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a b s t r a c t

In this note, we discuss two solutions for cooperative transferable utility games, namely the Shapley
value and the Proper Shapley value. We characterize positive Proper Shapley values by affine invariance
and by an axiom that requires proportional allocation of the surplus according to the individual
singleton worths in generalized joint venture games. As a counterpart, we show that affine invariance
and an axiom that requires equal allocation of the surplus in generalized joint venture games
characterize the Shapley value.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Situations where a set of agents can generate certain worth by
cooperating can be described by a cooperative transferable utility
game (TU-game for short). A TU-game consists of a nonempty
finite set of players and a characteristic function that assigns to
every subset of the player set, called a coalition, a real number.
This number represents the (transferable) utility that is obtained
by the players of the corresponding coalition. The main question
is how to allocate the worths that the coalitions can gain among
individual players.

The best known approach to this problem is to allocate the
worths according to the Shapley value of the corresponding
TU-game which distributes the so-called Harsanyi dividends equ-
ally among the players in the corresponding coalitions [14]. The
Harsanyi dividend of a coalition can be seen as the ‘‘real value’’
added by this coalition which has not yet been realized by its sub-
coalitions, cf. [3]. The weighted Shapley value [13] is a modification
of the Shapley value where exogenously given positive weights
are attributed to players and each Harsanyi dividend is allocated
among the players of the corresponding coalition in proportion to
these weights. This approach can capture some external asymme-
try between the players, e.g., their bargaining power or influence
in a network. The Proper Shapley value introduced by Vorob’ev and
Liapounov [15] internalizes this external asymmetry in the sense
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that it chooses the payoff allocation of one specific weighted
Shapley value, namely the weighted Shapley value that allocates
the worths of the grand coalition among individual players in
proportion to their weights. Thus the Proper Shapley value is
defined as a fixed point of a mapping related to the weighted
Shapley value (see Section 2 for the definition).

The main aim of our paper is to characterize and to compare
the Shapley value and the Proper Shapley value. Despite of the
fact that the Shapley value is single-valued while the Proper
Shapley value is not, we are able to introduce axioms that make a
comparison between these two solutions possible. Another differ-
ence between these solutions is that the Shapley value is linear,
therefore additive, while the Proper Shapley value is not. The first
axiom we introduce is a weaker version of additivity which is
satisfied by both solutions (taking account of the fact that one is
single-valued and the other is set-valued, see Section 3 for more
details). This axiom, called affine invariance, roughly says that if
we allocate the worths of the grand coalition identically among
individual players in two TU-games then we have to allocate the
worths in this particular way in any affine combination of these
TU-games.

We show that these solutions satisfy two different equity prin-
ciples. Both are stated for a special type of a TU-game, called the
generalized joint venture game. This class of TU-games generalizes
the joint venture games introduced by Moulin [9]. A joint venture
game is a TU-game such that non-zero Harsanyi dividends are
only allowed for the grand coalition and the singletons. A gen-
eralized joint venture game is a TU-game such that there is no
more than one nonsingleton coalition (not necessarily the grand
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one) with a non-zero dividend. It turns out that these TU-games
form a basis for the space of TU-games which we will use later
on.

For the Shapley value we extend the equal sharing principle
of [9] and introduce a generalized equal sharing principle, which
requires that in any generalized joint venture game, every sin-
gleton receives its own worth and the dividend of the possible
nonsingleton coalition with nonzero dividend is allocated equally
among the players in this coalition. It turns out that this axiom
and affine invariance characterize the Shapley value.

Finally, we extend the proportional sharing principle of [9]
by introducing a generalized proportional sharing principle which
requires that in any generalized joint venture game, every sin-
gleton receives its own worth and the dividend of the possible
nonsingleton coalition with nonzero dividend is allocated in pro-
portion to the individual worths. This axiom and affine invariance
characterize the positive part of the Proper Shapley value.

In this note, we describe the essential difference between the
Shapley value and the Proper Shapley value based on equality
and proportionality. In our opinion, the equality is relevant in
situations where players can freely manipulate their individual
worths. R. van den BrinkIn such games, the worths of particular
players are, in fact, non-informative and therefore irrelevant, and
the equal split of the dividends is the only natural distribution.
In contrast, in situations where individual worths cannot be mis-
represented or their misrepresentation is costly, proportionality
seems more appropriate.

