N is a lower bound on the optimal constant.
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CONDITIONAL PROBABILITY AND
EXACT DECOMPOSITION OF THE
A-DEPENDENT EXTERNAL
POTENTIAL

The theory of conditional probability amplitudes first developed by Hunter [39, 40]
offers an excellent tool for deriving an exact differential equation for the square
root of the density.

We will start by deriving an exact decomposition of the effective potential for the
square root of the density (introduced in eq 2.11) in terms of correlated density
matrices, then, we will present the same decomposition in terms of KS density
matrices and, lastly, we will generalise it to density matrices at any value of the
coupling parameter and hereupon derive scaling relations.

2.1. AN EFFECTIVE EQUATION FOR THE SQUARE ROOT OF THE
DENSITY

Let us recall eq 1.1 and let us relabel H as HAN@r,ry,---,ry) and write |P) as
YN(rg,x,, -, xn) where we have taken electron 1 as the reference electron, as in
eq 1.3. Note furthermore that we shall only be concerned with the GS wavefunction
and energy, sometimes called ¥y and Ey. We shall omit the “0" subscript for
simplification of the notation. To be more precise, as we are going to generalise
the treatment of this section to any Hamiltonian of the likes of eq 1.54 in section 2.3,
a subscript is rather being used to identify the coupling strength.

17



2. CONDITIONAL PROBABILITY AND EXACT DECOMPOSITION OF THE A-DEPENDENT
EXTERNAL POTENTIAL

Following references [41, 42], we partition the Hamiltonian for N electrons in
three parts: the Hamiltonian for N—1 electrons (with i =2,...,N), the one-body
terms acting on electron 1, and the remaining interaction between electron 1 and
all the others

2
HN(r,ro,-,rn) = HV Yrg, -, ry)

(2.1)

In the same spirit, we factorize the N-particle wavefunction

YN (ro,xs,--xn) = | %(D(U;XZ;'” JXN;T) (2.2)

into the so-called marginal and conditional (probability) amplitudes, represented
respectively by the square root of the density as a function of coordinates of electron
1 divided by the number of electrons N and a function of the other N—1 electronic
positions, ®(0,Xz, -+, Xn; ), which depends on electron 1 in a parametric way.
Physically speaking, ®(o,x2,--+,Xn;7) is a sort of (IN—1)-particle wavefunction
that describes how the electronic cloud of N—1 electrons readjusts as a function
of the position of electron 1. Indeed, its modulus square integrates to one for any
value of the position vector of the reference electron

fl@(a,xz,-u,xN;r)Izdadxzmdez1 vr, (2.3)

as it is easily verified by using the modulus squared of eq 2.2 and the definition
of the electronic density n(r), eq 1.3.
We now apply eq 2.1 to eq 2.2,

ﬁN_l(r — V—Z
2,5, TN) +u(r)+ Z

2D @(0,%p,++ , XN;T) =
o |r =1l

=EgN "(’ ®(0,X2,++,XN; T) (2.4)

and then multiply to the left both members by ®(o,x2,--,xn;7) and integrate over
the spin variable of the reference electron! and the spatial and spin variables of

10f course, it is also possible to make the exact same treatment spin-resolved: rewriting the conditional
amplitude as a parametric function of both position vector and spin variable, ®(x,---,xn; 7o), dropping
the summation over o and defining all the one-body potentials appearing in eq 2.7, as functions of
the combined spin and spatial coordinates x.

18



2.1. AN EFFECTIVE EQUATION FOR THE SQUARE ROOT OF THE DENSITY

electrons 2,---, N,

\/ %f¢>*(o,xﬁ~- XN ) AN (g, 1) @0, %0, - X 1) dodx, -+ dxy +

. V2 [n(r)
_f@ (0,%2, , XN; T )— ¢’(U Xp, -+, Xy; F)dodx, ---dxy +

v (’")\/ f@(U Xp,+++, Xy P)I? dodx, - dxy +
+ —n(r)f®*( X Xy F) Z
N g,X2, Yy XN, T

i lr—ril
=EN\/%f|d>(a,xz,-~,xN;r)|2dadX2~-de.

Now we use eq. 2.3, which tells us that the gradient V, and the Laplacian V2
applied to its left-hand-side is zero. This, in turn, implies for real wavefunctions,
i.e. for conditional amplitudes of the kind ®(o,xz, -+ ,xpy; 1) = e R(o, {x;};r) where
the imaginary part is just a trivial phase factor onto which the gradient has no
action, that the mixed terms are zero, i.e.

(D(o.rXZJ"'rxN;r)do-d-xz'”dez

. V2 [n(r)
f® (0,X2,+,XN; T )— N ——®(0,%p,--+ ,Xn; r)dodxy - - -dxy =

n(r) . V2 V2 [n(r)
\/qu) (U;XZr"'»XN;”)Trq)(U;Xz;"',XN?r)dUdXZ -dxy+ >\ N (2.5)

and moreover that

fd)(a,Xz,---,XN;r)Vicb(a,xZ,--- Xn;r)dodxs - dxy =
—fIVrCD(U,Xz,---,xN; r)*dodx, - dxy. (2.6)
Therefore considering the properties of ®(g,xz,---,xn; 1) expressed in eqs 2.3, and
2.6, and simplifying out the normalization factor from both sides, we see that eq 2.4
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EXTERNAL POTENTIAL

becomes

(fCD*(U,Xz,---,xN;r)ﬁN_l(rz,-~-,rN)d>(0,Xz,---,xN;r)dUdXz-~-dXN

V2 1 2
—?+v(r)+Eflvrd)(o,xZ,‘--,xN;r)l dodx,---dxy +
N O » " T ; 2
+f 5! (lezr rTN ol )dam...de)\/ﬁz
i=2 —ri

=EN v n(r),

which is a Schriodinger-like equation for the square root of the density, as we
have a kinetic term plus other terms that are multiplicative potentials, being pure
functions of the position vector.

Collecting all local potentials in one,

Degp(r) = f<1>*(0,Xz,-~-,xN;r)ﬁN*I(rzw-,rN)qJ(U,Xz,---,xN;r)dUdX2---dXN+
1
+§f|Vr(I>(U,xz,~--,xN;r)IZddez---de+ v(r)+ (2.7)
N
+fd>*(0,xZ,m,xN;r)(Z | | (0,Xz,- -, Xn; 1) dodxy -+~ dxy,
j=2 IF =T

it follows

VZ
-5 Vnn+ Tt (r)V/n(r) = EN\/n(r). (2.8)

2.1.1. THE DEeNsITY DECAY

Equation 2.8 proves itself useful, for example, for deriving the decaying behaviour
of the density in finite systems (atoms and molecules) when |r| is very far from the
barycenter of all nuclear charges.

For a general single-particle Schradinger equation,

VZ
- 7gb(r) +v(r)¢r) =ep(r), (2.9)

we have that ¢(r) ~ e~V=2Irl \when [r] = oo only if v(lr| — oc0) =0. If, instead,
v(Jr| — 00) = C then, for |r| — oo, ¢(r) ~ e~ V2=e+Q)Irl This means that, if we want
to obtain the asymptotic decay of n(r) from eq 2.8, we have to find that constant
C that shifts the effective potential g (r) so that it vanishes at large distances (or
equivalently the constant that appears in the exponential together with —e¢).
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2.1. AN EFFECTIVE EQUATION FOR THE SQUARE ROOT OF THE DENSITY

Looking at the different pieces appearing in eq 2.7, we see that the external po-
tential

N ZA
viry=—-) ———
; Ir — R4l

and the last contributing potential

N

f<I>*(U,Xz,--- JXN;T) (Z

o lr—ril

®(0,xz, -, XN, r)dodx; - - - dxp,

clearly vanish when r is far away from all nuclear charges (i.e. in that region of
space where the density is negligeable).

Concerning the other terms, we can use physical arguments to support the following
statements, leaving room for more rigorous derivations.

For the term [®*(0,%p,-+,xXn;F) HN "M (ro, -+, r )@ (0, X2, -+, Xn; 1) dod2...dN, we
expect that the conditional amplitude when electron 1 is very far from the nuclei
will collapse to the ground-state wavefunction of the cation, WN=l(xy .o xpN) [43],
if this is accessible,2 and that, consequently, the expectation value accounted for
in that term will collapse to the ground-state energy of the cation, EN7L.

If this is the case we may also expect the term [|V,®(0,Xz,- -+ ,Xn; r)2dodx;---dxy
to vanish since the conditional amplitude essentially becomes insensitive for a
change in the position of electron 1 very far away from the nuclei. A case in which
this assumption does not hold is the less usual case of nodal planes extending to
infinity [44, 45].

Therefore we can define veg(r) = ﬁeff(r)—EéV_l, in which the first term now becomes

f(b*(a,xZ.m,xN; r) (AN o, rn) = EN D ®@(0,x2, -+, x5 1) dodx, -+ dx,

(2.10)
so that the corresponding equation for v/n(r) reads
2
- V? n(r) + vesr(r)v/n(r) = (EN = EN7Y) /n(r). (2.11)

Considering that (E(’)V—Eév‘l) = —1I, (the first ionization potential), this derivation
gives a clear physical grasp of where the exponential decay of the density with the
square root of the first ionization potential comes from

V() ~e VI, (2.12)

2Meaning that, for example, the spin ground state of the cation does not require spin flips with respect
to the one of the neutral system, otherwise the relaxation to the ground state cannot occur.

21
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EXTERNAL POTENTIAL

2.1.2. EFFECTIVE ONE-BODY POTENTIALS

We now take a closer look at the three terms found for the effective potential veg(r)
in the previous section.

The term with the easiest physical interpretation is the so-called conditional po-
tential

N
* 1
Vcond (T) ==fCI> (0,%2,+ , XN; r)(z o ®(0,%2,++,Xn; 1) dodxp - - dxy.
i=2 1T~
(213)
Using the definition of the pair density, Po(r,r")
Py(r, 1) = N(N—l)fI‘I’(ra, r'o’,-- xy)>dodo’dxs---dxy, (2.14)
where we have relabeled x; = r'd’, we can equivalently write
Py(r,r')
Veond () = 2—, dr' (2.15)
Ir—r'|

This potential is traditionally considered as made up of two different contribu-
tions, .e. Veond(r) = vu(r) + Vxc_note(r), where vy has been defined in sec 1.3.2,
while to define vy pore We use the definition of the exchange-correlation pair-
correlation function, gy (r, r),

n._ Pa(r,r’)
)= ——"-1L 21

8xc(r, 1) ) (2.16)

Then )
Vxe,hole(r) =fn(r')Mdr’. (217)

lr—r']

The numerator in eq 2.17 is often called the exchange correlation hole

e (r, 1) = n(r) gre(r 1) (2.18)

Thus, veona(r) is the electrostatic potential of the density depleted of its exchange
correlation hole.

The term that comes from the kinetic energy operator acting on the conditional
amplitude

1
Vkin(r) = EfIVrGD(U,X2,---,xN; r)dodx, - dxy (2.19)

is called kinetic potential.

3Note that, as the pair density is symmetric, i.e. Po(r,r') = Po(r',r), also gxe(r,r') is so, while hye(r, ),
being the product of a symmetric function of (r,r’) and the density in one point (r’) is no longer
symmetric.
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2.2. EFFECTIVE POTENTIAL FOR THE SQUARE ROOT OF THE DENSITY IN TERMS oF KS
DENSITY MATRICES

Using the definition of the one-body reduced density matrix (1RDM)
y(r,r') = Nf‘l’*(ra,xg,‘-- XN (o, %2, xn)dodxp - - dxy (2.20)

it can be also expressed as

Ve Vey(r,r)lp=y V(@)

j = . 2.21
Ukln(r) zn(r) 8n(r)2 ( )
Finally, the term coming from the N —1 Hamiltonian is equal to
vN*l(r) = f‘b*(ar)(Z)"'va;r)I:IN_l(rZ)"')rN)q)(U)XZr"')XN;r)dUdXZ'“dXN
—EN-! (2.22)

It is evident that these three potentials are always positive, as in eqs 2.13 and
2.19 the integrands are squared quantities, and the integrand in eq 2.22 must be
positive by virtue of the variational principle.

In a pure Hohenberg-Kohn-DFT approach (also called orbital-free DFT, because
it does not use orbitals, but only the density itself), these three terms give the
effective potential for the square root of the density. Unfortunately, orbital-free
DFT suffers from the lack of an accurate kinetic energy functional as already
discussed (see sec 1.3).

To obtain an expression for the exchange-correlation potential in the KS scheme
we need to use the KS reference state and energy, as explained in the next section.

2.2. EFFECTIVE POTENTIAL FOR THE SQUARE ROOT OF THE

DENSITY IN TERMS OF KS DENSITY MATRICES

Suppose that, for the same physical density n, we have found the exact KS poten-
tial, vs. The KS Hamiltonian is then given by

. NvVZ N
Y ==}t + 3 vsr) (2.23)
i i=1

which has WY as its ground state.
If we repeat the same manipulations of section 2.1 starting by a partitioned KS
Hamiltonian and a KS conditional amplitude that mirror eqs 2.1 and 2.2, i.e.

N . V2
ANy, rn) = AN Yy, rn) - 7’ +ug(r), (2.24)

‘I’ﬁv(xl,--‘,xzv)ﬂ/%q)s(o,xz,‘--,xw;r), (2.25)
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we get:

1
Vs, kin(r) = Eflvrd)s(a,xz,'--,xzv; r*dodx, - dxy, (2.26)

which can be written in terms of the H occupied KS orbitals,

Vs kin(1) = Zl % T ( ) 2 Z IV (r)] —%, (2.27)
and
VsN-1(F) = fq):(a,xg,---,xN,r) Ly, rN) @50, X2, -+, xn; 1) dodxy - - dx
-EN! (2.28)
Again, this term can be written using the KS orbitals and orbital energies,
Usn-1(F) = Z(eH e Wi (2.29)

n(r)

where ey is the energy of the KS highest occupied molecular orbital (HOMO).

A critical remark is due here: contrary to the fully interacting case, HY™! is
not the KS Hamiltonian for the N —1-particle system, since the KS potential is
the one obtained for the N-particles problem, which is not the one that would be
obtained for the ground state density of the cation.* Analogously, the energy term
EN-1is not the KS energy of the N —1-particle system but rather the sum of all
the H—1 orbital energies ¢; of the N-particles problem.

The effective KS potential for the square root of the density is nothing but
the sum of the foreshown potentials plus the KS potential itself (the conditional
potential being absent as there is no Coulomb repulsion between the particles),

Vet (r) = Us(r) + Vs kin (r) + vg N—1(F). (230)

2.2.1. EXAcT DECOMPOSITION OF THE XC POTENTIAL INTO PHYSICALLY

TRANSPARENT TERMS

We compare now the resulting effective equations obtained in the previous sections
[42, 46-48].

4Think about the simple example of the He atom (N =2): the exact KS potential must yield a single

orbital, doubly occupied, equal to y/ 2 2 , where n(r) is the density of the He atom. When we remove
one electron from this N =2 KS system, we have the same orbital as before, now singly occupied.
This orbital is different than the square root of the density of He*, which is a single exponential. In
fact, the exact KS potential of He™ is simply —2/r, which is definitely different from the KS potential
of He.
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From sec 2.1 we have

2

\Y%
-5 n(r)+ (v(r) + vkin(r) + UN-1(F) + Veona (1)) Vn(r) = =Ip/n(r), (2.31)

while from sec 2.2 we have

VZ
ey n(r) + (vs(r) + vs kin(r) + vy n-1(F)) V 1(r) =€/ n(r). (2.32)

The density can be written in terms of the KS orbitals as n(r) = Z£I|Wi(r)|2,
and the decay of the KS orbitals is governed by their respective eigenvalues. The
most diffuse orbital, i.e. the one with the smallest occupied orbital energy in
absolute value, is the one of the HOMO. Thus, for large |r|, the density decay will
be dominated by the uppermost orbital, yn(r), which leads to the identification
e =—1I, [49, 50].

Then, the rh.s of eqs 2.31 and 2.32 are the same and we can compare the two
clusters of local potentials in brackets and derive thereby an exact expression for
the KS potential,

Vs(r) = v(r) + va(F) + Vi (r) =

= v(r) + Vkin(r) + UN-1(F) + Veond () — Vs kin(F) — vg N—1 (F) (2.33)

Simplifying out the external potential from both sides and solving w.r.t. vy, we
have

Vic(1) = Vkin(r) = Vs kin (1) + UnN—1(F) — Vs N—1 (F) + Vxc-pote(T), (2.34)

Equation 2.34 gives an exact expression for the XC potential in terms of wave-
function quantities (one-body-reduced density matrix and pair density) and KS
quantities (orbitals and orbital energies). Some of these components embody non-
intuitive, though typical, features of the exact KS potential.

As an example, in fig 2.1 we have sketched how the exact KS potential for a
stretched heteronuclear molecule (the simple case of LiH) looks like. The two sep-
arated atoms have highest occupied atomic orbitals with different energies, the 2s
orbital of Li being higher in energy than the 1s orbital of H. Another way to see
this is that the more electronegative atom, the hydrogen, can attract some charge
from the less electronegative one. To bring the chemical potential of the two atoms
at the same level, the exact KS potential builds an appropriate step in the midbond
and another one far away from the molecule on the other side of the hydrogen atom
in order to bring the potential to zero again. The step height is exactly the dif-
ference between the ionization potentials of the two atoms. This way, the HOMO
energies of the two atoms forming the molecule are equalized, as it should be for
a doubly occupied bonding orbital in the spin-restricted framework (i.e., without
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FIGURE 2.1: Sketch of the exact KS potential at the dissociation limit of the LiH molecule

associating different spatial orbitals to different spins). In the neighborhood of the
H atom, the KS potential looks like the one of an isolated H atom. Only by looking
far away from the H nucleus, we see that the ionization potential of the stretched
LiH molecule is essentially equal to the one of the Li atom. It has been shown
[46, 48, 51, 52] that this step structure is built by the difference vn_;(r)—vgn_1(r)
appearing in eq 2.34, which has been grouped in one potential called v;es,(r), as
it can also be seen as the response part of the XC potential (see end of sec 2.2.2).

Another feature that is very important for the proper description of challeng-
ing electronic structures is highlighted in fig 2.2, where the KS potential for the
hydrogen molecule at large internuclear distance is sketched. Here the chemical
potentials are the same, so there is no step. However, in the midbond region there
is a peak that increases for increasing bond lengths but saturates for large enough
distances between the two atoms. That peak essentially decreases the probability
that electron around nucleus A tunnels to nucleus B, and, in the limit of infinitely
stretched molecule, its height becomes equal to the ionization potential of the hy-
drogen atom [42, 53-55]. In other words, this is how the KS potential manages
to localize non-interacting fermions that would otherwise accumulate some charge
also in the midbond region, contrarily to the real interacting electrons.
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FiGURE 2.2: Sketch of the exact KS potential at the dissociation limit of the Hy molecule.

This peak comes from the difference vy, (r) — vs rin(r) [42, 54-57], which for the
special case N =2 considered here is just equal to v;,(r) of eq 2.19 and can be
understood in simple terms: if we imagine electron 1 being, say, around nucleus
A, then the gradient of the conditional amplitude in eq 2.19 will undergo a steeper
increase the closer electron 1 gets to the midbond, reaching its maximum when
electron 1 crosses the bond midpoint. In fact, at this point electron 2 has to hop on
the other nucleus in order to have one and only one electron around each nucleus.
The peak is actually also present in the heterolytic dissociation and is shown in
fig 2.1 as a dashed line. Most available functionals approximate in a satisfying
way the electrostatic hole potential of eq 2.17, which is typically the dominant
part for the description of the total energy and other properties, but fail severely
in the description of the peak and of the step structure. For example the upshift of
orbital energies in LDA is due to a too high response potential [58, 59].

In the everlasting quest for better XC functionals, approximating directly the XC
potential has always been of interest (although there are other problems appear-
ing when the potential is not the functional derivative of a density functional [60])
and the exact decomposition of the KS potential foreshown provides very helpful
guidelines in the design of approximate XC potentials.
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In this spirit, Staroverov and coworkers have developed an algorithm to construct
sensible XC potentials from correlated wavefunctions in finite basis sets [52, 61-63].
While in ref [64] a simple approximation (called ‘GLLB’) to the response potential
UN-1(r) — vg n-1(r) has been proposed. More recently, the GLLB response po-
tential has been used to correct the band gap of solids obtained from semilocal
functionals [65], and the vertical ionization potentials of molecules [59].

2.2.2. XC POTENTIAL IN TERMS OF KINETIC AND INTERACTION COMPO-
NENTS AND THEIR RESPONSE PARTS

It is possible to connect the analysis of the effective one-body potentials depicted

so far with other expressions for the exchange-correlation energy. Rewriting the

total energy by making use of the von Weizsacker kinetic energy functional, Ty [n],

which is N times the kinetic energy of the normalized “density orbital”, i.e.

Ty [n) ::—%f\/n(r)vz\/n(r)dr, (2.35)

we can obtain other expressions for the KS potential involving integrals of the
response part of known functions [60], as shown in the next paragraphs.
Let us start by considering the following decomposition of the total energy

E[n] = Tw[nl+ (T[n] - Tw(nl) + Vin] + Veelnl. (2.36)

Using the expression for vg;,(r) of eq 2.21, it is immediate to show that

T[n]-Twln] =fn(r) Vkin(r)dr =

1 1 [IVam)P
= - V,-V,. , ! /— - = 2 7
2[ roVpy(r, r)lp=pdr ‘Sf ) dr (2.37)
~11n) =Tn]
Using eqs 2.15,6.13 it is also easy to see that
1 1 ) +1
Veeln] = = f (r) Veona(r) = ~ f e ST g (2.38)
2 2 |r—r'|

Thus, eq 2.36 reads

E[n] = —%f\/ n(r) Vz\/n(r) dr+fn(r)vkin(r) dr+%fn(r)vwnd(r)dr

+fn(r)v(r)dr. (2.39)

28
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The effective potential of sec 2.1.1 is exactly the functional derivative of the
Von Weizsacker kinetic energy with opposite sign and up to a constant shift

8 Twlnl _ VZVn(r) g
én(r) — 2ynm "

veff(r) =— (2.40)

This result is easily derived by comparing definition 2.35 and eq 2.11 inverted so
as to provide a definition of the effective potential.

Upon differentiation with respect to the density of eq 2.39 and considering that
the energy is stationary w.r.t. change in the density, we find

6(E[n] - Tw(n))

= — - - 2.41
Verf(r) S (2:47)
= Ukin(P) + () + VH () + Uxe note (D) + v, (1) + Vi (1),
where the response potentials involve the density response of vg;,
Svkin(r)
resp kin
Viin )= f r)——— ) r’ (2.42)
and gx¢
presp _ n(rnr") 6gy(r',r")
Vs note) = f T on) dr'dr”. (2.43)
The comparison between eq. 2.41 and eq. 2.31 shows that
uN-1 (D) = v P )+ U (), (2.44)

which motivates why the terms of the effective potential associated to the N—1
Hamiltonian are also called “response” parts of the potential.

We now repeat the same analysis for the KS system. Consider eq. 2.32 and
divide both sides by vn(r):

Vz\/n(
5 —n( +Us(F) + Vs kin(r) + vsN-1(F) =€q (2.45)
On the other hand we also know that
0T [n]
6;(” —vs(r) +epq, (2.46)

which we can rewrite as

6 (Twlnl + (Ts - Tw)[nl)
on(r)

=-vs(r) +eq (2.47)
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Working out the Lh.s. gives

V2V/n(r) r
Nl + Vs kin(r) + vsj:il:l(r) =—vs(r) +em, (2.48)

where we have used the relation
Tylnl - Twln] = f vy kin(P)R(FAT, (2.49)
which mirrors eq 2.37 for the KS kinetic energy rather then the interacting one.

Comparing eq. 2.45 and eq. 2.48 gives

vsN-1(r) = v (r) = f " (;’“’(”r()r dr'. (2.50)
Therefore
UN-1(F) = v N1 (P = oD () + ), (2.51)
where S
Uy i) = f n(r)—5 oS —dr’ (252)
with
Ve,kin(F) = Vkin(r) = Vs kin(1). (2.53)

Finally, the terms appearing in the r.h.s. of eq 2.51 are often collected in one
called vresp

Vresp(r) = U;j:l’;(r) + U;?Zole(r)‘ (254)

2.3. A-DEPENDENT EFFECTIVE ONE-BODY POTENTIALS5

Assuming that a single GS wavefunction, \Pg for the A-dependent Hamiltonian

introduced in eq 1.54, Hflv,fj exists at any A, it is possible to extend the decomposi-
tion of the effective potential for the square root of the density in terms of infinitely
many systems depending on the coupling strength.

Let us start by writing

-+ i), (2.55)

N
Y (r,,ry) = HY g, rN)——+ Z

5The idea of generalizing to any value of the coupling parameter A the concept of conditional amplitude
as well as that of the local potentials that can be written in terms of this latter has appeared originally
in the work of reference [66] presented in chapter 6.

6wl and AN are exactly the same objects introduced in sec 1.4 and used in the previous section
(sec 2.3). Nonetheless throughout this section they are labeled with a superscript for the number of
electrons, N, as this latter plays a key role hereinafter. For the same reason, the GS energy associated
to ‘I’AN and I:I/]lv will be indicated as Eiv.
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and

‘I’ﬁv(ra,xg,n-,xN): %(D;L(U,xz,"',xN;"), (2.56)

respectively.

By applying the r.h.s. of eq 2.55 to the rh.s. of eq 2.56, multiplying by @} (0, %2, , xn; 1)
to the left and integrating over all variables except r as worked out in sec 2.2.1,

we again obtain few distinct one-body potentials, viz.

vAN-1(F) =

f‘bj(o,xz, o xn P HY @030, Xy ) dodxe - dxy — ERNCY, (257)

where the subtraction of the quantity Eiv*’l makes this potential go to zero when
|r| — oo if, as expected in most cases, ®,(0,x2,--+,Xn; ) asymptotically collapses
to WA (x2, -+, xN);

1
U kin(r) = E[ IV, @y (0, %2, , Xn; 1) Pdodx, - dxy, (2.58)

which also goes usually to zero when |r| — co as vy y_;(r) does. Exceptions for
both potentials are encountered in the case of nodal planes extending to infinity,
as already discussed in sec 2.1.1.
Lastly,

1

N
VA,cond(F) = Z - |Pp(0, %2, , XN; r)|2dUdX2"'d.XN, (259)
j=2

i lr—r;

which tends manifestly to zero when |r| — oo and can be decomposed into a A-
independent, vy, and a A-dependent part, VA xc-nole

VA, xc-hole(F) = VA cona(r) — vu(r). (2.60)

As well as a Schrodinger equation for the square root of the density

2

\Y
=+ Uepp () + 0 OV () = (EY - EXTHV (), (2.61)
where
Vp,eff(r) = vaAn1(1) + VA kin(¥) + A V2 cona (), (2.62)

and Eﬁ‘l is the ground-state energy of the N —1 system in the same effective
potential as the N-particle one, i.e. of HY™" of eq 255 (thus Ef! = EN7! only
for 1 =1).

Comparison with eq 2.11 shows that,
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e for any finite A, the difference EiV—EfC’*‘l in eq 2.61 equals minus the exact
ionization potential, I, of the physical system, which dictates the asymptotic
decay of the density as already discussed in secs 2.1.1 and 2.2.1

EY -EN'=-1,; (2.63)

e the sum (vyfr+v") has to be A-independent and equal to the effective
potential, Veff-

Thus, we can explicitly write the A-dependent external potential as a difference
between a A-independent and a A-dependent term

v’l(r) = Verf(r) —vp e f(F). (2.64)

Note that, when 1 =0, the potential v) .y becomes exactly the so-called “Pauli"
potential, vp = vers — v [67, 68].

2.4. SCALING PROPERTIES

Coordinates scaling and scaling of the coupling parameter in eq 1.54 can be related
to one another [69]. In order to show their relation, let us start by writing the A~
dependent Schrédinger equation

N V2 N 1 N
_Z_l+ Z +ZU (ri) ‘Pl(rlv"'er):Eﬂlyﬂ(rlr'“;rN) (265)
o1 2 =npsilrieril o

where we have left the spin indexes out for notational convenience as they will
remain untouched along the whole treatment. We remind that ¥, delivers the
density n at each A.

Upon substitution

r=ar' (2.66)
we find
o 1 vi,i o A o A / /
_;?Tiﬂvjﬂalr;_r}ﬁ;v (ar’) |Yalar),---,ary) = (2.67)

! !
ExYlary,--,ary)

Multiplying both sides of eq 2.67 by a?, then taking a =% and defining a wave-
function & such that

\P/l(rly"'er)=/1%E(/lrlr”')A'rN)) (268)
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Nvf/‘ il 1 ¥ A I‘; / /
_.27!4_‘ Z ,_r/.|+ﬁZv (7) Ery, -, ry) = (2.69)

1
ﬁE/lf(r,I)"')r;\])-

Applying definition 1.3 to calculate the density associated to & (r},---,r) and
eq 2.68 we find

N/|§(r'1,~--,rg\,)|2dr’2--~dr'N:

%fwl(%”%v) izd(%)d(%\/)
= % n(%) =ny(ry), (270)

where the last equality results from definition 1.72.

Thus, eq 2.69 tells us that ¢ (r,---, 7)) is the ground state of a Hamiltonian at
full coupling strength (A = 1) delivering a density ni (%) te. &(rf,---, 1) =
\I’l[n%](r’l,--- ,1'y) and we have found that

WaAlnl(ry, e, rN) = A% Wi JAry - Ary). (2.71)

From eq 2.69 one also deduces the behaviour of the external potential as well
as that of the ground state energy w.r.t. uniform scaling of the density, namely

%v’l[n](r) = vl[n%](/lr) (2.72)
1
Sz Ealnl = Falny ] (2.73)

Insertion into the definitions of the A-dependent local one-body potentials
(egs 2.57, 2.58, 2.59, and 2.60) of eqs 2.71, 2.56 and, just for vy y_;, also 2.72
leads to the following local scaling relations

vin-lnl(r) = A*vv-lni](Ar) (2.74)
Vakinln)(r) = A*v1ginlny] A7) (2.75)
Vaconalnl(r) = Aviconalnil(Ar) (2.76)
and subsequently
Vixe-holelMl(r) = AV1xc-hoten11(AT). (2.77)
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Combination of eqs 2.74, 2.75 and 2.76 together with definition 2.62 gives
Va,erf (M) = A%1cppn1](AF), (2.78)

Note that the scaling of the effective potential introduced in eq 2.11 can be
independently calculated to be
Vepslnl(r) = A*vepplni)(Ar) (2.79)
and is consistent with eqs 2.72, 2.78 and 2.61.

Moving onto global quantities, the definition of the Von Weizsacker energy
functional (eq 2.35) immediately gives that

Tywinl = A* Tvwiny]. (2.80)
Defining
Tylnl = (¥} (0| T} [n)), (2.81)
Veen ] := (P [n]| Ve WY [n]), (2.82)
and
Wyln] := Ve p[n]l — Uln] (283)

use of eqs 2.75 together with 2.80 for the kinetic and 2.76 and 2.77 for the electron-
electron interaction terms gives

Tylnl = A*Tilny) (2.84)

Veealn] = AVee,l[n%] (2.85)
and

Wilnl = AWilni] (2.86)

>l

Finally, combination of eqs 2.84 and 2.85 together with definition 1.53 gives
Fpln) = A*Fyny). (2.87)
Moreover, from a GS wavefunction at any A which delivers a density n
Walry, -, ry) — n(ry) (2.88)
one can obtain a uniformly scaled density n, (eq 1.72) by scaling it as
iy 3
y 2 Yalyry,---,yrn) =y nlyry). (2.89)
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Inserting the scaled ¥ into the functional defined in eq 1.42, immediately shows
that [70]

Tsln) = A*Ts(ny ) (2.90)
with y = 1.
Thus, also for the correlation contribution alone it holds that
Tealnl = A*Te,lny] (2.91)
having defined
T2 [n] == (T — Ts)[n]. (2.92)
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STRICTLY CORRELATED
ELECTRONS

At the end of sec 1.4, we have introduced some density functionals called W, and
W/, appearing in the large A expansion of the adiabatic connection integrand, W;.
Since it was posed [71-73], the question as to what happens to all key players of
the density-fixed adiabatic connection formalism (sec 1.4) as A — oo (the so-called
strongly-interacting limit) has offered a complementary scenario to the KS picture
with a rather unique structure.

Both weakly-interacting and strongly-interacting limits are simplified descriptions
of the realistic situation where kinetic and electron-electron interaction effects
need to compromise in the minimization of the total energy, however, while the
mathematical simplicity is embodied, in the former, in single-particle orbitals, these
are replaced, in the latter, by completely different and distinctive objects, called
co-motion functions.

Compared to the KS orbitals, the co-motion functions are also non-trivial density
functionals, however their explicit dependence on the density is known in some
cases [73].

In the electronic structure theory community the strongly-interacting limit (SIL)
of DFT is equivalently known under the acronym SCE which stands for “strictly
correlated electrons".

The physical picture in the case of extreme electron-electron interaction over-
laps to some extent with a branch of mathematics named Optimal Transport, which
will be briefly introduced in sec 3.2.

Nevertheless, in the mathematical community, the two acronyms “SIL" and “SCE"
are being used with different meanings.
VeS(;'L represents the exact limit of the Levy-Lieb A-dependent functional up to first
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order [74, 75]
. Faln]
lim ——

lim == =V nl+ o), (3.1)

while the SCE functional, V;,°F, is a specific form in which the problem posed by
V' may be solved.

In particular, V3t = when the functional V3 can be expressed in terms of
optimal transport maps (as briefly discussed in sec 3.2).

Nevertheless, in references [76, 77] it is argued that, casting the deterministic
expression of the interaction energy operator (see eq 3.13) variationally, into a
search over all possible transport maps {f;} giving the density, n, i.e.

SCE
Vee

sce _1
Voot = 1nf ( f ()Z = f ol dr (3.2)
the two objects are arbitrarily close.
Therefore, Vb = v>CE

ee,opt’
The question remalnspwhether the inf in eq 3.2 can always be sharpen to a min
for the Coulomb cost or, if not, in which cases it can. Throughout this chapter,
we shall simply assume VoIt = V2CE without discriminating between optimal and
non-optimal maps.

3.1. GENERAL STRUCTURE OF THE (DFT) A — co LimiT
When A — oo, the A-dependent Hamiltonian of eq 1.54 reduces to [34, 73-75]

Hj oo ~ MV + V°CF), (33)
VSCE = Zﬁ\il v>CE(r;) is the one body potential that makes the classical
potential energy operator1

where

ESCE

pot (rl)”'rrN): Vee(rlr"')rN)+VSCE(rly”'rrN) (34)

deliver the prescribed ground-state density n(r) such that both V°CF and Epot are
functional of the density [34, 73, 79].
The ground state energy of eq 3.3 is given by

Eicolnl =2 inf Bt nl(ry, -, rn) [P, 2 Pdx-dey (35)
—n

and it is achieved by a |¥|? which is zero everywhere except where the potential
energy surface Epot[nl(ry,---,ry) attains its global minimum (in other words the

TSometimes v CE is also denoted as “veo’ [6, 78] as it is the external potential appearing in the

asymptotic Hamiltonian of eq 3.3.
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minimum of the potential energy defines the support of |¥|?).

The reason why the kinetic enerqy operator disappears from the A-dependent
Hamiltonian as A — oo (eq 3.3) is that its expectation value, Ty[n] (eq 2.81), is
subleading w.r.t. Ve 1[nl (eq 2.82) in this limit.

In particular, assuming that T)_. is due, to first order, to zero point oscillations
around the equilibrium positions (a conjecture first proposed in reference [72] and
for which gradually further arguments have been produced [34, 74, 80] although no
rigorous proof is available yet), it can be shown that T} .o, ~ O(VA).

As a consequence, the A-dependent Levy-Lieb functional of eq 1.53 tends asymp-
totically to A VECE[n] with [71, 73]

Ve Flnl= nf (F|Veel W) (3.6)

Eq 3.6 presents the SCE functional, Vo ([n], as the natural counterpart of the KS
functional, Tg[n] (eq 1.42).

Moreover, just as for Ts, by inserting the wavefunction for the scaled density (see
eq 2.89), we immediately see that

Ve Flnl = AV F ). (3.7)

Note that, because FIAAOO contains only classical operators, there are two im-
portant and related caveats in this limit.
The first one is that, the object that attains the lowest value of (Voo lives in the
space of distributions,’thus it is not technically in the space of allowed wavefunc-
tions, i.e. W) _o ¢ L, and the kinetic energy as expected diverges (we are in fact
violating Heisenberg principle), but its leading diverging term is only o(A) as al-
ready discussed.
The second one is that, in order for the external potential to be able to en-
force a smooth density in this limit, the set M[n] of all configurations where
Epot[nl(ry, -+, ry) is minimum

Mln]={(ry,--+,rn): Epot[n](ry,---,ry) = min} (3:8)

cannot be made up of just a sum of discrete points, but it needs to feature a
continuum of a minimum dimensionality, D, equal to that of the domain of the den-
sity (n: RP — Ry,).

Consequently, the modulus squared of the minimizing wavefunction collapses into
a distribution that lives in a D-dimensional subspace of the full (RD®ZZ)N con-

figuration space.

2The constraint of the density can make things more complicated, in particular the support of |W|? is
singular only if the inf of eq 3.2 is a min, something which we are assuming in the next lines.
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We can write it as
1 N'
[scetnltry - e = o f as™E ] 5 Lot ~to o) 39)

such that its integral recovers the density according to eq 1.3 and where the co-
motion functions f;[n](r) exactly parametrize the set M[n] cRP, i.e.

Min] = {(f[nl(r), -, Ex(nl(r): r e RP}. (3.10)

The co-motion functions then determine the position of each of the (N—1) elec-
trons as a function of that of a reference one realizing the perfect correlation among
the electrons (their “correlated dance").

Note that, within the SCE limit, no information is retained about the statistics of
the particles [80], therefore the particles spin variables are considered as always
integrated out.

Note, furthermore, that there are several possible ways in which the N perfectly
correlated electrons can be arranged given their indistinguishability. Such consid-
eration is accounted for in expression 3.9 by a sum over all possible permutations,
%, of a given configuration (see appendix A for further discussions).

By virtue of electrons indistinguishability, the co-motion functions also need to
possess the highly non-local property that

n; (r))df;(r) = n(r)dr (i=1,...,N) (3.11)

which ensures that the probability of finding one electron at position r in the
volume element dr be the same of finding electron i at position f;(r) in the volume
element df;(r).

There are (N—1) non trivial co-motion functions meaning that the N-th co-motion
function is just the identity and they also satisfy cyclic group properties>

f1(r) =1(r),
fo(n) =1(f(n),

fnvo1 (0 =f(f...f(n...), (3.12)
———
N-1 times

fnn =f(f...f(n..)) =
N times

3Although, in the literature, it is more frequent to enumerate the co-motion functions such that f,(r) = r
and such that the function whose N-th action generates all the other co-motion functions in the group
be fa(r) =£(r), throughout this work we prefer the other choice documented in ref [81].
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for a recent review on the mathematical properties of the co-motion functions see
reference [77]. The corresponding SCE functional of eq 3.6 can then be written
explicitly as [73, 82]

SCE
Ve “nl fn(r)z T fl(r)l dr, (3.13)

and it yields the strong-coupling (or low-density) asymptotic value of the exact
Hartree-exchange-correlation functional [74, 75].
Despite its extreme non-locality, its functional derivative

VSCE[n]
SC
Vit (r) = #m (3.14)
can be computed from the exact force equation [73, 83]
N=V o —f£(r)
vtk =-Y l (3.15)

Sir-fmP

According to eq 1.55, the one-body potential v>F(r) of eq 3.3 is exactly equal
to minus vHxE(r) in fact, the gradient of USCE(r) represents the net repulsion
felt by an electron in r due to the other N— 1 electrons at positions f;(r), while
USCE(r) exactly compensates this net force, in such a way that, we reiterate, the
classical potential energy operator ES&E is stationary (and minimum) on the man-
ifold parametrized by the co-motion functions.

