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Chapter 15
Mathematical Details of Specific
Difference and Differential Equations
and Mathematical Analysis of Emerging
Network Behaviour

Abstract In this chapter, additional mathematical details are presented for many of
the chapters concerning the specific difference and differential equations, and
mathematical analysis of emerging behaviour. For modeling and analysis of prac-
tical applications, insight into these details may not be necessary, but they may
deepen insight from the mathematical and technical angle.

Keywords Difference equation � Differential equation � Network behaviour �
Mathematical analysis

15.1 Introduction

As also discussed at the end of Chap. 1, in many chapters, especially from Chaps. 1
to 9, mathematical and procedural details were kept at a minimum to obtain optimal
readability for a wide group of readers with diverse multidisciplinary backgrounds.
As the Network-Oriented Modeling approach based on reified temporal-causal
networks presented in this book abstracts from specific implementation details,
making use of the dedicated software environment, modeling can be done without
having to design procedural or algorithmic specifications. Moreover, a modeler
does not even need to explicitly specify difference or differential equations to get a
simulation done, as these are already taken care for by the software environment,
based on the modeler’s input in the form of the role matrices specifying the con-
ceptual representation of the network model. Therefore, in Chaps. 1–9 all under-
lying specific procedural elements and difference or differential equations were
usually not discussed, although the underlying universal difference and differential
equation were briefly mentioned and discussed more extensively in Chap. 10. The
only mathematical details that were addressed for design of a network model
concern the combination functions used, most of which are already given in the
combination function library. For analysis of the emerging behaviour of a network
model also these combination functions are central, as the equilibrium equations are
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based on them. Moreover, especially for Chaps. 11–14 in the current chapter
(Sects. 15.6–15.9) details of the proofs are discussed that were omitted in those
chapers.

However, for those readers who still want to see more mathematical details that
are covered in the software environment, the current chapter presents these in more
depth in different sections, as a kind of appendices to many of the chapters. These
sections should be read in conjunction with the concerning chapter, since that
chapter itself is not repeated here as a whole.

15.2 Two Different Formulations of Hebbian Learning
Are Equivalent

In this section it is shown why the two forms of modeling adaptation (the hybrid
form and the temporal-causal form) discussed in Chap. 1, Sects. 1.4.1 and 1.6.1 are
mathematically equivalent. Recall from Chap. 1, Sect. 1.6.1 the Eqs. (1.1), (1.3)
and (1.4), for network adaptation by Hebbian learning based on network reifica-
tion, here renumbered to (15.1)–(15.3):

YðtþDtÞ ¼ YðtÞþ gY ½cYðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ � Y tð Þ�Dt ð15:1Þ

hebblðV1;V2;WÞ ¼ V1V2 1�Wð Þþ lW ð15:2Þ

l ¼ 1� f=g or f ¼ ð1� lÞg ð15:3Þ

Moreover, in Fig. 1.2 in Chap. 1, Sect. 1.4.1 for the hybrid adaptation model the
following equation is described:

xXi;YðtþDtÞ ¼ xXi;Y tð Þþ ðgXi tð ÞY tð Þð1� xXi;Y tð ÞÞ � fxXi;Y tð ÞÞDt ð15:4Þ

Based on relations (15.1), (15.2) and (15.3) it can be verified that the difference
equation shown in (15.4) actually is mathematically equivalent to the standard
Eq. (15.1) for reified temporal-causal networks using the above combination
function (15.2) for the reification state. However, the latter formulation
in (15.2) provides a more transparent and more unified format than (15.4). The
equivalence can be found through rewriting of the mathematical formulas by ele-
mentary mathematical rules, starting from (15.4). In Box 15.1 for readers with less
mathematical background the steps have been explained in some detail.

Box 15.1 Modeling the equation from the hybrid approach in (15.4) from
Chap. 1, Sect. 1.4.1, Fig. 1.2 in the standard format for a temporal-causal
network
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xXi;Y ðtþDtÞ ¼ xXi;Y tð Þþ ðgXi tð ÞY tð Þð1� xXi;Y tð ÞÞ � fxXi;Y tð ÞÞDt
from 4ð Þ

¼ xXi;Y tð Þþ ðgXi tð ÞY tð Þð1� xXi;Y tð ÞÞ � ð1 � lÞgxXi;Y tð ÞÞDt
applying 3ð Þ

¼ xXi;Y tð Þþ g½Xi tð ÞY tð Þð1� xXi;Y tð ÞÞ � ð1 � lÞxXi;Y tð Þ�Dt
antið Þdistribution for g

¼ xXi;Y tð Þþ g½Xi tð ÞY tð Þð1� xXi;Y tð ÞÞ � xXi;Y tð Þþ lwXi;Y tð Þ�Dt
distribution forxXi;Y tð Þ

¼ xXi;Y tð Þþ g½Xi tð ÞY tð Þð1� xXi;Y tð ÞÞþ lwXi;Y tð Þ � xXi;Y tð Þ�Dt
commutation of � xXi;Y tð Þ and lxXi;Y tð Þ

¼ xXi;Y tð Þþ g½hebblðXi tð Þ; Y tð Þ;xXi;Y tð ÞÞ � xXi;Y tð Þ�Dt applying 2ð Þ

As shown in Box 15.1, Eq. (15.4) for xXi;Y displayed in Fig. 1.2 in Chap. 1 can
be rewritten into the following mathematically equivalent equation:

xXi;YðtþDtÞ ¼ wXi;Y tð Þþ g½hebblðXi tð Þ; Y tð Þ;xXi;Y tð ÞÞ � xXi;Y tð Þ�Dt

In terms of the reification state WXi;Y substituted for xXi;Y this is

WXi;YðtþDtÞ ¼ WXi;Y tð Þþ g½hebblðXi tð Þ; Y tð Þ;WXi;Y tð ÞÞ �WXi;Y tð Þ�Dt

and this form is indeed exactly the standard equation form for a temporal-causal
network applied to the reification state WXi;Y , with k = 3, incoming impacts defined
by the two upward (blue) arrows in Fig. 1.4 in Chap. 1, Sect. 1.4.2 and a con-
nection to WXi;Y itself, and combination function hebbl(V1, V2, W) defined by
(15.2) above.

15.3 Numerical Representation for an Example Reified
Network Model

This section addresses the specific difference equations for the example reified
network model described in Chap. 3, Sect. 3.7, as used in the software. From the
specifications shown in Chap. 3, Sect. 3.7, Box 3.8, the difference equations are
derived according to the format in (15.1) above, or (for the manager opinion state)
according to the universal difference equation in Chap. 3, Sect. 3.5 (or in Chap. 10)
as follows. Based on the role matrix specifications shown in Box 3.8 in Chap. 3, the
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difference equations for the three reification states are obtained as can be seen in
Box 15.2.