Proportionality is an established principle in several theories
of value allocation, but also in claims problems, cf. [5]. In claims
problems, proportionality is rather obvious since the model is
fully described by individual claims and one (monetary) estate,
thus the obvious way to apply proportionality is to split the estate
among the claimants in proportion to their individual claims.
However, proportionality is much less studied and is much less
obvious in TU-games. Recently, there has been a growing body
of literature on proportionality in TU-games. Besides the Proper
Shapley value, which is studied in this paper, proportionality in
TU-games is studied, e.g., in [1,2,11].

Proportionality in economics and operations research is used,
e.g., for the so-called 2-games (games where only coalitions of
size 2 have a nonzero dividend). These games have many applica-
tions such as the Terrestrial Flight Telephone System games [10]
or the queuing games [8].

The Proper Shapley solution for 2-games with three players
splits each dividend of a coalition of two players taking into
account also the opportunities each player of the coalition has
with the player outside of the coalition. This principle can be
applied to queuing games, where the players are jobs to be
served on a machine such that the machine can only serve one
job at a time and the jobs have different waiting costs. Neither
the Proportional rule nor the Proportional Shapley value can be
applied to this type of games since the individual worths are zero.

For further motivation and discussion of proportionality in the
context of TU-games, we refer to the introduction of [4].

2. Preliminaries

A cooperative transferable utility game (TU-game for short) is
a pair (N, v), where N = {1, . . . , n} is a nonempty finite set
consisting of n players and v is a characteristic function which
assigns a real number v(S) to any coalition S ⊆ N and satisfies
v(∅) = 0. The real number v(S) is the worth of S which the
members of the coalition S can distribute among themselves. In
certain applications, v(S) can also be interpreted as the cost which
needs to be split among members of S. The set of all TU-games is
denoted by G.

Let (N, v) ∈ G. The Harsanyi dividends ∆N,v(S), where S ⊆ N ,
are defined inductively by

∆N,v(S) =

{
0, for S = ∅,

v(S) −
∑

T⊊S ∆N,v(T ), for S ̸= ∅,

see [6]. Let us note that v(S) =
∑

T⊆S ∆N,v(T ) for every S ⊆

N . This formula shows that dividends uniquely determine the
characteristic function. A coalition S ⊆ N in the TU-game (N, v)
is called essential if ∆N,v(S) ̸= 0, otherwise S is called inessen-
tial. Any TU-game where all the coalitions but singletons are
inessential is called inessential.

We employ the following notation. Let y ∈ RN and S ⊆ N .
The symbol |S| denotes the cardinality of S. The symbol yS stands
for

∑
i∈S yi. By convention, the value of any empty sum of real

numbers is zero, i.e., y∅ = 0. A payoff vector in a TU-game (N, v)
is an n-dimensional vector, where n = |N|, whose components
are the payoffs of the corresponding players. A payoff vector
x ∈ RN for a TU-game (N, v) is efficient if it exactly distributes
the worth v(N) of the grand coalition N , i.e., if xN = v(N). The
set of all efficient payoff vectors of (N, v) is denoted by X(N, v),
the set of all efficient payoff vectors with positive coordinates is
denoted by X+(N, v), and the set of all efficient payoff vectors
with nonnegative coordinates is denoted by X0(N, v).

Let C ⊆ G be a subclass of TU-games. A single-valued solution
on C is a function f that assigns to every TU-game (N, v) ∈ C a
payoff vector f (N, v) ∈ RN . A set-valued solution F on C assigns a
set of payoff vectors F (N, v) ⊆ RN to every TU-game (N, v) ∈ C.

The best known single-valued solution for TU-games is the
Shapley value [13] which distributes the Harsanyi dividends of
the TU-game equally among the players in the corresponding
coalitions, i.e., the Shapley value is the function ϕ: G → RN

defined by ϕ(N, v) =
(
ϕi(N, v)

)
i∈N , where

ϕi(N, v) =

∑
S⊆N
i∈S

1
|S|

∆N,v(S), i ∈ N.