Moreover, the SCE potential has a simple scaling following from eqs 3.7 and 3.14

VSCE[n](r) = 6VeSeCE n%] _ 6V‘*S‘?CE[”%] 6”%("/) 1
VHxe T on(r) B 6nl(r’) on(r)
r/
= /lfvfgf nl](r)/l 36(r—%)dr’

-2 SCE
A f Uch
-2 SCE
A f Uch

SCE
A Uch

m](r)(?( (Ar- r))dr'

n%] A3 (Ar ) dr’

%] (Ar) (3.16)

where we have used the property of Delta functions that d(ax) = |a|7"d(x) and
5(;2((:)) =138(r —yr') which is a result of the same property.*

HThis is actually a general result of the definition of scaled density (1.72): namely that if a scaling
relation holds for global quantities then the functional derivatives of these latters w.r.t. the density
keep the same scaling, as seen for many examples in sec 2.4.
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As a last remark, we note that eq 3.15 defines p>CE

Tree () up to a constant, which is
fixed by imposing that v>E(r) = —v25E(r) go to zero when [r| —co.

3.2. THE STRONG-INTERACTION LIMIT OF DFT IN THE CcON-
TEXT OF OPTIMAL TRANSPORT

The strong-interaction limit of DFT can be recast in the context of Optimal Trans-
port theory, as pointed out, independently, by Buttazzo et al. [84] and by Cotar et
al. [85]

Optimal Transport is a branch of mathematics founded by French mathematician
Gaspard Monge [86] which poses the problem of finding the optimal way of trans-
porting a given mass (e.g. of soil) having a certain distribution p into another
desired distribution v subject to a cost function, c¢(x,y) (e.g. the Euclidean dis-
tance). The distributions ¢ and v are called the marginals.

The Monge solution is an optimal map which assigns p(x) at every point x to a
unique final destination y = T(x) in the target distribution v(y).

A relaxed formulation of the Monge problem, introduced in 1942 by Soviet mathe-
matician and economist Leonid Kantorovich, brought major advances to the field [87].
In particular, the Kantorovich formulation allows for some mass piled on a point
x of the original distribution u(x) to be spread over different points in the target
distribution v with different probabilities. Therefore the Kantorovich solution is a
transport plan that gives rather the probability that, at optimality, a given p(x)
be transported to y in v. Thanks to this formulation, it has been possible to solve
many Monge problems that had remained open for a couple of centuries and in
the last twenty years optimal transport has developed into one of the most active
fields in mathematics [88].

In density functional theory both the starting and the target distributions are
represented by the electron density and the number of total distributions equals N,
where N is the number of electrons. Therefore, we are dealing with a multimarginal
problem with identical marginals.

For the N =2 case, the co-motion function, f(x) with x € RP, for any dimension
and any distribution, V{D, y}, turns out to be exactly the solution to the Monge
problem subject to the Coulomb repulsion cost [84, 85].

Another case in which the co-motion functions are proven to be exactly the optimal
maps is the 1D case for general N and p and convex cost function [89].

However, to prove the existence of a set of optimal maps in the multimarginal case
and for Coulomb cost, in any dimension other than 1D, is still an open issue [90].

A very convenient formulation of the Kantorovich problem is its dual formulation,
referred to as dual-(Monge-)Kantorovich problem, which in the case of Coulomb
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cost is usually written as

N N
Voo Elnol = sup (f no(u(r): Y ulr)< ) i (3.17)
u i=1 i,j>i Tij

and corresponds to a maximisation w.r.t. potential under linear constraints.

The optimal u is called the Kantorovich potential and has the same profile of the
SCE potential with opposite sign and shifted by a positive constant which fixes
the total energy to zero, i.e. u(r) = -5k 4 .

We shall see how eq 3.17 is analogous to expressing the asymptotic value of the
A-dependent Levy-Lieb functional, limy_. Ealnol \ia the Lieb variational princi-
ple [21]. We thus need to make a small digression to introduce this latter.

3.2.1. LIEB MAXIMISATION ALONG THE ADIABATIC CONNECTION

In eq 1.21 we have illustrated the Hohenberg-Kohn variational principle, introduced
in sec 1.1, in terms of the Levy-Lieb functional. Let us now simply extend it to the
A-dependent Levy-Lieb functional, Fy[n].”

From variational arguments we can write

(‘Pn|T+/1Vee|‘I’n)+fn(r)vo(r)dr > <WV0|T+AVee+VO|\PUOZ (3.18)

Epng 00
with the definitions
(Ul T+ AVee ¥y = glir}l<\y|f+aﬁee|w> (3.19)
(VT + AV, + VI¥,) = ngn(‘I’IT+/lVee+V|‘P) (3.20)

and Vp = Zﬁv vo(r;).

Eq 3.18 tells us that, since the sum of the Levy-Lieb functional evaluated on any
density, n, and the inner product between this density and a given potential, vy,
is always greater than or equal to the energy of the system whose ground state
density is precisely that associated to vy, in order to find such minimizing energy
and density we need to perform a minimisation over all N-representable densities,
Le.

Ep,ny (V0] =irr}f(F/1[n]+fn(r) Vo(r)dr) (3.21)

where the last equation is identical to eq 1.21 extended to any A-dependent system.

SIn rigourous terms, we should rather be working with the Lieb functional (eq 1.29), extended to A-
dependent Hamiltonians [91], as the Levy-Lieb functional is not convex.
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3. STRICTLY CORRELATED ELECTRONS

Switching the role of density and potential we can also write (with V= Zf.v v(r;)
as usual)

(V| T+ AV + VW) s<\Pno|T+Wee|\Pno>+fv(r)no(r)

(W T+ AVee + VI¥,) — f v(I)ng(r) < (¥ | T+ AVoe | W ) (3.22)

Fﬁ:lol

which tells us that, since the energy corresponding to any external potential, v,
minus the inner product between this potential and a given density, ng, is always
smaller than or equal to the Levy-Lieb functional evaluated on ng, we need to
perform a maximisation over all suitable potentials® in order to find the optimal
potential (i.e. the one associated to the given density) and calculate Fj[ng] from
the energy expression

Fylngl = sup (Eﬂ,n[v] —f v(r)no(r)dr) J (3.23)

To connect to sec 1.3 we can evaluate eq 3.23 for A=0

Fylnol sup (EO,nO [v] —f v(r)no(r)dr)
v

sup (rr\lén(‘I’IT+V|‘I’)—fy(r)no(r)dr)
v

= sup (n}gn{(‘PITI\I’)+fv(r)(n\y—n0) (r)dr})

sup ((‘I’le T1¥sp) +f v(r) (nye, — no) (r)dr) (3.25)
v

where, in the last line, we have used that the minimum kinetic energy of a non-
interacting quantum system is the one coming from a (normalised) Slater determi-
nant.8

6What are these suitable potentials is a very delicate subject as, even in a strictly convex treatment,
there is no explicit way to characterise the dual space of the N-representable density matrices.
Implicitly, if we call the latter .# we can then label the former as .#*.

7Slmilarlg to what we have seen in section 1.2

sup (E,Lnolv]—fv(r)no(r)dr) :E,L,,O[vol—fvo(r)no(r)dr (3.24)
v

with vy the maximizer. And we might be tempted to write Ej j,[vo] - [vo(r)ng(r)dr = Fp,v0[10].
However, by virtue of the Hohenberg Kohn theorem, F is not a functional of both the external potential
and the density contrary to the total energy, and the dependence on the maximizer cancels out, ie.
E} ng [V0] - [vo(r)ng(r)dr = Fy[ngl.

8This is a reasonable conjecture, however, in footnote 10 chapter 1, we have referenced some exceptions
concerning the case when the external potential is the exact KS one, i.e. the optimal one for eq 3.25.
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We thus see that the last expression in parenthesis, if we add the extra condi-
tion that the orbitals forming the Slater determinant are orthogonal to each other
(something which we require for sheer computational convenience), is precisely our
Lagrangian expression of eq 1.34.

3.2.2. DUAL-KANTOROVICH FORMULATION
We now define the strictly correlated electrons energy, Escg, as

E)
Escg = lim —~ 3.26
sce = lim — (3.26)
Combining egs 3.3, 3.23 and 3.26, we can obtain the strong-interaction limit of the
Levy-Lieb functional from

. Fylnel
lim ——

A—o00

=sup (igf(‘l’lf/ee +V,|¥) —f v(r) no(r)dr) . (3.27)
v

Just as in the former example of Ty, the equation above coincides with VCF of
eq 3.6 by construction, in fact it is analogous to writing a minimization over the
electron-electron interaction operator subject to a density constraint

Vo CF (0] = sup (igf{(\lweew) + f v(r) (ny — no)dr}). (3.28)
v

We have already discussed at length that, being left with only multiplicative op-
erators determining a potential energy surface, Veo(ri,-+-,7n) + Vy(ry,-++,7n) =
EpotV](ry,--+ 1N, the modulus squared of the optimal ¥ will — if the problem al-
lows for a Monge solution — look as a distribution of the likes of eq 3.9 although a
different one for each external potential, v. The expectation value of the potential
energy on its GS wavefunction will then coincide with the minimum value of the
potential energy surface, i.e.

igff Epot[01(r1, -+, PNy (%1, X3) Pdxy -+ dXy = Epot[V] |min (3.29)

thus we can discard |¥,|? to find the optimal classical positions for any external
potential v determining E,o and its minimum

VelEingl = sup (infprot[v](rl,---,rN)I‘P(x1,---,xN)Izdx1---de—fv(r)no(r)dr)

sup( pot[V min —fv(r)no(r)drzo)

sup( v(r)ng(r)dr : Epptlv] ‘min = 0)
sup( fv(r)no(r)dr Epot[v] >0) (3.30)
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where in the second line we use eq 3.29 and rewrite the constraint in an equivalent
form and in the third line we exploit the intrinsic symmetry of the Lagrangian
construction to exchange the role of the quantity to maximise and of its constraint.

Lastly, we use that, by definition, Eyot[v]| =~ =0= Epo(r,---,7N) =0 and calling
min
v=—u we get back precisely eq 3.17.

3.3. THE CO-MOTION FUNCTIONS

For the evaluation of eqs 3.13 and 3.15 the co-motion functions are needed.

To determine them, one needs to solve the intricate differential equation 3.11.

So far, it has been possible to (semianalytically) solve it only for 1D densities [72]
and for the spherically symmetric ones [73].

For the former case, as mentioned, the proposed solution was later proven to be
the optimal one (therefore the Kantorovich solution is of Monge-type) [89].

For the latter case, the proposed expression, also renowned as the SGS conjec-
tured solution to the Kantorovich problem, has later been shown to be the optimal
one, for N =2, in references [84, 85].

For N = 3, counterexamples have been put forward for which the optimal solution
is either a map with different structure or rather a plan [77, 92].

In reference [77], however, numerical findings illustrate that the value of the true
minimum is very close to the one obtained via eq 3.13. Moreover, the systems
studied seem to indicate that for a spherical density of interest in quantum chem-
istry, endowed with a typical shell structure, the SGS conjecture is the optimal
solution, while more exotic cases out of the realm of Coulomb systems might have
a non-Monge solution.

Most remarkably, it is further shown that, even when the SGS co-motion functions
are not the optimal transport plan, the functional derivative w.r.t. the density of the
interaction energy functional built from eq 3.13 still coincides with the potential
found via integration of eq 3.15, as conjectured.

The key quantity for the construction of the co-motion functions is a monotone
function denoted with N,, N, :RP — R,, which measures the amount of electron
density enclosed in a volume determined by the position vector. In particular, N,
asymptotically yields the number of electrons. For this reason, it is referred to as
the “cumulant function". The co-motion functions are given in terms of the cumulant
function and its inverse Ne_l(y), defined for y € (0, N).

One-dimensional systems Let us define the cumulant function for a 1D density

X
No(x) = f dy n(y). (3.31)

We also define the distances, a;, such that the cumulant evaluated in these points
gives an integer number of electron, N,(a;) =1i.
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By requiring that the co-motion functions fulfill (3.11) for a 1D density, one
finds [72, 89]

N, Y (Ne(x) +8) for x < a;
fit)=4 "4 . _ (3.32)
N;Y(Ne(x)+i—N) for x>a; ,
where @; = ay_; = N, 1 (N - ).
From this explicit form of the co-motion functions, it is clear that
fix)
f n(y)dy=i (333)
X

which means that the strictly correlated electron located at f;(x) is separated from
the reference electron located in x, for any x, by a chunk of density that always
integrates to an integer number equal to i. This picture even holds if one regards
the system to be periodic, so that particles disappearing at +oo reappear at —oo.
Put in different form

fir1(x)

f n(y)dy=1 (3.34)

fix)
which tells us that two adjacent strictly correlated electrons are always separated
by a chunk of density that integrates to one.

Spherically symmetric systems Since, in the spherically symmetric cases, the
external potential does not depend on the relative angles, it is possible to decouple
the anqular from the radial component of the co-motion functions.

Then, the radial component is built in analogy with the 1D case. In particular,
defining the following cumulant function

Ne(7) =f 47 x? n(x) dx, (3.35)
0

the radial co-motion functions f;(r) with i=1,---, N of ref [73] are given

N;'2k—=Ne(r)]  r<ay
fok1 () =4 %,
N [Ne(r) —2k] > asg
(3.36)
N;'[2k + Ne(r)] r<an-sk
br(m =17,
N; 2N =2k — N,(1r)] r>an—zk
where N is the number of electrons, the integer index k runs from 1 to % for
N odd and from 1 to g for N even and a; are the (radial) distances for which

— as in the 1D case — N(a;) = i, with i integer. The relative angles between
the electrons are found by minimizing the total repulsion energy between the N
electrons in the radial configuration dictated, for each given distance from the
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origin r of the reference electron, by the strictly correlated radial positions of the
other N—1 [73, 93]

Analogously to the 1D case, the co-motion functions satisfy the following important
and interesting property that

fi(n) ) d i
fr yn(y)dy = e
ffiu(r) ) d 1 337
n = —_— .
o y n(y)dy yP (3.37)

where we have taken into account the volume element 47y?.

3-4. APPLICABILITY OF THE SCE FORMALISM TO PHYSICAL

AND CHEMICAL PROBLEMS
Although being an exact limit of the density-fixed adiabatic connection framework
of DFT, the applicability of the SCE/SIL formalism encounters still two major kinds
of limitations.
The first one is that it appears often too remote from the regime of interest in most
physical and particularly chemical challenges.
The second one is that the computation of the strong interaction energy functional
and potential, VeseCE and USCE(r), for a general 3D density and general number of
electrons, is a very hard task for which several different algorithms are currently
appearing but are still far from routinary.
We can say that there are mainly three flavours of calculating the strong interaction
ingredients

e Construct the co-motion functions (sec 3.3) and apply egs 3.13 and 3.15.
Although subject to the limitations just discussed, this approach is the one
that allows to treat the largest number of electrons (see e.g. fig 7.2 of
reference [94] where N =100 for a relatively simple density profile) and is
the one pursued throughout this work.

e Use the dual-Kantorovich formulation which is a linear programming problem
scaling exponentially with N [95, 96].
Very recently, an approach based on novel theoretical results [97] to solve the
dual-Kantorovich problem within a relaxed but still well defined formulation
(providing upper and lower bounds to the exact solution) has appeared [98]
which seems rather promising in terms of numerical efficiency and theoretical
insight.

e Use an approach called the Entropic reqularization of Optimal Transport
[99, 100] and the Sinkhorn algorithm [101].
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This approach also scales exponentially with N. It extends the original
Kantorovich problem allowing for some reqularizing parameter 7 to introduce
an entropic energy term which competes with the interaction one in the
optimisation. When 7 — 0, you recover exactly the strong interaction limit of
DFT. This approach has many desirable mathematical properties and might
bring new theoretical insight.

3.4.1. THE KS-SCE METHOD
Equation 3.6 provides a well defined functional, in terms of which one can exactly
partition the total energy as

Eylnl = Tslnl + Telnl + Vo L8 (nl + Ve [l + Vinl (3.38)

where
V4[] = Veeln) - VoCE (] = 0. (3.39)

This idea of expressing the energy in terms of the two functionals Ty and V,,CF that
are located at the two extremes of the adiabatic connection of sec 1.4 is labeled
KS-SCE method, for obvious reasons.
As a zeroth-order approximation, one can neglect the two corrections T, and Vg,
and set Epy = VeseCE as originally proposed in reference [83].
Such simple approximation possesses the very neat property of being a rigourous
lower bound to the energy as it models the minimum of a sum into a sum of minima
min(¥|T + Ve ¥) = min(¥| T|¥) + min(¥|V,.|¥). (3.40)
Y—n Y—n Y—n
Consequently, such simple approximation turns out to be accurate in the two ex-
tremes of very low and very high densities [102]. In particular, it has proven capable
of capturing the strong-correlation physics, delivering rather accurate densities for
systems in which electrons are confined in quasi-1D and quasi-2D geometries
[79, 83, 93, 103]. The accurate description of strongly correlated systems is out of
reach for most (if not all) other density functional approximations (DFAs).
However, the accuracy of this method in the intermediate-correlation regime seems
limited. Its limitation needs to be extensively assessed by solving the KS equations
(eq 1.40) with vyye = VIS_ISE for different chemical and physical problems.

As briefly sketched in the beginning of this section, this is not an easy task since
the computation of the SCE functional can be obtained only for quite specific cases
and the assessment has been only carried over model or simple chemical systems
[95, 104-106]. Nonetheless in reference [105], allowing to explore the trend of the
resulting energy w.r.t. fractional number of electrons has provided a unique result
and an independent “numerical proof' that the exact spin-restricted KS formalism
should feature the discontinuity in the HOMO eigenvalue for open shell systems,
illustrating the incredible capabilities of the SCE structure to be immune to certain
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weaknesses almost ubiquitous in DFAs and to resolve long-standing DFT problems
without imposing any ad hoc condition on or giving extra flexibility to its functional
expression (like is done, e.g., in a spin-unrestricted treatment).

In the following we list some other exact and very desirable properties of the
SCE potential as a model for the Hartree-exchange-correlation potential

1. As said, the definite integral over the density between any two co-motion
functions must give exactly one (compare eq 3.37). Therefore, bringing the
reference electron to infinity implies that the distance among any of the
electrons in the bulk of the density and the reference electron needs to be
infinite

lr —f£;(r)| ~|r| |r| — oo, (3.41)
Combining it with eq 3.15 we get

N_
vty ~ - - lr| — o0, (3.42)

which, by integration, leads to

N-1
Ve ~ ——+c  Irl—oo (3.43)

showing that the SCE potential has the correct asymptotic behaviour.

2. From eq 3.15, it is also apparent that the associated effective charge is
correctly N —1 meaning that it is not affected by the self-interaction er-
ror. Equivalently, since the pair density P, sce(r,r') coming from the SCE
wavefunction (eq 3.9) via eq 6.12 is properly normalised, the following two
sum-rules [107]

fhxc(r,r’)dr =-1 (3.44)

fhxc(r, r'yn(r)dr = —n(r") (3.45)

are still satisfied if we substitute the exact XC hole h,.(r,r") with the one
Pysce(r,r')
n(r)

coming from the SCE description ( - n(r’)).
3. The corresponding interaction energy functional automatically satisfies the
Lieb-Oxford bound and actually is the one that challenges it the most, for a

given density profile [108], as sketched in sec 1.4.

To conclude, it seems reasonable to design DFAs which amend the extreme
correlation and the lack of the kinetic contribution of the SCE description but are
otherwise inspired to its mathematical structure [109-111].
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3-4.2. INTERACTION-STRENGTH INTERPOLATIONS ALONG THE ADIABATIC
CONNECTION

One of the most fruitful application of the information enclosed in the strong-
interaction limit of DFT is in the construction of DFAs as interpolations along the
adiabatic connection.

The idea of constructing models for the adiabatic connection integrand, W (eq 1.60)
to get an expression for the exchange-correlation energy via eq 1.59, was explored
relatively lately compared to the appearance in the literature of the adiabatic con-
nection formalism (see e.g. [27)).

One of the first uses was suggested by Becke in his “half-and-half" theory [112, 113]
with a simple linear interpolation in the range 0 <A <1 used as ansatz for Wj.

In reference [114], two models for approximating W), also in the range 0= <1,
are proposed, which are inspired to the theory of Padé approximants [115] and
satisfy certain constraints on atomization energies. In particular the [2]2]-Padé
ansatz introduces the idea of constraining the approximate function to recover the
weak-interaction expansion linear coefficient (see eq 1.67).

Since 1999, Seidl et al pioneered the route of constructing interpolations in the
more balanced range 0 <1 < oo [71, 116, 117] and other interpolation formulas, in
the same spirit, have been developed since [34, 118]. The underlying idea is that
by using a function of A able to link the result from perturbation theory with the
A — oo expansion of W) [n], an approximate resummation of the perturbative series
is obtained [117].

Recently, this approach has gained renovated interest and studies aiming at a
more extended assessment and implementation of such density functional approxi-
mations are emerging, concerning both their global [7, 119, 120] and their different
local forms [6, 121, 122].

Recalling eq 1.70 and, combining eqs 1.60 and 3.13, we can now obtain the
explicit form of the constant term W,

1
Wooln] = fn(r) Z AT dr - Uln)]. (3.46)

Combining eqs 1.66 and 3.1, we understand also the role of the W, as an exact
lower bound for the adiabatic connection integrand, and, consequently, as the value
that, for a given density profile, challenges the LO bound the most (eq 1.71).
Picturing the electrons as performing zero point (harmonic) oscillations about
their A — oo positions’, at finite but large A, allows to write the following formula

9See reference [72] for an extended introduction to the problem and the special case of spherical two
electron densities and reference [34] for a much more detailed treatment and the general result.
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for the next coefficient in the expansion 1.70, WZ [n]

3N
IZ ”(r) w,[n)(s) (3.47)
y =4

where the w, are the eigenvalues of the Hessian matrix My, (s) which measures
the (multivariable) curvature of the potential energy surface EE(&E on the manifold

parametrized by the co-motion functions (thus s is typically a vector in R? in a
curvilinear coordinate system).

Since it hinges upon the computation of the co-motion functions, the explicit com-
putation of W, via eq 3.46, is as much limited as that of the co-motion functions
itself, see sec 3.3. That of W/, (eq 3.47) is even more limited due to the presence
of the Hessian matrix eigenvalues.

For this reason, these two terms are mostly approximated using a semi-local model
labeled “Point-charge-plus-Continuum" (PC) [117].

Without going into any of the details of the model, we list the corresponding gra-
dient expansion formulas, Le.

2
WEC = f (An4/3 +B l:zg )(r) dr, (3.48)
\v4 2
W PC f (Cnsxz +D |nZ|6 )(r) dr (3.49)

where A=-9(4r/3)!3/10, B =3(3/(4m)]'/3/350, C = V37/2, D = —0.028957.

Note that the above value of the D coefficient was established by requiring that, for
the He atom case, the PC model match the exact SCE functional, while the original
value of this parameter, D = 0.02558, was fixed, before the exact SCE value was
available, by the condition that it match the MGGA functional of reference [123].
Other choices are also possible (e.g. the use of the Hydrogen atom as a reference).
Regardless of the choice made for the D parameter, the accuracy of the PC model
as an approximation for the zero-point oscillations term, Wéopc ~ W/, has proven
to be much more system dependent than that of the functional for the lower bound,
WEC =~ W, as shown in reference [34].

Combining such ingredients from the strong-interaction expansion with the ones
from the weak-interaction counterpart (eq 1.67), a series of XC functionals can be
derived depending on the chosen interpolating function and on whether the 1 — oo
expansion includes or not the order 1/v/.

Interaction Strength Interpolation (ISI) formula [116, 117, 124]

X
wS W+ —— 350
A VIFAY +Z (30
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with
2 2.2 2
_ Xy _Xy _ Xy )
X—?,Y—7,Z—?—1, (351)
x==2W5, y=W.,z2=Wy— Wy . (3.52)

Via eq 1.59, the corresponding XC energy functional reads

E}CSCI=W00+z VTV -1-zin| VY2 (3.53)
Y 1+Z2
Revised ISI (revISl) formula [34]
b(2+c/1+2d\/1+cﬂl)
WSt = W, + 5 (3.54)
2\/1+c/1(d+ \/1+c/1)
where
AWSWL)?E AWWL)?
T T W Wel? T Wo- Weo'
AW (W! 2
d = -1- L‘”)s . (3.55)
(WO - Woo)
P AL (3.56)
e ® Vi+c+d
Seidl-Perdew-Levy (SPL) formula [71]
Wy — W,
WSPL = w4 — 2 3.57
A V1+2y (357)
where
= "o 3.58
=W, (3.58)
V1+2y-1-
ESPL = (W — Wao) [—i X ] +Wp . (3.59)
Liu-Burke (LB) formula [118]
WP =We+ By+yh , (3.60)
where W
1 Wy —Weo 4w,
_ = Ly = . 3.61
VT 2 T W W) 2ol
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E&?:Zﬁ[%(\/1+7f—l+w2)—l + Wo. (3.62)

1+y

As a last remark, we note that ISI and revISI use all four known ingredients in
the expansions 1.67 and 1.70, while SPL and LB formulas do not use W_/..

These functionals, which are all based on an adiabatic connection integrand
interpolation (ACIl), will be generally referred to as ACII functionals. They are
non-empirical in the sense that they are approximate perturbation-theory resum-
mations, include full exact exchange, and describe correctly correlation in the weak-
interaction limit. Therefore, they are well-suited to try to overcome the limitations
of semilocal and hybrid DFT approaches. Their most severe problem could be
the lack of size consistency'® for species made of different atoms, an error that is
absent in the case of homogeneous clusters. However, it has been recently shown
that size consistency in the ACIl functionals can be restored in a very simple way
at no extra computational cost [127].

10Note that the size consistency issue is actually quite subtle [125, 126].
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ASSESSMENT OF
INTERACTION-STRENGTH
INTERPOLATION FORMULAS FOR
GOLD AND SILVER CLUSTERS

The performance of functionals based on the idea of interpolating between the
weak and the strong-interaction limits the global adiabatic-connection integrand
is carefully studied for the challenging case of noble-metal clusters. Different
interpolation formulas are considered and various features of this approach are
analyzed. It is found that these functionals, when used as a correlation correc-
tion to Hartree-Fock, are quite robust for the description of atomization energies,
while performing less well for ionization potentials. Future directions that can
be envisaged from this study and a previous one on main group chemistry are
discussed.

4.1. INTRODUCTION AND FRAMEWORK

Noble metal clusters, in particular those made of silver and gold, are of high interest
for different areas of materials science and chemistry as well as for technological
applications [128-148]. Noble metals clusters display, in fact, peculiar properties
that differ from those of the bulk materials, due to the higher reactivity of the
surface atoms. Moreover, these properties can be often tuned by varying the
size and shape of the clusters [129, 136, 139, 141, 149-154]. For these reasons,
the study of the electronic properties of metal clusters is currently a very active
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research field [155-165], with many available experimental techniques [166-173].
Nonetheless, in most cases information from theoretical calculations is fundamental
to provide a better understanding of the results and to aid the correct interpretation
of the experimental data [155, 156, 165, 174-178].

Computational studies of noble metal clusters are, however, not straightforward
[179] because of the small single-particle energy gap, implying a possible multi-
reference character of the electronic states, and due to the complex correlation
effects characterizing such systems. For these reasons, in principle an accurate
description of the electronic structure can only be achieved by high-level corre-
lated multi-reference approaches [180, 181]. However, these methods are hardly
applicable for the study of clusters, due to the very high computational cost.

On the other hand, “conventional” single-reference wave-function methods (e.qg.
Maller-Plesset perturbation theory [182, 183], configuration interaction [184, 185],
or coupled cluster [186, 187]) often display important basis set and/or truncation
errors, even for relatively small cluster sizes, which prevent the achievement of
accurate, reliable, results. Thus, one of the most used computational tools to study
noble metal clusters is Kohn-Sham density-functional theory (DFT) [188-190].

DFT calculations on noble metal clusters are often performed using a semilocal
approximation for the exchange-correlation (XC) functional, e.g. the generalized
gradient approximation (GGA) [191] or the meta-GGA's [192] . This is an efficient
approach [151, 152, 159, 161, 163, 164, 174, 175, 193-195], but in various cases it
has also shown limited accuracy, especially in the not so rare case when it is nec-
essary to discriminate between isomers with rather similar energies (for example
in the prediction of the two- to three-dimensional crossover in gold and silver clus-
ters [164, 176]). However, unlike in the case of main group molecular calculations,
the use of hybrid functionals, which include a fraction of exact exchange, is not
able to provide a systematic improvement. Instead, it often leads to a worsening
of the results [164, 195]. The origin of this problem possibly traces back on the
too simplistic idea of mixing a fixed fraction of exact exchange with a semilocal
approximation.

In the hybrid wavefunction-DFT formalism a certain fraction a of the electron-
electron interaction is treated within a wave function method, while the remaining
energy is captured with a semilocal functional. In a compact notation [1] this can
be written as

Eo= min {(W|T +aVee + VIW) + EL . [ny]}, (4.1)

wesh
where the complementary Hartree-exchange-correlation functional Eﬁxc depends
on ¥ only through its density ny. When the minimization over ¥ in eq 4.1 is re-
stricted to single Slater determinants Wsp, we obtain the usual hybrid functional
approximation, which mixes a fraction a of Hartree-Fock exchange with a semilocal
functional, while using second-order perturbation theory to improve the wavefunc-
tion W leads to single-parameter double-hybrid functionals [1]. The XC part Ex[n]
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of Eﬁxc that needs to be approximated in the standard hybrid functionals formalism
is usually modeled starting from the adiabatic connection formula [114, 196-198],
eq 1.59. Most hybrid functionals then employ a simple ansatz for the density-fixed
linear adiabatic connection integrand, for example [197, 198]

Walnl = WP n) + (Ex - EPPA) a - P, (4.2)

where DFA denotes a density functional approximation (i.e. a semilocal functional),
E, denotes the Hartree-Fock exchange functional (eq 1.68), and p is a parameter.
Substituting eq 4.2 into eq 1.59, yields the usual linear mixing between the exact
exchange and the density functional approximation with a=1/p. However, eq 4.2
is a quite arbitrary expression for W). It only satisfies the constraint that Wy = Ex
but for A # 0 it incorporates no exact information and it is not even recovering
the correct weak-interaction limit behavior. Thus, most of the accuracy of hybrids
relies on the empiricism included into the parameter p and the DFA. This seems
to work well for main-group molecular systems but not for other systems such
as metal clusters considered here. The ACII functionals have been rarely tested
on systems of interest for practical applications, with the exception of a recent
assessment of the ISI functional for main-group chemistry [199]. This investigation
has revealed interesting features of this functional and suggested possibilities for
future applications.

In this work we move away from main group chemistry to assess different ACII
functionals for the description of the electronic properties of noble metal clusters,
made up of gold and silver. As we have mentioned above, these are very important
systems for materials science and chemical applications but their proper computa-
tional description is still a challenge. Thus, the testing of high-level DFT methods
for this class of systems has a great practical interest. Moreover, the application of
non-empirical XC functionals, constructed on a well defined theoretical framework,
to the challenging problem of the simulation of electronic properties of noble metal
clusters can help to highlight new properties and limitations of such approaches.

4.2. COMPUTATIONAL DETAILS

In this work we have tested four ACIl XC functionals, which are based on an in-
terpolation of the density-fixed linear adiabatic connection integrand, namely ISI
[116, 117, 124, 199], revISI [34], SPL [71], and LB [118] (see sec 3.4.2 for details).
Additionally, for comparison, we have included results from the Perdew-Burke-
Ernzerhof (PBE) [200] and the PBEO [197, 201] functionals, which are among
the most used semilocal and hybrid functionals, respectively, as well as from the
B2PLYP double hybrid functional [202], which also includes a fraction of second-
order Mgller-Plesset correlation energy (MP2). We have also considered a com-

parison with the second- third- and fourth-order Mgller-Plesset perturbation the-
ory (MP2, MP3, MP4) [182] results. This is because, as explained in sec 3.4.2, the
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ACII functionals can be seen as an approximate resummation of perturbation theory,
so that it is interesting to compare them with the first few lower orders. The refer-
ence results used in the assessment are specified below for each test set considered:

Small gold clusters. This set consists of the
Auz, Auy, Aus, Au;r, Aug, and Auy clusters. For
all these systems we have calculated the atomiza-
tion energies; for the anions as well as for Aus we
have computed the ionization potential (IP) ener-
gies. The geometries of all clusters have been taken
from ref [159]; they are shown in fig 4.1. Reference
energies have been calculated at the CCSD(T) level
of theory [203-206)].

Small silver clusters. This set includes Agpy,
Ags, Agy, Ags, Agy, Agz, Ags. As for the small
gold clusters case, we have computed the atomiza-
tion energies of all the silver clusters and the IP
of the anions as well as of Agz. The geometries of
all systems have been taken from Ref. [164]; they
are shown in fig 4.1. Reference values for the ener-
gies have been obtained from CCSD(T) [203-206]
calculations.

Binary gold-silver clusters. This set consid-
ers the AuAg, AuAg~, AuxAg, AuxAg~, AuAg,
and AuAg, clusters. Atomization energies have
been calculated for all system, while IPs have
been computed for the anions. Note that for
the anions we considered as atomization en-
ergy the average with respect to the two pos-
sible dissociation channels, that is AuAg~ —
Au+Ag~ and AuAgT — Au +Ag; AuAgT —
Auz+ Ag™ and AuxAg” — Au,+ Ag; AuAg, —
Au + Ag, and AuAg, — Au” + Agz. The
geometries of the binary clusters have been
obtained considering the structures reported in
ref [195] (see fig 4.1) and optimizing them at
the revIPPS/def2-QZVP level of theory [207,
208]. Reference energies have been calcu-
lated at the CCSD(T) level of theory [203-
206].
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FIGURE 4.1: Structures of the small
gold, silver and binary gold-silver
clusters.
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Ags -1I

FIGURE 4.2: Structures of the gold and silver
clusters considered for the 2D-3D dimensional
crossover problem.

Gold 2D-3D crossover. This set in-
cludes the Aujj, Aup,, and Auj; clusters,
that are involved in the two- to three-
dimensional crossover of gold clusters. The
geometries of all systems have been taken
from ref [176] and are shown in fig 4.2.

Silver 2D-3D crossover. This set con-
sists of the AgZ, Agg, and Agy clusters,
which are relevant to study the two- to
three-dimensional crossover of silver clus-
ters. Geometries have been obtained op-
timizing at the revIPPS/def2-QZVP level
of theory [207, 208], the lowest lying struc-
tures reported in ref [164]. The structures
are reported in fig 4.2.

All the required calculations have been
performed with the TURBOMOLE pro-
gram package [209, 210], employing, unless
otherwise stated, the aug-cc-pwCVQZ-PP
basis set [211] and a Stuttgart-Koeln
MCDHF 60-electron effective core poten-
tial [212]. The calculations concerning the
ISI, revlSI, SPL, and LB functionals have
been performed in a post-self-consistent-
field (post-SCF) fashion, using Hartree-
Fock orbitals. This choice is consistent
with the results of ref [199], where it has
been found that the ISI functional yields

much better results when used as a correlation correction for the HF energy. The
PBE and PBEO calculations have been performed using a full SCF procedure;
B2PLYP calculations have been carried out as described in ref [202], considering
a SCF treatment of the exchange and semilocal correlation part and adding the
second-order MP2 correlation fraction as a post-SCF correction.

4.3. REsuLTS

In this section we analyze the performance of the ACIlI XC functionals for the
description of the electronic properties of gold, silver and mixed Au/Ag clusters. The
results are compared to those obtained from other approaches, such as semilocal
and hybrid DFT as well as wave-function perturbation theory.
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4.3.1. ToTAL ENERGIES

To start our investigation we consider, in table 4.1, the errors on total energies
computed with different methods with respect to the CCSD(T) reference values.
Although this quantity is usually not of much interest in practical applications
(where energy differences are usually considered), the analysis of the errors on total
energies will be useful to understand the performances of the different functionals
for more practical properties such as atomization or ionization energies.

Inspection of the data shows that the ACII functionals do not perform very well
for the total energy. In fact, they yield the highest mean absolute errors (MAEs),
being even slightly worse than the semilocal PBE approach and giving definitely
larger errors with respect to perturbation theory (MP2, MP3, and MP4) and to
the double hybrid B2PLYP functional. Among the ACII functionals, the SPL and
especially the LB approach perform systematically better than ISI and revISI. Thus
LB yields errors which are often 30% smaller than IS, even though they are still
usually larger than those of the other non-ACIl methods. On the other hand,
considering the standard deviation of the errors (last line of table 4.1) we note that
the ACII results display a quite small dispersion around the average (with LB and
SPL again slightly better than ISI and revISI). This is related to the fact that the
ACII functionals all give a quite systematic underestimation (in magnitude) of the
energy of all systems. In contrast, PBE, PBEO, and partly B2PLYP give larger
values of the standard deviation. This depends on the fact that these methods
describe quite accurately some systems (e.g. Ag clusters), which are the ones that
effectively contribute to produce a quite low MAE, but they give significantly larger
errors for other systems. This behavior is a signature of the too simplistic nature
of these functionals, which cannot capture equally well the physics of all systems.

The observed standard deviations suggest that, when energy differences are
considered, the ACII functionals can benefit from a cancellation of the systematic
error, such that rather accurate energy differences can be obtained. We must
remark also that the standard deviation values reported in table 4.1 allow only a
partial understanding of the problem because they are obtained from all the data
but, depending on the property of interest, some energy differences may be more
relevant than others, e.g. for atomization energies the difference between a cluster
energy and the energy of the composing atoms is the most relevant. Thus, for
example MP methods all yield quite low standard deviations, but a closer look at
the results shows that the errors for atoms are quite different than those for the
clusters (much more different than for ACIl methods); hence, we can expect that,
despite a quite good MAE and a small standard deviation, MP2, MP3, and MP4
atomization energies can display a limited accuracy. A more detailed analysis of
the relationship between the data reported in table 4.1 and some relevant energy
difference properties will be given in section 4.4.
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TABLE 4.1: Errors on total energies (eV/atom) of small gold, silver, and binary clusters. For
each set of clusters the mean absolute error (MAE) is reported. In the bottom part of the
table we report also the statistics for the overall set (mean error (ME), MAE, and standard
deviation).

PBE PBEO B2PLYP ISl reviSI  SPL LB MP2 MP3 MP4

Au -4.93 -3.75 -1.73 284 293 265 197 -033 098 -0.27
Au+ -4.58 -3.73 -1.64 263 270 250 189 -0.10 068 -0.15
Au- -4.94 -3.47 -1.65 3.26 338 302 225 -035 144 041
Au2 -4.96 -3.66 -1.69 289 299 267 194 -053 122 -043
Au2- -4.97 -3.58 -1.66 3.06 317 283 208 -0.46 140 -0.44
Au3 -4.97 -3.65 -1.67 289 3.00 267 194 -054 129 -0.48
Au3+ -4.90 -3.68 -1.66 280 290 259 188 -0.50 115  -0.43
Au3- -4.94 -3.54 -1.66 298 310 273 196 -0.65 140 -0.55
Au4 -4.96 -3.62 -1.67 286 297 263 187 -066 133 -054
ME -4.91 -3.63 -1.67 291 301 270 197 -0.46 121 -0.41
MAE 4.91 3.63 1.67 2091 301 270 1097 0.46 1.21 0.41
Ag -0.89 -0.36 021 324 339 291 218 -0.26 1.04 -0.27
Ag+ -0.44 -0.25 038 299 313 271 204 -0.19 076 -0.20
Ag- -0.99 -0.21 024 3.68 385 331 253 -0.08 139 -032
Ag2 -0.96 -0.30 022 332 349 297 219 -037 118 -0.38
Ag2+ -0.79 -0.34 028 314 328 282 211 -0.26 095 -027
Ag2- -1.00 -0.27 024 350 367 314 237 -022 134 -033
Ag3 -0.95 -0.30 025 332 349 296 219 -0.39 123  -0.40
Ag3+ -0.85 -0.30 027 321 337 286 211 -041 110 -0.38
Ag3- -0.97 -0.23 025 345 363 307 227 -038 132 -0.43
Ag4 -0.95 -0.27 024 329 347 291 212 -051 124 -045
ME -0.88 -0.28 026 331 348 297 221 -031 115 -0.34
MAE 0.88 0.28 026 331 348 297 221 0.31 1.15 0.34
AuAg -2.93 -1.95 -0.72 310 324 281 206 -047 120 -0.41
AuAg- -2.97 -1.91 -0.70 327 341 297 220 -037 136 -0.39
AuAgAu -3.58 -2.49 -1.00 3.03 316 276 201 -051 128 -0.46
AuAgAu-  -3.57 -2.40 -1.00 3.14 328 284 206 -057 136 -0.50
AgAuAg -2.26 -1.38 -0.37 318 333 286 210 -0.46 126 -0.43
AgAuAg-  -2.32 -1.34 -0.40 330 346 296 218 -0.46 136 -0.47
ME -2.94 -1.91 -0.70 317 331 287 210 -047 130 -0.44
MAE 2.94 1.91 070 317 331 287 210 0.47 1.30 0.44
Overall statistics
ME -2.82 -1.88 -0.66 313 327 285 210 -0.40 121 -0.39
MAE 2.82 1.88 087 313 327 285 210 0.40 1.21 0.39
Std.Dev. 1.81 1.51 0.87 0.24 027 018 016 0.15 0.20 0.10
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4.3.2. ATOMIZATION AND |ONIZATION ENERGIES

A first example of an important energy difference is the atomization energy. The
atomization energy values calculated for the sets of gold, silver, and binary clusters
with all the methods are reported in table 4.2. Observing the data it appears that,
as anticipated, for atomization energies the ACII functionals work fairly well. In
particular, SPL and LB, yield mean absolute relative errors (MAREs) of about 2-3%
for all kinds of clusters, being competitive with the B2PLYP functional. The ISI and
revlSl functionals perform slightly worse, displaying a systematic underbinding and
giving overall MAREs of 4% and 6%, respectively. Moreover, unlike for SPL and
LB, non-negligible differences exist in the description of the different materials
with gold clusters described better than silver ones. Overall the ISI and revlSl
functionals show a comparable performance as PBE and better than PBEO. Finally,
the MP results show a quite poor performance, exhibiting MAREs ranging form
10% to 20%. In addition, we can note that MP2 results are closer to MP4 results
than MP3 ones not only from a quantitative point of view but also qualitatively
(MP2 and MP4 always overbind while MP3 always consistently underbinds). This
is a clear indication of the difficult convergence of the perturbative series for the
metal clusters electronic properties.

