
VU Research Portal

CluStream-GT: Online clustering for personalization in the health domain

Grua, Eoin Martino; Hoogendoorn, Mark; Malavolta, Ivano; Lago, Patricia; Eiben, A. E.

published in
WI '19: IEEE/WIC/ACM International Conference on Web Intelligence
2019

DOI (link to publisher)
10.1145/3350546.3352529

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Grua, E. M., Hoogendoorn, M., Malavolta, I., Lago, P., & Eiben, A. E. (2019). CluStream-GT: Online clustering
for personalization in the health domain. In P. Barnaghi, G. Gottlob, Y. Manolopoulos, T. Tzouramanis, & A.
Vakali (Eds.), WI '19: IEEE/WIC/ACM International Conference on Web Intelligence: Proceedings (pp. 270-275).
Association for Computing Machinery, Inc. https://doi.org/10.1145/3350546.3352529

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 13. Sep. 2021

https://doi.org/10.1145/3350546.3352529
https://research.vu.nl/en/publications/eb0c92a5-9226-4dfc-9b89-5781cfc7bf2a
https://doi.org/10.1145/3350546.3352529

CluStream-GT: Online Clustering for Personalization in the
Health Domain

Eoin Martino Grua

Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

e.m.grua@vu.nl

Mark Hoogendoorn

Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

m.hoogendoorn@vu.nl

Ivano Malavolta

Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

i.malavolta@vu.nl

Patricia Lago

Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

p.lago@vu.nl

A.E. Eiben

Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

a.e.eiben@vu.nl

ABSTRACT
Clustering of users underlies many of the personalisation algo-

rithms that are in use nowadays. Such clustering is mostly per-

formed in an offline fashion. For a health and wellbeing setting,

offline clustering might however not be suitable, as limited data

is often available and patient states can also quickly evolve over

time. Existing online clustering algorithms are not suitable for the

health domain due to the type of data that involves multiple time

series evolving over time. In this paper we propose a new online

clustering algorithm called CluStream-GT that is suitable for health

applications. By using both artificial and real datasets, we show

that the approach is far more efficient compared to regular cluster-

ing, with an average speedup of 93%, while only losing 12% in the

accuracy of the clustering with artificial data and 3% with real data.

CCS CONCEPTS
• Computing methodologies→ Cluster analysis.

KEYWORDS
online clustering, clustering, time series, e-Health

ACM Reference Format:
Eoin Martino Grua, Mark Hoogendoorn, Ivano Malavolta, Patricia Lago,

and A.E. Eiben. 2019. CluStream-GT: Online Clustering for Personalization

in the Health Domain. In IEEE/WIC/ACM International Conference on Web
Intelligence (WI ’19), October 14–17, 2019, Thessaloniki, Greece. ACM, New

York, NY, USA, 6 pages. https://doi.org/10.1145/3350546.3352529

1 INTRODUCTION
Personalisation in the health domain can contribute greatly to an

improved wellbeing among patients [7, 12, 16]. For example, per-

sonalisation entails selecting a dedicated intervention for a patient

that is most likely to improve the patients health state. Applications

vary from more medical cases in hospitals [2] to mobile health apps

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WI ’19, October 14–17, 2019, Thessaloniki, Greece
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6934-3/19/10. . . $15.00

https://doi.org/10.1145/3350546.3352529

such as sport trackers [10] or apps to battle depression [11] . Per-

forming personalisation in the health domain is challenging: bad

suggestions are highly undesirable, data can be limited for specific

types of health-related domains, and doing real life experiments to

collect more data is not trivial at all.

Clustering is often considered a valuable step in providing per-

sonalised support or recommendations to users (see e.g. [6, 8]) in

order to have enough data to base recommendations on. Using clus-

tering, like-minded users are grouped, and recommendations (or

the aforementioned interventions) are found that are relevant for

the users in the group. Mostly, this clustering is done in an offline

fashion, i.e., once the clusters are determined they do not change

in real-time and are only updated in a batch mode over possibly

long intervals. While this is fine for companies such as Netflix and

Amazon with a user base of millions and without rapid changes

of user preferences, for the health domain this might come with

severe disadvantages: (1) the number of users could be very limited

and one would want to exploit the most recent data of all patients,

and (2) the health state of users can vary greatly and change rapidly

over time. Hence, clustering in a real-time fashion is much more

desirable.