Given a weight vector ω ∈ RN with positive weights ωi >
0, i ∈ N , the corresponding weighted Shapley value [13] is the
function ϕω: G → RN defined by

ϕω
i (N, v) =

∑
S⊆N
i∈S

ωi

ωS
∆N,v(S), i ∈ N.

The weighted Shapley value thus distributes the dividends of
coalitions proportionally to the exogenously given weights of the
players. Clearly, if all weights ωi are equal to each other then
the weighted Shapley value ϕω(N, v) is equal to the Shapley
value ϕ(N, v).

Another solution, the Proper Shapley value, was introduced by
Vorob’ev and Liapounov [15]. This solution is defined as follows.
Let (N, v) ∈ G. To simplify notation, we denote h(x) = ϕx(N, v)
for x ∈ X+(N, v). We define a multi-valued mapping H assigning
a subset of RN to each element x of X0(N, v) by

H(x) = {α ∈ RN
| there exists a sequence (xj) ⊆ X+(N, v)

such that xj → x and h(xj) → α}.

Note that the set-valued function H depends on (N, v), but we
will omit this parameter for the sake of simplicity. The graph of
H is just the closure of the graph of the mapping h.

Definition 1. Let (N, v) ∈ G. A vector x ∈ X0(N, v) is called a
Proper Shapley value of (N, v) if x ∈ H(x). We denote

PSV(N, v) =
{
x ∈ X0(N, v)| x is a Proper Shapley value of (N, v)

}
and
GP =

{
(N, v) ∈ G| PSV(N, v) ̸= ∅

}
.
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We refer to the solution that assigns to every (N, v) ∈ GP the
set of all Proper Shapley values PSV(N, v) as the Proper Shapley
solution.

Remark 1. The definition of the Proper Shapley value is rather
canonical for vectors having all coordinates strictly positive. If we
want to include also vectors having some zero coordinates, then
the situation becomes less straightforward. There are several pos-
sibilities how to define such an extension. In the above definition
we use one of these possibilities which was discussed in detail
in [4]. Another possibility is presented in Example 1. We do not
want to open the discussion on which extension is ‘‘the right one’’
in this paper. Therefore, we focus just on the characterization of
the ‘‘strictly positive part’’ of the Proper Shapely value where all
the extensions coincide.

3. Axiomatization and main results

We start with the following definition.

Definition 2. We say that a class C ⊆ G is affine if for any
TU-games (N, v1), (N, v2) ∈ C, λ1, λ2 ∈ R with λ1 + λ2 = 1,
we have λ1v1 + λ2v2 ∈ C.

The next axiom is a weakening of Shapley’s additivity axiom.

Axiom 1. A single-valued solution f satisfies affine invariance on
a class C ⊆ G if for any TU-games (N, v1), (N, v2) ∈ C with
f (N, v1) = f (N, v2) and λ1, λ2 ∈ R with λ1 + λ2 = 1, we have
f (N, λ1v1 +λ2v2) = f (N, v1) = f (N, v2) provided λ1v1 +λ2v2 ∈ C.

For set-valued solutions, affine invariance is defined as follows.

Axiom 2. A set-valued solution F satisfies affine invariance on a
class C ⊆ G if for any TU-games (N, v1), (N, v2) ∈ C, λ1, λ2 ∈ R
with λ1 + λ2 = 1, and x ∈ RN with x ∈ F (N, v1) ∩ F (N, v2), we
have x ∈ F (N, λ1v1 + λ2v2) provided λ1v1 + λ2v2 ∈ C.

Remark 2. One can easily prove that a set-valued solution F
satisfies affine invariance on an affine class C if and only if, for
every k ∈ N, (N, v1), . . . , (N, vk) ∈ C, λ1, . . . , λk ∈ R with∑k

i=1 λi = 1, and x ∈ RN with x ∈ F (N, vi) for every i ∈ {1, . . . , k},
we have x ∈ F (N, v), where v =

∑k
i=1 λivi. Note that by repeated

application of the condition from Definition 2, it follows that
v ∈ C.