In table 4.3, we report the computed ionization potential energies, which are
other important energy differences to consider for metal clusters. In this case the
ACII functionals perform rather poorly, being the worst methods, if we exclude
MP3. As in the case of atomization energies, SPL and LB (especially the latter)
show a slightly better performance than ISI and revISI. Nevertheless, the results
are definitely worst than for B2PLYP, PBE and even PBEO. A rationalization of
this failure will be given in section 4.4.

4.3.3. 2D-3D crossover
To conclude this section, we consider the problem of the two- to three-dimensional
(2D-3D) crossover of anionic gold clusters and cationic silver clusters.

Different studies have indicated that for anionic gold clusters the dimensional
crossover occurs between Aup; (2D) and Aup, (3D), with the 2D and 3D Aup,
structures being almost isoenergetic[175, 176] On the other hand, for cationic silver
clusters it has been suggested that the dimensional transition occurs already for
AgZ, which has a 2D structure with a slightly lower energy than the 3D one,
while Ag{ and Agy display lowest energy 3D structures.[165, 213] Anyway, this
is a quite difficult problem because experimentally it is not trivial to distinguish
clusters of the same size but different dimensionality. A computational support
is thus required [165, 174-176, 213, 214]. However, to describe correctly the
energy ordering of several noble metal clusters with very similar energies is a
hard task for any computational method [159, 176, 215, 216]. For this reason,
this is a very interesting problem from the computational point of view and a hard
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TABLE 4.2: Atomization energies (eV) of small gold, silver, and binary clusters. Note that
for anionic binary clusters the average between the two possible dissociation paths has
been considered (see section 4.2). For each set of clusters the mean error (ME), the mean
absolute error (MAE), the mean absolute relative error (MARE), and the standard deviation
are reported. In the bottom part of the table we report also the statistics for the overall set.

PBE PBEO B2PLYP ISI reviSI SPL LB MP2 MP3 MP4 CCSD(T)
Auy 233 2.08 220 217 214 224 233 267 179 260 227
Auy 1.97 1.83 183 1.86 184 190 195 214 151 209 1.89
Ausg 3.57 3.14 326 3.28 323 339 354 408 251 407 3.45
Auef 6.06 5.60 567 571 566 582 597 654 498 6.38 5.79
Aug 4.90 452 473 487 481 500 517 580 405 557 4.87
Auy 6.18 5.51 581 5.95 585 614 640 737 460 7.10 6.03
ME 012 -0.27 -0.14 -008 -013 003 018 0.71 -081 058
MAE 0.12 0.27 0.14 0.08 013 006 018 071 0.81 058
MARE 3% 7% 3% 2% 4% 1% 4%  17% 21% 14%
Std.Dev. 0.08 0.16 0.06 0.06 007 0.08 013 039 037 030
Agz 1.82 1.59 169 153 150 159 166 193 141 191 1.70
Aggr 1.85 1.69 164 158 157 159 161 170 151 167 1.62
Ag, 1.53 1.39 137 132 131 135 138 151 115 148 1.41
Ags 273 237 245 231 227 241 252 294 200 294 2.56
Agér 4.84 4.45 450 436 432 447 459 503 405 490 452
Agy 3.70 332 349 338 332 350 363 412 3.06 4.01 3.57
Agq 4.80 4.24 447 439 430 458 480 559 378 528 4.59
ME 019 -013 -0.05 -016 -0.20 -0.07 0.03 041 -043 032
MAE 0.19 0.15 006 0.16 020 0.07 006 041 043 032
MARE 7% 5% 2% 6% 7% 3% 2% 13% 15% 10%
Std.Dev. 0.07 0.14 0.06 0.07 009 005 009 032 023 022
AuAg 2.22 1.97 211 205 202 213 221 253 180 246 218
AuAg~ 1.83 1.69 1.71 174 172 178 183 200 147 192 1.77
AuzAg 3.65 3.26 342 347 341 359 373 428 280 422 3.65
AuAg™ 496 458 484 497 491 512 528 590 436 563 5.04
AuAga 333 2.94 3.08 3.06 300 317 330 380 256 375 3.28
AuAgy 3.83 3.40 358 3.48 342 360 374 425 3.00 414 3.63
ME 0.04 -0.29 -0.14 -013 -018 -0.03 0.09 053 -060 043
MAE 0.07 0.29 014 013 018 0.06 009 053 060 043
MARE 2% 9% 4% 4% 6% 2% 3%  16%  19% 13%
Std.Dev.  0.09 0.14 0.08 0.07 008 006 008 023 021 018
Overall statistics
ME 012 -0.22 -011 -012 -017 -0.02 010 054 -060 0.44
MAE 0.13 0.23 011 012 017 0.06 011 054 0.60 0.44
MARE 4% 7% 3% 4% 6% 2% 3% 15% 18% 12%
Std.Dev. 0.10 0.16 0.08 0.07 008 0.07 011 033 031 025
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TABLE 4.3: lonization potentials (eV) of small gold, silver, and binary clusters. For each set
of clusters the mean error (ME), the mean absolute error (MAE), the mean absolute relative
error (MARE), and the standard deviation are reported. In the bottom part of the table we
report also the statistics for the overall set.

PBE PBEO B2PLYP ISI revIiSI  SPL LB MP2 MP3 MP4 CCSD(T)
Au 9.54 9.22 929 900 897 905 913 942 891 0932 9.20
Au~ 2.30 2.00 221 186 184 192 201 231 182 242 2.29
Auy 1.94 1.75 1.84 156 155 158 162 178 153 191 1.91
Aug 7.05 6.76 6.89 6.57 655 6.62 6.69 697 644 7.01 6.86
Aug 3.63 3.38 367 345 341 353 363 403 336 392 3.70
ME 010 -0.17 -0.01 -030 -033 -025 -017 011 -038 0.12
MAE 0.13 0.18 006 030 033 025 017 016 038 012
MARE 2% 6% 2% 10% 11% 9% 6% 4%  12% 3%
Std.Dev. 0.17 0.14 0.07 0.08 008 009 011 018 0.07 0.08
Ag 8.04 7.70 776 735 733 740 745 767 731 766 7.59
Ag~ 1.40 1.15 1.28 0.86 085 090 095 113 095 135 1.31
Agz 8.02 7.60 780 730 726 740 750 790 721 7.90 7.68
Agy 1.1 0.96 097 0.66 065 066 067 072 069 092 1.01
Ags 5.93 5.63 571 530 528 534 539 558 526 570 5.64
Agy 2.38 210 232 193 190 199 206 231 202 242 231
ME 022 -0.06 005 -036 -038 -031 -025 -0.04 -035 0.07
MAE 0.22 0.10 0.07 036 038 031 025 014 035 0.10
MARE 6% 5% 2% 17% 17% 15%  13% 8% 15% 4%
Std.Dev. 0.16 0.1 0.08 0.07 0.07 007 0.09 018 007 0.10
AuAg~ 1.46 1.30 135 1.05 1.04 107 109 119 1.07 134 1.39
AupAg~ 316 2.90 317 287 284 294 3.03 334 295 330 3.18
AuAgy 2.35 2.04 224 179 176 184 191 217 183 228 215
ME 0.09 -0.16 0.01 -034 -036 -029 -023 -0.01 -029 0.07
MAE 0.10 0.16 0.05 034 036 029 023 013 029 0.10
MARE 5% 7% 3%  17% 18% 15% 12% 7% 15% 4%
Std.Dev. 0.1 0.11 0.07 0.03 003 004 0.07 018 005 0.10
Overall statistics
ME 015 -0.12 0.02 -033 -036 -028 -022 0.02 -035 0.09
MAE 0.16 0.14 0.06 033 036 028 022 015 035 0.11
MARE 4% 6% 2% 14% 15% 13% 1% 6%  14% 4%
Std.Dev. 0.16 0.12 0.08 0.07 007 007 0.09 018 0.07 0.09
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4.3. ResuLts

TABLE 4.4: Relative energies (eV) with respect to conformer | (see Computational details) of
2D and 3D anionic gold clusters and cationic silver clusters. For the gold clusters the data
include the correction terms reported in table IV of Ref. [176].

PBE PBEO BLOC B2PLYP ISI reviSI  SPL LB MP2

Aup-l 2D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Aup-Il 3D 0217 0224 0.206 0.147 0.083 0.090 0.070 0.054 -0.006
Aup-lll 3D 0270 0179 0.354 0254 0265 0.251 0302 0344 0499
Aup,-l 3D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Aup,-Il 2D -0.450 -0.340 0.008 -0.144 0710 0.669 0.789 0.882 1.228
Aupz-l 3D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Aupz-Il 3D -0.027 -0.032 0.037 -0.024 0497 0495 0499 0527 0.618
Aupz-lil 2D -0.111 0.056 0.386 0.248 0.802 0.894 0917 0.824 1.069

Ag;—l 3D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Agz-Il 2D 0021 0025 0024 0.020 0.021 0.020 0.018 0.017 0.013
Agg—l 3D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Agg-Il 2D -0.005 0.055 0.280 0.007 0.220 0.211 0.241 0.265 0.348
Ags - 3D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ag;r—ll 2D -0.099 0.000 0.303 -0.059 0286 0270 0318 0.352 0.474

test for any electronic structure approach. In table 4.4, we report the energies
calculated for the anionic gold clusters and cationic silver clusters relevant for
the 2D-3D transition. The table shows, for comparison, also the results obtained
with the BLOC meta-GGA functional [216-218], which is expected to be one of
the most accurate approaches for this kind of problems. Observing the data, one
can immediately note that the PBE, PBEO and even B2PLYP methods are not
reliable for the dimensional crossover of noble metal clusters. In fact, PBE always
favors 2D structures, whereas PBEO predicts the 2D-3D transition at a too large
cluster dimension for gold, Auy; (although the 3D geometry with lowest energy
is not the same as the one we find with BLOC and all ACII functionals), and for
silver the energies of the 2D and 3D clusters differ slightly for both n =6 and
n =7, not evidencing a clear transition at the expected cluster size. A similar
behaviour is found for the B2ZPLYP functional, which was instead one of the best
for the atomization energies and IPs of small clusters. The ACII functionals overall
perform all quite similarly, predicting for all clusters the expected ordering and
agreeing well with BLOC results for the cationic Ag clusters but tending to favor
3D structures in the anionic Au clusters. We note that this behavior is somehow
inherited from the MP2 method, which however performs much worse than any of
the ACII functionals considered here.
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FiGuRre 4.3: Difference in the total energy error between a cluster and its constituent atoms
(see eq 4.3).

4.4. DiscussioN AND ANALYSIS OF THE RESULTS

In the previous section we saw that the ACII functionals perform rather well for the
calculation of atomization energies of noble metal clusters. As mentioned above, a
good rationalization of the observed results can be obtained in terms of the energy
errors that the different methods display for the total energies of atoms and of the
clusters. These have been reported in table 4.1.

4.4.1. ENERGY DIFFERENCES
For a better visualization here we additionally plot, in fig 4.3, the quantity

SAE = AEM,M,M])- (4.3)
- Y AE(My)-)Y AE(M;)-) AEM;),
n m !

where AE are the total energy errors (the AE per atom are reported in table 4.1),
M=Au or Ag, and n,m, 1 are integers such that M, M, M, corresponds to a given
cluster (e.g. for Auy we have M=Au, n=2, m=0, and [ = 1). This quantity provides
a measure of how different the energy error is for a given cluster compared to that
of its constituent atoms. Inspection of the plots shows that the smaller §AE values
are yielded by the ISl and SPL (revISI and LB, not reported, give similar results).
These functionals are also among the best performers for the atomization energies.
On the other hand, for PBE we observe that the §AE is small for gold clusters, with
the exception of Auj, while for silver clusters is larger. Indeed, looking to table 4.2
we can find that PBE performs well for gold clusters, with the exception of Auj that
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FIGURE 4.4: Variation of the energy error with the total charge of the system (Au top left,
Augz bottom left, Ag top right, Agz bottom right). The values are scaled to the neutral system

value (see eq 4.4).

yields an error of 0.27 eV (more than twice larger than the MAE), while it performs
less well for silver clusters. Finally, for MP2 the values of SAE are generally
very large. Thus, despite MP2 is on average quite accurate in the description of
the total energies (see table 4.1) it fails to produce accurate atomization energies
because of accumulation of the errors.

A similar analysis, can be made on the results of the ionization potential cal-
culations (reported in table 4.3). However, in this case the difference to consider
is between the neutral and the charged species. Then, a different behavior is ob-
served. In fact, while for most of the considered methods the total energy error is
not much different between a neutral and a charged species of the same cluster, for
the ACII functionals we always observe an increase of the error with the charge.
This situation is schematized in fig 4.4, where we plot, for several examples, the
quantity

A(g) = AE(AT) - AE(A) , (4.4)

with A being any of the systems under investigation and g =-1,0,1. As a conse-
quence, the ACII functionals are generally the worst performers for the calculation
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of lonization potentials, while PBE and especially B2PLYP perform well thanks to
the more homogeneous description of the differently charged species.

This analysis shows that, although the quality of the total energies produced by
a functional is a key element to understand the performance of the functional, the
basic property to observe is not the quality of the absolute energies, but rather the
variance of the errors. Furthermore, the contrasting behaviors we have observed for
the description of the atomization energies and of the ionization potentials high-
lights the subtleties inherent to such calculations. In particular, the accuracy of
the ACII functionals has been shown to be not much dependent on the investigated
material (Au or Ag) nor on the system’s size but to be quite sensitive to the charge
state of the computed system. The first feature is a positive one. This is related, as
we saw, to the computation of atomization energies, but even more importantly it
indicates that the idea beyond the construction of the ACII functionals is in general
quite robust such that the functionals, although not very accurate in absolute terms
(see table 4.1) are well transferable to systems of different size and composition.
This is not a trivial result since, as we documented, other methods (e.g. PBE and
PBEO, but even MP4) do not share this property. On the contrary, the dependence
of the ACII functionals on the charge state of the system indicates a clear limita-
tion of such approaches. They are in fact unable to describe with similar accuracy
systems with qualitatively different charge distributions. As a consequence, the
lonization potential calculations are problematic for ACII functionals.
Note however that, because accurate experimental data are not available for all the
systems, our assessment of the performances of the ACII functionals on small clus-
ters, see fig 4.1, and Tables 4.1, 4.2, and 4.3, is carried out w.r.t. CCSD(T) values.
This allows a more direct and sensible comparison of the results, whereas the com-
parison with experimental data would require the consideration of further effects
such as thermal/vibronic ones as well as spin-orbit coupling.[159, 176] Of course
CCSD(T) results cannot be considered “exact" for metal clusters. Nevertheless, an
accurate comparison with available experimental data from literature shows that,
for atoms (regarding ionization energies) [219, 220] and neutral dimers and trimers
(regarding both ionization and atomization energies) [221-223], CCSD(T) yields
results within 0.04 eV from the experimental ones. While for the charged dimers
and trimers (regarding both ionization and atomization energies), CCSD(T) results
are within 0.2 eV [220, 224, 225] from the experimental ones but this is only partly
ascribable to the diminished accuracy of the CCSD(T) calculation per se and pos-
sibly due to the large error bars associated to these measures on the experimental
side and on the increased importance of correcting terms on the computational
side.
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FIGURE 4.5: Atomization adiabatic connection integrands (see eq 4.5) corresponding to ISI,
reviSI, SPL, and LB for the Auy case; the thick curve in gray corresponds to the linear
expansion for the atomization adiabatic connection integrand (eq 4.6)

4.4.2. AC CURVES: GOLD DIMER SHOWCASE

To rationalize the origin of the limitations of the ACIl functionals as well as to
understand in depth the differences and the similarities between the different in-
terpolation formulas it would be necessary to inspect in some detail the shape of the
density-fixed linear adiabatic connection integrand defining ISI, revISI, SPL, and
LB. However, contrary to small atoms and molecules (see, e.q., refs [91, 226, 227)),
for noble metal clusters there exists no reference adiabatic connection integrands
to compare to. Thus, such a detailed analysis is not really possible. Nevertheless,
some useful hints can be obtained by a semi-qualitative comparison of the vari-
ous adiabatic connection curves. As an example, in fig 4.5 we report, for the Auy
case (the other systems studied here have very similar features), the atomization
adiabatic connection integrand, defined as

W/{”(Auz) = W) (Aup) -2W; (Au) , (4.5)

for ISI, revISI, SPL, and LB. The integrated value (between 0 and 1) of this quantity
corresponds to the XC atomization energy calculated with a given ACII functional.
For discussion we have plotted also the weak interacting limit expansion truncated
at linear order in A for the atomization adiabatic connection integrand, which is
defined as

W (Aup) = Wy 15 (Aup) —2W), g (Au), (4.6)

where the linear expansion (LE) of the AC integrand for a species X is W)  p(X) =
E,X) + ZAECGLZ(X) in agreement with eq 1.67 and in the case of HF orbitals
ESM2(X) = EMP2(X). Because of the weak-interacting limit constraint, all the curves
plotted in the figure share the same A =0 value, which corresponds to the Hartree-
Fock exchange atomization energy, as well as the same slope at this point. The
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curves remain very similar up to A = 0.2, which is not strictly dictated by the
weak-interacting limit constraint but rather by a possible lack of flexibility in the
interpolation formulas. For values of A 2 0.2, the curves associated to the various
functionals start to differ, due to the different ways they approach the Wy, value
for A =co. Note that in this case ISI and revISI are further constrained to recover
the W/, slope, whereas SPL and LB do not have this constraint. The interpolation
towards the strong-interaction limit is therefore the main feature differentiating
the various ACII functionals, even in the range 0 <A <1. In general, revlSl is the
slowest to approach the asymptotic W, value, whereas LB is the fastest. So the
former will usually yield the smaller XC energies, whereas the latter will produce
the larger XC energies (in magnitude). In fact, turning to the Au, example reported
in fig 4.5, the inspection of the plot shows that revISl is indeed the slowest to
move towards the asymptotic W& value (for Aup; W2 = -0.239). Consequently,
in table 4.2 it yields the smallest atomization energy (it underestimates the Auy
atomization energy by 0.13 eV). On the opposite, LB is the fastest to move towards
the asymptotic W2 value, thus it gives the larger atomization energy (overestimat-
ing it by 0.06 eV). In this specific case, the SPL functional, which behaves almost
intermediately between revISl and LB, yields a very accurate value of the atomiza-
tion energy, underestimating it by only 0.03 eV. Thus, we have seen that there are
two main features that can determine the performance of an ACII functional. The
first one is surely the behavior towards the strong-coupling limit, which is able
to influence the shape of the adiabatic connection integrand curve for A Z0.2/0.3.
This behavior is indeed modeled differently by the various functionals examined in
this work, but it appears that none of them can really capture the correct behavior
in the range of interest 0.3 <A < 1. This is possibly due to the fact that information
on the A = oo point is not sufficient to guide correctly the interpolation at the quite
small A values of interest for the calculation of XC energies. A second factor that
is relevant for the functionals’ performance is the small A behavior. At very small A
values this is determined by eq 1.67, but for larger values of the coupling constant
(at least for 0.1 = A <0.2) the shape of the curve should depart from the slope given
by ES'2 in order to correctly describe the higher-order correlation effect. Instead,
we have observed that all the ACII functionals provide the same behavior up to
A =0.2. This indicates that the interpolation formulas have not enough flexibility
to differentiate from the asymptotic behavior imposed at A =0.

4.4.3. ROLE OF THE REFERENCE ORBITALS

The ACII functionals are orbital-dependent nonlinear functionals, thus they are
usually employed to compute the XC energy in a post-SCF fashion (as we did
in this work). Then, the results depend on the choice of the orbitals used for
the calculation. Recent work [199] has evidenced that ISI results for main-group
chemistry are much improved when Hartree-Fock orbitals are used. This has been
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FIGURE 4.6: Top: Adiabatic connection integrands computed with the SPL formula (eq 3.57)
for Auy (solid line) and Au (dashed line) using Hartree-Fock and PBE orbitals; the Au curve
is multiplied by a factor of 2; the inset shows the weak-interaction part of the curves. Bottom:
Atomization adiabatic connection integrands (see eq 4.5) computed with the SPL formula for
the Auy case.

basically traced back to the characteristics of the Hartree-Fock single-particle
energy gap (which determines the magnitude of ES'? and thus the weak-interaction
behavior of the curves).

For gold and silver clusters, after some test calculations, we found a similar
result for all the ACIl formulas considered. For this reason, all the results reported
in section 4.3 are based on Hartree-Fock orbitals. To clarify this aspect, we
have reported in fig 4.6 both the bare and the atomization adiabatic connection
integrands computed with the SPL formula (similar results are obtained for the
other formulas) for Auy and Au using either Hartree-Fock and PBE orbitals. It can
be seen that the adiabatic connection curve of Aus, obtained from Hartree-Fock
orbitals, is very similar to twice the Au curve. Hence, the atomization adiabatic
connection integrand is rather flat, yielding (correctly) a moderate atomization XC
energy. This behavior depends partly on the fact that in Hartree-Fock calculations
Auz has almost twice the exchange energy of Au but, primarily, it traces back to the
fact that the Aua MP2 correlation energy is almost perfectly two times larger than
the Au one (which in turn depends on the fact that the two systems have very close
single-particle energy gaps — 7.604 eV and 7.707 eV, respectively — and on the
size-extensivity of the MP2 method). Thus, the adiabatic connection integrands for
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Au, and twice the Au have almost identical slopes at A =0 and similar behaviors
for A = 1. Instead, when PBE orbitals are used, larger differences between the
Auy and twice the Au curves can be noted. These originate only partially from the
fact that, in the case of PBE orbitals, the exact exchange contributions of Auy and
twice Au are not much similar (they differ by 0.045 eV). Mostly they depend on the
rather different GL2 correlation energies for the systems (EE’LZ(AuZ)—ZECGLZ(Au) =
—0.173eV), which in turn trace back to the fact that the single particle energy gaps
computed for Auy and Au are very different: 2.014 eV and 0.718 eV, respectively.
Consequently, the atomization adiabatic connection integrand curve calculated with
PBE orbitals is steeper than the Hartree-Fock-based one and therefore it yields
significantly larger atomization XC energies. This results in a strong tendency of
PBE-based ACII functionals to overbind the noble metal clusters.

4.4.4. FURTHER ANALYSIS OF THE ACIl's FORMULAS

We have seen in Sec. 4.3 that SPL and LB formulas show overall better perfor-
mances than ISI and revISl. As mentioned, the main difference between the two
groups is that the former use a three-parameters interpolation formula while the
latter make use of a fourth ingredient from the A — oo limit, i.e. the zero-point os-
cillation term W._[p]. The revISI formula also recovers the exact expansion at large
A to higher orders [34]. However, we have to keep in mind that the ingredients
coming from the strong interaction limit are not computed exactly, but approximated
with the semilocal PC model. Comparison with the exact W lpl and W [p] for
light atoms [34, 73] suggests that the PC approximation of the W [p] term is more
accurate than the one for W/ [p]. Moreover, the parameters appearing in the PC
model for W [p] are all determined by the electrostatics of the PC cell, while in
the case of W/ [p] the gradient expansion does not give a physical result, and one
of the parameters has to be fixed in other ways, for example by making the model
exact for the He atom [34]. Keeping in mind that the information from W. [p] is
less accurate (and maybe less relevant in the HF context), it can be interesting to
consider a variant of ISI and revISl, in which we replace Wo'gc[p] with the curvature
at A =0 (obtained from MP3) as input ingredient.

The ISI and revISI formulas have four parameters that need to be fixed by four
equations. In the standard forms (see sec 3.4.2) the four equations are obtained by
imposing that W;ILSI recovers the first two terms of the weak-interacting limit expan-
sion, eq 1.67, and the first two terms in the strongly-interacting limit expansion,
eq 1.70for large A. For the first time we have explored an alternative choice that
is to constrain ISI and revISl| to recover the first three terms of eq 1.67 for small
A, and only the first term of eq 1.70 for large A. The structure of the interpolation
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formula is thus formally the same, but the parameters are given by

"

X= =2(Wo = Weo) + gtz (Wo — Weo)?

W” 4W’
Y= 2W’ + W)

7 = -3+ )2 (WO oo)y (47)
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for ISI, and
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3(W))2 ’

4W"+ 2w,

3wy " Wo— o

AW (Wo—Woo) |
3WHE

b= —2Wy—Wx)+

d= -3+ (4.8)
for revISI.

However, while in the standard ISI and revISI interpolation formulas the pa-
rameters, Y[p] and c[p], which appear under square root, are given by the sum of
squared quantities (see eqs 3.51, and 3.55), in these modified versions this is not
true and they can become negative. In the cases studied here both parameters turn
out to be always negative and smaller than one, meaning that there is, for each
species, a critical lambda, A, always larger than one, after which the function
takes imaginary values. In particular we found an average AS! =4 with values
spanning from 2.5 to 5.7, and an average A.°’/ST =~ 180 with values spanning from
6 to over 3x 103, As a general trend we thus see that the modified revIS| appears
to be more robust than the modified ISI in the sense that it becomes imaginary at
significantly larger A values.

Another important point to consider is that, as explained in Sec. 4.4.3, we
are using the ACII functionals with Hartree-Fock orbitals, which means that they
are used as a correlation functional for the Hartree-Fock energy. In other words,
the ACII correlation functionals are used here as an approximate resummation
of the Mgller-Plesset perturbation series: they recover the exact MP2 at weak
coupling, and perform much better than MP3 and MP4 for atomization energies
(see table 4.2). Thus, a first question that needs to be addressed is whether
the PC model used here to compute the infinite coupling strength functional is
accurate also for the Hartree-Fock adiabatic connection, in which the A-dependent
Hamiltonian reads

A' =T+ Viae + Vext + A (Vee — Viap), (4.9)

with Vg the Hartree-Fock non local potential operator. When A — oo, the problem
defined by A of eq 4.9 is not the same as the one of the density-fixed adiabatic
connection arising in DFT. The results of this study may suggest that the PC model
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can provide a decent approximation of the leading A — oo term in the HF adiabatic
connection integrand, at least when dealing with isoelectronic energy differences.
A careful study of the problem is the object of on-going work and first important
results are going to be illustrated in the next chapter.

4.5. CONCLUSIONS AND PERSPECTIVES

We have assessed the performance of functionals based on the idea of interpolating
between the weak and the strong-interaction limits the global adiabatic-connection
integrand (ACIl functionals) for noble-metal clusters, analyzing and rationalizing
different features of this approach. The study presented here extends a previ-
ous preliminary assessment on main group chemistry [199], and explores different
interpolation formulas.

We have found that the ACII functionals, although not spectacularly accurate,
are quite robust for the description of atomization energies, as their performance
tends to be the same for different species and different cluster sizes, which is a
positive feature. We should also stress that this good performance is achieved by
using 100% of Hartree-Fock exchange, and thus avoiding to rely on error cancel-
lation between exchange and correlation. Rather, as clearly shown in fig. 4.3, this
is achieved by performing in a very similar way for the description of a cluster
and its constituent atoms. On the other hand, the ACII functionals are found to
be inaccurate for ionization energies, as they are not capable to describe different
charged states of the same system with the same accuracy, as shown in fig. 4.4.

As in the case of main-group chemistry [199], we have found that the ACII func-
tionals perform much better when used with Hartree-Fock orbitals, which means
that they are used as a correlation functional for the Hartree-Fock energy. In other
words, the ACII correlation functionals are used here as an approximate resumma-
tion of the Mgller-Plesset perturbation series: they recover the exact MP2 at weak
coupling, and perform much better than MP3 and MP4 for atomization energies
(see table 4.2). Thus, a first question that needs to be addressed is whether the PC
model used here to compute the infinite coupling strength functionals is accurate
also for the Hartree-Fock adiabatic connection of Eq. (4.9), which is the object of
a current investigation. The results of this study and of reference [199] suggest
that the PC model can provide a decent approximation of the A — oo HF adiabatic
connection integrand, at least when dealing with isoelectronic energy differences.

Another promising future direction is the development of ACIl functionals in
which the interpolation is done in each point of space, on energy densities [121,
228, 229]. These local interpolations are more amenable to construct size-consistent
approximations, but need energy densities all defined in the same gauge (the one
of the electrostatic potential of the exchange-correlation hole seems so far to be the
most suitable for this purpose [230]). In this framework, the simple PC model, which
performs globally quite well, does not provide accurate approximations pointwise
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[229], and needs to be replaced with models based on integrals of the spherically
averaged density [231, 232], which, in turn, needs a careful implementation, which
is the focus of on-going efforts [232]. Finally, recent models for A =1 could be also
used in this framework [109], both locally and globally.
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STRONG-INTERACTION LIMIT OF
AN ADIABATIC CONNECTION IN
HARTREE-FOCK THEORY

We show that the leading term in the strong-interaction limit of the adiabatic con-
nection that has as weak-interaction expansion the Mpaller-Plesset perturbation
theory can be fully determined from a functional of the Hartree-Fock orbitals. We
analyze this functional and highlight similarities and differences with the strong-
interaction limit of the density-fixed adiabatic connection case of Kohn-Sham den-
sity functional theory.

5.1. INTRODUCTION TO THE HARTREE-F OCK ADIABATIC CON-

NECTION

Mixing KS DFT with Hartree-Fock (HF) ingredients is an approximation strateqy
that has a long history in chemistry, already starting with hybrids [112, 113, 233-
237] and double hybrids [1, 238-240], but also by simply inserting the HF density
into a given approximate XC density functional [241-246].
Recently, as the previous chapter has given an example, it has also been observed
that rather accurate interaction energies can be obtained from models for W}BFT[n]
that interpolate between the two limits of eq 1.67 — retaining only the first term,
GL2, in the GL series — and of eq 1.70, using HF densities and orbitals as input,
i.e., by constructing de facto an approximate resummation of the Megller-Plesset
(MP) series, a procedure that lacks so far a theoretical justification.

Motivated in particular by these last findings, we analyze in this work the
Hartree-Fock adiabatic connection [eq 5.1 below] whose Taylor expansion around
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A =0 is the MP series (eq 5.4 below) and show that the leading term in the A — oo
expansion of its GS wavefunction is determined by a functional of the HF density,
see eq 5.9 below. We also highlight similarities and differences with the DFT case,
showing that the large A expansion in HF theory has a structure similar to the one
of eq 1.70.

We keep the notation general, as only few key properties of the HF operators
are important here. We consider the adiabatic connection (see, e.g., ref [247])

HF =T+ Ve + J+ K+ A(Vee - - K), (5.1)

with Ve the (nuclear) external potential and J = Jint¥] and K = I%[{(,blHF}] the
standard HF Coulomb and exchange operators, which are fixed once for all in the
initial HF calculation, and do not depend on A, but only on the HF density n'F
and occupied HF orbitals {¢!F} (eq 5.1 coincides with eq 4.9 introduced in the
previous chapter with Vip = J + K).

In the ground state WF of AT, the density n(r) changes with A: ny—o(r) is the
HF density (1), and ny-1(r) is the exact physical density n(r). Note that Teale
et al. [227] have analyzed a related adiabatic connection, in which the external
potential is kept fixed; in that framework in the limit A — oo all the electrons but
one escape to infinity. From eq 5.1, the Hellmann-Feynman theorem yields the
exact formula

1
EF = f wyFda (5.2)
0
for the XC energy in the HF framework, with
wWilF = (0iF| Ve — J - KIPT) + U0+ 2ELF. (5.3)

Equation 5.3 has been defined to allow for a direct comparison with the DFT
WPt n] of egs 1.59 and 1.60.
For small A -

Wit =B+ Y nEYPT A, (5.4)

n=2

with Wi = EXF, and where EMP" the n'™ term in the MP series. As is well-known
(see, e.q., references [248, 249)), the radius of convergence of the MP series is in
general smaller than 1. Here we ask the question: what happens to ‘PTF and WAHF
as A — oco? After answering this theoretical question, we will discuss its actual
relevance for constructing approximations.

5.2. ANALYSIS OF THE HF 1 — co LimiT

When A becomes very large, the term A(V,e - J—K) in eq 5.1 becomes more and
more important, and we argue that the wavefunction ‘P;IF should end up minimizing
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this term alone, similarly to the DFT case (see chapter 3). The difference here is
that the minimizer is not constrained to yield a fixed density, and the operator to
be minimized also contains —J— K. We further arque that the expectation value of
K is subleading with respect to the one of V,.—J, i.e., we arque that

R =017 A—o0). (5.5)

Before we shall support this conjecture with a variational argument, we discuss its
consequences.

If eq 5.5 holds, then WHF for A — co ends up minimizing the even simpler
operator /I(Vee -N,

lim ‘I/HF = argmin(\l’lf/ee -]y, (5.6)
A—o0 W
lim wilt = m\{%n(‘I’IVee -1y + Un + 2B + 0(A712) (5.7)
—00

The “asymptotic Hamiltonian”

N
Hy' = Vee=JIn']= 3 —Z v (r;; (n7F)), (5.8)
i,j=1 |rl ]|
Jj>i

is completely specified by the HF density n''f(r), since N= [ n'F(r)dr and J(n] =

YN vn(r;(n)).

Consequently, also the minimizer in eqs 5.6 and 5.7 is specified solely by n'f
lim Wi = wHFHF), (5.9)

A—o0
and the minimum in eq 5.7 is a functional of the HF orbitals,

lim Wit = Egn"f1+2E8F + o713, (5.10)
The minimizer in eq 5.6 could be non unique, but this does not affect the value of
the minimum, which is the object of the present investigation.
The functional Eg[n] = m\gn(‘PlVee —JIn|¥)+ Uln] has a simple classical interpre-

tation: since H'F is a purely multiplicative operator, the square modulus |W!F|?
of its minimizing wave function is a distribution in R*N that is zero wherever A!IF
as a function of ry,..,ry does not attain its global minimum (if it were otherwise
it would not be optimal as we could always lower the energy by increasing the
weight of the wave function in the global minimum of AL ). In other words,

N

n] = min - vyl n)+Un 5.11

Ealn] = min ”Z”rl o ; u(r; [n) + Ulnl (5.11)
j>i
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is the minimum total electrostatic energy of N equal classical point charges (—e)
in a positive background with continuous charge density (+e)n(r). The term Ulnl],
inherited from eq 5.3, represents the background-background repulsion.

Strictly speaking, the minimizer W is not in the space of allowed wavefunc-
tions, so that the minimum is actually an infimum, similarly to the DFT case (see
discussion in chapter 3).

Equations 5.9-5.10 comprise a central result of this work: they show that the
strong-interaction limit of the HF adiabatic connection can be determined from a
functional of the HF density, providing some theoretical justification for resumming
the MP series by using a DFT-like expansion at large A with functionals of n''F
[4, 127, 250], although, as we will discuss, there are still several points to be
addressed.

We now analyze the functionals \I’EOF[n] and Eg;[n], comparing them with the
DFT case. We relabel, for this purpose, Hy of eq 1.54 as HY™ and its limiting

R FDFT R
value divided by the coupling parameter as Ho%FT[n], Le. limy_ o —2 T ol Ho%FT[n].

Comparing HgFT[n] with HgF[n] of eq 5.8, we see that both Hamiltonians
consist of the electron-electron repulsion operator and of an attractive one-body
potential. In the HF case the attractive potential is —vy(r, [1]), which, for typical
Hartree-Fock densities nf’f, namely densities that are generated from the self-
consistent restricted or unrestricted HF equations, is strong enough to create a
classical bound crystal. To be more precise, —vy(r,[n]) is more attractive than
the one-body potential USCE(r,[n]). In fact, the potential USCE(r,[n]), discussed in
chapter 3, is generated by a charge that integrates to N—1 [73, 230]

ifVZUSCE(r, (n)dr=N-1, (5.12)
4

while the attractive potential —vy(r,[n]) is generated by the given density n(r),
which integrates to N. For finite systems, the state W{F[n] is thus more compact
than the state WDFT[n] lacking the density constraint present in the DFT adia-
batic connection construction. Note, furthermore, that both A2 [n] and AlF(n]
are functionals of the density in the sense that, given a density, they can be con-
structed accordingly. Nevertheless, while the former is such that the same density
determining the asymptotic Hamiltonian (in its external potential part) is also its
resulting ground state density, this is in general not the case for the latter one.
Indeed, we implicitly assumed that the domain of the functional H![n] be that of
the Hartree-Fock densities n’f. By virtue of the structure of the HF Hamiltonian
HgIF, such densities are typically smooth, continuous functions, while we just ar-
gued that the ground state density output from the HF asymptotic Hamiltonian be
a classical distribution, therefore a very different kind of electron density compared
to that input.!

1If, for the sake of speculation, we assume that also classical distributions can be used as input to
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For given occupied HF orbitals, we have the chain of inequalities
WaF[n'] < Epy[n™F) = wRF (R (5.13)

The first one, WHF < E,;[n'1F], is trivial since WIF = E,[n"F] + 2 EHF from defi-
nition 5.10 and EYf <0. The second inequality, E(n] < W2FT[n], holds for any
density n(r). To prove it, we introduce the bifunctional #'[n, v],
. N
W (n, v] = inf(P|Vee = > v@)|¥) +fn(r)v(r) dr, (5.14)
i=1
for which we have
W n,vylnl]l = E¢i[n]+ Ulnl, (5.15)

and, from the dual formulation of WO%FT[n]

Woo ) + Uln) = max # [n, vl, (5.16)

which clearly completes the proof. Moreover, combining this last result with the
definition of WHF[n!1F] (eq 5.10) we also find

WEF[nHF) < WRFT[nHF) 4 2 BHF [HF). (5.17)

As an illustration of the difference between the two adiabatic connections limits,
in fig 5.1, we show the two potential energy surfaces, #2F/HE (ry 1, ), for the
He atom.

Note that, due to the cancellation between U and 2Ex in a two-electron singlet
system such as this one, in the case of the HF asymptotic Hamiltonian, we have

wiF = J?£F|mm (5.18)
while for the corresponding DFT functionals such relation does not hold.?
From the figure, we also observe, as anticipated, the contraction of the asymptotic

FICI,{OF[n], in the form of a quite exceptional, self-interaction-free Hartree potential, i.e. vy (r,[7i(r)]) =

Zév ﬁ with 7(r) = Z§V5(r—r,~), it seems indeed likely that the GS density of [:IEOF[IVZ] would
exactly match that of the background, tLe. ngIoF = 1. However, for this quite pathological case, our
arguments in sec 5.3 about the expectation value of the exchange operator, (LK), when 1 — oo, would
anyway no longer hold and we should be reconsidering our asymptotic Hamiltonian expression (aside
from various other complications).