In the literature, there are various algorithms that allow for the

online updating of clusters. Well-known examples include CluS-

tream [1], ODAC [14], and others [4, 5]. They do however not fit

the health domain well.

In the health domain, we mostly consider measurements over

time per patient, and intend to cluster on a patient level. This

means that online clustering approaches need to cope with: (1) new

patients arriving, and (2) new data of known patients coming in.

Both situations potentially require an update of clusters, while in

existing approaches only the second case is tackled, assuming the

number of data points (in our case patients) do not change as time

progresses. In this paper, we present an online clustering approach

for the health care domain that is called CluStream-GT (standing

for: CluStream for Growing Time-series). It is able to online cluster

patients with evolving time series (i.e. an increasing amount of data

per patient over time). This approach is an extension of the popular

CluStream approach. CluStream-GT online clusters inputted time-

series by first checking if the data is meant as an update of an already

clustered patient or is categorising a new one. In the former case it

then decides if the newly updated time-series has to be re-clustered

or can be kept in the already assigned cluster. Whilst in the latter

270

https://doi.org/10.1145/3350546.3352529
https://doi.org/10.1145/3350546.3352529

WI ’19, October 14–17, 2019, Thessaloniki, Greece Grua et al.

case it will always decide which cluster is better suited to include

the new patient data. In order to evaluate the CluStream-GT, we

use both real medical EEG data and artificial data. We compare the

quality of the clusters found by CluStream-GT to k-means (cf. [9])

and ODAC (as it is the closest existing method to CluStream-GT) by

having both algorithms re-cluster at each timepoint and storing the

average silhouette score [15]. We also compare the total execution

time of the approaches. We therefore analysed the two metrics and

found a beneficial trade-off in the use of CluStream-GT.

2 APPROACH
In this section, we formally define the problem we are addressing,

followed by an explanation of the proposed algorithm.

2.1 Problem Description
We assume that we have a set of users U : u1, . . . ,uk (patients in

our case) which can generate health related data. The health data

contains a number of features that are measured around the users

at each time point: { f1, . . . , fn }. The domain of each feature fi
is denoted by Fi . The values of these features are measured over

time, we assume that at each time point when a measurement is

performed, all feature values are measured. For a measurement

at time point t for user ui , the value of the feature fj is noted

as v(ui , fj , t). We use St1t0 (ui) to denote the time series of a user

ui , containing vectors of values of all features over all time point

between t0 and t1. Furthermore, tstar t (ui) is used to specify the

time when the time series started for user ui and tend (ui) when it

ended.

Our task is to cluster the series of values over all features for

the users. Here, the start, end, and length of the series of the users

can vary freely across the users. In order to specify our algorithm,

we assume that some aggregation function a is available that sum-

marises the the entire time series into a single number that can

be compared to other time series (i.e. this is our distance metric).

We require the following property of the function (to simplify, we

assume one feature fj here):

a(S
tk
t0 (ui)) = a(a(S

tk−1
t0 (ui)), S

tk
tk (ui))) (1)

This property allows updating the aggregate of the time series

without having to maintain a history of all values.

2.2 CluStream-GT algorithm
To solve the clustering problem, we deploy an approach similar

to CluStream. CluStream works based on microclusters. These are

used as intermediate step before the clustering of the entire dataset

is used. They are initialised offline with a small sub-sample of the

dataset. Microclusters are specified by means of five components

that summarise the data within the microcluster:

• the sum of all values of the datapoints

• the sum of all squared values of the datapoints

• the sum of all time points associated with the datapoints

• the sum of the squared values of all time points associated

with the datapoints

• the number of datapoints contained in the microcluster

Given our formal notation before, we slightly adjust the micro-

cluster definition to make it suitable for our setting:

• the sum of all values of the aggregation function of the users

in the microcluster:∑
∀u ∈Ui a(S

tend (u)
tstar t (u)

(u))

• the sum of all squared values of the aggregation function:∑
∀u ∈Ui

(
a(S

tend (u)
tstar t (u)

(u))
)
2

• the sum of the last time points for all users:∑
∀u ∈Ui tend (u)