A TU-game (N, v) is a joint venture game, if ∆N,v(S) = 0
whenever |S| ̸= 1 and S ̸= N [9]. For this class of TU-games,
Moulin analyzes two sharing rules, namely the equal sharing rule
and the proportional sharing rule. Let us note that Moulin’s pro-
portional sharing rule is structurally identical to an older concept
introduced by Homans [7], cf. [12], who referred to it as to the
equity principle. Further, since any two-player TU-game belongs
to the class of joint venture games, the proportional sharing rule
for two-player TU-games corresponds to proportional standard-
ness for two-player TU-games as defined in [11]. We define the
following generalization of joint venture games.

Definition 3. A TU-game (N, v) is called a generalized joint ven-
ture game if there exists a coalition E ⊆ N such that ∆N,v(T ) = 0
whenever |T | ̸= 1 and T ̸= E. The set of all generalized joint
venture games is denoted by G1. For (N, v) ∈ G1, the symbol
E(N, v) denotes the unique nonsingleton essential coalition if
such a coalition exists, otherwise E(N, v) = ∅.

Remark 3. The symbol G1 is chosen to stress the fact that any
TU-game in G1 contains at most one nonsingleton essential coali-
tion. The class G1 clearly contains all inessential TU-games as well
as joint venture games.

Now, as Moulin for joint venture games, we define two possi-
ble sharing rules for generalized joint venture games. The gener-
alized equal sharing principle requires that in generalized joint
venture games, the surplus of the only essential nonsingleton
coalition is allocated equally over the players in that coalition.

Axiom 3. A single-valued solution f satisfies the generalized equal
sharing principle if for every (N, v) ∈ G1, we have

fi(N, v) =

{
v({i}) +

1
|E(N,v)|∆N,v

(
E(N, v)

)
, for i ∈ E(N, v),

v({i}), for i ∈ N \ E(N, v).

We formulate the generalized proportional sharing principle
for set-valued solutions for any generalized joint venture game
with the exception of some peculiar games (in fact, in all these
games the worth of the grand coalition is zero). The surplus of the
only essential nonsingleton coalition is allocated over the players
in that coalition in proportion to their singleton worths.

Axiom 4. A set-valued solution F satisfies the generalized propor-
tional sharing principle if for every (N, v) ∈ G1, which is inessential
or satisfies

∑
j∈E(N,v) v({j}) ̸= 0 and v(E(N, v)) ̸= 0, we have

F (N, v) = {x}, where

xi =

{
v({i}) +

v({i})∑
j∈E(N,v) v({j})∆N,v

(
E(N, v)

)
, for i ∈ E(N, v),

v({i}), for i ∈ N \ E(N, v).

Remark 4. Observe that if (N, v) ∈ G1 is inessential, then
E(N, v) = ∅ and for any F that satisfies the generalized propor-
tional sharing principle, we have F (N, v) = {x}, where xi = v({i})
for every i ∈ N . An analogous observation can be made also for
the generalized equal sharing principle.

Remark 5. We discuss two crucial axioms, i.e., the affine in-
variance and the generalized proportional sharing principle in
the light of two other prominent solution concepts based on
the proportionality principle, namely the Proportional rule and
Proportional Shapley value (see [1,2]).

The Proportional rule PR allocates the worth v(N) of the ‘‘grand
coalition’’ in proportion to the individual worths. Formally, we
define

PRi(N, v) =
v({i})∑
j∈N v({j})

v(N), i ∈ N,

for (N, v) ∈ C∗, where C∗ is the class containing all games
with nonzero sum of individual worths. The Proportional rule
satisfies affine invariance. Indeed, if (N, v1), (N, v2) ∈ C∗ satisfy
PR(N, v1) = PR(N, v2), then v1(N) = v2(N) and thus also either
v1({i}) = αv2({i}), i ∈ N , for some α ̸= 0 or v1(N) = v2(N) = 0.
Both possibilities give PR(N, λ1v1 + λ2v2) = PR(N, v1), whenever
λ1 + λ2 = 1 and λ1v1 + λ2v2 ∈ C∗.

However, the Proportional rule does not satisfy the general-
ized proportional sharing principle. Consider a game (N, v) ∈ G1
defined by N = {1, 2, 3} and

∆N,v(S) =

⎧⎨⎩
1, for |S| = 1,
6, for S = {1, 2},
0, otherwise.

