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Introduction
The full mathematical description of a many-body quantum system is encrypted inthe renowned Schrödinger equation (SE).Such equation, however, features both a many-body interaction operator, whichbrings in the unsolved classical many-body problem, and the quantum kinetic en-ergy operator, which increases the complexity of the equation. Its closed-formsolution is therefore practically unreachable.Since roughly a century, the goal of the electronic structure theory communityhas been that of finding more accurate and more compact ways to approximate thesolution to the SE, i.e. the wave function, or the electronic properties which dependon it, in order to achieve a deeper understanding of matter at the electronic scale.Notwithstanding their communal goal, electronic structure methods have beentraditionally characterised by a sort of dichotomy, namely that between the so-called Wave Function-based methods and Density Functional Theory (DFT).Simplistically, while the formers construct different ansatz for the N-electronwave function which can be optimised variationally, DFT rephrases the problemposed by the SE in terms of a physical observable: the electron density.Both approaches have their own strengths and drawbacks and, in some sense,they complement each other. In recent years, the number of works where theseapproaches conflate has been increasing (references [1–3] are just a few examples).This work is mainly focused on Density Functional Theory.
Overview of the thesis and Main contributionsThe first three chapters of this thesis form its theoretical backbone. In particular,chapter 1 reviews fundamentals of Density Functional Theory, chapter 2 gives adetailed presentation of the conditional amplitude formalism and of its relevance inthe context of DFT and chapter 3 illustrates the theory of strictly correlated elec-trons from a physical perspective, still mentioning some more mathematical aspects,and reviews its most important applications to physical and chemical problems.In chapter 4, we assess a particular class of density functional approximations,based on the idea of interpolating between the weak- and the strong-interactionlimit of DFT, on the quite challenging case of gold and silver clusters of smallto medium size. This class of functionals had been previously extensively testedonly on main-group chemistry [4]. Our results show that although not spectacu-larly accurate, this class of functionals performs quite well for atomization energiescalling for a self-consistent implementation in the future. In fact, a renovated in-
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CONTENTS
terest for such functionals has been demonstrated by very recent works [5, 6]. Theresults of the assessment conducted in our work, as well as in similar studies ondifferent test sets [4, 7], indicate that their performances are optimal when usedas a correlation correction to the Hartree-Fock (HF) method (see table 4.2). Suchunexpected outcome prompted us into exploring the possibility of adopting adia-batic connection interpolations also in the context of HF theory. We began byinvestigating its strong-interaction limit providing first formal results in chapter 5.We show, for example, that the minimizer of the asymptotic Hamiltonian of eq 5.8is a functional of the HF density alone (eq 5.9) and find exact relations betweenthe strong-interaction limit of the HF and of the DFT adiabatic connection inte-grands (eq 5.17).In chapters 6 and 7, we focus on the response part of the KS potential. Thiscomponent is typically heavily misrepresented by standard functionals. Our contri-butions in this topic comprise a relation (eq 6.29) between two different definitionsof response potentials (eq 2.54 and 6.18) and the derivation of the response poten-tial in the strong-interaction limit of DFT (eq 6.38), satisfying an interesting sumrule in the N-electron 1D (eq 7.16) and spherical two-electron (eq 7.20) cases.Furthermore, the study of a simple 1D model for a stretched heteronuclearmolecule highlights several similarities between the KS and the SCE potentialsin the dissociation limit. For instance, we find that the location of the maxima ofboth potentials coincides (see fig 6.10) and corresponds to the distance at whichthe density integrates to one (eq 6.51) clarifying how the Hartree-XC potentialcan correctly dissociate a bond into fragments with integer number of electrons.We also show how the shape of the co-motion function (see sec 3.3) becomes inde-pendent of the internuclear distance, R , for large R (saturation phenomenon) andretains information on the relation between the asymptotic decays of the fragmentdensities (see fig 6.12 and eq 6.53) which is reminiscent of the behaviour of theexact Hartree-XC potential. Finally, we signal the presence of a secondary peakin the kinetic potential, vki n (eq 2.19), located far away on the side of the moreelectronegative fragment (fig 6.13).In the last chapter, we investigate the feasibility of introducing a position-dependent mass carefully devised such that a non-interacting auxiliary systemendowed with this mass can deliver the same kinetic energy density as the inter-acting one. It turns out that there is plenty of freedom to realise such matching,in addition to several fundamental questions. We discuss different possible set-tings and illustrate them for simple cases to show advantages and disadvantagesof each one.Atomic units are adopted throughout this thesis.
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1
The density as basic variable

In the time-independent framework, an exhaustive description of a many-bodyquantum system can be accomplished by solving the time-independent Schrödingerequation (SE)
Ĥ |Ψ〉 = E |Ψ〉 (1.1)where Ĥ is the operator for the total energy of the system.In the Born-Oppenheimer and non-relativistic approximations and considering iso-lated atomic matter, Ĥ can be written as

Ĥ =−
N∑
i

∇2
r i

2︸ ︷︷ ︸
T̂

+
N∑

i , j>i

1

|ri − r j |︸ ︷︷ ︸
V̂ee

−
N∑
i

M∑
A

ZA

|ri −RA |︸ ︷︷ ︸
V̂ext

(1.2)
where N is the number of electrons, M that of the nuclei, and ZA are the nuclearcharges.It is quite self-evident that, even after simplifying the physical interactingHamiltonian as in eq 1.2, the solution to eq 1.1 is still a highly complicated math-ematical object, living in a highly multidimensional space, (

R3 ⊗Z2
)N , where the“extra" degree of freedom, possessed by each electron on top of its spatial freedom,is a fundamental characteristic of quantum particles: their so-called “spin".Anyhow, as scientists or merely as observers, we are used to measure and interactwith matter in three dimensions or four if we include passing of time. In a way, thefact that we can reproduce results and that we rely on previous measurements orpreviously observed effects to shape matter into technology is somehow an indica-tion that, for all the purposes we are concerned with, (

R3 ⊗Z2
)N is a way redundantcontrol space.

1



1

1. The density as basic variable
In some way, a smaller, 3(or 4)-dimensional mathematical object has to be a suffi-cient tool in our hands to understand what we see and make predictions on whatwe have not yet explored experimentally.This naif idea was formulated in mathematical terms by P. Hohenberg and W. Kohnin 1964 [8] (HK) and since then, the electron probability density has been recog-nized as the most natural minimally-dimensional mathematical object that wouldserve this scope.The electron probability density, or just (electron) density, is defined as

n(r ) := 〈Ψ|n̂|Ψ〉 = N
∫

|Ψ(rσ,x2, · · · ,xN )|2dσdx2 · · ·dxN (1.3)
with n̂ = ∑N

i δ(r i − r ), |Ψ〉 =Ψ(rσ,x2, · · · ,xN ), xi = r iσ, the spatial and spin coor-dinates of the electrons, where we have taken electron 1 as the reference electrondropping the subscript, i.e. x1 = x , and it measures the probability of finding anyof the N electrons in a specific point in space with arbitrary spin1 while the otherelectrons have arbitrary position and spin.2Early attempts to use the density as a basic variable were present in the elec-tronic structure theory community long before HK was published [10–12] and in thissense HK was also presented as an exactification of these intuition-based works.However, quite elegant arguments for the use of the density as a basic variablewere already put forward and attributed to spectroscopist E. Bright Wilson3 andhold for the particular, yet of major importance, case of an external potential ofCoulomb type, in other words for a Hamiltonian of the likes of eq 1.2.What E. Bright Wilson pointed out is that, since the densityi. integrates to the total number of electrons;ii. has cusps located at the position of the nuclei;iii. satisfies the cusp condition:
lim

|r−RA |→0

(
∂

∂r
+2 ZA

)
n(r ) = 0; (1.4)

1 Whereas n(x) = N
∫ |Ψ(x,x2, · · · ,xN )|2dx2 · · ·dxN measures the probability of finding an electron in aspecific point in space and with a certain spin.2Note that here we stick to the following normalization of the N-electron wavefunction:∫ |Ψ|2dx1 · · ·dxN = 1, which is the most commonly encountered; however a different normalizationmight be more consistent with the probability interpretation of the (square modulus of the) N-electronwavefunction [9] and would change the normalisation constant in the definition of the density from Nto 1

(N−1)! .3There is no “formal" attribution to E. Bright Wilson: rather, the theoretical chemist N. C. Handybothered noting down in the literature (see refs [13, 14]) a personal communication from his colleagueR. B. Parr narrating that the spectroscopist commented on W. Kohn presentation in 1965 bringing upthe arguments mentioned.
2



1

1.1. Hohenberg-Kohn theorem(s)
it encodes all the ingredients (N , RA and M , and ZA) that specifies the Hamiltonianin eq 1.2. In this sense HK was, more than an exactification of references [10–12],an extension of Bright Wilson’s arguments allowing for a unique mapping betweenan electron probability density and an external potential of any kind, paving theway for much further developments.
1.1. Hohenberg-Kohn theorem(s)Traditionally, the fundamental results proven and published in reference [8] arereferred to as the “Hohenberg-Kohn theorem(s)"(HK).4Let us start by considering the Hamiltonian in eq 1.2 and define the one-bodyexternal potential v as v(r ) =∑M

A
ZA

|r−RA | so that V̂ext =∑N
i v(r i ).For a fixed number of electrons, fixing a particular one-body external potential5up to an additive constant, c , determines the ground state (GS) wavefunction, Ψ,satisfying eq 1.1 and generating the corresponding density, via eq 1.3.In formulas, the mapping

v + c −→
N
Ψ−→ n (1.5)

is the trivial one.The invertibility of 1.5 is proven in sec. I of [8].The inversion of the left half of 1.5, i.e. Ψ −→ v + c , is quite immediate (and notdealt with explicitly in the paper), since two different wavenfunctions, Ψ and Ψ′,are necessarily solutions to two different SE unless v − v ′ = E −E ′. To show thatexplicitly, let us write (
T̂ + V̂ee +

N∑
i

v(r i )

)
Ψ= EΨ (1.6)(

T̂ + V̂ee +
N∑
i

v ′(r i )

)
Ψ′ = E ′Ψ′ (1.7)

Assuming that v and v ′ differ by more than an additive constant and deliver thesame GS wavefunction, Ψ =Ψ′, leads to contradiction by subtraction of eqs 1.6and 1.7.
4Such “theorem" is typically presented in textbooks as having a first and a second part of the proof,although this is not an original distinction of the authors. Quite hilariously, which part of the totalproof is what and sometimes even if there are two theorems rather than one or which part among theresults published in HK is the theorem, varies from textbook to textbook! Without giving a specificnumbering, we will mainly stick to the original paper [8] and to the widely appreciated reference bookon density functional theory referenced in [15].5Let us reiterate that, according to eq 1.2, fixing the external potential translates into fixing the number,

M , the position, RA , and the charges, ZA , of the nuclei – which is a representative external potentialfor an isolated molecular/metallic system –, however the external potential can be kept completelygeneral as long as it is a one-body local potential, V̂ext =∑N
i v(r i ).

3
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1. The density as basic variable
The inversion of the right half of 1.5, i.e. n −→Ψ,6 is less direct but the proofis astonishingly simple and it’s again by reductio ad absurdum.Defining Ψ0 = argmin

Ψa.s.→ N
〈Ψ|Ĥ |Ψ〉 and Ψ′

0 = argmin
Ψa.s.→ N

〈Ψ|Ĥ ′|Ψ〉 – where “Ψa.s." standsfor a ’search over all antisymmetric wavefunctions’ – by the minimal property ofthe GS (“variational principle")
E0 = 〈Ψ0|Ĥ |Ψ0〉 < 〈Ψ′

0|Ĥ |Ψ′
0〉 (1.8)

= 〈Ψ0|Ĥ |Ψ0〉 < 〈Ψ′
0|Ĥ ′+ V̂ − V̂ ′|Ψ′

0〉
= 〈Ψ0|T̂ + V̂ee |Ψ0〉+

∫
n(r )v(r )dr < E ′

0 +
∫

n′(r )
(
v(r )− v ′(r )

)
dr

and, by interchanging the roles of primed and unprimed quantities,
E ′

0 < E0 +
∫

n(r )
(
v ′(r )− v(r )

)
dr . (1.9)

If we now assume that two different wavefunctions, Ψ′ and Ψ, both lead to thesame density, n′ = n, then we can add up eqs 1.8 and 1.9 and conclude
E0 +E ′

0 < E0 +E ′
0 (1.10)

which is a contradiction therefore proving the invertibility of the mapping.The invertibility of the mapping means that the expectation value of an operator
Â in the GS wavefunction is also a functional of the GS density

A[n0] = 〈Ψ0[n0]|Â|Ψ0[n0]〉.7 (1.11)
In sec. II of HK, the universal functional, F [n], is defined

F [n] := 〈Ψ[n]|T̂ + V̂ee |Ψ[n]〉. (1.12)
The universal functional is defined only for v-representable densities, n : ∃v → n,by which we mean densities that are GS of an (interacting) Hamiltonian with
6This part of the proof is the only one that requires modification if we are dealing with degenerateground states, see next footnote7In the case of degenerate ground states, it may happen that, although Ψ 6= Ψ′, the inequality becomean equality (E0 = E ′

0) and therefore the unique mapping n −→Ψ is no longer established as there isno contradiction (relation 1.10). However since this circumstance can only be met if E0 = E ′
0, whichmeans only if the different Ψ and Ψ′ come from the same potential, v , the mapping n −→ v can still beestablished and, via the potential, we can access the GS energy as well as the set of all degenerateGS wavefunctions coming from that potential, {Ψi

0[v]}, but we cannot use the density as basic variableto get to all observables that depend specifically on the wavefunction (for example the spin) as thislatter no longer maps to one specific GS wavefunction among the set of possible ones. See [15–18]for further reference.
4
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1.2. The Levy-Lieb and Levy Functionals
external potential v .The total GS energy of a system is rewritten as the following functional of thedensity

Ev [n] = F [n]+
∫

n(r )v(r )dr︸ ︷︷ ︸
Vv [n]

(1.13)
where the subscript v highlights that the expression of the density functional for theenergy of a system on the l.h.s. of the equation depends on the external potentialin the way shown on the r.h.s.The variational principle is then introduced in the context of density functionals,i.e.

Ev [n0] = 〈Ψ0[n0]|Ĥv |Ψ0[n0]〉 ≤ 〈Ψ[n]|Ĥv |Ψ[n]〉 = Ev [n] (1.14)where the equal sign only holds for n = n0, with n0 the ground state density of theHamiltonian with external potential v .Equation 1.14 tells us that the density functional for the energy of a system deliversthe lowest possible value if and only if the input density is the ground state one.Of course, this variational principle is of lesser use than the one in terms of thewavefunction as we actually do not know the exact functional form of Ev [n].Knowing it, one could in principle obtain the the GS energy of the Hamiltonian withexternal potential v by minimising eq 1.14 under the constraint that the densitystays properly normalised
δ

δn(r )

{
Ev [n]−µ

(∫
n(r )dr −N

)}
= 0 (1.15)

Introducing eq 1.13 into eq 1.15
δEv [n]

δn(r )
=µ= δF [n]

δn(r )
+ v(r ), (1.16)

we also derive
v[n0](r ) =−δF [n]

δn

∣∣∣
n=n0

(r )+µ (1.17)which tells us that the external potential is the functional derivative of the HKfunctional evaluated at the GS density associated with that potential minus aconstant shift.
1.2. The Levy-Lieb and Levy FunctionalsThe variational principle of eq 1.14 suggests that – for a given external potential–we can find the minimum GS density and energy by performing a search over allsuitable densities

Ev0 [n0] = min
n :∃v→n

(
F [n]+

∫
n(r )v0(r )dr

)
. (1.18)

5
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1. The density as basic variable
where n0 is the minimizer. The formal simplicity of this search is hampered bythe fact that the constraints guaranteeing that the search only hit (interacting)
v-representable densitiesare mathematically involved and not known in general.To achieve a much easier characterization of the densities entering the constrainedsearch for the GS energy, the domain of the universal functional, F ,8 was extendedby Levy [19, 20] by introducing the Levy-Lieb functional, FLL, later shown by Liebto have a minimum [21]. The Levy-Lieb functional is defined as

FLL[n] := min
Ψ→n

〈Ψ|T̂ + V̂ee |Ψ〉 (1.19)
and defines a corresponding energy functional

Ev [n] = FLL[n]+
∫

n(r )v(r )dr (1.20)
Via FLL the constrained search for the GS energy is now split in two steps

Ev0 [n0] = inf
n

(
min
Ψ→n

〈Ψ|T̂ + V̂ee |Ψ〉+
∫

n(r )v0(r )dr
) (1.21)

where we are searching over N-representable densities, i.e. densities that canbe generated by some wavefunction. The advantage over eq 1.18 is that the setof N-representable densities is characterized explicitly [22]: any density whichis non-negative (n ≥ 0), normalisable and with a finite Weiszäcker kinetic energyfunctional (n(r )
1
2 ∈ H 1) belongs to the set. Note that the space of v-representabledensities is a subset of that of N-representable ones. Moreover the functional FLLis not convex thus its minimum could be a local one. To avoid this inconvenientproperty, Lieb defined a different but related functional, FL [21].In order to introduce FL, let us first discuss how the HK functional, FHK, has to bemodified in order to account for degenerate ground states.For a q-fold degenerate GS multiplet {|Ψi 〉, i = 1, · · ·q} each of the possible statesforming the multiplet may deliver a different density ni .Let us define the density matrix operator, D̂

D̂ =
q∑

i=1
λi |Ψi 〉〈Ψi |

q∑
i=1

λi = 1 0 ≤ λi ≤ 1 (1.22)
and the GS expectation value of any operator, Ô

〈Ô〉 =TrD̂Ô (1.23)
8 It is common to label the functional “F " of eq 1.12 as “FHK", where the subscript stands for “Hohenberg-Kohn", to distinguish it from other similar functionals that were introduced afterwards (see laterdiscussion).
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1.2. The Levy-Lieb and Levy Functionals
where the trace operation for any operator is defined as

TrÔ =
∞∑

i=1
〈Φi |Ô|Φi 〉 (1.24)

and {|Φi 〉} is any complete set of states.If we choose the complete set to be the degenerate GS multiplet {|Ψi 〉, i =
1, · · ·q} then

〈Ô〉 =
∞∑

i=1
〈Φi |D̂Ô|Φi 〉 =

q∑
i=1

λi 〈Ψi |Ô|Ψi 〉 (1.25)
from which it is immediate to see that the non-degenerate case is included as thespecial case where λ1 = 1.If, furthermore, Ô = n̂ we can extend the definition of the density in 1.3 to ensembles

n(r ) =
q∑

i=1
λi 〈Ψi |n̂|Ψi 〉 =

q∑
i=1

λi ni (r ). (1.26)
As mentioned in footnote 7, it can be shown that each multiplet of degenerateground states is associated to only one potential and thus the set of correspond-ing GS densities is said to be ensemble-v-representable (Ev), therefore we canunambiguously define the ensemble-HK-functional, FEHK

FEHK[n] =TrD̂[n]
(
T̂ + V̂ee

) (1.27)
on the set of Ev-densities and extend the energy functional to degenerate groundstates

Ev [n] = FEHK[n]+
∫

n(r )v(r )dr =TrD̂[n]Ĥv . (1.28)
Again, the set of Ev-representable densities, the sole kind of densities that shouldenter in a minimisation of Ev [n], is difficult to characterise.In other words, we run into a similar problem as that encountered for the non-degenerate case and a similar way around is found by extending the domain of
FEHK to all E N-representable densities, meaning all the ensemble densities thatcan be generated by some density matrix,

FL[n] := min
D̂→n

TrD̂
(
T̂ + V̂ee

)
, (1.29)

where eq 1.29 defines the Lieb functional FL. We are now also able to write aproper variational principle, i.e.
Ev0 [n0] = inf

n

(
FL[n]+

∫
n(r )v0(r )dr

)
. (1.30)

7



1

1. The density as basic variable
1.3. Kohn-Sham scheme: bypassing the hardest prob-

lemThe basic idea of Kohn and Sham [23] (1965) essentially builds up on the suc-cess of Hartree Fock theory and resides in adopting an auxiliary “non-interacting"quantum system (the KS system), endowed with a fermionic wavefunction treatingthe electrons as described by single-particle functions (KS orbitals).Compared to Hartree Fock theory, Kohn-Sham-DFT (KS-DFT) has the mostnoticeable merit of being still an exact Density Functional Theory, since all inter-action effects of the original quantum system are enclosed in the auxiliary one bymeans of an effective local potential, called the KS potential, vs .Its enormous success stems from bypassing the hardest technical problem inthe field, namely that of finding a reasonably accurate representation of the kineticenergy explicitly in terms of the electron density.Instead of tackling such problem, KS-DFT approach is that of simply stickingto the non-intuitive purely quantum mechanical expression of the kinetic energyoperator for which a wave function is needed, and treat the remainder problem as apure density functional. The kinetic energy expression proposed is still necessarilya density functional by virtue of the HK theorem(s) but in an implicit, highly nontrivial way.Formally, KS-DFT relies on an essential condition, namely, the composition oftwo bijective mappings between two local potentials and a unique GS density
v ←→ n ←→ vs . (1.31)

A density allowing for 1.31 is said to be both interacting and non-interacting v-representable.Only for such densities, we can establish the connection between the KS pictureand the interacting one, via eqs 1.43 and 1.49.Whether the two domains coincide is still an open issue. It has been shown(see reference [21] and references therein) that it is always possible to find anon-interacting Ev-representable density, nk , that approximates any interacting
Ev-representable density, n0, arbitrarily closely, i.e. for every ε> 0, the p-norm oftheir difference is lesser or equal than ε

||nk −n0||p ≤ ε (1.32)
with p = 1 and p = 3.The above property is enough to provide a sound theoretical basis for numericalimplementations of the Kohn-Sham scheme, see refs [15, 17, 18, 21, 24] for moreextended discussions.
8
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1.3. Kohn-Sham scheme: bypassing the hardest problem
1.3.1. Kinetic energy functional minimisation9The kinetic energy of a “non-interacting" system (by which we mean a systemwithout two-body or higher many-body operators) can be calculated from the ex-pression

T̃s [{ψ̃i ,ψ̃∗
i }] =−1

2

N∑
i=1

〈Ψ̃s |∇2
ri
|Ψ̃s〉 = −1

2

∫
dx

[∇2
r γ̃s (r,r′)

]
r′=r

= −1

2

N∑
i=1

〈ψ̃i |∇2|ψ̃i 〉, (1.33)
where the ψ̃i are generic single particle wavefunctions (orbitals) from which the
N-electron Slater determinant, Ψ̃s , is constructed and γ̃s is the corresponding one-body-reduced density matrix (1RDM). Note that the last equality only follows ifwe choose an orthogonal set of orbitals (which we do for convenience) and thatthe ground state wavefunction of a non-interacting system can typically, but notalways,10 be expressed as a single Slater determinant.Let us now optimize the set of orbitals in order to attain the minimum kineticenergy possible under the constraints of its orthormality and that of a prescribeddensity, delivered from the set according to eq 1.3.To perform an independent minimization, we write the Lagrangian

Ln[{ψ̃,ψ̃∗}, vs , ε̃] := T̃s [{ψ̃,ψ̃∗}]−
N∑
i , j
ε̃i j

(〈ψ̃i |ψ̃ j 〉−δi j
)

+
∫

ṽs (r)

(∑
i ,σ

|ψ̃i |2 −n

)
(r )dr , (1.34)

with ∑N
i , j ε̃i j the Lagrange multipliers enforcing orthonormality (integral condition)and ṽs the Lagrange multiplier enforcing the prescribed density at each point inspace (local condition).Setting the Lagrangian first-order variation, δLn , to zero

0 = δLn =
N∑
i

∫ (
δψ̃∗

i
δLn

δψ̃∗
i

+ δLn

δψ̃i
δψ̃i +δṽs

δLn

δṽs
+

N∑
j
δε̃i j

δLn

δε̃i j

)
(x)dx, (1.35)

and considering that we want eq 1.35 satisfied for any arbitrary variation δψ̃∗
i ,δψ̃i ,δṽsand δε̃i j , we have four equations for the four functional derivatives

9This derivation is closely inspired to the lecture notes authored by Dr. K.J.H. Giesbertz10For cases where the single Slater determinant description cannot deliver the prescribed density seereferences [17, 25, 26]
9
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1. The density as basic variable

0 =



δLn

δψ̃∗
i

(x) −→
(
−1

2
∇2 + ṽs (r)

)
ψ̃i (x) =

N∑
j
ε̃i j ψ̃ j (x) (1.36)

δLn

δψ̃i
(x) −→

(
−1

2
∇2 + ṽs (r)

)
ψ̃∗

i (x) =
N∑
j
ε̃ j i ψ̃

∗
j (x) (1.37)

(∑
σ

δLn

δṽs

)
(r ) −→

(∑
i ,σ

|ψ̃i |2
)

(r ) = n(r ) (1.38)
δLn

δε̃i j
−→〈ψ̃i |ψ̃ j 〉 = δi j (1.39)

that need to be simultaneously satisfied.The matrix of the coefficients, ε̃, can be symmetric (both Hermitian and real-valued) since the Lagrangian must be real-valued and the inner product used isHermitian. Therefore, we can diagonalise it. Moreover, given that all the Lagrangemultipliers are real-valued, and the order of conjugation and differentiation can beinterchanged, eq 1.36 already contains eq 1.37 which can therefore be discarded.In the end, we obtain the canonical KS equations(
−1

2
∇2 + vs (r)

)
ψi (x) ≡ εiψi (x), (1.40)

where eq 1.40 is expressed as converged to the fixed point at which {ψ̃i } −→ {ψi [n]},
ε̃−→ {εi [n]}, and ṽs −→ vs [n].The total GS energy of the non-interacting system is simply the sum of the N-lowest eigenvalues

Es [n] = 〈Φ[n]|Ĥs |Φ[n]〉 =
N∑
i
εi [n] (1.41)

with Ĥs [n] = T̂ +∑N
i vs [n](r i ).

1.3.2. Connection to the interacting systemThe usefulness as well as the derivation itself of eqs 1.40 hinge on the assumptionthat a vs exists that enforce the equivalence between the density of the non-interacting system and a desired one, eq 1.38, typically the one of the interactingproblem. If it does not exist then the Lagrangian of eq 1.34 does not have aminimum. If it does exist, however, we can ask ourselves what are the connectionsbetween the non-interacting system and the interacting one.Let us define the equivalent of the Levy-Lieb functional for a system withoutinteraction
Ts [n] := min

Ψ→n
〈Ψ|T̂ |Ψ〉 = Ts [{ψi [n],ψ∗

i [n]}] (1.42)
10
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1.3. Kohn-Sham scheme: bypassing the hardest problem
and let us rewrite the total GS energy of a system, eq 1.13, as

Ev [n] = Ts [n]+F [n]−Ts [n]︸ ︷︷ ︸
=:EH xc [n]

+V [n] (1.43)
where we have introduced the energy term, EH xc called the “Hartree-exchange-correlation", which can be further decomposed

EH xc [n] = (T +Vee −Ts )[n] = (Tc +U +Uxc )[n] = (U +Exc )[n] (1.44)
where Tc = T −Ts , Uxc =Vee −U and U [n] = 1

2

∫ n(r )n(r ′)
|r−r ′| dr dr ′.Using eqs 1.15 and 1.43, we write

µ= δEv [n]

δn
(r ) =

(
δTs [n]

δn
+ δEH xc [n]

δn
+ v

)
(r ) (1.45)

Now we rewrite δEH xc [n]
δn , using δU [n]

δn = vH and defining
vxc := δExc [n]

δn
(1.46)

as δEH xc [n]
δn = vH + vxc and evaluate δTs [n]

δn using that, at the optimal orbitals andmultipliers,
Ts [n] ≡ Ln[{ψi [n],ψ∗

i [n]}, vs [n],ε[n]]. (1.47)The derivative δLn
δn

∣∣∣
n

is then simply
δLn[{ψi [n],ψ∗

i [n]}, vs [n],ε[n]]

δn

∣∣∣∣
n
=−vs (1.48)

by virtue of the stationarity conditions which makes all derivatives vanish but theterm ∂Ln
∂n

∣∣∣
n
=−∫

vs [n](r ′)δn(r ′)
δn(r ) dr ′ which depends explicitly on the density.Combining eqs 1.45, 1.46 and 1.48 we find

vs = vH + vxc + v −µ (1.49)
where a convenient way to fix the gauge freedom in the constant shift is to set allpotentials as vanishing asymptotically, {vH, vxc , v}(|r |→∞) ∼ 0.By virtue of eq 1.49, we are now able to solve eq 1.40 self-consistently withoutknowing the target density in advance: information on the target density in anystandard KS self-consistent code is introduced via input of an external potential, v .

v (i )
s = vH[n(i )]+ vxc [n(i )]+ v (1.50)

n(i+1) = argmin
n

(
Ts [n]+

∫
v (i )

s (r )n(r )dr
) (1.51)

11



1

1. The density as basic variable
At convergence this iterative procedure delivers the same density as the onefrom which the fictitious external potential, vs , was constructed (a fixed point).Moreover, supposing that we know the exact form of the functional Exc and of itsfunctional derivative vxc , the converged density and the total energy calculatedeither from eq 1.43 or from

Ev [n] =
N∑
i
εi [n]+EH xc [n]−

∫
vH xc (r )n(r )dr (1.52)

with vH xc = vH + vxc , would be exactly (numerical errors excepted) that of theinteracting system. In practice, however, one needs to build approximations forthese related unknown functionals: Exc and vxc .
1.4. The density-fixed adiabatic connection formal-

ismThe density-fixed adiabatic connection formalism is a very powerful and long-established tool to construct approximation for the exchange-correlation energy[27–30]. Consider the λ-dependent Levy-Lieb functional11 where the interaction isscaled by a real and positive coupling parameter λ, namely
Fλ[n] := min

Ψ→n
〈Ψ|T̂ +λV̂ee |Ψ〉, (1.53)

assuming that n is v-representable for all λ, one can write a series of λ-dependentHamiltonian with fixed density
Ĥλ = T̂ +λV̂ee + V̂ λ, (1.54)where V̂ λ =∑N

i vλ(r i ) and
vλ[n0](r ) =−δFλ[n]

δn

∣∣∣
n=n0

(r ) (1.55)
is the local external potential that delivers the prescribed density as the ground-state density of Hamiltonian 1.54 at each λ, i.e. nλ(r ) = n1(r ) ≡ n(r ), andΨλ(x1, · · · , x N )is the ground state wavefunction of Hamiltonian 1.54 at each λ.Equation 1.55 is derived in analogy with eq 1.17 in the usual assumption of v-representability of n at all λ.By applying the following basic theorem of calculus

F1 −F0 =
∫ 1

0

∂Fλ
∂λ

dλ (1.56)
11From now on we shall always use the Levy-Lieb functional unless otherwise specified, thus, fornotational simplicity, we shall only write “F " implying “FLL".
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1.4. The density-fixed adiabatic connection formalism
and considering that

∂Fλ
∂λ

= 〈Ψλ|
∂ Ĥλ

∂λ
|Ψλ〉, (1.57)

by virtue of the stationarity of Ψλ w.r.t. 〈Ĥλ〉, we find
T +Vee −Ts

12 = ∫ 1

0
〈Ψλ|V̂ee |Ψλ〉dλ (1.58)

which by comparison with eq 1.44 gives a compact and exact formula for theexchange-correlation (XC) energy
Exc [n] =

∫ 1

0
Wλ[n]dλ (1.59)

where the density functional Wλ is defined as
Wλ[n] := 〈Ψλ[n]|V̂ee |Ψλ[n]〉−U [n]. (1.60)

Wλ is referred to as the adiabatic connection integrand.A number of exact properties of the adiabatic connection integrand are known.Following the derivation in [31], we start by writing
〈Ĥλ〉λ′ ≥ 〈Ĥλ〉λ (1.61)
〈Ĥλ′〉λ ≥ 〈Ĥλ′〉λ′ (1.62)

where 〈Ĥα〉α′ = 〈Ψα′ |Ĥα|Ψα′〉 by variational arguments.Then we substitute Ĥλ = Ĥλ′ + (λ−λ′)V̂ee + (V̂λ− V̂λ′ ) into the l.h.s. of 1.61, finding
〈Ĥλ′〉λ′ + (λ−λ′)〈V̂ee〉λ′ +

∫
(vλ− vλ′ )n ≥ 〈Ĥλ〉λ (1.63)

Finally, summing eq 1.63 and eq 1.62, we find
(λ−λ′)

(〈V̂ee〉λ′ −〈V̂ee〉λ
)≥ 0 (1.64)

eq 1.64 tells us that
〈V̂ee〉λ′ ≥ 〈V̂ee〉λ if λ≥ λ′ (1.65)

and considering definition 1.60, it shows that Wλ′ ≥Wλ if λ≥ λ′ or in other wordsthat Wλ is a monotonically decreasing function of λ which can be written as
dWλ

dλ
≤ 0 (1.66)

12Since when the coupling parameter goes to zero, λ= 0, we recover all the KS quantities introducedso far, the subscripts “s" and “0" will be used interchangebly hereafter unless otherwise specified.
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1. The density as basic variable
assuming differentiability of the adiabatic connection integrand at any λ.Its small λ expansion reads [32]

Wλ→0[n] = Ex [n]+
∞∑

n=2
n EGLn

c λn−1, (1.67)
where the first term is simply the exchange energy expression as defined in Hartree-Fock theory applied to the KS orbitals (therefore becoming a density functional)

Ex =−
N∑

i=1, j>i

∫ ψ∗
i (x)ψ∗

j (x)ψi (x ′)ψ j (x ′)

|r − r ′| dxdx ′. (1.68)
Because Ex is order constant in λ, it is also the value of Wλ when λ = 0, i.e.
Ex =W0.The next terms, EGLn

c , are the coefficients of the Görling-Levy perturbation series[32], which are very similar to the Möller-Plesset coefficients but contain extracorrections coming from the constraint that the density be the target one at allorders in λ.The first one of them is order linear in λ and it corresponds to half the slope of
Wλ in zero, EGL2

c = W ′
0

2 , and is calculated from
EGL2

c [n] =−1

4

∑
abi j

|〈ψiψ j ||ψaψb〉|2
εa +εb −εi −ε j

−∑
i a

|〈ψi |v̂KS
x − v̂HF

x |ψa〉|2
εa −εi

(1.69)
where i , j , · · · and a,b, · · · are occupied and virtual KS orbitals, respectively, andwhere v̂KS

x = vx (r ) is the functional derivative of the exchange energy, vx (r ) =
δEx
δn (r ), while v̂HF

x is an integral kernel, namely (
v̂HF

x ψi
)

(x) := ∫
vHF

x (x,x′)ψi (x′)dx′with vHF
x (x,x′) =−∑N

j=1

ψ∗
j (x′)ψ j (x)

|r−r ′| . As for the exchange energy, every term is eval-uated on the KS orbitals.13Subsequent terms grow in complexity and their computation is absent from theliterature.The large λ expansion of Wλ reads [34]
Wλ→∞[n] =W∞[n]+ 1p

λ
W ′

∞[n]+·· · (1.70)
13Rigourously, to evaluate e.g. W ′

0, KS orbitals that are correct only up to first order, i.e. orbitalscoming from an EXX OEP procedure [33], are sufficient; and at every order it is sufficient to havethe orbitals coming from a localised potential exact up to the former order; of course the exact KSorbitals (correct at all orders) would be perfectly fine.However, a clear distinction has to be made among KS and HF orbitals: these latters come froma non-local potential and do not enter in any of the expressions pertaining the DFT adiabaticconnection integrand.
14
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1.4. The density-fixed adiabatic connection formalism
where the density functionals W∞ and W ′∞ will be introduced and discussed inchapter 3.Let us only remark here that, because in the large λ expansion there is no linearterm in λ, despite its notation (now established in the literature), the coefficient ofthe next leading order term does not correspond to the value of the slope of Wλ,i.e. W ′∞ 6= dWλ

dλ

∣∣∣
λ→∞.Finally, Wλ satisfies the so-called Lieb-Oxford (LO) bound [35]

Wλ[n] ≥−CLO ∫
n(r )

4
3 dr (1.71)

At the state of the art, the LO constant, CLO, is known to be rigourously 1.4442 [36]≤
CLO ≤ 1.6358 [37].For a given density profile, the smallest value of Wλ (the largest one in magnitude)is the quantity limλ→∞λExc [n 1

λ
] [38] where nγ(r ) is the uniformly scaled density,defined as
nγ(r ) := γ3n(γr ). (1.72)It also coincides with W∞ to be discussed in chapter 3.For densities coming from different numbers of electrons, N , it can be proven thatthe LO constant, C NLO, increases with N , C NLO ≤C N+1LO , meaning that any value foundfor finite N is a lower bound on the optimal constant.
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2
Conditional probability and
exact decomposition of the

λ-dependent external
potential

The theory of conditional probability amplitudes first developed by Hunter [39, 40]offers an excellent tool for deriving an exact differential equation for the squareroot of the density.We will start by deriving an exact decomposition of the effective potential for thesquare root of the density (introduced in eq 2.11) in terms of correlated densitymatrices, then, we will present the same decomposition in terms of KS densitymatrices and, lastly, we will generalise it to density matrices at any value of thecoupling parameter and hereupon derive scaling relations.
2.1. An effective equation for the square root of the

densityLet us recall eq 1.1 and let us relabel Ĥ as Ĥ N (r ,r 2, · · · ,r N ) and write |Ψ〉 as
ΨN (rσ,x2, · · · ,xN ) where we have taken electron 1 as the reference electron, as ineq 1.3. Note furthermore that we shall only be concerned with the GS wavefunctionand energy, sometimes called Ψ0 and E0. We shall omit the “0" subscript forsimplification of the notation. To be more precise, as we are going to generalisethe treatment of this section to any Hamiltonian of the likes of eq 1.54 in section 2.3,a subscript is rather being used to identify the coupling strength.
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2. Conditional probability and exact decomposition of the λ-dependentexternal potential
Following references [41, 42], we partition the Hamiltonian for N electrons inthree parts: the Hamiltonian for N −1 electrons (with i = 2, ..., N ), the one-bodyterms acting on electron 1, and the remaining interaction between electron 1 andall the others

Ĥ N (r ,r 2, · · · ,r N ) = Ĥ N−1(r 2, · · · ,r N )− ∇2
r

2
+ v(r )+

N∑
i=2

1

|r − r i |
. (2.1)

In the same spirit, we factorize the N-particle wavefunction
ΨN (rσ,x2, · · · ,xN ) =

√
n(r )

N
Φ(σ,x2, · · · ,xN ;r ) (2.2)

into the so-called marginal and conditional (probability) amplitudes, representedrespectively by the square root of the density as a function of coordinates of electron
1 divided by the number of electrons N and a function of the other N −1 electronicpositions, Φ(σ,x2, · · · ,xN ;r ), which depends on electron 1 in a parametric way.Physically speaking, Φ(σ,x2, · · · ,xN ;r ) is a sort of (N − 1)-particle wavefunctionthat describes how the electronic cloud of N −1 electrons readjusts as a functionof the position of electron 1. Indeed, its modulus square integrates to one for anyvalue of the position vector of the reference electron

∫
|Φ(σ,x2, · · · ,xN ;r )|2 dσdx2 · · ·dxN = 1 ∀r , (2.3)

as it is easily verified by using the modulus squared of eq 2.2 and the definitionof the electronic density n(r ), eq 1.3.We now apply eq 2.1 to eq 2.2,
(

Ĥ N−1(r 2, · · · ,r N )− ∇2
r

2
+ v(r )+

N∑
i=2

1

|r − r i |

) √
n(r )

N Φ(σ,x2, · · · ,xN ;r ) =

= E N
√

n(r )
N Φ(σ,x2, · · · ,xN ;r ) (2.4)

and then multiply to the left both members by Φ(σ,x2, · · · ,xN ;r ) and integrate overthe spin variable of the reference electron1 and the spatial and spin variables of
1Of course, it is also possible to make the exact same treatment spin-resolved: rewriting the conditionalamplitude as a parametric function of both position vector and spin variable, Φ(x2, · · · ,xN ;rσ), droppingthe summation over σ and defining all the one-body potentials appearing in eq 2.7, as functions ofthe combined spin and spatial coordinates x .
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2.1. An effective equation for the square root of the density
electrons 2, · · · , N ,
√

n(r )

N

∫
Φ∗(σ,x2, · · · ,xN ;r )Ĥ N−1(r 2, · · · ,r N )Φ(σ,x2, · · · ,xN ;r )dσdx2 · · ·dxN +

−
∫
Φ∗(σ,x2, · · · ,xN ;r )

∇2
r

2

√
n(r )

N
Φ(σ,x2, · · · ,xN ;r )dσdx2 · · ·dxN +

+v(r )

√
n(r )

N

∫
|Φ(σ,x2, · · · ,xN ;r )|2 dσdx2 · · ·dxN +

+
√

n(r )

N

∫
Φ∗(σ,x2, · · · ,xN ;r )

(
N∑

i=2

1

|r − r i |

)
Φ(σ,x2, · · · ,xN ;r )dσdx2 · · ·dxN =

= E N

√
n(r )

N

∫
|Φ(σ,x2, · · · ,xN ;r )|2 dσdx2 · · ·dxN .

