
VU Research Portal

Weighted Dyck paths for nonstationary queues

Bet, Gianmarco; Selen, Jori; Zocca, Alessandro

published in
arXiv.org
2020

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Bet, G., Selen, J., & Zocca, A. (2020). Weighted Dyck paths for nonstationary queues. arXiv.org, 1-15. [03424].
https://arxiv.org/abs/2002.03424

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 27. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303698206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/b73796c8-f2b0-4e6c-a9f2-f2c21d9e4625
https://arxiv.org/abs/2002.03424

Weighted Dyck paths for nonstationary queues

G. Bet∗, J. Selen†, A. Zocca‡

February 11, 2020

Abstract

We consider a model for a queue in which only a fixed number N of customers
can join. Each customer joins the queue independently at an exponentially dis-
tributed time. Assuming further that the service times are independent and follow
an exponential distribution, this system can be described as a two-dimensional
Markov process on a finite triangular region S of the square lattice. We interpret
the resulting random walk on S as a Dyck path that is weighted according to
some state-dependent transition probabilities that are constant along one axis, but
are rather general otherwise. We untangle the resulting intricate combinatorial
structure by introducing appropriate generating functions that exploit the recur-
sive structure of the model. This allows us to derive a fully explicit expression for
the probability density function of the number of customers served in any busy
period (equivalently, of the length of any excursion of the Dyck path above the
diagonal) as a weighted sum with alternating sign over a certain subclass of Dyck
paths, whose study is of independent interest.

1 Introduction

Time-dependent queueing models are powerful tools for the analysis of real-life situa-
tions where the long-term behaviour of a system is not a good approximation for its
performance. Examples of applications include call centers [5] and outpatient wards of
hospitals where the server operates only over a finite amount of time [9, 10]. On the
other hand, rigorous and explicit results on time-dependent models are mostly out of
reach because the standard tools of renewal theory and ergodic theory are often not
applicable. In this paper we focus on a certain class of time-dependent models called
transitory queueing systems, introduced in [8], and defined as systems that operate only
during a finite time horizon. Thus only the time-dependent behavior is of interest. Hence
transitory queueing systems are time-dependent models that present even greater tech-
nical challenges because their steady-state distribution is trivial (all the probability mass
is concentrated in zero). One common approach to tackle this issue is to introduce a
scaling parameter N in the queueing model and approximate the resulting system with

∗Universit degli Studi di Firenze
†ASML
‡Vrije Universiteit Amsterdam

1

ar
X

iv
:2

00
2.

03
42

4v
1

 [
m

at
h.

PR
]

 9
 F

eb
 2

02
0

the asymptotic model obtained by taking N → ∞. This approximation is justified in
terms of stochastic-process limits, see e.g., [13, 14] and references therein. This approach
is robust because it relies on a functional Central Limit Theorem and it has proven to
be highly successful. However, this approach has two drawbacks. First, the asymptotic
results yield precise approximations only for very large N , and often accurate error esti-
mates are not available. Second, the asymptotic model is often still too complicated to
be analyzed exactly, and thus further approximations are needed. In this paper we aim
at developing novel tools for the analysis of transient queueing systems that do not rely
on any approximation scheme and that provide explicit formulas for the relevant perfor-
mance metrics. We emphasize that our approach is not meant to replace the classical
asymptotic approximation scheme, but rather to complement it when the approximations
it provides are unreliable or analytically intractable.

The canonical model for the study of transitory queueing systems is the so-called
∆(i)/G/1 model [6, 8] in which a single queue serves a finite pool ofN potential customers,
where N will be fixed throughout this paper. Each customer joins the queue at a time Ti,
where (Ti)

N
i=1 are positive i.i.d. random variables. Once in the queue, customers are served

in a first-come-first-served fashion. Each customer requires an amount of service Si, where
are i.i.d. random variables which are independent from the Ti. Once a customer is served,
they leave the system permanently. The ∆(i)/G/1 model was first introduced in [7], where
it emerged as the solution of a game-theoretic optimization problem in a queueing setting.
Furthermore, in [8] it was proven that, under the appropriate scaling, several other
transitory models have the same asymptotic behavior as the ∆(i)/G/1 model. Hence,
the ∆(i)/G/1 model should be seen as the canonical transitory queueing model, similarly
as how the G/G/1 queue is the canonical stationary queueing model. The asymptotic
regime N → ∞ of the ∆(i)/G/1 queue has been studied extensively in recent years.
In [6] the authors prove a functional Law of Large Numbers (fLLN) and a functional
Central Limit Theorem (fCLT) for the queue-length process. They identify the limit
processes explicitely, but these are considerably difficult to analyze and explicit formulas
for quantities of interest are not available. In a series of works [1, 4, 2, 3] the authors
consider the ∆(i)/G/1 queue in the heavy-traffic regime that is obtained by assuming
the instant of peak congestion is at t = 0. Their results are also fCLT’s for the queue-
length process. In all the cases, the limit process is a reflected stochastic process with
negative quadratic drift, for which several explicit expressions for quantities of interest
are available, see [4] for details.