• the sum of the squared values of the last time points for all

users:∑
∀u ∈Ui (tend (u))2

• the set of users contained in the microcluster (Ui ⊂ U)
As a second step, these microclusters are used as datapoints in a

standard clustering approach resulting in macroclusters. Having

the microclusters as an intermediate step saves valuable storage

space, but also computational effort in the clustering. Of course, it

is essential to have appropriate microclusters that group users in a

suitable way. CluStream therefore, when new data arrives, assigns

the new data point to an existing microcluster if it is sufficiently

alike, or its own microcluster in case it is too different. In the latter

case, two existing microclusters are merged. Microclusters contain-

ing too many old datapoints can also be removed. In our setting,

life becomes slightly more complicated as data points are now time

series. Hence, we can have two cases: (1) a new datapoint arrives in

a time series of an existing user/patient, or (2) a datapoint arrives of

a new patient. We need to accommodate for both cases. Algorithm 1

shows our adjusted version of CluStream to accommodate for this

setting.

Algorithm 1 CluStream-GT pseudocode

1: procedure CluStream-GT(new_data, id)
2: t ← current_t ime

// We have seen the patient already

3: if id is known then
4: m_c ← дet_micro_cluster (id)
5: prev_t ← дet_last_t (id)
6: prev_aддr ← дet_prev_aддr eдate_value(id)
7: new_aддr ← calculate_aддr eдate(дet_prev_data(id),
8: new_data)

// We see only a small change, just update the microcluster properties

9: if |new_aддr − pre_aддr | < δ then
10: m_c ← update_microcluster (m_c, id, t, prev_t, new_aддr,
11: prev_aддr)

// Major change, remove from microcluster, find the best fitting cluster and update

12: else
13: m_c ← r emove_f rom_microcluster (m_c, id, prev_t, prev_aддr)
14: goto find

// New patient

15: else
16: new_aддr ← calculate_aддr eдate(null, new_data)
17: find:
18: m_c ← f ind_best_microcluster (id, t, new_aддr) // New patient fits in an

existing microcluster

19: if distance(new_aддr, t,m_c) < max_boundary then
20: m_c ← update_microcluster (m_c, id, t, null, new_aддr, null)

// Microclusters need to merge, patient in a new microcluster

21: else
22: [m_c_1,m_c_2] ←minm_c_1,m_c_2∈micro_cluster sdistance(m_c_1,
23: m_c_2)
24: m_c_1←merдe_microclusters(m_c_1,m_c_2)
25: m_c_2← null
26: m_c_2← update_microcluster (m_c_2, id, t, null, new_aддr, null)

In our extension, we consider the update when a new patient

arrives the same as with CluStream (of course, using our aggre-

gation function again). In case a new datapoint for an existing

271

CluStream-GT: Online Clustering for Personalization in the Health Domain WI ’19, October 14–17, 2019, Thessaloniki, Greece

patient arrives we only update the properties of the microcluster

that patient had already been assigned to in case it results in a

minor adjustment of the aggregate value. Otherwise, we go to a full

blown re-clustering. This process can be seen in line 8 of Algorithm

1 where the adjustment is judged against a threshold value δ .
In the pseudocode, the additions that were made to CluStream

are seen from line 1 to 12 in Algorithm 1. We also assume that

within the health domain we want to retain the information of

all the clustered time-series, no matter how old they are. If they

would ever have to be deleted, the user of the algorithm can do so

manually, but we do not want to give permission to the algorithm

to automatically remove information. Therefore we have removed

the possibility of the algorithm deleting micro-clusters.

For the offline cluster creation (or macro-clustering process)

CluStream-GT works similarly to CluStream. It uses k-means but

uses the micro-clusters as the input data. Furthermore, the centroids

are chosen as the kmost populatedmicro-clusters. This can be easily

achieved by analysing the last element of each micro-cluster tuple

and choosing the k highest ones. This macro-clustering process

has the clear advantage of not requiring storage of the whole time-

series dataset as we use only use the micro-clusters, making our

approach better suited for cases with limited resources.

3 EXPERIMENTAL SETUP
In this section we explain the experimental conditions and eval-

uations we have used to test CluStream-GT’s performance. We

compare CluStream-GT against two alternatives: (1) k-means clus-

tering in each iteration, and (2) ODAC (cf. [14]).