2Namelg, considering definition 1.60 and rewriting VeseCE as

Vee £ = Bsce —f v>E @ nydr, (5.19)
——
— 72DFT
=A% i .= ySCE
we find
DFT — »DFT SCE
Wt = AR - (vSCE+u) (5.20)
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FIGURE 5.1: Potential energy surfaces, JE’(,%FT(rl,rz,n) (left) and J?O%F(rl, r2,7) (right), plot-
ted along the radial distances, r1, r2, of the particles from the origin and with an angle =
between the two vectors r1, r2. Superimposed are the corresponding minima, t.e. the de-
generate minimum for the DFT asymptotic Hamiltonian in red, at about —1.039 Ha, and the
unique minimum for the HF asymptotic Hamiltonian in blue, at about —4.347 Ha.

HF density compared to the physical one (the minimum is at r(I){F =~ 0.355 while
choosing for the DFT case the minimum distance between the two particles, which
corresponds to the distance, rJ¥?, at which f(r*) = rP*, we find rP*" = 0.809)

and the fact that, albeit unique, the HF minimum is also quite shallow.

5.3. SUBLEADING TERM: VARIATIONAL ARGUMENT

We provide, in this section, a variational argument to support the assumption of
eq 5.5, sketching the main points and leaving room for a more rigourous proof. We
start by considering the global minimum R™ = {0, yMin} of the function AHF
of eq 5.8, and construct the simple trial wavefunction

N .
"I"I(l‘l, ..,IN) = l_[ Ga(l) (r; _r;nm), (521)

i=1
where Gg(r) = zz—:e‘%mz, with @ a A-dependent variational parameter that goes to
infinity for large A, a(1) ~ A9 with g >0. By construction, when a — oo (i.e., when
A — oo) we have that
lim W1 ("7 = 1w )2 (5.22)
—00

where WIIF was introduced in eq 5.6 (in the case of degeneracy we can select one
of the minimizers, since here we only want to obtain an upper bound to the lowest
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eigenvalue of HXIF). We now analyze, for large a, the expectation value on ‘I’; of
each term appearing in H}'¥ of eq 5.1, obtaining

PHTIY]) =ta (5.23)
PTIAVee = DIYT) = ME - U) +A(h +ola” )) (5.24)
WT|-ARWT) = A §+0(0¢_1)) (5.25)

(P} Vex + T+ KI¥]) ~ 0(@”), (5.26)

where ¢, h, and k are all positive numbers. This is obvious for t, but it is also true
for k because the expectation of —K is positive for any wavefunction ¥, as K has a
negatively definite kernel. The fact that the expectation value of K on ‘I’/{ vanishes
as a~! for large a is due to the non-locality of K, which samples the Gaussians in
the bra and in the ket in different points of space, and to the regularity properties
of the HF orbitals (which have no delta-function singularities). The positivity of
h in eq 5.24 can be proven by expanding HXF around R™™ up to second order,
which gives an hessian matrix positive definite.

Putting together Eqgs. 5.23-5.26 and replacing a with A9 we find that, for large
A, the expectation value of IA{XIF on ‘P/{ behaves asymptotically as

(PHHEIPTY = MEe; - U) + AT+ (h+ AT+ oA ). (5.27)

Being ¢, h and k positive, we see that the best variational choice to make the next
leading term after O(A) increase with the lowest possible power of A is g =1/2,
as conjectured in eq 5.5. Although ‘P{ of eq 5.21 is not antisymmetric, we can
always properly antisymmetrize it, which only leads to corrections O(e™%) in the
computation of the expectation values, similarly to the DFT case [80]. Thus, we
have explicitly constructed a variational wavefunction that yields the minimum
possible value for the leading term O(A) in the expectation of ﬁiﬂz. In fact, since
E,;[nF]—U[n''F] is the global minimum of the multiplicative operator V,,—J, there
is no wavefunction that can yield a lower expectation for this operator. Moreover,
since —K is positive definite, the best we can do is to make its expectation zero
when A — oo, which our wavefunction is able to do.

This variational argument also shows that the next leading term in W/{IF should
be order A7/, similarly to the DFT case of eq 1.70. A quantitative estimate of
this next leading term could in principle be obtained by using the normal modes

around the minimum of V,,—J: a unitary transformation from the r; —rm”f1 to the

normal modes coordinates ¢j,...,¢3n that diagonalize the hessian of Jng at Emn
leads to a set of uncoupled harmonic oscillators whose spring constant scales with
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A
. 1 3N 62 A 3N
7P _
Az P 5@2_ w3, (5.28)

with w? the eigenvalues of the hessian of A#F at R™" The ground-state of H%P
is obtained by occupying the lowest state of each oscillator, with the product state

3N 1/4 2
(@a VIOV _ 7, &
P&y, E3n) = a|=|1 aﬂ1/4 e VA0t (5-29)

This wavefunction should provide the minimum possible expectation, to order A!/2,
of T+A(V,e—J). However, since —AK is of the same order A2, we cannot exclude at
this point that the minimization of the full T+A(V,e—J—K) could lead to a different
set of occupied oscillator states. This investigation is the object of ongoing work
(see discussion in ref [251]).

From our present treatment we have so far

1
wilt = w4 ﬁw;” +o (5.30)
with
wWHE = B, [n"F] 4 2 BHF (5.31)
1 3N HF
W = Ly @aln ] e (5.32)
258 2 ,

where W’Holi is due to the effect of —AK at orders A1/? in HHF and is a functional
of the occupted HF orbitals (eq 5.32 is for now a conjecture) We also see that
both WHF and WIF have a part that is a functional of the HF density only, and a
part that is a functional of the occupied HF orbitals, although it seems that for the
latter case the dependence on the HF orbitals can be reduced to a dependence
on the HF density only. In both cases, the part that is a density functional has
an origin similar to the one of the DFT functionals of eq 1.70, being, respectively,
a classical electrostatic energy and the potential energy of zero-point oscillations
around a classical minimum. The parts that need the knowledge of the occupied HF
orbitals do not appear in the DFT case. This structure should be exact, although
the detailed form of W2 might include a different set of occupied oscillator states.

Although the A — oo limit of W/{{F has a structure similar to the one of DFT,
there are many differences that need to be kept in mind. Both WP*![p] and W}
are decreasing functions of 1,

d
da

d

o eE

—w;F <o, (5.33)
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but W/{)FT[p] for A =0 is believed to be convex or at least piecewise convex (if
there are crossings of states), while WFF is for sure not always convex. In fact, the
MP?2 correlation energy, already for simple atoms such as He, underestimates (in
absolute value) the total correlation energy EF, implying that W/{{F for0<A«x1
must run below its tangent; thus, W/{{F usually starts concave for small A and
then needs to change convexity to tend to the finite asymptotic value WZIF for
large A. Moreover, while the density constraint of the DFT adiabatic connection
usually mitigates the crossing of states, the HF adiabatic connection might have
jumps or kinks as A is increased. A simple example is the N =1 case, for which
Wit = —U[p"F] for 0= A <1, while for A >1 the curve starts to decrease, tending,
as A — oo to a well defined value, with the electrostatic energy determined by
the configuration in which the electron is sitting in the minimum of —vy(r,[p])
(preliminary results about the structure of the HF adiabatic connection integrand
curve for the exceptional case where N =1 are detailed in reference [252)).

5-4. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have shown that by looking at the A — oo limit of the HF adiabatic
connection we recover functionals of the HF density, revealing a new intriguing
formal link between HF and DFT. However, we should also stress that the use
of models for W/{{F taken from DFT, although somehow justified by our analysis,
should at this stage still be taken with some caution. The empirical observation
so far [127, 250], is that these models are not accurate for total energies, but
work rather well for interaction energies, with a small variance, particularly for
non-covalent complexes [127, 250]. This point requires further investigation in the
future. A numerical analysis of the functionals WXF and W2, in comparison with
the corresponding DFT functionals, seems also beneficial.

At the state of the art, it seems already clear that the difference between WZIF and
WEFT can be considerable. For example, for the He atom discussed at the end of
sec 5.2, we have WHF =~ —4.347 Ha, while WRFT =~ —1.50 Ha.

Promising research lines opened by this study are to investigate whether it is
possible to extract a model for the self-energy in the strong-coupling limit, to be
used in the context of Green’s functions approaches [253-256], and to analyze in
the same spirit adiabatic connections appearing in other theories [247, 257].
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RESPONSE POTENTIAL IN THE
STRONG-INTERACTION LIMIT OF
DFT: ANALYSIS AND COMPARISON
WITH THE COUPLING-CONSTANT
AVERAGE

Using the formalism of the conditional amplitude, we study the response part of
the exchange-correlation potential in the strong-coupling limit of density functional
theory, analysing its peculiar features and comparing it with the response potential
at physical regimes for small atoms and for the hydrogen molecule. We also use a
simple one-dimensional model of a stretched heteronuclear molecule to derive exact
properties of the response potential in the strong-coupling limit. The simplicity
of the model allows us to unveil relevant features also of the exact Kohn-Sham
potential and its different components, namely the appearance of a second peak in
the correlation kinetic potential on the side of the more electronegative atom.

6.1. INTRODUCTION

In chapter 2 we have discussed the convenience of adopting the conditional proba-
bility amplitude approach to obtain an exact decomposition of the effective potential
appearing in the Schrodinger equation for the square root of the density (eq 2.11)
and of the XC potential of KS DFT.

The SCE limit, however, has never been analyzed from the point of view of the
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conditional amplitude framework, and nothing is known about the behavior of the
different components of the corresponding external potential. It is the main purpose
of this work to fill this gap.

The effective equation 2.61 for v/n(r) in the SCE limit can be easily understood
if we divide both sides by Av/n(r),

_VAVa) | van- )| vakin(r)
2Avn(r) A A (6.1)
v 1

VA,cond(r) + T = I(Ei\/ _E/Il\;_l)-

When A — oo, we see that the first term in the left-hand-side goes to zero, as the

density n(r) does not change with A and it is well behaved, with the exception

of the values of r on top of the nuclear positions R;, where the density has a
v2v/n(r)

cusp and e yields back the Coulombic divergence. Nagy and Janosfalvi [258]

have carefully analyzed the A — oo behavior at the nuclear cusps in % showing
that for all A values the kinetic divergence at a nucleus of charge Z at position
R; cancels exactly the external potential _M%Ri‘. We can then safely disregard
both the kinetic and the Coulombic divergence in the A — oo limit. The other
case, which we do not consider here, where this term may diverge is when the
KS highest-occupied molecular orbital (HOMO) has a nodal plane that extends to
infinity [44, 45, 259].

All the remaining terms, except for vy ki, (r), will tend to a finite, in general non-
zero, limiting value, as they grow linearly with A (for example v*(r) — Av°CE(r) of
eq 3.15). Notice that vy conq(r) appears in the equations with a factor A in front,
see eqs 2.59 and 2.62. The only delicate term is vy ki (r) of eq 2.58, which contains
the gradient of a conditional amplitude that is collapsing into a distribution. As
already discussed in chapter 3, several results in the literature suggest [34, 74, 80]
that this term grows with A only as ~ VA, thus still vanishing with respect to
the other terms. As shown below, the SCE limit provides a perfectly consistent
treatment of the leading order of eq 2.61 when A — oo, providing further evidence
that the kinetic potential vy ;,(r) should be subleading in eq 6.1.

6.2. CONDITIONAL PROBABILITY AMPLITUDE AND IONIZATION

POTENTIAL AT THE SCE umit
We can now use eq 3.9 to find the conditional amplitude in the SCE limit and to
partition the corresponding effective potential into its two components of eqs 2.57
and 2.59 (as said, the kinetic part disappears in this limit).
Let us now consider only one of the possible permutations in eq 3.9: in practice,
as explicitly shown in appendix A, this restriction does not affect the expression
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LIMIT
resulting from integration over N —1 variables. Integrating over s we get
Wsce(rr, )l = oD 8 =B By ~fy ), (62)
and applying equation 2.56 and r; =r we find
| ®@sce(rz, -, rNINIP =8(r —fi(1) -+ 8(ry ~fn-1(r). (6.3)

Equation 6.3 shows that the conditional amplitude gets a very transparent meaning
in the SCE limit, as it simply gives the position of the other N—1 electrons as a
function of the position r of the first electron.!

In what follows we label with “SCE" the terms that survive when we take the
limit A — oo of eq 6.1. We then use eq 6.3 to evaluate in this limit v3-% (r),

N
N ) = f(—Z v+ 3 1‘[5(r, iy (r)dry---dry— ENGL, =
i=2 j>i,i=2 rl] i=
= —Nf vSCE ;(r) + NZ_I ;—EQ’&}* (6.5)
e 5 ()~ £ ()]

Now we use the fact that the ground-state energy of the N-particle system with
density n(r) at the SCE limit is simply given by the value of the classical potential
enerqy Vpe + VSCE on the manifold parametrized by the co-motion functions,
SCE . 1
EN. . = Vi (£ (r) + —_— 6.6
SCE — lz:l Hxc\ti i>%:1 () —fj ] ( )

which allows us to rewrite the first term on the r.h.s. of equation 6.5 as

N-1 SCE N-1 1
—_ f =+ —_—
i; Ve €1 (r) j;,-zl ORI

(6.7)

N SCE &l 1
=Eqrp+vV r)— _
SCE ch( ) ZZZI |r—f,(r)|
The last two terms in the right-hand-side of eq 6.7 vanish for |r| = co. On the
other hand, by construction vSCE(r) — 0 when |r| — oo, and thus necessarily

ESCE - ESCE*’ (68)

"To be precise, as long as we are not integrating over dr---dry, we should still consider the wave-
function of eq A.8 and, consequently, the corresponding conditional amplitude
1 (Nil)! lI_V[
(5(1‘1' —f@(i)(rl)) (64)
V=D o= iz
which gives the position of the other N—1 electrons as a function of the position of electron 1, ry, in
all their possible permutations.

[®scE(rs, -, rlr)I? =
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and we obtain the final simple expression for vilc_ﬁ(r),
N-1
vk =35k - Y _ (6.9)
i=1 [r —1;(r)|

Equation 6.8 might look puzzling, but one could also expect it from the fact that,
as said, in the SCE limit we obtain the quantities that survive in eq 6.1 when we
take the A — oo limit. This means that the difference EY — EN~! grows linearly
with A for large A,

A—oo EN—ENT~A(EN., - ENA)+OVA) + ... (6.10)

Then we see that the only way in which eq 2.63 can be satisfied when A goes to
infinity is if eq 6.8 holds. Indeed this result was already implicit in ref [73], where
it was noticed that the configuration with one electron at infinity must belong
to the degenerate minimum of the classical potential energy operator Ve, + VSCE,
Equation 6.10 shows that also for the next leading order ~ v/A there should be
no energy cost to remove one electron, a statement that is implicitly contained in
ref [34].

Notice that the zero ionization energy of eq 6.8 concerns the A — co Hamil-
tonian in the adiabatic connection of eq 1.54. A very different result is obtained
if vfgc‘g(r) is used as an approximation for the Hartree-XC potential in the self-
consistent KS equations, where the corresponding KS HOMO eigenvalue has been
found to be very close to minus the exact ionization potential for low-density sys-
tems [83, 93], displaying the correct step structure when the number of electrons
is changed in a continuous way [105] as discussed in sec 3.4.

6.3. DIFFERENT TYPES OF RESPONSE POTENTIALS: Uy, (1),

iresp(r)p U}qec;f,(r)

Combination of eqs 2.34, 2.53 and 2.54 in chapter 2 already showed us that a
possible decomposition of the XC potential is

Uxc = Uc,kint Uresp t+ Uxc-hole (6-1 1)

Defining the pair-density Pél(r,r’), associated to the Hamiltonian in eq 1.54
P}, :N(N—l)fI\PA(ra, r'a,..,N)|*dodo’dxs...dxy, (6.12)

the corresponding exchange-correlation pair-correlation function gl.(r,7") at a
given coupling strength A,

P}r, "

A N _ _
g_xc(r! r ) - n(r)n(r,) 1 (61 3)
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6.3. DIFFERENT TYPES OF RESPONSE POTENTIALS:! Vresp(r), iresp(r), Uresp

and the coupling-constant averaged (CCA) pair-correlation function g, .(r, ")

1
o (r, 1) =f gt (r,rhda. (6.14)
0
we now introduce another possible decomposition of the XC potential.

6.3.1 . RESPONSE POTENTIAL FROM THE COUPLING-CONSTANT AVERAGED

XC HOLE AND COMPARISON BETWEEN Uresp(F) AND Upesp(T)
The XC energy can be written in terms of the CCA g..(r, 1),

A
Exclnl = lffn(r)n(r')wdrdr’, (6.15)
2 |r—r'|

as the integration over A allows to recover the kinetic contribution to Eyc[n] [28,
29, 260]. Taking the functional derivative of eq 6.15 we obtain two terms [59]

Uxe(r) =65E;—Eir)l] =TVxc,hole(1) + Vresp (1), (6.16)
where (e
Vsxe,hole(r) = f n(r’)ﬁdr’, (6.17)
and _ 1 (f n(rn") 6g, ', r")
Uresp(r) = 5[[ T en® dr'dr". (6.18)

Equation 6.18 defines the quantity 7;.sp(r), but looking at eq 6.16 one can also
determine it as:

vresp(r) = Uy(r) _vxc,hole(r)r (619)
which is how we have computed the response potential in sec 6.4.3. Comparing

egs. 6.11 and 6.16, we have

Ve hole(F) + Vresp (1) =
resp

resp
Ve,kin(P) + Uxehote(N) + v 5 (1) + v, 0 (7). (6.20)

To understand their difference, let us define the quantity f,[n]

* vi LY, 2
m[n](r)::f%(o,xz,---,xN;r) —— +——=— | Dy (0,x2,---,xn;r)dodr2---rn (6.21)
2 2 ni
such that
/n(r)h[n](r)drzF,l[n]. (6.22)
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N N
®, is not a stationary state for the hamiltonian hy = - r + =22 Z’ 2 r’} therefore the
1

usual Hellmann-Feynman trick is not applicable and we wrlte

5 A
ﬁfl(r) <(D/1|_|CD)L> +< ”’M"I)}L) + <‘1>,1|h1|—>) (r) (6.23)

where the Dirac brakets stand for [dodx;---xy.
We can simplify (aa/1 |h,1|<D,1)+((I>A|h/1|6®A)—2<<I>,1|h,1| T3 A) if ®, is real (or, more
generally, in the form ®, = Ry e/ where ¢ is a number that does not depend on

A). We then write
1 0
fi-fo= [ ai(55h). (6.24)

Evaluating the left hand side, we immediately get, from the definition of v, t;, and
UA,cond

1
f1—fo=vekint 5 VUcond- (6.25)

Substituting back the expression of the full wavefunction, in the first term on the
r.h.s. of eq 6.23, we have

6}}1 * Zi\LZ 1
@1 20 = fd>1(a,2,-~-,N;r) Ziz 1o (0,2, Nir)dodxs - xy
oA 2 ni

= Z—I‘P;LI dodx;--

2n(r) iz2 T1i
N(N—l)ffI‘PA(ra,ra,E’),m,N)Izdada’dxg-'-dedr,
2n(r) lr—r'|
Pﬂ(r r)
= / (6.26)
2n(r) lr—r’|

with x, = r’o and using, in the third line, the fact that there are (N—1) pairs of
indistinquishable electrons.
We recognise this quantity to be simply

h n(r’) (r,r)+1 1
<q)A| |(D}L>( r)= f (ﬁfw_ p ) dr' = > Up,cond (1) (6.27)

and combining egs 6.23, 6.25 and 6.27 we find the relation

_ 1 . 0Dy
Uxc-hole =2 V¢ kin + Vxc-hole — 4/() da <(D/1|h/1lﬂ>’ (6.28)
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6.3. DIFFERENT TYPES OF RESPONSE POTENTIALS: Upesp(F), Vresp (1), Vresp

where we have subtracted the A-independent Hartree potential from both sides.
From combination of eqs 6.28 and 6.20, it further follows

Vresp = Vresp — Ve,kin +4f da (q)/1|h/1| > (6.29)

Both relations 6.28 and 6.29 are expressed assuming ®, = R, e'?.

In conclusion, the coupling-constant averaged energy density (where, by “en-
ergy density" we mean some function w(r) s.t. [w(r)n(r)dr = Ex;) and the one
with kinetic and interaction components taken separately differ because the con-
ditional amplitude from which these energy densities are obtained has linear first
order dependence on the coupling constant A.

6.3.2. RESPONSE POTENTIAL FOR THE SCE umiT

The two response potentials defined in eq 2.54 and in eq 6.18 can be both thought
of as a measure that answers the question [48, 261, 262] “How sensitive is the
pair-correlation function on average to local changes in the density?".

It seems quite relevant to ask what happens to it when electrons are perfectly
correlated to each other: in the SCE limit.

To address this question, let us start by generalising eq 1.59 to any XC energy
along the adiabatic connection as

B (n] = f Wy [n]dA. (6.30)

Using the expansion of the (global) AC integrand in the strongly-interacting limit
(eq 1.70), to first order we obtain

A—oo EMI n]~f Wi n1dA' = AW, [n1] (6.31)
A
Defining the SCE XC energy as ESSE —llm,lﬁoo% in agreement with eq 3.26 we
get the simple relation

ESCE[n) = Weolnl = VECE[n) - Uln). (6.32)

Let us then rewrite the AC integrand at A — oo, in analogy to eq 6.15, as

oln] = ffn(r)n( )g’“ |)d dr'. (6.33)
Taking the functional derivative of W [n] w.r.t. the density we obtain
oWy
vSCE () = Mf)’“ = uSCE )+ vSCE m), (6.34)
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where
U2 ote ) = f ()g’“(r’ r' (6.35)
o pSCE (¢ n()yne" 6g(', vy ., -,
Vrespr ff = onm  ordr (0.30)

Expression 6.35 has been found explicitly to be [82]

N-1

1
SCE
= T . 6.37
Ve- hole( r= lzl Ir—£,(r)] vy(r) ( )
Therefore inverting eq 6.34 we find for v?ecs%

,SCE cE,. N1

WSP (r) = vch (r) - Z T f ol (6.38)

i=1 [r —f£;(r)]

which is exactly equal to VSCE(r) of eq 6.9 as expected.
It follows trivially from eqs 6.34 and 3.16 that both vrse(;"f, and U?cc-%ole scales linearly
with scaling of the density.

SCE RESPONSE POTENTIAL FOR A TWO-ELECTRON DENSITY
When the number of electrons equals two, we also have another expression for

computing vrse(il;:,(r) In this case the SCE total energy EY SCE 2 of sec 6.2 is equal to

B = g - Vi - i), (6.9
where the r.h.s. is the value of the SCE potential energy on the manifold parametrized
by the co-motion function. This value is a degenerate minimum (see discussion in
chapter 3), meaning that we can evaluate it at any point lying on the manifold,
such as for |r| = oo (for a nice illustration of the degenerate minimum of the SCE
potential energy, the interested reader is addressed to fig 1 of ref [80]). When
|r| — oo, the potential USCE(r) is gauged to go to zero. At the same time, the co-
motion function f(r) will tend to a well defined position ry well inside the density,
i.e. f(r — oo) — ro. We thus have

a0 Vi (00 =~ (ro). (6.40)

Combining egs 6.38 and 6.40 we find

Vysan (1) = — Vi () + Vi (ro). (6.41)
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6.4. ExampLES OF CCA AND SCE RESPONSE POTENTIALS

We have computed the SCE response potential, vrsecs';(r), for small atoms and for
the hydrogen molecule at equilibrium distance.

For the species H™, He, Be, Ne and H; also accurate CCA response potentials
Vresp(r) have been obtained.2 Notice that, in previous works, several authors
[42, 46-48, 52, 61-63, 261-263] have computed the response potential at physical
coupling strength, v, (r) of eq 2.54. Here we perform the computation of such re-
sponse potential only for the species H™ and He using the correlated wavefunctions
of reference [264].

In section 6.4.4 we also briefly discuss the extent of the error resulting from
combining data coming from different methods, namely from the Lieb maximization
procedure [91, 121, 227] and Hylleraas-type wavefunctions [106, 264] or Quantum
Monte Carlo calculations [106, 265, 266] as explained in the next sections.

641 COMPUTATIONAL DETAILS FOR THE ATOMIC DENSITIES

For the sake of clarity, we treat in separate sections the computation of v
and Vyesp(r) for atoms.

SCE
resp(r)

SCE RESPONSE POTENTIAL

The calculation of vrsecs';,(r) for spherical atoms is based on the ansatz for the

radial part of the co-motion functions illustrated in section 3.3. The SCE potential,
v3EE(r), is then obtained by integration of eq 3.15. Finally, we apply eq 6.38 (or,
equivalently for N =2, eq 6.41) to get the SCE response potential.

This procedure is very ‘robust’ meaning that we have obtained comparable SCE
response potentials using densities of different levels of accuracy. The densities

we have used were obtained from

(A) CCSD calculations and aug-cc-pCVTZ basis set stored on a 0.01 bohr grid,
see ref [121],

(B) Hylleraas-type wave functions, see refs [106, 264], for the two-electron sys-
tems and Quantum Monte Carlo calculations, see refs [265-267], for the
others.

The cumulant function of eq 3.35 was computed either with simple interpolations
between the gridpoints of a given density or in some cases (for H™, He, and Li*)
with explicitly fitted densities, constrained to satisfy the cusp condition and the
correct asymptotic behaviour.

Group (A) regards all the systems taken into account. Group (B) regards the

2To our knowledge, accurate CCA response potentials Uresp(r) (eq 6.18) are reported here for the first
time.
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— V(M
=== Vresp()
0.2 N

FIGURE 6.1: Comparison between Uesp (1) and vfecsf,(r) for the H™ anion.

species: H™, He, Be, and Ne. The figures in sec 6.4.3 only show the SCE response
potential coming each time from the most accurate available density.

COUPLING-CONSTANT AVERAGED RESPONSE POTENTIAL
The equation used in practice to compute Vyesp(r) is

vresp(r) = l/xc(r) _?xcfho[e(r) (642)

where Uy, poie has been calculated by averaging the vy xc-nore (eq 2.60) at each r
over the interval [0,1] with an increment AA =101, The V) xc-hole Were obtained
through the Lieb maximisation procedure and taken from refs [121, 229, 268]. The
XC potentials were taken instead from Hylleraas-type calculations [106] or Quan-
tum Monte Carlo results [106, 265, 266, as they were overall more accurate. This
choice is further validated in section 6.4.4.

642 COMPUTATIONAL DETAILS FOR THE HYDROGEN MOLECULE

For the hydrogen molecule a different approach — i.e. the dual-Kantorovich formu-
lation (sec 3.2.2) — was used for the computation of the SCE potential and thus of
the SCE response potential.

The basic idea relies on finding the SCE potential as a result of a nested optimiza-
tion on a parametrized expression which has the correct asymptotic behaviour, the
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FIGURE 6.2: Comparison between Vresp(r), vresp(r) and vfecsf,(r) for the He atom. In the
inset we zoom in to allow for a closer comparison between the quantities Uresp and vresp.

correct cylindrical symmetry and models the barrier region in the midbond. From
the optimized potential one derives the co-motion function by inverting eq 3.15;
for details see ref [95].

For the CCA exchange-correlation hole potential, Uy pore, €xactly the same pro-
cedure described for atoms has been used.

The XC potential for the physical system in this case was obtained within the Lieb
maximisation procedure itself as in ref [121], namely as the optimized effective po-
tential that keeps the density fixed minus the Hartree potential and the potential
due to the field of the nuclei (see also section 6.4.4 for data validation).

6.4.3. RESULTS AND DISCUSSION

We start by comparing the coupling constant-averaged (CCA) and the SCE re-
sponse potentials for the H™ anion, in fig 6.1: we see that on average the SCE
response potential is larger than the CCA one, but there is an intermediate region,
in the range 1.7 <r <5.2, where the CCA values are above the SCE ones. Since
the SCE response potential does not contain any information on how the kinetic
potential is affected by a change in the density, this could be a region where
the contribution coming from the kinetic correlation response effects overcome the
Coulomb correlation ones, even though we cannot exclude that already the mere
Coulombic contribution to correlation is higher in the physical case. Indeed, it has
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FiGuRE 6.3: Scaled SCE response potentials, as a function of the scaled coordinate

Zr for the He series from H™ up to NeB*. In the inset, in which only the “slice” at r =0 (i.e.
the maximum values of the SCE response potentials) is plotted as a function of the nuclear
charge Z, also the hypothetical system with Z = Z_,;; (see text) is considered.

been shown that the SCE pair density can be insensitive to changes in certain
regions of the density [269].

Similar considerations hold when comparing the SCE response potential with the
one at physical coupling strength although contrary to the CCA response potential
this latter shows a maximum at the origin as well as the SCE potential does. In
fig 6.2 we report the same potentials for the He atom density. Since He is less
correlated than H™, in this case the CCA potential U5p(r) differs even more from
the SCE one. Comparing the two species H™ and He among each other, one can
further observe that the value of the distance at which the CCA response potential
of the species i has a maximum, r]’;,l, is also shifted leftward (closer to the nucleus)
when going from Z =1 to Z =2, reflecting the contraction of the density. This in-
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formation is also mirrored in the SCE limit by the shift in the a; values appearing
in equation 3.36 for the computation of the co-motion functions for the two species.

. all~ rH-
Indeed we find that - = 2.
4G ™M

In fig 6.3, we report the SCE response potential along the He series (two-

electron systems with nuclear charge Z =1,---,10). In particular, we plot the
SCE

scaled potential —“ZZ— as a function of the scaled coordinate Zr. As expected,
the response potential in the SCE limit shows an almost perfect scaling behaviour.
Deviations from the linear-scaling trend (which is an exact property of the U,Secs%
functional as discussed), are a symptom of increasing correlation effects typical of
more diffuse densities, like He and H™. Such correlation effects (curve lying below
the uniformly scaled trend for small r and above for large r ) are stronger closer
to the nucleus. In the top-right inset of this figure, we show only the values of
the maxima of the SCE response potential of each species divided by its nuclear
SCE
charge, V"“’}Z(O) as a function of Z. In this inset also a hypothetical system with
nuclear charge Z;;; =0.9110289, the minimum nuclear charge that can still bind

two electrons (see ref [106]), is included.

In the upper panel of fig 6.4 we show the SCE and the CCA response potentials
for the Be atom together with the exchange contribution vyegp,x(r) (corresponding
to A =0), and the correlation contributions obtained by subtracting vyesp, (1) from
Vresp(r) and vfgﬁ(r). As it was found in ref [262], the exchange-only response
potential shows a clear step structure in the region of the shell boundary. The
total CCA response potential also shows a step at the same position, while the
SCE response potential has a kink. The kink can be understood by looking at the
shape of the radial co-motion functions (see eq 3.36 and the lower panel of the same
figure), which determine the structure of the SCE response potential according to
eq 6.38. The SCE reference system correlates two adjacent electron positions in
such a way that the density between them exactly integrates to 1, therefore the a;
appearing in equation 3.36 are simply the shells that contain always one electron
each [104]. For the case of Be, the kink appears at the corresponding az-value,
which is very close to the shell boundary. In fact, when the reference electron is at
distance r = a, from the nucleus, a second electron is found at this same distance
(but on the opposite side with respect to the nucleus), while the third electron
is very close to the nucleus and the fourth is almost at infinity. This situation
results in an abrupt change of the pair density for small variations of the density,
as particularly the position of the fourth electron changes very rapidly with small
density variations.

Another interesting feature we can observe from fig 6.4 is that the Coulomb
correlation contribution to the CCA response potential, Uyesp,c(r), appears to be
negative inside the entire 1s shell region. Furthermore, while the total physical
response potential is always below the SCE one, the exchange part appears to be
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higher in a region quite close to the shell boundary (0.6 < 7 < 1.0). This results in
the Coulomb correlation contribution for the SCE-limit case, v;gecsl;,,c(r), to be also
negative in that region.

In the upper panel of fig 6.5 we show the SCE response potential and its cor-
relation part for the Ne atom. The SCE response potentials vfgﬁ(r) and vfgf,yc(r)
are numerically less accurate, due to the higher dimensional anqular minimization.
Nevertheless, the relation between its structure and the corresponding co-motion
functions in the lower panel of fig 6.5 is clearly visible. We also show the CCA
response potentials together with the separate exchange and correlation contribu-
tions. Differently from the Be atom, neither the total response potential nor any
single correlation contribution (CCA or SCE) is anywhere negative. Still the struc-
ture is very similar, showing two steps in the v;,5p x(r) one very tiny at around
0.1 and another at around 0.4 distance from the nucleus and two wells in the
Vresp,c(r). In fig 6.6 we show only the CCA correlation contributions to the CCA
response potential of the two species for closer comparison.

In fig 6.7 the CCA response potential for the hydrogen molecule at equilibrium

distance is shown, together with the SCE one. It is interesting to compare this
figure with fig 3(a) of ref [48], where the response potential vyesy(r) of eq 2.54
was reported, together with other components of the XC potential. The response
potential at full coupling strength for the same system is also shown in fig 4
of ref [263], albeit a minus sign and a constant shift. The overall structure is
completely different: in the case shown here there is a local minimum of vy, (r)
at approximately 1 bohr distance from the bond midpoint, while v;5,(r) shown in
refs [48, 263] has a maximum located at the nuclei.
In several examples we have now come to see that the details of the dependence of
the conditional amplitude on the coupling-parameter can affect greatly the overall
shape of the response potentials, as well as of the energy densities. It is then
important to keep these different features in mind when one wants to model the
response potential or the XC hole, depending on whether the target is a coupling-
constant averaged quantity or the same quantity at full coupling strength.

6.4.4. EXCHANGE RESPONSE POTENTIAL FOR N=2 AND DATA VALIDA-
TION

It is common use in DFT to separate potentials and energy expressions into ex-
change and correlation contributions. Analogously to the total XC potential, the
exchange potential is defined as the functional derivative of the exchange energy,
which is in turn defined as

Exlnl = (¥s,..., N)|[ Vool ¥s(1,...,N)) = Ulnl. (6.43)
For a two-electron closed-shell system we have
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— Viesp(0)

SCE
B Vresp,c(r)
— Vresp(r)
— Vresp,c(r)

""" Viesp,x(1)

FIGURE 6.4: Total response potentials Vresp(r) and vfecs%(r), and their components

Vresp,x(1), VUresp,c(r) and U,Se(‘;%c(r) (upper panel) and radial co-motion functions (lower
panel) for the Be atom.
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FIGURE 6.5: Total response potentials Vresp(r) and vfecsf,(r), and their components

Vresp,x(1), Vresp,c(r) and ufg’;’,,,c(r) (upper panel) and radial-co-motion functions (lower

panel) for the Ne atom.
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FiGure 6.6: Correlation parts of the CCA response potential, Uresp,c, for the Be and the Ne
atoms.
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FIGURE 6.7: Comparison between Tyesp(r) and vfgf,(r) for the Hy molecule at the equi-
librium distance, plotted along the internuclear axis, origin of the axes being at the bond
midpoint. In the top-right insertion the CCA response potential of Hy is zoomed in to allow
a closer comparison with its response potential, vresp(r), shown in fig 3(a) of ref [48].
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FIGURE 6.8: Comparison between Tyesp(r) and Uresp,c(r) for the H™ atom in order to esti-
mate the error coming from numerics and the use of different sources for vy¢(r) and w(r).
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FIGURE 6.9: Comparison between Uyesp (1) and Dyesp,c(r) for the He atom in order to estimate
the error coming from numerics and the use of different sources for vy (r) and w(r).
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Ey[n]=-

lfw (6.44)

4 lr—r'|

which implies vyegsp,x(r) =0. In sec 6.4 we have shown the CCA response potential
for some atoms combining quantities coming from different sources (see eq 6.42);
namely refs [106, 265, 266] for the XC potentials (or their separate contributions),
and refs [121, 268] for the CCA energy densities. In the case of the Hy molecule,
instead, both the total XC potential and the CCA energy density used are from the
latter source.

In order to give a feeling of how our results could be affected by computational
inaccuracies we show in fig 6.8 and 6.9, the difference vyesp x(r) = vx(r) —2wy(r),
together with the total Uyesp(r) and Vyesp,c(r) = Vyesp(r) — Uresp,x (). The fact that
the first quantity is not exactly zero and the last two are slightly different gives
an idea of the numerical errors we have. As it can be noticed, the difference is
between 1-10% of the quantity of interest, V¢, (r), and the discussion in sec 6.4.3
is not affected by this error range.

65 SIMPLE MODEL FOR A STRETCHED HETERONUCLEAR DIMER

The purpose of this section is to analyse the response potential in the SCE limit
for the very relevant case of a dissociating heteroatomic molecule, where the exact
response potential is known to develop a characteristic step structure [46, 48, 50,
51, 54, 270, 271] as discussed in sec 2.2.1.

Although numerically stable KS potentials have been presented and discussed
in the literature for small molecules [61, 63, 272], an accurate calculation of the
SCE potential for a stretched heterodimer is still not available. In fact, while with
the dual Kantorovich procedure [95, 96] it is possible to obtain accurate values
of VeSeCE[n] for small molecules, the quality of the corresponding SCE potentials,
particularly in regions of space where the density is very small, is not good enough
to allow for any reliable analysis.

We then used a simplified one-dimensional (1D) model system, where only the
two valence electrons involved in the stretched bond are treated explicitly. Several
authors have used this kind of 1D models, which have been proven to reproduce
and allow to understand the most relevant features appearing in the exact KS
potential of real molecules [51, 54, 270, 271]. Here we approximate the density of
the very stretched molecule as just the sum of the two “atomic” densities

R R
n(x) =ngy (x—5)+nb X+ 5) =
S L L 1] (6.45)
2 2

where a and b mimic the different ionization potentials of the “atoms” (pseudopo-
tentials or frozen cores) and the density is normalized to 2. We have chosen a > b,

105



6. RESPONSE POTENTIAL IN THE STRONG-INTERACTION LIMIT OF DFT: ANALYSIS AND
COMPARISON WITH THE COUPLING-CONSTANT AVERAGE

therefore the more electronegative atom will be found to the right side of the origin
(at a distance +§ from it) and the less electronegative to the left.

651 SCE RESPONSE POTENTIAL FOR THE MODEL STRETCHED HET-

ERODIMER
As we have only two electrons, there is only one of the “SCE shell" borders, a;,
appearing in eq 3.32. We then drop the subscript "1" and use instead “R "

ar

agr: f n(x)dx=1 (6.46)
—00

to stress that the distance a; is a function of the separation between the centers

of the exponentials in eq 6.45.

We also write down explicitly the only comotion function for the 1D two-electron

case (compare eq 3.32).

NN, (x) +1] x<ag

fo= { NN, (x) - 1] x> an. (647)

We have highlighted in the previous section that the border of a shell that con-
tains one electron coincides with the reference position at which one of the co-
motion functions diverges. The same is true when x — ap, except that in the
one-dimensional case the electron that goes to infinity has to “reappear” on the
other side, limx_,alii f(x) = Foo. Moreover, as we have only 2 electrons, we can use

SCE
resp(T),

eq 6.41 to compute v

vSCE (x) = —vSCE (f () + v5CF (ap), (6.48)

which further shows that
Vicen(ar) = v5°F (ap). (6.49)

In fig 6.10 we show the SCE response potential compared to the “exact” Ve, (X)
for the model density of eq 6.45 at internuclear separation R =38, using a=2 and
b=1. In the same figure, we also show the local-density approximation (LDA) CCA

response potential ?fgg(x) computed, as in ref [59], via eq 6.19,

Ty (1) = viPA(x) - 2524 (). (6.50)
We stress that eq 6.50 is the correct definition of ?fgg(x), since the energy den-
sity in LDA does not have any gauge ambiguity, being given exactly in terms of
the electrostatic potential associated with the CCA exchange-correlation hole of
the uniform electron gas [273]. For the one-dimensional €24, we have used the
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FiGure 6.10: SCE response potential compared to the “exact” and the LDA Vresp(x) for the
model density in eq 6.45 with a=2, b=1, and R=8. The red dashed line highlights the
position where x = ap.

parametrization of Casula et al. [274], in which the electron-electron Coulomb inter-
action is renormalized at the origin [273], with thickness parameter b =0.1. Notice
that the SCE response potentials evaluated with the full Coulomb interaction 1/|x|
or with the interaction renormalized at the origin [273] are indistinguishable on
the scale of fig 6.10, since in the SCE limit the electron-electron distance |[x— f(x)|
for a stretched two-electron “molecule” never explores the short-range part of the
interaction.