Here we offer a new perspective on the ∆(i)/G/1 model, which we now summarize.
We assume that the arrival times Ti are exponentially distributed with rate λ, and
that the service times Si are exponentially distributed with mean 1/µ. We focus on
the embedded Markov chain associated to the queueing process, and we show that the
path of the Markov chain is a Dyck path of order N , that is, a staircase walk in N2

from (0, 0) to (N,N) that stays above (but may touch) the diagonal. It follows that
the transition probabilities of the Markov chain induce a probability measure on the
space of Dyck paths. Our result is then an explicit expression for the probability density
function of the excursion lengths of the Dyck path above the diagonal as a weighted
sum over a certain subclass of Dyck paths that, roughly speaking, do not avoid the
diagonal. Furthermore, we show that our result holds for general transition probabilities

2

that include the transition probabilities associated with the ∆(i)/G/1 model.
Dyck paths are some of the most well-studied objects in combinatorics and thus the

literature on the subject is vast. Perhaps closest to our approach is the work of Viennot
[12]. That paper finds general relationships between a certain class of orthogonal polyno-
mials and weighted Motzkin paths, which are a generalization of Dyck paths that allow
for diagonal jumps. In particular, it shows that the elements of the inverse coefficient
matrix of the polynomials are related to the sum of the weights of all Motzkin paths
starting in (0, 0) and with varying length and endpoint. This is in line with our proof
technique for Proposition 3.3. The authors in [11] provide a probabilistic procedure to
iteratively grow certain general combinatorial structures (Tk)

∞
k=1 in such a way that at

each step the law of Tk is uniform among all possible such structures of size k. Similarly,
in our model a random Dyck path of order N is generated via a local mechanism, i.e.,
by giving transition probabilities at each lattice site.

The rest of the paper is organized as follows. In Section 2 we define the ∆(i)/G/1 model
formally and we state our main result. In Section 3 we prove our main result by first
developing a recursion for the distribution of the number of customers served in the first
busy period, and then solving the recursion explicitely.

2 Model description, Dyck paths and main result

Consider a single-server queue that serves customers in a first-come first-served manner.
There is a finite pool of N customers, each of which enters the system only once. Each
customer independently joins the queue after an exponential time with rate λ and requires
a service time that is exponentially distributed with rate µ. For notational convenience
we denote by

λn := λ(N − n) (2.1)

the arrival rate of customers to the system if n customers have already arrived to the
system.

The state of the system at time t ≥ 0 is described by a vector X(t) := (X1(t), X2(t)) ∈
N2 where X1(t) is the number of completed services at time t and X2(t) is the number
of customers that have joined the system up until time t. In view of our assumptions,
the process {X(t)}t≥0 is a Markov process on the state space

S := {(i, j) ∈ N2 : 0 ≤ i ≤ N, 0 ≤ j ≤ i}. (2.2)

The transition rate diagram is depicted in Figure 1. The Markov process {X(t)}t≥0 is
clearly reducible and admits the trivial equilibrium distribution π with πN,N = 1 and
πi,j = 0 otherwise.

As illustrated in Figure 1, the state space S is highly structured. Our approach
crucially leverages this structure. We refer to the set of states in the j-th row of S

Pj := {(0, j), (1, j), . . . , (j, j)} (2.3)

as the j-th phase, which corresponds to the situation in which exactly j customers
have arrived in the system. We denote the collection of diagonal states as D0 :=

3

X2(t)

X1(t)
0

1

2

3

N − 1

N

µ

µ µ

µ µ µ

µ µ µ µ µ

µ µ µ µ µ µ

λ0

λ1 λ1

λ2 λ2 λ2

λN−1 λN−1 λN−1 λN−1 λN−1 λN−1

...

Figure 1: Transition rate diagram of the Markov process {X(t)}t≥0.

{(1, 1), (2, 2), . . . , (N,N)}, and further use the notation Dn := {(0, n), (1, n+1), . . . , (N−
n,N)}, 1 ≤ n ≤ N to denote the set of states on the n-th superdiagonal of S.