Scenarios. To assess the difference in performance we performed

tests for three scenarios: two were done with generated synthetic

data and one with the use of a real world dataset. For the generated

data conditions we utilised sine functions to generate our time-

series. In the first test (henceforth referred to as: the base case)

we had each time-series associated to a specific set of parameters

inputted in the sine function. This includes the function itself and

noise surrounding the curve. In the second test (henceforth referred

to as: the advanced case) each time-series started with an associated

set of parameters, analogous to the base case. However, at each

timestep the considered time-series had a 10% chance of changing

its parameters and therefore have its data generated by a different

sine function. This extra factor was introduced as a method of rep-

resenting the potential change in behaviour that can be observed

in time series associated with human behaviour, especially within

the health domain (e.g. vital signs getting better, mood improving,

more frequent physical activity, etc.). To add a more practical test

scenario we have also used of a real dataset. This dataset is a col-

lection of EEG recordings that were published by Andrzejak et al.

in 2001 [3].

Performance metrics. The two aspects investigated across all of

our tests were accuracy of the clustering and speed of execution. To

asses clustering accuracy, we decided to utilise the silhouette score

[15]. For the execution time, we kept track of the total length of the

execution of the algorithms thereby performing the experiments

on the same machine with no other processes open in order to

minimise potential variance.

Algorithm setup. All of the tests are set up to represent a realistic
scenario for all techniques (CluStream-GT, k-means and ODAC).

We therefore update at every single timestep as in the health care

domain data can be scarce and therefore all available data should be

exploited as much as possible to create the most up-to-date clusters.

This means that we re-cluster every time any form of new data is

given to the algorithm. That includes both a new time-series and

any amount of new data related to an already clustered one.

The k-means used as benchmark clustered using the means of

each time-series present in the dataset. The mean was used since

it was also utilised as our selected aggregate function (described

in Section 2) for distance computation during the online phase of

CluStream-GT. Both ClusStream-GT and k-means clustering require

the number of clusters to be set. To make the results comparable

we fixed this value to k = 3 for both cases as initial experiments

have shown this to be the best value for all scenarios. Our replica-

tion package contains the full experimental setup implemented in

Python as used to perform these experiments
1
.

Experimental Conditions. For both generated cases, we had a

starting population of 120 time-series uniformly distributed over

three clusters. The experiments were performed over the course

of 30, 60 and 90 simulated days, with each case repeated 30 times.

At each day there was a 50% chance of adding new time-series to

the dataset (simulating the addition of a new patient). The amount

added ranged from one to five chosen with the use of a uniform

distribution. It is important to note that this feature of our exper-

iment was not used whilst testing ODAC. This is because ODAC

cannot work on datasets with changing numbers of timeseries. Per

day, each generated time-series consisted of 24 points. This was

selected to simulate pooling done once at each hour of the day.

For the real dataset, we ran tests on three cases: 100, 200 and

300 total patients. Each patient had a time-series containing 4097

individual datapoints. Each one of these scenarios was repeated

five times. ODAC was run only a single time as it lacks stochasticity

and therefore would always return the same results.

4 RESULTS
Section 4.1 illustrates the results we gathered from the two gener-

ated data test cases, whilst Section 4.2 does so with the EEG dataset

results. As we could never compute the silhouette score for ODAC

we illustrate those results separately (see Section 4.3).

4.1 Results from the generated data
We will first discuss the results for the base case. Figure 1 illustrates

the distribution of the average silhouette scores obtained for each of

the test scenarios. The CluStream-GTmean averages at 0.86 and the

median to 0.9, whilst the k-means mean and median average at 0.93.

Secondly, it is interesting to note the skewed distribution occurring

for all cases of CluStream-GT. Furthermore, we can observe some

runs that result in differences deviant enough from the mean to be

classified as outliers. The potential cause of this behaviour could

be attributed to poor initialisation of the micro-clusters within

those runs, which then followed with worse overall clustering and

therefore a lower silhouette score. Nevertheless, the distributions

1
https://github.com/EMGrua/CluStream-GT

272

WI ’19, October 14–17, 2019, Thessaloniki, Greece Grua et al.

Figure 1: Decrease of the the average silhouette score using
CluStream-GT compared to k-means (Base Case)

favour a smaller difference with the IQR ranging from the smallest

Q1 equal to 0.84 to the highest Q3 equal to 0.92. Differently is the

execution time trends of the two techniques (shown in Figure 2).