The “exact” Vyesp(x) has been computed by inverting the KS equation for the
doubly occupied ground-state orbital v/n(x)/2, disregarding the external potential
given by attractive delta functions located at the “nuclei”, and assuming that, for
the stretched molecule, the interaction between fragments is negligible (which is
asymptotically true), while the contributions coming from the Hartree potential on
each fragment (the self-interaction error) are exactly canceled by the XC hole. In
other words, when R is large, we have viyc(X) = Vresp(X) = Ve kin(X) + Upesp (X).

We see that, as well known, the LDA response potential completely misses
the peak and the step structure of the “exact” Tresp(%), being, instead, way too
repulsive on the atoms [59], and following essentially the density shape. The SCE
response potential, instead, even though clearly not in agreement with the “exact”
one, shows an interesting structure located at the peak of 7;.5,(x), and also a sort
of step-like feature.

In fig 6.11 we illustrate the behavior of the SCE response potential alone as
the internuclear separation R grows, for the same values of a and b of fig 6.10.
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We see that the SCE response potential, contrary to the exact one, does not satu-
rate to a step height equal to the difference of the ionization potentials of the two
fragments, AI, =|I,—Ip|. On the contrary, v;5%(x) goes (although very slowly)
to zero in the dissociation limit, similarly to what happens for the midbond peak
in a homodimer, as explained in refs [55, 104]. This has to be expected, in view
of the fact that, in the SCE limit, we are only taking into account the expectation
of the Coulomb electron-electron interaction, which, when considering two distant
one-electron fragments as in this case, is a vanishing contribution [55].
In appendix B, we use an asymptotic model for the co-motion function of eq 6.47
to derive the dependence of the peak of the SCE response potential on the inter-
nuclear distance (see eq B.4 and discussion therein).
The fact that we still observe the SCE response structure for quite large R values
is related to the non-locality of the SCE potential and to the long-range nature of
the Coulomb interaction. A kinetic contribution to SCE is clearly needed, some-
thing that is being currently investigated by looking at the next leading terms in
the 1 — oo expansion [34, 80].

The peak structure of the SCE response potential is located at ap of eq 6.46,
which is given by

R(a-b) R (1— f—b)
ar=— =— = (6.51)

_2(a+b)_2(1+ ;_;)

If we compare this result with the one for the location of the step in the exact KS
potential, given by egs. (27) and (29) of ref [51], we see that the two expressions
Ip
differ by the term \/%% which becomes comparatively less important as the
bond is stretched. In fig 6.10 we have reported the case a=2, b=1, and R =8, for
which eq 6.51 gives ar :‘33 and the correction term for the actual position of the
step [51] , which is also the position at which the kinetic peak has its maximum,
Ip

I

I
Xstep = Xpeaks gives \/%m =~ —0.23. The reason why, in spite of this significant

correction, in fig 6.10 the peak of the “exact” D5 (x) visibly coincides with ag will
be clear in the following section 6.5.3.

652 BEHAVIOUR OF THE CO-MOTION FUNCTION FOR INCREASING IN-
TERNUCLEAR DISTANCE

The features of the SCE response potential can be understood by looking at how

the co-motion function changes with increasing internuclear separation R. In the

1D two-electron case considered here, eq 3.11 becomes

o = 2

= . 6.52
n(f(x) (6:2)
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Ficure 6.11: SCE response potential for the model density in eq 6.45 with a=2, b=1, and
increasing internuclear distances, R.

For R>> 0, when the reference electron (e;) is in the center of one the two “atomic”
densities, e.g., at x = —g, the other electron (ez) is in the center of the other “atom”,
f(—%) = g. This is a simple consequence of the fact that the overall density is
normalized to two and, if the overlap in the midbond region is negligible, for
symmetry reasons, the area from —g to g is exactly equivalent to the sum of the
areas outside that range.

We see that after a critical internuclear distance, R, at which the overlap between
the densities of the separated fragments becomes negligible, the slope of the co-

motion function when e; is in x= —g becomes equal to

n(-3) m(=3) b
@l p=—2=e—2 -2 R>R, (6.53)
2 n(3) na(3) 4
so that there is a region where f'(x) = %, and, similarly, another region where

f'(x) = %, by interchanging e; with e;,. Notice that the extension of these regions
is different for the two branches of eq 6.47 and it is wider when the reference
electron is around the less electronegative “atom” as it can be seen in fig 6.12,
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FiGuRe 6.12: Derivative of the co-motion function for the model density in eq 6.45 with
a=2, b=1, and increasing internuclear distances, R.

where we show the (numerically) exact

na(x— %) +npx+ %)

"(x) = .
/ na(fx) =8+ np(f0)+5)

(6.54)

There, the two regions clearly appear as left and right plateaus, with their ex-
tent increasing linearly with R3 These plateaus are the signature of molecular
dissociation: they are absent at equilibrium distance, and start to appear as the
overlap between the two densities is small. We see from eq 6.53 that they encode
information on the ratio between the ionization potentials of the two fragments.

653 CAREFUL INSPECTION OF THE EXACT FEATURES OF THE KS pPo-

TENTIAL FOR THE DISSOCIATING AB MOLECULE
The model density n(x) of eq 6.45 corresponds to an asymptotic simplification of
different models that appeared in the literature to study the KS potential in the
dimer dissociation limit [51, 54, 270, 271]. Here we review in detail the properties
of the KS potential and the two single contributions that can be extracted from this
model, v kin(x) (eq 2.53) and vyesp(x) (eq 2.54, also showing that a second peak

3In appendix B, we show that the sum of the left and right plateaus goes asymptotically like 2 R.
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in the kinetic potential appears on the side of the more electronegative “atom”, a
feature that seems to have been overlooked in previous studies. In order to study
the dissociation regime we use the Heitler-London wavefunction:

Wy (X1, X2) = (Palx))p(x2) + Pp(x1)Palx2)), (6.55)

1
V2 +Sap)

where Sap = [¢a(x)ppdx, and Pup) = \/%b)e_%m'x_(”g'. To compute the kinetic
potential, in the dissociation limit, we can use eq 2.58 and the conditional amplitude
coming from the Heitler-London wavefunction considering Sap = 0, which yields the
well-known expression [51, 54]

1 d
vekin(0) = f =@ dx,
1 (Pp (D) - Pa0P) ()

2 (P02 +¢p02)°

(6.56)

where we have used the fact that vg;,(x) = v kin(x) as the kinetic KS potential is
zero for a closed-shell two-electron system. Analogously, Vresp(x) can be obtained
from vy_1 of eq 2.57,

1 d 2
Vresp(X) :Ef|d_xg®HL(XZ|x” dxo+

+f V94 (x,)|® pyp (x| 12dx, — EN 7L =

1 (a , b? )\ @
= —m (g(/)b()(f) + E(,bu(X) + ?, (657)
where vﬁ‘;d(x) =-46(x- g) - gé(x+§) and EN-1 = —%2. Comparing these two

contributions with the KS potential obtained from the density by inversion (sub-
tracting the external potential due to the attractive delta peaks at the “nuclear”
positions), we have in this limit, as already discussed,

VHzxc(X) ~ Vresp (X) ~ Ve kin(X) + Uresp (), (6.58)

since Vcona(x) goes to zero when the fragments are very far from each other.t

In fig 6.13 we show the potential obtained from the inversion of the KS equation
with its two components v in(x) and vpesp(x).

Note that the response component itself can be split into different contributions,

4 Recalling the discussion on sec 6.3.1, we see that since, for a two-electron model in the dissociation

Lo V%Q 1 ~ 00, 1 . .
limit, hy ~——2 then [y dA(®,1h)1571) ~ 5 Vg kin Which plugged into eqs 6.28 and 6.29 correctly
gives Vyc pole ~ Vxc-hole @Nd Vresp (X) ~ Vg ki (X) + Uresp(X), as contained in eq 6.58.
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FIGURe 6.13: Hartree-XC potential, vgxc(x), and its contributions v i, (%) and vresp(x)
for a=2,b=1, R=8. The red dashed line highlights the position where x = ag

namely Vyesp = Vresp,x + Uresp,c. However in sec 6.4.4 we have shown that vyesp x =

v"P =0 for closed shell two-electron systems as it is the case here. Moreover,

x-hole
_ _resp resp . . .. .
Uresp,e = Ve_pote t Ve kin’ however in a dissociating two electron-system, since v¢ong

is going to zero, the correlation hole contribution is vc_pore Vx-note = _Uz_H to fully
compensate the self interaction of the Hartree potential. And its response part
vanishes in this limit. In conclusion, the rising of the step structure is a purely
kinetic effect, i.e.

Vresp(X) ~ VLo, (%) (6.59)

Given the simplicity of the model, it is easy to obtain exact expressions regard-

ing each component of the potential and their maxima, inflection points, and so
forth. Some of these relevant analytic expressions are listed in tables 6.1 and 6.2.

By looking at the table, one sees, for example, that the peak of the total XC
potential is not located where the peak of the kinetic correlation builds up. In
particular the maximum of the Hartree-XC potential is found at

R (a-Db)

2 (6.62)

Xpeak,Hxc =

which is exactly ag (see eq 6.51 and compare also fig 6.10). Thus, the Hartree-XC
potential reaches its maximum when the density integrates to one electron (or the
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TABLE 6.1: Some of the relevant analytic features of the analytic 1D model dimer for x < g.

The distance xéle)ak is the position at which the kinetic potential, v, r;,(x), has a maximum

in between the two nuclear centers; xé%ep

potential, Uresp (X), has an inflection point. With the subscript “flex” we indicate the inflection
point of both the total Hartree-XC potential and the kinetic potential; they are distinguished
via an additional subscript, respectively “Hxc" and “k". Finally, xeq is used to label the x-
value at which v i, (x) and vresp(x) crosses.

is the (coinciding) position at which the response

_a),_R
Palx)=/Ge 272! n(x) = [pa (D)% +1dp 0
az=b
_bi R 2
dp(x) =1/ Fe 2172 loy=%; a=ab
R dve kin () _ dzUresp(x) MO (a-b)R+2In L o
r<z dx lx(l) T dx? lx(,l) Xpeak = 2(a+b) (6.60)
peak step

_1(atb
Uckm(xpeak) §( ) )

1 2_p2
resp (o) = 3 5

Vi e (o) = 33 Ba=b)(a+D)

g kin () -0 _ (a-b)R-2In 2a*¥3a
Tlx(l) - Mex, kW = " aash

flex, k
g kin () - _ (a-b)R-2In 20730
a2 lx(z) =0 Mex, k@ =~ 2ash)

flex, k
dvgye(x) (a-b) R
Tdx peak Hxe=0 Ypeak,Hxc = (a7b) 2 ~ IR

2 2

[ rey) _ (1) _ (a-b)R-2In @
Cod? lxﬂle)x Hxc =0 xﬂeX’ch - 2(a+b)

(a+b-V +ab+b (a+b-V a~+ab+b-)

w| , -0 @) _ (a-h)R-2In {
dx? xﬂze)x Haxc - flex, Hxc — 2(a+Db)
(a-b)R+2In2+2In —— u(b )
Ve kin(Xeq) = Uresp(Xeq) Xeq = 2D
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TaBLE 6.2: Some of the relevant analytic features of the analytic 1D model dime for x > g
in analogy with the ones listed in table 6.1, but appearing in this case somewhere far from

the midbond on the side of the more electronegative fragment, are listed. For example, xl()ze)ak

is the second maximum of the kinetic potential, eq 6.61 (top-right entry of the second part),
which also coincides with the second inflection point of the response potential as argued in
the main text.

_a,_R
¢a(x): Qe Z‘X 2‘ n(x)=|¢a(x)|2+|¢b(x)|2
2
azb
b B )
¢b(x):\/ge 2zl In=%; a=ab
b
R dve,kin (%) _ d%vresp(x) @ _ (a+thR-2lnk
2 e =T lxggp Ypeak =~ 2(a-D) (6.61)
2
@2 y_1(a=b
Vc'ki”(xpeak) -8 (T)
2 1
Vresp(xétép) = Uresp (xétép)
2 y_1
VHxc (xpeak) =3;B8a+b)(a-b)
e in@ (a+b)R—21n 2b+¥3D)
Tz L =0 Mex k® =~ 2@b
flex,k )
d%vekin®) [ -0 _ (a+b)R—21n@
I Mex k® =~ @b
A% VHx () @3) (u+b)R+21n(a—b+ﬂ7\/2—T+b2)
= Ix(s) =0 X e = —
flex, Hxc )
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correct integer number of electrons in a general two fragments case) because this
is where the two fragments must be detached from one another. From a different
perspective, this is a manifestation that the response and the kinetic correlation
contributions in the dissociation limit are not independent and that their sum can
be sometimes more meaningful than the separate contributions. Also, by playing
around with the expressions in tables 6.1 and 6.2, one realises that there can be
misleading coincidental features. For example, the last entry of table 6.1, which is
the analytic expression for the distance at which the kinetic correlation potential
and the response potential equate, x4, is such that the two contributions v i (x)
and vyesp(x) crosses exactly at ag if a=2 and b=1 like in fig 6.13, but this is
not a general feature. Similarly if we choose a= gb then the height of the kinetic
peak becomes equal to the height of the step and so on.

Note here that the features listed in the table are obtained for the zero-overlap
case, Sap =0, in eq 6.55. Nonetheless, they should become asymptotically exact
in the dissociation limit.

Another feature that came to our attention and that — to the best of our knowl-
edge — had not been discussed before, is the fact that the kinetic correlation
potential has a second peak on the side of the more electronegative atom. This
second maximum is located where the second inflection point of the response po-
tential is, see fig 6.13 and eq 6.61 in tab. 6.2. To understand the appearance of
the second peak, we can identify two regimes, A and B, by the leading exponential
coefficient: for example, in our case, in the region starting from —oo the density
of the fragment with the smallest coefficient, ny(x) is larger than the other, ng(x);
approaching the A center there is a point in which n,(x) becomes larger than the
other density. This transition between regimes determines both the kinetic peak
and the response step. In particular the distance, x' at which the orbitals, ¢; (or
the fragment densities, which are simply their square) equate

Ga(xV) = pp(xV), (6.63)

is found to coincide with that of eq 6.60 in the table, i.e. the maximum of the
first kinetic peak as well as of the flex coming from the building up of the response

potential step, x1) = xr()lgak =x1)  Note also that this distance is always somewhere
1 R

step*
in between the two centers of the fragments, —g <Xpeak < 2
Nonetheless, since np(x) is asymptotically dominating, by going further in the
direction of +oo, the ‘B regime’ is to be encountered again and the two fragment
densities, though both very small in magnitude, will be equal again, at some point,
x@

Pa(x?) = ¢y (x@). (6.64)

At this distance also another kinetic peak is appearing as well as another flex

coming from the exhaustion of the response potential step or, in short, x@ = x@ =
peak
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xéfép. This is in agreement with the observation in the work of Baerends and

coworkers that steps in the response potential and peaks in the kinetic correlation
potential are always related [42, 261]. Note that this secondary peak is not visible
when looking instead at the CCA response potential, again showing the importance
of keeping in mind which contribution of the XC potential one is targeting when
designing approximations.

6.6. CoNCLUSIONS

In the present work we have derived the modulus squared of the conditional ampli-
tude in the 1 — oo (SCE) limit as well as a consistent definition of its corresponding
response potential. In the simple 1D model of a dissociating molecule (eq 6.45), it is
found that interesting similarities between dissociation features of the exchange-
correlation potential and SCE features, such as the behaviour of the co-motion
function for increasing internuclear distance or the structure of the SCE response
potential itself, can be established. For example, in the dissociation regime, the
slope of the co-motion function is determined by the ratio between the ioniza-
tion potentials of the fragments (compare fig 6.12), whereby the step height of the
exchange-correlation potential is determined by their difference. In addition, the
co-motion function confers to the SCE response potential an asymmetric structure
which indicates on which side of the system the more electronegative fragment is
located.

Further analyzing the different components of the exchange-correlation poten-
tial that are relevant in the dissociation limit, namely v;esp and v kin, OF Vresp,
we have identified the presence of a second peak of lower intensity in the kinetic
correlation potential on the side of the more electronegative atom and, by compar-
ison, we have observed that the peak of the coupling-constant averaged response
potential asymptotically coincides with that of the SCE response potential itself.
Our work shows that the SCE framework encodes more than few pieces of infor-
mation on the physical system and that useful guidelines in the design of highly
non-local density functional approximations (based on integrals of the density) can
be drawn from it. A step further in this direction will be to study exact properties
of the kinetic potential that appears as the next leading term (~ A71/2) in the ex-
pansion of the adiabatic connection integrand in the A — oo limit [34], as well as

spin effects that have been shown [80] to enter at orders ~ e VA,

We have also reported, for some small systems (He series, Be, Ne, and Hj),
the response potential coupling-constant averaged along the adiabatic connection;
the study of this different response potential complements that of the response
potential at full coupling strength and could provide other hints for the construction
of approximate XC functionals, especially of a new generation of DFAs based on
local quantities along the adiabatic connection [6, 121, 229, 232].
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SUM-RULES OF THE RESPONSE
POTENTIAL IN THE

STRONG-INTERACTION LIMIT OF
DFT

The response part of the exchange-correlation potential of Kohn-Sham density
functional theory plays a very important role, for example for the calculation of
accurate band gaps and excitation energies. Here we analyze this part of the
potential in the limit of infinite interaction in density functional theory, showing
that in the one-dimensional case it satisfies a very simple sum rule.

7-1. INTRODUCTION

The investigation of the exact properties and features of v,.(r) has always played
an important role in understanding and building approximations [42, 46-48, 51, 52,
54, 55, 61-63, 261, 265, 266, 270-272]. In this work we focus on the XC potential
in the SCE limit, 2% (r), and particularly on its response part, which has revealed
several interesting features as discussed in the previous chapter.

The response part of the XC potential has been shown to be critical for the correct
description of virtual KS orbitals’ levels, needed for the calculation of molecular
excitation energies in TDDFT [58, 59], as well as for the proper description of
electron localization in a dissociating heteronuclear molecule [46-48, 51, 54, 262,
272] and for the construction of the Levy-Zahariev potential [230].

Here we show that, in cases in which the SCE limit can be solved exactly (one-
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dimensional and spherically symmetric systems), its response potential satisfies a
simple sum rule, see Egs. 7.6, 7.16 and 7.20.

7-2. SUM-RULE OF THE SCE RESPONSE POTENTIAL
We can use 3.15 and 6.38 to derive the following expression for the gradient of the
SCE response potential with w(r) =1/ x|

2

-1
Y (((Vw)r - ) - (Vw)r - £(r) (1 - V)
1

SCE
Vv Uresp

I}
™=

(Vw)(r—£;(r) - Vi (r) (7.1)
2

where (Vao)(r = £;(r) = (Vaw )| o r g,y = ~Topod

out the expression of the SCE response potential per component in Cartesian
coordinates

To clarify, let us work

a” rsegg(r) Z Z ry— lv(Tg) M ”,(1‘) (72)

v=li=2 lr— f;(r)|
For the case D =1, the response potential can now directly be calculated as an
integral. In the following sections we are going to prove the exact behaviour of the
integral of the SCE response potential corresponding to an N-electron 1D density
and the one corresponding to a spherical two-electron density. As discussed in
chapter 3, these are the two cases in which the co-motion functions are the optimal
maps.

7-2.1. SUM-RULE OF THE SCE RESPONSE POTENTIAL FOR A 1D DENSITY
The sum-rule of the SCE response function in 1D (for Coulomb interaction) relates
the integral over the response function to the number of electrons. To illustrate
the idea, we will first consider the simplest situation: a symmetric 2-electron den-
sity. Next we release the symmetry constraint and then generalise to an arbitrary
amount of particles.

SYMMETRIC TWO-ELECTRON DENSITY IN 1D
In the case of a symmetric 1D density with only two electrons, we see that a; =0
and the SCE response potential can be expressed as

dy f#)z (x < 0)
,SCE —oo (y=f)
Vresp (X) = 7o) (7.3)
e —y (x=0),
7 (y=fm)

118



7.2. SUM-RULE OF THE SCE RESPONSE POTENTIAL

where we used that the potential can be obtained by integrating from either side,
as the response potential is symmetric.

Let us only consider the negative side of the SCE response potential. By
interchanging the order of integration, we find for the integral over the response

function
0 !
f dx v3CE (x) = f dy 20 (7.4a)
—o0 o (y- )

We can also make a change of variables u = —f(y), keeping in mind that, due to
the property in 3.12, f71(x) = f(x)

0
f_ gloxu?egg(x) f du f(i)(”) : (7.4b)

We can combine these two expressions to write the integral over the SCE response
function as

fdvaCE fdu Y- fm__1_ v =l- (7.5)
o o () 2yofWle 2

As the SCE response potential is a symmetric function, we find that the integral
over the real line gives

f_ dxvpSy (x) = 1. (7.6)

GENERAL TWO-ELECTRON DENSITY IN 1D
In the case of a non-symmetric density we now have almost the same expression for
the SCE response potential as in 7.3, except that we need to cut it at @y = N, (1)

instead of zero
fd f ) (x<a)

- (y-f(y)°

Unsp D=1 o o) (7.7)
f dy—L (x> a),
x> (y-fw)?

where we used again that it does not matter from which side we do the integra-

tion. Though physically reasonable, we need to show explicitly that vrSe(S:pE( 00) =

pSCE

Vresp (+00). To this purpose, let us work out the following identities

dN,(x) = n(x)dx, (7.8a)
dN;'0v) 1
dv n(N;'w)

(7.8b)
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Now we work out the response function at x = +oo by performing the full integral

a / oo !/
v3CE (o0) = fyfi)z—fdyf#)g
—o (y=f)" Ja (y-fW»)
=fldv 1/n(N;'(v+1) :
0o (Nj'm)-Nlv+D)
_fzdv 1/n(N;'(v-1) :
1 (NI -NYv-1)

1
/dv 1 5
0 (N;'m)-Nlv+D)

1 1
" (n(Ne‘l(w ) n(N;I(v)))
_ [ 1 !
AN -Nv+D)

= 0. (7.9)

This explicit demonstration trivially generalises to general N by including a sum-
mation over the contributions from each particle.

Now let us first consider the integral over (—oo,a;). Again by changing the
order of integration, we find

ay !
dx vresp (x)=ayv(ay)— dyyf—(y)z. (7.10a)
o (y-f)
The integral over (a;,00) yields
(e e] !
fdx v?eEE(x) dy M8 -a1v(ay), (7.10b)
@ o (y-fm)?

so the full integral over the response function becomes

(e ay !
fdxufeg,f(x) (fdy f ) NS (7.11a)
~oo y-fm)?*
Now making the transformation u = f(y), we obtain the following alternative ex-
pression
o0 a) o0
fdxvrseng(x) ( du—fdu)fL)z. (7.11b)
—00 —00 a (f(u) — u)

If we now take the average over 7.11a and 7.11b, we find again that the full integral
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yields
!
fdxvrsegg _ %(fdy f )J’f W-f» _
- fy)°
1 ¥ a )
= _— :1. 712
Z(y fmla y=fyl-o 7.12)

ARBITRARY AMOUNT OF ELECTRONS IN 1D

As the number of electrons exceeds two, we deal with a set of co-motion functions.
As we do not have f = f~! anymore, we need to find the inverses of each co-motion
functions in 3.32. These are

£ )_{Nel(Ne(x)—i) for x<a;

713
N;Y(Ne(x)—i+N) for x>a;, ( )

where we see that, as expected, they are also co-motion functions, fi_1 = fn-i-
Now let us consider the general SCE response potential in 1D

1 X I ’( )
ras () = Z(@(di—x)fdy+9(x—di)/dy)—f’ N VALY
i=1 —oo x y=fi)

where the expression for x > a; is again justified by 7.9 for each f;.
By interchanging the integration again, the integral over the SCE response
potential can be expressed as

j:czx vrseng(x) ([ dy - fai ) yy];((yy))) (7.15a)

Making the variable transformation u = f;(y), we find

(] __1
fdxvrseng(x) ( du fdu)f’—(u)2
—oo Jai ) (f7(w) - u)
N-1 an-i [ee) .
:Z( évu—/du)ﬁv‘—’(”)z. (7.15b)
i=1\J=oo Jani ) (fy-i(w) — u)

As the summation can be done in any order, we can combine it with the previous
expression to find

fﬁxui&ﬁ(x) (f f )yf(y) fiy) =N-1, (7.16)
—o0 (- fim)?

which proves the interesting property that the integral over the SCE response
potential for an N-electron 1D density (and Coulomb interaction) gives N —1.
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7.2.2. SUM-RULE OF THE SCE RESPONSE POTENTIAL FOR SPHERICAL

TWO-ELECTRON DENSITIES
The differential equation for the response potential 7.1 in the spherical two-electron
case is readily worked out as

JSCE [
&V = o (717)

where |r—{(r)| = r + f(r), since the electrons need to be situated opposite to each
other with respect to the origin to minimise their repulsion. Using the standard
gauge again, we have

B = f dr — uSCE (7.18)

Uresp resp

We now evaluate the following integral over the response potential

o SCE ° rf'in
j(;ds Uresp (S) \[Odl" m (7196)

Finally, as seen in the 1D case, via the usual transformation u = f(r), we write
equivalently the last expression in the above equations as

o SCE fw
fodsvresp ()= _[du(u+f(u))2 (7.19b)

By averaging between the two, one obtains that the integral over the positive real
line of the SCE response potential for a spherical two-electron density gives

o SCE L -ufw 1
fodrvresp =3 | a5 (7.20)

7.3. CONCLUDING REMARKS

We have analyzed the SCE response potential and shown that it satisfies a simple
sum rule in the one-dimensional and in the N =2 spherically symmetric case. This
latter case might be a special one, as it is mathematically equivalent to a 1D case,
thus requiring further investigation for a generalisation to 3D systems. Additional
investigations are also required whether the sum-rules could also be established
for the physical interacting system, either with or without the kinetic part of the
response potential.
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KINETIC ENERGY
DENSITY-DENSITY FUNCTIONAL
THEORY

The contents presented in this chapter are a collection of preliminary results and
thoughts that represent a follow-up study — in collaboration with I. Theophilou,
M. Ruggenthaler, N.Lathiotakis, A. Rubio — on a first investigation in the discrete
case [275]. Many of the ideas shared here are still quite unsettled and we do not
exclude that some fundamental aspects might have been overlooked. Nonetheless,
we decided to include such contents in this thesis work as we believe that they
still raise some interesting points and provide some hints for future directions.
The motivation for this work stems from the consideration that the design of
approximate density functionals that can correctly account for the kinetic contri-
bution missed by the KS kinetic energy functional is somehow missing from the
Density Functional Theory literature.’
In practice, the way in which the kinetic correlation contribution is typically tack-
led is via integration over the adiabatic connection.
It is little debatable that the availability of an explicit functional of the kinetic
energy in one-body reduced density matrix (1RDM) functional theory [276] repre-
sents one of the most striking (theoretical) advantages of such theory over DFT.
In chapters 2 and 6, we have touched upon certain features of the XC potential
emerging in the case of a dissociating molecule that have a kinetic origin.
In particular, we remind here that these contributions can be energetically neg-
ligeable, for example: in a dissociating Hydrogen molecule the correlation kinetic

T0r at least, we are not aware of any work where this contribution has been modelled per se.
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8. KINETIC ENERGY DENSITY-DENSITY FUNCTIONAL THEORY

energy contribution is vanishing or in a heteronuclear molecule, the rising of the
step structure comes from the response component which does not enter directly in
the computation of the XC energy. Nevertheless, their occurrence inside the KS
potential is crucial to have the density converge to correctly separated fragments
upon dissociation, preventing unphysical fractional distribution of electron charge
between the fragments.

Here, we ask ourselves whether it is possible to facilitate the modelling of
the kinetic correlation contribution in approximate functionals, by introducing a
position-dependent mass to which the kinetic energy density, 7, is associated. In
such a way, the functionals of interest become not only density functionals but
bifunctionals of the density and of the kinetic energy density, F[n,7].

The invocation of a position-dependent mass of the particles in quantum mechanics
is not at all new and there is a vast related literature in several different fields
(see e.qg. reference [277] and references therein). Recently, a position-dependent
mass has been argued to appear naturally in the context of thermal DFT [278].
In the present context, schematically, we explore the possibility of the mapping

{v(r), m(r)} — {n(r), T(r)} (8.1)

external quantities internal quantities

between the pair density-kinetic energy density as “internal" quantities and that
of external potential-position dependent mass as “external' quantities. In other
words we would like to build a kinetic energy density-density functional theory
(keDFT). However, whether a theorem analogous to the Hohenberg-Kohn one for
such a mapping can be established is not clear at the state of the art.

Moreover, aiming for connecting the interacting system to a fictitious non-interacting
system in the Kohn-Sham spirit (keKS), in addition to a proof of 8.1 (“{v,m}-
representability of the pair {n,7}"), we also need to have a non-interacting system
delivering the same pair of internal quantities as the interacting one, by means
of a different pair of external quantities, namely an effective potential v*¢ and an
effective mass m*¢. In summary, we require the two bijective mappings between
pairs

{v(r), m(r)} — {n(r), T(r)} — {Vke(r), mke(r)}. (8.2)

We signal at this point that the use of meta-GGA functionals [123, 279, 280], within
the generalised Kohn-Sham approach (GKS) [281], is closely interlaced with the
feasibility of the mapping 8.2.

For example, it has been argued [282] that the GKS method for solving SCF equa-
tions containing a meta-GGA functional can be physically interpreted as intro-
ducing a position-dependent mass in the kinetic energy operator and that, to first
order in the density, there is no difference in going from the local KS Hamiltonian
(OEP method [33]) to the GKS one. However, the discussion on the subject is far
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from settled, and many implicit assumptions (see e.g. reference [283]) — onto which
the increasingly popular use of meta-GGA density functionals relies — still need
to be addressed and, hopefully, understood.

8.1. FUNDAMENTAL CHALLENGES

Like any energy density, also the kinetic energy density is not a uniquely defined
quantity. Therefore the first step in the direction of constructing a kinetic energy
density-density functional theory is to decide which gauge we want to consider.
The most common definition of kinetic energy density is the positive definite
expression
N

P(r) = ) ;f IV, ¥(ro, -, xy)>dry---dry (8.3)

where m(r) is just the unit constant if we are dealing with the interacting system.
Equation 8.3, within the assumption that the ground state wavefunction be real
(aside from a trivial phase factor), can be rewritten as

N V, |V JERRIN 2)2
Zf( r[¥(ro,--,xn)%) drydr
8mr) % ¥ (ro,---,xn)I?

N
= Sm(r)ZfV,-D(ra,...,xN)-V,.IOgD(rU,...,xN)drz...drN (8.4)
o

P(r)

with D(ro,--,xn) == |¥(ro,---,xn)|> and can be interpreted as a measure of in-
formation in the context of information theory (see for example refs [284, 285]).

The other common expression is the one with the Laplacian operator. However,
while in the usual case the placement of the mass w.r.t. the nabla operator is
irrelevant, here we have two possible definitions, namely

N
2m(r)

™ =- wa*(ro,--- XNV (ro, -, xy)drp---dry (8.5)
o

and

2 = —g;f‘l’*(ra,m XNV, ﬁvr‘l’(ra,--- ,xn)dro---dry. (8.6)

In the present work, we will only consider mostly the kinetic energy density 7%, for
its aforementioned properties, and sometimes the definitions 7/! and 7%%(mainly
for comparison purposes). Of course, infinitely many other kinetic energy density
definitions are possible. Furthermore, it must be noted that the inclusion of a
position-dependent mass increases the amount of possible expressions of the kinetic

125
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energy operator itself.? Here, we will only consider the generalized Sturm-Liouville
operator

. 1 1
tn(r)=—=V

>V ) (8.9)

and Ty = XN B (ry).

In order to construct a kinetic energy density-density functional theory resort-
ing to a fictitious non-interacting system, we need to circumvent the obstacle that
the interacting and the non-interacting one-body reduced density matrices cannot
be trivially made equal. We have explored three ways of doing so, namely

1. abandon the usual linear setting and impose a priori that the non-interacting
system satisfy KS-like equations (8.10) including the position-dependent
mass in the expressions which we want to equalize (eq 8.12). In other words,
the position-dependent mass is not a local Lagrange multiplier enforcing
the constraint that the kinetic energy density of the target and that of the
auxiliary system match;

2. adhere to the usual linear setting in which the position-dependent mass
is introduced as a local Lagrange multiplier. Namely, instead of requiring
eq 8.12, we require eq 8.34. With this latter condition, we are forced to in-
troduce another degree of freedom such that the two kinetic energy densities
of the interacting and of the non-interacting systems can still be made equal.
We do so by adopting a non-trivial position-dependent phase factor in the
orbitals of the non-interacting system (the same for all orbitals).

3. borrowing the strategy from Generalised-Kohn-Sham theory [281], freely
minimise a modified kinetic energy functional T, coming from a non-local en-
ergy operator T, formally identical to expression 8.9 but where the scalar po-
tential v is fixed not by imposing a constraint on the resulting non-interacting
kinetic energy density as in the former two settings (eqs 8.12 and 8.34) but
by imposing a condition on the remainder functional R'* (eq 8.57).

2For instance, an entire family of kinetic energy operators has been suggested by O. von Roos [286]
which are still Hermitian under quite general assumptions, namely

N 1
tm) ::_Z (m“VmﬁVm7+m7VmﬁVm“) (8.7)
where m = m(r) and the constants a, 8,y are constrained to satisfy
a+pf+y=-1 (8.8)

but are otherwise arbitrary. As discussed in the main text, we limit ourselves to the choice a =y =0
and f=-1.
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8.2. DIScUSSION OF DIFFERENT SETTINGS

For each of the different settings listed above, we present numerical results ob-
tained for the first few terms of the Hooke's atom series [287] briefly reviewed
in appendix C, as well as for the species H™ and He using the correlated wave-
functions of reference [264]. In the next subsections, to distinguish among the
different settings, we will relabel the quantities ke, mker as w m"h, (vl mh
and {p™mCOKS mMmGKSy respectively. Accordingly, the orbitals of the different kinds
of non-interacting systems, generally identified with u/;“’ to distinguish them from
the usual KS ones, will be relabeled as !, y! and 3¢S,

8.2.1. NON-LINEAR SETTING
By construction, our master equations in this setting are

(—%v- (#v) + v"l) Oy =y x (8.10)
with the constraints
R ) = 3 1y} () (8.11)
io
and
Tig (1) = (2;1,” ;Iw:”lz) (r) (8.12)

where nj,¢ is the electron density and Tf;t the kinetic energy density (in the
gauge 8.3) of the interacting system, which we want to target.

Bounps oN m'

We see that, from our use of positive definite quantities, we immediately have
m™ = 0. For the upper bound, given eq 8.12, it would then be sufficient to prove
that the interacting kinetic energy density is everywhere greater or equal than the
non interacting kinetic energy density without the inclusion of the mass, i.e. that

1
= (EZ |vw;“|2) (r) (8.13)
i,o

to conclude that 0< m" <1.

Currently, we are able to show that 0 < m™ <1 only for two-electron singlet
systems. In these systems, from requiring the interacting and the non-interacting
densities to be the same, namely

wl(r) = % (8.14)
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with w”l(r) = Zgw”l(x), we have that the non-interacting kinetic energy density
corresponds to the Von Weizsacker kinetic energy density, T€W, in the same gauge

2
'V’;' r). (8.15)

Tyw () =

The Von Weizsacker kinetic energy density T€W is however proven to be a lower
bound to any kinetic energy density coming from a wavefunction associated to the
same density, iLe.

N
T nl(r) < EZ/IV‘Pn(x,xz,--',xN)Izdrz-'-drN (8.16)
g

by means of the Cauchy-Schwarz inequality [288]. Nonetheless, it is quite easy
to show that asymptotically the position-dependent mass in this setting goes like
the unit constant,® by means of the Dyson orbitals, d;.

These are defined as

d;(x) =\/Nf\Pf"l(z,...,m*\yév(x,xg,---,xN)dxz---de, (8.17)

and allow the following exact expansion of the GS wavefunction

o0
W, X2, 00) = NTV2Y di W (a2, (8.18)
i=0

Given 8.18, we can rewrite Tf:]t as

(&)

! [nl(r) = Z( |Vd,-|2) (r) (8.19)

1

and, consequently

N vyl |?
L vy )(r). (8.20)

nl _
men= (; TR Vd, P

On the other hand, it is true that both the N-electron sum over the modulus squared
of the orbitals 1//;.” and the infinite sum over the modulus squared of the Dyson
orbitals deliver the interacting density

n(r) = (%Z |1//;.”|2) (r)= (iz |d,~|2) (r). (8.21)

As extensively discussed in chapter 2, in reqular KS theory the decay of each KS
orbital is governed by its respective eigenvalue which dictates that the most diffuse

3In principle, there is no reason why the asymptotic value of m™ should also be its maximum value.
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orbital is the one with the smallest eigenvalue (the HOMO). Although the keKS
equations are endowed with different structure (eq 8.10), yet necessarily the most
diffuse of the keKS orbitals, “U’Zl": will bear by construction the correct asymptotic
behaviour, i.e. w?j(lrl — 00) ~ n12(jr] = 00). A similar reasoning holds for the set of
Dyson orbitals: in this case it is the first Dyson orbital that inherits the asymptotic
behaviour of the square root of density, i.e. do(|r] — oo) ~ n'/2(Jr| — oo) [289] and
we conclude that

12
_ V'l
IVdy|?

m™ (|lr| — o0) ~1. (8.22)

EXAMPLES OF 1" AND m’! FOR TWO-ELECTRON SINGLET SYSTEMS
We are again focusing on two-electron singlet systems, which allow for an explicit
construction of the quantities of interest, v and m™, without the need of a
numerical inversion algorithm.

In practice, from the constraint of the density (eq 8.14), we have that

wi_ VP
= 8.23
8nt?f (8.23)
int
and ) ) )
nl _ X 2 _
= _zﬁ(v(mﬂl) vvn+ mnlv vn|-1I,. (8.24)

We start by applying eqgs 8.23 and 8.24 on the Hooke's atom series [287], an exactly
solvable model briefly reviewed in appendix C. In fig 8.1 we show the analytical
mass potentials, m™, corresponding to n=2,..., N, where n is roughly speaking a
measure of increasing correlation and is related to the degree of the polynomial
involved in the exact solution expression (see appendix).

From eq 8.23 and given that T{;t and n at the denominator are well-behaved
functions vanishing only asymptotically, it is clear that the mass will become zero
whenever the density shows a minimum or a maximum. Thus we see that up to n =3,
m™ is zero only at the origin, while for the more correlated ones, n=4,5,6, there
is also some positive distance, r., at which again these potentials become zero.
This is related to the “cusp catastrophe" (discussed in appendix C), i.e. the fact
that for n >4 the density is minimum at the origin and maximum in r, ( see fig C.1
for the density profiles). In fig 8.2, we plot the corresponding Hartree-XC potential
(we subtract the external potential as it diverges like 2 ). It is found that for the
n <3 cases there is a divergence to —oco at the origin; while for the cases n=4
there are two divergences, at the origin and at r., both to +co. We expect that the
keKS mass and potential of a Hydrogen molecule will face a problem very similar
to what we observe in the Hooke's atom for the cases n =4, as the density will be
minimum at the midbond, leading to a zero kinetic-energy density at this position
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FiGuRre 8.1: Scaled mass potentials, m"l(r), for the Hooke's atom series with n=2,...,N.
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FiGURe 8.2: Scaled Hartree-XC keKS potential, UIn{lxc’ for the Hooke's atom series with
n=2,...,N.
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Ficure 8.3: Mass potentials, m™ (1), for the species H™ and He.

and resulting in a divergence in the potential. As discussed in sec 2.2.1, the profile
of the kinetic potential shows that the circumstance in which the reference electron
crosses the midbond region corresponds to the maximum “speed" of rearrangement
of the conditional amplitude (location of the peak). In this sense, finding the
effective position-dependent mass to be smaller in this region is sensible, however
we would like it to be not exactly zero. Note that an increasing number of occupied
orbitals is expected to make the occurrence of zeros in the kinetic-energy density
less likely.