Box 15.2 Difference equations for the reification states Hmanageropinion,
C1;manageropinion, and C2;manageropinion

HmanageropinionðtþDtÞ ¼ Hmanageropinion tð Þþ 0:5 ½available time tð Þ �Hmanageropinion tð Þ�Dt
C1;manageropinionðtþDtÞ ¼ C1;manageropinion tð Þ
þ 0:5½ssum0:02ð0:01X1ðtÞ; 0:01X2ðtÞ; 0:01X3ðtÞ; 0:01X4ðtÞ; 0:01X5ðtÞ; 0:01X6ðtÞ; 0:01X7ðtÞ;
� 0:05disappointment tð ÞÞ�C1;manageropinion tð Þ�Dt

This can be rewritten into

C1;manageropinionðtþDtÞ ¼ C1;manageropinion tð Þ þ 0:5½0:5X1ðtÞþ 0:5X2ðtÞþ 0:5X3ðtÞþ 0:5X4ðtÞ
þ 0:5X5ðtÞþ 0:5X6ðtÞþ 0:5X7ðtÞ� 2:5disappointment tð Þ
�C1;manageropinion tð Þ�Dt
C2;manageropinionðtþDtÞ ¼ C2;manageropinion tð Þ
þ 0:5 ½disappointment tð Þ � C2;manageropinion tð Þ�Dt

The difference equation for the base state manager opinion is given by the
universal difference equation described in Chap. 3, Sect. 3.5 or in Chap. 10; see
Box 15.3. According to formula (15.1), and the specifications in Chap. 3, Box 3.8,
the base states available time and disappointment get the difference equations as
shown in Box 15.3.

Box 15.3 Difference equations for the base states
Substituting the manager opinion state for Y in the universal difference
equation and using the role matrix specifications in the row for X8 in Chap. 3,
Box 3.8 provides:

manageropinionðtþDtÞ ¼ manageropinion tð ÞþHmanageropinionðtÞ
C1;manageropinion tð Þbcf1 WX1;manageropinion tð ÞX1 tð Þ; . . .:;WX7;manageropinion tð ÞX7 tð Þ� �

þ C2;manageropinion tð Þbcf2ðWX1;manageropinion tð ÞX1 tð Þ; . . .;WX7;manageropinion tð ÞX7 tð Þ�
C1;manageropinion tð ÞþC2;manageropinion tð Þ �manageropinion tð Þ

2
66664

3
77775Dt

Using WXi;manageropinion ¼ 1 for all i (see the row for X8 in mcw in Box 3.8),
and bcf1(..) = ssumk(..) and bcf2(..) = alogisticr,s(..), this can be rewritten as
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manageropinionðtþDtÞ ¼ manageropinion tð ÞþHmanageropinionðtÞ

½C1;manageropinion tð Þ ssum7 X1 tð Þ; . . .;X7 tð Þð ÞþC2;manageropinion tð Þalogistic5;5:5 X1 tð Þ; . . .;X7 tð Þð Þ
C1;manageropinion tð ÞþC2;manageropinion tð Þ

�manageropinion tð Þ�Dt

According to temporal-causal format (1) above, and the role matrix
specifications in Box 3.8, the base states available time and disappointment
get the following difference equations:

available timeðtþDtÞ ¼ available time tð Þþ 0:04½alogistic18;0:2 available time tð Þð Þ
� available time tð Þ�Dt disappointmentðtþDtÞ ¼ disappointment tð Þ
þ 0:025½alogistic18;0:2 disappointment tð Þð Þ � disappointment tð Þ�Dt

Similarly, according to (1) and the role matrix specifications in Box 3.8 in
Chap. 3, the group members Xi, i = 1, …, 7 get the following difference
equations:

Xi tþDtð Þ ¼ Xi tð Þþ 0:005½ssumki xX1;XiX1 tð Þ; . . .;xX7;XiX7 tð Þ� �� Xi tð Þ�Dt

where ki is the sum of the incoming weights xXj;Xi for Xi.

15.4 The Difference Equations for Combined Hebbian
Learning and State-Connection Modulation

In Chap. 5, Sects. 5.3 and 5.4 an example reified network model was described in
which the Hebbian learning adaptation principle is combined with the state-
connection modulation adaptation principle. In the current section the underlying
difference equations used in the implementation are shown in some detail. Recall
that for the reification states of the connection weights the following combination
functions were used. For Hebbian learning of a connection from state Xi to state Xj

with connection weight reification state W the function described in (15.2) above
where l is the persistence factor with 1 as full persistence. For state-connection
modulation with control state cs2 for connection weight reification state W:

scmaðV1;V2;W ;VÞ ¼ W þ aVWð1�WÞ ð15:5Þ

where a is the modulation parameter for W from cs2, V is the single impact from
cs2, and W is the value of W; the V1 and V2 are auxiliary variables allowing to
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(partly) separate the arguments used in the two functions. For Hebbian learning
separately the difference equation is:

WðtþDtÞ ¼ W tð Þþ gW cWðXi tð Þ;Xj tð Þ;W tð ÞÞ �W tð Þ� �
Dt ð15:6Þ

with

cWðV1;V2;WÞ ¼ hebblðV1;V2;WÞ ¼ V1V2ð1�WÞþ lW ð15:7Þ

For state-connection modulation with control state cs2 for connection weight
reification state W the difference equation is:

WðtþDtÞ ¼ W tð Þþ gW cWðXi tð Þ;Xj tð Þ; cs2 tð Þ;W tð ÞÞ �W tð Þ� �
Dt ð15:8Þ

with

cWðV1;V2;W ;VÞ ¼ scmaðV1;V2;W ;VÞ ¼ W þ aVWð1�WÞ ð15:9Þ

Note that the first two auxiliary variables of scmaðV1;V2;W ;VÞ are not used in
the formula (15.9) for scmaðV1;V2;W ;VÞ. These variables are included to be able
to combine this function with the Hebbian learning function while using the same
sequence of variables. More specifically, this combination is done as follows. These
two adaptive combination functions are used as a weighted average with c1 and c2
the combination function weights for hebblðV1;V2;WÞ and scmaðV1;V2;W ;VÞ,
respectively, as follows:

WðtþDtÞ ¼ W tð Þþ gW cWðXi tð Þ;Xj tð Þ;W tð Þ; cs2 tð ÞÞ �W tð Þ� �
Dt ð15:10Þ

with

cWðV1;V2;W ;VÞ ¼ c1hebblðV1;V2;WÞþ c2scmaðV1;V2;W ;VÞ ð15:11Þ

So, basically the difference equation for the reification state W for the weight of
the connection from Xi to Xj is:

WðtþDtÞ ¼ W tð Þþ gW½c1hebblðV1;V2;WÞþ c2scmaðV1;V2;W ;VÞ �W tð Þ�Dt
¼ W tð Þþ gW½c1 V1V2ð1�W½ Þ þ lW � þ c2½W þ aVWð1�WÞ� �W tð Þ�Dt
¼ W tð Þþ gW½c1 Xi tð ÞXj tð Þð1�W tð Þ� �þ lW tð Þ�
þ c2½W tð Þþ acs2ðtÞW tð Þð1�W tð ÞÞ� �W tð Þ�Dt

However, also taking into account that the speed factor of W is adaptive and
represented by a reification state H, the equation becomes:
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WðtþDtÞ ¼ W tð ÞþHðtÞ½c1 Xi tð ÞXj tð Þð1�W tð Þ� � þ lW tð Þ�
þ c2½W tð Þþ acs2ðtÞW tð Þð1�W tð ÞÞ� �W tð Þ�Dt

This can also be rewritten into a correct temporal-causal format (with speed
factor by default 1), based on the universal difference equation as shown in
Chap. 10:

WðtþDtÞ ¼ W tð Þþ ½HðtÞ½c1 Xi tð ÞXj tð Þð1�W tð Þ� �þ lW tð Þ�
þ c2½W tð Þþ acs2ðtÞW tð Þð1�W tð ÞÞ��
þ ð1�HðtÞÞW tð Þ �W tð Þ�Dt

¼ W tð Þþ ½c�WðHðtÞ;Xi tð Þ;Xj tð Þ;W tð Þ; cs2ðtÞÞ �W tð Þ�Dt

where

c�WðH;V1;V2;W ;VÞ ¼ H½c1 V1V2ð1�W½ Þ þ lW � þ c2½W þ aV Wð1�WÞ�� þ 1� Hð ÞW

15.5 Difference and Differential Equations
for Multilevel Connection Weight Reification States

In Chap. 6, Sect. 6.3 the combination functions for the example model were
described. In the current section, the difference equations used in implementa-
tion will be added. The base level and first reification level states are addressed in
Box 15.4.

Box 15.4 Combination functions and difference equations for the base level
and first reification level
Base level:
Base state Xi combination function and difference equation
The combination function for the base states Xi is basically the advanced
logistic sum function alogisticr,s(..).
However, as the connection weights are reified at the first reification level,
based on the universal combination function format, the following adaptive
form for the combination function for the base states Xi is needed here:

c�YðW1; . . .;Wk;V1; . . .;Vk; Þ ¼ alogisticr;sðW1V1; . . .;WkVkÞ

¼ 1
1þ e�r W1V1 þ ...þWkVk�sð Þ �

1
1þ ersÞ

� �
ð1þ e�rsÞ
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Here Wi refers to connection weight reification state value WXi;Y (t) and Vi to
state value Xi(t).
This combination function defines the following difference equation for
Y (see Chap. 4, Sect. 4.2, Table 4.1):

YðtþDtÞ ¼ Y tð Þþ gY ½alogisticr;sðW1 tð ÞX1ðtÞ; . . .;Wk tð ÞXkðtÞÞ � Y tð Þ�Dt

where

Wi tð Þ ¼ WXi;Y tð Þ

First reification level:
Connection weight reification state WY,Xi combination function and dif-
ference equation
See Chap. 4, Sects. 4.3.2, and 4.2, or Chap. 3, Sect. 3.6.1, or (Treur 2016),
Chap. 11, Sect. 11.7, the combination function slhomoa(..) for connection
weight reification state WXi;Y is basically

slhomoaðV1;V2;WÞ ¼ W þ aW 1�Wð Þðs� V1 � V2j jÞ

where

• W refers to connection weight reification state value WXi;Y (t)
• V1 to X1(t) and V2 to X2(t)
• a is a homophily modulation factor for WXi;Y

• s is a homophily tipping point for WXi;Y .

However, as the speed factor and tipping point are reified at the second
reification level, based on the universal combination function format, the
following adaptive form for the combination function for connection weight
reification state WXi;Y is needed here:

c�WXi ;Y
ðH;V1;V2; T;WÞ ¼ HðW þ aW 1�Wð Þ T � jV1 � V2jð ÞÞþ 1� Hð ÞW

where

• H refers to the speed factor reification HWXi ;Y
(t) for WXi;Y

• W to connection weight reification WXi;Y (t)
• T to homophily tipping point reification state value TPWXi ;Y

(t) for WXi;Y

• V1 to X1(t) and V2 to X2(t)
• a is a homophily modulation factor.

This combination function (together with connection weights and speed
factor 1) defines the following difference equation for connection weight
reification state W = WXi;Y (see Sect. 4.2, Table 4.1):
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WðtþDtÞ ¼ W tð Þþ ½H tð ÞðW tð Þþ aW tð Þ 1�W tð Þð Þ TP tð ÞjXiðtÞ � YðtÞjð ÞÞ
þ 1�H tð Þð ÞW tð Þ �W�Dt

where

HðtÞ ¼ HWXi;Y tð Þ TP tð Þ ¼ TPWXi;Y tð Þ

The reification states at the second reification level are addressed in Box 15.5
(homophily tipping point reification state), and Box 15.6 (connection weight speed
factor reification state).

Box 15.5 Combination function and difference equation for the homophily
tipping point reification state at the second reification level
Second reification level: tipping point reification state TPWXi ;Y

combina-

tion function and difference equation
The following combination function called simple linear tipping point
function sltipm,a(..) can be used for the second order reification state TPWXi ;Y

at the second reification level (upper, purple plane):

sltipm;aðW1; . . .;Wk; TÞ ¼ T þ aT 1� Tð Þðm� ðW1 þ . . .þWkÞ=kÞ

where

• T refers to the homophily tipping point reification value TPWXi ;Y
(t) for

WXi;Y

• Wj to connection weight reification value WXi;Y tð Þ
• a is a modulation factor for the tipping point TPWXi ;Y

• m is a norm for Y for average connection weight WX1;Y to WXk ;Y

This function can be explained as follows. The norm parameter m indicates
the preferred average level of the connection weights WXi;Y for person Y. The
part ðm� ðW1 þ . . .þWkÞ=kÞ in the formula is positive when the current
average connection weight (W1 + … + Wk)/k is lower than this norm, and
negative when it is higher that the norm. When T is not 0 or 1, in the first
case, the combination function provides a value higher than T, which makes
that the tipping point is increased, and as a consequence more connections are
strengthened by the homophily adaptation, so the average connection weight
will become more close to the norm m. In the second case, the opposite takes
place: the combination function provides a value lower than T, which makes
that the tipping point is decreased, and as a consequence more connections
are weakened by the homophily adaptation, so also now the average

15.5 Difference and Differential Equations for Multilevel Connection … 383



connection weight will become more close to the norm m. Together this
makes that in principle (unless in the meantime other factors change) the
average connection weight will approximate the norm m. The factor T
(1 − T) in the formula takes care that the values for T stay within the [0, 1]
interval.