Then, clearly v(N) = 9 and PR(N, v) = (3, 3, 3) while the
proportional sharing principle requires the payoff vector (4, 4, 1).

The Proportional Shapley value PS allocates every dividend in
proportion to the individual worths of its members. Formally, we
define

PSi(N, v) =

∑
S⊆N, i∈S

v({i})∑
j∈S v({j})

∆N,v(S), i ∈ N,
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for (N, v) ∈ C∗∗, where C∗∗ is the class containing all games such
that

∑
j∈S v({j}) ̸= 0 for every nonempty S ⊆ N . On contrary to

PR, PS satisfies the generalized proportional sharing principle (by
its definition), however, it does not satisfy affine invariance. To
this end define games (N, v1) and (N, v2) by N = {1, 2, 3},

∆N,v1 ({1}) = 3, ∆N,v1 ({2}) = 9, ∆N,v1 ({3}) = 3,
∆N,v1 ({1, 3}) = 12,
∆N,v2 ({1}) = 3, ∆N,v2 ({2}) = 3, ∆N,v2 ({3}) = 9,
∆N,v2 ({1, 2}) = 12,

and ∆N,v1 (S) = ∆N,v2 (S) = 0 otherwise. Clearly, PS(N, v1) =

PS(N, v2) = (9, 9, 9). Consider now v =
1
2v1 +

1
2v2, i.e.,

∆N,v({1}) = 3,
∆N,v({2}) = ∆N,v({3}) = ∆N,v({1, 2}) = ∆N,v({1, 3}) = 6,

and ∆N,v(S) = 0 otherwise. Then v ∈ C∗∗ and PS(N, v) =

(7, 10, 10), although affine invariance requires the payoff vector
(9, 9, 9).

The next two results provide characterizations of the Shapley
value and of the positive part of the Proper Shapley value using
the equity principles defined above.

Proposition 1. The Shapley value ϕ is the unique single-valued
solution that satisfies affine invariance on G and the generalized
equal sharing principle.

Proposition 2. Let F be a set-valued solution satisfying affine
invariance on its affine domain dom F and the generalized propor-
tional sharing principle. Then F (N, v)∩RN

++
= PSV(N, v)∩RN

++
for

every (N, v) ∈ GP .

Example 1. Proposition 2 would be meaningless if there did not
exist a solution satisfying affine invariance and the generalized
proportional sharing principle. It turns out that the following
solution satisfies these axioms. For (N, v) ∈ G, define gN,v:RN

→

RN by

gN,v(x)i = v({i}) +

∑
S⊆N,i∈S

xS ̸=0,|S|≥2

xi
xS

∆N,v(S), i ∈ N,

and consider the set valued solution G defined by

G(N, v) = {x ∈ RN
| gN,v(x) = x}.

Note that PSV(N, v) ∩ RN
++

⊆ G(N, v).

Proposition 3. The set-valued solution G satisfies affine invariance
and the generalized proportional sharing principle.

4. Proofs

4.1. Proof of Proposition 1

Since the Shapley value obviously satisfies affine invariance
and the generalized proportional sharing principle, it remains
to prove uniqueness. Suppose that f is a single-valued solu-
tion which satisfies affine invariance and the generalized equal
sharing principle.

Let (N, v) ∈ G and take any x ∈ RN . Now, for S ⊆ N, |S| ≥ 2,
we define the TU-game (N, vx

S) by

∆N,vxS
(T ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∆N,v(S), for T = S,
xi + 1

|S|∆N,v(S), for T = {i}, i ∈ S,
xi, for T = {i}, i ∈ N \ S,
0, otherwise.

Clearly, we have (N, vx
S) ∈ G1. Further, we define the inessential

TU-game (N, νx) ∈ G1 by

∆N,νx (T ) =

{
xi, for T = {i}, i ∈ N,

0, otherwise.
(1)

Finally, let us define the TU-game (N, wx) by

wx
= v − (2n

− n − 1)νx
+

∑
S⊆N,|S|≥2

vx
S . (2)

One can easily verify that

∆N,wx (T ) =

⎧⎪⎨⎪⎩
0, for |T | ≥ 2,
v({i}) +

∑
S∋i,|S|≥2

1
|S|∆N,v(S) =

∑
S∋i

1
|S|∆N,v(S),

for T = {i}.