We clearly observe that with the growing amount of data the saved

execution time also grows. This can be certainly attributed to the

use of the micro-cluster tuples for the generation of the macro-

clusters, which caps the amount of data used to cluster. Therefore,

the time increase is only due to the higher number of runs of the

online component needed by CluStream-GT to update the micro-

clusters. No matter the amount of data, CluStream-GT provides at

least a 90% speedup.

Examining now the silhouette score for the advanced case, we

observe a bigger difference between CluStream-GT and k-means,

and a less skewed distribution for all the scenarios of CluStream-GT

(as shown in Figure 3) as compared to the base case. In this case we

observe a number of outliers, although smaller than with the base

case. The overall higher difference between the two approaches is

to be expected as CluStream-GT is trying to cluster a now far more

complex time-series with only the use of the meta-data contained in

the micro-cluster tuples. This provides somewhat of an advantage

to our benchmark k-means which has access to the mean of each

time-series present in the generated dataset.

Finally, we examine the execution times recorded for each sce-

nario of the advanced case (shown in Figure 4). Similar to the

execution times of the base case, CluStream-GT minimally grows

as the data does, whilst the execution time of k-means continues to

grow. This indicates that the more data is clustered and the higher

is the speed gain achieved by using CluStream-GT. In fact in the 90

days test case we achieve an average 94.7% speed-up.

4.2 Results from the real dataset
We start by analysing the results collected from the silhouette scores

(shown in Figure 5). Themean values recorded from both algorithms

are extremely similar, with only a small loss in the silhouette score

Figure 2: Decrease of the the average execution time using
CluStream-GT compared to k-means (Base Case)

Figure 3: Decrease of the the average silhouette score using
CluStream-GT compared to k-means (Advanced Case)

by CluStream-GT compared to k-means. Furthermore, the stan-

dard deviation for each case was minimal. This suggests reliable

clustering over repetitions and therefore reliable clustering overall.

This is somewhat in contrast with the generated data, where both

CluStream-GT and k-means showed wider standard deviations, re-

inforcing our assumption that the deviation in the generated data

is due to the noisier nature of said data. Moving to execution times

we observe the huge advantage that using CluStream-GT gives

over k-means. In Figure 6 we see that whilst k-means drastically in-

creases its execution time with the increase of data, CluStream-GT

barely increases. This leads to a difference in execution time that

becomes more substantial the bigger the dataset is. Taking the case

of 300 patients the average execution time for k-means is of 20000

seconds (5 hours and 33 minutes) whilst CluStream-GT’s average

execution time is only 1036 seconds (17 minutes and 20 seconds).

This effectively is a 95% improvement.

273

CluStream-GT: Online Clustering for Personalization in the Health Domain WI ’19, October 14–17, 2019, Thessaloniki, Greece

Figure 4: Decrease of the average execution time using
CluStream-GT compared to k-means (Advanced Case)

Figure 5: Decrease of the average silhouette score using
CluStream-GT compared to k-means (Real Case)

4.3 Results obtained by the use of ODAC
Over all tests, ODAC consistently maintained only one node of its

tree structure, hence clustering all data under one cluster. As a result,

it was impossible for us to measure the silhouette score. In order to

make such measure, ODAC would have had to result in at least two

separate clusters. The reason for this behaviour seems to stem from

the algorithm stalling on the first node, splitting and aggregating

consecutively. This type of behaviour has also been reported by

the authors of ODAC as well [13]. A cause could be that updates

are performed at each time step, while in experiments using ODAC

often batches of time points are used. ODAC was also consistent in

the registered execution times. For all cases tested, CluStream-GT

was, on average, 98% faster than ODAC (as reported in Table 1).

This is an expected consequence, given that ODAC increases in

speed with an increasing number of leaves, otherwise needing to

Figure 6: Decrease of the average execution time using
CluStream-GT compared to k-means (Real Case)

Clustream-GT ODAC

Base Case 30 Days 2.4 197.8

Base Case 60 Days 4.6 398.2

Base Case 90 Days 6.9 605.8

Advanced Case 30 Days 2.7 197.8

Advanced Case 60 Days 5.7 402.7

Advanced Case 90 Days 8.8 610.1

Real Dataset 100 patients 327.4 19368

Real Dataset 200 patients 697.9 79965.7

Table 1: Execution times (in seconds) for Clustream-GT and
ODAC on all executed tests

recompute all dissimilarities each time new data is clustered (a

calculation that has a quadratic complexity on the number of data

streams) [14].