Now we use eq. 2.3, which tells us that the gradient ∇r and the Laplacian ∇2
rapplied to its left-hand-side is zero. This, in turn, implies for real wavefunctions,i.e. for conditional amplitudes of the kind Φ(σ,x2, · · · ,xN ;r ) = e iθ R(σ, {x i };r ) wherethe imaginary part is just a trivial phase factor onto which the gradient has noaction, that the mixed terms are zero, i.e.

∫
Φ∗(σ,x2, · · · ,xN ;r )

∇2
r

2

√
n(r )

N
Φ(σ,x2, · · · ,xN ;r )dσdx2 · · ·dxN =√

n(r )

N

∫
Φ∗(σ,x2, · · · ,xN ;r )

∇2
r

2
Φ(σ,x2, · · · ,xN ;r )dσdx2 · · ·dxN + ∇2

r

2

√
n(r )

N
(2.5)

and moreover that
∫
Φ(σ,x2, · · · ,xN ;r )∇2

rΦ(σ,x2, · · · ,xN ;r )dσdx2 · · ·dxN =

−
∫

|∇rΦ(σ,x2, · · · ,xN ;r )|2 dσdx2 · · ·dxN . (2.6)
Therefore considering the properties of Φ(σ,x2, · · · ,xN ;r ) expressed in eqs 2.3, and2.6, and simplifying out the normalization factor from both sides, we see that eq 2.4
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2. Conditional probability and exact decomposition of the λ-dependentexternal potential
becomes(∫

Φ∗(σ,x2, · · · ,xN ;r )Ĥ N−1(r 2, · · · ,r N )Φ(σ,x2, · · · ,xN ;r )dσdx2 · · ·dxN

−∇2
r

2
+ v(r )+ 1

2

∫
|∇rΦ(σ,x2, · · · ,xN ;r )|2 dσdx2 · · ·dxN +

+
∫ (

N∑
i=2

|Φ(σ,x2, · · · ,xN ;r )|2
|r − r i |

)
dσdx2 · · ·dxN

)√
n(r ) =

= E N
√

n(r ),

which is a Schrödinger-like equation for the square root of the density, as wehave a kinetic term plus other terms that are multiplicative potentials, being purefunctions of the position vector.Collecting all local potentials in one,
ṽeff(r ) =

∫
Φ∗(σ,x2, · · · ,xN ;r )Ĥ N−1(r 2, · · · ,r N )Φ(σ,x2, · · · ,xN ;r )dσdx2 · · ·dxN +

+1

2

∫
|∇rΦ(σ,x2, · · · ,xN ;r )|2 dσdx2 · · ·dxN + v(r )+ (2.7)

+
∫
Φ∗(σ,x2, · · · ,xN ;r )

(
N∑

i=2

1

|r − r i |

)
Φ(σ,x2, · · · ,xN ;r )dσdx2 · · ·dxN ,

it follows
− ∇2

2

√
n(r )+ ṽeff(r )

√
n(r ) = E N

√
n(r ). (2.8)

2.1.1. The Density DecayEquation 2.8 proves itself useful, for example, for deriving the decaying behaviourof the density in finite systems (atoms and molecules) when |r | is very far from thebarycenter of all nuclear charges.For a general single-particle Schrödinger equation,
− ∇2

2
φ(r )+ v(r )φ(r ) = εφ(r ), (2.9)

we have that φ(r ) ∼ e−
p−2ε |r | when |r | → ∞ only if v(|r | → ∞) = 0. If, instead,

v(|r | →∞) =C then, for |r | →∞, φ(r ) ∼ e−
p

2(−ε+C )|r |. This means that, if we wantto obtain the asymptotic decay of n(r ) from eq 2.8, we have to find that constant
C that shifts the effective potential ṽeff(r ) so that it vanishes at large distances (orequivalently the constant that appears in the exponential together with −ε).
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2.1. An effective equation for the square root of the density
Looking at the different pieces appearing in eq 2.7, we see that the external po-tential

v(r ) =−
N∑
A

ZA

|r −RA |

and the last contributing potential
∫
Φ∗(σ,x2, · · · ,xN ;r )

(
N∑

i=2

1

|r − r i |

)
Φ(σ,x2, · · · ,xN ;r )dσdx2 · · ·dxN ,

clearly vanish when r is far away from all nuclear charges (i.e. in that region ofspace where the density is negligeable).Concerning the other terms, we can use physical arguments to support the followingstatements, leaving room for more rigorous derivations.For the term ∫
Φ∗(σ,x2, · · · ,xN ;r )Ĥ N−1(r 2, · · · ,r N )Φ(σ,x2, · · · ,xN ;r )dσd2...dN , weexpect that the conditional amplitude when electron 1 is very far from the nucleiwill collapse to the ground-state wavefunction of the cation, ΨN−1(x2, · · · ,xN ) [43],if this is accessible,2 and that, consequently, the expectation value accounted forin that term will collapse to the ground-state energy of the cation, E N−1.If this is the case we may also expect the term ∫ |∇rΦ(σ,x2, · · · ,xN ;r )|2 dσdx2 · · ·dxNto vanish since the conditional amplitude essentially becomes insensitive for achange in the position of electron 1 very far away from the nuclei. A case in whichthis assumption does not hold is the less usual case of nodal planes extending toinfinity [44, 45].Therefore we can define veff(r ) = ṽeff(r )−E N−1

0 , in which the first term now becomes∫
Φ∗(σ,x2, · · · ,xN ;r )

(
Ĥ N−1(r 2, · · · ,r N )−E N−1)Φ(σ,x2, · · · ,xN ;r )dσdx2 · · ·dxN ,(2.10)so that the corresponding equation for p

n(r ) reads
− ∇2

2

√
n(r )+ veff(r )

√
n(r ) = (

E N −E N−1)√n(r ). (2.11)
Considering that (

E N
0 −E N−1

0

)=−Ip (the first ionization potential), this derivationgives a clear physical grasp of where the exponential decay of the density with thesquare root of the first ionization potential comes from√
n(r ) ∼ e−

p
2Ip |r |. (2.12)

2Meaning that, for example, the spin ground state of the cation does not require spin flips with respectto the one of the neutral system, otherwise the relaxation to the ground state cannot occur.
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2. Conditional probability and exact decomposition of the λ-dependentexternal potential
2.1.2. Effective one-body potentialsWe now take a closer look at the three terms found for the effective potential veff(r )in the previous section.The term with the easiest physical interpretation is the so-called conditional po-tential

vcond (r ) :=
∫
Φ∗(σ,x2, · · · ,xN ;r )

(
N∑

i=2

1

|r − r i |

)
Φ(σ,x2, · · · ,xN ;r )dσdx2 · · ·dxN .(2.13)Using the definition of the pair density, P2(r ,r ′)

P2(r ,r ′) := N (N −1)
∫

|Ψ(rσ,r ′σ′, · · · , x N )|2dσdσ′dx3 · · ·dx N , (2.14)
where we have relabeled x2 = r ′σ′, we can equivalently write

vcond (r ) =
∫

P2(r ,r ′)
|r − r ′| dr ′ (2.15)

This potential is traditionally considered as made up of two different contribu-tions, i.e. vcond (r ) = vH(r )+ vxc-hol e (r ), where vH has been defined in sec 1.3.2,while to define vxc-hol e we use the definition of the exchange-correlation pair-correlation function, gxc (r ,r ′),
gxc (r ,r ′) := P2(r ,r ′)

n(r )n(r ′)
−1. (2.16)

Then
vxc,hol e (r) =

∫
n(r′) gxc (r,r′)

|r − r ′| dr ′. (2.17)
The numerator in eq 2.17 is often called the exchange correlation hole

hxc (r ,r ′) := n(r′) gxc (r,r′).3 (2.18)
Thus, vcond (r ) is the electrostatic potential of the density depleted of its exchangecorrelation hole.The term that comes from the kinetic energy operator acting on the conditionalamplitude

vki n(r ) := 1

2

∫
|∇rΦ(σ,x2, · · · ,xN ;r )|2 dσdx2 · · ·dxN (2.19)

is called kinetic potential.
3Note that, as the pair density is symmetric, i.e. P2(r ,r ′) = P2(r ′,r ), also gxc (r,r′) is so, while hxc (r ,r ′),being the product of a symmetric function of (r ,r ′) and the density in one point (r ′) is no longersymmetric.
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2.2. Effective potential for the square root of the density in terms of KSdensity matrices
Using the definition of the one-body reduced density matrix (1RDM)

γ(r ,r ′) := N
∫
Ψ∗(rσ, x2, · · · , x N )Ψ(r ′σ, x2, · · · , x N )dσdx2 · · ·dxN (2.20)

it can be also expressed as
vki n(r ) = ∇r ·∇r ′γ(r ,r ′)|r ′=r

2n(r )
− |∇n(r )|2

8n(r )2 . (2.21)
Finally, the term coming from the N −1 Hamiltonian is equal to
vN−1(r ) =

∫
Φ∗(σ,x2, · · · ,xN ;r ) Ĥ N−1(r 2, · · · ,r N )Φ(σ,x2, · · · ,xN ;r )dσdx2 · · ·dxN

−E N−1 (2.22)It is evident that these three potentials are always positive, as in eqs 2.13 and2.19 the integrands are squared quantities, and the integrand in eq 2.22 must bepositive by virtue of the variational principle.In a pure Hohenberg-Kohn-DFT approach (also called orbital-free DFT, becauseit does not use orbitals, but only the density itself), these three terms give theeffective potential for the square root of the density. Unfortunately, orbital-freeDFT suffers from the lack of an accurate kinetic energy functional as alreadydiscussed (see sec 1.3).To obtain an expression for the exchange-correlation potential in the KS schemewe need to use the KS reference state and energy, as explained in the next section.
2.2. Effective potential for the square root of the

density in terms of KS density matricesSuppose that, for the same physical density n, we have found the exact KS poten-tial, vs . The KS Hamiltonian is then given by
Ĥ N

s =−
N∑
i

∇2
r i

2
+

N∑
i=1

vs (r i ) (2.23)
which has ΨN

s as its ground state.If we repeat the same manipulations of section 2.1 starting by a partitioned KSHamiltonian and a KS conditional amplitude that mirror eqs 2.1 and 2.2, i.e.
Ĥ N

s (r 1, · · · ,r n) = Ĥ N−1
s∗ (r 2, · · · ,r N )− ∇2

r

2
+ vs (r ), (2.24)

ΨN
s (x1, · · · , x N ) =

√
n(r )

N
Φs (σ, x2, · · · , x N ;r ), (2.25)
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2. Conditional probability and exact decomposition of the λ-dependentexternal potential
we get:

vs,ki n(r ) = 1

2

∫
|∇rΦs (σ, x2, · · · , x N ;r )|2 dσdx2 · · ·dx N , (2.26)

which can be written in terms of the H occupied KS orbitals,
vs,ki n(r ) = 1

2

H∑
i=1

|∇ ψi (r )p
n(r )

|2 = 1

2n(r )

H∑
i=1

|∇ψi (r )|2 − |∇n(r )|2
8n(r )2 , (2.27)

and
vs,N−1(r ) =

∫
Φ∗

s (σ, x2, · · · , x N ;r ) Ĥ N−1
s∗ (r 2, · · · ,r N )Φs (σ, x2, · · · , x N ;r )dσdx2 · · ·dx N

−E N−1
s∗ (2.28)

Again, this term can be written using the KS orbitals and orbital energies,
vs,N−1(r ) =

H∑
i=1

(εH −εi )
|ψi (r )|2

n(r )
, (2.29)

where εH is the energy of the KS highest occupied molecular orbital (HOMO).A critical remark is due here: contrary to the fully interacting case, Ĥ N−1
s∗ is

not the KS Hamiltonian for the N −1-particle system, since the KS potential isthe one obtained for the N-particles problem, which is not the one that would beobtained for the ground state density of the cation.4 Analogously, the energy term
E N−1

s∗ is not the KS energy of the N −1-particle system but rather the sum of allthe H −1 orbital energies εi of the N-particles problem.The effective KS potential for the square root of the density is nothing butthe sum of the foreshown potentials plus the KS potential itself (the conditionalpotential being absent as there is no Coulomb repulsion between the particles),
veff(r ) = vs (r )+ vs,ki n(r )+ vs,N−1(r ). (2.30)

2.2.1. Exact decomposition of the XC potential into physically
transparent termsWe compare now the resulting effective equations obtained in the previous sections[42, 46–48].

4Think about the simple example of the He atom (N = 2): the exact KS potential must yield a singleorbital, doubly occupied, equal to √
n(r )

2 , where n(r ) is the density of the He atom. When we removeone electron from this N = 2 KS system, we have the same orbital as before, now singly occupied.This orbital is different than the square root of the density of He+, which is a single exponential. Infact, the exact KS potential of He+ is simply −2/r , which is definitely different from the KS potentialof He.
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2.2. Effective potential for the square root of the density in terms of KSdensity matrices
From sec 2.1 we have
− ∇2

2

√
n(r )+ (

v(r )+ vki n(r )+ vN−1(r )+ vcond (r )
)√

n(r ) =−IP

√
n(r ), (2.31)

while from sec 2.2 we have
− ∇2

2

√
n(r )+ (

vs (r )+ vs,ki n(r )+ vs,N−1(r )
)√

n(r ) = εH

√
n(r ). (2.32)

The density can be written in terms of the KS orbitals as n(r ) = ∑H
i=1 |ψi (r )|2,and the decay of the KS orbitals is governed by their respective eigenvalues. Themost diffuse orbital, i.e. the one with the smallest occupied orbital energy inabsolute value, is the one of the HOMO. Thus, for large |r |, the density decay willbe dominated by the uppermost orbital, ψN (r ), which leads to the identification

εH =−Ip [49, 50].Then, the r.h.s of eqs 2.31 and 2.32 are the same and we can compare the twoclusters of local potentials in brackets and derive thereby an exact expression forthe KS potential,
vs (r ) = v(r )+ vH(r )+ vxc (r ) =

= v(r )+ vki n(r )+ vN−1(r )+ vcond (r )− vs,ki n(r )− vs,N−1(r ) (2.33)
Simplifying out the external potential from both sides and solving w.r.t. vxc , wehave

vxc (r ) = vki n(r )− vs,ki n(r )+ vN−1(r )− vs,N−1(r )+ vxc-hol e (r ), (2.34)
Equation 2.34 gives an exact expression for the XC potential in terms of wave-function quantities (one-body-reduced density matrix and pair density) and KSquantities (orbitals and orbital energies). Some of these components embody non-intuitive, though typical, features of the exact KS potential.As an example, in fig 2.1 we have sketched how the exact KS potential for astretched heteronuclear molecule (the simple case of LiH) looks like. The two sep-arated atoms have highest occupied atomic orbitals with different energies, the 2sorbital of Li being higher in energy than the 1s orbital of H. Another way to seethis is that the more electronegative atom, the hydrogen, can attract some chargefrom the less electronegative one. To bring the chemical potential of the two atomsat the same level, the exact KS potential builds an appropriate step in the midbondand another one far away from the molecule on the other side of the hydrogen atomin order to bring the potential to zero again. The step height is exactly the dif-ference between the ionization potentials of the two atoms. This way, the HOMOenergies of the two atoms forming the molecule are equalized, as it should be fora doubly occupied bonding orbital in the spin-restricted framework (i.e., without
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2. Conditional probability and exact decomposition of the λ-dependentexternal potential

Figure 2.1: Sketch of the exact KS potential at the dissociation limit of the LiH molecule
associating different spatial orbitals to different spins). In the neighborhood of theH atom, the KS potential looks like the one of an isolated H atom. Only by lookingfar away from the H nucleus, we see that the ionization potential of the stretchedLiH molecule is essentially equal to the one of the Li atom. It has been shown[46, 48, 51, 52] that this step structure is built by the difference vN−1(r )−vs,N−1(r )appearing in eq 2.34, which has been grouped in one potential called vr esp (r ), asit can also be seen as the response part of the XC potential (see end of sec 2.2.2).Another feature that is very important for the proper description of challeng-ing electronic structures is highlighted in fig 2.2, where the KS potential for thehydrogen molecule at large internuclear distance is sketched. Here the chemicalpotentials are the same, so there is no step. However, in the midbond region thereis a peak that increases for increasing bond lengths but saturates for large enoughdistances between the two atoms. That peak essentially decreases the probabilitythat electron around nucleus A tunnels to nucleus B, and, in the limit of infinitelystretched molecule, its height becomes equal to the ionization potential of the hy-drogen atom [42, 53–55]. In other words, this is how the KS potential managesto localize non-interacting fermions that would otherwise accumulate some chargealso in the midbond region, contrarily to the real interacting electrons.
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2.2. Effective potential for the square root of the density in terms of KSdensity matrices

Figure 2.2: Sketch of the exact KS potential at the dissociation limit of the H2 molecule.

This peak comes from the difference vki n(r )− vs,ki n(r ) [42, 54–57], which for thespecial case N = 2 considered here is just equal to vki n(r ) of eq 2.19 and can beunderstood in simple terms: if we imagine electron 1 being, say, around nucleusA, then the gradient of the conditional amplitude in eq 2.19 will undergo a steeperincrease the closer electron 1 gets to the midbond, reaching its maximum whenelectron 1 crosses the bond midpoint. In fact, at this point electron 2 has to hop onthe other nucleus in order to have one and only one electron around each nucleus.The peak is actually also present in the heterolytic dissociation and is shown infig 2.1 as a dashed line. Most available functionals approximate in a satisfyingway the electrostatic hole potential of eq 2.17, which is typically the dominantpart for the description of the total energy and other properties, but fail severelyin the description of the peak and of the step structure. For example the upshift oforbital energies in LDA is due to a too high response potential [58, 59].In the everlasting quest for better XC functionals, approximating directly the XCpotential has always been of interest (although there are other problems appear-ing when the potential is not the functional derivative of a density functional [60])and the exact decomposition of the KS potential foreshown provides very helpfulguidelines in the design of approximate XC potentials.
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2. Conditional probability and exact decomposition of the λ-dependentexternal potential
In this spirit, Staroverov and coworkers have developed an algorithm to constructsensible XC potentials from correlated wavefunctions in finite basis sets [52, 61–63].While in ref [64] a simple approximation (called ‘GLLB’) to the response potential
vN−1(r )− va,N−1(r ) has been proposed. More recently, the GLLB response po-tential has been used to correct the band gap of solids obtained from semilocalfunctionals [65], and the vertical ionization potentials of molecules [59].
2.2.2. XC potential in terms of kinetic and interaction compo-

nents and their response partsIt is possible to connect the analysis of the effective one-body potentials depictedso far with other expressions for the exchange-correlation energy. Rewriting thetotal energy by making use of the von Weizsäcker kinetic energy functional, TW [n],which is N times the kinetic energy of the normalized “density orbital”, i.e.
TW [n] :=−1

2

∫ √
n(r )∇2

√
n(r )dr , (2.35)

we can obtain other expressions for the KS potential involving integrals of theresponse part of known functions [60], as shown in the next paragraphs.Let us start by considering the following decomposition of the total energy
E [n] = TW [n]+ (T [n]−TW [n])+V [n]+Vee [n]. (2.36)

Using the expression for vki n(r ) of eq 2.21, it is immediate to show that
T [n]−TW [n] =

∫
n(r )vki n(r )dr =

= 1

2

∫
∇r ·∇r ′γ(r ,r ′)|r ′=r dr︸ ︷︷ ︸

=T [n]

− 1

8

∫ |∇n(r )|2
n(r )

dr︸ ︷︷ ︸
=TW [n]

. (2.37)
Using eqs 2.15,6.13 it is also easy to see that

Vee [n] = 1

2

∫
n(r )vcond (r ) = 1

2

∫
n(r )n(r ′)

gxc (r ,r ′)+1

|r − r ′| dr dr ′. (2.38)
Thus, eq 2.36 reads

E [n] =−1

2

∫ √
n(r )∇2

√
n(r )dr +

∫
n(r )vki n(r )dr + 1

2

∫
n(r )vcond (r )dr

+
∫

n(r )v(r )dr . (2.39)
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2.2. Effective potential for the square root of the density in terms of KSdensity matrices
The effective potential of sec 2.1.1 is exactly the functional derivative of theVon Weizsäcker kinetic energy with opposite sign and up to a constant shift

ve f f (r ) =−δTW [n]

δn(r )
= ∇2pn(r )

2
p

n(r )
− Ip (2.40)

This result is easily derived by comparing definition 2.35 and eq 2.11 inverted soas to provide a definition of the effective potential.Upon differentiation with respect to the density of eq 2.39 and considering thatthe energy is stationary w.r.t. change in the density, we find
ve f f (r ) = δ(E [n]−TW [n])

δn(r )
(2.41)

= vki n(r )+ v(r )+ vH (r )+ vxc-hol e (r )+ v r esp
ki n (r )+ v r esp

xc-hol e (r ),

where the response potentials involve the density response of vki n

v r esp
ki n (r ) =

∫
n(r ′)

δvki n(r ′)
δn(r )

dr ′ (2.42)
and gxc

v r esp
xc-hol e (r ) = 1

2

∫
n(r ′)n(r ′′)
|r ′− r ′′|

δgxc (r ′,r ′′)
δn(r )

dr ′dr ′′. (2.43)
The comparison between eq. 2.41 and eq. 2.31 shows that

vN−1(r ) = v r esp
ki n (r )+ v r esp

xc-hol e (r ), (2.44)
which motivates why the terms of the effective potential associated to the N −1Hamiltonian are also called “response” parts of the potential.We now repeat the same analysis for the KS system. Consider eq. 2.32 anddivide both sides by p

n(r ):
− ∇2pn(r )

2
p

n(r )
+ vs (r )+ vs,ki n(r )+ vs,N−1(r ) = εH (2.45)

On the other hand we also know that
δTs [n]

δn(r )
=−vs (r )+εH , (2.46)

which we can rewrite as
δ (TW [n]+ (Ts −TW )[n])

δn(r )
=−vs (r )+εH (2.47)
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2. Conditional probability and exact decomposition of the λ-dependentexternal potential
Working out the l.h.s. gives

− ∇2pn(r )

2
p

n(r )
+ vs,ki n(r )+ v r esp

s,ki n(r ) =−vs (r )+εH , (2.48)
where we have used the relation

Ts [n]−TW [n] =
∫

vs,ki n(r )n(r )dr , (2.49)
which mirrors eq 2.37 for the KS kinetic energy rather then the interacting one.

Comparing eq. 2.45 and eq. 2.48 gives
vs,N−1(r ) = v r esp

s,ki n(r ) =
∫

n(r ′)
δvs,ki n(r ′)
δn(r )

dr ′. (2.50)
Therefore

vN−1(r )− vs,N−1(r ) = v r esp
c,ki n(r )+ v r esp

xc-hol e (r ), (2.51)where
v r esp

c,ki n(r ) =
∫

n(r ′)
δvc,ki n(r ′)
δn(r )

dr ′ (2.52)
with

vc,ki n(r ) = vki n(r )− vs,ki n(r ). (2.53)Finally, the terms appearing in the r.h.s. of eq 2.51 are often collected in onecalled vr esp

vr esp (r ) := v r esp
c,ki n(r )+ v r esp

xc-hol e (r ). (2.54)
2.3. λ-dependent effective one-body potentials5Assuming that a single GS wavefunction, ΨN

λ
, for the λ-dependent Hamiltonianintroduced in eq 1.54, Ĥ N

λ
,6 exists at any λ, it is possible to extend the decomposi-tion of the effective potential for the square root of the density in terms of infinitelymany systems depending on the coupling strength.Let us start by writing

Ĥ N
λ (r , · · · ,r N ) = Ĥ N−1

λ∗ (r 2, · · · ,r N )− ∇2
r

2
+λ

N∑
i=2

1

|r − r i |
+ vλ(r ), (2.55)

5The idea of generalizing to any value of the coupling parameter λ the concept of conditional amplitudeas well as that of the local potentials that can be written in terms of this latter has appeared originallyin the work of reference [66] presented in chapter 6.6ΨN
λ

and Ĥ N
λ

are exactly the same objects introduced in sec 1.4 and used in the previous section(sec 2.3). Nonetheless throughout this section they are labeled with a superscript for the number ofelectrons, N , as this latter plays a key role hereinafter. For the same reason, the GS energy associatedto ΨN
λ

and Ĥ N
λ

will be indicated as E N
λ

.
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and

ΨN
λ (rσ, x2, · · · , x N ) =

√
n(r )

N
Φλ(σ, x2, · · · , x N ;r ), (2.56)

respectively.By applying the r.h.s. of eq 2.55 to the r.h.s. of eq 2.56, multiplying by Φ∗
λ

(σ, x2, · · · , x N ;r )to the left and integrating over all variables except r as worked out in sec 2.2.1,we again obtain few distinct one-body potentials, viz.
vλ,N−1(r ) :=∫
Φ∗
λ(σ, x2, · · · , x N ;r )Ĥ N−1

λ∗ Φλ(σ, x2, · · · , x N ;r )dσdx2 · · ·dxN −E N−1
λ∗ , (2.57)

where the subtraction of the quantity E N−1
λ∗ makes this potential go to zero when

|r |→∞ if, as expected in most cases, Φλ(σ, x2, · · · , x N ;r ) asymptotically collapsesto ΨN−1
λ

(x2, · · · , x N );
vλ,ki n(r ) := 1

2

∫
|∇rΦλ(σ, x2, · · · , x N ;r )|2dσdx2 · · ·dxN , (2.58)

which also goes usually to zero when |r | →∞ as vλ,N−1(r ) does. Exceptions forboth potentials are encountered in the case of nodal planes extending to infinity,as already discussed in sec 2.1.1.Lastly,
vλ,cond (r ) =

∫ N∑
i=2

1

|r − r i |
|Φλ(σ, x2, · · · , x N ;r )|2dσdx2 · · ·dxN , (2.59)

which tends manifestly to zero when |r | →∞ and can be decomposed into a λ-independent, vH, and a λ-dependent part, vλ,xc-hol e ,
vλ,xc-hol e (r ) = vλ,cond (r )− vH(r ). (2.60)

As well as a Schrödinger equation for the square root of the density(
− ∇2

2
+ vλ,e f f (r )+ vλ(r )

)√
n(r )=(E N

λ −E N−1
λ∗ )

√
n(r ), (2.61)

where
vλ,e f f (r ) := vλ,N−1(r )+ vλ,ki n(r )+λvλ,cond (r ), (2.62)and E N−1

λ∗ is the ground-state energy of the N − 1 system in the same effectivepotential as the N-particle one, i.e. of Ĥ N−1
λ∗ of eq 2.55 (thus E N−1

λ∗ = E N−1
λ

onlyfor λ= 1).Comparison with eq 2.11 shows that,
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2. Conditional probability and exact decomposition of the λ-dependentexternal potential
• for any finite λ, the difference E N

λ
−E N−1

λ∗ in eq 2.61 equals minus the exactionization potential, Ip , of the physical system, which dictates the asymptoticdecay of the density as already discussed in secs 2.1.1 and 2.2.1
E N
λ −E N−1

λ∗ =−Ip ; (2.63)
• the sum (

vλ,e f f + vλ
) has to be λ-independent and equal to the effectivepotential, ve f f .

Thus, we can explicitly write the λ-dependent external potential as a differencebetween a λ-independent and a λ-dependent term
vλ(r ) = ve f f (r )− vλ,e f f (r ). (2.64)

Note that, when λ= 0, the potential vλ,e f f becomes exactly the so-called “Pauli"potential, vP = ve f f − vs [67, 68].
2.4. Scaling propertiesCoordinates scaling and scaling of the coupling parameter in eq 1.54 can be relatedto one another [69]. In order to show their relation, let us start by writing the λ-dependent Schrödinger equation(

−
N∑

i=1

∇2
r i

2
+

N∑
i=1, j>i

λ

|r i − r j |
+

N∑
i=1

vλ(r i )

)
Ψλ(r 1, · · · ,r N ) = EλΨλ(r 1, · · · ,r N ) (2.65)

where we have left the spin indexes out for notational convenience as they willremain untouched along the whole treatment. We remind that Ψλ delivers thedensity n at each λ.Upon substitution
r =αr ′ (2.66)we find− N∑

i=1

1

α2

∇2
r ′

i

2
+

N∑
i=1, j>i

λ

α|r ′
i − r ′

j |
+

N∑
i=1

vλ(αr ′
i )

Ψλ(αr ′
1, · · · ,αr ′

N ) = (2.67)
EλΨλ(αr ′

1, · · · ,αr ′
N )

Multiplying both sides of eq 2.67 by α2, then taking α= 1
λ and defining a wave-function ξ such that

Ψλ(r 1, · · · ,r N ) =λ 3 N
2 ξ (λr 1, · · · ,λr N ), (2.68)
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we find− N∑

i=1

∇2
r ′

i

2
+

N∑
i=1, j>i

1

|r ′
i − r ′

j |
+ 1

λ2

N∑
i=1

vλ
(

r ′
i

λ

) ξ (r ′
1, · · · ,r ′

N ) = (2.69)
1

λ2 Eλ ξ (r ′
1, · · · ,r ′

N ).

Applying definition 1.3 to calculate the density associated to ξ (r ′
1, · · · ,r ′

N ) andeq 2.68 we find
N

∫ ∣∣ξ(r ′
1, · · · ,r ′

N )
∣∣2dr ′

2 · · ·dr ′
N =

N

λ3

∫ ∣∣Ψλ

(r 1

λ
, · · · ,

r N

λ

)∣∣2d
(r 2

λ

)
· · ·d

(r N

λ

)
= 1

λ3 n
(r 1

λ

)
= n 1

λ
(r 1), (2.70)

where the last equality results from definition 1.72.Thus, eq 2.69 tells us that ξ (r ′
1, · · · ,r ′

N ) is the ground state of a Hamiltonian atfull coupling strength (λ = 1) delivering a density n 1
λ

(
r ′

1
λ

), i.e. ξ (r ′
1, · · · ,r ′

N ) =
Ψ1[n 1

λ
](r ′

1, · · · ,r ′
N ) and we have found that
Ψλ[n](r 1, · · · ,r N ) =λ 3N

2 Ψ1[n 1
λ

](λr 1, · · · ,λr N ). (2.71)
From eq 2.69 one also deduces the behaviour of the external potential as wellas that of the ground state energy w.r.t. uniform scaling of the density, namely

1

λ2 vλ[n](r ) = v1[n 1
λ

](λr ) (2.72)
1

λ2 Eλ[n] = E1[n 1
λ

] (2.73)
Insertion into the definitions of the λ-dependent local one-body potentials(eqs 2.57, 2.58, 2.59, and 2.60) of eqs 2.71, 2.56 and, just for vλ,N−1, also 2.72leads to the following local scaling relations

vλ,N−1[n](r ) = λ2v1,N−1[n 1
λ

](λr ) (2.74)
vλ,ki n[n](r ) = λ2v1,ki n[n 1

λ
](λr ) (2.75)

vλ,cond [n](r ) = λv1,cond [n 1
λ

](λr ) (2.76)
and subsequently

vλ,xc-hol e [n](r ) = λv1,xc-hol e [n 1
λ

](λr ). (2.77)
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2. Conditional probability and exact decomposition of the λ-dependentexternal potential
Combination of eqs 2.74, 2.75 and 2.76 together with definition 2.62 gives

vλ,e f f [n](r ) =λ2v1,e f f [n 1
λ

](λr ), (2.78)
Note that the scaling of the effective potential introduced in eq 2.11 can beindependently calculated to be

ve f f [n](r ) = λ2ve f f [n 1
λ

](λr ) (2.79)
and is consistent with eqs 2.72, 2.78 and 2.61.Moving onto global quantities, the definition of the Von Weizsäcker energyfunctional (eq 2.35) immediately gives that

TV W [n] = λ2TV W [n 1
λ

]. (2.80)
Defining

Tλ[n] := 〈ΨN
λ [n]|T̂ |ΨN

λ [n]〉, (2.81)
Vee,λ[n] := 〈ΨN

λ [n]|V̂ee |ΨN
λ [n]〉, (2.82)and

Wλ[n] :=Vee,λ[n]−U [n] (2.83)use of eqs 2.75 together with 2.80 for the kinetic and 2.76 and 2.77 for the electron-electron interaction terms gives
Tλ[n] = λ2T1[n 1

λ
] (2.84)

Vee,λ[n] = λVee,1[n 1
λ

] (2.85)
and

Wλ[n] = λW1[n 1
λ

] (2.86)
Finally, combination of eqs 2.84 and 2.85 together with definition 1.53 gives

Fλ[n] =λ2F1[n 1
λ

]. (2.87)
Moreover, from a GS wavefunction at any λ which delivers a density n

Ψλ(r 1, · · · ,r N ) → n(r 1) (2.88)
one can obtain a uniformly scaled density nγ (eq 1.72) by scaling it as

γ
3 N

2 Ψλ(γr 1, · · · ,γr N ) → γ3n(γr 1). (2.89)
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2.4. Scaling properties
Inserting the scaled Ψ0 into the functional defined in eq 1.42, immediately showsthat [70]

Ts [n] =λ2Ts [n 1
λ

] (2.90)
with γ= 1

λ .Thus, also for the correlation contribution alone it holds that
Tc,λ[n] =λ2Tc,1[n 1

λ
] (2.91)

having defined
Tc,λ[n] := (Tλ−Ts )[n]. (2.92)
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3
Strictly Correlated

Electrons
At the end of sec 1.4, we have introduced some density functionals called W∞ and
W ′∞ appearing in the large λ expansion of the adiabatic connection integrand, Wλ.Since it was posed [71–73], the question as to what happens to all key players ofthe density-fixed adiabatic connection formalism (sec 1.4) as λ→∞ (the so-calledstrongly-interacting limit) has offered a complementary scenario to the KS picturewith a rather unique structure.Both weakly-interacting and strongly-interacting limits are simplified descriptionsof the realistic situation where kinetic and electron-electron interaction effectsneed to compromise in the minimization of the total energy, however, while themathematical simplicity is embodied, in the former, in single-particle orbitals, theseare replaced, in the latter, by completely different and distinctive objects, called
co-motion functions.Compared to the KS orbitals, the co-motion functions are also non-trivial densityfunctionals, however their explicit dependence on the density is known in somecases [73].In the electronic structure theory community the strongly-interacting limit (SIL)of DFT is equivalently known under the acronym SCE which stands for “strictlycorrelated electrons".The physical picture in the case of extreme electron-electron interaction over-laps to some extent with a branch of mathematics named Optimal Transport, whichwill be briefly introduced in sec 3.2.Nevertheless, in the mathematical community, the two acronyms “SIL" and “SCE"are being used with different meanings.
V SIL

ee represents the exact limit of the Levy-Lieb λ-dependent functional up to first
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order [74, 75]

lim
λ→∞

Fλ[n]

λ
=V SIL

ee [n]+o(λ), (3.1)
while the SCE functional, V SCE

ee , is a specific form in which the problem posed by
V SIL

ee may be solved.In particular, V SIL
ee ≡ V SCE

ee when the functional V SIL
ee can be expressed in terms ofoptimal transport maps (as briefly discussed in sec 3.2).Nevertheless, in references [76, 77] it is argued that, casting the deterministicexpression of the interaction energy operator (see eq 3.13) variationally, into asearch over all possible transport maps {fi } giving the density, n, i.e.

V SCE
ee,opt =

1

2
inf

{fi }:n

(∫
n(r )

N−1∑
i=1

1

|r − fi (r )|dr

) (3.2)
the two objects are arbitrarily close.Therefore, V SIL

ee =V SCE
ee,opt.The question remains whether the inf in eq 3.2 can always be sharpen to a minfor the Coulomb cost or, if not, in which cases it can. Throughout this chapter,we shall simply assume V SIL

ee = V SCE
ee without discriminating between optimal andnon-optimal maps.