The linear combination in (2) is affine, since we have

1− (2n
− n− 1)+

∑
S⊆N,|S|≥2

1 = 1− 2n
+

∑
S⊆N

1 = 1− 2n
+ 2n

= 1.

Now, we show that for x ∈ RN we have x = f (N, v) if and only
if x = ϕ(N, v). First, assume that x = f (N, v). Since f satisfies the
generalized equal sharing principle, we get x = f (N, vx

S) for every
S ⊆ N, |S| ≥ 2, and x = f (N, νx). Thus, by affine invariance of f
we obtain x = f (N, wx). The TU-game (N, wx) is inessential and
therefore

xi = wx({i}) =

∑
S∋i

1
|S|

∆N,v(S).

This shows that x is the Shapley value of (N, v).
Now suppose that x is the Shapley value of (N, v), i.e., x =

ϕ(N, v). Using (2) we can write

v = wx
+ (2n

− n − 1)νx
−

∑
S⊆N,|S|≥2

vx
S .

Thus, v is an affine combination of TU-games from G1, x =

f (N, νx), and x = f (N, vx
S) for S ⊆ N, |S| ≥ 2, by the generalized

equal sharing principle. Since x is the Shapley value of (N, v), we
get x = f (N, wx) by the generalized equal sharing principle. Now,
affine invariance of f yields x = f (N, v) and we are done.

4.2. Proof of Proposition 2

Let F be a set-valued solution satisfying affine invariance on
its affine domain dom F and the generalized proportional sharing
principle.

Claim. Let (N, v) ∈ G, x ∈ RN
++

. Then there exist TU-games
(N, v0), (N, v1), . . . , (N, vk) ∈ G1 such that

(a) v is an affine combination of v0, v1, . . . , vk of the form v =

v0
+

∑k
j=1 γjv

j with
∑k

j=1 γj = 0,
(b) x ∈ F (N, vj), j = 1, . . . , k, and
(c) we have

∆N,v0 (T ) =

{
0, for T ⊆ N, |T | ≥ 2,∑

S∋i
xi
xS

∆N,v(S), for T = {i}, i ∈ N.

Proof of Claim. We set A = {S ⊆ N| |S| ≥ 2, ∆N,v(S) ̸= 0}. For
S ∈ A and α ∈ R, we define a TU-game (N, w

x,α
S ) as follows:

∆N,w
x,α
S

(T ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−α∆N,v(S), for T = S,
xi +

xi
xS

α∆N,v(S), for T = {i}, i ∈ S,
xi, for T = {i}, i /∈ S,
0, otherwise.
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We have clearly (N, w
x,α
S ) ∈ G1. We define a TU-game (N, v0) as

the following sum:

v0
= v − 2|A|νx

+

∑
S∈A

(wx,αS

S + w
x,βS

S ), (3)

where νx is defined by (1), αS and βS are chosen in such a way
that αS

̸= 0, βS
̸= 0, αS

+ βS
= 1, xS + αS∆N,v(S) ̸= 0, and

xS + βS∆N,v(S) ̸= 0. Now we verify (a)–(c).
(a) Using (3) it is easy to choose γ1, . . . , γk and to denote

appropriately the TU-games νx, wx,αS

S , w
x,βS

S , S ∈ A, by v1, . . . , vk

to satisfy (a).
(b) Because of the choice of αS and βS, S ∈ A, the correspond-

ing TU-games satisfy E(N, w
x,αS

S ) = E(N, w
x,βS

S ) = S,∑
i∈S

w
x,αS

S ({i}) = xS + αS∆N,v(S) ̸= 0,

w
x,αS

S (S) =

∑
i∈S

∆
N,w

x,αS
S

({i}) + ∆
N,w

x,αS
S

(S)

= xS + αS∆N,v(S) − αS∆N,v(S) = xS ̸= 0,∑
i∈S

w
x,βS

S ({i}) = xS + βS∆N,v(S) ̸= 0,

w
x,βS

S (S) =

∑
i∈S

∆
N,w

x,βS
S

({i}) + ∆
N,w

x,βS
S

(S)

= xS + βS∆N,v(S) − βS∆N,v(S) = xS ̸= 0.