It does not seem possible to find an explicit solution for the Kolmogorov equations
associated to X(t) due to the time-inhomogeneous arrival process. Therefore we study
the associated embedded Markov chain on S, which we denote, with an abuse of notation,
as (X(k))2Nk=0. Conditionally on X(k) = (i, j) with i < j, we have

X(k + 1) =

{
(i+ 1, j) with probability ρj

(i, j + 1) with probability 1− ρj,
(2.4)

where
ρj :=

µ

µ+ λj
. (2.5)

In terms of the queueing system, ρj is the probability that a service occurs before an
arrival when j customers have already arrived, but not all of them have already been
served. Note that, conditionally on X(k) = (i, i), we have X(k + 1) = (i, i + 1) with
probability one. The ∆(i)/G/1 queueing model corresponds to the choice ρj = 0 if j = 0
and ρj = µ/(µ + λj) if j = 1, . . . , N . We focus on the random variable S describing
the number of customers served in the first busy period, which is the time between
the instant a customer arrives to an empty system and the instant a customer departs
the system leaving behind an empty system. Our main result is an explicit expression
for the probability si that exactly i customers are served in the first busy period, i.e.,
si := P(S = i).

From the discussion above it follows that the trajectory of the Markov chain is a
Dyck path of order N . We denote the set of Dyck paths of order N as DN . A Dyck path
u ∈ DN is fully characterized by the sequence (uj)

N
j=1 of jumps to the right at each of

4

the phases Pj, with j = 1, . . . , N . With an abuse of notation we write

DN =
{

(u1, . . . , uN) ∈ NN :
k∑
j=1

uj ≤ k for all k = 1, . . . , N − 1, and
N∑
j=1

uj = N
}
.

(2.6)

The transition probabilities (2.4) induce a probability measure P̄ on DN such that,

P̄(u) =
N∏
j=1

ρ
uj
j (1− ρj)

1{∑j
i=1

ui<j} , u = (u1, . . . , uN) ∈ DN . (2.7)

From a probabilistic perspective, equation (2.7) can be understood as follows: the prob-
ability that the Markov chain jumps uj times to the right at phase Pj is ρ

uj
j . Moreover,

if
∑j

i=1 ui = j, then the Markov chain hits the diagonal on (j, j) and in that case it
jumps up with probability one. Otherwise, it jumps up with probability 1 − ρj. From
a combinatorial perspective, ρj and 1 − ρj may be interpreted as weights associated to
their respective edges in S. Equation (2.7) then assigns to the Dyck path u a weight
w(u) := P̄(u), which is simply the product of the weights of the edges it traverses.

Equation (2.7) suggests partitioning the state space S in the N phases P1, . . . ,PN
in order to study the probability measure P̄. Crucially, the (j + 1)−th phase may only
be reached from the j-th phase and the transition probabilities between Pj and Pj+1

only depend on j. We exploit this recursive structure by associating to each phase a
generating function Pj(z) and then expressing Pj+1(z) in terms of Pj(z). We then obtain
the probability density function of the number of customers served in the first busy
period (equivalently, the probability density function of the length of the first excursion
of the associated Dyck path above the diagonal) by computing Pj(z̄) for some explicit
z̄ ∈ R. We are able to fully solve this recursion by rewriting it as a linear system of
equations and then inverting the coefficients matrix.

A crucial role in our result will be played by those Dyck paths that hit the diagonal
whenever they jump to the right, see Figure 2. We make this precise in terms of the
number of right jumps (u1, . . . , un) of the Dyck path u at each phase Pj. We define a
feasible allocation (u1, . . . , un) in a recursive manner, starting from u1, as follows: u1 is
either 1 or 0, then

1. If ui−1 = ui−2 = . . . = ui−k+1 = 0, then ui is either k or 0;

2. If ui−1 6= 0, then ui is either 1 or 0.

Moreover, (u1, . . . , un) is such that
∑n

i=1 ui = n. We denote by Un the set of feasible
allocations. With a minor abuse of terminology, we refer to elements of Un interchange-
abily as feasible allocations and as Dyck paths. The set Un then represents all those
Dyck paths of order n ≤ N that hit the diagonal whenever they jump to the right.
Some examples of feasible allocations for n = 4 are (1, 1, 0, 2), (0, 0, 3, 1), (0, 2, 0, 2) and
(0, 0, 0, 4). Some examples of unfeasible allocations for n = 4 are (1, 0, 1, 2), since u3
must be 0 or 2, (1, 0, 0, 2), since u4 must be 3, and (0, 0, 2, 2), since u3 must be 0 or 3.
See Figure 2 for an example of both a feasible and an unfeasible allocation in terms of

5

X2(t)

X1(t)
0

1

2

3

4

5

X2(t)

X1(t)
0

1

2

3

4

5

Figure 2: Examples of feasible and unfeasible allocations in U4 in terms of Dyck paths.
The Dyck path on the left corresponds to the feasible allocation u = (1, 1, 0, 2), the one
on the right corresponds to the allocation u = (1, 0, 1, 2), which is unfeasible since u3
must be 0 or 2.