3.1. General Structure of the (DFT) λ→∞ LimitWhen λ→∞, the λ-dependent Hamiltonian of eq 1.54 reduces to [34, 73–75]
Ĥλ→∞ ∼λ(V̂ee + V̂ SCE), (3.3)

where V̂ SCE = ∑N
i=1 vSCE(r i ) is the one body potential that makes the classicalpotential energy operator1

ESCEpot (r 1, · · · ,r N ) = V̂ee (r 1, · · · ,r N )+ V̂ SCE(r 1, · · · ,r N ) (3.4)
deliver the prescribed ground-state density n(r ) such that both V̂ SCE and Epot arefunctional of the density [34, 73, 79].The ground state energy of eq 3.3 is given by

Eλ→∞[n] =λ inf
|Ψ|2→n

∫
ESCEpot [n](r 1, · · · ,r N )|Ψ(x1, · · · , x N )|2dx1 · · ·dx N (3.5)

and it is achieved by a |Ψ|2 which is zero everywhere except where the potentialenergy surface Epot[n](r 1, · · · ,r N ) attains its global minimum (in other words the
1Sometimes vSCE is also denoted as “v∞" [6, 78] as it is the external potential appearing in theasymptotic Hamiltonian of eq 3.3.
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3.1. General Structure of the λ→∞ Limit
minimum of the potential energy defines the support of |Ψ|2).The reason why the kinetic energy operator disappears from the λ-dependentHamiltonian as λ→ ∞ (eq 3.3) is that its expectation value, Tλ[n] (eq 2.81), issubleading w.r.t. Vee,λ[n] (eq 2.82) in this limit.In particular, assuming that Tλ→∞ is due, to first order, to zero point oscillationsaround the equilibrium positions (a conjecture first proposed in reference [72] andfor which gradually further arguments have been produced [34, 74, 80] although norigorous proof is available yet), it can be shown that Tλ→∞ ∼O(

p
λ).As a consequence, the λ-dependent Levy-Lieb functional of eq 1.53 tends asymp-totically to λV SC E

ee [n] with [71, 73]
V SCE

ee [n] := inf
Ψ→n

〈Ψ|V̂ee |Ψ〉. (3.6)
Eq 3.6 presents the SCE functional, V SC E

ee [n], as the natural counterpart of the KSfunctional, Ts [n] (eq 1.42).Moreover, just as for Ts , by inserting the wavefunction for the scaled density (seeeq 2.89), we immediately see that
V SCE

ee [n] =λV SCE
ee [n 1

λ
]. (3.7)

Note that, because Ĥλ→∞ contains only classical operators, there are two im-portant and related caveats in this limit.The first one is that, the object that attains the lowest value of 〈V̂ee〉 lives in thespace of distributions,2thus it is not technically in the space of allowed wavefunc-tions, i.e. Ψλ→∞ ∉ L2, and the kinetic energy as expected diverges (we are in factviolating Heisenberg principle), but its leading diverging term is only o(λ) as al-ready discussed.The second one is that, in order for the external potential to be able to en-force a smooth density in this limit, the set M [n] of all configurations where
Epot[n](r 1, · · · ,r N ) is minimum

M [n] := {(r 1, · · · ,r N ) : Epot[n](r 1, · · · ,r N ) = min} (3.8)
cannot be made up of just a sum of discrete points, but it needs to feature a
continuum of a minimum dimensionality, D , equal to that of the domain of the den-sity (n : RD →R+).Consequently, the modulus squared of the minimizing wavefunction collapses intoa distribution that lives in a D-dimensional subspace of the full (

RD ⊗Z2
)N con-figuration space.

2The constraint of the density can make things more complicated, in particular the support of |Ψ|2 issingular only if the inf of eq 3.2 is a min, something which we are assuming in the next lines.
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We can write it as

∣∣ΨSCE[n](r 1, · · · ,r N )
∣∣2 = 1

N !

N !∑
℘=1

∫
dsn(s)

N

N∏
i=1

δ(ri − f℘(i )[n](s)), (3.9)
such that its integral recovers the density according to eq 1.3 and where the co-motion functions fi [n](r ) exactly parametrize the set M [n] ⊂RD , i.e.

M [n] = {
(
f1[n](r ), · · · , fN [n](r )

)
: r ∈RD }. (3.10)

The co-motion functions then determine the position of each of the (N −1) elec-trons as a function of that of a reference one realizing the perfect correlation amongthe electrons (their “correlated dance").Note that, within the SCE limit, no information is retained about the statistics ofthe particles [80], therefore the particles spin variables are considered as alwaysintegrated out.Note, furthermore, that there are several possible ways in which the N perfectlycorrelated electrons can be arranged given their indistinguishability. Such consid-eration is accounted for in expression 3.9 by a sum over all possible permutations,
℘, of a given configuration (see appendix A for further discussions).By virtue of electrons indistinguishability, the co-motion functions also need topossess the highly non-local property that

n(fi (r ))dfi (r ) = n(r )dr (i = 1, . . . , N ) (3.11)
which ensures that the probability of finding one electron at position r in thevolume element dr be the same of finding electron i at position fi (r ) in the volumeelement dfi (r ).There are (N −1) non trivial co-motion functions meaning that the N-th co-motionfunction is just the identity and they also satisfy cyclic group properties3

f1(r) ≡ f(r),

f2(r) ≡ f
(
f(r)

)
,

. . .

fN−1(r) ≡ f
(
f(. . . f(r) . . .)

)︸ ︷︷ ︸
N−1 times

,

fN (r) ≡ f
(
f(. . . f(r) . . .)

)︸ ︷︷ ︸
N times

= r;

(3.12)

3Although, in the literature, it is more frequent to enumerate the co-motion functions such that f1(r ) ≡ rand such that the function whose N-th action generates all the other co-motion functions in the groupbe f2(r ) ≡ f(r ), throughout this work we prefer the other choice documented in ref [81].
40



3

3.1. General Structure of the λ→∞ Limit
for a recent review on the mathematical properties of the co-motion functions seereference [77]. The corresponding SCE functional of eq 3.6 can then be writtenexplicitly as [73, 82]

V SC E
ee [n] = 1

2

∫
n(r )

N−1∑
i=1

1

|r − fi (r )|dr , (3.13)
and it yields the strong-coupling (or low-density) asymptotic value of the exactHartree-exchange-correlation functional [74, 75].Despite its extreme non-locality, its functional derivative

vSCE
H xc (r ) := δV SCE

ee [n]

δn(r )
(3.14)

can be computed from the exact force equation [73, 83]
∇vSC E

H xc (r ) =−
N−1∑
i=1

r − fi (r )

|r − fi (r )|3 . (3.15)
According to eq 1.55, the one-body potential vSCE(r ) of eq 3.3 is exactly equalto minus vSCE

H xc (r ): in fact, the gradient of vSCE
H xc (r ) represents the net repulsionfelt by an electron in r due to the other N −1 electrons at positions fi (r ), while

vSCE(r ) exactly compensates this net force, in such a way that, we reiterate, theclassical potential energy operator ESCEpot is stationary (and minimum) on the man-ifold parametrized by the co-motion functions.Moreover, the SCE potential has a simple scaling following from eqs 3.7 and 3.14
vSC E

H xc [n](r ) = λ
δV SCE

ee

[
n 1

λ

]
δn(r )

= λ

∫ δV SCE
ee

[
n 1

λ

]
δn 1

λ
(r ′)

δn 1
λ

(r ′)

δn(r )
dr ′

= λ

∫
vSC E

H xc

[
n 1

λ

]
(r ′)λ−3δ

(
r − r ′

λ

)
dr ′

= λ−2
∫

vSC E
H xc

[
n 1

λ

]
(r ′)δ

(
1

λ

(
λr − r ′))dr ′

= λ−2
∫

vSC E
H xc

[
n 1

λ

]
(r ′)λ3δ

(
λr − r ′)dr ′

= λvSC E
H xc

[
n 1

λ

]
(λr ) (3.16)

where we have used the property of Delta functions that δ(αx) = |α|−nδ(x) and
δnγ(r ′)
δn(r ) = γ3δ(r −γr ′) which is a result of the same property.4

4This is actually a general result of the definition of scaled density (1.72): namely that if a scalingrelation holds for global quantities then the functional derivatives of these latters w.r.t. the densitykeep the same scaling, as seen for many examples in sec 2.4.
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As a last remark, we note that eq 3.15 defines vSCE

H xc (r ) up to a constant, which isfixed by imposing that vSCE(r ) =−vSCE
H xc (r ) go to zero when |r |→∞.

3.2. The strong-interaction limit of DFT in the con-
text of Optimal Transport

The strong-interaction limit of DFT can be recast in the context of Optimal Trans-port theory, as pointed out, independently, by Buttazzo et al. [84] and by Cotar et
al. [85].Optimal Transport is a branch of mathematics founded by French mathematicianGaspard Monge [86] which poses the problem of finding the optimal way of trans-porting a given mass (e.g. of soil) having a certain distribution µ into anotherdesired distribution ν subject to a cost function, c(x, y) (e.g. the Euclidean dis-tance). The distributions µ and ν are called the marginals.The Monge solution is an optimal map which assigns µ(x) at every point x to aunique final destination y = T (x) in the target distribution ν(y).A relaxed formulation of the Monge problem, introduced in 1942 by Soviet mathe-matician and economist Leonid Kantorovich, brought major advances to the field [87].In particular, the Kantorovich formulation allows for some mass piled on a point
x of the original distribution µ(x) to be spread over different points in the targetdistribution ν with different probabilities. Therefore the Kantorovich solution is atransport plan that gives rather the probability that, at optimality, a given µ(x)be transported to y in ν. Thanks to this formulation, it has been possible to solvemany Monge problems that had remained open for a couple of centuries and inthe last twenty years optimal transport has developed into one of the most activefields in mathematics [88].In density functional theory both the starting and the target distributions arerepresented by the electron density and the number of total distributions equals N ,where N is the number of electrons. Therefore, we are dealing with a multimarginalproblem with identical marginals.For the N = 2 case, the co-motion function, f (x) with x ∈ RD , for any dimensionand any distribution, ∀{D, µ}, turns out to be exactly the solution to the Mongeproblem subject to the Coulomb repulsion cost [84, 85].Another case in which the co-motion functions are proven to be exactly the optimalmaps is the 1D case for general N and µ and convex cost function [89].However, to prove the existence of a set of optimal maps in the multimarginal caseand for Coulomb cost, in any dimension other than 1D , is still an open issue [90].A very convenient formulation of the Kantorovich problem is its dual formulation,referred to as dual-(Monge-)Kantorovich problem, which in the case of Coulomb
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cost is usually written as

V SCE
ee [n0] = sup

u

(∫
n0(r )u(r ) :

N∑
i=1

u(r i ) ≤
N∑

i , j>i

1

ri j

) (3.17)
and corresponds to a maximisation w.r.t. potential under linear constraints.The optimal u is called the Kantorovich potential and has the same profile of theSCE potential with opposite sign and shifted by a positive constant which fixesthe total energy to zero, i.e. u(r ) =−vSCE +C .We shall see how eq 3.17 is analogous to expressing the asymptotic value of the
λ-dependent Levy-Lieb functional, limλ→∞

Fλ[n0]
λ via the Lieb variational princi-ple [21]. We thus need to make a small digression to introduce this latter.

3.2.1. Lieb maximisation along the adiabatic connectionIn eq 1.21 we have illustrated the Hohenberg-Kohn variational principle, introducedin sec 1.1, in terms of the Levy-Lieb functional. Let us now simply extend it to the
λ-dependent Levy-Lieb functional, Fλ[n].5From variational arguments we can write

〈Ψn |T̂ +λV̂ee |Ψn〉+
∫

n(r )v0(r )dr ≥ 〈Ψv0 |T̂ +λV̂ee + V̂0|Ψv0〉︸ ︷︷ ︸
Eλ,n0 [v0]

(3.18)
with the definitions

〈Ψn |T̂ +λV̂ee |Ψn〉 := min
Ψ→n

〈Ψ|T̂ +λV̂ee |Ψ〉 (3.19)
〈Ψv |T̂ +λV̂ee + V̂ |Ψv 〉 := min

Ψ
〈Ψ|T̂ +λV̂ee + V̂ |Ψ〉 (3.20)

and V̂0 =∑N
i v0(r i ).Eq 3.18 tells us that, since the sum of the Levy-Lieb functional evaluated on anydensity, n, and the inner product between this density and a given potential, v0,is always greater than or equal to the energy of the system whose ground statedensity is precisely that associated to v0, in order to find such minimizing energyand density we need to perform a minimisation over all N-representable densities,i.e.

Eλ,n0 [v0] = inf
n

(
Fλ[n]+

∫
n(r )v0(r )dr

) (3.21)
where the last equation is identical to eq 1.21 extended to any λ-dependent system.
5In rigourous terms, we should rather be working with the Lieb functional (eq 1.29), extended to λ-dependent Hamiltonians [91], as the Levy-Lieb functional is not convex.
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Switching the role of density and potential we can also write (with V̂ =∑N

i v(r i )as usual)
〈Ψv |T̂ +λV̂ee + V̂ |Ψv 〉 ≤ 〈Ψn0 |T̂ +λV̂ee |Ψn0〉+

∫
v(r )n0(r )

〈Ψv |T̂ +λV̂ee + V̂ |Ψv 〉−
∫

v(r )n0(r ) ≤ 〈Ψn0 |T̂ +λV̂ee |Ψn0〉︸ ︷︷ ︸
Fλ[n0]

(3.22)
which tells us that, since the energy corresponding to any external potential, v ,minus the inner product between this potential and a given density, n0, is alwayssmaller than or equal to the Levy-Lieb functional evaluated on n0, we need toperform a maximisation over all suitable potentials6 in order to find the optimalpotential (i.e. the one associated to the given density) and calculate Fλ[n0] fromthe energy expression

Fλ[n0] = sup
v

(
Eλ,n[v]−

∫
v(r )n0(r )dr

)
.7 (3.23)

To connect to sec 1.3 we can evaluate eq 3.23 for λ= 0

F0[n0] = sup
v

(
E0,n0 [v]−

∫
v(r )n0(r )dr

)
= sup

v

(
min
Ψ

〈Ψ|T̂ + V̂ |Ψ〉−
∫

v(r )n0(r )dr
)

= sup
v

(
min
Ψ

{
〈Ψ|T̂ |Ψ〉+

∫
v(r ) (nΨ−n0) (r )dr

})
= sup

v

(
〈ΨSD|T̂ |ΨSD〉+∫

v(r )
(
nΨSD −n0

)
(r )dr

) (3.25)
where, in the last line, we have used that the minimum kinetic energy of a non-interacting quantum system is the one coming from a (normalised) Slater determi-nant.86What are these suitable potentials is a very delicate subject as, even in a strictly convex treatment,there is no explicit way to characterise the dual space of the N-representable density matrices.Implicitly, if we call the latter I we can then label the former as I∗.7Similarly to what we have seen in section 1.2

sup
v

(
Eλ,n0

[v]−
∫

v(r )n0(r )dr
)
= Eλ,n0

[v0]−
∫

v0(r )n0(r )dr (3.24)
with v0 the maximizer. And we might be tempted to write Eλ,n0

[v0]− ∫
v0(r )n0(r )dr = Fλ,v0

[n0].However, by virtue of the Hohenberg Kohn theorem, F is not a functional of both the external potential
and the density contrary to the total energy, and the dependence on the maximizer cancels out, i.e.
Eλ,n0

[v0]−∫
v0(r )n0(r )dr = Fλ[n0].8This is a reasonable conjecture, however, in footnote 10 chapter 1, we have referenced some exceptionsconcerning the case when the external potential is the exact KS one, i.e. the optimal one for eq 3.25.
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3.2. The strong-interaction limit of DFT in the context of Optimal Transport
We thus see that the last expression in parenthesis, if we add the extra condi-tion that the orbitals forming the Slater determinant are orthogonal to each other(something which we require for sheer computational convenience), is precisely ourLagrangian expression of eq 1.34.
3.2.2. Dual-Kantorovich formulationWe now define the strictly correlated electrons energy, ESCE, as

ESCE = lim
λ→∞

Eλ
λ

(3.26)
Combining eqs 3.3, 3.23 and 3.26, we can obtain the strong-interaction limit of theLevy-Lieb functional from

lim
λ→∞

Fλ[n0]

λ
= sup

v

(
inf
Ψ
〈Ψ|V̂ee + V̂v |Ψ〉−

∫
v(r )n0(r )dr

)
. (3.27)

Just as in the former example of Ts , the equation above coincides with V SCE
ee ofeq 3.6 by construction, in fact it is analogous to writing a minimization over theelectron-electron interaction operator subject to a density constraint

V SCE
ee [n0] = sup

v

(
inf
Ψ

{
〈Ψ|V̂ee |Ψ〉+

∫
v(r ) (nΨ−n0)dr

})
. (3.28)

We have already discussed at length that, being left with only multiplicative op-erators determining a potential energy surface, V̂ee (r 1, · · · ,r N )+ V̂v (r 1, · · · ,r N ) =
Epot[v](r 1, · · · ,r N ), the modulus squared of the optimal Ψ will – if the problem al-lows for a Monge solution – look as a distribution of the likes of eq 3.9 although adifferent one for each external potential, v . The expectation value of the potentialenergy on its GS wavefunction will then coincide with the minimum value of thepotential energy surface, i.e.

inf
Ψ

∫
Epot[v](r 1, · · · ,r N )|Ψv (x1, · · · , x N )|2dx1 · · ·dx N = Epot[v]

∣∣∣
min

(3.29)
thus we can discard |Ψv |2 to find the optimal classical positions for any externalpotential v determining Epot and its minimum
V SCE

ee [n0] = sup
v

(
inf
Ψ

∫
Epot[v](r 1, · · · ,r N )|Ψ(x1, · · · , x N )|2dx1 · · ·dx N −

∫
v(r )n0(r )dr

)
= sup

v

(
Epot[v]

∣∣∣
min

: −
∫

v(r )n0(r )dr = 0

)
= sup

v

(
−

∫
v(r )n0(r )dr : Epot[v]

∣∣∣
min

= 0

)
= sup

v

(
−

∫
v(r )n0(r )dr : Epot[v] ≥ 0

) (3.30)
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3. Strictly Correlated Electrons
where in the second line we use eq 3.29 and rewrite the constraint in an equivalentform and in the third line we exploit the intrinsic symmetry of the Lagrangianconstruction to exchange the role of the quantity to maximise and of its constraint.Lastly, we use that, by definition, Epot[v]

∣∣∣
min

= 0 ⇒ Epot(r , · · · ,r N ) ≥ 0 and calling
v =−u we get back precisely eq 3.17.
3.3. The co-motion functionsFor the evaluation of eqs 3.13 and 3.15 the co-motion functions are needed.To determine them, one needs to solve the intricate differential equation 3.11.So far, it has been possible to (semianalytically) solve it only for 1D densities [72]and for the spherically symmetric ones [73].For the former case, as mentioned, the proposed solution was later proven to bethe optimal one (therefore the Kantorovich solution is of Monge-type) [89].For the latter case, the proposed expression, also renowned as the SGS conjec-tured solution to the Kantorovich problem, has later been shown to be the optimalone, for N = 2, in references [84, 85].For N ≥ 3, counterexamples have been put forward for which the optimal solutionis either a map with different structure or rather a plan [77, 92].In reference [77], however, numerical findings illustrate that the value of the trueminimum is very close to the one obtained via eq 3.13. Moreover, the systemsstudied seem to indicate that for a spherical density of interest in quantum chem-istry, endowed with a typical shell structure, the SGS conjecture is the optimalsolution, while more exotic cases out of the realm of Coulomb systems might havea non-Monge solution.Most remarkably, it is further shown that, even when the SGS co-motion functionsare not the optimal transport plan, the functional derivative w.r.t. the density of theinteraction energy functional built from eq 3.13 still coincides with the potentialfound via integration of eq 3.15, as conjectured.The key quantity for the construction of the co-motion functions is a monotonefunction denoted with Ne , Ne : RD → R+, which measures the amount of electrondensity enclosed in a volume determined by the position vector. In particular, Neasymptotically yields the number of electrons. For this reason, it is referred to asthe “cumulant function". The co-motion functions are given in terms of the cumulantfunction and its inverse N−1

e (y), defined for y ∈ (0, N ).
One-dimensional systems Let us define the cumulant function for a 1D density

Ne (x) =
∫ x

−∞
dy n(y). (3.31)

We also define the distances, ai , such that the cumulant evaluated in these pointsgives an integer number of electron, Ne (ai ) = i .
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3.3. The co-motion functions
By requiring that the co-motion functions fulfill (3.11) for a 1D density, onefinds [72, 89]

fi (x) =
{

N−1
e

(
Ne (x)+ i

) for x < āi

N−1
e

(
Ne (x)+ i −N

) for x > āi , (3.32)
where āi = aN−i = N−1

e (N − i ).From this explicit form of the co-motion functions, it is clear that∫ fi (x)

x
n(y)dy = i (3.33)

which means that the strictly correlated electron located at fi (x) is separated fromthe reference electron located in x , for any x , by a chunk of density that alwaysintegrates to an integer number equal to i . This picture even holds if one regardsthe system to be periodic, so that particles disappearing at +∞ reappear at −∞.Put in different form ∫ fi+1(x)

fi (x)
n(y)dy = 1 (3.34)

which tells us that two adjacent strictly correlated electrons are always separatedby a chunk of density that integrates to one.
Spherically symmetric systems Since, in the spherically symmetric cases, theexternal potential does not depend on the relative angles, it is possible to decouplethe angular from the radial component of the co-motion functions.Then, the radial component is built in analogy with the 1D case. In particular,defining the following cumulant function

Ne (r ) =
∫ r

0
4πx2 n(x)dx, (3.35)

the radial co-motion functions fi (r ) with i = 1, · · · , N of ref [73] are given
f2k−1(r ) =

{
N−1

e [2k −Ne (r )] r ≤ a2k

N−1
e [Ne (r )−2k] r > a2k

f2k (r ) =
{

N−1
e [2k +Ne (r )] r ≤ aN−2k

N−1
e [2N −2k −Ne (r )] r > aN−2k

(3.36)
where N is the number of electrons, the integer index k runs from 1 to N−1

2 for
N odd and from 1 to N

2 for N even and ai are the (radial) distances for which– as in the 1D case – Ne (ai ) = i , with i integer. The relative angles betweenthe electrons are found by minimizing the total repulsion energy between the Nelectrons in the radial configuration dictated, for each given distance from the
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origin r of the reference electron, by the strictly correlated radial positions of theother N −1 [73, 93].Analogously to the 1D case, the co-motion functions satisfy the following importantand interesting property that∫ fi (r )

r
y2n(y)dy = i

4π∫ fi+1(r )

fi (r )
y2n(y)dy = 1

4π
(3.37)

where we have taken into account the volume element 4πy2.
3.4. Applicability of the SCE formalism to physical

and chemical problemsAlthough being an exact limit of the density-fixed adiabatic connection frameworkof DFT, the applicability of the SCE/SIL formalism encounters still two major kindsof limitations.The first one is that it appears often too remote from the regime of interest in mostphysical and particularly chemical challenges.The second one is that the computation of the strong interaction energy functionaland potential, V SCE
ee and vSCE(r ), for a general 3D density and general number ofelectrons, is a very hard task for which several different algorithms are currentlyappearing but are still far from routinary.We can say that there are mainly three flavours of calculating the strong interactioningredients• Construct the co-motion functions (sec 3.3) and apply eqs 3.13 and 3.15.Although subject to the limitations just discussed, this approach is the onethat allows to treat the largest number of electrons (see e.g. fig 7.2 ofreference [94] where N = 100 for a relatively simple density profile) and isthe one pursued throughout this work.• Use the dual-Kantorovich formulation which is a linear programming problemscaling exponentially with N [95, 96].Very recently, an approach based on novel theoretical results [97] to solve thedual-Kantorovich problem within a relaxed but still well defined formulation(providing upper and lower bounds to the exact solution) has appeared [98]which seems rather promising in terms of numerical efficiency and theoreticalinsight.• Use an approach called the Entropic regularization of Optimal Transport[99, 100] and the Sinkhorn algorithm [101].
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3.4. Applicability of the SCE formalism to physical and chemical problems
This approach also scales exponentially with N . It extends the originalKantorovich problem allowing for some regularizing parameter τ to introducean entropic energy term which competes with the interaction one in theoptimisation. When τ→ 0, you recover exactly the strong interaction limit ofDFT. This approach has many desirable mathematical properties and mightbring new theoretical insight.

3.4.1. The KS-SCE methodEquation 3.6 provides a well defined functional, in terms of which one can exactlypartition the total energy as
Ev [n] = Ts [n]+Tc [n]+V SCE

ee [n]+V d
ee [n]+V [n] (3.38)

where
V d

ee [n] =Vee [n]−V SCE
ee [n] ≥ 0. (3.39)This idea of expressing the energy in terms of the two functionals Ts and V SCE

ee thatare located at the two extremes of the adiabatic connection of sec 1.4 is labeledKS-SCE method, for obvious reasons.As a zeroth-order approximation, one can neglect the two corrections Tc and V d
eeand set EH xc ≈V SCE

ee as originally proposed in reference [83].Such simple approximation possesses the very neat property of being a rigourouslower bound to the energy as it models the minimum of a sum into a sum of minima
min
Ψ→n

〈Ψ|T̂ + V̂ee |Ψ〉 ≈ min
Ψ→n

〈Ψ|T̂ |Ψ〉+ min
Ψ→n

〈Ψ|V̂ee |Ψ〉. (3.40)
Consequently, such simple approximation turns out to be accurate in the two ex-tremes of very low and very high densities [102]. In particular, it has proven capableof capturing the strong-correlation physics, delivering rather accurate densities forsystems in which electrons are confined in quasi-1D and quasi-2D geometries[79, 83, 93, 103]. The accurate description of strongly correlated systems is out ofreach for most (if not all) other density functional approximations (DFAs).However, the accuracy of this method in the intermediate-correlation regime seemslimited. Its limitation needs to be extensively assessed by solving the KS equations(eq 1.40) with vH xc ≈ vSCE

H xc for different chemical and physical problems.As briefly sketched in the beginning of this section, this is not an easy task sincethe computation of the SCE functional can be obtained only for quite specific casesand the assessment has been only carried over model or simple chemical systems[95, 104–106]. Nonetheless in reference [105], allowing to explore the trend of theresulting energy w.r.t. fractional number of electrons has provided a unique resultand an independent “numerical proof" that the exact spin-restricted KS formalismshould feature the discontinuity in the HOMO eigenvalue for open shell systems,illustrating the incredible capabilities of the SCE structure to be immune to certain
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weaknesses almost ubiquitous in DFAs and to resolve long-standing DFT problemswithout imposing any ad hoc condition on or giving extra flexibility to its functionalexpression (like is done, e.g., in a spin-unrestricted treatment).In the following we list some other exact and very desirable properties of theSCE potential as a model for the Hartree-exchange-correlation potential1. As said, the definite integral over the density between any two co-motionfunctions must give exactly one (compare eq 3.37). Therefore, bringing thereference electron to infinity implies that the distance among any of theelectrons in the bulk of the density and the reference electron needs to beinfinite

|r − fi (r )| ∼ |r | |r |→∞, (3.41)Combining it with eq 3.15 we get
∇vSCE

H xc (r ) ∼−N −1

r 2 |r |→∞, (3.42)which, by integration, leads to
vSCE

H xc (r ) ∼ N −1

r
+ c |r |→∞, (3.43)

showing that the SCE potential has the correct asymptotic behaviour.
2. From eq 3.15, it is also apparent that the associated effective charge iscorrectly N − 1 meaning that it is not affected by the self-interaction er-ror. Equivalently, since the pair density P2,SCE(r ,r ′) coming from the SCEwavefunction (eq 3.9) via eq 6.12 is properly normalised, the following twosum-rules [107] ∫

hxc (r ,r ′)dr =−1 (3.44)∫
hxc (r ,r ′)n(r )dr =−n(r ′) (3.45)

are still satisfied if we substitute the exact XC hole hxc (r ,r ′) with the onecoming from the SCE description (
P2,SCE(r ,r ′)

n(r ) −n(r ′)
).3. The corresponding interaction energy functional automatically satisfies theLieb-Oxford bound and actually is the one that challenges it the most, for agiven density profile [108], as sketched in sec 1.4.To conclude, it seems reasonable to design DFAs which amend the extremecorrelation and the lack of the kinetic contribution of the SCE description but areotherwise inspired to its mathematical structure [109–111].
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3.4. Applicability of the SCE formalism to physical and chemical problems
3.4.2. Interaction-Strength Interpolations along the adiabatic

connectionOne of the most fruitful application of the information enclosed in the strong-interaction limit of DFT is in the construction of DFAs as interpolations along theadiabatic connection.The idea of constructing models for the adiabatic connection integrand, Wλ (eq 1.60)to get an expression for the exchange-correlation energy via eq 1.59, was exploredrelatively lately compared to the appearance in the literature of the adiabatic con-nection formalism (see e.g. [27]).One of the first uses was suggested by Becke in his “half-and-half" theory [112, 113]with a simple linear interpolation in the range 0 ≤λ≤ 1 used as ansatz for Wλ.In reference [114], two models for approximating Wλ, also in the range 0 ≤ λ ≤ 1,are proposed, which are inspired to the theory of Padé approximants [115] andsatisfy certain constraints on atomization energies. In particular the [2|2]-Padéansatz introduces the idea of constraining the approximate function to recover theweak-interaction expansion linear coefficient (see eq 1.67).Since 1999, Seidl et al pioneered the route of constructing interpolations in themore balanced range 0 ≤λ<∞ [71, 116, 117] and other interpolation formulas, inthe same spirit, have been developed since [34, 118]. The underlying idea is thatby using a function of λ able to link the result from perturbation theory with the
λ→∞ expansion of Wλ[n], an approximate resummation of the perturbative seriesis obtained [117].Recently, this approach has gained renovated interest and studies aiming at amore extended assessment and implementation of such density functional approxi-mations are emerging, concerning both their global [7, 119, 120] and their differentlocal forms [6, 121, 122].

Recalling eq 1.70 and, combining eqs 1.60 and 3.13, we can now obtain theexplicit form of the constant term W∞

W∞[n] = 1

2

∫
n(r )

N−1∑
i=1

1

|r − fi [n](r )|dr −U [n]. (3.46)
Combining eqs 1.66 and 3.1, we understand also the role of the W∞ as an exactlower bound for the adiabatic connection integrand, and, consequently, as the valuethat, for a given density profile, challenges the LO bound the most (eq 1.71).Picturing the electrons as performing zero point (harmonic) oscillations abouttheir λ→∞ positions9, at finite but large λ, allows to write the following formula
9See reference [72] for an extended introduction to the problem and the special case of spherical twoelectron densities and reference [34] for a much more detailed treatment and the general result.
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for the next coefficient in the expansion 1.70, W ′∞[n]

W ′
∞[n] = 1

4

3 N∑
µ=4

∫
n(r )

N
ωµ[n](s) (3.47)

where the ωµ are the eigenvalues of the Hessian matrix Mµν(s) which measuresthe (multivariable) curvature of the potential energy surface ESCEpot on the manifoldparametrized by the co-motion functions (thus s is typically a vector in RD in acurvilinear coordinate system).Since it hinges upon the computation of the co-motion functions, the explicit com-putation of W∞, via eq 3.46, is as much limited as that of the co-motion functionsitself, see sec 3.3. That of W ′∞ (eq 3.47) is even more limited due to the presenceof the Hessian matrix eigenvalues.For this reason, these two terms are mostly approximated using a semi-local modellabeled “Point-charge-plus-Continuum" (PC) [117].Without going into any of the details of the model, we list the corresponding gra-dient expansion formulas, i.e.
W PC

∞ =
∫ (

A n4/3 +B
|∇n|2
n4/3

)
(r)dr, (3.48)

W ′
∞

PC =
∫ (

C n3/2 +D
|∇n|2
n7/6

)
(r)dr (3.49)

where A =−9(4π/3)1/3/10, B = 3[3/(4π)]1/3/350, C =p
3π/2, D =−0.028957.Note that the above value of the D coefficient was established by requiring that, forthe He atom case, the PC model match the exact SCE functional, while the originalvalue of this parameter, D̃ = 0.02558, was fixed, before the exact SCE value wasavailable, by the condition that it match the MGGA functional of reference [123].Other choices are also possible (e.g. the use of the Hydrogen atom as a reference).Regardless of the choice made for the D parameter, the accuracy of the PC modelas an approximation for the zero-point oscillations term, W ′∞

PC ≈W ′∞, has provento be much more system dependent than that of the functional for the lower bound,
W PC∞ ≈W∞, as shown in reference [34].Combining such ingredients from the strong-interaction expansion with the onesfrom the weak-interaction counterpart (eq 1.67), a series of XC functionals can bederived depending on the chosen interpolating function and on whether the λ→∞expansion includes or not the order 1/

p
λ.

Interaction Strength Interpolation (ISI) formula [116, 117, 124]
W ISI
λ =W∞+ Xp

1+λY +Z
, (3.50)
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with

X = x y2

z2 , Y = x2 y2

z4 , Z = x y2

z3 −1 ; (3.51)
x =−2W ′

0, y =W ′
∞ , z =W0 −W∞ . (3.52)

Via eq 1.59, the corresponding XC energy functional reads
E ISI

xc =W∞+ 2X

Y

[p
1+Y −1−Z ln

(p
1+Y +Z

1+Z

)]
. (3.53)

Revised ISI (revISI) formula [34]
W revISI
λ =W∞+

b
(
2+ cλ+2d

p
1+ cλ

)
2
p

1+ cλ
(
d +p

1+ cλ
)2 , (3.54)

where
b = − 4W ′

0(W ′∞)2

(W0 −W∞)2 , c = 4(W ′
0W ′∞)2

(W0 −W∞)4 . ,

d = −1− 4W ′
0(W ′∞)2

(W0 −W∞)3 . (3.55)
E revISI

xc =W∞+ bp
1+ c +d

. (3.56)
Seidl-Perdew-Levy (SPL) formula [71]

W SPL
λ =W∞+ W0 −W∞√

1+2λχ
, (3.57)

where
χ= W ′

0

W∞−W0
. (3.58)

E SPL
xc = (W0 −W∞)

[√
1+2χ−1−χ

χ

]
+W0 . (3.59)

Liu-Burke (LB) formula [118]
W LB
λ =W∞+β(y + y4) , (3.60)where

y = 1√
1+γλ

, β= W0 −W∞
2

, γ= 4W ′
0

5(W∞−W0)
. (3.61)
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E LB

xc = 2β

[
1

γ

(√
1+γ− 1+γ/2

1+γ
)
−1

]
+W0. (3.62)

As a last remark, we note that ISI and revISI use all four known ingredients inthe expansions 1.67 and 1.70, while SPL and LB formulas do not use W ′∞.These functionals, which are all based on an adiabatic connection integrandinterpolation (ACII), will be generally referred to as ACII functionals. They arenon-empirical in the sense that they are approximate perturbation-theory resum-mations, include full exact exchange, and describe correctly correlation in the weak-interaction limit. Therefore, they are well-suited to try to overcome the limitationsof semilocal and hybrid DFT approaches. Their most severe problem could bethe lack of size consistency10 for species made of different atoms, an error that isabsent in the case of homogeneous clusters. However, it has been recently shownthat size consistency in the ACII functionals can be restored in a very simple wayat no extra computational cost [127].

10Note that the size consistency issue is actually quite subtle [125, 126].
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Assessment of

interaction-strength
interpolation formulas for

gold and silver clusters
The performance of functionals based on the idea of interpolating between the
weak and the strong-interaction limits the global adiabatic-connection integrand
is carefully studied for the challenging case of noble-metal clusters. Different
interpolation formulas are considered and various features of this approach are
analyzed. It is found that these functionals, when used as a correlation correc-
tion to Hartree-Fock, are quite robust for the description of atomization energies,
while performing less well for ionization potentials. Future directions that can
be envisaged from this study and a previous one on main group chemistry are
discussed.

4.1. Introduction and frameworkNoble metal clusters, in particular those made of silver and gold, are of high interestfor different areas of materials science and chemistry as well as for technologicalapplications [128–148]. Noble metals clusters display, in fact, peculiar propertiesthat differ from those of the bulk materials, due to the higher reactivity of thesurface atoms. Moreover, these properties can be often tuned by varying thesize and shape of the clusters [129, 136, 139, 141, 149–154]. For these reasons,the study of the electronic properties of metal clusters is currently a very active
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research field [155–165], with many available experimental techniques [166–173].Nonetheless, in most cases information from theoretical calculations is fundamentalto provide a better understanding of the results and to aid the correct interpretationof the experimental data [155, 156, 165, 174–178].Computational studies of noble metal clusters are, however, not straightforward[179] because of the small single-particle energy gap, implying a possible multi-reference character of the electronic states, and due to the complex correlationeffects characterizing such systems. For these reasons, in principle an accuratedescription of the electronic structure can only be achieved by high-level corre-lated multi-reference approaches [180, 181]. However, these methods are hardlyapplicable for the study of clusters, due to the very high computational cost.On the other hand, “conventional” single-reference wave-function methods (e.g.Møller-Plesset perturbation theory [182, 183], configuration interaction [184, 185],or coupled cluster [186, 187]) often display important basis set and/or truncationerrors, even for relatively small cluster sizes, which prevent the achievement ofaccurate, reliable, results. Thus, one of the most used computational tools to studynoble metal clusters is Kohn-Sham density-functional theory (DFT) [188–190].DFT calculations on noble metal clusters are often performed using a semilocalapproximation for the exchange-correlation (XC) functional, e.g. the generalizedgradient approximation (GGA) [191] or the meta-GGA’s [192] . This is an efficientapproach [151, 152, 159, 161, 163, 164, 174, 175, 193–195], but in various cases ithas also shown limited accuracy, especially in the not so rare case when it is nec-essary to discriminate between isomers with rather similar energies (for examplein the prediction of the two- to three-dimensional crossover in gold and silver clus-ters [164, 176]). However, unlike in the case of main group molecular calculations,the use of hybrid functionals, which include a fraction of exact exchange, is notable to provide a systematic improvement. Instead, it often leads to a worseningof the results [164, 195]. The origin of this problem possibly traces back on thetoo simplistic idea of mixing a fixed fraction of exact exchange with a semilocalapproximation.In the hybrid wavefunction-DFT formalism a certain fraction a of the electron-electron interaction is treated within a wave function method, while the remainingenergy is captured with a semilocal functional. In a compact notation [1] this canbe written as

E0 = min
Ψ∈SD{〈Ψ|T̂ +a V̂ee + V̂ |Ψ〉+ Ē a

Hxc[nΨ]
}

, (4.1)
where the complementary Hartree-exchange-correlation functional Ē a

Hxc dependson Ψ only through its density nΨ. When the minimization over Ψ in eq 4.1 is re-stricted to single Slater determinants ΨSD, we obtain the usual hybrid functionalapproximation, which mixes a fraction a of Hartree-Fock exchange with a semilocalfunctional, while using second-order perturbation theory to improve the wavefunc-tion Ψ leads to single-parameter double-hybrid functionals [1]. The XC part Exc [n]
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4.2. Computational details
of Ē a

Hxc that needs to be approximated in the standard hybrid functionals formalismis usually modeled starting from the adiabatic connection formula [114, 196–198],eq 1.59. Most hybrid functionals then employ a simple ansatz for the density-fixedlinear adiabatic connection integrand, for example [197, 198]
Wλ[n] =W DFA

λ [n]+ (
Ex −E DFA

x

)
(1−λ)p−1 , (4.2)where DFA denotes a density functional approximation (i.e. a semilocal functional),

Ex denotes the Hartree-Fock exchange functional (eq 1.68), and p is a parameter.Substituting eq 4.2 into eq 1.59, yields the usual linear mixing between the exactexchange and the density functional approximation with a = 1/p . However, eq 4.2is a quite arbitrary expression for Wλ. It only satisfies the constraint that W0 = Exbut for λ 6= 0 it incorporates no exact information and it is not even recoveringthe correct weak-interaction limit behavior. Thus, most of the accuracy of hybridsrelies on the empiricism included into the parameter p and the DFA. This seemsto work well for main-group molecular systems but not for other systems suchas metal clusters considered here. The ACII functionals have been rarely testedon systems of interest for practical applications, with the exception of a recentassessment of the ISI functional for main-group chemistry [199]. This investigationhas revealed interesting features of this functional and suggested possibilities forfuture applications.In this work we move away from main group chemistry to assess different ACIIfunctionals for the description of the electronic properties of noble metal clusters,made up of gold and silver. As we have mentioned above, these are very importantsystems for materials science and chemical applications but their proper computa-tional description is still a challenge. Thus, the testing of high-level DFT methodsfor this class of systems has a great practical interest. Moreover, the application ofnon-empirical XC functionals, constructed on a well defined theoretical framework,to the challenging problem of the simulation of electronic properties of noble metalclusters can help to highlight new properties and limitations of such approaches.
4.2. Computational detailsIn this work we have tested four ACII XC functionals, which are based on an in-terpolation of the density-fixed linear adiabatic connection integrand, namely ISI[116, 117, 124, 199], revISI [34], SPL [71], and LB [118] (see sec 3.4.2 for details).Additionally, for comparison, we have included results from the Perdew-Burke-Ernzerhof (PBE) [200] and the PBE0 [197, 201] functionals, which are amongthe most used semilocal and hybrid functionals, respectively, as well as from theB2PLYP double hybrid functional [202], which also includes a fraction of second-order Møller-Plesset correlation energy (MP2). We have also considered a com-parison with the second- third- and fourth-order Møller-Plesset perturbation the-ory (MP2, MP3, MP4) [182] results. This is because, as explained in sec 3.4.2, the
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4. Assessment of interaction-strength interpolation formulas for gold andsilver clusters
ACII functionals can be seen as an approximate resummation of perturbation theory,so that it is interesting to compare them with the first few lower orders. The refer-ence results used in the assessment are specified below for each test set considered:
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Figure 4.1: Structures of the smallgold, silver and binary gold-silverclusters.