Thus, we can apply the generalized proportional sharing principle
for F to infer x ∈ F (N, w

x,αS

S ) and x ∈ F (N, w
x,βS

S ). To see this, note
that obviously w

x,αS

S ({i}) = xi for every i ∈ N \ S and, for every
i ∈ S, we have

w
x,αS

S ({i})+
w

x,αS

S ({i})∑
j∈S w

x,αS

S ({j})
·
(
−αS∆N,v(S)

)
= xi +

xi
xS

αS∆N,v(S) −

xi +
xi
xS

αS∆N,v(S)

xS + αS∆N,v(S)
αS∆N,v(S)

= xi +
xi
xS

αS∆N,v(S) −
xi
xS

αS∆N,v(S) = xi.

Similarly one can infer x ∈ F (N, w
x,βS

S ). Since νx is inessential, we
get x ∈ F (N, νx) by applying Remark 4. This completes the proof
of (b).

(c) Consider T ⊆ N such that |T | ≥ 2 and T ∈ A. Then we have

∆N,v0 (T ) = ∆N,v(T ) − 2|A|∆N,νx (T )
+

∑
S∈A

(
∆

N,w
x,αS
S

(T ) + ∆
N,w

x,βS
S

(T )
)

= ∆N,v(T ) + ∆
N,w

x,αT
T

(T ) + ∆
N,w

x,βT
T

(T )

= ∆N,v(T ) − αT∆N,v(T ) − βT∆N,v(T )
= ∆N,v(T )(1 − αT

− βT ) = 0.

If T ⊆ N , |T | ≥ 2, and T /∈ A, then ∆N,v0 (T ) = ∆N,v(T ) = 0.
Now choose T ⊆ N with T = {i}, i ∈ N . Then we have

∆N,v0 ({i}) = ∆N,v({i}) − 2|A|∆N,νx ({i})
+

∑
S∈A

(
∆

N,w
x,αS
S

({i}) + ∆
N,w

x,βS
S

({i})
)

= ∆N,v({i}) − 2|A|xi
+

∑
S∈A,i∈S

(
xi +

xi
xS

αS∆N,v(S) + xi +
xi
xS

βS∆N,v(S)
)

+

∑
S∈A,i/∈S

(xi + xi)

= ∆N,v({i}) +

∑
S∈A,i∈S

xi
xS

∆N,v(S)

=

∑
S∋i

xi
xS

∆N,v(S). (by the definition of A)

This completes the proof of the claim. □

Now, we show that F (N, v) ∩ RN
++

= PSV(N, v) ∩ RN
++

for
(N, v) ∈ GP .

Proof of the inclusion F (N, v)∩RN
++

⊆ PSV(N, v). Suppose that
x ∈ F (N, v) ∩ RN

++
. Take v0, . . . , vk for (N, v) and x according to

Claim. By (b), we have x ∈ F (N, vj) for j ∈ {1, . . . , k} and (N, v0) is
an affine combination of (N, v) and (N, v1), . . . , (N, vk). By affine
invariance of F , we get x ∈ F (N, v0). Since the TU-game (N, v0) is
inessential, we have

xi = v0({i}) =

∑
S∋i

xi
xS

∆N,v(S), i ∈ N.

Thus, we have x = h(x) and, consequently, x ∈ H(x). This shows
that x ∈ PSV(N, v). □

Proof of the inclusion PSV(N, v) ∩ RN
++

⊆ F (N, v). Consider
x ∈ PSV(N, v) ∩ RN

++
. Again, take v0, . . . , vk for (N, v) and x

according to Claim. Since x ∈ PSV(N, v)∩RN
++

, we have x = h(x),
i.e.,

xi =

∑
S∋i

xi
xS

∆N,v(S), i ∈ N.