Together with connection weights and speed factor 1, this combination
function defines the following difference equation for tipping point reification
state TP ¼ TPWXi ;Y

(see Sect. 4.2, Table 4.2):

TPðtþDtÞ ¼TP tð Þþ
g½½TP tð Þþ aTP tð Þ 1� TP tð Þð Þðm� ðW1ðtÞþ . . .þWkðtÞÞ=kÞ� � TP tð Þ�Dt

where

Wi tð Þ ¼ WXi;Y tð Þ

Box 15.6 Combination function and difference equation for the connection
weight speed factor reification state at the second reification level
Second reification level:
speed factor reification state HWY,Xi combination function and difference
equation
For the adaptive connection adaptation speed factor the following combina-
tion function called simple linear speed function slspeedm,a(..) can be con-
sidered making use of a similar mechanism using a norm for connection
weights.

slspeedm;aðW1; . . .;Wk; ;HÞ ¼ Hþ aHð1� HÞðm� ðW1 þ . . .þWkÞ=kÞ

where

• H refers to WY ;Xi speed factor reification value HWXi ;Y
tð Þ

• Wj to connection weight reification value WXi;Y tð Þ
• a is a modulation factor for HWXi ;Y

• m is a norm for average of (incoming) connection weights for Y

This function can be explained as follows. Also here the norm parameter m
indicates the preferred average level of the connection weights WXi;Y for
person Y. The part ðm� ðW1 þ . . .þWkÞ=kÞ in the formula is positive when
the current average connection weight (W1 + … + Wk)/k is lower than this
norm, and negative when it is higher that the norm. When H is not 0 or 1, in
the first case, the combination function provides a value higher than H, which
makes that the speed factor is increased, and the connections are changing
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faster by the homophily adaptation. In the second case, the combination
function provides a value lower than H, which makes that the speed factor is
decreased, and as a consequence the homophily adaptation speed is lower.
The factor H(1 − H) in the formula takes care that the values for H stay
within the [0, 1] interval.

This combination function defines the following difference equation for
speed factor reification state H = HWXi ;Y

:

HðtþDtÞ ¼ H tð Þþ g½½H tð Þþ aH tð Þ 1�H tð Þð Þðm
� ðW1 tð Þþ . . .þWk tð ÞÞ=kÞ ��H tð Þ�Dt

where

Wi tð Þ ¼ WXi;Y tð Þ

15.6 Emerging Behaviour for Types of Aggregation and
Types of Connectivity

This section presents a number of proofs that were left out from Chap. 11.

Proposition 6 Suppose a network with nonnegative connections has normalised
scalar-free combination functions.

(a) If X1, …, Xk are the states from which Y gets its incoming connections, and
X1 tð Þ ¼ . . . ¼ Xk tð Þ ¼ V for some common value V, then also
cYðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ ¼ V .

(b) If, moreover, the combination functions are monotonic, and X1; . . .;Xk are the
states from which Y gets its incoming connections, and V1 �X1 tð Þ; . . .;
Xk tð Þ�V2 for some values V1 and V2, then also V1 � cYðxX1;YX1 tð Þ; . . .;
xXk ;YXk tð ÞÞ�V2 and if gYDt� 1 and V1 � Y(t) � V2 then
V1 � YðtþDtÞ�V2.

Proof

(a) This follows from

cYðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ ¼ cYðxX1;YV ; . . .;xXk ;YVÞ ¼ VcYðxX1;Y ; . . .;xXk ;YÞ
¼ V

(b) This follows from V1 ¼ V1cYðxX1;Y ; . . .;xXk ;YÞ = cYðxX1;YV1; . . .;xXk ;YV1Þ �
cYðxX1;YX1 tð Þ, …, xXk ;YXk tð ÞÞ� cYðxX1;YV2; . . .;xXk ;YV2Þ = V2cYðxX1;Y ; . . .;
xXk ;Y Þ ¼ V2
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The last part follows from

YðtþDtÞ ¼ Y tð Þþ gY ½cYðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ � Y tð Þ�Dt
¼ ð1� gYDtÞYðtÞþ gYDtcYðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ

So Y(t + Dt) is a weighted average with weights between 0 and 1 of Y(t) and
cY(xX1;YX1(t), …, xXk ;YXk(t)) which both are in the interval [V1, V2]. Therefore
Y(t + Dt) itself also is in the interval [V1, V2].

Theorem 1 (common state values provide equilibria) Suppose a network with
nonnegative connections is based on normalised and scalar-free combination
functions. Then the following hold.

(a) Whenever all states have the same value V, the network is in an equilibrium state.
(b) If for every state for its initial value V it holds V1 � V � V2, then for all t for

every state Y it holds V1 � Y(t) � V2. In an achieved equilibrium for every
state for its equilibrium value V it holds V1 � V � V2.

Proof

(a) It follows from Proposition 6(a) that the criterion of Lemma 1 is fulfilled.
(b) From Proposition 6(b) it follows by induction over the time steps that during a

simulation for every state Y it holds V1 � Y(t) � V2 and therefore in a limit
situation in an achieved equilibrium for every state for its equilibrium value V it
holds V1 � V � V2.

■

Lemma 3 (Relating radical and max expressions) Suppose a1; . . .; ak are any
nonnegative real numbers. Then

lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an1 þ . . .þ ank

n
p ¼ max a1; . . .; akð Þ

Proof First note that on the one hand

max a1; . . .; akð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max a1; . . .; akð Þnn

q
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

an1 þ . . .þ ank
n
p

and on the other hand

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an1 þ . . .þ ank

n
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max a1; . . .; akð Þn þ . . .þmax a1; . . .; akð Þnn

q
¼ max a1; . . .; akð Þ

ffiffiffi
kn

p
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So

max a1; . . .; akð Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an1 þ . . .þ ank

n
p �max a1; . . .; akð Þ

ffiffiffi
kn

p

Now

lim
n!1 ln

ffiffiffi
kn

p	 

¼ lim

n!1 ln kð Þ=n ¼ 0

and therefore

lim
n!1

ffiffiffi
kn

p
¼ lim

n!1 eln
ffiffi
knpð Þ ¼ e0 ¼ 1:

This proves that for any nonnegative real numbers a1; . . .; ak it holds

lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an1 þ . . .þ ank

n
p ¼ max a1; . . .; akð Þ

■

Theorem 8 Let for each n the normalised Euclidean combination function
eucln;k nð Þ V1; . . .;Vkð Þ be given with scaling factor k nð Þ, and let the normalised
scaled maximum combination function smaxk V1; . . .;Vkð Þ be given with scaling
factor k. Then for all V1; . . .;Vk it holds

lim
n!1 eucln;k nð Þ V1; . . .;Vkð Þ ¼ smaxk V1; . . .;Vkð Þ

where

kðnÞ ¼ xn
X1;Y þ . . .þxn

Xk ;Y

and

k ¼ max xX1;Y ; . . .;xXk ;Y
� �

Proof Recal the normalised formulas described in Table 11.4 in Chap. 11:

eucln;k nð Þ V1; ::;Vkð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vn
1 þ . . .þVn

k

xX1;Yn þ . . .þxXk ;Yn

n

s

smaxk V1; . . .;Vkð Þ ¼ max V1; . . .;Vkð Þ=maxðxX1;Y ; . . .;xXk ;Y Þ
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where

k nð Þ ¼ xX1;Yn þ . . .þxXk ;Yn

and

k ¼ max xX1;Y ; . . .;xXk ;Y
� �

Apply Lemma 3 to both xX1;Y ; . . .;xXk ;Y and V1; . . .;Vk for a1; . . .; ak as follows

lim
n!1 eucln;k nð Þ V1; . . .;Vkð Þ ¼ lim

n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vn
1 þ . . .þVn

k

k nð Þ
n

s

¼
lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vn

1 þ . . .þVn
k

n
p

lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn

X1;Y þ . . .þ n
Xk ;Y

n
p ¼ max V1; . . .;Vkð Þ

max xX1;Y ; . . .;xXk ;Y
� �

¼ smaxk V1; . . .;Vkð Þ:

15.7 Using Strongly Connected Components to Explore
Emerging Behaviour for a Class of Combination
Functions for Any Type of Network Connectivity

This section presents a number of proofs that were left out from Chap. 12.

Proposition 1 Suppose the network is normalised.

(a) If the combination functions are scalar-free and X1, …, Xk are the states from
which Y gets its incoming connections, and X1(t) = … = Xk(t) = V for some
common value V, then also cYðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ ¼ V .

(b) If the combination functions are scalar-free and X1, …, Xk are the states from
which Y gets its incoming connections, and for U1, …, Uk, V1, …, Vk and a� 0
it holds Vi = a Ui, then cYðxX1;YV1; . . .;xXk ;YVkÞ ¼ acYðxX1;YU1; . . .;xXk ;YUkÞ
If in this situation in two different simulations, state values Xi(t) and X 0

i tð Þ are
generated then X 0

i tð Þ ¼ aXi tð Þ ) X 0
iðtþDtÞ ¼ aXiðtþDtÞ

(c) If the combination functions are additive and X1, …, Xk are the states with
outgoing connections to Y, then for values U1; . . .;Uk , V1; . . .;Vk it holds

cYðxX1;YðU1 þV1Þ; . . .;xXk ;YðUk þVkÞÞ ¼ cY ðxX1;YU1; . . .;xXk ;YUkÞ
þ cYðxX1;YV1; . . .;xXk ;YVkÞ
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If in this situation in three different simulations, state values Xi tð Þ;X 0
iðtÞ and

X 00
i tð Þ are generated then

X 00
i tð Þ ¼ Xi tð ÞþX 0

i tð Þ ) X 00
i ðtþDtÞ ¼ XiðtþDtÞþX 0

iðtþDtÞ

(d) If the combination functions are scalar-free and monotonically increasing, and
X1, …, Xk are the states with outgoing connections to Y, and
V1 �X1 tð Þ; . . .;Xk tð Þ�V2 for some values V1 and V2, then also

V1 � cYðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ�V2

and if gYDt� 1 and V1 � Y tð Þ�V2 thenV1 � YðtþDtÞ�V2.

Proof

(a) This works as follows:

cY ðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ ¼ cYðxX1;YV ; . . .;xXk ;YVÞ ¼ VcYðxX1;Y ; . . .;xXk ;YÞ
¼ V

(b) can easily be verified
(c) can easily be verified.
(d) This follows from

V1 ¼ V1cY ðxX1;Y ; . . .;xXk ;Y Þ ¼ cY ðxX1;YV1; . . .;xXk ;YV1Þ
� cY ðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ� cY ðxX1;YV2; . . .;xXk ;YV2Þ ¼ V2cY ðxX1;Y ; . . .;xXk ;Y Þ ¼ V2

and the second part from

YðtþDtÞ ¼ YðtÞþ gY ½cYðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ�YðtÞ�Dt
¼ cYðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞgYDtþ Y tð Þð1�gYDtÞ
�V2gYDtþV2ð1�gYDtÞ ¼ V2

and similarly for V1

YðtþDtÞ ¼ cYðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞgYDtþ Y tð Þð1�gYDtÞ
�V1gYDtþV1ð1�gYDtÞ ¼ V1

■

Theorem 7 (equilibrium state values in relation to level 0 components in the
linear case) Suppose the network N is normalised and the combination functions
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are strictly monotonically increasing and linear. Assume that the states at level 0
that form a singleton component on their own are constant.
Then the following hold:

(a) For each state Y its equilibrium value is independent of the initial values of all
states at some level i > 0. It is only dependent on the initial values for the states
at level 0.

(b) More specifically, let B1, …, Bp be the states in level 0 components. Then for
each state Y its equilibrium value eqY is described by a linear function of the
initial values V1, … , Vp for B1, … , Bp, according to the following weighted
average:

eqY V1; . . .;Vp
� � ¼ dB1;YV1 þ . . .þ dBp;YVp

Here the dBi;Y are real numbers between 0 and 1 and the sum of them is 1:

dB1;Y þ . . .þ dBp;Y ¼ 1

(c) Each dBi;Y is the equilibrium value for Y when the following initial values are
used: Vi = 1 and all other initial values are 0:

dBi,Y = eqY(0, …, 0, 1, 0, …, 0) with 1 as ith argument.

Proof From Proposition 1 it follows that he equilibrium value of Y is a linear
function of the initial values of all states of N. Therefore the function is a linear
combination of ei = eqY(0,…, 0, 1, 0,…, 0) where only one state has initial value 1
and all other 0. An alternative, more theoretical linear algebra argument uses that
the set of functions over time generated by the difference equations for different
initial values forms an n-dimensional linear space with as basis the functions di(t)
generated for initial value 1 for state Xi and 0 for all other states. Therefore each
generated function is a linear combination of such functions. By substituting t = 0
in them it is shown that the coefficients are the initial values and substituting t for an
equilibrium shows that these initial values are the coefficients at that time point.