In fig 8.3, we plot the keKS mass potential for the species H™ and He, where
the interacting kinetic energy density has been calculated numerically using the
very accurate wavefunction of reference [264]. We observe that the mass is not
going to one at the nucleus. This is in agreement with the results shown in
reference [290] where an expansion for the interacting and the non-interacting
kinetic energy density at the nucleus is derived. Using such expansion, to first-
order, the position-dependent mass introduced in eq 8.12, for a two-electron singlet
system, can be written as

Z?n(0)
nl
-0)~—=—— 8.25
m (e~ 0) Z2n(0) + Ej; (8.23)
where Z is the nuclear charge and Ej; is a positive value defined as
2
Eji :3NfMdX. (8.26)
47

In eq 8.26, “X" are the spatial-spin coordinates of the remaining N —1 electrons
and the spin coordinate of the reference electron: X= (0,x2,-:-,xn), the reference
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FiGURE 8.4: Comparison between the quantities v, ve and ve— Ve kin for the Hydrogen
anion (left) and the Helium atom (right).

electron is located very close to the nucleus and a5, is a coefficient coming from
the expansion of the interacting wavefunction into spherical harmonics

YrX) = Y0,X)+aX)r+bXr’+--

1
+ Y (@m@Or + b1 X)r?) Y (F) + -+ (8.27)

m=-1

The fact that the mass be not zero at the nucleus, placed at the origin, affects
the value of the effective potential vI”{lxc in the following way. At zero the usual
v2yn
2vn
usual kinetic term by a factor

kinetic term —

exactly cancels the external potential —%. Decreasing the
1
mnl(o)
unbalanced, leading to the divergent behaviour around the origin

leaves a fraction of the external potential

(8.28)

1 \Zz
il (] —0) ~ (1— )7.

mnl(o)
This is observed in fig 8.4 where we show the correlation contribution of the keKS
potential in this setting, v”,* for the Hydrogen anion and the Helium atom, in
comparison with the correlation contribution of the usual KS potential, v., as well
as this latter depleted of the kinetic potential term, v — v kin = Ve-hote + V" °°P.

DiscussioN oN v AND m™ IN THE LAPLACIAN GAUGE
Finally, let us remark that using definition 8.5 in this setting, we obtain

*v72
nl Ll _ LioW; Vi

m .
N [¥*(ro,---,xn)V2¥(ro, -, xy)

(8.29)

4Assuming that the role of the exchange contribution in this framework is also that of simply canceling

the self interaction error for a two-electron singlet state, i.e. V;ll =Ux= 71)71'[.
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where here y; :W?I’Ll. The denominator of the r.h.s. of equation 8.29 is expected

to go to zero at least once for quite general wavefunctions and therefore to produce
divergences in the corresponding mass. As an example, for two electron systems
with real ground state wavefunctions (such as those studied)

1
Tl = —Eﬁvz\/m Vkinh (8.30)

then

2 2. _ (Vm?
nl, L1 _ \/ﬁv \/ﬁ _ Von 2n
- - 2
VnV2y/n—2uvgipn Vzn—%—4vkinn

2 2
Therefore, for any value of r for which v, = ¥n_GOn

n = T g~ the mass will show a
divergence. Such divergence(s) is (are) reflected on the potential in the form of
infinite negative well(s).

Moreover, because in the singlet case eq 8.29 also translates to

m (8.31)

(Us - IP) - vkin,
the potential, "L, becomes
nl Ll _ v2yn Vy/7-V(mh )1 .
Y a gmnl,Ll\/ﬁ+ Zﬁ +1p
V\/ﬁ.V(mnl,Ll)—l
= (s Vein)+ i (833)

and the effective potential differs from the usual KS potential depleted of the

LRI in fig 85

we show the masses, m , and the corresponding correlation potentials, v

in comparison with the usual correlation potential v, and the term v, — vy, (right)

for three illustrative species: Hooke's atom with n=2 and n=6 and the Hydrogen

V\/ﬁ.v(mnl,Ll)—l
2vn

(correlation) kinetic contribution, vg— vgi,, by the term

nl, L1 nl, L1

anion. In the first two cases, it is apparent that the term is generally

very small, excluding where it diverges.
Concerning the use of definition 8.6, we postpone its discussion to section 8.2.3
for reasons that will be clear later.

8.2.2. LINEAR SETTING
In the linear setting, we modify the requirement of the non-interacting system
kinetic energy density to

i,o

1
Th(r) = (EZ IVwHZ) (). (8.34)
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Ficure 8.5: Position dependent masses in the gauge of eq 8.5, mnh L1 (left), and corre-

sponding correlation potentials, pnb Ll

in comparison with the usual correlation potential v,

and this latter term depleted of the kinetic contribution, ve — vy, (right) for three species:

Hooke's atom with n=2 and n=6 and the Hydrogen anion.
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Equipped with 8.34, we construct a Lagrangian expression similar to that of sec 1.3.1
but where the constraints on the density and on the kinetic energy density are si-
multaneously imposed. Aiming for a non-interacting description, we are left with
no energy expression to minimise. Therefore we look for the stationarity equations
of a zero-Hamiltonian and consider the Lagrangian made of the constraints only

N
Ly = -Y&; ((1;7§|1z/j>—5,~j)+fdr bl (wgz_n) ()
i,j i,o
(i VP
+fdr vm(r)(lT—Tﬁﬂ (1). (8.35)

whose minimisation gives
1 ! 1 im0 1
EV . (vmV) + v | @y (x) = ;v (%), (8.36)

where, upon substituting vfn = (ml)_l, we are left with self-consistent equations
that are structurally identical to those considered in the non-linear setting (eq 8.10).
The fundamental difference is that now the orbitals have a non-trivial imaginary
phase and can be decomposed as

v (x) = Ri(x)e™® ™. (8.37)

Therefore eq 8.36 can be separated into its real and imaginary parts®

1 vo|?
(—zv-(yfnv)+u’+ |2m|l )(r) Ri(x) = ¢/ R; (x) (8.40)
vl R;
(—1v-(yfnv)—M -v) (r)6(r) =0. (8.41)
2 m!

ExamPLES OF v/ AND m! FOR TWO-ELECTRON SINGLET SYSTEMS

For two-electron singlet systems, the constraint on the density here gives

n(r) ;
v =Y vl =/ —ef" (8.42)
e 2
5bg working out
vylr) = %" (VR +iR;VO)(r) (8.38)
vyl = 00 (VZR,-—R,-|v0|2+2iVR,-~ve+iR,-v29)(r) (8.39)

with yln =¥, vl and RL(r) =X, Rl ().
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and we can rewrite eqs 8.34, 8.40 and 8.41 as

P _Ivn?  n 2
Tint = "8n +2|V9|

{49+ (&) + 52 + 0! -e)) vri=0 (8.43)

2m!

1
)22 oo
For spherical systems, the set of eqs 8.43, has the following analytical solutions

0(r)= o2 vkin(r)dr+c with UkinZ%(Tﬁ,t_g_/:)

m!(r) = €126/ (N n(r) (8.44)
' 4 ;
vi(r) = m (n”(r) +2n'(r)- %([rr)) - %(;z)(r) —29'(r)2n(r)) +e

where we have picked ¢ =0 and ¢ =1. We show the resulting quantities 8(r),
m!(r) and v!(r) for the Hooke's atom series in figures 8.6, 8.7 and 8.8 and for the
Hydrogen anion and Helium atom in figures 8.9, 8.10 and 8.11.

It is remarkable that by means of a position-dependent phase, 8(r), which looks
simple and well-behaved in all cases studied, we can straightforwardly equalize the
interacting and the non-interacting kinetic energy densities while still preserving
the density constraint. Nonetheless, it is uncertain how to interpret the profile of
the position-dependent mass, m!(r), and that of the effective potential, v!(r): what
we observe is that both Lagrange multipliers v%, and v’ diverge at the boundaries
of the domain.

As a final remark, we observe that the two position-dependent masses, m™ and
m! (in the non-linear and in the linear settings) for spherical systems are simply
related to one another

r4 n/Z(r)
Aamtr)2+rin'2(r)

m™(r) = (8.45)
since both their expressions involve the kinetic potential vg;, which might then be
expressed as

(ml(r))Z n/2 1

— = ——1]. 8.46
2rin2(r) 8n? ' (m”l(r) ) (8.40)

Vkin(1) =
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Ficure 8.6: Non-trivial phase factor, 6(r), for the Hooke's atom series with n=2,...,N
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Ficure 8.7: Mass potentials, m!(r), for the Hooke's atom series with n=2,...,N.

=50

-100

Vw7

-150

—20055 05 1.0 15 2.0 25 3.0

r0)1/2

Ficure 8.8: Effective potentials, v!(r), for the Hooke's atom series with n=2,...,N.
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l l

DiscussioN oN v IN THE LAPLACIAN GAUGE

Let us remark that, in the linear setting, neither of the Laplacian gauged kinetic
energy densities, 7" (eq 8.5) or T/?(eq 8.6), is admissible. This latter is simply not
admissible because the position-dependent mass cannot be treated as an external
Lagrange multiplier. To see why the former is not admissible we need to work out
the requirement

AND m

i = Yyleviyiw
Jj.o

1
= EZR]- (V°Rj - R;IVOI* +2iVR;-VO+iR;V°0)(r)  (8.47)
J

We now want the imaginary part on the Lh.s. to go to zero (the kinetic energy
density of an interacting system can always be transformed into a real valued
quantity), i.e.

(2VR;-VO+R;V?*0)=0 (8.48)
However, eq 8.48 for the two-electron singlet case, gives

2VVn-VO+vnv?0 =0
V\/ﬁ__VZH

— 8.49
NG vo (8.49)
and, restricting to spherical systems,
d 2 d ,
—aln(n(r)) =+ drln(H (r)
2 3 3 C”
In(n(r) +1In(r?0'(N) = = |0'(r) = T (8.50)

which fixes the derivative of the phase factor, 8’, times an arbitrary constant.
On the other hand, combination of eqs 8.47 and 8.48, for this case (spherical
two-electron singlet) gives

1 & 2d
Tﬁt(”:ﬁ((@ +;a)vn(r)—\/n(r)6’2(r) (8.51)

Since equation 8.50 is an extremely simple density functional, we see no reason
why its insertion into eq 8.51 should satisfy it for any spherical density. In other
words, in the linear setting it seems clear that the choice of possible gauges for
kinetic energy densities is greatly reduced.
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INTERMEZZO
In the keKS constructions we have discussed up to now, there is no clear rela-
tionship between the total energy of the interacting system and the effective mass
and local potential {m*¢, v¢}. This happens because, when taking the functional
derivative of the auxiliary system energy w.r.t. the density, we do not know how to
express that piece of functional derivative which contains the kinetic energy den-
sity (and the position-dependent mass). In fact, by the Hohenberg-Kohn theorem
the variables 7 and n are dependent, but their dependence is still not understood
or studied at all.

In practice, we can still combine the expression for the interacting kinetic en-
ergy obtained from either keKS construction with any preferred density functional
approximation, EDM = U + WPFA + TPFA, by recalling that

OEC™ [ny]

WP (] = EDFA[p] 4+ 2 EPFA (] — 5 ‘y:r

(8.52)
Nevertheless, the theoretical question of how to connect the keKS construction
to the total energy of the interacting system stays open.
In the next subsection, we present another keKS setting, where such connec-
tion is set from the beginning. We basically apply the generalised-Kohn-Sham
formalism [281] to a particular case of non-local operator.

8.2.3. GENERALISED KOHN-SHAM SETTING
Let us introduce an energy functional T,[¥s] of N-electron Slater determinants
Y.

To W] = (Pl T | W) (8.53)
where Ty, can be defined as
. 1Y
To = =52 Ve (o@)Vy) (8.54)
i=1

and v is, for the moment, undefined. Then we define the energy of our auxiliary
system ¥ as

ES[ty i vl = Ty 1] + f 5 n(dr (8.55)

where n(¥) =%; 5 |1//i(x)|2.
If we minimise eq 8.55 by the usual Lagrange procedure we obtain

Ol lyillyj+ 0y =cjy; (8.56)

with O™ [{y i}y = Mg[—lﬂlm =—3V- (X, Vy;)@). Egs 856 are also structurally
]

identical to egs 8.10.
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At the stationary point, eq 8.56 is satisfied and we label y; — v ,I—v

€; — 6;"GKS, where “mGKS" stands for “mass-dependent Generalised Kohn-Sham".
We could now determine the energy of an interacting system exactly in terms of
To{wi}] by introducing an ad hoc functional RT“[n[{i//l-}]] determined by Ty [{y;}]

such that

mGKS & mGKS
l‘ ’

Eplvl = {ﬁ@N{T" [y}l + R™ [nl{y ] +f v(r)n(r)dr} (8.57)

with v the external potential of the interacting system. So long as the functional

R0 [n] is an explicit functional of the density, the minimization in 8.57 leads to

T
the same kind of equations as eqs 8.56 with v6XS = yp + v and vg = 5§nu.

Since v is still completely undetermined we have derived a general scheme where
we can devise in reverse which piece of the Kohn-Sham potential we want to use
as a Lagrange multiplier v*°KS (ideally a term which we know how to approximate
well) and which other part we want to feed to the operator Tj.

We may label “mGKS complement" potential, v"¢XS, the component that we
want to “drop out" from the usual KS potential the and we may decompose the

KS potential in any preferred fashion as long as both v™%KS and v¢KS are well-
defined functional derivatives
vs = vMOKS 4 ymGKS, (8.58)
For the sake of interpreting ™! as an effective mass, we would like that
v(r) =0. (8.59)

However, as the scalar potential b depends on v™¢XS and needs to satisfy eq 8.57,

we might not have enough freedom to impose eq 8.59. We shall see later on that
this is going to be the case for values of n>3 in the Hooke's atom series.
Because eq 8.59 cannot be satisfied for all systems, we are no longer guaranteed
that minimisation of eq 8.55 will, just as for the KS system, always penalise the
phase factor. In other words, contrary to the KS ones we are not guaranteed
that the mGKS orbitals are real. For simplicity, we are going to assume that the
orbitals are real (just as we do in the non-linear setting).

Let us now focus on the choice

v = e ki (8.60)

Quite interestingly, under the assumption that the mGKS orbitals equate the KS
orbitals, i.e. 1//;"GKS =3, (which is by construction satisfied in two-electron singlet
systems), we obtain

1
_ EU/TGKSV-DUC'“"VU/WIGKS :‘[.Lz (861)

i int
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where by vVekin we indicate the dependence of the non-local operator on eq 8.60.
In other words, assuming that eq 8.57 can be satisfied for the choice 8.60, the
simple minimisation of eq 8.55 delivers a non-interacting kinetic energy density
in the Laplacian gauge 8.6 that locally matches the interacting kinetic energy
density in the same gauge.® Equation 8.61 is a remarkable result, as we have
managed to write an explicit expression for an effective position-dependent mass,
mVs~Vekin = (pYekin)~l as a functional of the interacting kinetic energy density Tﬁi
while still minimising a non interacting kinetic energy functional (Ty) under the
sole density constraint.

More in general, within the assumption ¥7"“XS = 4%, one will obtain a non-

interacting kinetic energy corresponding to
1 GKS
- zw;"GKSv QU Wy mOKS L2 4y mGKS 4y (8.62)
L2~ —%u/j.vz y3. For simplicity, we will now focus on the case 8.60, and we
will always refer to mVs~Vekin as “m™CGKS" although as already discussed, v™¢KS

— on which the properties of m™“KS depend — can be anything as long as it is a
functional derivative.”

where 7

ExaMPLES oF m™%KS FOR TWO-ELECTRON SINGLET SYSTEMS

For spherical two-electron singlet systems, v is our only unknown and the set of
equations 8.56 reduces to an equation of the kind

a(r)v'(r)+b(r)v(r) +c(r)=0 (8.63)
whose solution reads
o(r) = (k— f ) ol M) e e, (8.64)
o als)
However, there is a catch in the choice of the equation we decide to solve. Namely,
labeling the only spatial orbital ™S = /2 = ¢ for notational convenience, we
have 5
¢’o’+(¢”+;¢’) v—-2(v"KS —¢)=0 (8.65a)
with a=¢/, b=(¢"+2¢') and c=-2(v"KS —¢) or
2 2
¢'o'+ (¢ + ;¢>’) b+20/" S - (¢” + ;¢’) =0 (8.65b)

bAs already noticed, for the interacting system there is no distinction between the two gauges 8.5 and

8.6, ie. Ll =712
int int

’For example, one could wonder what m would be by choosing vCKS =y or yMGKS = 1 py,
etc. In particular, we shall briefly consider the case v™GKS = y¢ to fix the degree of freedom intrinsic
in the fact that the nabla operator is acting on (mmGKS)_l.

mGKS
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where a and b are as before and ¢ =2v"“KS p— (¢ + 2¢').
Equation 8.65b is a consequence of the fact that

2
(UmGKS _els_) W?ZGKS — %Uff _ U;nGKSwls_ (866)
which holds only as long as u/;"GKS = (true for two-electron singlets).

The catch is in the fact that while in eq 8.65b we only need to fix the constant
k, in the first equation (eq 8.65a) the solution is written in terms of two unknown
constants: {k,e}. Suppose, we have fixed k, we can find a different solution, v, for
any arbitrary value of € which still satisfies eq 8.63.

In the examples that are going to be presented we do not perform any self-
consistent iteration but we plug in either equation (eq 8.65a or eq 8.65b) the exact
ingredients.® Precisely because eq 8.66 is satisfied with such exact ingredients,
both equations lead to the same solution (for each given k). However, we reiterate
that, for a given k, we can solve eq 8.65a for any arbitrary value of €. Choosing
€ # —1I,, would no longer satisfy eq 8.66 and the v resulting from the two equations
would be different.

Due to its dependence on € we then decide to discard eq 8.65a and focus on
eq 8.65b. To fix k, we simply decide to pick v0KS =y (i.e. v"PKS =0) and choose
among the set of solutions 8.64 that one for which v° =1. This fixes k=0.

Left-multiplying eq 8.65b by the orbital ¢ allow us to write an explicit solution
to vekin in terms of the interacting kinetic energy in the gauge 8.6 as pledged in
eq 8.61. Considering that, for the spherical case, we can manipulate the exponential
function in eq 8.64 in a very convenient form

b(r) "ty 2 d
2= 1) = qn @), (867)
we obtain b
2 (s)s
4 Zfor Tmt() ds
nl/c,km(r) — (p,((ﬁ)srz . (868)

In figs 8.12 and 8.13, we show the position-dependent masses, m™XS(r), ob-
tained as the inverse of eq 8.68, for the Hooke's atom series and the Hydrogen
anion and He atom.

As anticipated, we observe that for the Hooke's atom series there is not enough
freedom to force the effective mass to be always positive, even allowing for different
values of k. Another feature we observe is that the effective mass is non-negligeable

8These exact ingredients are p™MGKS _ Vcond + VN-1+ v and the exact ionisation potential € = —1I), to
get v from eq 8.65a or the exact v/"GKS = .. to get it from eq 8.65b in addition to the interacting

ground state density which is required in both equations.
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FIGURE 8.12: Scaled mass potentials, m™GKS(r), for the Hooke's atom series with n =
2,...,N.
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FiGURE 8.13: Mass potentials, mmGKS(r), for the Hydrogen anion and the He atom.
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even at values of the distance from the origin at which the density itself seems
negligeable. Finally, we stress that only the effective mass needs to be found
in this setting and not the effective potential, because this latter is exactly what
we have constrained (v™KS = v,y + Veona + v ) and we know it to be a well-
behaved function, asymptotically going to zero. In this sense, compared to the
former settings where either the effective mass or the effective potential or both
were diverging this latter seems promising.

LocAL BEHAVIOUR OF m™C%KS AROUND THE ORIGIN

Rewriting v =1+ v, eq8.65b is turned into
V- (80V)¢; + 201 KSp; =0 (8.69)
and the mass is then obtained in terms of 0v as

1
mGKS _
m (r) = 135007 g (8.70)

Equation 8.69, for two electron spherical system and with XS =y, can be
rewritten as

! 1 !
6n’(%)+6n(%+%%)+2vkin:0 (8.71)
and we can substitute
(p/ B nl
¢  2n
" 12 n
AN (8.72)
¢ 4n% 2n

We want to analyse the local behaviour of 6v at the boundary of its domain and
we will start by the origin. However we need to distinguish here among the
situation where the density is an analytical function at the origin as in the case of
the Hooke's atom series or when it is non-analytical and determined by the cusp
condition (eq 1.4).

In the first case we have

!

50’(i
2n

/ " U
n

n?2 n
oo|l—-—+—+— | =20y 8.73
* (4n2+2n+rn) Vkin ( )

the first term goes clearly to zero as n'(r)|,—¢ =0, while we need to further analyse
the third tem in parenthesis using L'Hopital's rule as lim,_g % ~ g. Therefore we
look at the derivatives of numerator and denominator

d ( n'(r) ) n n

dr\rnn) " n 2 (8.74)
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n!l

and when r — 0 only the term oo survives. In conclusion, we are left with

3n//
60(21’[) ~  —=2UVkin
5 4 Uinit 8.75
0 3p (8.75)
or
1
mGKS
Mg~ (1 —0) ~ 1 0pin(0)12(0) (8.76)
T 307(0)

where we have used the subscript “midB" for midbond, as we have already
stressed that one could consider the density at the origin of the Hooke's atom
series with n>3 as a model for the density at the midbond of two equal fragments
in a molecular species and where the sign of mn’ﬁggs depends on whether %%’;(0)
is greater or smaller than one.

For atomic densities, we know that, at the nucleus position which we set at the
origin, the density behaves like n'(r)l;—o ~ —2Zn(0). For this case, it is easier to
look at what happens to v starting from its solution, i.e.

2 [y Vkin(8)p(s)s*ds

=TT e

(8.77)

The r — 0 limit of the above equation is again of the kind (9) therefore we look at
the corresponding derivatives finding

. . 2 Vgin(r)
lim v(r) ~ ~lim | 7= oo | 0 (8.78)
¢(r) r ¢(r)

where we have used that all the functions (¢, ¢', ¢”, viin) excluding 1/r have finite
values in r=0."
Consequently

m™eKS(r - 0) ~1 (8.79)

as visible in fig 8.13.

Incidentally, we observe that, by plugging into eq 8.77 either one among the
expressions for vg;, reported in eq 8.46 then using eq 8.70, one finds the relation
between m™C%KS and the previously discussed position-dependent masses (m™
and m!) in the spherically symmetric two-electron singlet cases.

Ei;

(0 follows.

9n particular from eq 8.25, vy, (0) ~ 5
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ASYMPTOTIC BEHAVIOUR OF m™GKS

Using the asymptotic expansion of atomic and molecular wavefunctions [289]
G(r —o0) ~rPe " (8.80)

with @ = /-2¢e¢y and B = @—1 (Z being the nuclear charge and N the
number of electrons) then

Pr—o0) ~ e rPl(p-ar) (8.81)
¢ (r—oc0) ~ e‘“’rﬁ_z((ﬁ—ar)z—ﬁ) (8.82)

Plugging egs 8.80, 8.81 and 8.82 into eq 8.69 with v"CKS = v = ve pin,
remembering that v iin is short-ranged [41, 49], and multiplying both sides by
(e*" r>=P), we find

(a?r?+B+p*—2ar(1+P)so(r)+r(B—ar)de'(r) =0 (8.83)
Leaving only the higher order terms, ~ r2,
a’8v(r) —adv'(r) =0 (8.84)

which is satisfied for
So(r —o0) ~ce®” (8.85)

therefore )

1+ced””

mMGKS (1 _, o0 ~

(8.86)

A similar analysis on the Hooke's atom density ¢pam(r — 00) ~ rie=%r [45],
with g= (£ - 3] €R* and I, = (BN — EN-1), shows that

1

mGKS
Mparm (7= 00) ~ 0,2
l+cez

(8.87)

8.3. DFAs For KEKS AND FINAL NOTES

At the end of sec 1.3.2 we have sketched the algorithm for reqular KS equations
(egs 1.50 and 1.51). In the keKS formalism we would have an algorithm of the kind

pke@ — [nm] 4 pke [nm’r(n] +v (8.88)

mke® =14+ mke [{U/j}(i),T(i)] (8.89)

fy 30D :argmin(kaeu’) [{w,-}“"] + f v*e@ (r)n(r)dr (8.90)
fy}
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where mg"’xc is defined as the difference mlffxc = (m*¢® — 1) and it basically mea-
sures the distortion of the fictitious electron mass due to kinetic correlation effects.
In practice, we compute from a guess density (a set of guess orbitals) and a guess
kinetic energy density the initial effective potential v*¢ and mass m*¢. Next, we
solve egs 8.10 to obtain updated orbitals delivering an updated density via eq 8.11
and an updated kinetic energy density via eq 8.12, eq 8.34 or eq 8.61 according to
which setting we are in. Note that, in the linear setting, we construct at the same
time also an approximate phase factor, 0 [{y;},7(¥]. Finally, we plug the up-
dated density and kinetic energy density (internal quantities) into the functionals
vke and mke for the external quantities and loop until convergence is reached.

Among the next steps for developing a kinetic energy density-density functional
theory, the need for novel density functional approximations which depend on both
n and 7 for the unknown effective potentials v¥¢ and m*¢ stands out. A good
candidate model seems to be the series of finite uniform electron gases [291, 292]
which depend on two parameters for a given dimension. These two parameters
are related to the number of electrons and the radius of the sphere on which the
uniform gas is spread. They can be coupled to any quantity of interest as recently
shown in reference [293], where a model for the exchange energy is constructed as
a functional of the density and the curvature of the Fermi hole.

At the state of the art however, a parametrization of the correlation quantities
is available only for the finite uniform electron gas with two particles. Future work
will be focused in the direction of building such explicit bifunctionals which will
hopefully introduce more flexibility than that brought by the most common density
functional approximations for KS-DFT. As a first hint, we looked at the approximate
m™, m" and m™CKS that were obtained using the LDA kinetic energy density P4
as an approximation to vii,. We show them in figure 8.14 for the Hydrogen anion
in comparison with the ones already shown coming from the accurate wavefunction
of ref [264]. The LDA models used are PW92 [294] and the above-mentioned two-
electron glomium. In the bottom panel representing the mGKS setting, we show the
results coming from both eq 8.65a and eq 8.65b, within the same approximation. It
seems clear that by approximating v™¢KS as v™CKS x e, — 1.+ % + v and inputting
the exact ionization potential [295], we obtain much less accurate masses than
considering v/"¢XS = t.. The much smaller accuracy ought probably to be attributed
to the self-interaction error present in the approximate v,cks and absent in the

approximate pmCKS,

Concerning the Hermiticity of the operator i, (eq 8.9), we should probably
remark that it is quite a subtle issue: 7, is clearly Hermitian in the space of
square-integrable functions as long as the boundary terms are zero. This is the
case if the position-dependent mass is constant, otherwise one needs to study the
analytical behaviour of the mass at the boundaries. This aspect deserves a proper
investigation.
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1.00
0.99
0.98
0.97

mn\(r)

0.96 m exact
0.95 = 2GLO
= PW92

0.94
0.93
0.92

0.010F
0.008
ml(r)

0.006 m exact
0.004 ® 2GLO

= PWO2
0.002
0.000

ranKS(r)
0.8 = exact
= 2GLO
0.6 \\ = PWO2
0.4 A
0.2
0.0 0

FIGURE 8.14: Position dependent masses m"l(top), ml(middle) and m™GKS (bottom) for the
Hydrogen anion coming from the accurate wavefunction of ref [264] (in red) or using the LDA
kinetic energy density tg‘DA as an approximation to vg;,. The LDA models used are PW92
[294] (in green) and the two-electron glomium [291-293] (in black). In the bottom panel, we
show the results coming from eq 8.65a (dashed) and eq 8.65b (solid curve), within the same
approximation, as discussed in the main text.
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8. KINETIC ENERGY DENSITY-DENSITY FUNCTIONAL THEORY

As a final note, we want to pinpoint that although one of the motivations for a
kinetic energy density functional theory was that of separating the Coulomb from
the kinetic correlation contributions, where the formers would be included via the
usual effective potential while the latters would be handled via a non local opera-
tor, it might be that this goal is far from our reach due to the presence of a kinetic
response part in the KS potential, v;,‘;:li (eq 2.52). This is blatant in the last pre-
sented setting (sec 8.2.3) where we have unwittingly obtained a matching between
the kinetic energy densities of the interacting and of the non-interacting system
by splitting up the KS potential as vs = v¢ kin + Vresp + Vcona + v. Namely, we have

—_——

VgnGKS pmGKS
kept the full response potential, kinetic piece included, in the role of Lagrange
multiplier together with the electrostatic potential of the conditional density and
the external potential. Nevertheless, in light of the fact that this piece is nowadays
absent from any approximation, even though failing to properly disentangle all of
the kinetic correlation components from the effective external potential, a kinetic
energy density-density functional theory could in practice still bring about consid-
erable improvements in treating systems where the balance between inter-particle
repulsion and particles kinetic energy is especially delicate.
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REDUNDANCY OF THE
PERMUTATIONS

In order to account for the indistinguishability among electrons the modulus squared
of the SCE wavefunction has been usually expressed as in eq 3.9. If we now perform
the integration over ds we can rewrite it as

o 1 X pr) &
[Wsce(ry, -+, rn)l =N > Tna(ri_fp(i)(rl))'f'
fp=1 i=2

N N-1
L [T 6ri—fpura)+--+ elru) [T60i—foumarm) (A1)
N i1z N 5

Now we want to show that each of the N terms inside brackets in eq. A.1 are
equal to one another. To show such thing we will abstract from the three-electron
case.

For the three-electron case g =1---6, in details:
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A. REDUNDANCY OF THE PERMUTATIONS

ri=fig(s)=s

ry =fi)(s) =1£i(s)

r3=fi3)(s) =fr(s)

ri=fgq(s)=s

ry =fg2)(s) =£2(s)

r3 =1f53)(s) =fi(s)

ry =f40)(s) =1£1(s)

ro=f,0(s8)=s
r3=1f43)(s) =f2(s)
ry =f30)(s) =£2(s)
ro=f30)(s)=s
r3=1f33)(s) =fi(s)
ry=fq)(s) =1£i(s)
ro =1 (s) =f2(s)
r3=fHa(s)=s

ry =f50)(s) =f2(s)

© =64 r2 =150 (s) =f1(s)

r3=f53(s)=s
so that the wavefunction is expanded into:
|\PSCE (ry,r2, I‘3)|2 =

1 (r1) (r1)
= ”3’1 5(ra — £ (r1)6(rs —fa(rp)) + 2 ;1

O(ro—f2(r1))o(r3—fi(ry)) +

p=2
nr2) P02 51— £y (r2)8(r3 — Ea(r2)) +

+ O(r1—fa(r2)o(r3 —f1(r2) + 3

p=4

+ 208 )y (P38 (2 — B (r3)) + 6(r1 — Ea(r3))B(r2 — 1 (r3)) (A2)

We now consider one permutation, e.g. ¢ =4 (underlined), and we are going to
show that this term is equivalent to the g =2 term (also highlighted for the purpose)
in the three steps listed below.
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1. Using the properties 0(f(x)) = %6()6—)60) and g(x)6(x—y)=gy)o(x—y)
of the Delta functions on §(r; —f2(r2)), we can rewrite this permutation as
n(f; 1 (ry))

8(ry—f )6 (rs —EE (1)), A3
Sdet(afz‘;fzﬁ(ffl(rl))) ( 27N 1) ( 3—I2y 1 ) (A.3)

where the indices a,f = x,y,z, and det(aag,g(r)) denotes the determinant of
the Jacobian matrix for g(r).

2. Using the property of the inverse function g~'(g(r)) = r whose Jacobian of
both sides gives

ggi(r) aigj(r) aigk(r)
wein  Fein  Fan| =01 (A4)
&gi(") &gj(r) ﬁgk(r)

AU TGO )

%g;l (gr) %g;l ®r) %g;l (&)
X
o8 gler @) rgz @)

we have

det(dg, 85" (1) = (det(0agp(r))) ", (A5)
where again a,f=1x,y,z.
By setting g(x) =f;!(x) and g~!(x) =f; (x), term (A.3) is further rewritten as:

n(; ! (r1)

2 det(aafljg(rl))a(rz—f;l(rl))a(r3—fz(fl‘l(rl))). (A.6)

3. Finally, using the fundamental properties of the co-motion functions, egs. 3.11,
and 3.12, where the fact that they form a cyclic group implies that the inverse
of a co-motion function is another co-motion function in the group, the term
(A.6) transforms into:

n(ry)
3

O(ry —f2(r))o(r3 —f1(r1)), (A7)

which can be recognised as permutation g =2.

The same reasoning in three steps is applicable to all the terms of a general
N-electron case.

To summarise, we believe we have shown that N!—(N—1)! terms are redundant
in expression 3.9 as all of these can be tranformed into one of the (N —1)! terms
having the same density prefactor. Therefore, choosing for example to express the
density as a function of the coordinates of electron 1, the SCE wavefunction can
be written as

1 n(rl) (N-1)! N

2 _ e
Wsce(ry, - rmli"= =~y p; i:]_[25(rz fori) (1) (A8)
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A. REDUNDANCY OF THE PERMUTATIONS

This also means that, upon integration over N —1 variables, we obtain n identical
terms with n=T(NV). Consequently, we can consider only one of such non redundant
permutations — properly rescaled by the factor n — if we are interested in calculating
functions of one particle coordinates as are the one-body potentials defined in

chapter 2 and as it was done in practice in the derivation of v]SVC_E section 6.2
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ANALYTICAL 1D MODEL FOR v;5E

AND U2 IN THE DISSOCIATION
LIMIT

In chapter 6, we have seen that the shape of the co-motion function for the density of
eq 6.45 becomes asymtotically the same at any internuclear distance (“saturation”
phenomenon), behaving, in particular, as a constant in the asymptotic regions x «< 1
and x> 1 and as a linear curve with coefficients, m~ =§ and m”~ =% close to ap
(eq 6.51).

If we now approximates the small regions where the co-motion function switches
from the constant to the linear behaviour and those where it diverges (it is sufficient
to know each one of such regions, only for one branch as the co-motion is symmetric
w.r.t. the axis y = x) with sharp angles, we can determine the asymptotic co-motion

function

ag y< X5
m<y+c< x;<y<ag
Jmod(¥) =4 o0 y= aR1 (B.1)
m>y+c” aR<ysxj
ag y> X7

157



SCE SCE

B. ANALYTICAL 1D MODEL FOR v resp

AND v IN THE DISSOCIATION LIMIT

(es]

‘\
2
.
rof o - -

FiGure B.1: Asymptotic co-motion function of eq B.1.

where x3 (x7) is the distance at which the co-motion function switches from
constant (linear) to linear (constant), while ¢= (¢”) is the constant shifting the zero
of the linear region to the negative (positive) x- axis.

Assuming that eq B.1 is a good model for the co-motion, we need very few con-
siderations to determine all the quantities needed to calculate the SCE potential
and its response part from it.

In particular, considering the two identical right triangles ABC plotted in fig B.1,
where the point A is A ={ag, ag}, we can determine their catheti AB and AC from

——\ "1
AB(AC) =4
v (B.2)
AB+AC  =2R

where the first equation follows directly from eq 6.53, while the second is an
extension of the discussion contained in section 6.5.2, but it takes a bit more of
details to support it.

When the reference electron is situated sltghtlg off -3, say —R +¢ the second

electron will be displaced by an amount e by the propertg of the right triangles.

TWe can arbitrarily pick a side, namely if f,0q(ar) =o0 or fi,o4(ar) = —oco. The same is true for the
inequalities, where we can arbitrarily decide whether f;,,4(x3) = ag or fyoq(x5) = m<y+c<. Such
single points choices do not affect the SCE Hartree XC potential as it is obtained from an integral
expression containing fy,o4 nor they affect the SCE response potential, as long as f,0q(agr) diverges.

2And using physical arguments: because the density is less diffuse in the right fragment, the displace-
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Let us now consider the displacement from —g to ag, corresponding to the DE
segment in fig B.1. o

The co-motion then increases by an amount §(§+a3) (the DC segment in the
figure).

On the other hand, because of its symmetry, the displacement of the co-motion
on one branch corresponds to the displacement of the variable of the reference
electron on the other branch. Furthermore, what happens from —g “onward" must
be mirrored by what happens from —g “backward" bringing us to the conclusion

that the segment AB+AC =2 ((1+ %) % +(1+ %)ag) =2R.

Once AB and AC are known, evaluating all the quantities specifying the asymptotic
co-motion in eq B.1 is just a matter of basic trigonometry, providing

<
x; = —(AB-ap)
x7 = ar+AC
a
< _ <
Xy = Xp-ar
b
> >
X5 = Xx7——ag
0 TT,
¢S = —-mTx5
¢ = -m’xg (B.3)

where x5 (xg) is the zero of the function m<x+c= (m”>x+c”), see fig B.1.

TaBLE B.1: Values of the maximum of UZSE for the density in eq 6.45 and the parameters

a=2, b=1 at different internuclear distance, R.

U )

R numerical modelled
3 0.684 0.75

8 0.278 0.281
11 0.203 0.205
14 0.160 0.161
17 0.132 0.132
20 0.113 0.113

The modelled Hartree XC SCE potential, v>°E obtained from v>°F  (x)=

Hxc,mod’ Hxc,mod

-1 (fmod(y)—y)fzdy (see eq 3.15), compares nicely with the numerically exact

ment has to be rescaled such that the chunk of density between the two electron positions integrate
always to one (eq 3.33).
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B. ANALYTICAL 1D MODEL FOR VISJ():CE AND UrSeCsEJ IN THE DISSOCIATION LIMIT

one as shown in the right colum of fig B.2. In addition to the profile of the modelled
potential, we report in table B.1, the values obtained for the maximum, which is

the most delicate point.

SCE VSCE
resp
0.75 ’~

0.6 s AN

« 0.45 g N

\
7
7z

-20 -10 0 10 20 -20 -10 0 10

FiGure B.2: Comparison of between the numerical (thick) and the modelled (dashed) v%&%

(right) and the numerical (thick) and the modelled (dashed) V§3CS% at different internuclear
distances. Notice that, because within the model the local behaviour of the co-motion around
the divergence is not treated, the response potential v,SeCs%(x) shows a pointwise jump in
X=dagR.

20

The analytical expression for the dependence of the maximum of the Hartree
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XC SCE we obtain is

SCE _ (a+ b)z
Uie (@r) = SabR (B.4)
Equation B.4 shows that when the two fragment densities are equal, the maximum

value decreases like %. In the right column of fig B.2, we report the comparison

between the modelled and the numerical SCE response potentials, obtained from
eq 6.48. It is quite interesting to notice that the SCE response potential result-
ing from our model co-motion (eq B.1) shows a pointwise jump in x =ag. It is
evident that, in order to correctly describe how this potential behaves around its
maximum, we need to include also the knowledge of how the co-motion function
diverges, while this information is not needed in the case of the maximum of the
SCE Hartree XC potential. Nonetheless, our modelled SCE response potential
correctly integrates to exactly one as it should (see discussion in chapter 7).

Moreover, excluding for a moment the point f,04(ar) = oo from our model co-motion,
we can evaluate the analytical behaviour of the step structure of the modelled SCE
response potential, v>CE i.e. the difference from its left and right limits towards

resp,mod’
agr, getting
2 _ 32
lim vrSeCSE mod () — lim vrSeCsE mod | = a-b . (B.5)
x—»a;; p, X—ap P 2abR
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THE HOOKE'S ATOM SERIES

The Hooke's atom series consists of two electrons bound by an harmonic external
potential, with hamiltonian

ol o @, 5]
H=—-(Vi+V3)+—(ri+13)+—, (C.1)
2 2 Iz
with r; = |r;| and r2 = |rp —r2|. At large w the system has high-density and
is in the weakly correlated regime, which can be fully described by using the
scaled coordinates s; = /wr;, while as w — 0 the system becomes more and more
correlated [296], and the relevant scaled variables are §; = w?/*r;.