Small gold clusters. This set consists of theAu2, Au−
2 , Au3, Au+

3 , Au−
3 , and Au4 clusters. Forall these systems we have calculated the atomiza-tion energies; for the anions as well as for Au3 wehave computed the ionization potential (IP) ener-gies. The geometries of all clusters have been takenfrom ref [159]; they are shown in fig 4.1. Referenceenergies have been calculated at the CCSD(T) levelof theory [203–206].

Small silver clusters. This set includes Ag2,Ag+
2 , Ag−

2 , Ag3, Ag+
3 , Ag−

3 , Ag4. As for the smallgold clusters case, we have computed the atomiza-tion energies of all the silver clusters and the IPof the anions as well as of Ag3. The geometries ofall systems have been taken from Ref. [164]; theyare shown in fig 4.1. Reference values for the ener-gies have been obtained from CCSD(T) [203–206]calculations.
Binary gold-silver clusters. This set consid-ers the AuAg, AuAg−, Au2Ag, Au2Ag−, AuAg2,and AuAg−

2 clusters. Atomization energies havebeen calculated for all system, while IPs havebeen computed for the anions. Note that forthe anions we considered as atomization en-ergy the average with respect to the two pos-sible dissociation channels, that is AuAg− →Au+Ag− and AuAg− → Au−+Ag; Au2Ag− →Au2+ Ag− and Au2Ag− → Au−
2 + Ag; AuAg−

2 →Au + Ag−
2 and AuAg−

2 → Au− + Ag2. Thegeometries of the binary clusters have beenobtained considering the structures reported inref [195] (see fig 4.1) and optimizing them atthe revTPPS/def2-QZVP level of theory [207,208]. Reference energies have been calcu-lated at the CCSD(T) level of theory [203–206].
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Figure 4.2: Structures of the gold and silverclusters considered for the 2D-3D dimensionalcrossover problem.

Gold 2D-3D crossover. This set in-cludes the Au−
11, Au−

12, and Au−
13 clusters,that are involved in the two- to three-dimensional crossover of gold clusters. Thegeometries of all systems have been takenfrom ref [176] and are shown in fig 4.2.

Silver 2D-3D crossover. This set con-sists of the Ag+
5 , Ag+

6 , and Ag+
7 clusters,which are relevant to study the two- tothree-dimensional crossover of silver clus-ters. Geometries have been obtained op-timizing at the revTPPS/def2-QZVP levelof theory [207, 208], the lowest lying struc-tures reported in ref [164]. The structuresare reported in fig 4.2.All the required calculations have beenperformed with the TURBOMOLE pro-gram package [209, 210], employing, unlessotherwise stated, the aug-cc-pwCVQZ-PPbasis set [211] and a Stuttgart-KoelnMCDHF 60-electron effective core poten-tial [212]. The calculations concerning theISI, revISI, SPL, and LB functionals havebeen performed in a post-self-consistent-field (post-SCF) fashion, using Hartree-Fock orbitals. This choice is consistentwith the results of ref [199], where it hasbeen found that the ISI functional yieldsmuch better results when used as a correlation correction for the HF energy. ThePBE and PBE0 calculations have been performed using a full SCF procedure;B2PLYP calculations have been carried out as described in ref [202], consideringa SCF treatment of the exchange and semilocal correlation part and adding thesecond-order MP2 correlation fraction as a post-SCF correction.

4.3. ResultsIn this section we analyze the performance of the ACII XC functionals for thedescription of the electronic properties of gold, silver and mixed Au/Ag clusters. Theresults are compared to those obtained from other approaches, such as semilocaland hybrid DFT as well as wave-function perturbation theory.
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4. Assessment of interaction-strength interpolation formulas for gold andsilver clusters
4.3.1. Total EnergiesTo start our investigation we consider, in table 4.1, the errors on total energiescomputed with different methods with respect to the CCSD(T) reference values.Although this quantity is usually not of much interest in practical applications(where energy differences are usually considered), the analysis of the errors on totalenergies will be useful to understand the performances of the different functionalsfor more practical properties such as atomization or ionization energies.Inspection of the data shows that the ACII functionals do not perform very wellfor the total energy. In fact, they yield the highest mean absolute errors (MAEs),being even slightly worse than the semilocal PBE approach and giving definitelylarger errors with respect to perturbation theory (MP2, MP3, and MP4) and tothe double hybrid B2PLYP functional. Among the ACII functionals, the SPL andespecially the LB approach perform systematically better than ISI and revISI. ThusLB yields errors which are often 30% smaller than ISI, even though they are stillusually larger than those of the other non-ACII methods. On the other hand,considering the standard deviation of the errors (last line of table 4.1) we note thatthe ACII results display a quite small dispersion around the average (with LB andSPL again slightly better than ISI and revISI). This is related to the fact that theACII functionals all give a quite systematic underestimation (in magnitude) of theenergy of all systems. In contrast, PBE, PBE0, and partly B2PLYP give largervalues of the standard deviation. This depends on the fact that these methodsdescribe quite accurately some systems (e.g. Ag clusters), which are the ones thateffectively contribute to produce a quite low MAE, but they give significantly largererrors for other systems. This behavior is a signature of the too simplistic natureof these functionals, which cannot capture equally well the physics of all systems.The observed standard deviations suggest that, when energy differences areconsidered, the ACII functionals can benefit from a cancellation of the systematicerror, such that rather accurate energy differences can be obtained. We mustremark also that the standard deviation values reported in table 4.1 allow only apartial understanding of the problem because they are obtained from all the databut, depending on the property of interest, some energy differences may be morerelevant than others, e.g. for atomization energies the difference between a clusterenergy and the energy of the composing atoms is the most relevant. Thus, forexample MP methods all yield quite low standard deviations, but a closer look atthe results shows that the errors for atoms are quite different than those for theclusters (much more different than for ACII methods); hence, we can expect that,despite a quite good MAE and a small standard deviation, MP2, MP3, and MP4atomization energies can display a limited accuracy. A more detailed analysis ofthe relationship between the data reported in table 4.1 and some relevant energydifference properties will be given in section 4.4.
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4.3. Results

Table 4.1: Errors on total energies (eV/atom) of small gold, silver, and binary clusters. Foreach set of clusters the mean absolute error (MAE) is reported. In the bottom part of thetable we report also the statistics for the overall set (mean error (ME), MAE, and standarddeviation).
PBE PBE0 B2PLYP ISI revISI SPL LB MP2 MP3 MP4

Au -4.93 -3.75 -1.73 2.84 2.93 2.65 1.97 -0.33 0.98 -0.27Au+ -4.58 -3.73 -1.64 2.63 2.70 2.50 1.89 -0.10 0.68 -0.15Au- -4.94 -3.47 -1.65 3.26 3.38 3.02 2.25 -0.35 1.44 -0.41Au2 -4.96 -3.66 -1.69 2.89 2.99 2.67 1.94 -0.53 1.22 -0.43Au2- -4.97 -3.58 -1.66 3.06 3.17 2.83 2.08 -0.46 1.40 -0.44Au3 -4.97 -3.65 -1.67 2.89 3.00 2.67 1.94 -0.54 1.29 -0.48Au3+ -4.90 -3.68 -1.66 2.80 2.90 2.59 1.88 -0.50 1.15 -0.43Au3- -4.94 -3.54 -1.66 2.98 3.10 2.73 1.96 -0.65 1.40 -0.55Au4 -4.96 -3.62 -1.67 2.86 2.97 2.63 1.87 -0.66 1.33 -0.54ME -4.91 -3.63 -1.67 2.91 3.01 2.70 1.97 -0.46 1.21 -0.41MAE 4.91 3.63 1.67 2.91 3.01 2.70 1.97 0.46 1.21 0.41
Ag -0.89 -0.36 0.21 3.24 3.39 2.91 2.18 -0.26 1.04 -0.27Ag+ -0.44 -0.25 0.38 2.99 3.13 2.71 2.04 -0.19 0.76 -0.20Ag- -0.99 -0.21 0.24 3.68 3.85 3.31 2.53 -0.08 1.39 -0.32Ag2 -0.96 -0.30 0.22 3.32 3.49 2.97 2.19 -0.37 1.18 -0.38Ag2+ -0.79 -0.34 0.28 3.14 3.28 2.82 2.11 -0.26 0.95 -0.27Ag2- -1.00 -0.27 0.24 3.50 3.67 3.14 2.37 -0.22 1.34 -0.33Ag3 -0.95 -0.30 0.25 3.32 3.49 2.96 2.19 -0.39 1.23 -0.40Ag3+ -0.85 -0.30 0.27 3.21 3.37 2.86 2.11 -0.41 1.10 -0.38Ag3- -0.97 -0.23 0.25 3.45 3.63 3.07 2.27 -0.38 1.32 -0.43Ag4 -0.95 -0.27 0.24 3.29 3.47 2.91 2.12 -0.51 1.24 -0.45ME -0.88 -0.28 0.26 3.31 3.48 2.97 2.21 -0.31 1.15 -0.34MAE 0.88 0.28 0.26 3.31 3.48 2.97 2.21 0.31 1.15 0.34
AuAg -2.93 -1.95 -0.72 3.10 3.24 2.81 2.06 -0.47 1.20 -0.41AuAg- -2.97 -1.91 -0.70 3.27 3.41 2.97 2.20 -0.37 1.36 -0.39AuAgAu -3.58 -2.49 -1.00 3.03 3.16 2.76 2.01 -0.51 1.28 -0.46AuAgAu- -3.57 -2.40 -1.00 3.14 3.28 2.84 2.06 -0.57 1.36 -0.50AgAuAg -2.26 -1.38 -0.37 3.18 3.33 2.86 2.10 -0.46 1.26 -0.43AgAuAg- -2.32 -1.34 -0.40 3.30 3.46 2.96 2.18 -0.46 1.36 -0.47ME -2.94 -1.91 -0.70 3.17 3.31 2.87 2.10 -0.47 1.30 -0.44MAE 2.94 1.91 0.70 3.17 3.31 2.87 2.10 0.47 1.30 0.44

Overall statisticsME -2.82 -1.88 -0.66 3.13 3.27 2.85 2.10 -0.40 1.21 -0.39MAE 2.82 1.88 0.87 3.13 3.27 2.85 2.10 0.40 1.21 0.39Std.Dev. 1.81 1.51 0.87 0.24 0.27 0.18 0.16 0.15 0.20 0.10

61



4

4. Assessment of interaction-strength interpolation formulas for gold andsilver clusters
4.3.2. Atomization and Ionization energiesA first example of an important energy difference is the atomization energy. Theatomization energy values calculated for the sets of gold, silver, and binary clusterswith all the methods are reported in table 4.2. Observing the data it appears that,as anticipated, for atomization energies the ACII functionals work fairly well. Inparticular, SPL and LB, yield mean absolute relative errors (MAREs) of about 2-3%for all kinds of clusters, being competitive with the B2PLYP functional. The ISI andrevISI functionals perform slightly worse, displaying a systematic underbinding andgiving overall MAREs of 4% and 6%, respectively. Moreover, unlike for SPL andLB, non-negligible differences exist in the description of the different materialswith gold clusters described better than silver ones. Overall the ISI and revISIfunctionals show a comparable performance as PBE and better than PBE0. Finally,the MP results show a quite poor performance, exhibiting MAREs ranging form10% to 20%. In addition, we can note that MP2 results are closer to MP4 resultsthan MP3 ones not only from a quantitative point of view but also qualitatively(MP2 and MP4 always overbind while MP3 always consistently underbinds). Thisis a clear indication of the difficult convergence of the perturbative series for themetal clusters electronic properties.In table 4.3, we report the computed ionization potential energies, which areother important energy differences to consider for metal clusters. In this case theACII functionals perform rather poorly, being the worst methods, if we excludeMP3. As in the case of atomization energies, SPL and LB (especially the latter)show a slightly better performance than ISI and revISI. Nevertheless, the resultsare definitely worst than for B2PLYP, PBE and even PBE0. A rationalization ofthis failure will be given in section 4.4.
4.3.3. 2D-3D crossoverTo conclude this section, we consider the problem of the two- to three-dimensional(2D-3D) crossover of anionic gold clusters and cationic silver clusters.Different studies have indicated that for anionic gold clusters the dimensionalcrossover occurs between Au−

11 (2D) and Au−
13 (3D), with the 2D and 3D Au−

12structures being almost isoenergetic.[175, 176] On the other hand, for cationic silverclusters it has been suggested that the dimensional transition occurs already forAg+
5 , which has a 2D structure with a slightly lower energy than the 3D one,while Ag+

6 and Ag+
7 display lowest energy 3D structures.[165, 213] Anyway, thisis a quite difficult problem because experimentally it is not trivial to distinguishclusters of the same size but different dimensionality. A computational supportis thus required [165, 174–176, 213, 214]. However, to describe correctly theenergy ordering of several noble metal clusters with very similar energies is ahard task for any computational method [159, 176, 215, 216]. For this reason,this is a very interesting problem from the computational point of view and a hard
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4.3. Results

Table 4.2: Atomization energies (eV) of small gold, silver, and binary clusters. Note thatfor anionic binary clusters the average between the two possible dissociation paths hasbeen considered (see section 4.2). For each set of clusters the mean error (ME), the meanabsolute error (MAE), the mean absolute relative error (MARE), and the standard deviationare reported. In the bottom part of the table we report also the statistics for the overall set.
PBE PBE0 B2PLYP ISI revISI SPL LB MP2 MP3 MP4 CCSD(T)Au2 2.33 2.08 2.20 2.17 2.14 2.24 2.33 2.67 1.79 2.60 2.27Au−2 1.97 1.83 1.83 1.86 1.84 1.90 1.95 2.14 1.51 2.09 1.89Au3 3.57 3.14 3.26 3.28 3.23 3.39 3.54 4.08 2.51 4.07 3.45Au+3 6.06 5.60 5.67 5.71 5.66 5.82 5.97 6.54 4.98 6.38 5.79Au−3 4.90 4.52 4.73 4.87 4.81 5.00 5.17 5.80 4.05 5.57 4.87Au4 6.18 5.51 5.81 5.95 5.85 6.14 6.40 7.37 4.60 7.10 6.03ME 0.12 -0.27 -0.14 -0.08 -0.13 0.03 0.18 0.71 -0.81 0.58MAE 0.12 0.27 0.14 0.08 0.13 0.06 0.18 0.71 0.81 0.58MARE 3% 7% 3% 2% 4% 1% 4% 17% 21% 14%Std.Dev. 0.08 0.16 0.06 0.06 0.07 0.08 0.13 0.39 0.37 0.30

Ag2 1.82 1.59 1.69 1.53 1.50 1.59 1.66 1.93 1.41 1.91 1.70Ag+2 1.85 1.69 1.64 1.58 1.57 1.59 1.61 1.70 1.51 1.67 1.62Ag−2 1.53 1.39 1.37 1.32 1.31 1.35 1.38 1.51 1.15 1.48 1.41Ag3 2.73 2.37 2.45 2.31 2.27 2.41 2.52 2.94 2.00 2.94 2.56Ag+3 4.84 4.45 4.50 4.36 4.32 4.47 4.59 5.03 4.05 4.90 4.52Ag−3 3.70 3.32 3.49 3.38 3.32 3.50 3.63 4.12 3.06 4.01 3.57Ag4 4.80 4.24 4.47 4.39 4.30 4.58 4.80 5.59 3.78 5.28 4.59ME 0.19 -0.13 -0.05 -0.16 -0.20 -0.07 0.03 0.41 -0.43 0.32MAE 0.19 0.15 0.06 0.16 0.20 0.07 0.06 0.41 0.43 0.32MARE 7% 5% 2% 6% 7% 3% 2% 13% 15% 10%Std.Dev. 0.07 0.14 0.06 0.07 0.09 0.05 0.09 0.32 0.23 0.22
AuAg 2.22 1.97 2.11 2.05 2.02 2.13 2.21 2.53 1.80 2.46 2.18AuAg− 1.83 1.69 1.71 1.74 1.72 1.78 1.83 2.00 1.47 1.92 1.77Au2Ag 3.65 3.26 3.42 3.47 3.41 3.59 3.73 4.28 2.80 4.22 3.65Au2Ag− 4.96 4.58 4.84 4.97 4.91 5.12 5.28 5.90 4.36 5.63 5.04AuAg2 3.33 2.94 3.08 3.06 3.00 3.17 3.30 3.80 2.56 3.75 3.28AuAg−2 3.83 3.40 3.58 3.48 3.42 3.60 3.74 4.25 3.00 4.14 3.63ME 0.04 -0.29 -0.14 -0.13 -0.18 -0.03 0.09 0.53 -0.60 0.43MAE 0.07 0.29 0.14 0.13 0.18 0.06 0.09 0.53 0.60 0.43MARE 2% 9% 4% 4% 6% 2% 3% 16% 19% 13%Std.Dev. 0.09 0.14 0.08 0.07 0.08 0.06 0.08 0.23 0.21 0.18

Overall statisticsME 0.12 -0.22 -0.11 -0.12 -0.17 -0.02 0.10 0.54 -0.60 0.44MAE 0.13 0.23 0.11 0.12 0.17 0.06 0.11 0.54 0.60 0.44MARE 4% 7% 3% 4% 6% 2% 3% 15% 18% 12%Std.Dev. 0.10 0.16 0.08 0.07 0.08 0.07 0.11 0.33 0.31 0.25
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4. Assessment of interaction-strength interpolation formulas for gold andsilver clusters

Table 4.3: Ionization potentials (eV) of small gold, silver, and binary clusters. For each setof clusters the mean error (ME), the mean absolute error (MAE), the mean absolute relativeerror (MARE), and the standard deviation are reported. In the bottom part of the table wereport also the statistics for the overall set.
PBE PBE0 B2PLYP ISI revISI SPL LB MP2 MP3 MP4 CCSD(T)Au 9.54 9.22 9.29 9.00 8.97 9.05 9.13 9.42 8.91 9.32 9.20Au− 2.30 2.00 2.21 1.86 1.84 1.92 2.01 2.31 1.82 2.42 2.29Au−2 1.94 1.75 1.84 1.56 1.55 1.58 1.62 1.78 1.53 1.91 1.91Au3 7.05 6.76 6.89 6.57 6.55 6.62 6.69 6.97 6.44 7.01 6.86Au−3 3.63 3.38 3.67 3.45 3.41 3.53 3.63 4.03 3.36 3.92 3.70ME 0.10 -0.17 -0.01 -0.30 -0.33 -0.25 -0.17 0.11 -0.38 0.12MAE 0.13 0.18 0.06 0.30 0.33 0.25 0.17 0.16 0.38 0.12MARE 2% 6% 2% 10% 11% 9% 6% 4% 12% 3%Std.Dev. 0.17 0.14 0.07 0.08 0.08 0.09 0.11 0.18 0.07 0.08

Ag 8.04 7.70 7.76 7.35 7.33 7.40 7.45 7.67 7.31 7.66 7.59Ag− 1.40 1.15 1.28 0.86 0.85 0.90 0.95 1.13 0.95 1.35 1.31Ag2 8.02 7.60 7.80 7.30 7.26 7.40 7.50 7.90 7.21 7.90 7.68Ag−2 1.11 0.96 0.97 0.66 0.65 0.66 0.67 0.72 0.69 0.92 1.01Ag3 5.93 5.63 5.71 5.30 5.28 5.34 5.39 5.58 5.26 5.70 5.64Ag−3 2.38 2.10 2.32 1.93 1.90 1.99 2.06 2.31 2.02 2.42 2.31ME 0.22 -0.06 0.05 -0.36 -0.38 -0.31 -0.25 -0.04 -0.35 0.07MAE 0.22 0.10 0.07 0.36 0.38 0.31 0.25 0.14 0.35 0.10MARE 6% 5% 2% 17% 17% 15% 13% 8% 15% 4%Std.Dev. 0.16 0.11 0.08 0.07 0.07 0.07 0.09 0.18 0.07 0.10
AuAg− 1.46 1.30 1.35 1.05 1.04 1.07 1.09 1.19 1.07 1.34 1.39Au2Ag− 3.16 2.90 3.17 2.87 2.84 2.94 3.03 3.34 2.95 3.30 3.18AuAg−2 2.35 2.04 2.24 1.79 1.76 1.84 1.91 2.17 1.83 2.28 2.15ME 0.09 -0.16 0.01 -0.34 -0.36 -0.29 -0.23 -0.01 -0.29 0.07MAE 0.10 0.16 0.05 0.34 0.36 0.29 0.23 0.13 0.29 0.10MARE 5% 7% 3% 17% 18% 15% 12% 7% 15% 4%Std.Dev. 0.11 0.11 0.07 0.03 0.03 0.04 0.07 0.18 0.05 0.10

Overall statisticsME 0.15 -0.12 0.02 -0.33 -0.36 -0.28 -0.22 0.02 -0.35 0.09MAE 0.16 0.14 0.06 0.33 0.36 0.28 0.22 0.15 0.35 0.11MARE 4% 6% 2% 14% 15% 13% 11% 6% 14% 4%Std.Dev. 0.16 0.12 0.08 0.07 0.07 0.07 0.09 0.18 0.07 0.09
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4.3. Results
Table 4.4: Relative energies (eV) with respect to conformer I (see Computational details) of2D and 3D anionic gold clusters and cationic silver clusters. For the gold clusters the datainclude the correction terms reported in table IV of Ref. [176].

PBE PBE0 BLOC B2PLYP ISI revISI SPL LB MP2Au−11-I 2D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Au−11-II 3D 0.217 0.224 0.206 0.147 0.083 0.090 0.070 0.054 -0.006Au−11-III 3D 0.270 0.179 0.354 0.254 0.265 0.251 0.302 0.344 0.499Au−12-I 3D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Au−12-II 2D -0.450 -0.340 0.008 -0.144 0.710 0.669 0.789 0.882 1.228Au−13-I 3D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Au−13-II 3D -0.027 -0.032 0.037 -0.024 0.497 0.495 0.499 0.527 0.618Au−13-III 2D -0.111 0.056 0.386 0.248 0.802 0.894 0.917 0.824 1.069
Ag+5 -I 3D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Ag+5 -II 2D 0.021 0.025 0.024 0.020 0.021 0.020 0.018 0.017 0.013Ag+6 -I 3D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Ag+6 -II 2D -0.005 0.055 0.280 0.007 0.220 0.211 0.241 0.265 0.348Ag+7 -I 3D 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000Ag+7 -II 2D -0.099 0.000 0.303 -0.059 0.286 0.270 0.318 0.352 0.474

test for any electronic structure approach. In table 4.4, we report the energiescalculated for the anionic gold clusters and cationic silver clusters relevant forthe 2D-3D transition. The table shows, for comparison, also the results obtainedwith the BLOC meta-GGA functional [216–218], which is expected to be one ofthe most accurate approaches for this kind of problems. Observing the data, onecan immediately note that the PBE, PBE0 and even B2PLYP methods are notreliable for the dimensional crossover of noble metal clusters. In fact, PBE alwaysfavors 2D structures, whereas PBE0 predicts the 2D-3D transition at a too largecluster dimension for gold, Au−
13 (although the 3D geometry with lowest energyis not the same as the one we find with BLOC and all ACII functionals), and forsilver the energies of the 2D and 3D clusters differ slightly for both n = 6 and

n = 7, not evidencing a clear transition at the expected cluster size. A similarbehaviour is found for the B2PLYP functional, which was instead one of the bestfor the atomization energies and IPs of small clusters. The ACII functionals overallperform all quite similarly, predicting for all clusters the expected ordering andagreeing well with BLOC results for the cationic Ag clusters but tending to favor3D structures in the anionic Au clusters. We note that this behavior is somehowinherited from the MP2 method, which however performs much worse than any ofthe ACII functionals considered here.
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Figure 4.3: Difference in the total energy error between a cluster and its constituent atoms(see eq 4.3).
4.4. Discussion and Analysis of the resultsIn the previous section we saw that the ACII functionals perform rather well for thecalculation of atomization energies of noble metal clusters. As mentioned above, agood rationalization of the observed results can be obtained in terms of the energyerrors that the different methods display for the total energies of atoms and of theclusters. These have been reported in table 4.1.
4.4.1. Energy differencesFor a better visualization here we additionally plot, in fig 4.3, the quantity

δ∆E = ∆E(Mn M−
m M+

l )− (4.3)
− ∑

n
∆E(Mn)−∑

m
∆E(M−

n )−∑
l
∆E(M+

n ) ,

where ∆E are the total energy errors (the ∆E per atom are reported in table 4.1),
M=Au or Ag, and n,m, l are integers such that Mn M−

m M+
l corresponds to a givencluster (e.g. for Au+

3 we have M=Au, n = 2, m = 0, and l = 1). This quantity providesa measure of how different the energy error is for a given cluster compared to thatof its constituent atoms. Inspection of the plots shows that the smaller δ∆E valuesare yielded by the ISI and SPL (revISI and LB, not reported, give similar results).These functionals are also among the best performers for the atomization energies.On the other hand, for PBE we observe that the δ∆E is small for gold clusters, withthe exception of Au+
3 , while for silver clusters is larger. Indeed, looking to table 4.2we can find that PBE performs well for gold clusters, with the exception of Au+

3 that
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Figure 4.4: Variation of the energy error with the total charge of the system (Au top left,Au3 bottom left, Ag top right, Ag3 bottom right). The values are scaled to the neutral systemvalue (see eq 4.4).
yields an error of 0.27 eV (more than twice larger than the MAE), while it performsless well for silver clusters. Finally, for MP2 the values of δ∆E are generallyvery large. Thus, despite MP2 is on average quite accurate in the description ofthe total energies (see table 4.1) it fails to produce accurate atomization energiesbecause of accumulation of the errors.A similar analysis, can be made on the results of the ionization potential cal-culations (reported in table 4.3). However, in this case the difference to consideris between the neutral and the charged species. Then, a different behavior is ob-served. In fact, while for most of the considered methods the total energy error isnot much different between a neutral and a charged species of the same cluster, forthe ACII functionals we always observe an increase of the error with the charge.This situation is schematized in fig 4.4, where we plot, for several examples, thequantity

∆(q) =∆E(Aq )−∆E(A0) , (4.4)with A being any of the systems under investigation and q =−1,0,1. As a conse-quence, the ACII functionals are generally the worst performers for the calculation
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4. Assessment of interaction-strength interpolation formulas for gold andsilver clusters
of ionization potentials, while PBE and especially B2PLYP perform well thanks tothe more homogeneous description of the differently charged species.

This analysis shows that, although the quality of the total energies produced bya functional is a key element to understand the performance of the functional, thebasic property to observe is not the quality of the absolute energies, but rather thevariance of the errors. Furthermore, the contrasting behaviors we have observed forthe description of the atomization energies and of the ionization potentials high-lights the subtleties inherent to such calculations. In particular, the accuracy ofthe ACII functionals has been shown to be not much dependent on the investigatedmaterial (Au or Ag) nor on the system’s size but to be quite sensitive to the chargestate of the computed system. The first feature is a positive one. This is related, aswe saw, to the computation of atomization energies, but even more importantly itindicates that the idea beyond the construction of the ACII functionals is in generalquite robust such that the functionals, although not very accurate in absolute terms(see table 4.1) are well transferable to systems of different size and composition.This is not a trivial result since, as we documented, other methods (e.g. PBE andPBE0, but even MP4) do not share this property. On the contrary, the dependenceof the ACII functionals on the charge state of the system indicates a clear limita-tion of such approaches. They are in fact unable to describe with similar accuracysystems with qualitatively different charge distributions. As a consequence, theionization potential calculations are problematic for ACII functionals.Note however that, because accurate experimental data are not available for all thesystems, our assessment of the performances of the ACII functionals on small clus-ters, see fig 4.1, and Tables 4.1, 4.2, and 4.3, is carried out w.r.t. CCSD(T) values.This allows a more direct and sensible comparison of the results, whereas the com-parison with experimental data would require the consideration of further effectssuch as thermal/vibronic ones as well as spin-orbit coupling.[159, 176] Of courseCCSD(T) results cannot be considered “exact" for metal clusters. Nevertheless, anaccurate comparison with available experimental data from literature shows that,for atoms (regarding ionization energies) [219, 220] and neutral dimers and trimers(regarding both ionization and atomization energies) [221–223], CCSD(T) yieldsresults within 0.04 eV from the experimental ones. While for the charged dimersand trimers (regarding both ionization and atomization energies), CCSD(T) resultsare within 0.2 eV [220, 224, 225] from the experimental ones but this is only partlyascribable to the diminished accuracy of the CCSD(T) calculation per se and pos-sibly due to the large error bars associated to these measures on the experimentalside and on the increased importance of correcting terms on the computationalside.
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Figure 4.5: Atomization adiabatic connection integrands (see eq 4.5) corresponding to ISI,revISI, SPL, and LB for the Au2 case; the thick curve in gray corresponds to the linearexpansion for the atomization adiabatic connection integrand (eq 4.6)
4.4.2. AC curves: gold dimer showcaseTo rationalize the origin of the limitations of the ACII functionals as well as tounderstand in depth the differences and the similarities between the different in-terpolation formulas it would be necessary to inspect in some detail the shape of thedensity-fixed linear adiabatic connection integrand defining ISI, revISI, SPL, andLB. However, contrary to small atoms and molecules (see, e.g., refs [91, 226, 227]),for noble metal clusters there exists no reference adiabatic connection integrandsto compare to. Thus, such a detailed analysis is not really possible. Nevertheless,some useful hints can be obtained by a semi-qualitative comparison of the vari-ous adiabatic connection curves. As an example, in fig 4.5 we report, for the Au2case (the other systems studied here have very similar features), the atomizationadiabatic connection integrand, defined as

W at
λ (Au2) =Wλ(Au2)−2Wλ(Au) , (4.5)for ISI, revISI, SPL, and LB. The integrated value (between 0 and 1) of this quantitycorresponds to the XC atomization energy calculated with a given ACII functional.For discussion we have plotted also the weak interacting limit expansion truncatedat linear order in λ for the atomization adiabatic connection integrand, which isdefined as

W at
λ,LE (Au2) =Wλ,LE (Au2)−2Wλ,LE (Au), (4.6)where the linear expansion (LE) of the AC integrand for a species X is Wλ,LE (X) =

Ex (X) + 2λE GL2
c (X) in agreement with eq 1.67 and in the case of HF orbitals

E GL2
c (X) = E MP2

c (X). Because of the weak-interacting limit constraint, all the curvesplotted in the figure share the same λ= 0 value, which corresponds to the Hartree-Fock exchange atomization energy, as well as the same slope at this point. The
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4. Assessment of interaction-strength interpolation formulas for gold andsilver clusters
curves remain very similar up to λ ≈ 0.2, which is not strictly dictated by theweak-interacting limit constraint but rather by a possible lack of flexibility in theinterpolation formulas. For values of λ& 0.2, the curves associated to the variousfunctionals start to differ, due to the different ways they approach the W∞ valuefor λ=∞. Note that in this case ISI and revISI are further constrained to recoverthe W ′∞ slope, whereas SPL and LB do not have this constraint. The interpolationtowards the strong-interaction limit is therefore the main feature differentiatingthe various ACII functionals, even in the range 0 ≤ λ≤ 1. In general, revISI is theslowest to approach the asymptotic W∞ value, whereas LB is the fastest. So theformer will usually yield the smaller XC energies, whereas the latter will producethe larger XC energies (in magnitude). In fact, turning to the Au2 example reportedin fig 4.5, the inspection of the plot shows that revISI is indeed the slowest tomove towards the asymptotic W at∞ value (for Au2 W at∞ = −0.239). Consequently,in table 4.2 it yields the smallest atomization energy (it underestimates the Au2atomization energy by 0.13 eV). On the opposite, LB is the fastest to move towardsthe asymptotic W at∞ value, thus it gives the larger atomization energy (overestimat-ing it by 0.06 eV). In this specific case, the SPL functional, which behaves almostintermediately between revISI and LB, yields a very accurate value of the atomiza-tion energy, underestimating it by only 0.03 eV. Thus, we have seen that there aretwo main features that can determine the performance of an ACII functional. Thefirst one is surely the behavior towards the strong-coupling limit, which is ableto influence the shape of the adiabatic connection integrand curve for λ' 0.2/0.3.This behavior is indeed modeled differently by the various functionals examined inthis work, but it appears that none of them can really capture the correct behaviorin the range of interest 0.3 ≤λ≤ 1. This is possibly due to the fact that informationon the λ=∞ point is not sufficient to guide correctly the interpolation at the quitesmall λ values of interest for the calculation of XC energies. A second factor thatis relevant for the functionals’ performance is the small λ behavior. At very small λvalues this is determined by eq 1.67, but for larger values of the coupling constant(at least for 0.1 ≤λ≤ 0.2) the shape of the curve should depart from the slope givenby E GL2

c in order to correctly describe the higher-order correlation effect. Instead,we have observed that all the ACII functionals provide the same behavior up to
λ≈ 0.2. This indicates that the interpolation formulas have not enough flexibilityto differentiate from the asymptotic behavior imposed at λ= 0.
4.4.3. Role of the reference orbitalsThe ACII functionals are orbital-dependent nonlinear functionals, thus they areusually employed to compute the XC energy in a post-SCF fashion (as we didin this work). Then, the results depend on the choice of the orbitals used forthe calculation. Recent work [199] has evidenced that ISI results for main-groupchemistry are much improved when Hartree-Fock orbitals are used. This has been
70



4

4.4. Discussion and Analysis of the results

-27

-26

-25

-24

W
λ

HF orbs.

PBE orbs.

0 0.2 0.4 0.6 0.8 1

λ

-0.2

-0.1

0.0

w
λa

t

HF orbs.

PBE orbs.