Dyck paths. For every Dyck path u ∈ UN there exists J = J (u) ⊆ {1, . . . , N} such that
(2.7) simply reads

P̄(u) =
∏
j∈J

ρ
uj
j

∏
k∈Jc

(1− ρk), (2.8)

where J c := {1, . . . , N} \ J . Here the set J represents the phases where the Dyck path
jumps to the right and hits the diagonal. The set J c then represents the phases where
the Dyck path jumps up without jumping to the right. Conditioning on the phase in
which the path first jumps to the right, it can be shown that | Un| = 2n−1 for 1 ≤ n ≤ N .

We are finally able to state our main result.

Theorem 2.1. The probability that i customers are served in the first busy period of the
∆(i)/G/1 queue or, equivalently, the probability that the corresponding Dyck path hits the
diagonal for the first time in (i, i) is given by

si =
∑

(u1,u2,...,ui)∈Ui

b(ρu11 , ρ
u2
2 , . . . , ρ

ui
i)ρu11 ρ

u2
2 · · · ρuii , (2.9)

where b : Ri → R is an explicit function defined later in (3.26) and takes both positive
and negative values.

From a combinatorial perspective, si may be interpreted as the sum of the weights of
all those Dyck paths of order i that do not hit the diagonal, which are in bijection with
Dyck paths of order i− 1. Then, equation (2.9) may be interpreted as a decomposition
of the sum of weighted Dyck paths of order i − 1 in terms of only those weighted Dyck
paths that are associated with feasible allocations in Ui (the right-hand side).

Let us briefly make explicit the dependence of si on the initial number of customers
N as s

(N)
i . Then, conditionally on S = n, the probability that i customers are served in

the second busy period is s
(N−n)
i and, hence, Theorem 2.1 gives the joint distribution of

the number of customers served in all busy periods.

6

3 The number of customers in the first busy period

We prove Theorem 2.1 in two steps. First, in Subsection 3.1 we define a generating
function Pj(z) associated to phase j and derive a relation between Pj(z) and Pj−1(z).
The probabilities si are obtained by evaluating Pn(z̄) in a specific z̄ = z̄(n), yielding
a recursive relation for s1, . . . , sN . Then, in Subsection 3.2 we interpret this recursive
relation as a linear system As = b, where s = (s1, . . . , sN) and A is a lower-triangular
matrix. By calculating explicitly the inverse A−1, we finally obtain the explicit expression
for the probabilities s = (s1, . . . , sN) as stated in (2.9).

3.1 Developing a recursion

We begin by introducing some notation. Given any stochastic process Y , we let Ey[f(Y)]
represent the expectation of a functional of Y , conditional on Y (0) = y and similarly for
Py(·). For every subset A (S, the hitting-time HA is the random variable

HA := inf{t > 0 : lim
s↑t

X(s) 6= X(t) ∈ A}, (3.1)

which describes the first time that the process {X(t)}t≥0 started at (0, 0) enters the
subset A. For a singleton x ∈ S, Hx should be understood as H{x}.

Let pn(i) be the probability that, conditionally on the starting point X(0) = (0, 0),
the Markov process {X(t)}t≥0 first visits phase n hitting state (i, n) and without residing
in D0, i.e.,

pn(i) := P(0,0)(HPn < HD0 , X(HPn) = (i, n)), 0 ≤ i ≤ n, 1 ≤ n ≤ N. (3.2)

Note that pn(n − 1) = pn(n) = 0 for 2 ≤ n ≤ N . Define the generating function of the
sequence (pn(i))n−2i=0 as

Pn(z) :=
n−2∑
i=0

pn(i)zi, z ∈ C, 2 ≤ n ≤ N. (3.3)

For notational convenience, we also define P1(z) := 1. Clearly, if N = 1, then s1 = 1,
hence from now on we will focus on N > 1. The strong Markov property implies that
s1 = ρ1, and furthermore

sn =
n−2∑
i=0

pn(i)ρn−in = ρnnPn(ρ−1n), 2 ≤ n ≤ N, (3.4)

where ρn is defined in (2.5). Note that (3.4) implies sN = PN(1). Equation (3.4) is
the crucial relation that allows us to obtain a recursive expression for the probabilities
(sn)Nn=1 starting from a recursive expression for the generating functions (Pn(·))Nn=1.