As well known, there is an infinite set of special values of w for which the
hamiltonian (C.1) is analytically solvable [287] once rewritten in terms of center of
mass and relative coordinates. These analytic solutions have the center of mass in
the ground-state of an harmonic oscillator with mass m = 2 and frequency v2w, and
the relative coordinate in an s-wave with the radial part described by a gaussian
times a polynomial [287]. We denote here the various analytic solutions with the
degree n—1 of the polynomial in rj2. At n=1 we have the non-interacting system,
and as n increases the system becomes more and more correlated, with w smaller
and smaller [287]. The values of w corresponding to I =0 and the different values
of n considered in chapter 8 are reported in Table C.1.

In fig C.1 we plot the scaled densities for the different Hooke's atom up to
n=6. Notice that , while for n =2,3 along the series, the maximum of the density
is situated at the origin, for n >3 it is found at some positive distance and at the
origin the density shows its minimum (a situation sometimes referred to as “cusp
catastrophe" [296]).
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C. THE HOOKE'S ATOM SERIES

TasLe C.1: Values of w for the various analytic solutions of the hamiltonian of Eq. (C.1)
considered here, corresponding to /=0 and different degrees n—1 of the polynomial in the
solution for the relative coordinate rj» [287].

n w

2 1/2

3 1/10

4 31 (5-V17)
5 =15 (35-3V57)

191—@(\/§sin(% tan”! ( 1458@))+c05(% tan™! (7145&/%)))

39157 3915791
6 1620
0.25
0.20 B
% 0.15
3
~
o010 :
0.05 1
0.00 ]
0 1 2 3 4
rw'?

Ficure C.1: Scaled densities for the Hooke's atom series with n=2,...,6
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SUMMARY

The results comprised in this thesis move along a diverse path exploring both
approximations and exact properties of density functionals and support the signif-
icance of the strong-interaction limit of DFT (and possibly also of HF theory) in
the development of approximate density functionals. Few considerations on such
results, together with future directions that can be envisaged from them, are in
order in this summary.

The assessment of model density functionals, based on interpolations along
the adiabatic connection and containing the strong-interaction limit ingredient, on
cases which are typically challenging for standard density functionals, such as gold
and silver metal clusters, has shown that this class of functionals deserves further
studies. A self-consistent (SC) implementation seems due to definitely assess their
quality. However, we remind that they are complicated nonlinear functionals of the
Kohn—Sham orbitals and eigenvalues making their efficient SC implementation a
hard task. This is the object of ongoing work. A further complication towards their
application in a SC procedure is that they typically contain a piece in the XC
potential which is diverging asymptotically [6]. Such behaviour comes from the fact
that the A — oo limit energy functional is usually approximated by the much cheaper
semilocal expression derived within the pointcharge-plus-continuum (PC) model,
which is a gradient expansion and should therefore be somehow “renormalized"
to avoid asymptotic divergence. More in general, efforts should be made in the
direction of making them applicable for routinely calculations, while preserving
their non-empirical character.

At the same time, the outcome that such interpolations, approximating the XC
energy in a post-SC scheme, are optimal when used as corrections to the HF
uncorrelated energy, triggered a study on the strong-interaction limit in this theory.
Several aspects need now to be understood about the different properties of the
HF adiabatic connection curve as compared to the DFT one in order to be able
to properly transfer DFT strategies into this context. In some sense, the strong-
interaction limit in the HF adiabatic connection seems simpler, thanks to the lack
of the density constraint. Nevertheless, it could be useful to devise an approximate
model similar to the PC one also for this reference system, especially in view of
approximating the zero-point oscillations energy term, entering at order VA as in
the DFT case but looking quite more complex, due to the presence of the exchange
energy operator, absent in DFT.

On a parallel track, we focused on digging out exact properties of the XC poten-
tial. In particular, we have connected two decompositions of the exact XC potential,
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Summary

i.e. the one coming from the conditional amplitude formalism and the one com-
ing from integrating A-dependent local potentials along the adiabatic connection,
showing their different redistribution among terms having physically transparent
meanings (see eq 6.58 and fig 6.13). Furthermore, we have derived the SCE re-
sponse potential and compared it to the exact one, finding that, although the SCE
description lacks the fundamental kinetic correlation component, the structure of
its response potential mimics certain features of the exact one closer than approx-
imations where the kinetic correlation component is accounted for (see fig 6.10
and eq B.5). We attribute this capability to a distinctive feature of all SCE func-
tionals, that is their dependence on integrals of the density, typically absent from
the Jacob’s ladder narrative. Future directions inspired by such findings include
modeling the missing kinetic correlation component in terms of functionals that
depend on the distances at which the (spherically averaged) density integrates to
an integer, within the quite recently proposed multiple-radit approach [109, 110].

Germane to the need for a more accurate description of the kinetic correlation
component, the project presented in the last chapter and motivated by recent results
on a lattice [275] explores the idea of introducing a position-dependent mass that
could tune the kinetic energy density of a non-interacting system with that of
the interacting one. However, the ulterior scalar potential embodied in the mass
introduces a variety of possibilities on how to set up the theory, which we have
partially explored and tested on model and simple chemical systems. At the state
of the art, several questions are still open, both at the fundamental and at the
computational level, and further investigations are needed before assessing if and
how the introduction of a position-dependent mass can improve the description of
the kinetic correlation within KS-DFT.

168



ACKNOWLEDGEMENTS

In the past four years, | have had the chance to be inspired by several outstanding
scientists working in the Department of Theoretical Chemistry of this university:
by Paola, my promotor, in the first place.

She gave me the opportunity to be immersed in the rare mixture of extraordinary
expertises that characterises herself, as well as the group as a whole at a higher
scale — and | am grateful for it.

| also would like to thank some more people that gave me a hand walking
through this experience in one way or another.

Klaas, my copromotor, especially for getting intrigued by my conjecture and
making it grow into a paper. Frieda, who has always been extremely kind and
offered me her help with some bureaucracy when | really needed it. Eduardo and
Fabio, who hosted me in Lecce and made me feel welcomed. Augusto who arrived
‘late’ in the group but has been a greatly comforting element. Ziad who trusted
me immediately for no apparent reason. Lenka who helped me choosing the dress
for my sister’s wedding when | was starting panicking. My sister, Silvia, for her
help with the cover.

| should also thank two gems of Amsterdam: Henk, who is probably the most
pedagogical (Tai chi) teacher on Earth, and Jeffrey, whose strenuous cultural ac-
tivism is simply moving [297]. | thank my psychotherapist Vittorio. He gave me his
friendship and also his most needed technical help. | want to thank Juri and Derk,
who were my companions along the path since the start.

| want to thank Juri for staying close to me for all this time, for all his support.

You kept reminding me things about myself | kept overlooking.

Flavio, Megghi, Silvia, Eugenia, Anita, Niki, Albi, Mario, Vincenzo, Luca, lga,
Francesco, Daniele, Ayush, Souloke, Tim, Cami, Marta, Maria, Rosa, Denise,
Stephanie, Laureen, Stefan, Jelena, Maggie, Martina, Marco, Angela, Roberta,
Ciccio, Giovanna, Andrea, Mario, Bianca Maria... Thank you.

Finally, | would like to go a little bit off the conventional track and 'acknowl-
edge’ some bad things that were present too.

My Ph.D. experience started with a twisted ankle and ended with a broken
arm. Metaphorically speaking, these events represent pretty well the dose of pain
that came along with it.

There were, | think, two kinds of causes: on one side, the general state of
academic environment, whose "toxicity’ is being gradually recognised (see e.g. ref-

169



Acknowledgements

erences [298, 299], where the focus is on the conditions of the Ph.D. students pop-
ulation).

On the other side, a set of specific circumstances concerning my individual
experience: the VU administration, my condition of immigrant/expat in Amsterdam,
my own character finding relatively few matches, etc.

| am not entering into details, but | would like to make a cross-cutting point |
truly care about: most of it was unnecessary pain.

| emphasise the word unnecessary in contrast with the tendency, very common
also in Academia, to idolise 'resilience’ and turn the story around by saying that
you need pain to strengthen up. In fairness, | find such argument dishonest, coward
and perverse. Notwithstanding the importance of being resilient, | find that the
(ab)use of its concept is disruptive and reactionary as it lessens the seriousness
of the problems at stake and somehow denies there being a need (and room) for
improvement.

170



LisT OF PUBLICATIONS

[1] S. Giarrusso, P. Gori-Giorgi, F. Della Sala, and E. Fabiano, Assessment of
interaction-strength interpolation formulas for gold and silver clusters, J. Chem.
Phys. 148, 134106 (2018).

[2] S. Giarrusso, S. Vuckovic, and P. Gori-Giorgi, Response potential in the strong-
interaction limit of DFT: Analysis and comparison with the coupling-constant
average, ). Chem. Theory Comput. 14, 4151 (2018).

[3] S. Giarrusso, P. Gori-Giorgi, and K. J. Giesbertz, Sum-rules of the response
potential in the strongly-interacting limit of DFT, Eur. Phys. J. B 91, 186 (2018).

[4] M. Seidl, S. Giarrusso, S. Vuckovic, E. Fabiano, and P. Gori-Giorgi, Commu-
nication: Strong-interaction limit of an adiabatic connection in Hartree-Fock
theory, J. Chem. Phys. 149, 241101 (2018).

[5] E. Fabiano, S. Smiga, S. Giarrusso, T. J. Daas, F. Della Sala, |. Grabowski, and
P. Gori-Giorgi, Investigation of the exchange-correlation potentials of function-

als based on the adiabatic connection interpolation, J. Chem. Theory Comput.
15, 1006 (2019).

[6] S. Giarrusso and P. Gori-Giorgi, Exchange-correlation energy densities and
response potentials: Connection between two definitions and analytical model
for the strong-coupling limit of a stretched bond, submitted to J. Phys. Chem. A
(2019), 10.26434/chemrxiv.10283678.v1.

171


http://dx.doi.org/10.1063/1.5022669
http://dx.doi.org/10.1063/1.5022669
http://dx.doi.org/10.1021/acs.jctc.8b00386
http://dx.doi.org/10.26434/chemrxiv.10283678.v1
http://dx.doi.org/10.26434/chemrxiv.10283678.v1




BIBLIOGRAPHY

[1] K. Sharkas, J. Toulouse, and A. Savin, Double-hybrid density-functional
theory made rigorous, J. Chem. Phys. 134, 064113 (2011).

[2] S. Ghosh, P. Verma, C. J. Cramer, L. Gagliardi, and D. G. Truhlar, Combining
wave function methods with density functional theory for excited states, Chem.
Rev. 118, 7249 (2018).

[3] S. Vuckovic, S. Song, J. Kozlowski, E. Sim, and K. Burke, Density functional
analysis: The theory of density-corrected DFT, ]. Chem. Theory. Comput.
(2019).

[4] E. Fabiano, P. Gori-Giorgi, M. Seidl, and F. Della Sala, Interaction-strength
interpolation method for main-group chemistry: Benchmarking, limitations,
and perspectives, ). Chem. Theory. Comput. 12, 4885 (2016).

[5] L. A. Constantin, Correlation energy functionals from adiabatic connection
formalism, Phys. Rev. B 99, 085117 (2019).

[6] E. Fabiano, S. Smiga, S. Giarrusso, T. J. Daas, F. Della Sala, I. Grabowski,
and P. Gori-Giorgi, Investigation of the exchange-correlation potentials of
functionals based on the adiabatic connection interpolation, ). Chem. Theory
Comput. 15, 1006 (2019).

[7] S. Vuckovic, P. Gori-Giorgi, F. Della Sala, and E. Fabiano, Restoring size
consistency of approximate functionals constructed from the adiabatic con-
nection, J. Phys. Chem. Lett. 9, 3137 (2018).

[8] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B
864 (1964).

[9] G. Stefanucci and R. Van Leeuwen, Nonequilibrium many-body theory of
quantum systems: a modern introduction (Cambridge University Press, 2013).

[10] L. H. Thomas, The calculation of atomic fields, Mathematical Proceedings of
the Cambridge Philosophical Society 23, 542 (1927).

[11] E. Fermi, Statistical method to determine some properties of atoms, Rend.
Accad. Naz. Lincei 6, 5 (1927).

173



Bibliography

[12] J. C. Slater, A simplification of the hartree-fock method, Phys. Rev. 81, 385
(1951).

[13] D. J. Tozer, V. E. Ingamells, and N. C. Handy, Exchange-correlation poten-
tials, J. Chem. Phys. 105, 9200 (1996).

[14] N. C. Handy, The importance of colle-salvetti for computational density func-
tional theory, Theor. Chim. Acc. 123, 165 (2009).

[15] E. Engel and R. M. Dreizler, Density Functional Theory: An Advanced Course
(Springer, 2011).

[16] W. Kohn, Highlights of condensed-matter theory, in Proceedings of the inter-
national school of physics “Enrico Fermi’, Course LXXXIX, edited by F. Bas-
sani, F. Fumi, and M. P. Tosi (North Holland, Amsterdam, 1983) p. 1.

[17] R. van Leeuwen, Density functional approach to the many-body problem: key
concepts and exact functionals, Adv. Quantum Chem. 43, 24 (2003).

[18] A. Pribram-Jones, S. Pittalis, E. Gross, and K. Burke, Thermal density func-
tional theory in context, in Frontiers and Challenges in Warm Dense Mat-
ter, edited by F. Graziani, M. P. Desjarlais, R. Redmer, and S. B. Trickey
(Springer, 2014) pp. 25-60.

[19] M. Lewy, Universal variational functionals of electron densities, first-
order density matrices, and natural spin-orbitals and solution of the v-
representability problem, Proc. Natl. Acad. Sci. 76, 6062 (1979).

20] M. Levy, Electron densities in search of hamiltonians, Phys. Rev. A 26, 1200
y y
(1982).

[21] E. H. Lieb, Density functionals for Coulomb systems, Int. J. Quantum. Chem.
24, 243 (1983).

[22] ). E. Harriman, Orthonormal orbitals for the representation of an arbitrary
density, Phys. Rev. A 24, 680 (1981).

[23] W. Kohn and L. J. Sham, Self-consistent equations including exchange and
correlation effects, Phys. Rev. 140, A 1133 (1965).

[24] S. Kvaal, U. Ekstrom, A. M. Teale, and T. Helgaker, Differentiable but exact
formulation of density-functional theory, . Chem. Phys. 140, 18A518 (2014).

[25] P.R.T. Schipper, O. V. Gritsenko, and E. J.Baerends, One-determinantal pure
state versus ensemble Kohn-Sham solutions in the case of strong electron
correlation: CHZ2 and C2, Theor. Chim. Acc. 99, 329 (1998).

174


http://dx.doi.org/10.1073/pnas.040539297
http://dx.doi.org/10.1103/PhysRevA.26.1200
http://dx.doi.org/10.1103/PhysRevA.26.1200
http://dx.doi.org/10.1002/qua.560240302
http://dx.doi.org/10.1002/qua.560240302

Bibliography

[26] K. Giesbertz and E. Baerends, Aufbau derived from a unified treatment of
occupation numbers in Hartree—Fock, Kohn-Sham , and natural orbital the-

ories with the Karush—Kuhn—Tucker conditions for the inequality constraints
ni<s 1 and niz 0, J. Chem. Phys. 132, 194108 (2010).

[27] J. Harris and R. Jones, The surface energy of a bounded electron gas, J. Phys.
F: Met. Phys. 4, 1170 (1974).

[28] O. Gunnarsson and B. |. Lundqvist, Exchange and correlation in atoms,
molecules, and solids by the spin-density-functional formalism, Phys. Rev.
B 13, 4274 (1976).

[29] D. C. Langreth and J. P. Perdew, The exchange-correlation energy of a metal-
lic surface, Solid. State Commun. 17, 1425 (1975).

[30] D. C. Langreth, New theoretical support for density-functional theory as
commonly applied, Phys. Rev. Lett. 52, 2317 (1984).

[31] M. Levy and J. P. Perdew, Hellmann—Feynman, virial, and scaling requisites
for the exact universal density functionals. shape of the correlation potential
and diamagnetic susceptibility for atoms, Phys. Rev. A 32, 2010 (1985).

[32] A. Gorling and M. Levy, Correlation-energy functional and its high-density
limit obtained from a coupling-constant perturbation expansion, Phys. Rev.
B 47, 13105 (1993).

[33] J. D. Talman and W. F. Shadwick, Optimized effective atomic central potential,
Phys. Rev. A 14, 36 (1976).

[34] P. Gori-Giorgi, G. Vignale, and M. Seidl, Electronic zero-point oscillations
in the strong-interaction limit of density functional theory, J. Chem. Theory
Comput. 5, 743 (2009).

[35] E. H. Lieb and S. Oxford, Improved lower bound on the indirect coulomb
energy, Int. J. Quantum. Chem. 19, 427 (1981).

[36] M. Lewin, E. H. Lieb, and R. Seiringer, A floating wigner crystal with no
boundary charge fluctuations, arXiv preprint arXiv:1905.09138 (2019).

[37] G. K-L. Chan and N. C. Handy, Optimized lieb-oxford bound for the
exchange-correlation energy, Phys. Rev. A 59, 3075 (1999).

[38] M. Levy and J. P. Perdew, Tight bound and convexity constraint on the
exchange-correlation-energy functional in the low-density limit, and other
formal tests of generalized-gradient approximations, Phys. Rev. B 48, 11638
(1993).

175


http://dx.doi.org/10.1103/PhysRevA.32.2010
http://dx.doi.org/10.1021/ct8005248
http://dx.doi.org/10.1021/ct8005248

Bibliography

[39]

[40]

[47]

[42]

[43]

[44]

[45]

[46]

[47]

176

G. Hunter, Conditional probability amplitudes in wave mechanics, Int. ].
Quantum Chem. 9, 237 (1975).

G. Hunter, lonization potentials and conditional amplitudes, Int. J. Quantum
Chem. Symp. 9, 311 (1975).

M. Levy, J. P. Perdew, and V. Sahni, Exact differential equation for the
density and ionization energy of a many-particle system, Phys. Rev. A 30,
2745 (1984).

M. A. Buijse, E. J. Baerends, and J. G. Snijders, Analysis of correlation in
terms of exact local potentials: Applications to two-electron systems, Phys.
Rev. A 40, 4190 (1989).

J. Katriel and E. R. Davidson, Asymptotic behavior of atomic and molecular
wave functions, Proc. Natl. Acad. Sci. USA 77, 4403 (1980).

P. Gori-Giorgi, T. Gal, and E. J. Baerends, Asymptotic behaviour of the
electron density and the Kohn-Sham potential in case of a Kohn-Sham
HOMO nodal plane, Mol. Phys. 114, 1086 (2016).

P. Gori-Giorgi and E. J. Baerends, Asymptotic nodal planes in the electron
density and the potential in the effective equation for the square root of the
density, Eur. Phys. J. B 91, 160 (2018).

0. V. Gritsenko and E. ]. Baerends, Effect of molecular dissociation on the
exchange-correlation Kohn-Sham potential, Phys. Rev. A 54, 1957 (1996).

O. V. Gritsenko, R. van Leeuwen, and E. ). Baerends, Molecular exchange-
correlation Kohn-Sham potential and energy density from ab initio first-
and second-order density matrices: Examples for XH (X= Li, B, F), J. Chem.
Phys. 104, 8535 (1996).

E. J. Baerends and O. V. Gritsenko, A quantum chemical view of density
functional theory, J. Phys. Chem. A 101, 5383 (1997).

C.-O. Almbladh and U. von Barth, Exact results for the charge and spin den-
sities, exchange-correlation and density-functional eigenvalues, Phys. Rev.
B 31, 3232 (1985).

C. O. Almbladh and U. von Barth, Density-functional theory and excitation
energies, in Density functional methods in physics, edited by R. M. Dreizler
and J. da Providéncia (Springer, 1985) pp. 209-231.

D. G. Tempel, T. J. Martinez, and N. T. Maitra, Revisiting molecular dissoci-
ation in density functional theory: A simple model, ). Chem. Theory. Comput.
5, 770 (2009).


http://dx.doi.org/10.1103/PhysRevA.40.4190
http://dx.doi.org/10.1103/PhysRevA.40.4190
http://dx.doi.org/10.1103/PhysRevA.54.1957
http://dx.doi.org/ 10.1021/jp9703768
http://dx.doi.org/10.1021/ct800535c
http://dx.doi.org/10.1021/ct800535c

Bibliography

[52] S. V. Kohut, A. M. Polgar, and V. N. Staroverov, Origin of the step structure

of molecular exchange—correlation potentials, Phys. Chem. Chem. Phys. 18,
20938 (2016).

[53] R. van Leeuwen and E. J. Baerends, An analysis of nonlocal density func-
tionals in chemical bonding, Int. J. Quantum Chem. 52, 711 (1994).

[54] N. Helbig, I. V. Tokatly, and A. Rubio, Exact Kohn-Sham potential of
strongly correlated finite systems, . Chem. Phys. 131, 224105 (2009).

[55] Z-J. Ying, V. Brosco, G. M. Lopez, D. Varsano, P. Gori-Giorgi, and J. Loren-
zana, Anomalous scaling and breakdown of conventional density functional
theory methods for the description of mott phenomena and stretched bonds,
Phys. Rev. B 94, 075154 (2016).

[56] N. T. Maitra, Undoing static correlation: Long-range charge transfer in time-
dependent density-functional theory, J. Chem. Phys. 122, 234104 (2005).

[57] P. Elliott, J. I. Fuks, A. Rubio, and N. T. Maitra, Universal dynamical steps
in the exact time-dependent exchange-correlation potential, Phys. Rev. Lett.
109, 266404 (2012).

[58] R. Van Meer, O. Gritsenko, and E. Baerends, Physical meaning of virtual
Kohn-Sham orbitals and orbital energies: an ideal basis for the description
of molecular excitations, J. Chem. Theory Comput. 10, 4432 (2014).

[59] O. Gritsenko, £. Mentel, and E. Baerends, On the errors of local density (lda)
and generalized gradient (gga) approximations to the Kohn-Sham potential
and orbital energies, ). Chem. Phys. 144, 204114 (2016).

[60] R. van Leeuwen, Kohn-Sham potentials in density functional theory,
Academisch proefschrift, Vrije Universiteit van Amsterdam (1994).

[61] R. Cuevas-Saavedra, P. W. Ayers, and V. N. Staroverov, Kohn-Sham
exchange-correlation potentials from second-order reduced density matrices,
J. Chem. Phys. 143, 244116 (2015).

[62] R. Cuevas-Saavedra and V. N. Staroverov, Exact expressions for the Kohn—
Sham exchange-correlation potential in terms of wave-function-based quan-
tities, Mol. Phys. 114, 1050 (2016).

[63] I. G. Ryabinkin, E. Ospadov, and V. N. Staroverov, Exact exchange-

correlation potentials of singlet two-electron systems, J. Chem. Phys. 147,
164117 (2017).

177


http://dx.doi.org/ 10.1002/qua.560520405
http://dx.doi.org/ 10.1063/1.3271392
http://dx.doi.org/10.1103/PhysRevB.94.075154
http://dx.doi.org/10.1063/1.4937943
http://dx.doi.org/ 10.1080/00268976.2015.1131861

Bibliography

[64] O. V. Gritsenko, R. van Leeuwen, E. van Lenthe, and E. J. Baerends, Self-
consistent approximation to the Kohn-Sham exchange potential, Phys. Rev.
A 51, 1944 (1995).

[65] M. Kuisma, J. Ojanen, J. Enkovaara, and T. T. Rantala, Kohn-Sham potential
with discontinuity for band gap materials, Phys. Rev. B 82, 115106 (2010).

[66] S. Giarrusso, S. Vuckovic, and P. Gori-Giorgi, Response potential in the
strong-interaction limit of DFT: Analysis and comparison with the coupling-
constant average, J. Chem. Theory Comput. 14, 4151 (2018).

[67] N. March, Differential equation for the ground-state density in finite and
extended inhomogeneous electron gases, Physics Letters A 113, 66 (1985).

[68] N. March, The density amplitude p1/2 and the potential which generates it,
Journal of Computational Chemistry 8, 375 (1987).

[69] M. Levy, Density-functional exchange correlation through coordinate scaling
in adiabatic connection and correlation hole, Phys. Rev. A 43, 4637 (1991).

[70] L. Sham, Local exchange approximations and the virial theorem, Phys. Rev.
A 1,969 (1970).

[71] M. Seidl, J. P. Perdew, and M. Lewy, Strictly correlated electrons in density-
functional theory, Phys. Rev. A 59, 51 (1999).

[72] M. Seidl, Strong-interaction limit of density-functional theory, Phys. Rev. A
60, 4387 (1999).

[73] M. Seidl, P. Gori-Giorgi, and A. Savin, Strictly correlated electrons in
density-functional theory: A general formulation with applications to spher-
ical densities, Phys. Rev. A 75, 042511/12 (2007).

[74] M. Lewin, Semi-classical limit of the Levy—Lieb functional in density func-
tional theory, C. R. Math. 356, 449 (2018).

[75] C. Cotar, G. Friesecke, and C. Klippelberg, Smoothing of transport plans
with fixed marginals and rigorous semiclassical limit of the hohenberg—kohn
functional, Arch. Ration. Mech. An. 228, 891 (2018).

[76] M. Colombo and S. Di Marino, Equality between monge and kantorovich
multimarginal problems with coulomb cost, Annali di Matematica Pura ed
Applicata (1923-) 194, 307 (2015).

[77] M. Seidl, S. Di Marino, A. Gerolin, L. Nenna, K. J. Giesbertz, and P. Gori-
Giorgi, The strictly-correlated electron functional for spherically symmetric
systems revisited, arXiv preprint arXiv:1702.05022 (2017).

178


http://dx.doi.org/10.1021/acs.jctc.8b00386
http://dx.doi.org/10.1103/PhysRevA.59.51
http://dx.doi.org/ 10.1103/PhysRevA.60.4387
http://dx.doi.org/ 10.1103/PhysRevA.60.4387
http://dx.doi.org/10.1103/PhysRevA.75.042511
http://dx.doi.org/10.1016/j.crma.2018.03.002
http://dx.doi.org/10.1007/s00205-017-1208-y

Bibliography

[78] M. Seidl, S. Giarrusso, S. Vuckovic, E. Fabiano, and P. Gori-Giorgi, Commu-
nication: Strong-interaction limit of an adiabatic connection in hartree-fock
theory, J. Chem. Phys. 149, 241101 (2018).

[79] F. Malet, A. Mirtschink, J. C. Cremon, S. M. Reimann, and P. Gori-Giorgi,
Kohn-Sham density functional theory for quantum wires in arbitrary corre-
lation regimes, Phys. Rev. B 87, 115146 (2013).

[80] J. Grossi, D. P. Kooi, K. J. H. Giesbertz, M. Seidl, A. J. Cohen, P. Mori-
Sanchez, and P. Gori-Giorgi, Fermionic statistics in the strongly correlated
limit of density functional theory, J. Chem. Theory Comput. 13, 6089 (2017).

[81] S. Giarrusso, P. Gori-Giorgi, and K. J. Giesbertz, Sum-rules of the response
potential in the strongly-interacting limit of DFT, Eur. Phys. J. B 91, 186
(2018).

[82] A. Mirtschink, M. Seidl, and P. Gori-Giorgi, Energy densities in the strong-
interaction limit of density functional theory, ). Chem. Theory Comput. 8,
3097 (2012).

[83] F. Malet and P. Gori-Giorgi, Strong correlation in Kohn-Sham den-
sity functional theory, volume = 109, year = 2012, bdsk-url-1 =
https://doi.org/10.1103/PhysRevlett.109.246402, Phys. Rev. Lett. , 246402.

[84] C. Buttazzo, L. De Pascale, and P. Gori-Giorgi, Optimal-transport formula-
tion of electronic density-functional theory, Phys. Rev. A 85, 062502 (2012).

[85] C. Cotar, G. Friesecke, and C. Kliippelberg, Density functional theory and
optimal transportation with coulomb cost, Comm. Pure Appl. Math. 66, 548
(2013).

[86] G.Monge, Mémoire sur la théorie des déblais et des remblais (Histoire Acad.
Sciences, Paris, 1781).

[87] L. V. Kantorovich, On the transfer of masses, Dokl. Akad. Nauk. SSSR. 37,
227 (1942).

[88] C. Villani, Topics in Optimal Transportation (Grad. Stud. Math. 58, Amer.
Math. Soc., Providence, 2003).

[89] M. Colombo, L. De Pascale, and S. Di Marino, Multimarginal optimal trans-
port maps for one-dimensional repulsive costs, Canad. J. Math 67, 350 (2015).

[90] M. Lewin, P. Gori-Giorgi, and B. Pass, Optimal transport methods in density
functional theory, (1994).

179


http://dx.doi.org/ 10.1103/PhysRevB.87.115146
http://dx.doi.org/ 10.1021/acs.jctc.7b00998
http://dx.doi.org/10.1103/PhysRevLett.109.246402
http://dx.doi.org/10.1103/PhysRevA.85.062502
http://dx.doi.org/ 10.4153/CJM-2014-011-x

Bibliography

[91] A. M. Teale, S. Coriani, and T. Helgaker, Accurate calculation and modeling
of the adiabatic connection in density functional theory, . Chem. Phys. 132,
164115 (2010).

[92] M. Colombo, S. Di Marino, and F. Stra, Continuity of multimarginal optimal
transport with repulsive cost, SIAM Journal on Mathematical Analysis 51,
2903 (2019).

[93] C. B. Mendl, F. Malet, and P. Gori-Giorgi, Wigner localization in quantum
dots from Kohn-Sham density functional theory without symmetry breaking,
Phys. Rev. B 89, 125106 (2014).

[94] S. Vuckovic, Fully Nonlocal Exchange-Correlation Functionals from the
Strong-coupling limit of Density Functional Theory, Academisch proefschrift,
Vrije Universiteit van Amsterdam (2017).

[95] S. Vuckovic, L. O. Wagner, A. Mirtschink, and P. Gori-Giorgi, Hydrogen
molecule dissociation curve with functionals based on the strictly correlated
regime, J. Chem. Theory Comput. 11, 3153 (2015).

[96] C. B. Mendl and L. Lin, Kantorovich dual solution for strictly correlated
electrons in atoms and molecules, Phys. Rev. B 87, 125106 (2013).

[97] G. Friesecke and D. Viogler, Breaking the curse of dimension in multi-marginal
kantorovich optimal transport on finite state spaces, SIAM Journal on Math-
ematical Analysis 50, 3996 (2018).

[98] Y. Khoo and L. Ying, Convex relaxation approaches for strictly correlated
density functional theory, SIAM Journal on Scientific Computing 41, B773
(2019).

[99] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, [terative
bregman projections for reqularized transportation problems, SIAM |. on Sci.
Comput. 37, A1111 (2015).

[100] J-D. Benamou, G. Carlier, and L. Nenna, A numerical method to solve multi-
marginal optimal transport problems with coulomb cost, in Splitting Methods
in Communication, Imaging, Science, and Engineering (Springer, 2016) pp.
577-601.

[101] M. Cuturi, Sinkhorn distances: Lightspeed computation of optimal transport,
in Advances in neural information processing systems (2013) pp. 2292-2300.

[102] P. Gori-Giorgi and M. Seidl, Density functional theory for strongly-
interacting electrons: perspectives for physics and chemistry, Phys. Chem.
Chem. Phys 12, 14405 (2010).

180


http://dx.doi.org/10.1063/1.3380834
http://dx.doi.org/10.1063/1.3380834
http://dx.doi.org/10.1103/PhysRevB.89.125106
http://dx.doi.org/10.1039/c0cp01061h
http://dx.doi.org/10.1039/c0cp01061h

Bibliography

[103] F. Malet, A. Mirtschink, C. B. Mendl, J. Bjerlin, E. O. Karabulut, S. M.
Reimann, and P. Gori-Giorgi, Density-functional theory for strongly cor-
related bosonic and fermionic ultracold dipolar and ionic gases, Phys. Rev.
Lett. 115, 033006 (2015).

[104] F. Malet, A. Mirtschink, K. J. H. Giesbertz, L. O. Wagner, and P. Gori-
Giorgi, Exchange-correlation functionals from the strong interaction limit of
DFT: applications to model chemical systems, Phys. Chem. Chem. Phys. 16,
14551 (2014).

[105] A. Mirtschink, M. Seidl, and P. Gori-Giorgi, The derivative discontinuity in
the strong-interaction limit of density functional theory, Phys. Rev. Lett. 111,
126402 (2013).

[106] A. Mirtschink, C. J. Umrigar, J. D. Morgan Ill, and P. Gori-Giorgi, Energy
density functionals from the strong-coupling limit applied to the anions of
the he isoelectronic series, J. Chem. Phys. 140, 18A532 (2014).

[107] P. Gori-Giorgi, J. G. Angyan, and A. Savin, Charge density reconstitution
from approximate exchange-correlation holes, Canad. J. of Chem. 87, 1444
(2009).

[108] M. Seidl, S. Vuckovic, and P. Gori-Giorgi, Challenging the lieb—oxford bound
in a systematic way, Mol. Phys. 114, 1076 (2016).

[109] S. Vuckovic and P. Gori-Giorgi, Simple fully nonlocal density functionals
for electronic repulsion energy, J. Phys. Chem. Lett. 8, 2799 (2017), pMID:
28581751.

[110] S. Vuckovic, Density functionals from the multiple-radii approach: analy-
sis and recovery of the kinetic correlation energy, J. Chem. Theory Comput.
(2019).

[111] S. Vuckovic and T. Gould, Range-separation and the multiple radii functional
approximation inspired by the strongly interacting limit of density functional
theory, (2019).

[112] A. D. Becke, A new mixing of Hartree—Fock and local density-functional
theories, J. Chem. Phys. 98, 1372 (1993).

[113] A. D. Becke, Density-functional thermochemistry. lll. the role of exact ex-
change, J. Chem. Phys. 98, 5648 (1993).

[114] M. Ernzerhof, Construction of the adiabatic connection, Chem. Phys. Lett.
263, 499 (1996).

181


http://dx.doi.org/ 10.1103/PhysRevLett.115.033006
http://dx.doi.org/ 10.1103/PhysRevLett.115.033006
http://dx.doi.org/10.1039/C4CP00407H
http://dx.doi.org/10.1039/C4CP00407H
http://dx.doi.org/10.1021/acs.jpclett.7b01113

Bibliography

[115] G. A. Baker, Essentials of Padé approximants (academic press, 1975).

[116] M. Seidl, J. P. Perdew, and S. Kurth, Simulation of all-order density-
functional perturbation theory, using the second order and the strong-
correlation limit, Phys. Rev. Lett. 84, 5070 (2000).

[117] M. Seidl, J. P. Perdew, and S. Kurth, Density functionals for the strong-
interaction limit, Phys. Rev. A 62, 012502 (2000).

[118] Z-F. Liu and K. Burke, Adiabatic connection in the low-density limit, Phys.
Rev. A 79, 064503 (2009).

[119] E. Fabiano, P. Gori-Giorgi, M. Seidl, and F. Della Sala, Interaction-strength
interpolation method for main-group chemistry: Benchmarking, limitations,
and perspectives, ). Chem. Theory Comput. 12, 4885 (2016).

[120] S. Giarrusso, P. Gori-Giorgi, F. Della Sala, and E. Fabiano, Assessment
of interaction-strength interpolation formulas for gold and silver clusters, ).
Chem. Phys. 148, 134106 (2018).

[121] S. Vuckovic, T. J. P. Irons, A. Savin, A. M. Teale, and P. Gori-Giorgi,
Exchange—correlation functionals via local interpolation along the adiabatic
connection, J. Chem. Theory Comput. 12, 2598 (2016).

[122] D. P. Koot and P. Gori-Giorgi, Local and global interpolations along the
adiabatic connection of DFT: a study at different correlation regimes, Theor.
Chim. Acc. 137, 166 (2018).

[123] J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys. Rev. Lett. 82, 2544
(1999).

[124] M. Seid\, ). P. Perdew, and S. Kurth, Erratum: Density functionals for the
strong-interaction limit [Phys. Rev. A 62, 012502 (2000)] Phys. Rev. A 72,
029904 (E) (2005).

[125] P. Gori-Giorgi and A. Savin, Degeneracy and size consistency in electronic
density functional theory, in Journal of Physics: Conference Series, Vol. 117
(IOP Publishing, 2008) p. 012017.

[126] A. Savin, Is size-consistency possible with density functional approximations?
Chemical Physics 356, 91 (2009).

[127] S. Vuckovic, P. Gori-Giorgi, F. Della Sala, and E. Fabiano, Restoring size
consistency of approximate functionals constructed from the adiabatic con-
nection, J. Phys. Chem. Lett. 9, 3137 (2018).

182


http://dx.doi.org/10.1103/PhysRevLett.84.5070
http://dx.doi.org/10.1021/acs.jpclett.8b01054

Bibliography

[128] H. Schmidbaur, The fascinating implications of new results in gold chemistry,
Gold Bulletin 23, 11 (1990).

[129] M.-C. Daniel and D. Astruc, Gold nanoparticles: assembly, supramolecular
chemistry, quantum-size-related properties, and applications toward biology,
catalysis, and nanotechnology, Chemical Reviews 104, 293 (2004).

[130] P. Pyykko, Theoretical chemistry of gold, Angew. Chem. Int. Ed. 43, 4412
(2004).

[131] P. Pyykks, Theoretical chemistry of gold. Il, Inorganica Chimica Acta 358,
4113 (2005), protagonists in chemistry - Hubert Schmidbaur.

[132] P. Pyykks, Theoretical chemistry of gold. Ill, Chem. Soc. Rev. 37, 1967 (2008).

[133] V. W-W. Yam and E. C.-C. Cheng, Highlights on the recent advances in gold
chemistry-a photophysical perspective, Chem. Soc. Rev. 37, 1806 (2008).

[134] G. J. Hutchings, M. Brust, and H. Schmidbaur, Gold-an introductory per-
spective, Chem. Soc. Rev. 37, 1759 (2008).

[135] S. Yamazoe, K. Koyasu, and T. Tsukuda, Nonscalable oxidation catalysis of
gold clusters, Accounts of Chemical Research 47, 816 (2014).

136] T. Ayako and H. Masatake, Size- and structure-specificity in catalysis b
y P C} Y y
gold clusters, Chemistry Letters 43, 380 (2014).

[137] C. Louis and O. Pluchery, eds., Gold Nanoparticles for Physics, Chemistry
and Biology (World Scientific, Singapore, 2017).

[138] M. Haruta, Gold as a novel catalyst in the 21st century: Preparation, working
mechanism and applications, Gold Bulletin 37, 27 (2004).

[139] T. Taket, T. Akita, I. Nakamura, T. Fujitani, M. Okumura, K. Okazaki, J. Huang,
T. Ishida, and M. Haruta, Chapter one - heterogeneous catalysis by gold,
(Academic Press, 2012) pp. 1 — 126.

[140] T. Ishida, H. Koga, M. Okumura, and M. Haruta, Advances in gold catalysis
and understanding the catalytic mechanism, The Chemical Record 16, 2278
(2016).

[141] A. Mathew and T. Pradeep, Noble metal clusters: Applications in energy,

environment, and biology, Particle & Particle Systems Characterization 31,
1017 (2014).

183


http://dx.doi.org/10.1007/BF03214710
http://dx.doi.org/10.1021/cr030698+
http://dx.doi.org/10.1002/anie.200300624
http://dx.doi.org/10.1002/anie.200300624
http://dx.doi.org/ https://doi.org/10.1016/j.ica.2005.06.028
http://dx.doi.org/ https://doi.org/10.1016/j.ica.2005.06.028
http://dx.doi.org/10.1039/B708613J
http://dx.doi.org/10.1039/B708615F
http://dx.doi.org/10.1039/B810747P
http://dx.doi.org/10.1021/ar400209a
http://dx.doi.org/ 10.1246/cl.131232
http://dx.doi.org/10.1007/BF03215514
http://dx.doi.org/ 10.1002/tcr.201600046
http://dx.doi.org/ 10.1002/tcr.201600046
http://dx.doi.org/10.1002/ppsc.201400033
http://dx.doi.org/10.1002/ppsc.201400033

Bibliography

[142] M. Pereiro, D. Baldomir, J. Botana, J. E. Arias, K. Warda, and L. Wojtczak,
Biomedical applications of small silver clusters, Journal of Applied Physics
103, 07A315 (2008).