0 0.05 0.1

λ

-24.2

-24.0

-23.8

-23.6

W
λ

Figure 4.6: Top: Adiabatic connection integrands computed with the SPL formula (eq 3.57)for Au2 (solid line) and Au (dashed line) using Hartree-Fock and PBE orbitals; the Au curveis multiplied by a factor of 2; the inset shows the weak-interaction part of the curves. Bottom:Atomization adiabatic connection integrands (see eq 4.5) computed with the SPL formula forthe Au2 case.
basically traced back to the characteristics of the Hartree-Fock single-particleenergy gap (which determines the magnitude of E GL2

c and thus the weak-interactionbehavior of the curves).For gold and silver clusters, after some test calculations, we found a similarresult for all the ACII formulas considered. For this reason, all the results reportedin section 4.3 are based on Hartree-Fock orbitals. To clarify this aspect, wehave reported in fig 4.6 both the bare and the atomization adiabatic connectionintegrands computed with the SPL formula (similar results are obtained for theother formulas) for Au2 and Au using either Hartree-Fock and PBE orbitals. It canbe seen that the adiabatic connection curve of Au2, obtained from Hartree-Fockorbitals, is very similar to twice the Au curve. Hence, the atomization adiabaticconnection integrand is rather flat, yielding (correctly) a moderate atomization XCenergy. This behavior depends partly on the fact that in Hartree-Fock calculationsAu2 has almost twice the exchange energy of Au but, primarily, it traces back to thefact that the Au2 MP2 correlation energy is almost perfectly two times larger thanthe Au one (which in turn depends on the fact that the two systems have very closesingle-particle energy gaps – 7.604 eV and 7.707 eV, respectively – and on thesize-extensivity of the MP2 method). Thus, the adiabatic connection integrands for
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Au2 and twice the Au have almost identical slopes at λ= 0 and similar behaviorsfor λ ≤ 1. Instead, when PBE orbitals are used, larger differences between theAu2 and twice the Au curves can be noted. These originate only partially from thefact that, in the case of PBE orbitals, the exact exchange contributions of Au2 andtwice Au are not much similar (they differ by 0.045 eV). Mostly they depend on therather different GL2 correlation energies for the systems (E GL2

c (Au2)−2EGL2
c (Au) =

−0.173eV ), which in turn trace back to the fact that the single particle energy gapscomputed for Au2 and Au are very different: 2.014 eV and 0.718 eV, respectively.Consequently, the atomization adiabatic connection integrand curve calculated withPBE orbitals is steeper than the Hartree-Fock-based one and therefore it yieldssignificantly larger atomization XC energies. This results in a strong tendency ofPBE-based ACII functionals to overbind the noble metal clusters.
4.4.4. Further analysis of the ACII’s formulas

We have seen in Sec. 4.3 that SPL and LB formulas show overall better perfor-mances than ISI and revISI. As mentioned, the main difference between the twogroups is that the former use a three-parameters interpolation formula while thelatter make use of a fourth ingredient from the λ→∞ limit, i.e. the zero-point os-cillation term W ′∞[ρ]. The revISI formula also recovers the exact expansion at large
λ to higher orders [34]. However, we have to keep in mind that the ingredientscoming from the strong interaction limit are not computed exactly, but approximatedwith the semilocal PC model. Comparison with the exact W∞[ρ] and W ′∞[ρ] forlight atoms [34, 73] suggests that the PC approximation of the W∞[ρ] term is moreaccurate than the one for W ′∞[ρ]. Moreover, the parameters appearing in the PCmodel for W∞[ρ] are all determined by the electrostatics of the PC cell, while inthe case of W ′∞[ρ] the gradient expansion does not give a physical result, and oneof the parameters has to be fixed in other ways, for example by making the modelexact for the He atom [34]. Keeping in mind that the information from W ′∞[ρ] isless accurate (and maybe less relevant in the HF context), it can be interesting toconsider a variant of ISI and revISI, in which we replace W ′PC∞ [ρ] with the curvatureat λ= 0 (obtained from MP3) as input ingredient.The ISI and revISI formulas have four parameters that need to be fixed by fourequations. In the standard forms (see sec 3.4.2) the four equations are obtained byimposing that W ISI

λ
recovers the first two terms of the weak-interacting limit expan-sion, eq 1.67, and the first two terms in the strongly-interacting limit expansion,eq 1.70for large λ. For the first time we have explored an alternative choice thatis to constrain ISI and revISI to recover the first three terms of eq 1.67 for small

λ, and only the first term of eq 1.70 for large λ. The structure of the interpolation
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formula is thus formally the same, but the parameters are given by

X = −2(W0 −W∞)+ W ′′
0

(W ′
0)2 (W0 −W∞)2,

Y = −2
W ′′

0
W ′

0
+ 4W ′

0
(W0−W∞) ,

Z = −3+ W ′′
0

(W ′
0)2 (W0 −W∞); (4.7)

for ISI, and
b = −2(W0 −W∞)+ 4W ′′

0 (W0−W∞)2

3(W ′
0)2 ,

c = − 4W ′′
0

3W ′
0
+ 2W ′

0
(W0−W∞) ,

d = −3+ 4W ′′
0 (W0−W∞)

3(W ′
0)2 ; (4.8)

for revISI.However, while in the standard ISI and revISI interpolation formulas the pa-rameters, Y [ρ] and c[ρ], which appear under square root, are given by the sum ofsquared quantities (see eqs 3.51, and 3.55), in these modified versions this is nottrue and they can become negative. In the cases studied here both parameters turnout to be always negative and smaller than one, meaning that there is, for eachspecies, a critical lambda, λc , always larger than one, after which the functiontakes imaginary values. In particular we found an average λ̄I SI
c ≈ 4 with valuesspanning from 2.5 to 5.7, and an average λ̄r ev I SI

c ≈ 180 with values spanning from
6 to over 3×103. As a general trend we thus see that the modified revISI appearsto be more robust than the modified ISI in the sense that it becomes imaginary atsignificantly larger λ values.Another important point to consider is that, as explained in Sec. 4.4.3, weare using the ACII functionals with Hartree-Fock orbitals, which means that theyare used as a correlation functional for the Hartree-Fock energy. In other words,the ACII correlation functionals are used here as an approximate resummationof the Møller-Plesset perturbation series: they recover the exact MP2 at weakcoupling, and perform much better than MP3 and MP4 for atomization energies(see table 4.2). Thus, a first question that needs to be addressed is whetherthe PC model used here to compute the infinite coupling strength functional isaccurate also for the Hartree-Fock adiabatic connection, in which the λ-dependentHamiltonian reads

Ĥλ = T̂ + V̂HF + V̂ext +λ (V̂ee − V̂HF), (4.9)with V̂HF the Hartree-Fock non local potential operator. When λ→∞, the problemdefined by Ĥλ of eq 4.9 is not the same as the one of the density-fixed adiabaticconnection arising in DFT. The results of this study may suggest that the PC model
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can provide a decent approximation of the leading λ→∞ term in the HF adiabaticconnection integrand, at least when dealing with isoelectronic energy differences.A careful study of the problem is the object of on-going work and first importantresults are going to be illustrated in the next chapter.
4.5. Conclusions and perspectivesWe have assessed the performance of functionals based on the idea of interpolatingbetween the weak and the strong-interaction limits the global adiabatic-connectionintegrand (ACII functionals) for noble-metal clusters, analyzing and rationalizingdifferent features of this approach. The study presented here extends a previ-ous preliminary assessment on main group chemistry [199], and explores differentinterpolation formulas.We have found that the ACII functionals, although not spectacularly accurate,are quite robust for the description of atomization energies, as their performancetends to be the same for different species and different cluster sizes, which is apositive feature. We should also stress that this good performance is achieved byusing 100% of Hartree-Fock exchange, and thus avoiding to rely on error cancel-lation between exchange and correlation. Rather, as clearly shown in fig. 4.3, thisis achieved by performing in a very similar way for the description of a clusterand its constituent atoms. On the other hand, the ACII functionals are found tobe inaccurate for ionization energies, as they are not capable to describe differentcharged states of the same system with the same accuracy, as shown in fig. 4.4.As in the case of main-group chemistry [199], we have found that the ACII func-tionals perform much better when used with Hartree-Fock orbitals, which meansthat they are used as a correlation functional for the Hartree-Fock energy. In otherwords, the ACII correlation functionals are used here as an approximate resumma-tion of the Møller-Plesset perturbation series: they recover the exact MP2 at weakcoupling, and perform much better than MP3 and MP4 for atomization energies(see table 4.2). Thus, a first question that needs to be addressed is whether the PCmodel used here to compute the infinite coupling strength functionals is accuratealso for the Hartree-Fock adiabatic connection of Eq. (4.9), which is the object ofa current investigation. The results of this study and of reference [199] suggestthat the PC model can provide a decent approximation of the λ→∞ HF adiabaticconnection integrand, at least when dealing with isoelectronic energy differences.Another promising future direction is the development of ACII functionals inwhich the interpolation is done in each point of space, on energy densities [121,228, 229]. These local interpolations are more amenable to construct size-consistentapproximations, but need energy densities all defined in the same gauge (the oneof the electrostatic potential of the exchange-correlation hole seems so far to be themost suitable for this purpose [230]). In this framework, the simple PC model, whichperforms globally quite well, does not provide accurate approximations pointwise
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[229], and needs to be replaced with models based on integrals of the sphericallyaveraged density [231, 232], which, in turn, needs a careful implementation, whichis the focus of on-going efforts [232]. Finally, recent models for λ= 1 could be alsoused in this framework [109], both locally and globally.
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5
Strong-interaction limit of

an adiabatic connection in
Hartree-Fock theory

We show that the leading term in the strong-interaction limit of the adiabatic con-
nection that has as weak-interaction expansion the Møller-Plesset perturbation
theory can be fully determined from a functional of the Hartree-Fock orbitals. We
analyze this functional and highlight similarities and differences with the strong-
interaction limit of the density-fixed adiabatic connection case of Kohn-Sham den-
sity functional theory.

5.1. Introduction to the Hartree-Fock adiabatic con-
nectionMixing KS DFT with Hartree-Fock (HF) ingredients is an approximation strategythat has a long history in chemistry, already starting with hybrids [112, 113, 233–237] and double hybrids [1, 238–240], but also by simply inserting the HF densityinto a given approximate XC density functional [241–246].Recently, as the previous chapter has given an example, it has also been observedthat rather accurate interaction energies can be obtained from models for W DFT

λ
[n]that interpolate between the two limits of eq 1.67 – retaining only the first term,GL2, in the GL series – and of eq 1.70, using HF densities and orbitals as input,i.e., by constructing de facto an approximate resummation of the Møller-Plesset(MP) series, a procedure that lacks so far a theoretical justification.Motivated in particular by these last findings, we analyze in this work theHartree-Fock adiabatic connection [eq 5.1 below] whose Taylor expansion around
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λ= 0 is the MP series (eq 5.4 below) and show that the leading term in the λ→∞expansion of its GS wavefunction is determined by a functional of the HF density,see eq 5.9 below. We also highlight similarities and differences with the DFT case,showing that the large λ expansion in HF theory has a structure similar to the oneof eq 1.70.We keep the notation general, as only few key properties of the HF operatorsare important here. We consider the adiabatic connection (see, e.g., ref [247])

Ĥ HF
λ = T̂ + V̂ext + Ĵ + K̂ +λ(V̂ee − Ĵ − K̂ ), (5.1)

with V̂ext the (nuclear) external potential and Ĵ = Ĵ [nHF] and K̂ = K̂ [{φHF
i }] thestandard HF Coulomb and exchange operators, which are fixed once for all in theinitial HF calculation, and do not depend on λ, but only on the HF density nHFand occupied HF orbitals {φHF

i } (eq 5.1 coincides with eq 4.9 introduced in theprevious chapter with V̂HF = Ĵ + K̂ ).In the ground state ΨHF
λ

of Ĥ HF
λ

, the density nλ(r) changes with λ: nλ=0(r) is theHF density nHF(r), and nλ=1(r) is the exact physical density n(r). Note that Teale
et al. [227] have analyzed a related adiabatic connection, in which the externalpotential is kept fixed; in that framework in the limit λ→∞ all the electrons butone escape to infinity. From eq 5.1, the Hellmann-Feynman theorem yields theexact formula

E HF
xc =

∫ 1

0
W HF
λ dλ (5.2)

for the XC energy in the HF framework, with
W HF
λ ≡ 〈ΨHF

λ |V̂ee − Ĵ − K̂ |ΨHF
λ 〉+U [nHF]+2E HF

x . (5.3)
Equation 5.3 has been defined to allow for a direct comparison with the DFT
W DFT
λ

[n] of eqs 1.59 and 1.60.For small λ
W HF
λ→0 = E HF

x +
∞∑

n=2
n E MPn

c λn−1, (5.4)
with W HF

λ=0 = E HF
x , and where E MPn

c the nth term in the MP series. As is well-known(see, e.g., references [248, 249]), the radius of convergence of the MP series is ingeneral smaller than 1. Here we ask the question: what happens to ΨHF
λ

and W HF
λ

as λ→ ∞? After answering this theoretical question, we will discuss its actualrelevance for constructing approximations.
5.2. Analysis of the HF λ→∞ limitWhen λ becomes very large, the term λ(V̂ee − Ĵ − K̂ ) in eq 5.1 becomes more andmore important, and we argue that the wavefunction ΨHF

λ
should end up minimizing

78



5

5.2. Analysis of the HF λ→∞ limit
this term alone, similarly to the DFT case (see chapter 3). The difference here isthat the minimizer is not constrained to yield a fixed density, and the operator tobe minimized also contains − Ĵ − K̂ . We further argue that the expectation value of
K̂ is subleading with respect to the one of V̂ee − Ĵ , i.e., we argue that

〈ΨHF
λ |K̂ |ΨHF

λ 〉 =O(λ−1/2) (λ→∞). (5.5)Before we shall support this conjecture with a variational argument, we discuss itsconsequences.If eq 5.5 holds, then ΨHF
λ

for λ → ∞ ends up minimizing the even simpleroperator λ(V̂ee − Ĵ ),
lim
λ→∞

ΨHF
λ = argmin

Ψ
〈Ψ|V̂ee − Ĵ |Ψ〉, (5.6)

lim
λ→∞

W HF
λ = min

Ψ
〈Ψ|V̂ee − Ĵ |Ψ〉+ U [nHF]+2E HF

x +O(λ−1/2) (5.7)
The “asymptotic Hamiltonian”

Ĥ HF
∞ = V̂ee − Ĵ [nHF] =

N∑
i , j=1

j>i

1

|ri − r j |
−

N∑
i=1

vH(ri ; [nHF]), (5.8)
is completely specified by the HF density nHF(r), since N = ∫

nHF(r)dr and Ĵ [n] =∑N
i=1 vH(ri ; [n]).Consequently, also the minimizer in eqs 5.6 and 5.7 is specified solely by nHF,

lim
λ→∞

ΨHF
λ =ΨHF

∞ [nHF], (5.9)
and the minimum in eq 5.7 is a functional of the HF orbitals,

lim
λ→∞

W HF
λ = Eel[n

HF]+2E HF
x +O(λ−1/2). (5.10)

The minimizer in eq 5.6 could be non unique, but this does not affect the value ofthe minimum, which is the object of the present investigation.The functional Eel[n] = min
Ψ

〈Ψ|V̂ee − Ĵ [n]|Ψ〉+U [n] has a simple classical interpre-tation: since Ĥ HF∞ is a purely multiplicative operator, the square modulus |ΨHF∞ |2of its minimizing wave function is a distribution in R3N that is zero wherever Ĥ HF∞as a function of r1, ...,rN does not attain its global minimum (if it were otherwiseit would not be optimal as we could always lower the energy by increasing theweight of the wave function in the global minimum of Ĥ HF∞ ). In other words,
Eel[n] ≡ min

{r1...rN }


N∑

i , j=1
j>i

1

|ri − r j |
−

N∑
i=1

vH(ri ; [n])+U [n]

 (5.11)
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is the minimum total electrostatic energy of N equal classical point charges (−e)in a positive background with continuous charge density (+e)n(r). The term U [n],inherited from eq 5.3, represents the background-background repulsion.Strictly speaking, the minimizer ΨHF∞ is not in the space of allowed wavefunc-tions, so that the minimum is actually an infimum, similarly to the DFT case (seediscussion in chapter 3).Equations 5.9-5.10 comprise a central result of this work: they show that thestrong-interaction limit of the HF adiabatic connection can be determined from afunctional of the HF density, providing some theoretical justification for resummingthe MP series by using a DFT-like expansion at large λ with functionals of nHF[4, 127, 250], although, as we will discuss, there are still several points to beaddressed.We now analyze the functionals ΨHF∞ [n] and Eel [n], comparing them with theDFT case. We relabel, for this purpose, Ĥλ of eq 1.54 as Ĥ DFT

λ
and its limitingvalue divided by the coupling parameter as Ĥ DFT∞ [n], i.e. limλ→∞

Ĥ DFT
λ

[n]
λ ∼ Ĥ DFT∞ [n].Comparing Ĥ DFT∞ [n] with Ĥ HF∞ [n] of eq 5.8, we see that both Hamiltoniansconsist of the electron-electron repulsion operator and of an attractive one-bodypotential. In the HF case the attractive potential is −vH(r, [n]), which, for typicalHartree-Fock densities nHF , namely densities that are generated from the self-consistent restricted or unrestricted HF equations, is strong enough to create aclassical bound crystal. To be more precise, −vH(r, [n]) is more attractive thanthe one-body potential vSCE(r, [n]). In fact, the potential vSCE(r, [n]), discussed inchapter 3, is generated by a charge that integrates to N −1 [73, 230]

1

4π

∫
∇2vSCE(r, [n])d r = N −1, (5.12)

while the attractive potential −vH(r, [n]) is generated by the given density n(r),which integrates to N . For finite systems, the state ΨHF∞ [n] is thus more compactthan the state ΨDFT∞ [n] lacking the density constraint present in the DFT adia-batic connection construction. Note, furthermore, that both Ĥ DFT∞ [n] and Ĥ HF∞ [n]are functionals of the density in the sense that, given a density, they can be con-structed accordingly. Nevertheless, while the former is such that the same densitydetermining the asymptotic Hamiltonian (in its external potential part) is also itsresulting ground state density, this is in general not the case for the latter one.Indeed, we implicitly assumed that the domain of the functional Ĥ HF∞ [n] be that ofthe Hartree-Fock densities nHF . By virtue of the structure of the HF Hamiltonian
Ĥ HF

0 , such densities are typically smooth, continuous functions, while we just ar-gued that the ground state density output from the HF asymptotic Hamiltonian bea classical distribution, therefore a very different kind of electron density comparedto that input.1
1If, for the sake of speculation, we assume that also classical distributions can be used as input to
80



5

5.2. Analysis of the HF λ→∞ limit
For given occupied HF orbitals, we have the chain of inequalities

W HF
∞ [nHF] ≤ Eel [nHF] ≤W DFT

∞ [nHF]. (5.13)The first one, W HF∞ ≤ Eel [nHF], is trivial since W HF∞ = Eel [nHF]+ 2E HF
x from defi-nition 5.10 and E HF

x ≤ 0. The second inequality, Eel [n] ≤ W DFT∞ [n], holds for anydensity n(r). To prove it, we introduce the bifunctional W [n, v],
W [n, v] = inf

Ψ
〈Ψ|V̂ee −

N∑
i=1

v(ri )|Ψ〉+
∫

n(r)v(r)dr, (5.14)
for which we have

W [n, vH[n]] = Eel [n]+U [n], (5.15)and, from the dual formulation of W DFT∞ [n]

W DFT
∞ [n]+U [n] = max

v
W [n, v], (5.16)

which clearly completes the proof. Moreover, combining this last result with thedefinition of W HF∞ [nHF] (eq 5.10) we also find
W HF

∞ [nHF] ≤W DFT
∞ [nHF]+2E HF

x [nHF]. (5.17)As an illustration of the difference between the two adiabatic connections limits,in fig 5.1, we show the two potential energy surfaces, Ĥ DFT/HF∞ (r1,r2,π), for theHe atom.Note that, due to the cancellation between U and 2Ex in a two-electron singletsystem such as this one, in the case of the HF asymptotic Hamiltonian, we have
W HF

∞ ≡ Ĥ HF
∞

∣∣min (5.18)while for the corresponding DFT functionals such relation does not hold.2From the figure, we also observe, as anticipated, the contraction of the asymptotic
ĤHF∞ [n], in the form of a quite exceptional, self-interaction-free Hartree potential, i.e. vH(r , [ň(r )]) =∑N

i
1

|r−r i | , with ň(r ) = ∑N
i δ(r − r i ), it seems indeed likely that the GS density of ĤHF∞ [ň] wouldexactly match that of the background, i.e. nHF∞ ≡ ň. However, for this quite pathological case, ourarguments in sec 5.3 about the expectation value of the exchange operator, 〈λ K̂ 〉, when λ→∞, wouldanyway no longer hold and we should be reconsidering our asymptotic Hamiltonian expression (asidefrom various other complications).2Namely, considering definition 1.60 and rewriting V SCE

ee as
V SCE

ee = ESCE︸ ︷︷ ︸
≡ Ĥ DFT∞

∣∣∣min
−

∫
vSCE(r )n(r )dr︸ ︷︷ ︸

:=V SCE
, (5.19)

we find
W DFT∞ ≡ Ĥ DFT∞

∣∣∣min − (
V SCE +U

) (5.20)
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Figure 5.1: Potential energy surfaces, Ĥ DFT∞ (r1,r2,π) (left) and Ĥ HF∞ (r1,r2,π) (right), plot-ted along the radial distances, r1, r2, of the particles from the origin and with an angle πbetween the two vectors r 1, r 2. Superimposed are the corresponding minima, i.e. the de-generate minimum for the DFT asymptotic Hamiltonian in red, at about −1.039 Ha, and theunique minimum for the HF asymptotic Hamiltonian in blue, at about −4.347 Ha.
HF density compared to the physical one (the minimum is at r HF

0 ≈ 0.355 whilechoosing for the DFT case the minimum distance between the two particles, whichcorresponds to the distance, r DFT
0 , at which f (r DFT

0 ) ≡ r DFT
0 , we find r DFT

0 ≈ 0.809)and the fact that, albeit unique, the HF minimum is also quite shallow.
5.3. Subleading term: variational argumentWe provide, in this section, a variational argument to support the assumption ofeq 5.5, sketching the main points and leaving room for a more rigourous proof. Westart by considering the global minimum Rmin ≡ {rmin

1 , . . . ,rmin
N } of the function Ĥ HF∞of eq 5.8, and construct the simple trial wavefunction

ΨT
λ (r1, . . . ,rN ) =

N∏
i=1

Gα(λ)(ri − rmin
i ), (5.21)

where Gα(r) = α3/4

π3/4 e−
α
2 |r|2 , with α a λ-dependent variational parameter that goes toinfinity for large λ, α(λ) ∼λq with q > 0. By construction, when α→∞ (i.e., when

λ→∞) we have that
lim
λ→∞

|ΨT
λ [nHF]|2 = |ΨHF

∞ [nHF]|2 (5.22)
where ΨHF∞ was introduced in eq 5.6 (in the case of degeneracy we can select oneof the minimizers, since here we only want to obtain an upper bound to the lowest
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5.3. Subleading term: variational argument
eigenvalue of H HF

λ
). We now analyze, for large α, the expectation value on ΨT

λ
ofeach term appearing in Ĥ HF

λ
of eq 5.1, obtaining

〈ΨT
λ |T̂ |ΨT

λ 〉 = t α (5.23)
〈ΨT

λ |λ(V̂ee − Ĵ )|ΨT
λ 〉 =λ(Eel −U )+λ

(
h

α
+o(α−1)

) (5.24)
〈ΨT

λ |−λ K̂ |ΨT
λ 〉 =λ

(
k

α
+o(α−1)

) (5.25)
〈ΨT

λ |V̂ext + Ĵ + K̂ |ΨT
λ 〉 ∼O(α0), (5.26)

where t , h, and k are all positive numbers. This is obvious for t , but it is also truefor k because the expectation of −K̂ is positive for any wavefunction Ψ, as K̂ has anegatively definite kernel. The fact that the expectation value of K̂ on ΨT
λ

vanishesas α−1 for large α is due to the non-locality of K̂ , which samples the Gaussians inthe bra and in the ket in different points of space, and to the regularity propertiesof the HF orbitals (which have no delta-function singularities). The positivity of
h in eq 5.24 can be proven by expanding Ĥ HF∞ around Rmin up to second order,which gives an hessian matrix positive definite.Putting together Eqs. 5.23-5.26 and replacing α with λq we find that, for large
λ, the expectation value of Ĥ HF

λ
on ΨT

λ
behaves asymptotically as

〈ΨT
λ |Ĥ HF

λ |ΨT
λ 〉 =λ(Eel −U )+ tλq + (h +k)λ1−q +o(λ1−q ). (5.27)

Being t , h and k positive, we see that the best variational choice to make the nextleading term after O(λ) increase with the lowest possible power of λ is q = 1/2,as conjectured in eq 5.5. Although ΨT
λ

of eq 5.21 is not antisymmetric, we canalways properly antisymmetrize it, which only leads to corrections O(e−α) in thecomputation of the expectation values, similarly to the DFT case [80]. Thus, wehave explicitly constructed a variational wavefunction that yields the minimumpossible value for the leading term O(λ) in the expectation of Ĥ HF
λ

. In fact, since
Eel [nHF]−U [nHF] is the global minimum of the multiplicative operator V̂ee − Ĵ , thereis no wavefunction that can yield a lower expectation for this operator. Moreover,since −K̂ is positive definite, the best we can do is to make its expectation zerowhen λ→∞, which our wavefunction is able to do.This variational argument also shows that the next leading term in W HF

λ
shouldbe order λ−1/2, similarly to the DFT case of eq 1.70. A quantitative estimate ofthis next leading term could in principle be obtained by using the normal modesaround the minimum of V̂ee − Ĵ : a unitary transformation from the ri − rmin

i to thenormal modes coordinates ξ1, . . . ,ξ3N that diagonalize the hessian of Ĥ HF∞ at Rminleads to a set of uncoupled harmonic oscillators whose spring constant scales with
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λ,

Ĥ ZP
λ =−1

2

3N∑
α=1

∂2

∂ξ2
α

+ λ

2

3N∑
α=1

ω2
αξ

2
α, (5.28)

with ω2
α the eigenvalues of the hessian of Ĥ HF∞ at Rmin. The ground-state of Ĥ ZP

λis obtained by occupying the lowest state of each oscillator, with the product state
ΨZP
λ (ξ1, . . . ξ3N ) =

3N∏
α=1

(ωα
p
λ)1/4

π1/4
e−

p
λωα

ξ2
α
2 . (5.29)

This wavefunction should provide the minimum possible expectation, to order λ1/2,of T̂+λ(V̂ee− Ĵ ). However, since −λK̂ is of the same order λ1/2, we cannot exclude atthis point that the minimization of the full T̂ +λ(V̂ee − Ĵ−K̂ ) could lead to a differentset of occupied oscillator states. This investigation is the object of ongoing work(see discussion in ref [251]).From our present treatment we have so far
W HF
λ→∞ =W HF

∞ + 1p
λ

W ′HF
∞ + . . . , (5.30)

with
W HF

∞ = Eel [nHF]+2E HF
x (5.31)

W ′HF
∞ = 1

2

3N∑
α=1

ωα[nHF]

2
+W ′HF

K ,∞, (5.32)
where W ′HF

K ,∞ is due to the effect of −λK̂ at orders λ1/2 in Ĥ HF
λ

and is a functionalof the occupied HF orbitals (eq 5.32 is for now a conjecture). We also see thatboth W HF∞ and W ′HF∞ have a part that is a functional of the HF density only, and apart that is a functional of the occupied HF orbitals, although it seems that for thelatter case the dependence on the HF orbitals can be reduced to a dependenceon the HF density only. In both cases, the part that is a density functional hasan origin similar to the one of the DFT functionals of eq 1.70, being, respectively,a classical electrostatic energy and the potential energy of zero-point oscillationsaround a classical minimum. The parts that need the knowledge of the occupied HForbitals do not appear in the DFT case. This structure should be exact, althoughthe detailed form of W ′HF∞ might include a different set of occupied oscillator states.Although the λ→∞ limit of W HF
λ

has a structure similar to the one of DFT,there are many differences that need to be kept in mind. Both W DFT
λ

[ρ] and W HF
λare decreasing functions of λ,

d

dλ
W DFT
λ [ρ] ≤ 0,

d

dλ
W HF
λ ≤ 0, (5.33)
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5.4. Conclusions and perspectives
but W DFT

λ
[ρ] for λ ≥ 0 is believed to be convex or at least piecewise convex (ifthere are crossings of states), while W HF

λ
is for sure not always convex. In fact, theMP2 correlation energy, already for simple atoms such as He, underestimates (inabsolute value) the total correlation energy E HF

c , implying that W HF
λ

for 0 <λ¿ 1must run below its tangent; thus, W HF
λ

usually starts concave for small λ andthen needs to change convexity to tend to the finite asymptotic value W HF∞ forlarge λ. Moreover, while the density constraint of the DFT adiabatic connectionusually mitigates the crossing of states, the HF adiabatic connection might havejumps or kinks as λ is increased. A simple example is the N = 1 case, for which
W HF
λ

=−U [ρHF] for 0 ≤λ≤ 1, while for λ> 1 the curve starts to decrease, tending,as λ→ ∞ to a well defined value, with the electrostatic energy determined bythe configuration in which the electron is sitting in the minimum of −vH(r, [ρ])(preliminary results about the structure of the HF adiabatic connection integrandcurve for the exceptional case where N = 1 are detailed in reference [252]).
5.4. Conclusions and perspectivesIn conclusion, we have shown that by looking at the λ→∞ limit of the HF adiabaticconnection we recover functionals of the HF density, revealing a new intriguingformal link between HF and DFT. However, we should also stress that the useof models for W HF

λ
taken from DFT, although somehow justified by our analysis,should at this stage still be taken with some caution. The empirical observationso far [127, 250], is that these models are not accurate for total energies, butwork rather well for interaction energies, with a small variance, particularly fornon-covalent complexes [127, 250]. This point requires further investigation in thefuture. A numerical analysis of the functionals W HF∞ and W ′HF∞ , in comparison withthe corresponding DFT functionals, seems also beneficial.At the state of the art, it seems already clear that the difference between W HF∞ and

W DFT∞ can be considerable. For example, for the He atom discussed at the end ofsec 5.2, we have W HF∞ ≈−4.347 Ha, while W DFT∞ ≈−1.50 Ha.Promising research lines opened by this study are to investigate whether it ispossible to extract a model for the self-energy in the strong-coupling limit, to beused in the context of Green’s functions approaches [253–256], and to analyze inthe same spirit adiabatic connections appearing in other theories [247, 257].
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6
Response potential in the

strong-interaction limit of
DFT: Analysis and comparison

with the coupling-constant
average

Using the formalism of the conditional amplitude, we study the response part of
the exchange-correlation potential in the strong-coupling limit of density functional
theory, analysing its peculiar features and comparing it with the response potential
at physical regimes for small atoms and for the hydrogen molecule. We also use a
simple one-dimensional model of a stretched heteronuclear molecule to derive exact
properties of the response potential in the strong-coupling limit. The simplicity
of the model allows us to unveil relevant features also of the exact Kohn-Sham
potential and its different components, namely the appearance of a second peak in
the correlation kinetic potential on the side of the more electronegative atom.

6.1. IntroductionIn chapter 2 we have discussed the convenience of adopting the conditional proba-bility amplitude approach to obtain an exact decomposition of the effective potentialappearing in the Schrödinger equation for the square root of the density (eq 2.11)and of the XC potential of KS DFT.The SCE limit, however, has never been analyzed from the point of view of the
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6. Response potential in the strong-interaction limit of DFT: Analysis andcomparison with the coupling-constant average
conditional amplitude framework, and nothing is known about the behavior of thedifferent components of the corresponding external potential. It is the main purposeof this work to fill this gap.The effective equation 2.61 for pn(r ) in the SCE limit can be easily understoodif we divide both sides by λ

p
n(r ),

−∇2pn(r )

2λ
p

n(r )
+ vλ,N−1(r )

λ
+ vλ,ki n(r )

λ
+

vλ,cond (r )+ vλ(r )

λ
= 1

λ
(E N

λ −E N−1
λ∗ ).

(6.1)
When λ→∞, we see that the first term in the left-hand-side goes to zero, as thedensity n(r ) does not change with λ and it is well behaved, with the exceptionof the values of r on top of the nuclear positions Ri , where the density has acusp and ∇2pn(r )p

n(r )
yields back the Coulombic divergence. Nagy and Jánosfalvi [258]have carefully analyzed the λ→∞ behavior at the nuclear cusps in Ĥλ

λ , showingthat for all λ values the kinetic divergence at a nucleus of charge Z at position
Ri cancels exactly the external potential − Z

λ|r−Ri | . We can then safely disregardboth the kinetic and the Coulombic divergence in the λ → ∞ limit. The othercase, which we do not consider here, where this term may diverge is when theKS highest-occupied molecular orbital (HOMO) has a nodal plane that extends toinfinity [44, 45, 259].All the remaining terms, except for vλ,ki n(r ), will tend to a finite, in general non-zero, limiting value, as they grow linearly with λ (for example vλ(r ) →λvSCE(r ) ofeq 3.15). Notice that vλ,cond (r ) appears in the equations with a factor λ in front,see eqs 2.59 and 2.62. The only delicate term is vλ,ki n(r ) of eq 2.58, which containsthe gradient of a conditional amplitude that is collapsing into a distribution. Asalready discussed in chapter 3, several results in the literature suggest [34, 74, 80]that this term grows with λ only as ∼ p
λ, thus still vanishing with respect tothe other terms. As shown below, the SCE limit provides a perfectly consistenttreatment of the leading order of eq 2.61 when λ→∞, providing further evidencethat the kinetic potential vλ,ki n(r ) should be subleading in eq 6.1.

6.2. Conditional probability amplitude and ionization
potential at the SCE limitWe can now use eq 3.9 to find the conditional amplitude in the SCE limit and topartition the corresponding effective potential into its two components of eqs 2.57and 2.59 (as said, the kinetic part disappears in this limit).Let us now consider only one of the possible permutations in eq 3.9: in practice,as explicitly shown in appendix A, this restriction does not affect the expression
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6.2. Conditional probability amplitude and ionization potential at the SCElimit
resulting from integration over N −1 variables. Integrating over s we get

|ΨSC E (r 1, · · · ,r N )|2 = n(r 1)

N
δ(r 2 − f1(r 1)) · · ·δ(r N − fN−1(r 1)), (6.2)

and applying equation 2.56 and r 1 = r we find
|ΦSC E (r 2, · · · ,r N |r )|2 = δ(r 2 − f1(r )) · · ·δ(r N − fN−1(r )). (6.3)Equation 6.3 shows that the conditional amplitude gets a very transparent meaningin the SCE limit, as it simply gives the position of the other N −1 electrons as afunction of the position r of the first electron.1In what follows we label with “SCE” the terms that survive when we take thelimit λ→∞ of eq 6.1. We then use eq 6.3 to evaluate in this limit vSC E

N−1(r ),
vSC E

N−1(r ) =
∫ (

−
N∑

i=2
vSC E

H xc (r i )+
N∑

j>i , i=2

1

ri j

)
N∏

i=2
δ(r i − fi−1(r ))dr 2 · · ·dr N −E N−1

SC E∗ =

= −
N−1∑
i=1

vSC E
H xc (fi (r ))+

N−1∑
j>i=1

1

|fi (r )− f j (r )| −E N−1
SC E∗ (6.5)

Now we use the fact that the ground-state energy of the N-particle system withdensity n(r ) at the SCE limit is simply given by the value of the classical potentialenergy V̂ee + V̂ SC E on the manifold parametrized by the co-motion functions,
E N

SC E =−
N∑

i=1
vSC E

H xc (fi (r ))+
N∑

i> j , j=1

1

|fi (r )− f j (r )| , (6.6)
which allows us to rewrite the first term on the r.h.s. of equation 6.5 as

−
N−1∑
i=1

vSC E
H xc (fi (r ))+

N−1∑
j>i=1

1

|fi (r )− f j (r )| =

= E N
SC E + vSC E

H xc (r )−
N−1∑
i=1

1

|r − fi (r )|

(6.7)
The last two terms in the right-hand-side of eq 6.7 vanish for |r | → ∞. On theother hand, by construction vSC E

N−1(r ) → 0 when |r |→∞, and thus necessarily
E N

SC E = E N−1
SC E∗, (6.8)

1To be precise, as long as we are not integrating over dr 2 · · ·dr N , we should still consider the wave-function of eq A.8 and, consequently, the corresponding conditional amplitude
|ΦSC E (r 2, · · · ,r N |r 1)|2 = 1

(N −1)!

(N−1)!∑
℘=1

N∏
i=2

δ(r i − f℘(i )(r 1)) (6.4)
which gives the position of the other N −1 electrons as a function of the position of electron 1, r 1, inall their possible permutations.
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and we obtain the final simple expression for vSC E

N−1(r ),
vSC E

N−1(r ) = vSC E
H xc (r )−

N−1∑
i=1

1

|r − fi (r )| . (6.9)
Equation 6.8 might look puzzling, but one could also expect it from the fact that,as said, in the SCE limit we obtain the quantities that survive in eq 6.1 when wetake the λ→ ∞ limit. This means that the difference E N

λ
−E N−1

λ∗ grows linearlywith λ for large λ,
λ→∞ E N

λ −E N−1
λ∗ ∼λ(

E N
SC E −E N−1

SC E∗
)+O(

p
λ)+ ... (6.10)Then we see that the only way in which eq 2.63 can be satisfied when λ goes toinfinity is if eq 6.8 holds. Indeed this result was already implicit in ref [73], whereit was noticed that the configuration with one electron at infinity must belongto the degenerate minimum of the classical potential energy operator V̂ee + V̂ SC E .Equation 6.10 shows that also for the next leading order ∼ p

λ there should beno energy cost to remove one electron, a statement that is implicitly contained inref [34].Notice that the zero ionization energy of eq 6.8 concerns the λ→∞ Hamil-tonian in the adiabatic connection of eq 1.54. A very different result is obtainedif vSC E
H xc (r ) is used as an approximation for the Hartree-XC potential in the self-consistent KS equations, where the corresponding KS HOMO eigenvalue has beenfound to be very close to minus the exact ionization potential for low-density sys-tems [83, 93], displaying the correct step structure when the number of electronsis changed in a continuous way [105] as discussed in sec 3.4.

6.3. Different types of response potentials: vr esp(r ),
v r esp(r ), vSC E

r esp(r )Combination of eqs 2.34, 2.53 and 2.54 in chapter 2 already showed us that apossible decomposition of the XC potential is
vxc = vc,ki n + vr esp + vxc-hol e (6.11)Defining the pair-density Pλ

2 (r ,r ′), associated to the Hamiltonian in eq 1.54
Pλ

2 (r ,r ′) = N (N −1)
∫

|Ψλ(rσ,r ′σ′, ..., N )|2dσdσ′dx3...dx N , (6.12)
the corresponding exchange-correlation pair-correlation function gλxc (r ,r ′) at agiven coupling strength λ,

gλxc (r ,r ′) = Pλ
2 (r ,r ′)

n(r )n(r ′)
−1 (6.13)
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6.3. Different types of response potentials: vr esp (r ), v r esp (r ), vSC E
r esp (r )

and the coupling-constant averaged (CCA) pair-correlation function g xc (r ,r ′)

g xc (r ,r ′) =
∫ 1

0
gλxc (r ,r ′)dλ. (6.14)

we now introduce another possible decomposition of the XC potential.
6.3.1. Response potential from the coupling-constant averaged

XC hole and comparison between vr esp (r ) and v r esp (r )The XC energy can be written in terms of the CCA g xc (r ,r ′),
Exc [n] = 1

2

Ï
n(r )n(r ′)

g xc (r ,r ′)
|r − r ′| dr dr ′, (6.15)

as the integration over λ allows to recover the kinetic contribution to Exc [n] [28,29, 260]. Taking the functional derivative of eq 6.15 we obtain two terms [59]
vxc (r) =δExc [n]

δn(r )
= v xc,hol e (r)+ v r esp (r), (6.16)

where
v xc,hol e (r) =

∫
n(r ′)

g xc (r ,r ′)
|r − r ′| dr ′, (6.17)

and
v r esp (r) = 1

2

Ï
n(r ′)n(r ′′)
|r ′− r ′′|

δg xc (r ′,r ′′)
δn(r)

dr ′dr ′′. (6.18)
Equation 6.18 defines the quantity v r esp (r), but looking at eq 6.16 one can alsodetermine it as:

v r esp (r) = vxc (r)− v xc,hol e (r), (6.19)which is how we have computed the response potential in sec 6.4.3. Comparingeqs. 6.11 and 6.16, we have
v xc,hol e (r )+ v r esp (r ) =
vc,ki n(r )+ vxc,hol e (r )+ v r esp

c,ki n(r )+ v r esp
xc,hol e (r ). (6.20)

To understand their difference, let us define the quantity fλ[n]

fλ[n](r ) :=
∫
Φ∗
λ(σ, x2, · · · , x N ;r )

(
−∇2

r

2
+

∑N
i=2

2

λ

r1i

)
Φλ(σ, x2, · · · , x N ;r )dσdr 2 · · ·r N (6.21)

such that ∫
n(r )fλ[n](r )dr = Fλ[n]. (6.22)
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Φλ is not a stationary state for the hamiltonian ĥλ = −∇2

r
2 +

∑N
i=2
2

λ
r1i

therefore theusual Hellmann-Feynman trick is not applicable and we write
∂

∂λ
fλ(r ) =

(
〈Φλ|

∂ ĥλ
∂λ

|Φλ〉+〈∂Φλ
∂λ

|ĥλ|Φλ〉+〈Φλ|ĥλ|
∂Φλ

∂λ
〉
)

(r ) (6.23)
where the Dirac brakets stand for ∫

dσdx2 · · ·x N .We can simplify 〈 ∂Φλ∂λ |ĥλ|Φλ〉+〈Φλ|ĥλ| ∂Φλ∂λ 〉 = 2〈Φλ|ĥλ| ∂Φλ∂λ 〉 if Φλ is real (or, moregenerally, in the form Φλ = Rλ e iφ where φ is a number that does not depend on
λ). We then write

f1 − f0 =
∫ 1

0
dλ

(
∂

∂λ
fλ

)
. (6.24)

Evaluating the left hand side, we immediately get, from the definition of vλ,ki n and
vλ,cond ,

f1 − f0 = vc,ki n + 1

2
vcond . (6.25)

Substituting back the expression of the full wavefunction, in the first term on ther.h.s. of eq 6.23, we have
〈Φλ|

∂ ĥλ
∂λ

|Φλ〉(r ) =
∫
Φ∗
λ(σ,2, · · · , N ;r )

(∑N
i=2

2

1

r1i

)
Φλ(σ,2, · · · , N ;r )dσdx2 · · ·x N

= N

2n(r )

∫ N∑
i=2

1

r1i
|Ψλ|2 dσdx2 · · ·x N

= N (N −1)

2n(r )

∫ ∫ |Ψλ(rσ,rσ,3, · · · , N )|2 dσdσ′dx3 · · ·dx N

|r − r ′| dr ′

= 1

2n(r )

∫
dr ′ Pλ

2 (r ,r ′)
|r − r ′| (6.26)

with x2 = r ′σ and using, in the third line, the fact that there are (N −1) pairs ofindistinguishable electrons.We recognise this quantity to be simply
〈Φλ|

∂ ĥλ
∂λ

|Φλ〉(r ) = 1

2

∫
n(r ′)

(
gλxc (r ,r ′)+1

)
|r − r ′| dr ′ = 1

2
vλ,cond (r ) (6.27)

and combining eqs 6.23, 6.25 and 6.27 we find the relation
v xc-hol e = 2 vc,ki n + vxc-hol e −4

∫ 1

0
dλ〈Φλ|ĥλ|

∂Φλ

∂λ
〉, (6.28)
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r esp (r )

where we have subtracted the λ-independent Hartree potential from both sides.From combination of eqs 6.28 and 6.20, it further follows
v r esp = vr esp − vc,ki n +4

∫ 1

0
dλ〈Φλ|ĥλ|

∂Φλ

∂λ
〉. (6.29)

Both relations 6.28 and 6.29 are expressed assuming Φλ = Rλ e iφ.In conclusion, the coupling-constant averaged energy density (where, by “en-ergy density" we mean some function w̃(r ) s.t. ∫
w̃(r )n(r )dr = Exc ) and the onewith kinetic and interaction components taken separately differ because the con-ditional amplitude from which these energy densities are obtained has linear firstorder dependence on the coupling constant λ.