Finally, let Gp(z) denote the probability generating function of a geometric random
variable with support {0, 1, . . .} and success probability 1− p, i.e.,

Gp(z) :=
1− p
1− pz , |z| < 1

p
. (3.5)

We are now ready to state our first result.

7

Lemma 3.1. For any choice of positive transition probabilities (ρj)
N
j=1, the generating

functions satisfy the recursion

Pn+1(z) = Gρn(z)
[
Pn(z)− snzn

]
, 1 ≤ n ≤ N − 1. (3.6)

In particular,

Pn+1(z) =
n∏
i=1

Gρi(z)−
n∑
i=1

siz
i

n∏
j=i

Gρj(z), |z| < 1

ρn
. (3.7)

Proof. We start by expressing Pn+1(z) in terms of Pn(z). From the strong Markov
property at time HPn we can write

pn+1(i) =
i∑

j=0

pn(j)ρi−jn (1− ρn), 0 ≤ i ≤ n− 2, (3.8)

pn+1(n− 1) =
n−2∑
j=0

pn(j)ρn−1−jn (1− ρn). (3.9)

Multiply both sides of (3.8) by zi and sum over all i with 0 ≤ i ≤ n − 2 and multiply
both sides of (3.9) by zn−1. Sum the two resulting expressions to get

Pn+1(z) =
n−2∑
i=0

i∑
j=0

pn(j)ρi−jn (1− ρn)zi +
n−2∑
j=0

pn(j)ρn−1−jn (1− ρn)zn−1. (3.10)

Switch the order of the double summation to obtain

Pn+1(z) = (1− ρn)
[n−2∑
j=0

pn(j)
n−2∑
i=j

ρi−jn zi +
n−2∑
j=0

pn(j)ρn−1−jn zn−1
]

= (1− ρn)
[n−2∑
j=0

pn(j)

n−2−j∑
k=0

ρknz
j+k +

n−2∑
j=0

pn(j)ρn−1−jn zn−1
]
. (3.11)

The summation over k is a geometric sum. Performing this summation and rewriting
yields the recursive expression

Pn+1(z) = (1− ρn)
[n−2∑
j=0

pn(j)
zj − ρn−1−jn zn−1

1− ρnz
+

n−2∑
j=0

pn(j)ρn−1−jn zn−1
]

=
1− ρn
1− ρnz

[n−2∑
j=0

pn(j)zj − znρnn
n−2∑
j=0

pn(j)ρ−jn

]
= Gρn(z)

[
Pn(z)− snzn

]
. (3.12)

To prove the explicit expression (3.7) we iterate the recursion (3.12), obtaining

Pn+1(z) = P2(z)
n∏
i=2

Gρi(z)−
n∑
i=2

siz
i

n∏
j=i

Gρj(z), (3.13)

8

which we can further simplify by noting that

P2(z) = p2(0) = 1− ρ1 = (1− ρ1z)Gρ1(z). (3.14)

Since s1 = ρ1, we finally obtain (3.7).

Note that for the ∆(i)/G/1 queue we have ρ−1i = (µ + λi)/µ > (µ + λj)/µ = ρ−1j for
any i < j. Therefore, Gρi(ρ

−1
n) is well defined for all i < n.

In the proof of Lemma 3.1 we did not make use of the precise expression of ρn, and
so (3.7) still holds when replacing λi with any sequence of positive decreasing numbers.
Combining Lemma 3.1 with (3.4) allows us to obtain a recursive expression for sn. We
first present the expression for sn for a general decreasing sequence (λn)Nn=1, and then
the one obtained when setting λn = λ(N − n). We adopt the convention that the empty
sum

∑0
i=1(·) = 0 and the empty product

∏0
i=1(·) = 1.

Corollary 3.2. Assume (λn)Nn=1 is a sequence such that λ1 > . . . > λN−1 > λN = 0.
Then,

sn = ρnn

n−1∏
k=1

λk
λk − λn

−
n−1∑
i=1

siρ
n−i
n

n−1∏
k=i

λk
λk − λn

, 2 ≤ n ≤ N, (3.15)

with initial term s1 = ρ1. In particular, when λn = λ(N − n), the probabilities sn satisfy
the recursion

sn = ρnn

(
N − 1

n− 1

)
−

n−1∑
i=1

siρ
n−i
n

(
N − i
n− i

)
, (3.16)

with initial term s1 = ρ1.