5 DISCUSSION AND FUTUREWORK
The main contribution of our study is the development of an online

clustering algorithm that can cluster growing timeseries.

We have developed this algorithm by modifying the already

existing data stream clustering algorithm CluStream and so named

ours CluStream-GT. We formalised CluStream-GT’s function in

Section 2 where we present pseudocode and explain the input and

global variables used by the algorithm to perform the micro-cluster

updates. We then evaluated our approach by the use of three test

scenarios: two of them were executed using generated data, whilst

the third one was performed using a real EEG dataset [3].

As described in Section 3, for all test cases we recorded the total

execution time and the average silhouette score obtained by re-

clustering at each timestep. We compared Clustream-GT against

k-means and ODAC for three scenarios. ODAC clustered all data

under one cluster for all experimental conditions, it was impossible

to compute, and therefore compare, the silhouette score with that

of CluStream-GT. CluStream-GT was 98% faster than ODAC on

274

WI ’19, October 14–17, 2019, Thessaloniki, Greece Grua et al.

all cases. We explain this as ODAC, remaining on a structure of

one node, had to execute under its worst case scenario. Therefore,

having to recompute all dissimilarities at each new time step (an

operation with quadratic complexity).

When comparing k-means with CluSteam-GT for the base case,

CluStream-GT provides a good trade-off between accuracy and

execution time by speeding up the performance by 92% whilst

only loosing an average of 0.06 on the silhouette score. For the

advanced case, the trade-off is similar as we lose an average of

0.1 on the silhouette score but still achieve significant speedup

with CluStream-GT performing 94.5% faster. The bigger divide in

silhouette score, as compared to the base case, can be explained

by the increase in noise that the advanced case brings to the data

due to the chance of timeseries suddenly switching behaviour and

therefore making the clustering a more challenging task. This is

especially apparent for CluStream-GT since it only uses the descrip-

tive data contained in the micro-clusters for the formation of the

final macro-clusters.

Lastly, in the test case performedwith the EEG dataset CluStream-

GT performed excellently. The speed-up was of at least 91% with

it improving to 95% with the 300 patients run. This meant that

on the machine used for testing k-means it took a total of 5 and

a half hours whilst CluStream-GT only took a little more than 17

minutes. This was achieved with an extremely small trade-off on

the silhouette score, with the worst case being the 300 patients run

in which CluStream-GT had on average 0.028 less on the silhouette

score.

For future work we would like to augment CluStream-GT with

a mechanism to detect poor micro-cluster initialisation at an early

stage. Whilst it was not a problem for the less noisy EEG data, we

did record a few outlier cases in some of the runs in the generated

data. We therefore aim to create such a mechanism in order to

reduce or remove the possibility of such outliers appearing and

therefore increasing the average silhouette score obtained.

Furthermore, as mentioned in Section 3 we measure execution

time bymeasuring the time differencewith the pythonmodule Time.

Whilst we minimised the risk of variance with repeated runs and

assuring that the machine had no other processes open apart from

our experiment, it would be desirable to repeat the experiments on

other machines in order to further validate our findings.

Lastly, we have mentioned throughout our work that the execu-

tion time gap increases with the size of the data and have explained

this phenomenon by CluStream-GT’s use of the micro-clusters and

lack of needing to store the entire dataset. However, we have not

investigated how much more efficient CluStream-GT can be on

storage space. This would be an interesting fact to investigate es-

pecially for CluStream-GT’s therefore potential use on lower spec

hardware, such as mobile devices.

REFERENCES
[1] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. 2003. A frame-

work for clustering evolving data streams. In Proceedings of the 29th international
conference on Very large data bases-Volume 29. VLDB Endowment, 81–92.

[2] Mamoun Almardini, Ayman Hajja, Zbigniew W Raś, Lina Clover, David Olaleye,

Youngjin Park, Jay Paulson, and Yang Xiao. 2015. Reduction of readmissions

to hospitals based on actionable knowledge discovery and personalization. In

Beyond Databases, Architectures and Structures. Advanced Technologies for Data
Mining and Knowledge Discovery. Springer, 39–55.