Now consider the different stratification levels. When all level 0 states have
initial value 0, then by Theorem 5(a)(iii) they will have equilibrium value 0 as well.
Then from Theorem 5(b)(ii) it follows that all states will have equilibrium value 0.
In particular, this holds for cases that only one of the states at a level i > 0 have
value 1 and all other states have initial value 0. This shows that from the linear
combination the coefficient of these terms are 0. Therefore eqY(…) is a function of
V1, …, Vp only.

■

Theorem 9 (equilibrium state values for components of level i > 0) Suppose the
network is normalised, and consists of a strongly connected component plus a
number of independent states A1, …, Ap with outgoing connections to this strongly
connected component. Then the following hold
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(a) Suppose the combination functions are scalar-free and X1, …, Xk are the
states from which Y gets its incoming connections. If for U1, …, Uk, V1, …, Vk

and a � 0 it holds Vi = a Ui for all i, then cY ðxX1;YV1; . . .;xXk ;YVkÞ ¼
acYðxX1;YU1; . . .;xXk ;YUkÞ

(b) Suppose the combination functions are additive and X1, …, Xk are the states
from which Y gets its incoming connections. Then if for values U1, …, Uk, V1,
…, Vk, W1, …, Wk it holds Wi ¼ Ui þVi for all i, then

cY ðxX1;YW1; . . .;xXk ;YWkÞ ¼ cYðxX1;YU1; . . .;xXk ;YUkÞþ cYðxX1;YV1; . . .;xXk ;YVkÞ

(c) Suppose all combination functions of the network N are linear. Then for given
connection weights and speed factors, for each state Y the achieved equilibrium
value for Y only depends on the equilibrium values V1, …, Vp of states A1, …,
Ap; the function eqY(V1, …, Vp) denotes this achieved equilibrium value for Y.

(d) Suppose the combination functions of the network N are linear. For the given
connection weights and speed factors for each i let di,Y be the achieved equilibrium
value for state Y in a situation with equilibrium values Ai = 1 and Aj = 0 for all
j 6¼ i, i.e., di,Y = eqY(0, …, 0, 1, 0, …, 0) with 1 as ith argument. Then in the
general case for these given connection weights and speed factors, for each Y in the
strongly connected component its equilibrium value is a linear, monotonically
increasing, continuous and differentiable function eqY(…) of the equilibrium
values V1, …, Vp of A1, …, Ap satisfying the following linear relation:
eqY(V1, …, Vp) = d1,Y V1 + … + dp,Y Vp. Here the sum of the di,Y is 1: d1,Y
+ … + dp,Y = 1. In particular, the equilibrium values are independent of the initial
values for all states Y different from A1, …, Ap. If the combination functions of
N are strictly increasing, then di,Y > 0 for all i, and eqY(..) is also strictly increasing.

Proof (a) and (b) follow from Proposition 1
(c) From (a) and (b) it follows that the equilibrium value of Y is a linear function of
the initial values of all states of N. Therefore the function is a linear combination of
ei = eqY(0, …, 0, 1, 0, …, 0) where only one state has initial value 1 and all other 0.
However, when all independent states have (constant) value 0, from Theorem 5(b)
(ii) it follows that all states will have equilibrium value 0. In particular, this holds
for cases that only one of the states that are not independent have initial value 1 and
all other states have initial value 0. This shows that from the linear combination the
coefficient ei of these terms are 0. Therefore eqY(…) is a function of V1, …, Vp only.
From a) and b) it follows that eqY(V1,…, Vp) is linear, as indicated above. Therefore

eqY V1; . . .;Vp
� � ¼ eqY V1; 0; . . .; 0ð Þþ . . .þ eqY ð0; . . .; 0;Vi; 0; ::; 0Þþ . . .þ eqY 0; . . .;Vp

� �
¼ eqY 1; 0; . . .; 0ð ÞV1 þ . . .þ eqY ð0; . . .; 0; 1; 0; ::; 0ÞVi þ . . .þ eqY 0; . . .; 1ð ÞVp

¼ d1;YV1þ . . .þ di;YVi þ . . .þ dp;YVp

■
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15.8 Analysis of Emerging Behaviour for Classes
of Homophily Functions

This section presents a number of proofs that were left out from Chap. 13.

Proposition 1 Suppose for any function dðs;DÞ it holds

dðs;DÞ[ 0 iff D\s

dðs;DÞ\0 iff D[ s

Then the following hold:

(a) For any a > 0 the function

c V1;V2;Wð Þ ¼ W þ aW 1�Wð Þdðs; V1�V2j jÞ
satisfies the tipping point condition, but not strict.

(b) For any a > 0 the function

c0 V1;V2;Wð Þ ¼ W þ a Posðdðs; V1�V2j jÞÞ 1�Wð Þ
� aPosð�dðs; V1�V2j jÞÞW

satisfies the strict tipping point condition.

Proof

(a) The proof is mainly based on some algebraic rewriting.

Here as a first step it has to be proven that for any W with 0 < W<1 and all V1, V2 it
holds

jV1�V2j\s , c V1;V2;Wð Þ[W

This follows from

jV1�V2j\s , dðs; V1�V2j jÞ[ 0 , aW 1�Wð Þdðs; V1�V2j jÞ[ 0
, c V1;V2;Wð Þ[W :

Similarly the other two cases for jV1�V2j[ s and jV1�V2j ¼ s can be verified.
From c(V1, V2, 0) = 0 for all V1, V2 it follows that the strict tipping point
requirement is not fulfilled.

(b) Also this proof is mainly based on some algebraic rewriting, thereby using
Lemma 1.

First, c0 V1;V2;Wð Þ satisfies the tipping point condition; for any W with 0 < W<1
and all V1, V2 by Lemma 1 it holds:
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jV1�V2j\s , dðs; V1�V2j jÞ[ 0
, Posðdðs; V1 � V2j jÞÞ[ 0 and Posð�dðs; V1 � V2j jÞÞ ¼ 0

Similarly the other two conditions.
It is strict because

V1�V2j j\s ) dðs; V1 � V2j jÞ[ 0 ) c0 V1;V2; 0ð Þ ¼ a Posðdðs; V1 � V2j jÞ[ 0

and

V1�V2j j[ s ) dðs; V1 � V2j jÞ\0 ) c0 V1;V2; 1ð Þ
¼ 1� a Posð�dðs; V1 � V2j jÞ\1

■

Proposition 2

(a) log1homs;aðV1;V2;WÞ has tipping point s, and is not strict
(b) slog2homs;aðV1;V2;WÞ has tipping point s, and is not strict
(c) alog2homs;aðV1;V2;WÞ has a strict tipping point s
(d) exphomos;rðV1;V2;WÞ has a tipping point s and is not strict

Proof

(a) This is based on some algebraic rewriting.