6.3.2. Response potential for the SCE limitThe two response potentials defined in eq 2.54 and in eq 6.18 can be both thoughtof as a measure that answers the question [48, 261, 262] “How sensitive is thepair-correlation function on average to local changes in the density?".It seems quite relevant to ask what happens to it when electrons are perfectlycorrelated to each other: in the SCE limit.To address this question, let us start by generalising eq 1.59 to any XC energyalong the adiabatic connection as
Eλ

xc [n] =
∫ λ

0
Wλ′ [n]dλ′. (6.30)

Using the expansion of the (global) AC integrand in the strongly-interacting limit(eq 1.70), to first order we obtain
λ→∞ Eλ

xc [n] ∼=
∫ λ

0
W∞[n]dλ′ =λW∞[n] (6.31)

Defining the SCE XC energy as E SC E
xc = limλ→∞

Eλ
xc
λ in agreement with eq 3.26 weget the simple relation

E SC E
xc [n] =W∞[n] =V SC E

ee [n]−U [n]. (6.32)
Let us then rewrite the AC integrand at λ→∞, in analogy to eq 6.15, as

W∞[n] = 1

2

∫ ∫
n(r)n(r′) g∞

xc (r,r′)
|r − r ′| dr dr ′. (6.33)

Taking the functional derivative of W∞[n] w.r.t. the density we obtain
vSCE

xc (r) = δW∞[n]

δn(r)
= vSC E

xc,hol e (r)+ vSC E
r esp (r), (6.34)
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where

vSCE
xc-hol e (r) =

∫
n(r′) g∞

xc (r,r′)
|r − r ′| dr ′ (6.35)

and
vSCE

r esp (r) = 1

2

Ï
n(r′)n(r′′)
|r ′− r ′′|

δg∞
xc (r′,r′′)
δn(r)

dr ′dr ′′. (6.36)
Expression 6.35 has been found explicitly to be [82]

vSCE
xc-hol e (r) =

N−1∑
i=1

1

|r − fi (r )| − vH(r ). (6.37)
Therefore inverting eq 6.34 we find for vSCE

r esp

vSCE
r esp (r) = vSCE

H xc (r )−
N−1∑
i=1

1

|r − fi (r )| (6.38)
which is exactly equal to vSC E

N−1(r ) of eq 6.9 as expected.It follows trivially from eqs 6.34 and 3.16 that both vSCE
r esp and vSCE

xc-hol e scales linearlywith scaling of the density.
SCE response potential for a two-electron densityWhen the number of electrons equals two, we also have another expression forcomputing vSCE

r esp (r ). In this case the SCE total energy E N=2SCE of sec 6.2 is equal to
E N=2SCE = 1

|r − f(r )| − vSCE
H xc (r )− vSCE

H xc (f(r )), (6.39)
where the r.h.s. is the value of the SCE potential energy on the manifold parametrizedby the co-motion function. This value is a degenerate minimum (see discussion inchapter 3), meaning that we can evaluate it at any point lying on the manifold,such as for |r| →∞ (for a nice illustration of the degenerate minimum of the SCEpotential energy, the interested reader is addressed to fig 1 of ref [80]). When
|r | →∞, the potential vSC E

H xc (r ) is gauged to go to zero. At the same time, the co-motion function f(r ) will tend to a well defined position r 0 well inside the density,i.e. f(r →∞) → r 0. We thus have
1

|r − f(r )| − vSC E
H xc (r )− vSC E

H xc (f(r )) =−vSC E
H xc (r 0). (6.40)

Combining eqs 6.38 and 6.40 we find
vSC E

r esp (r ) =−vSC E
H xc (f(r ))+ vSC E

H xc (r 0). (6.41)
94



6

6.4. Examples of CCA and SCE response potentials
6.4. Examples of CCA and SCE response potentialsWe have computed the SCE response potential, vSCE

r esp (r ), for small atoms and forthe hydrogen molecule at equilibrium distance.For the species H−, He, Be, Ne and H2 also accurate CCA response potentials
v r esp (r ) have been obtained.2 Notice that, in previous works, several authors[42, 46–48, 52, 61–63, 261–263] have computed the response potential at physicalcoupling strength, vr esp (r ) of eq 2.54. Here we perform the computation of such re-sponse potential only for the species H− and He using the correlated wavefunctionsof reference [264].In section 6.4.4 we also briefly discuss the extent of the error resulting fromcombining data coming from different methods, namely from the Lieb maximizationprocedure [91, 121, 227] and Hylleraas-type wavefunctions [106, 264] or QuantumMonte Carlo calculations [106, 265, 266] as explained in the next sections.
6.4.1. Computational details for the atomic densitiesFor the sake of clarity, we treat in separate sections the computation of vSCE

r esp (r )and v r esp (r ) for atoms.
SCE response potentialThe calculation of vSCE

r esp (r ) for spherical atoms is based on the ansatz for theradial part of the co-motion functions illustrated in section 3.3. The SCE potential,
vSC E

H xc (r ), is then obtained by integration of eq 3.15. Finally, we apply eq 6.38 (or,equivalently for N = 2, eq 6.41) to get the SCE response potential.This procedure is very ‘robust’ meaning that we have obtained comparable SCEresponse potentials using densities of different levels of accuracy. The densitieswe have used were obtained from
(A) CCSD calculations and aug-cc-pCVTZ basis set stored on a 0.01 bohr grid,see ref [121],
(B) Hylleraas-type wave functions, see refs [106, 264], for the two-electron sys-tems and Quantum Monte Carlo calculations, see refs [265–267], for theothers.

The cumulant function of eq 3.35 was computed either with simple interpolationsbetween the gridpoints of a given density or in some cases (for H−, He, and Li+)with explicitly fitted densities, constrained to satisfy the cusp condition and thecorrect asymptotic behaviour.Group (A) regards all the systems taken into account. Group (B) regards the
2To our knowledge, accurate CCA response potentials vr esp (r ) (eq 6.18) are reported here for the firsttime.
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r0
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Figure 6.1: Comparison between vr esp (r ) and vSC E
r esp (r ) for the H− anion.

species: H−, He, Be, and Ne. The figures in sec 6.4.3 only show the SCE responsepotential coming each time from the most accurate available density.
Coupling-constant averaged response potentialThe equation used in practice to compute v r esp (r ) is

v r esp (r ) = vxc (r )− v xc-hol e (r ) (6.42)
where v xc-hol e has been calculated by averaging the vλ,xc-hol e (eq 2.60) at each rover the interval [0,1] with an increment ∆λ= 10−1. The vλ,xc-hol e were obtainedthrough the Lieb maximisation procedure and taken from refs [121, 229, 268]. TheXC potentials were taken instead from Hylleraas-type calculations [106] or Quan-tum Monte Carlo results [106, 265, 266], as they were overall more accurate. Thischoice is further validated in section 6.4.4.
6.4.2. Computational details for the hydrogen moleculeFor the hydrogen molecule a different approach – i.e. the dual-Kantorovich formu-lation (sec 3.2.2) – was used for the computation of the SCE potential and thus ofthe SCE response potential.The basic idea relies on finding the SCE potential as a result of a nested optimiza-tion on a parametrized expression which has the correct asymptotic behaviour, the
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Figure 6.2: Comparison between vr esp (r ), vr esp (r ) and vSC E
r esp (r ) for the He atom. In theinset we zoom in to allow for a closer comparison between the quantities vr esp and vr esp .

correct cylindrical symmetry and models the barrier region in the midbond. Fromthe optimized potential one derives the co-motion function by inverting eq 3.15;for details see ref [95].For the CCA exchange-correlation hole potential, v xc-hol e , exactly the same pro-cedure described for atoms has been used.The XC potential for the physical system in this case was obtained within the Liebmaximisation procedure itself as in ref [121], namely as the optimized effective po-tential that keeps the density fixed minus the Hartree potential and the potentialdue to the field of the nuclei (see also section 6.4.4 for data validation).
6.4.3. Results and discussionWe start by comparing the coupling constant-averaged (CCA) and the SCE re-sponse potentials for the H− anion, in fig 6.1: we see that on average the SCEresponse potential is larger than the CCA one, but there is an intermediate region,in the range 1.7 . r . 5.2, where the CCA values are above the SCE ones. Sincethe SCE response potential does not contain any information on how the kineticpotential is affected by a change in the density, this could be a region wherethe contribution coming from the kinetic correlation response effects overcome theCoulomb correlation ones, even though we cannot exclude that already the mereCoulombic contribution to correlation is higher in the physical case. Indeed, it has
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Figure 6.3: Scaled SCE response potentials, vSC E
r esp,Z (r )

Z as a function of the scaled coordinate
Z r for the He series from H− up to Ne8+. In the inset, in which only the “slice" at r = 0 (i.e.the maximum values of the SCE response potentials) is plotted as a function of the nuclearcharge Z , also the hypothetical system with Z = Zcr i t (see text) is considered.

been shown that the SCE pair density can be insensitive to changes in certainregions of the density [269].Similar considerations hold when comparing the SCE response potential with theone at physical coupling strength although contrary to the CCA response potentialthis latter shows a maximum at the origin as well as the SCE potential does. Infig 6.2 we report the same potentials for the He atom density. Since He is lesscorrelated than H−, in this case the CCA potential v r esp (r ) differs even more fromthe SCE one. Comparing the two species H− and He among each other, one canfurther observe that the value of the distance at which the CCA response potentialof the species i has a maximum, r i
M , is also shifted leftward (closer to the nucleus)when going from Z = 1 to Z = 2, reflecting the contraction of the density. This in-
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formation is also mirrored in the SCE limit by the shift in the a1 values appearingin equation 3.36 for the computation of the co-motion functions for the two species.Indeed we find that aH−

1

aHe
1

= r H−
M

r He
M

.In fig 6.3, we report the SCE response potential along the He series (two-electron systems with nuclear charge Z = 1, · · · ,10). In particular, we plot thescaled potential vSC E
r esp,Z (r )

Z as a function of the scaled coordinate Z r . As expected,the response potential in the SCE limit shows an almost perfect scaling behaviour.Deviations from the linear-scaling trend (which is an exact property of the vSCE
r espfunctional as discussed), are a symptom of increasing correlation effects typical ofmore diffuse densities, like He and H−. Such correlation effects (curve lying belowthe uniformly scaled trend for small r and above for large r ) are stronger closerto the nucleus. In the top-right inset of this figure, we show only the values ofthe maxima of the SCE response potential of each species divided by its nuclearcharge, vSC E

r esp,Z (0)

Z as a function of Z . In this inset also a hypothetical system withnuclear charge Zcr i t = 0.9110289, the minimum nuclear charge that can still bindtwo electrons (see ref [106]), is included.In the upper panel of fig 6.4 we show the SCE and the CCA response potentialsfor the Be atom together with the exchange contribution vr esp,x (r ) (correspondingto λ= 0), and the correlation contributions obtained by subtracting vr esp,x (r ) from
v r esp (r ) and vSC E

r esp (r ). As it was found in ref [262], the exchange-only responsepotential shows a clear step structure in the region of the shell boundary. Thetotal CCA response potential also shows a step at the same position, while theSCE response potential has a kink. The kink can be understood by looking at theshape of the radial co-motion functions (see eq 3.36 and the lower panel of the samefigure), which determine the structure of the SCE response potential according toeq 6.38. The SCE reference system correlates two adjacent electron positions insuch a way that the density between them exactly integrates to 1, therefore the aiappearing in equation 3.36 are simply the shells that contain always one electroneach [104]. For the case of Be, the kink appears at the corresponding a2-value,which is very close to the shell boundary. In fact, when the reference electron is atdistance r ≈ a2 from the nucleus, a second electron is found at this same distance(but on the opposite side with respect to the nucleus), while the third electronis very close to the nucleus and the fourth is almost at infinity. This situationresults in an abrupt change of the pair density for small variations of the density,as particularly the position of the fourth electron changes very rapidly with smalldensity variations.Another interesting feature we can observe from fig 6.4 is that the Coulombcorrelation contribution to the CCA response potential, v r esp,c (r ), appears to benegative inside the entire 1s shell region. Furthermore, while the total physicalresponse potential is always below the SCE one, the exchange part appears to be
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higher in a region quite close to the shell boundary (0.6. r . 1.0). This results inthe Coulomb correlation contribution for the SCE-limit case, vSC E

r esp,c (r ), to be alsonegative in that region.In the upper panel of fig 6.5 we show the SCE response potential and its cor-relation part for the Ne atom. The SCE response potentials vSC E
r esp (r ) and vSC E

r esp,c (r )are numerically less accurate, due to the higher dimensional angular minimization.Nevertheless, the relation between its structure and the corresponding co-motionfunctions in the lower panel of fig 6.5 is clearly visible. We also show the CCAresponse potentials together with the separate exchange and correlation contribu-tions. Differently from the Be atom, neither the total response potential nor anysingle correlation contribution (CCA or SCE) is anywhere negative. Still the struc-ture is very similar, showing two steps in the vr esp,x (r ) one very tiny at around0.1 and another at around 0.4 distance from the nucleus and two wells in the
v r esp,c (r ). In fig 6.6 we show only the CCA correlation contributions to the CCAresponse potential of the two species for closer comparison.In fig 6.7 the CCA response potential for the hydrogen molecule at equilibriumdistance is shown, together with the SCE one. It is interesting to compare thisfigure with fig 3(a) of ref [48], where the response potential vr esp (r ) of eq 2.54was reported, together with other components of the XC potential. The responsepotential at full coupling strength for the same system is also shown in fig 4of ref [263], albeit a minus sign and a constant shift. The overall structure iscompletely different: in the case shown here there is a local minimum of v r esp (r )at approximately 1 bohr distance from the bond midpoint, while vr esp (r ) shown inrefs [48, 263] has a maximum located at the nuclei.In several examples we have now come to see that the details of the dependence ofthe conditional amplitude on the coupling-parameter can affect greatly the overallshape of the response potentials, as well as of the energy densities. It is thenimportant to keep these different features in mind when one wants to model theresponse potential or the XC hole, depending on whether the target is a coupling-constant averaged quantity or the same quantity at full coupling strength.
6.4.4. Exchange response potential for N=2 and data valida-

tionIt is common use in DFT to separate potentials and energy expressions into ex-change and correlation contributions. Analogously to the total XC potential, theexchange potential is defined as the functional derivative of the exchange energy,which is in turn defined as
Ex [n] = 〈Ψs (1, . . . , N )|V̂ee |Ψs (1, . . . , N )〉−U [n]. (6.43)

For a two-electron closed-shell system we have
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Figure 6.4: Total response potentials vr esp (r ) and vSC E
r esp (r ), and their components

vr esp,x (r ), vr esp,c (r ) and vSC E
r esp,c (r ) (upper panel) and radial co-motion functions (lowerpanel) for the Be atom.
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Figure 6.5: Total response potentials vr esp (r ) and vSC E
r esp (r ), and their components

vr esp,x (r ), vr esp,c (r ) and vSC E
r esp,c (r ) (upper panel) and radial-co-motion functions (lowerpanel) for the Ne atom.
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Figure 6.6: Correlation parts of the CCA response potential, vr esp,c , for the Be and the Neatoms.
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Figure 6.7: Comparison between vr esp (r ) and vSC E
r esp (r ) for the H2 molecule at the equi-librium distance, plotted along the internuclear axis, origin of the axes being at the bondmidpoint. In the top-right insertion the CCA response potential of H2 is zoomed in to allowa closer comparison with its response potential, vr esp (r ), shown in fig 3(a) of ref [48].
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Figure 6.8: Comparison between vr esp (r ) and vr esp,c (r ) for the H− atom in order to esti-mate the error coming from numerics and the use of different sources for vxc (r ) and w(r ).
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Figure 6.9: Comparison between vr esp (r ) and vr esp,c (r ) for the He atom in order to estimatethe error coming from numerics and the use of different sources for vxc (r ) and w(r ).
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6.5. Simple model for a stretched heteronuclear dimer
Ex [n] =−1

4

∫
n(r )n(r ′)
|r − r ′| , (6.44)

which implies vr esp,x (r ) = 0. In sec 6.4 we have shown the CCA response potentialfor some atoms combining quantities coming from different sources (see eq 6.42);namely refs [106, 265, 266] for the XC potentials (or their separate contributions),and refs [121, 268] for the CCA energy densities. In the case of the H2 molecule,instead, both the total XC potential and the CCA energy density used are from thelatter source.In order to give a feeling of how our results could be affected by computationalinaccuracies we show in fig 6.8 and 6.9, the difference vr esp,x (r ) = vx (r )−2w0(r ),together with the total v r esp (r ) and v r esp,c (r ) = v r esp (r )− vr esp,x (r ). The fact thatthe first quantity is not exactly zero and the last two are slightly different givesan idea of the numerical errors we have. As it can be noticed, the difference isbetween 1−10% of the quantity of interest, v r esp (r ), and the discussion in sec 6.4.3is not affected by this error range.
6.5. Simple model for a stretched heteronuclear dimerThe purpose of this section is to analyse the response potential in the SCE limitfor the very relevant case of a dissociating heteroatomic molecule, where the exactresponse potential is known to develop a characteristic step structure [46, 48, 50,51, 54, 270, 271] as discussed in sec 2.2.1.Although numerically stable KS potentials have been presented and discussedin the literature for small molecules [61, 63, 272], an accurate calculation of theSCE potential for a stretched heterodimer is still not available. In fact, while withthe dual Kantorovich procedure [95, 96] it is possible to obtain accurate valuesof V SC E

ee [n] for small molecules, the quality of the corresponding SCE potentials,particularly in regions of space where the density is very small, is not good enoughto allow for any reliable analysis.We then used a simplified one-dimensional (1D) model system, where only thetwo valence electrons involved in the stretched bond are treated explicitly. Severalauthors have used this kind of 1D models, which have been proven to reproduceand allow to understand the most relevant features appearing in the exact KSpotential of real molecules [51, 54, 270, 271]. Here we approximate the density ofthe very stretched molecule as just the sum of the two “atomic” densities
n(x) = na

(
x − R

2

)
+nb

(
x + R

2

)
=

a

2
e−a|x− R

2 |+ b

2
e−b|x+ R

2 |, (6.45)
where a and b mimic the different ionization potentials of the “atoms” (pseudopo-tentials or frozen cores) and the density is normalized to 2. We have chosen a > b,
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therefore the more electronegative atom will be found to the right side of the origin(at a distance +R

2 from it) and the less electronegative to the left.
6.5.1. SCE response potential for the model stretched het-

erodimerAs we have only two electrons, there is only one of the “SCE shell" borders, ai ,appearing in eq 3.32. We then drop the subscript "1" and use instead “R "
aR :

∫ aR

−∞
n(x)dx = 1 (6.46)

to stress that the distance a1 is a function of the separation between the centersof the exponentials in eq 6.45.We also write down explicitly the only comotion function for the 1D two-electroncase (compare eq 3.32).
f (x) =

{
N−1

e [Ne (x)+1] x < aR

N−1
e [Ne (x)−1] x > aR .

(6.47)
We have highlighted in the previous section that the border of a shell that con-tains one electron coincides with the reference position at which one of the co-motion functions diverges. The same is true when x → aR , except that in theone-dimensional case the electron that goes to infinity has to “reappear” on theother side, limx→a±

R
f (x) =∓∞. Moreover, as we have only 2 electrons, we can useeq 6.41 to compute vSC E

r esp (r ),
vSC E

r esp (x) =−vSC E ( f (x))+ vSC E (aR ), (6.48)
which further shows that

vSC E
r esp (aR ) = vSC E (aR ). (6.49)In fig 6.10 we show the SCE response potential compared to the “exact” v r esp (x)for the model density of eq 6.45 at internuclear separation R = 8, using a = 2 and

b = 1. In the same figure, we also show the local-density approximation (LDA) CCAresponse potential vLD A
r esp (x) computed, as in ref [59], via eq 6.19,

vLD A
r esp (x) = vLD A

xc (x)−2εLD A
xc (x). (6.50)

We stress that eq 6.50 is the correct definition of vLD A
r esp (x), since the energy den-sity in LDA does not have any gauge ambiguity, being given exactly in terms ofthe electrostatic potential associated with the CCA exchange-correlation hole ofthe uniform electron gas [273]. For the one-dimensional εLD A

xc , we have used the
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Figure 6.10: SCE response potential compared to the “exact” and the LDA vr esp (x) for themodel density in eq 6.45 with a = 2, b = 1, and R = 8. The red dashed line highlights theposition where x = aR .
parametrization of Casula et al. [274], in which the electron-electron Coulomb inter-action is renormalized at the origin [273], with thickness parameter b= 0.1. Noticethat the SCE response potentials evaluated with the full Coulomb interaction 1/|x|or with the interaction renormalized at the origin [273] are indistinguishable onthe scale of fig 6.10, since in the SCE limit the electron-electron distance |x− f (x)|for a stretched two-electron “molecule” never explores the short-range part of theinteraction.The “exact” v r esp (x) has been computed by inverting the KS equation for thedoubly occupied ground-state orbital pn(x)/2, disregarding the external potentialgiven by attractive delta functions located at the “nuclei”, and assuming that, forthe stretched molecule, the interaction between fragments is negligible (which isasymptotically true), while the contributions coming from the Hartree potential oneach fragment (the self-interaction error) are exactly canceled by the XC hole. Inother words, when R is large, we have vH xc (x) ≈ v r esp (x) ≈ vc,ki n(x)+ vr esp (x).We see that, as well known, the LDA response potential completely missesthe peak and the step structure of the “exact” v r esp (x), being, instead, way toorepulsive on the atoms [59], and following essentially the density shape. The SCEresponse potential, instead, even though clearly not in agreement with the “exact”one, shows an interesting structure located at the peak of v r esp (x), and also a sortof step-like feature.In fig 6.11 we illustrate the behavior of the SCE response potential alone asthe internuclear separation R grows, for the same values of a and b of fig 6.10.
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We see that the SCE response potential, contrary to the exact one, does not satu-rate to a step height equal to the difference of the ionization potentials of the twofragments, ∆Ip = |Ia − Ib |. On the contrary, vSC E

r esp (x) goes (although very slowly)to zero in the dissociation limit, similarly to what happens for the midbond peakin a homodimer, as explained in refs [55, 104]. This has to be expected, in viewof the fact that, in the SCE limit, we are only taking into account the expectationof the Coulomb electron-electron interaction, which, when considering two distantone-electron fragments as in this case, is a vanishing contribution [55].In appendix B, we use an asymptotic model for the co-motion function of eq 6.47to derive the dependence of the peak of the SCE response potential on the inter-nuclear distance (see eq B.4 and discussion therein).The fact that we still observe the SCE response structure for quite large R valuesis related to the non-locality of the SCE potential and to the long-range nature ofthe Coulomb interaction. A kinetic contribution to SCE is clearly needed, some-thing that is being currently investigated by looking at the next leading terms inthe λ→∞ expansion [34, 80].The peak structure of the SCE response potential is located at aR of eq 6.46,which is given by
aR = R

2

(a −b)

(a +b)
= R

2

(
1−

√
Ib
Ia

)
(
1+

√
Ib
Ia

) . (6.51)
If we compare this result with the one for the location of the step in the exact KSpotential, given by eqs. (27) and (29) of ref [51], we see that the two expressionsdiffer by the term 1p

32

ln
Ib
Iap

Ib+
p

Ia
, which becomes comparatively less important as thebond is stretched. In fig 6.10 we have reported the case a = 2, b = 1, and R = 8, forwhich eq 6.51 gives aR = 4

3 and the correction term for the actual position of thestep [51] , which is also the position at which the kinetic peak has its maximum,
xstep = xpeak , gives 1p

32

ln
Ib
Iap

Ib+
p

Ia
'−0.23. The reason why, in spite of this significantcorrection, in fig 6.10 the peak of the “exact” v r esp (x) visibly coincides with aR willbe clear in the following section 6.5.3.

6.5.2. Behaviour of the co-motion function for increasing in-
ternuclear distanceThe features of the SCE response potential can be understood by looking at howthe co-motion function changes with increasing internuclear separation R . In the1D two-electron case considered here, eq 3.11 becomes

f ′(x) = n(x)

n( f (x))
. (6.52)

108



6

6.5. Simple model for a stretched heteronuclear dimer

R=8

R=11

R=14

R=17

R=20

-20 -15 -10 -5 0 5 10 15
0.00

0.05

0.10

0.15

0.20

0.25

vresp
SCE (x)

Figure 6.11: SCE response potential for the model density in eq 6.45 with a = 2, b = 1, andincreasing internuclear distances, R .

For R >> 0, when the reference electron (e1) is in the center of one the two “atomic”densities, e.g., at x =−R
2 , the other electron (e2) is in the center of the other “atom”,

f (−R
2 ) = R

2 . This is a simple consequence of the fact that the overall density isnormalized to two and, if the overlap in the midbond region is negligible, forsymmetry reasons, the area from −R
2 to R

2 is exactly equivalent to the sum of theareas outside that range.We see that after a critical internuclear distance, Rc , at which the overlap betweenthe densities of the separated fragments becomes negligible, the slope of the co-motion function when e1 is in x =−R
2 becomes equal to

f ′(x)|x=− R
2
= n(−R

2 )

n( R
2 )

' nb(−R
2 )

na( R
2 )

= b

a
R > Rc , (6.53)

so that there is a region where f ′(x) = b
a , and, similarly, another region where

f ′(x) = a
b , by interchanging e1 with e2. Notice that the extension of these regionsis different for the two branches of eq 6.47 and it is wider when the referenceelectron is around the less electronegative “atom” as it can be seen in fig 6.12,
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Figure 6.12: Derivative of the co-motion function for the model density in eq 6.45 with
a = 2, b = 1, and increasing internuclear distances, R .

where we show the (numerically) exact
f ′(x) = na(x − R

2 )+nb(x + R
2 )

na( f (x)− R
2 )+nb( f (x)+ R

2 )
. (6.54)

There, the two regions clearly appear as left and right plateaus, with their ex-tent increasing linearly with R .3 These plateaus are the signature of moleculardissociation: they are absent at equilibrium distance, and start to appear as theoverlap between the two densities is small. We see from eq 6.53 that they encodeinformation on the ratio between the ionization potentials of the two fragments.
6.5.3. Careful inspection of the exact features of the KS po-

tential for the dissociating AB moleculeThe model density n(x) of eq 6.45 corresponds to an asymptotic simplification ofdifferent models that appeared in the literature to study the KS potential in thedimer dissociation limit [51, 54, 270, 271]. Here we review in detail the propertiesof the KS potential and the two single contributions that can be extracted from thismodel, vc,ki n(x) (eq 2.53) and vr esp (x) (eq 2.54, also showing that a second peak
3In appendix B, we show that the sum of the left and right plateaus goes asymptotically like 2R .
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in the kinetic potential appears on the side of the more electronegative “atom”, afeature that seems to have been overlooked in previous studies. In order to studythe dissociation regime we use the Heitler-London wavefunction:

ΨHL(x1, x2) = 1√
2(1+S AB )

(
φa (x1)φb (x2)+φb (x1)φa (x2)

)
, (6.55)

where S AB = ∫
φa(x)φbdx , and φa(b) =

√
a(b)

2 e−
a(b)

2 |x−(+) R
2 |. To compute the kineticpotential, in the dissociation limit, we can use eq 2.58 and the conditional amplitudecoming from the Heitler-London wavefunction considering S AB = 0, which yields thewell-known expression [51, 54]

vc,ki n(x) = 1

2

∫
| d

d x
ΦHL(x2|x)|2dx2

= 1

2

(
φb(x)φ′

a(x)−φa(x)φ′
b(x)

)2(
φa(x)2 +φb(x)2

)2 , (6.56)
where we have used the fact that vki n(x) = vc,ki n(x) as the kinetic KS potential iszero for a closed-shell two-electron system. Analogously, vr esp (x) can be obtainedfrom vN−1 of eq 2.57,

vr esp (x) = 1

2

∫
| d

d x2
ΦHL(x2|x)|2dx2+

+
∫

vmod
ext (x2)|ΦHL(x2|x)|2dx2 −E N−1 =

=− 1

n(x)

(
a2

8
φb(x)2 + b2

8
φa(x)2

)
+ a2

8
, (6.57)

where vmod
ext (x) = − a

2δ
(
x − R

2

)− b
2δ

(
x + R

2

) and E N−1 = − a2

8 . Comparing these twocontributions with the KS potential obtained from the density by inversion (sub-tracting the external potential due to the attractive delta peaks at the “nuclear”positions), we have in this limit, as already discussed,
vH xc (x) ∼ v r esp (x) ∼ vc,ki n(x)+ vr esp (x), (6.58)

since vcond (x) goes to zero when the fragments are very far from each other.4In fig 6.13 we show the potential obtained from the inversion of the KS equationwith its two components vc,ki n(x) and vr esp (x).Note that the response component itself can be split into different contributions,
4 Recalling the discussion on sec 6.3.1, we see that since, for a two-electron model in the dissociationlimit, ĥλ ∼ −∇2

r 2
2 then ∫ 1

0 dλ〈Θλ|ĥλ| ∂Θλ∂λ
〉 ∼ 1

2 vc,ki n which plugged into eqs 6.28 and 6.29 correctlygives vxc-hol e ∼ v xc-hol e and vr esp (x) ∼ vc,ki n (x)+ vr esp (x), as contained in eq 6.58.
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Figure 6.13: Hartree-XC potential, vH xc (x), and its contributions vc,ki n (x) and vr esp (x)for a = 2,b = 1, R = 8. The red dashed line highlights the position where x = aR

namely vr esp = vr esp,x +vr esp,c . However in sec 6.4.4 we have shown that vr esp,x =
v r esp

x-hol e = 0 for closed shell two-electron systems as it is the case here. Moreover,
vr esp,c = v r esp

c-hol e +v r esp
c,ki n , however in a dissociating two electron-system, since vcondis going to zero, the correlation hole contribution is vc-hol e vx-hol e =− vH

2 to fullycompensate the self interaction of the Hartree potential. And its response partvanishes in this limit. In conclusion, the rising of the step structure is a purelykinetic effect, i.e.
vr esp (x) ∼ v r esp

c,ki n(x). (6.59)Given the simplicity of the model, it is easy to obtain exact expressions regard-ing each component of the potential and their maxima, inflection points, and soforth. Some of these relevant analytic expressions are listed in tables 6.1 and 6.2.
By looking at the table, one sees, for example, that the peak of the total XCpotential is not located where the peak of the kinetic correlation builds up. Inparticular the maximum of the Hartree-XC potential is found at

xpeak,H xc =
R

2

(a −b)

(a +b)
, (6.62)

which is exactly aR (see eq 6.51 and compare also fig 6.10). Thus, the Hartree-XCpotential reaches its maximum when the density integrates to one electron (or the
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Table 6.1: Some of the relevant analytic features of the analytic 1D model dimer for x < R
2 .The distance x(1)

peak is the position at which the kinetic potential, vc,ki n (x), has a maximumin between the two nuclear centers; x(1)
step is the (coinciding) position at which the responsepotential, vr esp (x), has an inflection point. With the subscript “flex” we indicate the inflectionpoint of both the total Hartree-XC potential and the kinetic potential; they are distinguishedvia an additional subscript, respectively “Hxc” and “k”. Finally, xeq is used to label the x-value at which vc,ki n (x) and vr esp (x) crosses.

a Ê b
φa (x) =

√
a
2 e−

a
2 |x− R

2 |

φb (x) =
√

b
2 e−

b
2 |x+ R

2 |

n(x) = |φa (x)|2 +|φb (x)|2

Iα = α2

8 ; α= a,b

x < R
2

dvc,ki n (x)
dx |

x(1)
peak

= d2vr esp (x)

dx2 |
x(1)

step
x(1)

peak = (a−b)R+2ln b
a

2(a+b) (6.60)

vc,ki n (x(1)
peak) = 1

8

(
a+b

2

)2

vr esp (x(1)
step) = 1

2
a2−b2

8

vH xc (x(1)
peak) = 1

32 (3a −b)(a +b)

d2vc,ki n (x)

dx2 |
x(1)

flex,k
= 0 xflex,k(1) =

(a−b)R−2ln 2a+p3a
b

2(a+b)

d2vc,ki n (x)

dx2 |
x(2)

flex,k
= 0 xflex,k(2) =

(a−b)R−2ln 2a−p3a
b

2(a+b)

dvH xc (x)
dx |xpeak,H xc=0 xpeak,H xc = (a−b)

(a+b)
R
2 = aR

d2vH xc (x)
dx2 |

x(1)
flex,H xc

= 0 x(1)
flex,H xc = (a−b)R−2ln (a+b+

p
a2+ab+b2)
b

2(a+b)

d2vH xc (x)
dx2 |

x(2)
flex,H xc

= 0 x(2)
flex,H xc = (a−b)R−2ln (a+b−

p
a2+ab+b2)
b

2(a+b)

vc,ki n (xeq ) = vr esp (xeq ) xeq = (a−b)R+2ln2+2ln b2
a(b−a)

2(a+b)
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Table 6.2: Some of the relevant analytic features of the analytic 1D model dime for x > R
2in analogy with the ones listed in table 6.1, but appearing in this case somewhere far fromthe midbond on the side of the more electronegative fragment, are listed. For example, x(2)

peakis the second maximum of the kinetic potential, eq 6.61 (top-right entry of the second part),which also coincides with the second inflection point of the response potential as argued inthe main text.

a Ê b
φa (x) =

√
a
2 e−

a
2 |x− R

2 |

φb (x) =
√

b
2 e−

b
2 |x+ R

2 |

n(x) = |φa (x)|2 +|φb (x)|2

Iα = α2

8 ; α= a,b

x > R
2

dvc,ki n (x)
dx |

x(2)
peak

= d2vr esp (x)

dx2 |
x(2)

step
x(2)

peak = (a+b)R−2ln b
a

2(a−b) (6.61)

vc,ki n (x(2)
peak) = 1

8

(
a−b

2

)2

vr esp (x(2)
step) = vr esp (x(1)

step)

vH xc (x(2)
peak) = 1

32 (3a +b)(a −b)

d2vc,ki n (x)

dx2 |
x(3)

flex,k
= 0 xflex,k(3) = (a+b)R−2ln (2b+p3b)

a
2(a−b)

d2vc,ki n (x)

dx2 |
x(4)

flex,k
= 0 xflex,k(4) = (a+b)R−2ln (2b−p3b)

a
2(a−b)

d2vH xc (x)
dx2 |

x(3)
flex,H xc

= 0 x(3)
flex,H xc = (a+b)R+2ln (a−b+

p
a2−ab+b2)
b

2(a−b)
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correct integer number of electrons in a general two fragments case) because thisis where the two fragments must be detached from one another. From a differentperspective, this is a manifestation that the response and the kinetic correlationcontributions in the dissociation limit are not independent and that their sum canbe sometimes more meaningful than the separate contributions. Also, by playingaround with the expressions in tables 6.1 and 6.2, one realises that there can bemisleading coincidental features. For example, the last entry of table 6.1 , which isthe analytic expression for the distance at which the kinetic correlation potentialand the response potential equate, xeq , is such that the two contributions vc,ki n(x)and vr esp (x) crosses exactly at aR if a = 2 and b = 1 like in fig 6.13, but this isnot a general feature. Similarly if we choose a = 5

3 b then the height of the kineticpeak becomes equal to the height of the step and so on.Note here that the features listed in the table are obtained for the zero-overlapcase, S AB = 0, in eq 6.55. Nonetheless, they should become asymptotically exactin the dissociation limit.Another feature that came to our attention and that – to the best of our knowl-edge – had not been discussed before, is the fact that the kinetic correlationpotential has a second peak on the side of the more electronegative atom. Thissecond maximum is located where the second inflection point of the response po-tential is, see fig 6.13 and eq 6.61 in tab. 6.2. To understand the appearance ofthe second peak, we can identify two regimes, A and B, by the leading exponentialcoefficient: for example, in our case, in the region starting from −∞ the densityof the fragment with the smallest coefficient, nb(x) is larger than the other, na(x);approaching the A center there is a point in which na(x) becomes larger than theother density. This transition between regimes determines both the kinetic peakand the response step. In particular the distance, x(1) at which the orbitals, φi (orthe fragment densities, which are simply their square) equate
φa(x(1)) =φb(x(1)), (6.63)

is found to coincide with that of eq 6.60 in the table, i.e. the maximum of thefirst kinetic peak as well as of the flex coming from the building up of the responsepotential step, x(1) = x(1)
peak = x(1)

step. Note also that this distance is always somewherein between the two centers of the fragments, −R
2 < x(1)

peak < R
2 .Nonetheless, since nb(x) is asymptotically dominating, by going further in thedirection of +∞, the ‘B regime’ is to be encountered again and the two fragmentdensities, though both very small in magnitude, will be equal again, at some point,

x(2)

φa(x(2)) =φb(x(2)). (6.64)At this distance also another kinetic peak is appearing as well as another flexcoming from the exhaustion of the response potential step or, in short, x(2) = x(2)
peak =
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x(2)

step. This is in agreement with the observation in the work of Baerends andcoworkers that steps in the response potential and peaks in the kinetic correlationpotential are always related [42, 261]. Note that this secondary peak is not visiblewhen looking instead at the CCA response potential, again showing the importanceof keeping in mind which contribution of the XC potential one is targeting whendesigning approximations.
6.6. ConclusionsIn the present work we have derived the modulus squared of the conditional ampli-tude in the λ→∞ (SCE) limit as well as a consistent definition of its correspondingresponse potential. In the simple 1D model of a dissociating molecule (eq 6.45), it isfound that interesting similarities between dissociation features of the exchange-correlation potential and SCE features, such as the behaviour of the co-motionfunction for increasing internuclear distance or the structure of the SCE responsepotential itself, can be established. For example, in the dissociation regime, theslope of the co-motion function is determined by the ratio between the ioniza-tion potentials of the fragments (compare fig 6.12), whereby the step height of theexchange-correlation potential is determined by their difference. In addition, theco-motion function confers to the SCE response potential an asymmetric structurewhich indicates on which side of the system the more electronegative fragment islocated.Further analyzing the different components of the exchange-correlation poten-tial that are relevant in the dissociation limit, namely vr esp and vc,ki n , or v r esp ,we have identified the presence of a second peak of lower intensity in the kineticcorrelation potential on the side of the more electronegative atom and, by compar-ison, we have observed that the peak of the coupling-constant averaged responsepotential asymptotically coincides with that of the SCE response potential itself.Our work shows that the SCE framework encodes more than few pieces of infor-mation on the physical system and that useful guidelines in the design of highlynon-local density functional approximations (based on integrals of the density) canbe drawn from it. A step further in this direction will be to study exact propertiesof the kinetic potential that appears as the next leading term (∼ λ−1/2) in the ex-pansion of the adiabatic connection integrand in the λ→∞ limit [34], as well asspin effects that have been shown [80] to enter at orders ∼ e−

p
λ.We have also reported, for some small systems (He series, Be, Ne, and H2),the response potential coupling-constant averaged along the adiabatic connection;the study of this different response potential complements that of the responsepotential at full coupling strength and could provide other hints for the constructionof approximate XC functionals, especially of a new generation of DFAs based onlocal quantities along the adiabatic connection [6, 121, 229, 232].
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7
Sum-rules of the response

potential in the
strong-interaction limit of

DFT
The response part of the exchange-correlation potential of Kohn–Sham density
functional theory plays a very important role, for example for the calculation of
accurate band gaps and excitation energies. Here we analyze this part of the
potential in the limit of infinite interaction in density functional theory, showing
that in the one-dimensional case it satisfies a very simple sum rule.