[3] Ralph G Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter

David, and Christian E Elger. 2001. Indications of nonlinear deterministic and

finite-dimensional structures in time series of brain electrical activity: Depen-

dence on recording region and brain state. Physical Review E 64, 6 (2001), 061907.

[4] Feng Cao, Martin Estert, Weining Qian, and Aoying Zhou. 2006. Density-based

clustering over an evolving data stream with noise. In Proceedings of the 2006
SIAM international conference on data mining. SIAM, 328–339.

[5] Yixin Chen and Li Tu. 2007. Density-based clustering for real-time stream data.

In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 133–142.

[6] Fabio Cortellese, Marco Nalin, Angelica Morandi, Alberto Sanna, and Floriana

Grasso. 2009. Personality diagnosis for personalized ehealth services. In Interna-
tional Conference on Electronic Healthcare. Springer, 157–164.

[7] Irit Hochberg, Guy Feraru, Mark Kozdoba, Shie Mannor, Moshe Tennenholtz,

and Elad Yom-Tov. 2016. Encouraging physical activity in patients with diabetes

through automatic personalized feedback via reinforcement learning improves

glycemic control. Diabetes Care 39, 4 (2016), e59–e60.
[8] Kyoung-jae Kim and Hyunchul Ahn. 2004. Using a clustering genetic algorithm

to support customer segmentation for personalized recommender systems. In In-
ternational Conference on AI, Simulation, and Planning in High Autonomy Systems.
Springer, 409–415.

[9] James MacQueen et al. 1967. Some methods for classification and analysis of

multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, Vol. 1. Oakland, CA, USA, 281–297.

[10] Anouk Middelweerd, Julia S Mollee, C Natalie van der Wal, Johannes Brug, and

Saskia J Te Velde. 2014. Apps to promote physical activity among adults: a review

and content analysis. International journal of behavioral nutrition and physical
activity 11, 1 (2014), 97.

[11] Adam C Powell, John Torous, Steven Chan, Geoffrey Stephen Raynor, Erik

Shwarts, Meghan Shanahan, and Adam B Landman. 2016. Interrater reliability of

mHealth app rating measures: analysis of top depression and smoking cessation

apps. JMIR mHealth and uHealth 4, 1 (2016).

[12] David Riaño, Francis Real, Joan Albert López-Vallverdú, Fabio Campana, Sara

Ercolani, Patrizia Mecocci, Roberta Annicchiarico, and Carlo Caltagirone. 2012.

An ontology-based personalization of health-care knowledge to support clinical

decisions for chronically ill patients. Journal of biomedical informatics 45, 3 (2012),
429–446.

[13] Pedro Pereira Rodrigues, Joao Gama, and Joao Pedroso. [n.d.]. Hierarchical Time-

Series Clustering for Data Streams. http://alumni.cs.ucr.edu/~piyush/cs235_ppt.

pdf [Online;].

[14] Pedro Pereira Rodrigues, Joao Gama, and Joao Pedroso. 2008. Hierarchical

clustering of time-series data streams. IEEE transactions on knowledge and data
engineering 20, 5 (2008), 615–627.

[15] Peter J Rousseeuw. 1987. Silhouettes: a graphical aid to the interpretation and

validation of cluster analysis. Journal of computational and applied mathematics
20 (1987), 53–65.

[16] Monica S Webb, Vani Nath Simmons, and Thomas H Brandon. 2005. Tailored

interventions for motivating smoking cessation: using placebo tailoring to exam-

ine the influence of expectancies and personalization. Health Psychology 24, 2

(2005), 179.

275

http://alumni.cs.ucr.edu/~piyush/cs235_ppt.pdf
http://alumni.cs.ucr.edu/~piyush/cs235_ppt.pdf

	Abstract
	1 Introduction
	2 Approach
	2.1 Problem Description
	2.2 CluStream-GT algorithm

	3 Experimental Setup
	4 Results
	4.1 Results from the generated data
	4.2 Results from the real dataset
	4.3 Results obtained by the use of ODAC

	5 Discussion and Future Work
	References