For log1homs,a(V1, V2, W) suppose 0 < W<1, then for D ¼ jV1�V2j it holds

D\s , er D�sð Þ\1 , 1�Wð Þer D�sð Þ\1�W

, W þ 1�Wð Þer D�sð Þ\W þ 1�W ¼ 1

, W
W þ 1�Wð Þer D�sð Þ [W

Similarly the other conditions can be verified:

D ¼ s , er D�sð Þ ¼ 1 , 1�Wð Þer D�sð Þ ¼ 1�W

, W þ 1�Wð Þer D�sð Þ ¼ W þ 1�W ¼ 1

, W
W þ 1�Wð Þer D�sð Þ ¼ W

To verify that it has no strict tipping point s: for any V1, V2 it holds

log1homs;aðV1;V2; 0Þ ¼ 0
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(b) This proof is based on Proposition 1. Applying Proposition 1(a) to
slog2homs;aðV1;V2;WÞ consider

dðs;DÞ ¼ 0:5� 1
1þ e�r D�sð Þ

This function indeed satisfies the conditions of Proposition 1; therefore from
Proposition 1(a) it follows that it has tipping point s but not strict tipping point s.

(c) Also this proof is based on Proposition 1. For alog2homs;aðV1;V2;WÞ it fol-
lows from Proposition 1(b) with the same d(s, D) as above that it has strict
tipping point s.

(d) This is based on some algebraic rewriting.
For W with 0 < W<1 it holds

D\s , er D�sð Þ\1 , ð1�WÞer D�sð Þ\ð1�WÞ
, 1� ð1�WÞer D�sð Þ [ 1� ð1�WÞ ¼ W , exphomos rðV1;V2;WÞ[W

D ¼ s , er D�sð Þ ¼ 1 , 1�Wð Þer D�sð Þ ¼ ð1�WÞ
, 1� 1�Wð Þer D�sð Þ ¼ 1� 1�Wð Þ ¼ W , exphomot;sðV1;V2;WÞ ¼ W

D[ s , er D�sð Þ [ 1 , 1�Wð Þer D�sð Þ [ 1�Wð Þ
, 1� 1�Wð Þer D�sð Þ\1� 1�Wð Þ ¼ W , exphomos;rðV1;V2;WÞ\W

This shows it has tipping point s. It has no strict tipping point, as

exphomos;rðV1;V2; 1Þ ¼ 1 for allV1;V2:

The following proposition shows that weighted averages of functions with tip-
ping point s also have a tipping point s, and the same for having a strict tipping
point.

Proposition 3 A weighted average (with positive weights) of homophily combi-
nation functions with tipping point s also has tipping point s, and with strict tipping
point s, also has strict tipping point s.

Proof This can be verified in a straightforward manner.

Suppose

c V1;V2;Wð Þ ¼ c1c1 V1;V2;Wð Þþ . . .þ cmcm V1;V2;Wð Þ

with c1 þ . . .þ cm ¼ 1. Suppose 0 < W<1. Then jV1�V2j\s)ci V1;V2;Wð Þ[W
for all i, and therefore
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c V1;V2;Wð Þ[ c1 W þ . . .þ cm W ¼ W

Similarly

jV1�V2j ¼ s)c V1;V2;Wð Þ ¼ W

jV1�V2j[ s)c V1;V2;Wð Þ\W

Now suppose c V1;V2;Wð Þ[W , then jV1�V2j ¼ s or jV1�V2j[ s cannot hold as
they imply c(V1, V2, W) = W or c(V1, V2, W) < W, therefore jV1�V2j\s. The same
for the other clauses. Moreover, suppose that the functions ci(V1, V2, W) all have
strict tipping point s. Then

If jV1�V2j\s then

c V1;V2; 0ð Þ ¼ c1c1 V1;V2; 0ð Þþ . . .þ cmcm V1;V2; 0ð Þ[ 0

If jV1�V2j\s then

c V1;V2; 1ð Þ ¼ c1c1 V1;V2; 1ð Þþ . . .þ cmcm V1;V2; 1ð Þ\c1 þ . . .þ cm ¼ 1

Therefore also c(V1, V2, W) has a strict tipping point.
■

Proposition 4

(a) When the homophily combination function c(V1, V2, W) is symmetric, and
initially the network is fully symmetric, then the network is continually fully
symmetric.

(b) For every n[ 0 a Euclidean combination function of nth degree is strictly
monotonically increasing, scalar-free, and symmetric.

Proof

(a) This follows from the fact that in this case the difference equation for reification
state WX;Y for xX,Y is symmetric in X and Y.

(b) A Euclidean combination function is composed of strictly monotonic functions
as each function Vi ! Vn

i is monotonic for positive n and positive values Vi,
and so are W ! W=k and W ! W1=n. From

eucln;kðaV1; . . .; aVkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaV1Þn þ . . .þðaVkÞn

k
n

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
anVn

1 þ . . .þ anVn
k

k
n

r

¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vn
1 þ . . .þVn

k

k
n

r
¼ a eucln;kðV1; . . .;VkÞ

it follows that it is scalar-free. The rest directly follows.
■
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Lemma 3 Suppose the function c(V1, V2, W) has tipping point s for V1 and V2.
Then

(i) The value 0 for WX,Y can only be reached from WX,Y(t) with 0 < WX,Y(t) < 1
if jX tð Þ � YðtÞj[ s

(ii) The value 1 for WX,Y can only be reached from WX,Y(t) with 0 < WX,Y(t) < 1
if jX tð Þ � YðtÞj\s.

Proof

(i) The proof is by contraposition. Suppose 0 < WX,Y(t) < 1 holds and |X(t) − Y
(t)| > s does not hold. Then jX tð Þ � YðtÞj � s, and by Definition 1(a)(i) and
(ii) it follows that c(V1, V2, W) � W, and therefore from the difference
equation it follows that WX;YðtþDtÞ�WX;Y ðtÞ will not become lower and in
particular will not reach 0.

(ii) is similar using Definition 1(a)(ii) and (iii).

Theorem 1 (Relations between equilibrium values for states and for connec-
tion weights) Suppose the function c(V1, V2, W) has tipping point s for V1 and V2

and an attracting equilibrium state is given with values X for the states X and WX,Y

for the connection weight reification states WX,Y. Then the following hold:

(a) If jX� Yj\s, then the equilibrium value WX,Y is 1; in particular this holds
when X ¼ Y. Therefore, if WX,Y < 1, then jX� Yj � s, and, in particular,
X 6¼ Y.