This shows that x ∈ F (N, v0). Since x ∈ F (N, vj), j = 1, . . . , k,
by (b) of Claim, we obtain x ∈ F (N, v) using affine invariance
of F . □

4.3. Proof of Proposition 3

Affine invariance on G. Let (N, v1), (N, v2) ∈ G and λ1, λ2 ∈ R
with λ1 + λ2 = 1. Denote v = λ1v

1
+ λ2v

2. Suppose that x ∈ RN

satisfies x ∈ G(N, v1) ∩ G(N, v2). Then, we have

xi = gN,vl (x)i = vl({i}) +

∑
S∋i

xS ̸=0,|S|≥2

xi
xS

∆N,vl (S)

for l ∈ {1, 2}, i ∈ N.

This implies that

xi = λ1xi + λ2xi = λ1gN,v1 (x)i + λ2gN,v2 (x)i

= λ1v
1({i}) +

∑
S∋i

xS ̸=0,|S|≥2

λ1xi
xS

∆N,v1 (S) + λ2v
2({i})

+

∑
S∋i

xS ̸=0,|S|≥2

λ2xi
xS

∆N,v2 (S)

= v({i}) +

∑
S∋i

xS ̸=0,|S|≥2

xi
xS

(
λ1∆N,v1 (S) + λ2∆N,v2 (S)

)
= v({i}) +

∑
S∋i

xS ̸=0,|S|≥2

xi
xS

∆N,v(S) = gN,v(x)i, i ∈ N.

Thus, we have x ∈ G(N, v). This shows that G satisfies affine
invariance.

Generalized proportional sharing principle. Suppose that (N, v) ∈

G1 is inessential or satisfies V :=
∑

j∈E(N,v) v({j}) ̸= 0 and
v(E(N, v)) ̸= 0. To simplify the notation we denote E = E(N, v).
Let x̃ ∈ RN be given by

x̃i =

{
v({i}) +

v({i})
V ∆N,v(E), for i ∈ E,

v({i}), for i ∈ N \ E.

First we show that x̃ ∈ G(N, v). If (N, v) is inessential, then clearly
gN,v(x̃) = x̃ and, consequently, x̃ ∈ G(N, v). So suppose that V ̸= 0
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and v(E) ̸= 0. Observe that x̃E = V +∆N,v(E) = v(E). Thus x̃E ̸= 0.
Then we have for i ∈ E

gN,v(x̃)i = v({i}) +
x̃i
x̃E

∆N,v(E)

= v({i}) +
v({i}) +

v({i})
V ∆N,v(E)

V + ∆N,v(E)
∆N,v(E)

= v({i}) +
v({i})
V

∆N,v(E) = x̃i.

If i ∈ N \ E, then clearly gN,v(x̃)i = v({i}) = x̃i. Thus we have
x̃ ∈ G(N, v).

It remains to prove that G(N, v) contains no point but x̃. Suppose
that x ∈ G(N, v), i.e., gN,v(x) = x. We distinguish several
possibilities.

(a) Assume that (N, v) is inessential. Then from the equality x =

gN,v(x) we get xi = v({i}) = x̃i for every i ∈ N .

(b) Assume that V ̸= 0, v(E) ̸= 0, and moreover xE ̸= 0. Then the
equality x = gN,v(x) can be written as

xi =

{
v({i}) +

xi
xE

∆N,v(E), for i ∈ E,

v({i}), for i ∈ N \ E.
(4)

For i ∈ N \ E, we have the desired equality xi = v({i}) = x̃i.
Summing up xi over i ∈ E, we infer from (4)

xE =

∑
i∈E

v({i}) + ∆N,v(E) = V + ∆N,v(E). (5)

Thus we have xE ̸= ∆N,v(E) and using (4), we infer for i ∈ E

xi =
v({i})

1 −
∆N,v (E)

xE

.

Using (5) we get

xi =
v({i})

1 −
∆N,v (E)

xE

=
v({i})

1 −
∆N,v (E)

V+∆N,v (E)

= v({i}) +
v({i})
V

∆N,v(E) = x̃i.

(c) Finally assume that V ̸= 0, v(E) ̸= 0, and xE = 0. Then
the equality x = gN,v(x) can be written as xi = v({i}) for i ∈ N .
Summing up xi over i ∈ E, we infer 0 = xE =

∑
i∈E v({i}) =

V ̸= 0, a contradiction. This shows G satisfies the generalized
proportionality principle, and completes the proof.
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