[143] S. M. Novikov, V. N. Popok, A. B. Evlyukhin, M. Hanif, P. Morgen, J. Fi-
utowski, J. Beermann, H.-G. Rubahn, and S. |. Bozhevolnyi, Highly stable
monocrystalline silver clusters for plasmonic applications, Langmuir 33, 6062
(2017).

[144] I. Diez and R. H. A. Ras, Few-atom silver clusters as fluorescent reporters,
in Advanced Fluorescence Reporters in Chemistry and Biology II: Molecu-
lar Constructions, Polymers and Nanoparticles, edited by A. P. Demchenko
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2010) pp. 307-332.

[145] M. Ganguly, ). Jana, A. Pal, and T. Pal, Synergism of gold and silver invites
enhanced fluorescence for practical applications, RSC Adv. 6, 17683 (2016).

[146] T. M. Bernhardt, Gas-phase kinetics and catalytic reactions of small silver
and gold clusters, International Journal of Mass Spectrometry 243, 1 (2005).

[147] L. D. Socaciy, J. Hagen, J. L. Roux, D. Popolan, T. M. Bernhardt, L. Wéste,
and Stefan Vajda, Strongly cluster size dependent reaction behavior of co
with o2 on free silver cluster anions, ). Chem. Phys. 120, 2078 (2004).

[148] T. Vosch, Y. Antoku, J.-C. Hsiang, C. . Richards, J. I. Gonzalez, and R. M.
Dickson, Strongly emissive individual dna-encapsulated ag nanoclusters as
single-molecule fluorophores, 104, 12616 (2007).

[149] S. A. Khan, D. Senapati, T. Senapati, P. Bonifassi, Z. Fan, A. K. Singh,
A. Neeley, G. Hill, and P. C. Ray, Size dependent nonlinear optical proper-
ties of silver quantum clusters, Chem. Phys. Lett. 512, 92 (2011).

[150] E. C. Tyo and S. Vajda, Catalysis by clusters with precise numbers of atoms,
Nature Nanotechnology 10, 577-588 (2015).

[151] M. Yang, K. A. Jackson, and J. Jellinek, First-principles study of intermediate
size silver clusters: Shape evolution and its impact on cluster properties, J.
Chem. Phys. 125, 144308-1 (2006).

[152] B. Yoon, P. Koskinen, B. Huber, O. Kostko, B. von Issendorff, H. Hakkinen,
M. Moseler, and U. Landman, Size-dependent structural evolution and chem-
ical reactivity of gold clusters, ChemPhysChem 8, 157 (2007).

[153] N. Shao, W. Huang, Y. Gao, L-M. Wang, X. Li, L-S. Wang, and X. C. Zeng,
Probing the structural evolution of medium-sized gold clusters: Aun— (n =
27-35), Journal of the American Chemical Society 132, 6596 (2010).

184


http://dx.doi.org/10.1063/1.2836803
http://dx.doi.org/10.1063/1.2836803
http://dx.doi.org/10.1021/acs.langmuir.7b00772
http://dx.doi.org/10.1021/acs.langmuir.7b00772
http://dx.doi.org/10.1007/978-3-642-04701-5_10
http://dx.doi.org/10.1007/978-3-642-04701-5_10
http://dx.doi.org/ 10.1039/C5RA26430H
http://dx.doi.org/https://doi.org/10.1016/j.ijms.2004.12.015
http://dx.doi.org/10.1063/1.1644103
http://dx.doi.org/ 10.1073/pnas.0610677104
http://dx.doi.org/https://doi.org/10.1016/j.cplett.2011.07.014
http://dx.doi.org/10.1002/cphc.200600524
http://dx.doi.org/10.1021/ja102145g

Bibliography

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

X. Xing, B. Yoon, U. Landman, and J. H. Parks, Structural evolution of au
nanoclusters: From planar to cage to tubular motifs, Phys. Rev. B 74, 165423
(2006).

H. Hakkinen, Atomic and electronic structure of gold clusters: understanding
flakes, cages and superatoms from simple concepts, Chem. Soc. Rev. 37, 1847
(2008).

L-M. Wang and L.-S. Wang, Probing the electronic properties and structural
evolution of anionic gold clusters in the gas phase, Nanoscale 4, 4038 (2012).

Y. Dong and M. Springborg, Unbiased determination of structural and elec-
tronic properties of gold clusters with up to 58 atoms, J. Phys. Chem.C 111,
12528 (2007).

A. Tanwar, E. Fabiano, P. E. Trevisanutto, L. Chiodo, and F. Della Sala,
Accurate ionization potential of gold anionic clusters from density functional
theory and many-body perturbation theory, The European Physical Journal
B 86, 161 (2013).

E. Fabiano, L. A. Constantin, and F. D. Sala, Exchange-correlation gener-
alized gradient approximation for gold nanostructures, ). Chem. Phys. 134,
194112 (2011).

E. Fabiano, M. Piacenza, and F. Della Sala, Structural and electronic
properties of gold microclusters: assessment of the localized Hartree-Fock
method, Phys. Chem. Chem. Phys. 11, 9160 (2009).

M. V. Popa, The electronic properties of the silver clusters in gas phase and
water, Int. J. Comp. Theor. Chem. 3, 36 (2015).

R. K. Hailstone and J. Tan, Electronic properties of chemically produced silver

clusters: Photobleaching studies, Journal of Imaging Science and Technology
46, 81 (2002).

M. L. McKee and A. Samokhvalov, Density functional study of neutral and
charged silver clusters ag, with n = 2-22. evolution of properties and struc-
ture, J. Phys. Chem.A 121, 5018 (2017).

K. Duanmu and D. G. Truhlar, Validation of methods for computational cat-
alyst design: Geometries, structures, and energies of neutral and charged
silver clusters, J. Phys. Chem.C 119, 9617 (2015).

P. Weis, T. Bierweiler, S. Gilb, and M. M. Kappes, Structures of small
silver cluster cations (ag};, n<12): lon mobility measurements versus density
functional and mp2 calculations, Chem. Phys. Lett. 355, 355 (2002).

185


http://dx.doi.org/ 10.1103/PhysRevB.74.165423
http://dx.doi.org/ 10.1103/PhysRevB.74.165423
http://dx.doi.org/10.1039/B717686B
http://dx.doi.org/10.1039/B717686B
http://dx.doi.org/10.1039/C2NR30186E
http://dx.doi.org/10.1021/jp071120x
http://dx.doi.org/10.1021/jp071120x
http://dx.doi.org/10.1140/epjb/e2013-40016-5
http://dx.doi.org/10.1140/epjb/e2013-40016-5
http://dx.doi.org/10.1063/1.3587054
http://dx.doi.org/10.1063/1.3587054
http://dx.doi.org/10.1039/B911302A
http://dx.doi.org/ 10.1021/acs.jpca.7b03905
http://dx.doi.org/ 10.1021/acs.jpcc.5b01545

Bibliography

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

186

D. Schooss, P. Weis, 0. Hampe, and M. M. Kappes, Deter-
mining the size-dependent structure of ligand-free gold-cluster ions,
Philosophical Transactions of the Royal Society of London A: Math-
ematical, Physical and Engineering Sciences 368, 1211 (2010),
http://rsta.royalsocietypublishing.org/content/368/1915/1211.full.pdf .

K. J. Taylor, C. L. PettietteHall, O. Cheshnovsky, and R. E. Smalley, Ultravi-
olet photoelectron spectra of coinage metal clusters, ]. Chem. Phys. 96, 3319
(1992).

B. F. J. J and S. Mclndoe, Spectroscopic and mass spectrometric methods for
the characterisation of metal clusters, Coordination Chemistry Reviews 200,
901 (2000).

D. P. Wooddruff, ed., Atomic Clusters: From Gas Phase to Deposited (Else-
vier, Amsterdam, 2007).

A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, and
G. Meijer, Structure determination of isolated metal clusters via far-infrared
spectroscopy, Phys. Rev. Lett. 93, 023401 (2004).

M. Haertelt, V. ). F. Lapoutre, J. M. Bakker, B. Redlich, D. J. Harding,
A. Fielicke, and G. Meijer, Structure determination of anionic metal clus-
ters via infrared resonance enhanced multiple photon electron detachment
spectroscopy, J. Phys. Chem. Lett. 2, 1720 (2011).

C.S. Creaser, J. R. Griffiths, C. J. Bramwell, S. Noreen, C. A. Hill, and C. L. P.
Thomas, lon mobility spectrometry: a review. part 1. structural analysis by
mobility measurement, Analyst 129, 984 (2004).

F. Lanucara, S. W. Holman, C. J. Gray, and E. C. E,, The power of ion
mobility-mass spectrometry for structural characterization and the study of
conformational dynamics, Nature Chem. 6, 281 (2014).

H. Hakkinen, B. Yoon, U. Landman, X. Li, H-J. Zhai, and L-S. Wang, On
the electronic and atomic structures of small AuN- (N = 4-14) clusters:
a photoelectron spectroscopy and density-functional study, ). Phys. Chem.A
107, 6168 (2003).

F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, and M. M.
Kappes, The structures of small gold cluster anions as determined by a com-
bination of ion mobility measurements and density functional calculations, ).
Chem. Phys. 117, 6982 (2002).


http://dx.doi.org/10.1098/rsta.2009.0269
http://dx.doi.org/10.1098/rsta.2009.0269
http://arxiv.org/abs/http://rsta.royalsocietypublishing.org/content/368/1915/1211.full.pdf
http://dx.doi.org/ 10.1063/1.461927
http://dx.doi.org/ 10.1063/1.461927
http://dx.doi.org/https://doi.org/10.1016/S0010-8545(00)00306-4
http://dx.doi.org/https://doi.org/10.1016/S0010-8545(00)00306-4
http://dx.doi.org/10.1103/PhysRevLett.93.023401
http://dx.doi.org/10.1021/jz200771w
http://dx.doi.org/10.1039/B404531A
http://dx.doi.org/10.1021/jp035437i
http://dx.doi.org/10.1021/jp035437i
http://dx.doi.org/ 10.1063/1.1507582
http://dx.doi.org/ 10.1063/1.1507582

Bibliography

[176] M. P. Johansson, A. Lechtken, D. Schooss, M. M. Kappes, and F. Furche,
2d-3d transition of gold cluster anions resolved, Phys. Rev. A 77, 053202
(2008).

[177] A. Lechtken, C. Neiss, M. M. Kappes, and D. Schooss, Structure determina-
tion of gold clusters by trapped ion electron diffraction: Aul4—aul9-, Phys.
Chem. Chem. Phys. 11, 4344 (2009).

[178] M. N. Blom, D. Schooss, J. Stairs, and M. M. Kappes, Experimental structure
determination of silver cluster ions (agn+,19n79), . Chem. Phys. 124, 244308
(2006).

[179] A theoretical challenge: Transition-metal compounds, CHIMIA International
Journal for Chemistry 63 (2009).

[180] K. Hirao, ed., Recent Advances in Multireference Methods (World Scientific,
Singapore, 1999).

[181] B. O. Roos, Multiconfigurational quantum chemistry, in Theory and Appli-
cations of Computational Chemistry: The First Forty Years, edited by C. E.
Dykstra, G. Frenking, K. S. Kim, and S. G. E. (Elsevier, Amsterdam, 2005).

[182] C. Magller and M. S. Plesset, Note on an approximation treatment for many-
electron systems, Phys. Rev. 46, 618 (1934).

[183] D. Cremer, Maller—plesset perturbation theory: from small molecule methods
to methods for thousands of atoms, Wiley Interdisciplinary Reviews: Compu-
tational Molecular Science 1, 509 (2011).

[184] C. D. Sherrill and H. F. S. Ill, The configuration interaction method: Advances
in highly correlated approaches, (Academic Press, 1999) pp. 143 — 269.

[185] I. Shavitt, The history and evolution of configuration interaction, Molecular
Physics 94, 3 (1998).

[186] T. D. Crawford and H. F. Schaefer Ill, An introduction to coupled cluster
theory for computational chemists, in Reviews in Computational Chemistry,
edited by K. B. Lipkowitz and D. B. Boyd (Wiley-VCH, New York, 2000).

[187] J. Cizek, Origins of coupled cluster technique for atoms and molecules, The-
oretica chimica acta 80, 91 (1991).

[188] W. Kohn and L. J. Sham, Self-consistent equations including exchange and
correlation effects, Phys. Rev. 140, A1133 (1965).

[189] E. K. U. Gross and R. M. Dreizler, Density Functional Theory (Springer
Science+Business Media, New York, 1995).

187


http://dx.doi.org/10.1103/PhysRevA.77.053202
http://dx.doi.org/10.1103/PhysRevA.77.053202
http://dx.doi.org/ 10.1039/B821036E
http://dx.doi.org/ 10.1039/B821036E
http://dx.doi.org/10.1063/1.2208610
http://dx.doi.org/10.1063/1.2208610
http://dx.doi.org/ 10.1103/PhysRev.46.618
http://dx.doi.org/10.1002/wcms.58
http://dx.doi.org/10.1002/wcms.58
http://dx.doi.org/ 10.1080/002689798168303
http://dx.doi.org/ 10.1080/002689798168303
http://dx.doi.org/10.1007/BF01119616
http://dx.doi.org/10.1007/BF01119616
http://dx.doi.org/ 10.1103/PhysRev.140.A1133

Bibliography

[190] F. M. Bickelhaupt and E. . Baerends, Kohn-sham density functional the-
ory: Predicting and understanding chemistry, in Reviews in Computational
Chemistry (John Wiley & Sons, Inc.,, 2007) pp. 1-86.

[191] S. V. N. Scuseria G. E., Progress in the development of exchange-correlation
functionals, in Theory and Applications of Computational Chemistry: The
First Forty Years, edited by C. E. Dykstra, G. Frenking, K. S. Kim, and S. G.
E. (Elsevier, Amsterdam, 2005).

[192] F. Della Sala, E. Fabiano, and L. A. Constantin, Kinetic-energy-density
dependent semilocal exchange-correlation functionals, International Journal
of Quantum Chemistry 116, 1641 (2016).

[193] M. Chen, J. E. Dyer, K. Li, and D. A. Dixon, Prediction of structures and
atomization energies of small silver clusters, (Ag)n, n < 100, J. Phys. Chem.A
117, 8298 (2013).

[194] G. Zanti and D. Peeters, Electronic structure analysis of small gold clusters
Aup, (m = 16) by density functional theory, Theor. Chim. Acc. 132, 1300
(2012).

[195] H. Baek, J. Moon, and J. Kim, Benchmark study of density functional theory
for neutral gold clusters, aun (n = 2-8), J. Phys. Chem.A 121, 2410 (2017).

[196] A. D. Becke, A new mixing of hartree—fock and local densityfunctional theo-
ries, ]. Chem. Phys. 98, 1372 (1993).

[197] J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mixing exact exchange
with density functional approximations, J. Chem. Phys. 105, 9982 (1996).

[198] E. Fabiano, L. A. Constantin, P. Cortona, and F. Della Sala, Global hy-
brids from the semiclassical atom theory satisfying the local density linear
response, . Chem. Theory Comput. 11, 122 (2015).

[199] E. Fabiano, P. Gori-Giorgi, M. Seidl, and F. Della Sala, Interaction-strength
interpolation method for main-group chemistry: Benchmarking, limitations,
and perspectives, ). Chem. Theory Comput. 12, 4885 (2016).

[200] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approxima-
tion made simple, Phys. Rev. Lett. 77, 3865 (1996).

[201] C. Adamo and V. Barone, Toward reliable density functional methods without
adjustable parameters: The pbe0 model, ]. Chem. Phys. 110, 6158 (1999).

[202] S. Grimme, Semiempirical hybrid density functional with perturbative
second-order correlation, ). Chem. Phys. 124, 034108 (2006).

188


http://dx.doi.org/ 10.1002/9780470125922.ch1
http://dx.doi.org/ 10.1002/9780470125922.ch1
http://dx.doi.org/ 10.1002/qua.25224
http://dx.doi.org/ 10.1002/qua.25224
http://dx.doi.org/ 10.1021/jp404493w
http://dx.doi.org/ 10.1021/jp404493w
http://dx.doi.org/10.1007/s00214-012-1300-1
http://dx.doi.org/10.1007/s00214-012-1300-1
http://dx.doi.org/ 10.1021/acs.jpca.6b11868
http://dx.doi.org/ 10.1063/1.464304
http://dx.doi.org/10.1063/1.472933
http://dx.doi.org/10.1021/ct500902p
http://dx.doi.org/10.1021/acs.jctc.6b00713
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1063/1.478522
http://dx.doi.org/10.1063/1.2148954

Bibliography

[203] G.D.P.lll and R. ). Bartlett, A full coupled-cluster singles and doubles mode!:
The inclusion of disconnected triples, ]. Chem. Phys. 76, 1910 (1982).

[204] J. A. Pople, M. Head-Gordon, and K. Raghavachari, Quadratic configuration
interaction. a general technique for determining electron correlation energies,
J. Chem. Phys. 87, 5968 (1987).

[205] G. E. Scuseria, C. L. Janssen, and H. F. S. lll, An efficient reformulation of
the closedshell coupled cluster single and double excitation (ccsd) equations,
J. Chem. Phys. 89, 7382 (1988).

[206] K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, A fifth-
order perturbation comparison of electron correlation theories, Chem. Phys.
Lett. 157, 479 (1989).

[207] ). P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun,
Workhorse semilocal density functional for condensed matter physics and
quantum chemistry, Phys. Rev. Lett. 103, 026403 (2009).

[208] F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta
valence and quadruple zeta valence quality for h to rn: Design and assess-
ment of accuracy, Phys. Chem. Chem. Phys. 7, 3297 (2005).

[209] TURBOMOLE, TURBOMOLE, V7.0; TURBOMOLE GmbH: Karlsruhe, Ger-
many, 2011. http://www.turbomole.com (accessed March 2017).

[210] F. Furche, R. Ahlrichs, C. Hattig, W. Klopper, M. Sierka, and F. Weigend,
Turbomole, Wiley Interdisciplinary Reviews: Computational Molecular Sci-
ence 4, 91 (2014).

[211] J. G. Hill and K. A. Peterson, Explicitly correlated coupled cluster calculations
for molecules containing group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements:
Optimized complementary auxiliary basis sets for valence and core—valence
basis sets, J. Chem. Theory Comput. 8, 518 (2012).

[212] D. Figgen, G. Rauhut, M. Dolg, and H. Stoll, Energy-consistent pseu-
dopotentials for group 11 and 12 atoms: adjustment to multi-configuration
Dirac—Hartree-Fock data, Chemical Physics 311, 227 (2005), relativistic
Effects in Heavy-Element Chemistry and Physics. In Memoriam Bernd A.
Hess (1954-2004).

[213] J. van der Tol, D. Jia, Y. Li, V. Chernyy, J. M. Bakker, M. T. Nqguyen, P. Lievens,
and E. Janssens, Structural assignment of small cationic silver clusters by
far-infrared spectroscopy and dft calculations, Phys. Chem. Chem. Phys. 19,
19360 (2017).

189


http://dx.doi.org/10.1063/1.443164
http://dx.doi.org/10.1063/1.453520
http://dx.doi.org/10.1063/1.455269
http://dx.doi.org/ https://doi.org/10.1016/S0009-2614(89)87395-6
http://dx.doi.org/ https://doi.org/10.1016/S0009-2614(89)87395-6
http://dx.doi.org/ 10.1103/PhysRevLett.103.026403
http://dx.doi.org/ 10.1039/B508541A
http://dx.doi.org/10.1002/wcms.1162
http://dx.doi.org/10.1002/wcms.1162
http://dx.doi.org/10.1021/ct200856f
http://dx.doi.org/https://doi.org/10.1016/j.chemphys.2004.10.005
http://dx.doi.org/10.1039/C7CP03335D
http://dx.doi.org/10.1039/C7CP03335D

Bibliography

[214] S. Kriickeberg, G. Dietrich, K. Liitzenkirchen, L. Schweikhard, C. Walther,
and ). Ziegler, The dissociation channels of silver clusters agn+, 3 < n <
20, International Journal of Mass Spectrometry and lon Processes 155, 141
(1996).

[215] M. Mantina, R. Valero, and D. G. Truhlar, Validation study of the ability
of density functionals to predict the planar-to-three-dimensional structural
transition in anionic gold clusters, ). Chem. Phys. 131, 064706 (2009).

[216] L. A. Constantin, E. Fabiano, and F. Della Sala, Meta-GGA exchange-
correlation functional with a balanced treatment of nonlocality, ). Chem.
Theory Comput. 9, 2256 (2013).

[217] L. A. Constantin, E. Fabiano, and F. D. Sala, Semilocal dynamical correlation
with increased localization, Phys. Rev. B 86, 035130 (2012).

[218] L. A. Constantin, E. Fabiano, and F. Della Sala, Construction of a gen-
eral semilocal exchange-correlation hole model: Application to nonempirical
meta-GGA functionals, Phys. Rev. B 88, 125112 (2013).

[219] H.-P. Loock, L. M. Beaty, and B. Simard, Reassessment of the first ionization
potentials of copper, silver, and gold, Phys. Rev. A 59, 873 (2009).

[220] H. Hakkinen, B. Yoon, U. Landman, X. Li, H. J. Zhai, and L. Wang, J. Phys.
Chem. A 107, 6168 (2003).

[221] K. Balasubramanian and P. Y. Feng, Chem. Phys. Lett 159, 452 (1989).

[222] K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure
(Springer, 1979).

[223] V. Beutel, H-G. Kramer, G. Bhale, M. Kuhn, K. Weyers, and W. Demtroder,
High-resolution isotope selective laser spectroscopy of ag, molecules, ).
Chem. Phys. 98, 2699 (1993).

[224] V. A. Spasoy, T. H. Lee, J. P. Maberry, and K. Ervin, J. Chem. Phys. 110,
5208 (1999).

[225] H. M. Lee, M. Ge, B. R. Sahu, P. Tarakeshwar, and K. S. Kim, J. Phys. Chem.
B 107, 9994 (2003).

[226] F. Colonna and A. Savin, Correlation energies for some two- and four-electron

systems along the adiabatic connection in density functional theory, J. Chem.
Phys. 110, 2828 (1999).

190


http://dx.doi.org/ https://doi.org/10.1016/S0168-1176(96)04412-6
http://dx.doi.org/ https://doi.org/10.1016/S0168-1176(96)04412-6
http://dx.doi.org/ 10.1063/1.3190492
http://dx.doi.org/10.1021/ct400148r
http://dx.doi.org/10.1021/ct400148r
http://dx.doi.org/ 10.1103/PhysRevB.86.035130
http://dx.doi.org/10.1103/PhysRevB.88.125112

Bibliography

[227] A. M. Teale, S. Coriani, and T. Helgaker, The calculation of adiabatic-
connection curves from full configuration-interaction densities: Two-electron
systems, J. Chem. Phys. 130, 104111 (2009).

[228] Y. Zhou, H. Bahmann, and M. Ernzerhof, Construction of exchange-
correlation functionals through interpolation between the non-interacting
and the strong-correlation limit, ]. Chem. Phys. 143, 124103 (2015).

[229] S. Vuckovic, T. J. P. Irons, L. O. Wagner, A. M. Teale, and P. Gori-Giorgi,
Interpolated energy densities, correlation indicators and lower bounds from
approximations to the strong coupling limit of DFT, Phys. Chem. Chem. Phys.
19, 6169 (2017).

[230] S. Vuckovic, M. Levy, and P. Gori-Giorgi, Augmented potential, energy den-
sities, and virial relations in the weak-and strong-interaction limits of DFT,
J. Chem. Phys. 147, 214107 (2017).

[231] L. O. Wagner and P. Gori-Giorgi, Electron avoidance: A nonlocal radius for
strong correlation, Phys. Rev. A 90, 052512 (2014).

[232] H. Bahmann, Y. Zhou, and M. Ernzerhof, The shell model for the exchange-
correlation hole in the strong-correlation limit, . Chem. Phys. 145, 124104
(2016).

[233] J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mixing exact exchange
with density functional approximations, J. Chem. Phys. 105, 9982 (1996).

[234] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

[235] Y. Zhao and D. G. Truhlar, Density functionals with broad applicability in
chemistry, Accounts of chemical research 41, 157 (2008).

[236] J. Jaramillo, G. E. Scuseria, and M. Ernzerhof, Local hybrid functionals, ).
Chem. Phys. 118, 1068 (2003).

[237] A.V.Arbuznikov and M. Kaupp, Local hybrid exchange-correlation functionals
based on the dimensionless density gradient, Chem. Phys. Lett. 440, 160
(2007).

[238] S. Grimme, Semiempirical hybrid density functional with perturbative
second-order correlation, J. Chem. Phys. 124, 034108 (2006).

[239] L. Goerigk and S. Grimme, Efficient and accurate double-hybrid-meta-GGA
density functionals evaluation with the extended gmtkn30 database for gen-
eral main group thermochemistry, kinetics, and noncovalent interactions, ].
Chem. Theory Comput. 7, 291 (2010).

191


http://dx.doi.org/ 10.1063/1.4931160
http://dx.doi.org/10.1039/C6CP08704C
http://dx.doi.org/10.1039/C6CP08704C
http://dx.doi.org/ 10.1103/PhysRevA.90.052512

Bibliography

[240] N. Q. Su and X. Xu, Construction of a parameter-free doubly hybrid density
functional from adiabatic connection, J. Chem. Phys. 140, 18A512 (2014).

[241] P. M. Gill, B. G. Johnson, J. A. Pople, and M. J. Frisch, An investigation of
the performance of a hybrid of hartree-fock and density functional theory,
Int. J. Quantum Chem. 44, 319 (1992).

[242] N. Oliphant and R. J. Bartlett, A systematic comparison of molecular proper-
ties obtained using Hartree—Fock, a hybrid Hartree—Fock density-functional-
theory, and coupled-cluster methods, J. Chem. Phys. 100, 6550 (1994).

[243] M.-C. Kim, E. Sim, and K. Burke, Communication: Avoiding unbound anions
in density functional calculations, ). Chem. Phys. 134, 171103 (2011).

[244] M.-C. Kim, E. Sim, and K. Burke, lons in solution: Density corrected density
functional theory (DC-DFT), ]. Chem. Phys. 140, 18A528 (2014).

[245] M-C. Kim, E. Sim, and K. Burke, Understanding and reducing errors in
density functional calculations, Phys. Rev. Lett. 111, 073003 (2013).

[246] E. Sim, S. Song, and K. Burke, Quantifying density errors in DFT, ). Phys.
Chem. Lett. 9, 6385 (2018).

[247] K. Pernal, Correlation energy from random phase approximations: A reduced
density matrices perspective, Int. J. Quantum Chem. 118, 25462 (2018).

[248] ). Olsen, O. Christiansen, H. Koch, and P. Jo/rgensen, Surprising cases of
divergent behavior in mol/ller—plesset perturbation theory, J. Chem. Phys.
105, 5082 (1996).

[249] B. Forsberg, Z. He, Y. He, and D. Cremer, Convergence behavior of the
moller—plesset perturbation series: use of feenberg scaling for the exclusion
of backdoor intruder states, Int. J. Quantum Chem. 76, 306 (2000).

[250] S. Giarrusso, P. Gori-Giorgi, F. Della Sala, and E. Fabiano, Assessment
of interaction-strength interpolation formulas for gold and silver clusters, J.
Chem. Phys. 148, 134106 (2018).

[251] J. Grossi, Quantum fluctuations and kinetic correlation in the strongly in-
teracting limit of density functional theory, Academisch proefschrift, Vrije
Universiteit van Amsterdam (2019).

[252] T. ). Daas, Investigation of the strong-interaction limit of an adiabatic connec-
tion in Hartree-Fock theory, Master thesis, Vrije Universiteit van Amsterdam
(2019).

192


http://dx.doi.org/10.1063/1.5022669
http://dx.doi.org/10.1063/1.5022669

Bibliography

[253] L. Hedin, New method for calculating the one-particle green’s function with
application to the electron-gas problem, Phys. Rev. 139, A796 (1965).

[254] J. Schirmer and G. Angonoa, On green’s function calculations of the static
self-energy part, the ground state energy and expectation values, ]J. Chem.
Phys. 91, 1754 (1989).

[255] W. Tarantino, P. Romaniello, J. Berger, and L. Reining, Self-consistent dyson
equation and self-energy functionals: An analysis and illustration on the
example of the hubbard atom, Phys. Rev. B 96, 045124 (2017).

[256] P-F. Loos, P. Romaniello, and J. Berger, Green functions and self-
consistency: insights from the spherium model, ). Chem. Theory Comput.
14, 3071 (2018).

[257] K. Pernal, Electron correlation from the adiabatic connection for multirefer-
ence wave functions, Phys. Rev. Lett. 120, 013001 (2018).

258] A. Nagy and Z. Janosfalvi, Exact ener expression in the strong-interaction
9y g9y g
limit of the density functional theory, Philosophical Magazine 86, 2101
(2006).

[259] T. Aschebrock, R. Armiento, and S. Kiimmel, Orbital nodal surfaces: Topo-
logical challenges for density functionals, Phys. Rev. B 95, 245118 (2017).

[260] J. P. Perdew and D. C. Langreth, Exchange-correlation energy of a metallic
surface: Wave-vector analysis, Phys. Rev. B 15, 2884 (1977).

[261] O. Gritsenko, R. van Leeuwen, and E. J. Baerends, Analysis of electron
interaction and atomic shell structure in terms of local potentials, ]J. Chem.
Phys. 101, 8955 (1994).

[262] R. van Leeuwen, O. Gritsenko, and E. J. Baerends, Step structure in the
atomic Kohn-Sham potential, Z. Phys. D 33, 229 (1995).

[263] I. G. Ryabinkin and V. N. Staroverov, Average local ionization energy gener-
alized to correlated wavefunctions, ). Chem. Phys. 141, 084107 (2014).

[264] D. E. Freund, B. D. Huxtable, and J. D. Morgan, Variational calculations on
the helium isoelectronic sequence, Phys. Rev. A 29, 980 (1984).

[265] C. J. Umrigar and X. Gonze, Accurate exchange-correlation potentials and

total-energy components for the helium isoelectronic series, Phys. Rev. A
50, 3827 (1994).

193


http://dx.doi.org/10.1080/14786430500228564
http://dx.doi.org/10.1080/14786430500228564
http://dx.doi.org/10.1007/BF01437503

Bibliography

[266] C. Filippi, X. Gonze, and C. J. Umrigar, Generalized gradient approxima-
tions to density functional theory: comparison with exact results, in Recent
developments and applications in modern DFT, edited by J. M. Seminario
(Elsevier, Amsterdam, 1996) pp. 295-321.

[267] A. I. Al-Sharif, R. Resta, and C. J. Umrigar, Evidence of physical reality in
the Kohn-Sham potential: The case of atomic ne, Phys. Rev. A 57, 2466
(1998).

[268] T. ). Irons and A. M. Teale, The coupling constant averaged exchange—
correlation energy density, Mol. Phys. 114, 484 (2015).

[269] C. Lani, S. Di Marino, A. Gerolin, R. van Leeuwen, and P. Gori-Giorgi, The
adiabatic strictly-correlated-electrons functional: kernel and exact proper-
ties, Phys. Chem. Chem. Phys. 18, 21092 (2016).

[270] A. Benitex and C. R. Proetto, Kohn-Sham potential for a strongly correlated
finite system with fractional occupancy, Phys. Rev. A 94, 052506 (2016).

[271] M. ). P. Hodgson, J. D. Ramsden, and R. W. Godby, Origin of static and
dynamic steps in exact Kohn-Sham potentials, Phys. Rev. B 93, 155146
(2016).

[272] M. ]. P. Hodgson, E. Kraisler, A. Schild, and E. K. U. Gross, How interatomic
steps in the exact kohn—sham potential relate to derivative discontinuities of
the energy, J. Phys. Chem. Lett. 8, 5974 (2017).

[273] G. F. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cam-
bridge University Press, New York, 2005).

[274] M. Casula, S. Sorella, and C. Senatore, Ground state properties of the one-
dimensional coulomb gas using the lattice reqularized diffusion monte carlo
method, Phys. Rev. B 74, 245427 (2006).

[275] I. Theophilou, F. Buchholz, F. G. Eich, M. Ruggenthaler, and A. Rubio,
Kinetic-energy density-functional theory on a lattice, J. Chem. Theory Com-
put. 14, 4072 (2018).

[276] K. Pernal and K. J. Giesbertz, Reduced density matrix functional theory
(rdmft) and linear response time-dependent rdmft (td-rdmft), in Density-
Functional Methods for Excited States, edited by M. F. M. Ferré and
M. Huix-Rotllant (Springer, 2015) pp. 125-183.

[277] M. Rego-Monteiro, L. M. Rodrigues, and E. Curado, Position-dependent
mass quantum hamiltonians: general approach and duality, Journal of
Physics A: Mathematical and Theoretical 49, 125203 (2016).

194


http://dx.doi.org/10.1103/PhysRevA.94.052506
http://dx.doi.org/10.1103/PhysRevB.93.155146
http://dx.doi.org/10.1103/PhysRevB.93.155146
http://dx.doi.org/10.1007/128_2015_624
http://dx.doi.org/10.1007/128_2015_624

Bibliography

[278] F. G. Eich, M. Di Ventra, and G. Vignale, Density-functional theory of
thermoelectric phenomena, Phys. Rev. Lett. 112, 196401 (2014).

[279] C. Adamo, M. Ernzerhof, and G. E. Scuseria, The meta-GGA func-
tional: Thermochemistry with a kinetic energy density dependent exchange-
correlation functional, . Chem. Phys. 112, 2643 (2000).

[280] J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett.
91, 146401 (2003).

[281] A. Seidl, A. Gorling, P. Vogl, J. Majewski, and M. Levy, Generalized Kohn-
Sham schemes and the band-gap problem, Phys. Rev. B 53, 3764 (1996).

[282] F. Eich and M. Hellgren, Derivative discontinuity and exchange-correlation
potential of meta-GGAs in density-functional theory, J. Chem. Phys. 141,
224107 (2014).

[283] F. Zahariev, S. S. Leang, and M. S. Gordon, Functional derivatives of meta-
generalized gradient approximation (meta-GGA) type exchange-correlation
density functionals, J. Chem. Phys. 138, 244108 (2013).

[284] S. B. Sears, R. G. Parr, and U. Dinur, On the quantum-mechanical kinetic
energy as a measure of the information in a distribution, Israel Journal of
Chemistry 19, 165 (1980).

[285] P. W. Ayers, R. G. Parr, and A. Nagy, Local kinetic energy and local temper-
ature in the density-functional theory of electronic structure, Int. J. Quantum
Chem. 90, 309 (2002).

[286] O. von Roos, Position-dependent effective masses in semiconductor theory,
Phys. Rev. B 27, 7547 (1983).

[287] M. Taut, Two electrons in an external oscillator potential: Particular analytic
solutions of a coulomb correlation problem, Phys. Rev. A 48, 3561 (1993).

[288] T. Helgaker, P. Jargensen, and J. Olsen, Density-functional Theory: A Convex
Treatment (Wiley Blackwell, (to be published)).

[289] J. Katriel and E. R. Davidson, Asymptotic behavior of atomic and molecular
wave functions, Proc. Natl. Acad. Sci. USA 77, 4403 (1980).

[290] Z. Qian and V. Sahni, Asymptotic near-nucleus structure of the electron-
interaction potential in local effective potential theories, Phys. Rev. A 75,
032517 (2007).

[291] P-F. Loos and P. M. Gill, Thinking outside the box: The uniform electron gas
on a hypersphere, |. Chem. Phys. 135, 214111 (2011).

195



Bibliography

[292] P. M. Gill and P-F. Loos, Uniform electron gases, Theor. Chim. Acc. 131,
1069 (2012).

[293] P-F. Loos, Exchange functionals based on finite uniform electron gases, ).
Chem. Phys. 146, 114108 (2017), https://doi.org/10.1063/1.4978409 .

[294] ). P. Perdew and Y. Wang, Accurate and simple analytic representation of
the electron-gas correlation energy, Phys. Rev. B 45, 13244 (1992).

[295] ). Bartmess, NIST chemistry webbook, NIST standard reference database
number 69, WG Mallard, P] Linstrom (Eds.) 20899 (2001).

[296] ). Cioslowski and K. Pernal, The ground state of harmonium, J. Chem. Phuys.
113, 8434 (2000).

[297] https://radar.squat.net/en/amsterdam/jeffreys-cinemas/events.

[298] K. Levecque, F. Anseel, A. De Beuckelaer, J. Van der Heyden, and L. Gisle,
Work organization and mental health problems in PhD students, Research
Policy 46, 868 (2017).

[299] T. M. Evans, L. Bira, J. B. Gastelum, L. T. Weiss, and N. L. Vanderford, Evi-
dence for a mental health crisis in graduate education, Nature biotechnology
36, 282 (2018).

196


http://dx.doi.org/ 10.1063/1.4978409
http://dx.doi.org/ 10.1063/1.4978409
http://arxiv.org/abs/https://doi.org/10.1063/1.4978409
https://radar.squat.net/en/amsterdam/jeffreys-cinemas/events

	The density as basic variable
	Hohenberg-Kohn theorem(s) 
	The Levy-Lieb and Levy Functionals
	Kohn-Sham scheme: bypassing the hardest problem
	Kinetic energy functional minimisation
	Connection to the interacting system

	The density-fixed adiabatic connection formalism

	Conditional probability and exact decomposition of the l-dependent external potential
	An effective equation for the square root of the density
	The Density Decay
	Effective one-body potentials

	Effective potential for the square root of the density in terms of KS density matrices
	Exact decomposition of the XC potential into physically transparent terms
	XC potential in terms of kinetic and interaction components and their response parts

	l-dependent effective one-body potentials
	Scaling properties

	Strictly Correlated Electrons
	General Structure of the l Limit
	The strong-interaction limit of DFT in the context of Optimal Transport
	Lieb maximisation along the adiabatic connection
	Dual-Kantorovich formulation

	The co-motion functions
	Applicability of the SCE formalism to physical and chemical problems
	The KS-SCE method
	Interaction-Strength Interpolations along the adiabatic connection


	Assessment of interaction-strength interpolation formulas for gold and silver clusters
	Introduction and framework
	Computational details
	Results
	Total Energies
	Atomization and Ionization energies
	2D-3D crossover

	Discussion and Analysis of the results
	Energy differences
	AC curves: gold dimer showcase
	Role of the reference orbitals
	Further analysis of the ACII's formulas

	Conclusions and perspectives

	Strong-interaction limit of an adiabatic connection in Hartree-Fock theory
	Introduction to the Hartree-Fock adiabatic connection
	Analysis of the HF l limit
	Subleading term: variational argument
	Conclusions and perspectives

	Response potential in the strong-interaction limit of DFT: Analysis and comparison with the coupling-constant average
	Introduction
	Conditional probability amplitude and ionization potential at the SCE limit
	Different types of response potentials: vresp(bold0mu mumu rrsectionrrrr), vresp(bold0mu mumu rrsectionrrrr), vrespSCE(bold0mu mumu rrsectionrrrr)
	Response potential from the coupling-constant averaged XC hole and comparison between vresp(bold0mu mumu rrsubsectionrrrr) and vresp(bold0mu mumu rrsubsectionrrrr)
	Response potential for the SCE limit

	Examples of CCA and SCE response potentials
	Computational details for the atomic densities
	Computational details for the hydrogen molecule
	Results and discussion
	Exchange response potential for N=2 and data validation

	Simple model for a stretched heteronuclear dimer
	SCE response potential for the model stretched heterodimer
	Behaviour of the co-motion function for increasing internuclear distance
	Careful inspection of the exact features of the KS potential for the dissociating AB molecule

	Conclusions

	Sum-rules of the response potential in the strong-interaction limit of DFT
	Introduction
	Sum-rule of the SCE response potential
	Sum-rule of the SCE response potential for a 1D density
	Sum-rule of the SCE response potential for spherical two-electron densities

	Concluding remarks

	Kinetic energy density-density functional theory
	Fundamental challenges
	Discussion of different settings
	Non-linear setting
	Linear setting
	Generalised Kohn-Sham setting

	DFAs for keKS and final notes

	Appendices
	Redundancy of the permutations
	Analytical 1D model for  vHxcSCE and vrespSCE in the dissociation limit
	The Hooke's atom series
	Summary
	Acknowledgements
	List of Publications
	Bibliography