Proof. Combining the result of Lemma 3.1 with (3.4) yields the following recursion, for
2 ≤ n ≤ N − 1,

sn = ρnn

n−1∏
i=1

Gρi(ρ
−1
n)−

n−1∑
i=1

siρ
n−i
n

n−1∏
j=i

Gρj(ρ
−1
n), sN = 1−

N−1∑
i=1

si. (3.17)

Note that, by our assumption on the sequence (λn)Nn=1, we have ρ−11 > · · · > ρ−1N = 1.
Therefore, Gρi(ρ

−1
n) is well defined for all i < n. The first expression (3.15) follows from

Gρk(ρ−1n) =
1− ρk
1− ρk

ρn

=
1− µ

µ+λk

1− µ+λn
µ+λk

=
λk

λk − λn
. (3.18)

Moreover, when λn = λ(N − n) we get

n−1∏
k=l

Gρk(ρ−1n) =
n−1∏
k=l

N − k
n− k =

N − l
n− l

N − l − 1

n− l − 1

N − l − 2

n− l − 2
· · · N − n+ 1

1
=

(
N − l
n− l

)
,

which proves (3.16).

9

3.2 Solving the recursion

In this section we solve the recursion (3.15) to find an explicit expression for sn. Recall
that for n = 1, 2, . . . , N ,

sn = ρnn

n−1∏
k=1

λk
λk − λn

−
n−1∑
i=1

siρ
n−i
n

n−1∏
k=i

λk
λk − λn

, (3.19)

Divide both sides by ρnn and bring all si terms to one side to obtain

n∑
i=1

si
ρin

n−1∏
k=i

λk
λk − λn

=
n−1∏
k=1

λk
λk − λn

. (3.20)

We can write (3.20) in the matrix-vector notation As = b, where we introduced the
column vectors

s := (si)i=1,2,...,N , and b :=

(
n−1∏
k=1

λk
λk − λn

)
n=1,2,...,N

(3.21)

and the lower-triangular matrix A with element (n, i) given by

(A)n,i :=
1

ρin

n−1∏
k=i

λk
λk − λn

, 1 ≤ i ≤ n ≤ N. (3.22)

We can calculate s as s = A−1b. In particular, since A is a lower-triangular matrix, so
is its inverse A−1. Hence, we can determine the inverse using the well-known recursive
formulas

(A−1)n,n =
1

(A)n,n
= ρnn, n = 1, 2, . . . , N, (3.23)

(A−1)n,i = −(A−1)i,i

n∑
k=i+1

(A−1)n,k(A)k,i, 1 ≤ i < n ≤ N. (3.24)

This recursion is solved in a specific order. One first determines (A−1)n,n, for n =
1, 2, . . . , N , then all (A−1)n,n−1, for n = 2, 3, . . . , N , followed by (A−1)n,n−2, for n =
3, 4, . . . , N , and so on until finally (A−1)N,1 is reached. We exploit this recursion in order
to derive an explicit expression for the elements of the inverse. To that end, we require
some additional definitions. For any n ∈ N and any vector a = (ak1 , . . . , akn) ∈ (R+)n

indexed by k1 < k2 < . . . < kn we define M = M(a) to be the number of entries of the
vector a that are not equal to one, i.e.,

M = M(a) :=
n∑
i=1

1{aki 6= 1}, (3.25)

and by k(1) < k(2) < . . . < k(M) the ordered indices corresponding to those entries. For
notational convenience, we also define k(0) := k1 ≤ k(1) and k(M+1) := kn ≥ k(M), so that

a = (ak(0) , 1, . . . , 1, ak(1) , 1, . . . , 1, ak(2) , 1, . . . , 1, ak(M−1)
, 1, . . . , 1, ak(M)

, 1, . . . , 1, ak(M+1)
).

10

We then introduce the function b : (R+)n 7→ R that associates to the vector (ak1 , . . . , akn)
the scalar b(ak1 , . . . , akn) defined as

b(ak1 , . . . , akn) := (−1)M−1
M∏
m=0

k(m+1)−1∏
k=k(m)

λk
λk − λk(m+1)

. (3.26)

Note that, when λn = λ(N − n),

b(ak1 , . . . , akn) = (−1)M−1
M∏
m=0

(
N − k(m)

k(m+1) − k(m)

)
. (3.27)

Before proceeding, let us motivate definition (3.26). We may interpret the right side of
(2.9) as a sum of the weights associated to Dyck paths in Ui. Then, b(·) represents the
contribution of the up jumps to the total weight of the path u. The weight of each edge
of the path depends on the phase where it is located, hence to compute the total weight
of the path it is crucial to keep track of the location of the jumps to the right. This is
accomplished by the indices k(1), . . . , k(M) associated to the Dyck path u = (u1, . . . , ui).
In particular, between the k(m)-th phase and the k(m+1)-th phase, u only makes up jumps,
and then M represents the total number of excursions above the diagonal of u. In order
to prove Theorem 2.1, we first obtain an explicit expression for the inverse coefficient
matrix A−1.