7.1. IntroductionThe investigation of the exact properties and features of vxc (r ) has always playedan important role in understanding and building approximations [42, 46–48, 51, 52,54, 55, 61–63, 261, 265, 266, 270–272]. In this work we focus on the XC potentialin the SCE limit, vSCE
xc (r ), and particularly on its response part, which has revealedseveral interesting features as discussed in the previous chapter.The response part of the XC potential has been shown to be critical for the correctdescription of virtual KS orbitals’ levels, needed for the calculation of molecularexcitation energies in TDDFT [58, 59], as well as for the proper description ofelectron localization in a dissociating heteronuclear molecule [46–48, 51, 54, 262,272] and for the construction of the Levy-Zahariev potential [230].Here we show that, in cases in which the SCE limit can be solved exactly (one-
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7. Sum-rules of the response potential in the SIL of DFT
dimensional and spherically symmetric systems), its response potential satisfies asimple sum rule, see Eqs. 7.6, 7.16 and 7.20.
7.2. Sum-rule of the SCE response potentialWe can use 3.15 and 6.38 to derive the following expression for the gradient of theSCE response potential with w(r ) ≡ 1/ |x |

∇vSCE
r esp =

N−1∑
i=1

(
(∇w)(r − fi (r )− (∇w)(r − fi (r )) (1−∇fi )

)
=

N∑
i=2

(∇w)(r − fi (r )) ·∇fi (r ) (7.1)
where (∇w)(r − fi (r )) = (∇x w(x))

∣∣
x=(r−fi (r )) = − (r−fi (r ))

|(r−fi (r ))|3 . To clarify, let us workout the expression of the SCE response potential per component in Cartesiancoordinates
∂µvSCEresp (r ) =−

D∑
ν=1

N∑
i=2

r ν− fi ,ν(r )

|r − fi (r )|3 ∂µfi ,ν(r ). (7.2)
For the case D = 1, the response potential can now directly be calculated as anintegral. In the following sections we are going to prove the exact behaviour of theintegral of the SCE response potential corresponding to an N-electron 1D densityand the one corresponding to a spherical two-electron density. As discussed inchapter 3, these are the two cases in which the co-motion functions are the optimalmaps.
7.2.1. Sum-rule of the SCE response potential for a 1D densityThe sum-rule of the SCE response function in 1D (for Coulomb interaction) relatesthe integral over the response function to the number of electrons. To illustratethe idea, we will first consider the simplest situation: a symmetric 2-electron den-sity. Next we release the symmetry constraint and then generalise to an arbitraryamount of particles.
Symmetric two-electron density in 1DIn the case of a symmetric 1D density with only two electrons, we see that a1 = 0and the SCE response potential can be expressed as

vSCEresp (x) =



∫ x

−∞
dy

f ′(y)(
y − f (y)

)2 (x ≤ 0)

∫ ∞

x
dy

f ′(y)(
y − f (y)

)2 (x ≥ 0),

(7.3)
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where we used that the potential can be obtained by integrating from either side,as the response potential is symmetric.Let us only consider the negative side of the SCE response potential. Byinterchanging the order of integration, we find for the integral over the responsefunction ∫ 0

−∞
dx vSCEresp (x) =−

∫ 0

−∞
dy

y f ′(y)(
y − f (y)

)2 . (7.4a)
We can also make a change of variables u =− f (y), keeping in mind that, due tothe property in 3.12, f −1(x) = f (x)∫ 0

−∞
dx vSCEresp (x) =

∫ 0

−∞
du

f (u)(
f (u)−u

)2 . (7.4b)
We can combine these two expressions to write the integral over the SCE responsefunction as∫ 0

−∞
dx vSCEresp (x) =−1

2

∫ 0

−∞
du

y f ′(y)− f (y)(
y − f (y)

)2 =−1

2

y

y − f (y)

∣∣∣0

−∞ = 1

2
. (7.5)

As the SCE response potential is a symmetric function, we find that the integralover the real line gives ∫ ∞

−∞
dx vSCEresp (x) = 1. (7.6)

General two-electron density in 1DIn the case of a non-symmetric density we now have almost the same expression forthe SCE response potential as in 7.3, except that we need to cut it at a1 = N−1
e (1)instead of zero

vSCEresp (x) =



∫ x

−∞
dy

f ′(y)(
y − f (y)

)2 (x ≤ a1)

∫ ∞

x
dy

f ′(y)(
y − f (y)

)2 (x ≥ a1),

(7.7)
where we used again that it does not matter from which side we do the integra-tion. Though physically reasonable, we need to show explicitly that vSCEresp (−∞) =
vSCEresp (+∞). To this purpose, let us work out the following identities

dNe (x) = n(x)dx, (7.8a)
dN−1

e (ν)

dν
= 1

n
(
N−1

e (ν)
) . (7.8b)
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Now we work out the response function at x =+∞ by performing the full integral

vSCEresp (∞) =
∫ a1

−∞
dy

f ′(y)(
y − f (y)

)2 −
∫ ∞

a1

dy
f ′(y)(

y − f (y)
)2

=
∫ 1

0
dν

1/n
(
N−1

e (ν+1)
)(

N−1
e (ν)−N−1

e (ν+1)
)2 +

−
∫ 2

1
dν

1/n
(
N−1

e (ν−1)
)(

N−1
e (ν)−N−1

e (ν−1)
)2

=
∫ 1

0
dν

1(
N−1

e (ν)−N−1
e (ν+1)

)2

×
(

1

n
(
N−1

e (ν+1)
) − 1

n
(
N−1

e (ν)
))

=
[

1

N−1
e (ν)−N−1

e (ν+1)

]1

0

= 0. (7.9)
This explicit demonstration trivially generalises to general N by including a sum-mation over the contributions from each particle.Now let us first consider the integral over (−∞, a1). Again by changing theorder of integration, we find∫ a1

−∞
dx vSCEresp (x) = a1v(a1)−

∫ a1

−∞
dy

y f ′(y)(
y − f (y)

)2 . (7.10a)
The integral over (a1,∞) yields∫ ∞

a1

dx vSCEresp (x) =
∫ ∞

a1

dy
y f ′(y)(

y − f (y)
)2 −a1v(a1), (7.10b)

so the full integral over the response function becomes∫ ∞

−∞
dx vSCEresp (x) =

(∫ ∞

a1

dy −
∫ a1

−∞
dy

)
y f ′(y)(

y − f (y)
)2 . (7.11a)

Now making the transformation u = f (y), we obtain the following alternative ex-pression ∫ ∞

−∞
dx vSCEresp (x) =

(∫ a1

−∞
du −

∫ ∞

a1

du

)
f (u)(

f (u)−u
)2 . (7.11b)

If we now take the average over 7.11a and 7.11b, we find again that the full integral
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yields ∫ ∞

−∞
dx vSCEresp (x) = 1

2

(∫ ∞

a1

dy −
∫ a1

−∞
dy

)
y f ′(y)− f (y)(

y − f (y)
)2 =

= 1

2

(
y

y − f (y)

∣∣∣∞
a1

− y

y − f (y)

∣∣∣a1

−∞

)
= 1. (7.12)

Arbitrary amount of electrons in 1DAs the number of electrons exceeds two, we deal with a set of co-motion functions.As we do not have f = f −1 anymore, we need to find the inverses of each co-motionfunctions in 3.32. These are
f −1

i (x) =
{

N−1
e

(
Ne (x)− i

) for x < ai

N−1
e

(
Ne (x)− i +N

) for x > ai , (7.13)
where we see that, as expected, they are also co-motion functions, f −1

i = fN−i .Now let us consider the general SCE response potential in 1D
vSCEresp (x) =

N−1∑
i=1

(
θ(āi −x)

∫ x

−∞
dy +θ(x − āi )

∫ ∞

x
dy

) f ′
i (y)(

y − fi (y)
)2 , (7.14)

where the expression for x > āi is again justified by 7.9 for each fi .By interchanging the integration again, the integral over the SCE responsepotential can be expressed as∫ ∞

−∞
dx vSCEresp (x) =

N−1∑
i=1

(∫ ∞

āi

dy −
∫ āi

−∞
dy

) y f ′
i (y)(

y − fi (y)
)2 . (7.15a)

Making the variable transformation u = fi (y), we find
∫ ∞

−∞
dx vSCEresp (x) =

N−1∑
i=1

(∫ ai

−∞
du −

∫ ∞

ai

du

) f −1
i (u)(

f −1
i (u)−u

)2

=
N−1∑
i=1

(∫ āN−i

−∞
du −

∫ ∞

āN−i

du

)
fN−i (u)(

fN−i (u)−u
)2 . (7.15b)

As the summation can be done in any order, we can combine it with the previousexpression to find∫ ∞

−∞
dx vSCEresp (x) = 1

2

N−1∑
i=1

(∫ ∞

āi

dy −
∫ āi

−∞
dy

) y f ′
i (y)− fi (y)(
y − fi (y)

)2 = N −1, (7.16)
which proves the interesting property that the integral over the SCE responsepotential for an N-electron 1D density (and Coulomb interaction) gives N −1.
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7.2.2. Sum-rule of the SCE response potential for spherical

two-electron densitiesThe differential equation for the response potential 7.1 in the spherical two-electroncase is readily worked out as
d

dr
vSCEresp (r ) = f ′(r )

(r + f (r ))2 , (7.17)
where |r − f(r )| = r + f (r ), since the electrons need to be situated opposite to eachother with respect to the origin to minimise their repulsion. Using the standardgauge again, we have

vSCEresp (s) =−
∫ ∞

s
dr

d

dr
vSCEresp (r ). (7.18)

We now evaluate the following integral over the response potential∫ ∞

0
ds vSCEresp (s) =−

∫ ∞

0
dr

r f ′(r )

(r + f (r ))2 . (7.19a)
Finally, as seen in the 1D case, via the usual transformation u = f (r ), we writeequivalently the last expression in the above equations as∫ ∞

0
ds vSCEresp (s) =

∫ ∞

0
du

f (u)

(u + f (u))2 . (7.19b)
By averaging between the two, one obtains that the integral over the positive realline of the SCE response potential for a spherical two-electron density gives∫ ∞

0
dr vSCEresp (r ) = 1

2

∫ ∞

0
du

f (u)−u f ′(u)

(u + f (u))2 = 1

2
. (7.20)

7.3. Concluding remarksWe have analyzed the SCE response potential and shown that it satisfies a simplesum rule in the one-dimensional and in the N = 2 spherically symmetric case. Thislatter case might be a special one, as it is mathematically equivalent to a 1D case,thus requiring further investigation for a generalisation to 3D systems. Additionalinvestigations are also required whether the sum-rules could also be establishedfor the physical interacting system, either with or without the kinetic part of theresponse potential.
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8
Kinetic energy

density-density functional
theory

The contents presented in this chapter are a collection of preliminary results andthoughts that represent a follow-up study – in collaboration with I. Theophilou,M. Ruggenthaler, N.Lathiotakis, A. Rubio – on a first investigation in the discretecase [275]. Many of the ideas shared here are still quite unsettled and we do notexclude that some fundamental aspects might have been overlooked. Nonetheless,we decided to include such contents in this thesis work as we believe that theystill raise some interesting points and provide some hints for future directions.The motivation for this work stems from the consideration that the design ofapproximate density functionals that can correctly account for the kinetic contri-bution missed by the KS kinetic energy functional is somehow missing from theDensity Functional Theory literature.1In practice, the way in which the kinetic correlation contribution is typically tack-led is via integration over the adiabatic connection.It is little debatable that the availability of an explicit functional of the kineticenergy in one-body reduced density matrix (1RDM) functional theory [276] repre-sents one of the most striking (theoretical) advantages of such theory over DFT.In chapters 2 and 6, we have touched upon certain features of the XC potentialemerging in the case of a dissociating molecule that have a kinetic origin.In particular, we remind here that these contributions can be energetically neg-ligeable, for example: in a dissociating Hydrogen molecule the correlation kinetic
1Or at least, we are not aware of any work where this contribution has been modelled per se.

123



8
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energy contribution is vanishing or in a heteronuclear molecule, the rising of thestep structure comes from the response component which does not enter directly inthe computation of the XC energy. Nevertheless, their occurrence inside the KSpotential is crucial to have the density converge to correctly separated fragmentsupon dissociation, preventing unphysical fractional distribution of electron chargebetween the fragments.Here, we ask ourselves whether it is possible to facilitate the modelling ofthe kinetic correlation contribution in approximate functionals, by introducing aposition-dependent mass to which the kinetic energy density, τ, is associated. Insuch a way, the functionals of interest become not only density functionals butbifunctionals of the density and of the kinetic energy density, F [n,τ].The invocation of a position-dependent mass of the particles in quantum mechanicsis not at all new and there is a vast related literature in several different fields(see e.g. reference [277] and references therein). Recently, a position-dependentmass has been argued to appear naturally in the context of thermal DFT [278].In the present context, schematically, we explore the possibility of the mapping{

v(r ), m(r )
}

external quantities ←→
{

n(r ), τ(r )
}

internal quantities (8.1)
between the pair density-kinetic energy density as “internal" quantities and thatof external potential-position dependent mass as “external" quantities. In otherwords we would like to build a kinetic energy density-density functional theory(keDFT). However, whether a theorem analogous to the Hohenberg-Kohn one forsuch a mapping can be established is not clear at the state of the art.Moreover, aiming for connecting the interacting system to a fictitious non-interactingsystem in the Kohn-Sham spirit (keKS), in addition to a proof of 8.1 (“{v,m}-representability of the pair {n,τ}"), we also need to have a non-interacting systemdelivering the same pair of internal quantities as the interacting one, by meansof a different pair of external quantities, namely an effective potential vke and aneffective mass mke . In summary, we require the two bijective mappings betweenpairs {

v(r ), m(r )
}
←→

{
n(r ), τ(r )

}
←→

{
vke (r ),mke (r )

}
. (8.2)

We signal at this point that the use of meta-GGA functionals [123, 279, 280], withinthe generalised Kohn-Sham approach (GKS) [281], is closely interlaced with thefeasibility of the mapping 8.2.For example, it has been argued [282] that the GKS method for solving SCF equa-tions containing a meta-GGA functional can be physically interpreted as intro-ducing a position-dependent mass in the kinetic energy operator and that, to firstorder in the density, there is no difference in going from the local KS Hamiltonian(OEP method [33]) to the GKS one. However, the discussion on the subject is far
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from settled, and many implicit assumptions (see e.g. reference [283]) – onto whichthe increasingly popular use of meta-GGA density functionals relies – still needto be addressed and, hopefully, understood.
8.1. Fundamental challengesLike any energy density, also the kinetic energy density is not a uniquely definedquantity. Therefore the first step in the direction of constructing a kinetic energydensity-density functional theory is to decide which gauge we want to consider.The most common definition of kinetic energy density is the positive definiteexpression

τP (r ) := N

2m(r )

∑
σ

∫
|∇rΨ(rσ, · · · , x N )|2 dr 2 · · ·dr N (8.3)

where m(r ) is just the unit constant if we are dealing with the interacting system.Equation 8.3, within the assumption that the ground state wavefunction be real(aside from a trivial phase factor), can be rewritten as
τP (r ) = N

8m(r )

∑
σ

∫ (∇r |Ψ(rσ, · · · , x N )|2)2

|Ψ(rσ, · · · , x N )|2 dr 2 · · ·dr N

= N

8m(r )

∑
σ

∫
∇r D(rσ, · · · , x N ) ·∇r logD(rσ, · · · , x N )dr 2 · · ·dr N (8.4)

with D(rσ, · · · , x N ) := |Ψ(rσ, · · · , x N )|2 and can be interpreted as a measure of in-formation in the context of information theory (see for example refs [284, 285]).The other common expression is the one with the Laplacian operator. However,while in the usual case the placement of the mass w.r.t. the nabla operator isirrelevant, here we have two possible definitions, namely
τL1(r ) =− N

2m(r )

∑
σ

∫
Ψ∗(rσ, · · · , x N )∇2

r Ψ(rσ, · · · , x N )dr 2 · · ·dr N (8.5)
and

τL2(r ) =−N

2

∑
σ

∫
Ψ∗(rσ, · · · , x N )∇r · 1

m(r )
∇r Ψ(rσ, · · · , x N )dr 2 · · ·dr N . (8.6)

In the present work, we will only consider mostly the kinetic energy density τP , forits aforementioned properties, and sometimes the definitions τL1 and τL2(mainlyfor comparison purposes). Of course, infinitely many other kinetic energy densitydefinitions are possible. Furthermore, it must be noted that the inclusion of aposition-dependent mass increases the amount of possible expressions of the kinetic
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energy operator itself.2 Here, we will only consider the generalized Sturm-Liouvilleoperator

t̂m(r ) =−1

2
∇ 1

m(r )
∇. (8.9)

and T̂m =∑N
i t̂m(r i ).In order to construct a kinetic energy density-density functional theory resort-ing to a fictitious non-interacting system, we need to circumvent the obstacle thatthe interacting and the non-interacting one-body reduced density matrices cannotbe trivially made equal. We have explored three ways of doing so, namely

1. abandon the usual linear setting and impose a priori that the non-interactingsystem satisfy KS-like equations (8.10) including the position-dependentmass in the expressions which we want to equalize (eq 8.12). In other words,the position-dependent mass is not a local Lagrange multiplier enforcingthe constraint that the kinetic energy density of the target and that of theauxiliary system match;
2. adhere to the usual linear setting in which the position-dependent massis introduced as a local Lagrange multiplier. Namely, instead of requiringeq 8.12, we require eq 8.34. With this latter condition, we are forced to in-troduce another degree of freedom such that the two kinetic energy densitiesof the interacting and of the non-interacting systems can still be made equal.We do so by adopting a non-trivial position-dependent phase factor in theorbitals of the non-interacting system (the same for all orbitals).
3. borrowing the strategy from Generalised-Kohn-Sham theory [281], freelyminimise a modified kinetic energy functional Tv coming from a non-local en-ergy operator T̂v formally identical to expression 8.9 but where the scalar po-tential v is fixed not by imposing a constraint on the resulting non-interactingkinetic energy density as in the former two settings (eqs 8.12 and 8.34) butby imposing a condition on the remainder functional RTv (eq 8.57).

2For instance, an entire family of kinetic energy operators has been suggested by O. von Roos [286]which are still Hermitian under quite general assumptions, namely
t̂[m] :=− 1

4

(
mα∇mβ∇mγ+mγ∇mβ∇mα

) (8.7)
where m = m(r ) and the constants α,β,γ are constrained to satisfy

α+β+γ=−1 (8.8)
but are otherwise arbitrary. As discussed in the main text, we limit ourselves to the choice α= γ= 0and β=−1.
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8.2. Discussion of different settingsFor each of the different settings listed above, we present numerical results ob-tained for the first few terms of the Hooke’s atom series [287] briefly reviewedin appendix C, as well as for the species H− and He using the correlated wave-functions of reference [264]. In the next subsections, to distinguish among thedifferent settings, we will relabel the quantities {vke ,mke } as {vnl ,mnl }, {v l ,ml }and {vmGK S ,mmGK S } respectively. Accordingly, the orbitals of the different kindsof non-interacting systems, generally identified with ψke

i to distinguish them fromthe usual KS ones, will be relabeled as ψnl
i , ψl

i and ψmGK S
i .

8.2.1. Non-linear settingBy construction, our master equations in this setting are(
−1

2
∇·

(
1

mnl
∇

)
+ vnl

)
(r)ψnl

i (x) = εnl
i ψnl

i (x) (8.10)
with the constraints

nint(r) =∑
i ,σ

|ψnl
i |2(r ) (8.11)

and
τPint(r ) =

(
1

2mnl

∑
i ,σ

∣∣∇ψnl
i

∣∣2

)
(r ) (8.12)

where nint is the electron density and τPint the kinetic energy density (in thegauge 8.3) of the interacting system, which we want to target.
Bounds on mnlWe see that, from our use of positive definite quantities, we immediately have
mnl ≥ 0. For the upper bound, given eq 8.12, it would then be sufficient to provethat the interacting kinetic energy density is everywhere greater or equal than thenon interacting kinetic energy density without the inclusion of the mass, i.e. that

τPint(r ) ≥
(

1

2

∑
i ,σ

∣∣∇ψnl
i

∣∣2

)
(r ) (8.13)

to conclude that 0 ≤ mnl ≤ 1.Currently, we are able to show that 0 ≤ mnl ≤ 1 only for two-electron singletsystems. In these systems, from requiring the interacting and the non-interactingdensities to be the same, namely
ψnl (r ) =

√
n(r )

2
, (8.14)
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with ψnl (r ) = ∑

σψ
nl (x), we have that the non-interacting kinetic energy densitycorresponds to the Von Weizsäcker kinetic energy density, τP

V W , in the same gauge
τP

V W (r ) = |∇n|2
8n

(r ). (8.15)
The Von Weizsäcker kinetic energy density τP

V W is however proven to be a lowerbound to any kinetic energy density coming from a wavefunction associated to thesame density, i.e.
τP

V W [n](r ) ≤ N

2

∑
σ

∫
|∇Ψn(x , x2, · · · , x N )|2dr 2 · · ·dr N (8.16)

by means of the Cauchy-Schwarz inequality [288]. Nonetheless, it is quite easyto show that asymptotically the position-dependent mass in this setting goes likethe unit constant,3 by means of the Dyson orbitals, di .These are defined as
di (x) =

p
N

∫
ΨN−1

i (2, . . . , N )∗ΨN
0 (x, x2, · · · , x N )dx2 · · ·dx N , (8.17)

and allow the following exact expansion of the GS wavefunction
ΨN

0 (x, x2, · · · , x N ) = N−1/2
∞∑

i=0
di (x)ΨN−1

i (x2, · · · , x N ). (8.18)
Given 8.18, we can rewrite τPint as

τPint[n](r ) =
∞∑
i

(∑
σ
|∇di |2

)
(r ) (8.19)

and, consequently
mnl (r ) =

(∑
σ

∑N
i

∣∣∇ψnl
i

∣∣2∑∞
i |∇di |2

)
(r ). (8.20)

On the other hand, it is true that both the N-electron sum over the modulus squaredof the orbitals ψnl
i and the infinite sum over the modulus squared of the Dysonorbitals deliver the interacting density

n(r ) ≡
(

N∑
i

∑
σ

∣∣ψnl
i

∣∣2

)
(r ) ≡

(∞∑
i

∑
σ
|di |2

)
(r ). (8.21)

As extensively discussed in chapter 2, in regular KS theory the decay of each KSorbital is governed by its respective eigenvalue which dictates that the most diffuse
3In principle, there is no reason why the asymptotic value of mnl should also be its maximum value.
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orbital is the one with the smallest eigenvalue (the HOMO). Although the keKSequations are endowed with different structure (eq 8.10), yet necessarily the mostdiffuse of the keKS orbitals, “ψnl

H ", will bear by construction the correct asymptoticbehaviour, i.e. ψnl
H (|r |→∞) ∼ n1/2(|r |→∞). A similar reasoning holds for the set ofDyson orbitals: in this case it is the first Dyson orbital that inherits the asymptoticbehaviour of the square root of density, i.e. d0(|r| −→∞) ∼ n1/2(|r| −→∞) [289] andwe conclude that

mnl (|r |→∞) ∼ |∇ψnl
H |2

|∇d0|2
∼ 1. (8.22)

Examples of vnl and mnl for two-electron singlet systemsWe are again focusing on two-electron singlet systems, which allow for an explicitconstruction of the quantities of interest, vnl and mnl , without the need of anumerical inversion algorithm.In practice, from the constraint of the density (eq 8.14), we have that
mnl = |∇n|2

8nτPint (8.23)
and

vnl = 1

2
p

n

(
∇

(
1

mnl

)
·∇pn + 1

mnl
∇2pn

)
− Ip . (8.24)

We start by applying eqs 8.23 and 8.24 on the Hooke’s atom series [287], an exactlysolvable model briefly reviewed in appendix C. In fig 8.1 we show the analyticalmass potentials, mnl , corresponding to n= 2, . . . , N , where n is roughly speaking ameasure of increasing correlation and is related to the degree of the polynomialinvolved in the exact solution expression (see appendix).From eq 8.23 and given that τPint and n at the denominator are well-behavedfunctions vanishing only asymptotically, it is clear that the mass will become zerowhenever the density shows a minimum or a maximum. Thus we see that up to n= 3,
mnl is zero only at the origin, while for the more correlated ones, n= 4,5,6, thereis also some positive distance, rc , at which again these potentials become zero.This is related to the “cusp catastrophe" (discussed in appendix C), i.e. the factthat for n> 4 the density is minimum at the origin and maximum in rc ( see fig C.1for the density profiles). In fig 8.2, we plot the corresponding Hartree-XC potential(we subtract the external potential as it diverges like r 2 ). It is found that for then É 3 cases there is a divergence to −∞ at the origin; while for the cases n Ê 4there are two divergences, at the origin and at rc , both to +∞. We expect that thekeKS mass and potential of a Hydrogen molecule will face a problem very similarto what we observe in the Hooke’s atom for the cases n Ê 4, as the density will beminimum at the midbond, leading to a zero kinetic-energy density at this position
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Figure 8.1: Scaled mass potentials, mnl (r ), for the Hooke’s atom series with n= 2, . . . , N .
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Figure 8.2: Scaled Hartree-XC keKS potential, vnl
H xc , for the Hooke’s atom series withn= 2, . . . , N .
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Figure 8.3: Mass potentials, mnl (r ), for the species H− and He.
and resulting in a divergence in the potential. As discussed in sec 2.2.1, the profileof the kinetic potential shows that the circumstance in which the reference electroncrosses the midbond region corresponds to the maximum “speed" of rearrangementof the conditional amplitude (location of the peak). In this sense, finding theeffective position-dependent mass to be smaller in this region is sensible, howeverwe would like it to be not exactly zero. Note that an increasing number of occupiedorbitals is expected to make the occurrence of zeros in the kinetic-energy densityless likely.In fig 8.3, we plot the keKS mass potential for the species H− and He, wherethe interacting kinetic energy density has been calculated numerically using thevery accurate wavefunction of reference [264]. We observe that the mass is notgoing to one at the nucleus. This is in agreement with the results shown inreference [290] where an expansion for the interacting and the non-interactingkinetic energy density at the nucleus is derived. Using such expansion, to first-order, the position-dependent mass introduced in eq 8.12, for a two-electron singletsystem, can be written as

mnl (|r|→ 0) ∼ Z 2n(0)

Z 2n(0)+Ei i
(8.25)

where Z is the nuclear charge and Ei i is a positive value defined as
Ei i = 3N

∫ |a1m |2
4π

dX. (8.26)
In eq 8.26, “X" are the spatial-spin coordinates of the remaining N −1 electronsand the spin coordinate of the reference electron: X = (σ, x2, · · · , x N ), the reference
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Figure 8.4: Comparison between the quantities vnl
c , vc and vc − vc,ki n for the Hydrogenanion (left) and the Helium atom (right).

electron is located very close to the nucleus and a1m is a coefficient coming fromthe expansion of the interacting wavefunction into spherical harmonics
Ψ(r,X) = Ψ(0,X)+a(X)r +b(X)r 2 +·· ·

+
1∑

m=−1

(
a1m(X)r +b1m(X)r 2)Y1m(r̂ )+·· · (8.27)

The fact that the mass be not zero at the nucleus, placed at the origin, affectsthe value of the effective potential vnl
H xc in the following way. At zero the usualkinetic term −∇2pn

2
p

n
exactly cancels the external potential − Z

r . Decreasing theusual kinetic term by a factor 1
mnl (0)

leaves a fraction of the external potentialunbalanced, leading to the divergent behaviour around the origin
vnl

H xc (|r|→ 0) ∼
(
1− 1

mnl (0)

)
Z

r
. (8.28)

This is observed in fig 8.4 where we show the correlation contribution of the keKSpotential in this setting, vnl
c ,4 for the Hydrogen anion and the Helium atom, incomparison with the correlation contribution of the usual KS potential, vc , as wellas this latter depleted of the kinetic potential term, vc − vc,ki n = vc-hol e + v r esp .

Discussion on vnl and mnl in the Laplacian gaugeFinally, let us remark that using definition 8.5 in this setting, we obtain
mnl ,L1 =

∑
i ,σψ

∗
i ∇2ψi

N
∫
Ψ∗(rσ, · · · , x N )∇2Ψ(rσ, · · · , x N )

. (8.29)
4Assuming that the role of the exchange contribution in this framework is also that of simply cancelingthe self interaction error for a two-electron singlet state, i.e. vnl

x = vx =− vH
2 .
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where here ψi =ψnl ,L1

i . The denominator of the r.h.s. of equation 8.29 is expectedto go to zero at least once for quite general wavefunctions and therefore to producedivergences in the corresponding mass. As an example, for two electron systemswith real ground state wavefunctions (such as those studied)
τL1int =−1

2

p
n∇2pn + vki nn (8.30)

then
mnl ,L1 =

p
n∇2pnp

n∇2
p

n −2 vki nn
= ∇2n − (∇n)2

2n

∇2n − (∇n)2

2n −4 vki nn
(8.31)

Therefore, for any value of r for which vki n ≡ ∇2n
4n − (∇n)2

8n , the mass will show adivergence. Such divergence(s) is (are) reflected on the potential in the form ofinfinite negative well(s).Moreover, because in the singlet case eq 8.29 also translates to
mnl ,L1 =

(
vs − Ip

)(
vs − Ip

)− vki n
, (8.32)

the potential, vnl ,L1, becomes
vnl ,L1 = ∇2pn

2mnl ,L1
p

n
+ ∇pn ·∇(mnl ,L1)−1

2
p

n
+ Ip

= (vs − vki n)+ ∇pn ·∇(mnl ,L1)−1

2
p

n
(8.33)

and the effective potential differs from the usual KS potential depleted of the(correlation) kinetic contribution, vs − vki n , by the term ∇pn·∇(mnl ,L1)−1

2
p

n
. In fig 8.5we show the masses, mnl ,L1, and the corresponding correlation potentials, vnl ,L1in comparison with the usual correlation potential vc and the term vc −vki n (right)for three illustrative species: Hooke’s atom with n= 2 and n= 6 and the Hydrogenanion. In the first two cases, it is apparent that the term ∇pn·∇(mnl ,L1)−1

2
p

n
is generallyvery small, excluding where it diverges.Concerning the use of definition 8.6, we postpone its discussion to section 8.2.3for reasons that will be clear later.

8.2.2. Linear settingIn the linear setting, we modify the requirement of the non-interacting systemkinetic energy density to
τPint(r ) =

(
1

2

∑
i ,σ

∣∣∇ψl
i

∣∣2

)
(r ). (8.34)
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Figure 8.5: Position dependent masses in the gauge of eq 8.5, mnl ,L1 (left), and corre-sponding correlation potentials, vnl ,L1 in comparison with the usual correlation potential vcand this latter term depleted of the kinetic contribution, vc − vki n (right) for three species:Hooke’s atom with n= 2 and n= 6 and the Hydrogen anion.
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Equipped with 8.34, we construct a Lagrangian expression similar to that of sec 1.3.1but where the constraints on the density and on the kinetic energy density are si-multaneously imposed. Aiming for a non-interacting description, we are left withno energy expression to minimise. Therefore we look for the stationarity equationsof a zero-Hamiltonian and consider the Lagrangian made of the constraints only

Ln,τP = −
N∑
i , j
ε̃i j

(
〈ψ̃l

i |ψ̃l
j 〉−δi j

)
+

∫
dr ṽ l (r)

(∑
i ,σ

|ψ̃l
i |2 −n

)
(r)

+
∫

dr ṽ l
m(r)

(∑
i ,σ |∇ψ̃l

i |2
2

−τPint
)

(r). (8.35)
whose minimisation gives(

−1

2
∇·

(
v l

m∇
)
+ v l

)
(r)ψl

i (x) = εl
iψ

l
i (x), (8.36)

where, upon substituting v l
m = (

ml
)−1, we are left with self-consistent equationsthat are structurally identical to those considered in the non-linear setting (eq 8.10).The fundamental difference is that now the orbitals have a non-trivial imaginaryphase and can be decomposed as

ψl
i (x) = Ri (x)e iθ(r ). (8.37)

Therefore eq 8.36 can be separated into its real and imaginary parts5
(
−1

2
∇·

(
v l

m∇
)
+ v l + |∇θ|2

2ml

)
(r )Ri (x) = εl

i Ri (x) (8.40)(
−1

2
∇·

(
v l

m∇
)
− ∇ ln

(∑
σRi

)
ml

·∇
)

(r )θ(r ) = 0. (8.41)
Examples of v l and ml for two-electron singlet systemsFor two-electron singlet systems, the constraint on the density here gives

ψl (r ) =∑
σ
ψl (x) =

√
n(r )

2
e i θ(r ) (8.42)

5by working out
∇ψl

i (r ) = ei θ(r ) (∇Ri + i Ri∇θ
)

(r ) (8.38)
∇2ψl

i (r ) = ei θ(r )
(
∇2Ri −Ri |∇θ|2 +2 i ∇Ri ·∇θ+ i Ri ∇2θ

)
(r ) (8.39)

with ψl
i (r ) =∑

σψ
l
i (x) and R l

i (r ) =∑
σR l

i (x).
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and we can rewrite eqs 8.34, 8.40 and 8.41 as

τPint = |∇n|2
8n + n

2 |∇θ|2(
− 1

2∇·
(

1
ml ∇

)
+ |∇θ|2

2ml + (v l −ε)
)p

n = 0

(
− 1

2∇·
(

1
ml ∇

)
− ∇ ln(

p
n)

ml ·∇
)
θ = 0

(8.43)

For spherical systems, the set of eqs 8.43, has the following analytical solutions

θ(r ) = ∫ ∞
0

√
2 vki n(r )dr + c with vki n = 1

n

(
τPint − n′ 2

8n

)

ml (r ) = c̃ r 2θ′(r )n(r )

v l (r ) = 1
4ml (r )n(r )

(
n′′(r )+ 2

r n′(r )− n′ 2(r )
2n(r ) − ml ′ (r )n′(r )

ml (r )
−2θ′(r )2n(r )

)
+ε

(8.44)

where we have picked c = 0 and c̃ = 1. We show the resulting quantities θ(r ),
ml (r ) and v l (r ) for the Hooke’s atom series in figures 8.6, 8.7 and 8.8 and for theHydrogen anion and Helium atom in figures 8.9, 8.10 and 8.11.It is remarkable that by means of a position-dependent phase, θ(r ), which lookssimple and well-behaved in all cases studied, we can straightforwardly equalize theinteracting and the non-interacting kinetic energy densities while still preservingthe density constraint. Nonetheless, it is uncertain how to interpret the profile ofthe position-dependent mass, ml (r ), and that of the effective potential, v l (r ): whatwe observe is that both Lagrange multipliers v l

m and v l diverge at the boundariesof the domain.As a final remark, we observe that the two position-dependent masses, mnl and
ml (in the non-linear and in the linear settings) for spherical systems are simplyrelated to one another

mnl (r ) = r 4 n′ 2(r )

4(ml (r ))2 + r 4 n′ 2(r )
(8.45)

since both their expressions involve the kinetic potential vki n which might then beexpressed as
vki n(r ) = (ml (r ))2

2r 4n2(r )
= n′ 2

8n2 (r )

(
1

mnl (r )
−1

)
. (8.46)
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Figure 8.6: Non-trivial phase factor, θ(r ), for the Hooke’s atom series with n= 2, . . . , N
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Figure 8.7: Mass potentials, ml (r ), for the Hooke’s atom series with n= 2, . . . , N .
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Figure 8.8: Effective potentials, v l (r ), for the Hooke’s atom series with n= 2, . . . , N .
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Figure 8.9: Non-trivial phase factor, θ(r ), for the species H− and He.
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Figure 8.10: Mass potentials, ml (r ), for the species H− and He.
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Figure 8.11: Effective potentials depleted of the nuclear fields, v l
H xc (r ), for the species H−and He.
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Discussion on v l and ml in the Laplacian gaugeLet us remark that, in the linear setting, neither of the Laplacian gauged kineticenergy densities, τL1(eq 8.5) or τL2(eq 8.6), is admissible. This latter is simply notadmissible because the position-dependent mass cannot be treated as an externalLagrange multiplier. To see why the former is not admissible we need to work outthe requirement

τL1int(r ) = ∑
j ,σ
ψl

j (x)∇2ψl
j (x)

= 1

2

∑
j

R j
(∇2R j −R j |∇θ|2 +2 i∇R j ·∇θ+ i R j∇2θ

)
(r ) (8.47)

We now want the imaginary part on the l.h.s. to go to zero (the kinetic energydensity of an interacting system can always be transformed into a real valuedquantity), i.e. (
2∇R j ·∇θ+R j∇2θ

)= 0 (8.48)
However, eq 8.48 for the two-electron singlet case, gives

2∇pn ·∇θ+p
n∇2θ = 0

2
∇p

np
n

=−∇2θ

∇θ (8.49)
and, restricting to spherical systems,

− d

dr
ln(n(r )) = 2

r
+ d

dr
ln(θ′(r ))

ln(n(r ))+ ln
(
r 2θ′(r )

)= c ′ ⇒ θ′(r ) = c ′′

n(r )r 2 (8.50)
which fixes the derivative of the phase factor, θ′, times an arbitrary constant.On the other hand, combination of eqs 8.47 and 8.48, for this case (sphericaltwo-electron singlet) gives

τL1int(r ) = 1

2
p

2

((
d2

dr 2 + 2

r

d

dr

)√
n(r )−

√
n(r )θ′ 2(r )

) (8.51)
Since equation 8.50 is an extremely simple density functional, we see no reasonwhy its insertion into eq 8.51 should satisfy it for any spherical density. In otherwords, in the linear setting it seems clear that the choice of possible gauges forkinetic energy densities is greatly reduced.
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IntermezzoIn the keKS constructions we have discussed up to now, there is no clear rela-tionship between the total energy of the interacting system and the effective massand local potential {mke , vke }. This happens because, when taking the functionalderivative of the auxiliary system energy w.r.t. the density, we do not know how toexpress that piece of functional derivative which contains the kinetic energy den-sity (and the position-dependent mass). In fact, by the Hohenberg-Kohn theoremthe variables τ and n are dependent, but their dependence is still not understoodor studied at all.In practice, we can still combine the expression for the interacting kinetic en-ergy obtained from either keKS construction with any preferred density functionalapproximation, E DFA

xc =U +W DFA
1 +T DFA

c , by recalling that
W DFA

1 [n] = E DFA
x [n]+2E DFA

c [n]− ∂E DFA
c

[
nγ

]
∂γ

∣∣∣
γ=1

. (8.52)
Nevertheless, the theoretical question of how to connect the keKS constructionto the total energy of the interacting system stays open.In the next subsection, we present another keKS setting, where such connec-tion is set from the beginning. We basically apply the generalised-Kohn-Shamformalism [281] to a particular case of non-local operator.