Proposition 3.3. Assume that (λn)Nn=1 is a sequence such that λ1 > . . . > λN−1 > λN = 0.
Then, for any i = 1, . . . , N and n = 1, 2, . . . , i− 1 we have

(A−1)i,i−n =
∑

(u1,u2,...,un)∈Un

b(ρi−ni−n, ρ
u1
i−n+1 . . . , ρ

un
i)ρi−ni−nρ

u1
i−n+1ρ

u2
i−n+2 · · · ρuni , (3.28)

where b was defined in (3.26).

Proof. We proceed by induction, by assuming that (3.28) holds for all m ≤ n for some
n ∈ {1, . . . , i − 1} and then proving it for n + 1. We use (3.24) together with (3.22) to
obtain

(A−1)i,i−(n+1) = −ρi−(n+1)
i−(n+1)

i∑
k=i−n

(A−1)i,k(A)k,i−n−1

= −ρi−(n+1)
i−(n+1)

n∑
j=0

(A−1)i,i−j(A)i−j,i−n−1

= −ρi−(n+1)
i−(n+1)

n∑
j=0

(A−1)i,i−j
1

ρ
i−(n+1)
i−j

i−j−1∏
k=i−(n+1)

λk
λk − λi−j

. (3.29)

In the last equality we highlight the inductive structure in the product term. To avoid
encumbering the computations, let us denote the product in (3.29) as

Bi,j,n := −
i−j−1∏

k=i−(n+1)

λk
λk − λi−j

. (3.30)

11

X2(t)

X1(t)

i

i− j

i− (n+ 1)

n+ 1

j

Figure 3: On the left-hand side of the inductive step (3.32), the first right jump of the
Dyck path occurs at phase i − (n + 1), and the first jump after that occurs at phase
i − j. Summing over j = 0, . . . , n, one obtains all paths that jump to the right for the
first time at phase i− (n+ 1), which is the right-hand side of (3.32).

Inserting the expression for (A−1)i,i−j into (3.29) gives

ρ
i−(n+1)
i−(n+1)

n∑
j=0

(A−1)i,i−j
1

ρi−n−1i−j
Bi,j,n

= ρ
i−(n+1)
i−(n+1)

n∑
j=0

∑
(u1,...,uj)∈Uj

ρi−ji−jρ
u1
i−j+1 . . . ρ

uj
i b(ρ

i−j
i−j, ρ

u1
i−j+1 . . . , ρ

uj
i)

1

ρi−n−1i−j
Bi,j,n

=
n∑
j=0

∑
(u1,...,uj)∈Uj

ρ
i−(n+1)
i−(n+1)ρ

n+1−j
i−j ρu1i−j+1 . . . ρ

uj
i b(ρ

i−j
i−j, ρ

u1
i−j+1 . . . , ρ

uj
i)Bi,j,n. (3.31)

Now, observe that (n+ 1− j) + u1 + . . .+ uj = n+ 1. Crucially, we also have that

n∑
j=0

∑
(u1,...,uj)∈Uj

ρ
i−(n+1)
i−(n+1)ρ

n+1−j
i−j ρu1i−j+1 . . . ρ

uj
i b(ρ

i−j
i−j, ρ

u1
i−j+1 . . . , ρ

uj
i)Bi,j,n

=
∑

(v1,...,vn+1)∈Un+1

ρ
i−(n+1)
i−(n+1)ρ

v1
i−n . . . ρ

vn+1

i b(ρ
i−(n+1)
i−(n+1), ρ

v1
i−n, . . . , ρ

vn+1

i). (3.32)

Indeed, the left-hand side corresponds to the feasible assignment in which the first jump
to the right occurs at phase i− (n+ 1), which is necessarily of length i− (n+ 1). Then,
for any fixed j = 0, . . . , n, the next jump to the right occurs at phase i − j, which is

12

necessarily of length n + 1 − j. A sum is then performed over the remaining feasible
assignments. Summing over all possible j = 0, . . . , n on the left-hand side of (3.32), one
obtains a sum over all feasible assignments such that the first jump to the right occurs
at phase i− (n+ 1), which is the sum on the right-hand side of (3.32). Furthermore, for

the vector a = (ρ
i−(n+1)
i−(n+1), ρ

n+1−j
i−j , ρu1i−j+1, . . . , ρ

uj
i), we have that k(0) = k(1) = i − (n + 1)

and k(2) = i− j, so that

Bi,j,n = −
(i−j)−1∏

k=i−(n+1)

λk
λk − λi−j

= −
k(2)−1∏
k=k(1)

λk
λk − λk(2)

. (3.33)

It follows that

b(a) = b(ρ
i−(n+1)
i−(n+1), ρ

n+1−j
i−j , ρu1i−j+1, . . . , ρ

uj
i) = Bi,j,nb(ρi−ji−j, ρ

u1
i−j+1 . . . , ρ

uj
i) (3.34)

Figure 3 illustrates this decomposition in terms of Dyck paths.

We can finally prove Theorem 2.1 by applying Proposition 3.3 to invert the matrix
A.

Proof of Theorem 2.1. Writing s = A−1b explicitely yields

si =
i−1∑
n=0

(A−1)i,i−n

i−n−1∏
k=1

λk
λk − λi−n

. (3.35)

Plugging (3.28) into (3.35), using the same inductive argument as in (3.32) and noting
that

i−n−1∏
k=1

λk
λk − λi−n

=

k(1)−1∏
k=k(0)

λk
λk − λi−n

, (3.36)

gives

si =
∑

(u1,u2,...,ui)∈Ui

ρu11 ρ
u2
2 · · · ρuii b(ρu11 , ρu22 , . . . , ρuii), (3.37)

concluding the proof.

References

[1] G. Bet. An alternative approach to heavy-traffic limits for finite-pool queues.
arXiv:1811.09576 , 2018.

[2] G. Bet, R. van der Hofstad, and J. S. H. van Leeuwaarden. Finite-pool queueing
with heavy-tailed services. Journal of Applied Probability , 54(3):921–942, 2017.

[3] G. Bet, R. van der Hofstad, and J. S. H. van Leeuwaarden. Big jobs arrive early:
From critical queues to random graphs. Stochastic Systems , 2019.

13

[4] G. Bet, R. van der Hofstad, and J. S. H. van Leeuwaarden. Heavy-traffic analysis
through uniform acceleration of queues with diminishing populations. Mathematics
of Operations Research, 2019. https://doi.org/10.1287/moor.2018.0947.

[5] L. Brown, N. Gans, A. Mandelbaum, A. Sakov, H. Shen, S. Zeltyn, and L. Zhao.
Statistical analysis of a telephone call center. Journal of the American Statistical
Association, 100(469):36–50, 2005.

[6] H. Honnappa, R. Jain, and A. R. Ward. A queueing model with independent arrivals,
and its fluid and diffusion limits. Queueing Systems , 80(1):71–103, 2015.

[7] H. Honnappa and J. Rahul. Strategic Arrivals into Queueing Networks: The Network
Concert Queueing Game. Operations Research, 63(1):247–259, 2015.

[8] H. Honnappa and A. R. Ward. On transitory queueing. arXiv:1412.2321 , 2014.

[9] S.-H. Kim and W. Whitt. Are call center and hospital arrivals well modeled by
nonhomogeneous Poisson processes? Manufacturing & Service Operations Manage-
ment , 16(3):464–480, 2014.

[10] S.-H. Kim and W. Whitt. Choosing arrival process models for service systems: tests
of a nonhomogeneous Poisson process. Naval Research Logistics , 61(1):66–90, 2014.

[11] M. Luczak and P. Winkler. Building uniformly random subtrees. Random Structures
& Algorithms , 24(4):420–443, 2004.

[12] G. Viennot. A combinatorial theory for general orthogonal polynomials with exten-
sions and applications. In Polynômes Orthogonaux et Applications , pages 139–157.
Springer, 1985.

[13] W. Whitt. Stochastic-Process Limits. An Introduction to Stochastic-Process Limits
and Their Application to Queues . Springer, New York, 2002.

[14] W. Whitt. Queues with time-varying arrival rates: A bibliography. Available on
http://www.columbia.edu/~ww2040/TV_bibliography_091016.pdf, 2016.

14

https://doi.org/10.1287/moor.2018.0947
http://www.columbia.edu/~ww2040/TV_bibliography_091016.pdf

	1 Introduction
	2 Model description, Dyck paths and main result
	3 The number of customers in the first busy period
	3.1 Developing a recursion
	3.2 Solving the recursion