8.2.3. Generalised Kohn-Sham settingLet us introduce an energy functional Tv[Ψs ] of N-electron Slater determinants
Ψs .

Tv[Ψs ] := 〈Ψs |T̂v|Ψs〉 (8.53)where T̂v can be defined as
T̂v = −1

2

N∑
i=1

∇r i ·
(
v(ri )∇r i

) (8.54)
and v is, for the moment, undefined. Then we define the energy of our auxiliarysystem Ψs as

E S [{ψi }; v] = Tv[Ψs ]+
∫

ṽ(r)n(r)dr (8.55)
where n(r) =∑

i ,σ |ψi (x)|2.If we minimise eq 8.55 by the usual Lagrange procedure we obtain
ÔTv [{ψi }]ψ j + ṽψ j = ε jψ j (8.56)

with ÔTv [{ψi }]ψ j = δTv[{ψi }]
δψ∗

j
= − 1

2∇ · (v∑
σ∇ψ j

)
(r). Eqs 8.56 are also structurallyidentical to eqs 8.10.
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At the stationary point, eq 8.56 is satisfied and we label ψi →ψmGK S

i , ṽ → vmGK S ,
εi → εmGK S

i , where “mGKS" stands for “mass-dependent Generalised Kohn-Sham".We could now determine the energy of an interacting system exactly in terms of
Tv[{ψi }] by introducing an ad hoc functional RTv [n[{ψi }]] determined by Tv[{ψi }]such that

E0[v] = min
{ψi }→N

{Tv[{ψi }]+RTv [n[{ψi }]]+
∫

v(r)n(r)dr } (8.57)
with v the external potential of the interacting system. So long as the functional
RTv [n] is an explicit functional of the density, the minimization in 8.57 leads tothe same kind of equations as eqs 8.56 with vmGK S = vR + v and vR = δRTv

δn .Since v is still completely undetermined we have derived a general scheme wherewe can devise in reverse which piece of the Kohn-Sham potential we want to useas a Lagrange multiplier vmGK S (ideally a term which we know how to approximatewell) and which other part we want to feed to the operator T̂v.We may label “mGKS complement" potential, vmGK S
c , the component that wewant to “drop out" from the usual KS potential the and we may decompose theKS potential in any preferred fashion as long as both vmGK S and vmGK S

c are well-defined functional derivatives
vs = vmGK S + vmGK S

c . (8.58)
For the sake of interpreting v−1 as an effective mass, we would like that

v(r ) ≥ 0. (8.59)
However, as the scalar potential v depends on vmGK S and needs to satisfy eq 8.57,we might not have enough freedom to impose eq 8.59. We shall see later on thatthis is going to be the case for values of n> 3 in the Hooke’s atom series.Because eq 8.59 cannot be satisfied for all systems, we are no longer guaranteedthat minimisation of eq 8.55 will, just as for the KS system, always penalise thephase factor. In other words, contrary to the KS ones we are not guaranteedthat the mGKS orbitals are real. For simplicity, we are going to assume that theorbitals are real (just as we do in the non-linear setting).Let us now focus on the choice

vmGK S
c = vc,ki n . (8.60)

Quite interestingly, under the assumption that the mGKS orbitals equate the KSorbitals, i.e. ψmGK S
i =ψs

i , (which is by construction satisfied in two-electron singletsystems), we obtain
− 1

2
ψmGK S

i ∇·vvc,ki n∇ψmGK S
i = τL2int (8.61)
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where by vvc,ki n we indicate the dependence of the non-local operator on eq 8.60.In other words, assuming that eq 8.57 can be satisfied for the choice 8.60, thesimple minimisation of eq 8.55 delivers a non-interacting kinetic energy densityin the Laplacian gauge 8.6 that locally matches the interacting kinetic energydensity in the same gauge.6 Equation 8.61 is a remarkable result, as we havemanaged to write an explicit expression for an effective position-dependent mass,
mvs−vc,ki n = (vvc,ki n )−1, as a functional of the interacting kinetic energy density τL2int,while still minimising a non interacting kinetic energy functional (Tv) under thesole density constraint.More in general, within the assumption ψmGK S

i = ψs
i , one will obtain a non-interacting kinetic energy corresponding to

− 1

2
ψmGK S

i ∇·vvmGK S
c ∇ψmGK S

i = τL2
s + vmGK S

c n. (8.62)
where τL2

s =− 1
2ψ

s
i ∇2ψs

i . For simplicity, we will now focus on the case 8.60, and wewill always refer to mvs−vc,ki n as “mmGK S " although as already discussed, vmGK S– on which the properties of mmGK S depend – can be anything as long as it is afunctional derivative.7
Examples of mmGK S for two-electron singlet systemsFor spherical two-electron singlet systems, v is our only unknown and the set ofequations 8.56 reduces to an equation of the kind

a(r )v′(r )+b(r )v(r )+ c(r ) = 0 (8.63)whose solution reads
v(r ) =

(
k −

∫ r

0

c(s)

a(s)
e

∫ r
0

b(t )
a(t ) dt

)
e−

∫ r
0

b(t )
a(t ) dt . (8.64)

However, there is a catch in the choice of the equation we decide to solve. Namely,labeling the only spatial orbital ψmGK S =
√

n
2 = φ for notational convenience, wehave

φ′v′+
(
φ′′+ 2

r
φ′

)
v−2

(
vmGK S −ε)= 0 (8.65a)

with a =φ′, b = (
φ′′+ 2

r φ
′) and c =−2

(
vmGK S −ε) or

φ′v′+
(
φ′′+ 2

r
φ′

)
v+2 vmGK S

c φ−
(
φ′′+ 2

r
φ′

)
= 0 (8.65b)

6As already noticed, for the interacting system there is no distinction between the two gauges 8.5 and8.6, i.e. τL1int = τL2int.7For example, one could wonder what mmGK S would be by choosing vmGK S = v or vmGK S = v + vH ,etc. In particular, we shall briefly consider the case vmGK S = vs to fix the degree of freedom intrinsicin the fact that the nabla operator is acting on (mmGK S )−1.
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where a and b are as before and c = 2 vmGK S

c φ− (
φ′′+ 2

r φ
′).Equation 8.65b is a consequence of the fact that

(
vmGK S −εs

i

)
ψmGK S

i = ∇2

2
ψs

i − vmGK S
c ψs

i (8.66)
which holds only as long as ψmGK S

i =ψs
i (true for two-electron singlets).The catch is in the fact that while in eq 8.65b we only need to fix the constant

k , in the first equation (eq 8.65a) the solution is written in terms of two unknownconstants: {k,ε}. Suppose, we have fixed k , we can find a different solution, v, forany arbitrary value of ε which still satisfies eq 8.63.In the examples that are going to be presented we do not perform any self-consistent iteration but we plug in either equation (eq 8.65a or eq 8.65b) the exactingredients.8 Precisely because eq 8.66 is satisfied with such exact ingredients,both equations lead to the same solution (for each given k). However, we reiteratethat, for a given k , we can solve eq 8.65a for any arbitrary value of ε. Choosing
ε 6= −Ip would no longer satisfy eq 8.66 and the v resulting from the two equationswould be different.Due to its dependence on ε we then decide to discard eq 8.65a and focus oneq 8.65b. To fix k , we simply decide to pick vmGK S = vs (i.e. vmGK S

c = 0) and chooseamong the set of solutions 8.64 that one for which v0 = 1. This fixes k = 0.Left-multiplying eq 8.65b by the orbital φ allow us to write an explicit solutionto vvc,ki n in terms of the interacting kinetic energy in the gauge 8.6 as pledged ineq 8.61. Considering that, for the spherical case, we can manipulate the exponentialfunction in eq 8.64 in a very convenient form
b(t )

a(t )
=

(
φ′′(t )

φ′(t )
+ 2

t

)
= d

dt
ln

(
φ′(t ) t 2), (8.67)

we obtain
vvc,ki n (r ) =

2
∫ r

0
τL2int(s) s2

φ(s) ds

φ′(r )r 2 . (8.68)
In figs 8.12 and 8.13, we show the position-dependent masses, mmGK S (r ), ob-tained as the inverse of eq 8.68, for the Hooke’s atom series and the Hydrogenanion and He atom.As anticipated, we observe that for the Hooke’s atom series there is not enoughfreedom to force the effective mass to be always positive, even allowing for differentvalues of k . Another feature we observe is that the effective mass is non-negligeable

8These exact ingredients are vmGK S = vcond + vN−1 + v and the exact ionisation potential ε=−Ip toget v from eq 8.65a or the exact vmGK S
c = vki n to get it from eq 8.65b in addition to the interactingground state density which is required in both equations.
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Figure 8.12: Scaled mass potentials, mmGK S (r ), for the Hooke’s atom series with n =
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Figure 8.13: Mass potentials, mmGK S (r ), for the Hydrogen anion and the He atom.
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8.2. Discussion of different settings
even at values of the distance from the origin at which the density itself seemsnegligeable. Finally, we stress that only the effective mass needs to be foundin this setting and not the effective potential, because this latter is exactly whatwe have constrained (vmGK S = vr esp + vcond + v ) and we know it to be a well-behaved function, asymptotically going to zero. In this sense, compared to theformer settings where either the effective mass or the effective potential or bothwere diverging this latter seems promising.
Local behaviour of mmGK S around the originRewriting v= 1+δv, eq8.65b is turned into

∇· (δv∇)φi +2 vmGK S
c φi = 0 (8.69)

and the mass is then obtained in terms of δv as
mmGK S (r ) = 1

1+δv(r )
. (8.70)

Equation 8.69, for two electron spherical system and with vmGK S
c = vki n , can berewritten as

δv′
(
φ′

φ

)
+δv

(
φ′′

φ
+ 2

r

φ′

φ

)
+2 vki n = 0 (8.71)

and we can substitute
φ′

φ
= n′

2n

φ′′

φ
= − n′2

4n2 + n′′

2n
(8.72)

We want to analyse the local behaviour of δv at the boundary of its domain andwe will start by the origin. However we need to distinguish here among thesituation where the density is an analytical function at the origin as in the case ofthe Hooke’s atom series or when it is non-analytical and determined by the cuspcondition (eq 1.4).In the first case we have
δv′

(
n′

2n

)
+δv

(
− n′2

4n2 + n′′

2n
+ n′

r n

)
= 2 vki n (8.73)

the first term goes clearly to zero as n′(r )|r→0 = 0, while we need to further analysethe third tem in parenthesis using L’Hôpital’s rule as limr→0
n′
r n ∼ 0

0 . Therefore welook at the derivatives of numerator and denominator
d

dr

(
n′(r )

r n(r )

)
= n′′

n
− n′

n2 (8.74)
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and when r → 0 only the term n′′

n survives. In conclusion, we are left with
δv

(
3n′′

2n

)
∼ −2 vki n

δv ∼ −4 vki nn

3n′′ (8.75)
or

mmGK SmidB (r → 0) ∼ 1

1− 4 vki n (0)n(0)
3n′′(0)

(8.76)
where we have used the subscript “midB" for midbond, as we have alreadystressed that one could consider the density at the origin of the Hooke’s atomseries with n> 3 as a model for the density at the midbond of two equal fragmentsin a molecular species and where the sign of mmGK SmidB depends on whether 4 vki n (0)n(0)

3n′′(0)is greater or smaller than one.For atomic densities, we know that, at the nucleus position which we set at theorigin, the density behaves like n′(r )|r→0 ∼−2 Z n(0). For this case, it is easier tolook at what happens to δv starting from its solution, i.e.
δv(r ) =−2

∫ r
0 vki n(s)φ(s)s2ds

φ′(r )r 2 (8.77)
The r → 0 limit of the above equation is again of the kind 0

0 therefore we look atthe corresponding derivatives finding
lim
r→0

δv(r ) ∼− lim
r→0

 2 vki n(r )
φ′′(r )
φ(r ) + 2

r
φ′(r )
φ(r )

∼ 0 (8.78)
where we have used that all the functions (φ, φ′, φ′′, vki n) excluding 1/r have finitevalues in r = 0.9Consequently

mmGK S (r → 0) ∼ 1 (8.79)
as visible in fig 8.13.Incidentally, we observe that, by plugging into eq 8.77 either one among theexpressions for vki n reported in eq 8.46 then using eq 8.70, one finds the relationbetween mmGK S and the previously discussed position-dependent masses (mnland ml ) in the spherically symmetric two-electron singlet cases.
9In particular from eq 8.25, vki n (0) ∼ Ei i

2n(0) follows.
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8.3. DFAs for keKS and final notes
Asymptotic behaviour of mmGK SUsing the asymptotic expansion of atomic and molecular wavefunctions [289]

φ(r →∞) ∼ rβe−αr (8.80)
with α = p−2εH and β = 2(Z−N+1)

α − 1 (Z being the nuclear charge and N thenumber of electrons) then
φ′(r →∞) ∼ e−αr rβ−1 (

β−αr
) (8.81)

φ′′(r →∞) ∼ e−αr rβ−2 (
(β−αr )2 −β) (8.82)

Plugging eqs 8.80, 8.81 and 8.82 into eq 8.69 with vmGK S
c = vki n = vc,ki n ,remembering that vc,ki n is short-ranged [41, 49], and multiplying both sides by(

eαr r 2−β), we find(
α2r 2 +β+β2 −2αr (1+β)

)
δv(r )+ r (β−αr )δv′(r ) = 0 (8.83)

Leaving only the higher order terms, ∼ r 2,
α2δv(r )−αδv′(r ) = 0 (8.84)

which is satisfied for
δv(r →∞) ∼ c eαr (8.85)therefore

mmGK S (r →∞) ∼ 1

1+ c eαr . (8.86)
A similar analysis on the Hooke’s atom density φharm(r →∞) ∼ r q e−

ω
2 r 2 [45],with q =

(
Ip

ω − 3
2

)
∈R+ and Ip =−(E N −E N−1), shows that

mmGK Sharm (r →∞) ∼ 1

1+ c e
ω
2 r 2 . (8.87)

8.3. DFAs for keKS and final notesAt the end of sec 1.3.2 we have sketched the algorithm for regular KS equations(eqs 1.50 and 1.51). In the keKS formalism we would have an algorithm of the kind
vke (i ) = vH

[
n(i )

]
+ vke

[
n(i ),τ(i )

]
+ v (8.88)

mke (i ) = 1+mke
H xc

[
{ψ j }(i ),τ(i )

] (8.89)
{ψ j }(i+1) = argmin

{ψ j }

(
Tmke(i )

[
{ψ j }(i )

]
+

∫
vke (i )(r )n(r )dr

) (8.90)
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where mke

H xc is defined as the difference mke
H xc := (

mke (i ) − 1
) and it basically mea-sures the distortion of the fictitious electron mass due to kinetic correlation effects.In practice, we compute from a guess density (a set of guess orbitals) and a guesskinetic energy density the initial effective potential vke and mass mke . Next, wesolve eqs 8.10 to obtain updated orbitals delivering an updated density via eq 8.11and an updated kinetic energy density via eq 8.12, eq 8.34 or eq 8.61 according towhich setting we are in. Note that, in the linear setting, we construct at the sametime also an approximate phase factor, θ(i )

[
{ψ j }(i ),τ(i )

]. Finally, we plug the up-dated density and kinetic energy density (internal quantities) into the functionals
vke and mke for the external quantities and loop until convergence is reached.Among the next steps for developing a kinetic energy density-density functionaltheory, the need for novel density functional approximations which depend on both
n and τ for the unknown effective potentials vke and mke stands out. A goodcandidate model seems to be the series of finite uniform electron gases [291, 292]which depend on two parameters for a given dimension. These two parametersare related to the number of electrons and the radius of the sphere on which theuniform gas is spread. They can be coupled to any quantity of interest as recentlyshown in reference [293], where a model for the exchange energy is constructed asa functional of the density and the curvature of the Fermi hole.At the state of the art however, a parametrization of the correlation quantitiesis available only for the finite uniform electron gas with two particles. Future workwill be focused in the direction of building such explicit bifunctionals which willhopefully introduce more flexibility than that brought by the most common densityfunctional approximations for KS-DFT. As a first hint, we looked at the approximate
mnl , ml and mmGK S that were obtained using the LDA kinetic energy density t LD A

cas an approximation to vki n . We show them in figure 8.14 for the Hydrogen anionin comparison with the ones already shown coming from the accurate wavefunctionof ref [264]. The LDA models used are PW92 [294] and the above-mentioned two-electron glomium. In the bottom panel representing the mGKS setting, we show theresults coming from both eq 8.65a and eq 8.65b, within the same approximation. Itseems clear that by approximating vmGK S as vmGK S ≈ εc − tc + vH
2 +v and inputtingthe exact ionization potential [295], we obtain much less accurate masses thanconsidering vmGK S

c ≈ tc . The much smaller accuracy ought probably to be attributedto the self-interaction error present in the approximate vmGKS and absent in theapproximate vmGK S
c .Concerning the Hermiticity of the operator t̂m (eq 8.9), we should probablyremark that it is quite a subtle issue: t̂m is clearly Hermitian in the space ofsquare-integrable functions as long as the boundary terms are zero. This is thecase if the position-dependent mass is constant, otherwise one needs to study theanalytical behaviour of the mass at the boundaries. This aspect deserves a properinvestigation.
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Figure 8.14: Position dependent masses mnl (top), ml (middle) and mmGK S (bottom) for theHydrogen anion coming from the accurate wavefunction of ref [264] (in red) or using the LDAkinetic energy density t LD A
c as an approximation to vki n . The LDA models used are PW92[294] (in green) and the two-electron glomium [291–293] (in black). In the bottom panel, weshow the results coming from eq 8.65a (dashed) and eq 8.65b (solid curve), within the sameapproximation, as discussed in the main text.
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8. Kinetic energy density-density functional theory
As a final note, we want to pinpoint that although one of the motivations for akinetic energy density functional theory was that of separating the Coulomb fromthe kinetic correlation contributions, where the formers would be included via theusual effective potential while the latters would be handled via a non local opera-tor, it might be that this goal is far from our reach due to the presence of a kineticresponse part in the KS potential, v r esp

c,ki n (eq 2.52). This is blatant in the last pre-sented setting (sec 8.2.3) where we have unwittingly obtained a matching betweenthe kinetic energy densities of the interacting and of the non-interacting systemby splitting up the KS potential as vs = vc,ki n︸ ︷︷ ︸
vmGK S

c

+vr esp + vcond + v︸ ︷︷ ︸
vmGK S

. Namely, we have
kept the full response potential, kinetic piece included, in the role of Lagrangemultiplier together with the electrostatic potential of the conditional density andthe external potential. Nevertheless, in light of the fact that this piece is nowadaysabsent from any approximation, even though failing to properly disentangle all ofthe kinetic correlation components from the effective external potential, a kineticenergy density-density functional theory could in practice still bring about consid-erable improvements in treating systems where the balance between inter-particlerepulsion and particles kinetic energy is especially delicate.
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A
Redundancy of the

permutations
In order to account for the indistinguishability among electrons the modulus squaredof the SCE wavefunction has been usually expressed as in eq 3.9. If we now performthe integration over ds we can rewrite it as

|ΨSC E (r1, · · · ,rN )|2 = 1

N !

N !∑
℘=1

(
ρ(r 1)

N

N∏
i=2

δ(r i − f℘(i )(r 1))+

+ρ(r 2)

N

N∏
i=1,i 6=2

δ(r i − f℘(i )(r 2))+·· ·+ ρ(r N )

N

N−1∏
i=1

δ(r i − f℘(i )(r N ))

) (A.1)

Now we want to show that each of the N terms inside brackets in eq. A.1 areequal to one another. To show such thing we will abstract from the three-electroncase.For the three-electron case ℘= 1 · · ·6, in details:
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A. Redundancy of the permutations

℘= 1


r 1 = f1(1)(s) = s

r 2 = f1(2)(s) = f1(s)

r 3 = f1(3)(s) = f2(s)

℘= 2


r 1 = f6(1)(s) = s

r 2 = f6(2)(s) = f2(s)

r 3 = f6(3)(s) = f1(s)

℘= 3


r 1 = f4(1)(s) = f1(s)

r 2 = f4(2)(s) = s

r 3 = f4(3)(s) = f2(s)

℘= 4


r 1 = f3(1)(s) = f2(s)

r 2 = f3(2)(s) = s

r 3 = f3(3)(s) = f1(s)

℘= 5


r 1 = f2(1)(s) = f1(s)

r 2 = f2(2)(s) = f2(s)

r 3 = f2(3)(s) = s

℘= 6


r 1 = f5(1)(s) = f2(s)

r 2 = f5(2)(s) = f1(s)

r 3 = f5(3)(s) = s

so that the wavefunction is expanded into:
|ΨSCE(r 1,r 2,r 3)|2 =

= 1

6

 n(r 1)

3
δ(r 2 − f1(r 1))δ(r 3 − f2(r 1))+ n(r 1)

3
δ(r 2 − f2(r 1))δ(r 3 − f1(r 1))︸ ︷︷ ︸

℘=2

+

+ n(r 2)

3
δ(r 1 − f2(r 2))δ(r 3 − f1(r 2))+n(r 2)

3
δ(r 1 − f1(r 2))δ(r 3 − f2(r 2))︸ ︷︷ ︸

℘=4

+

+ n(r 3)

3

(
δ(r 1 − f1(r 3))δ(r 2 − f2(r 3))+δ(r 1 − f2(r 3))δ(r 2 − f1(r 3))

)) (A.2)
We now consider one permutation, e.g. ℘ = 4 (underlined), and we are going toshow that this term is equivalent to the ℘= 2 term (also highlighted for the purpose)in the three steps listed below.

154



1. Using the properties δ( f (x)) = 1
f ′(x0)δ(x − x0) and g (x)δ(x − y) ≡ g (y)δ(x − y)of the Delta functions on δ(r 1 − f2(r 2)), we can rewrite this permutation as

n(f−1
1 (r 1))

3 det
(
∂ f −1

2,α
f2,β(f−1

1 (r 1))
)δ(

r 2 − f−1
1 (r 1)

)
δ
(
r 3 − f2(f−1

1 (r 1))
)
, (A.3)

where the indices α,β= x, y, z , and det
(
∂αgβ(r )

) denotes the determinant ofthe Jacobian matrix for g(r ).2. Using the property of the inverse function g−1(g(r )) = r whose Jacobian ofboth sides gives ∂
∂gx

g−1
x (g(r )) ∂

∂g y
g−1

x (g(r )) ∂
∂gz

g−1
x (g(r ))

∂
∂gx

g−1
y (g(r )) ∂

∂g y
g−1

y (g(r )) ∂
∂gz

g−1
y (g(r ))

∂
∂gx

g−1
z (g(r )) ∂

∂g y
g−1

z (g(r )) ∂
∂gz

g−1
z (g(r ))

×
[ ∂
∂x gi (r ) ∂

∂x g j (r ) ∂
∂x gk (r )

∂
∂y gi (r ) ∂

∂y g j (r ) ∂
∂y gk (r )

∂
∂z gi (r ) ∂

∂z g j (r ) ∂
∂z gk (r )

]
= I (A.4)

we have
det

(
∂gαg−1

β (g(r ))
)= (

det
(
∂αgβ(r )

))−1 , (A.5)where again α,β= x, y, z .By setting g(x) = f−1
1 (x) and g−1(x) = f1(x), term (A.3) is further rewritten as:

n(f−1
1 (r 1))

3
det

(
∂α f −1

1,β(r 1)
)
δ
(
r 2 − f−1

1 (r 1)
)
δ
(
r 3 − f2(f−1

1 (r 1))
)
. (A.6)

3. Finally, using the fundamental properties of the co-motion functions, eqs. 3.11,and 3.12, where the fact that they form a cyclic group implies that the inverseof a co-motion function is another co-motion function in the group, the term(A.6) transforms into:
n(r 1)

3
δ(r 2 − f2(r 1))δ(r 3 − f1(r 1)), (A.7)

which can be recognised as permutation ℘= 2.The same reasoning in three steps is applicable to all the terms of a general
N-electron case.To summarise, we believe we have shown that N !−(N −1)! terms are redundantin expression 3.9 as all of these can be tranformed into one of the (N −1)! termshaving the same density prefactor. Therefore, choosing for example to express thedensity as a function of the coordinates of electron 1, the SCE wavefunction canbe written as

|ΨSCE(r 1, · · · ,r N )|2 = 1

(N −1)!

n(r 1)

N

(N−1)!∑
℘=1

N∏
i=2

δ(r i − f℘(i )(r 1)) (A.8)
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A. Redundancy of the permutations
This also means that, upon integration over N −1 variables, we obtain n identicalterms with n= Γ(N ). Consequently, we can consider only one of such non redundantpermutations – properly rescaled by the factor n – if we are interested in calculatingfunctions of one particle coordinates as are the one-body potentials defined inchapter 2 and as it was done in practice in the derivation of vSCE

N−1 , section 6.2
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B
Analytical 1D model for vSCE

H xc
and vSCE

r esp in the dissociation
limit

In chapter 6, we have seen that the shape of the co-motion function for the density ofeq 6.45 becomes asymtotically the same at any internuclear distance (“saturation"phenomenon), behaving, in particular, as a constant in the asymptotic regions x ¿ 1and x À 1 and as a linear curve with coefficients, m< = b
a and m> = a

b close to aR(eq 6.51).If we now approximates the small regions where the co-motion function switchesfrom the constant to the linear behaviour and those where it diverges (it is sufficientto know each one of such regions, only for one branch as the co-motion is symmetricw.r.t. the axis y = x) with sharp angles, we can determine the asymptotic co-motionfunction

fmod(y) =



aR y ≤ x<
T

m<y + c< x<
T < y < aR

∞ y = aR
1

m>y + c> aR < y ≤ x>
T

aR y > x>
T

(B.1)
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H xc and vSCE

r esp in the dissociation limit
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Figure B.1: Asymptotic co-motion function of eq B.1.
where x<

T (x>
T ) is the distance at which the co-motion function switches fromconstant (linear) to linear (constant), while c< (c>) is the constant shifting the zeroof the linear region to the negative (positive) x- axis.Assuming that eq B.1 is a good model for the co-motion, we need very few con-siderations to determine all the quantities needed to calculate the SCE potentialand its response part from it.In particular, considering the two identical right triangles ABC plotted in fig B.1,where the point A is A= {aR , aR }, we can determine their catheti AB and AC fromAB (AC)−1 = a

bAB+AC = 2R
(B.2)

where the first equation follows directly from eq 6.53, while the second is anextension of the discussion contained in section 6.5.2, but it takes a bit more ofdetails to support it.When the reference electron is situated slightly off −R
2 , say −R

2 + ε the secondelectron will be displaced by an amount b
a ε by the property of the right triangles.2

1We can arbitrarily pick a side, namely if fmod(aR ) =∞ or fmod(aR ) = −∞. The same is true for theinequalities, where we can arbitrarily decide whether fmod(x<T ) = aR or fmod(x<T ) = m<y + c<. Suchsingle points choices do not affect the SCE Hartree XC potential as it is obtained from an integralexpression containing fmod nor they affect the SCE response potential, as long as fmod(aR ) diverges.2And using physical arguments: because the density is less diffuse in the right fragment, the displace-
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Let us now consider the displacement from −R
2 to aR , corresponding to the DEsegment in fig B.1.The co-motion then increases by an amount b
a

( R
2 +aR

) (the DC segment in thefigure).On the other hand, because of its symmetry, the displacement of the co-motionon one branch corresponds to the displacement of the variable of the referenceelectron on the other branch. Furthermore, what happens from −R
2 “onward " mustbe mirrored by what happens from −R

2 “backward " bringing us to the conclusionthat the segment AB+AC= 2
((

1+ b
a

)
R
2 +

(
1+ b

a

)
aR

)
= 2R .Once AB and AC are known, evaluating all the quantities specifying the asymptoticco-motion in eq B.1 is just a matter of basic trigonometry, providing

x<
T = −(AB−aR )

x>
T = aR +AC

x<
0 = x<

T − a

b
aR

x>
0 = x>

T − b

a
aR

c< = −m<x<
0

c> = −m>x>
0 (B.3)where x<

0 (x>
0 ) is the zero of the function m<x + c< (m>x + c>), see fig B.1.

Table B.1: Values of the maximum of vSCE
H xc for the density in eq 6.45 and the parameters

a = 2, b = 1 at different internuclear distance, R .
vSCE

H xc (aR )R numerical modelled3 0.684 0.758 0.278 0.28111 0.203 0.20514 0.160 0.16117 0.132 0.13220 0.113 0.113
The modelled Hartree XC SCE potential, vSCE

H xc,mod, obtained from vSCE
H xc,mod(x) =

−∫ x
−∞

(
fmod(y)− y

)−2 dy (see eq 3.15), compares nicely with the numerically exact
ment has to be rescaled such that the chunk of density between the two electron positions integratealways to one (eq 3.33).
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B. Analytical 1D model for vSCE
H xc and vSCE

r esp in the dissociation limit
one as shown in the right colum of fig B.2. In addition to the profile of the modelledpotential, we report in table B.1, the values obtained for the maximum, which isthe most delicate point.

Figure B.2: Comparison of between the numerical (thick) and the modelled (dashed) vSCE
H xc(right) and the numerical (thick) and the modelled (dashed) vSCE

r esp at different internucleardistances. Notice that, because within the model the local behaviour of the co-motion aroundthe divergence is not treated, the response potential vSCE
r esp (x) shows a pointwise jump in

x = aR .
The analytical expression for the dependence of the maximum of the Hartree
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XC SCE we obtain is
vSCE

H xc (aR ) = (a +b)2

2 a b R
(B.4)

Equation B.4 shows that when the two fragment densities are equal, the maximumvalue decreases like 2
R . In the right column of fig B.2, we report the comparisonbetween the modelled and the numerical SCE response potentials, obtained fromeq 6.48. It is quite interesting to notice that the SCE response potential result-ing from our model co-motion (eq B.1) shows a pointwise jump in x = aR . It isevident that, in order to correctly describe how this potential behaves around itsmaximum, we need to include also the knowledge of how the co-motion functiondiverges, while this information is not needed in the case of the maximum of theSCE Hartree XC potential. Nonetheless, our modelled SCE response potentialcorrectly integrates to exactly one as it should (see discussion in chapter 7).Moreover, excluding for a moment the point fmod(ar ) =∞ from our model co-motion,we can evaluate the analytical behaviour of the step structure of the modelled SCEresponse potential, vSCE

r esp,mod, i.e. the difference from its left and right limits towards
aR , getting ∣∣∣∣ lim

x→a+
R

vSCE
r esp,mod(x) − lim

x→a−
R

vSCE
r esp,mod(x)

∣∣∣∣= a2 − b2

2 a b R
. (B.5)
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C
The Hooke’s atom series

The Hooke’s atom series consists of two electrons bound by an harmonic externalpotential, with hamiltonian
Ĥ =−1

2

(∇2
1 +∇2

2

)+ ω2

2

(
r 2

1 + r 2
2

)+ 1

r12
, (C.1)

with ri = |ri | and r12 = |r1 − r2|. At large ω the system has high-density andis in the weakly correlated regime, which can be fully described by using thescaled coordinates si ≡
p
ωri , while as ω→ 0 the system becomes more and morecorrelated [296], and the relevant scaled variables are s̃i ≡ω2/3 ri .As well known, there is an infinite set of special values of ω for which thehamiltonian (C.1) is analytically solvable [287] once rewritten in terms of center ofmass and relative coordinates. These analytic solutions have the center of mass inthe ground-state of an harmonic oscillator with mass m = 2 and frequency p

2ω, andthe relative coordinate in an s-wave with the radial part described by a gaussiantimes a polynomial [287]. We denote here the various analytic solutions with thedegree n−1 of the polynomial in r12. At n= 1 we have the non-interacting system,and as n increases the system becomes more and more correlated, with ω smallerand smaller [287]. The values of ω corresponding to l = 0 and the different valuesof n considered in chapter 8 are reported in Table C.1.In fig C.1 we plot the scaled densities for the different Hooke’s atom up ton= 6. Notice that , while for n= 2,3 along the series, the maximum of the densityis situated at the origin, for n> 3 it is found at some positive distance and at theorigin the density shows its minimum (a situation sometimes referred to as “cuspcatastrophe" [296]).
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C. The Hooke’s atom series

Table C.1: Values of ω for the various analytic solutions of the hamiltonian of Eq. (C.1)considered here, corresponding to l = 0 and different degrees n−1 of the polynomial in thesolution for the relative coordinate r12 [287].
n ω

2 1/23 1/104 1
24

(
5−p

17
)

5 1
712

(
35−3

p
57

)
6 191−p25141

(p
3sin

(
1
3 tan−1

(
1458

p
262235

3915791

))
+cos

(
1
3 tan−1

(
1458

p
262235

3915791

)))
1620

Figure C.1: Scaled densities for the Hooke’s atom series with n= 2, . . . ,6
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Summary
The results comprised in this thesis move along a diverse path exploring bothapproximations and exact properties of density functionals and support the signif-icance of the strong-interaction limit of DFT (and possibly also of HF theory) inthe development of approximate density functionals. Few considerations on suchresults, together with future directions that can be envisaged from them, are inorder in this summary.The assessment of model density functionals, based on interpolations alongthe adiabatic connection and containing the strong-interaction limit ingredient, oncases which are typically challenging for standard density functionals, such as goldand silver metal clusters, has shown that this class of functionals deserves furtherstudies. A self-consistent (SC) implementation seems due to definitely assess theirquality. However, we remind that they are complicated nonlinear functionals of theKohn−Sham orbitals and eigenvalues making their efficient SC implementation ahard task. This is the object of ongoing work. A further complication towards theirapplication in a SC procedure is that they typically contain a piece in the XCpotential which is diverging asymptotically [6]. Such behaviour comes from the factthat the λ→∞ limit energy functional is usually approximated by the much cheapersemilocal expression derived within the pointcharge-plus-continuum (PC) model,which is a gradient expansion and should therefore be somehow “renormalized"to avoid asymptotic divergence. More in general, efforts should be made in thedirection of making them applicable for routinely calculations, while preservingtheir non-empirical character.At the same time, the outcome that such interpolations, approximating the XCenergy in a post-SC scheme, are optimal when used as corrections to the HFuncorrelated energy, triggered a study on the strong-interaction limit in this theory.Several aspects need now to be understood about the different properties of theHF adiabatic connection curve as compared to the DFT one in order to be ableto properly transfer DFT strategies into this context. In some sense, the strong-interaction limit in the HF adiabatic connection seems simpler, thanks to the lackof the density constraint. Nevertheless, it could be useful to devise an approximatemodel similar to the PC one also for this reference system, especially in view ofapproximating the zero-point oscillations energy term, entering at order p

λ as inthe DFT case but looking quite more complex, due to the presence of the exchangeenergy operator, absent in DFT.On a parallel track, we focused on digging out exact properties of the XC poten-tial. In particular, we have connected two decompositions of the exact XC potential,
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Summary
i.e. the one coming from the conditional amplitude formalism and the one com-ing from integrating λ-dependent local potentials along the adiabatic connection,showing their different redistribution among terms having physically transparentmeanings (see eq 6.58 and fig 6.13). Furthermore, we have derived the SCE re-sponse potential and compared it to the exact one, finding that, although the SCEdescription lacks the fundamental kinetic correlation component, the structure ofits response potential mimics certain features of the exact one closer than approx-imations where the kinetic correlation component is accounted for (see fig 6.10and eq B.5). We attribute this capability to a distinctive feature of all SCE func-tionals, that is their dependence on integrals of the density, typically absent fromthe Jacob’s ladder narrative. Future directions inspired by such findings includemodeling the missing kinetic correlation component in terms of functionals thatdepend on the distances at which the (spherically averaged) density integrates toan integer, within the quite recently proposed multiple-radii approach [109, 110].Germane to the need for a more accurate description of the kinetic correlationcomponent, the project presented in the last chapter and motivated by recent resultson a lattice [275] explores the idea of introducing a position-dependent mass thatcould tune the kinetic energy density of a non-interacting system with that ofthe interacting one. However, the ulterior scalar potential embodied in the massintroduces a variety of possibilities on how to set up the theory, which we havepartially explored and tested on model and simple chemical systems. At the stateof the art, several questions are still open, both at the fundamental and at thecomputational level, and further investigations are needed before assessing if andhow the introduction of a position-dependent mass can improve the description ofthe kinetic correlation within KS-DFT.
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