(b) If jX� Yj[ s, then the equilibrium value WX,Y is 0. Therefore, if WX,Y > 0,
then jX� Yj � s:

(c) 0 < WX,Y < 1 implies jX� Yj ¼ s:

Proof

(a) Suppose two states are given with equilibrium values X and Y with dis-
tance less than s: jX� Yj\s. Given this, from the equilibrium equation
c(X, Y, WX,Y) = WX,Y, by Definition 1(ii) it follows that 0 < WX,Y < 1 cannot
be true, and therefore WX,Y = 0 or WX,Y = 1. By Lemma 3(i) and the equi-
librium being attracting it follows that WX,Y = 0 can be excluded, so WX,Y = 1.

The other statement, that if WX,Y < 1, then |X − Y| � s, follows by logical
contraposition.

(b) For |X − Y| > s this is similar, using Definition 1(iii). The last statement
follows from the contraposition of the previous one.

(c) This immediately follows from (a) and (b).
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Lemma 4 Let a normalised network with nonnegative connections be given with
combination functions that are monotonically increasing and scalar-free; then the
following hold:

(a) (i) If for some state Y at time t for all nodes X with xX,Y > 0 it holds X(t) � Y(t),
then Y(t) is decreasing at t: dY(t)/dt � 0.
(ii) If, moreover, the combination function is strictly increasing and a state
X exists with X(t) < Y(t) and xX,Y > 0, then Y(t) is strictly decreasing at t: dY(t)
(t)/dt < 0.

(b) (i) If for some state Y at time t for all nodes X with xX,Y > 0 it holds X(t) � Y(t),
then Y(t) is increasing at t: dY(t)/dt � 0.
(ii) If, moreover, the combination function is strictly increasing and a state
X exists with X(t) > Y(t) and xX,Y > 0, then Y(t) is strictly increasing at t: dY(t)
(t)/dt > 0.

Proof The proofs for (a) and (b) are similar. Therefore only the proof for (a) is
given.

(a) (i) This proof shows that lower values of the states with incoming connections
can never increase the state value of state Y. More specifically, assume for all
states Xi with (positive) outgoing connections to Y it holds Xi(t) � Y(t).
Therefore

cYðxX1;Y X1 tð Þ; . . .;xXk ;YXkðtÞÞ� cYðxX1;YY tð Þ; . . .;wXk ;YYðtÞÞ
¼ cYðxX1;Y . . .;xXk ;YÞY tð Þ
¼ Y tð Þ

and by Lemma 2(i) and (iii) this implies dY(t)/dt � 0.
(ii) This proof shows that a strictly lower values of one of the states with incoming
connections will actually decrease the state value of state Y. More specifically, from
being strictly monotonous it follows

cYðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ\cYðwX1;YY tð Þ; . . .;xXk ;YY tð ÞÞ ¼ YðtÞ

and by Lemma 2(iii) this implies dY(t)/dt < 0.

(b) This can be proven in a similar manner.

Theorem 2 (Equilibrium values WX,Y all 0 or 1) Suppose the network is weakly
symmetric and normalised, and the combination functions for the social contagion
for the base states are strictly monotonically increasing and scalar-free. Suppose
that the combination functions c(V1, V2, W) for the reification states for the con-
nection weights have a tipping point s. Then
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(a) In an attracting equilibrium state for any states X, Y from X 6¼ Y it follows
WX,Y = 0.

(b) In an attracting equilibrium state for any states X, Y with X = Y it holds
WX,Y = 0 or WX,Y = 1.

(c) If c(V1, V2, W) has a strict tipping point s, then in an equilibrium state for any X,
Y with X = Y it holds WX,Y = 1.

Proof

(a) The proof goes by reductio ad absurdum (reduce to absurdity); it shows that the
opposite of the claimed statement cannot be true by deriving a contradiction
from this opposite statement. So, suppose (oppositely) that in an attracting
equilibrium state, states X and Y exist such that X 6¼ Y and WX,Y, WY,X > 0.
Take a state X with this property with highest value X. Then for all states Z with
Z > X it holds WX,Z = WZ,X = 0. Therefore all states Xi with a nonzero (pos-
itive) outgoing connection weight to state X satisfy Xi � X. Moreover, one of
these Xi is state Y with X 6¼ Y, so, as X has the highest value, it holds
Y < X. Now apply Lemma 4(a)(ii) to this state X. It follows that dX(t)/dt < 0;
therefore X(t) cannot be not in equilibrium. This contradicts the premise that the
network is in equilibrium. Therefore no nodes X and Y exist such that X 6¼
Y and WX,Y, WY,X > 0. This implies that WX,Y = 0 and WxY,X = 0 for all nodes
X and Y with X 6¼ Y.

(b) Also this proof goes by reductio ad absurdum (reduce to absurdity); also here it
is shown that the opposite of the claimed statement cannot be true by deriving a
contradiction from this opposite statement. So, suppose (oppositely) X = Y and
0 < WX,Y(t) < 1. Then by Definition 1(a)(i) from X(t) = Y(t) it follows that c(X
(t), Y(t), WX,Y(t)) > WX,Y(t). From this by Lemma 2(ii) it follows that dWX,Y(t)/
dt > 0: WX,Y(t) is strictly increasing and is not in equilibrium. This contradicts
the premise that the network is in equilibrium. Therefore in the equilibrium
state when X = Y it holds WX,Y = 0 or WX,Y = 1.

(c) From (b) it is already known that WX,Y = 0 or WX,Y = 1. The former option
WX,Y = 0 has to be excluded now. Also this goes by reductio ad absurdum
(reduce to absurdity); also here it is shown that the option WX,Y = 0 cannot be
true by deriving a contradiction when this option is assumed. So, suppose
WX,Y = 0. If c(V1, V2, W) is strict, and |V1 – V2| < s then by Definition 1(b)(i) it
holds c(V1, V2, 0) > 0, so by Lemma 1(ii) it follows that when X = Y, the value
WX,Y = 0 cannot be an equilibrium value, which contradicts the premise that
the network is in equilibrium. Therefore in an equilibrium for any X, Y with
X = Y it holds WX,Y = 1.

Theorem 3 (Partition and equilibrium values of nodes) Suppose the network is
weakly symmetric and normalised, the combination functions for the social con-
tagion for the base states are strictly monotonically increasing and scalar-free, and
the combination functions for the reification states for the connection weights use
tipping point s and is strict and symmetric. Then in any attracting equilibrium state
a partition of the set of states into disjoint subsets C1, …, Cp occurs such that:
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(i) For each Ci the equilibrium values for all the states in Ci are equal: X = Y for
all X, Y 2 Ci.

(ii) Every Ci forms a fully connected network with weights 1:WX,Y = 1 for all X,
Y 2 Ci.

(iii) Every two nodes in different Ci have connection weight 0: when i 6¼ j, then
X 2 Ci and Y 2 Cj implies WX,Y = 0.

(iv) Any two distinct equilibrium values of states X 6¼ Y have distance � s.
Therefore there are at most p � 1 + 1/s communities Ci and equilibrium
values X.

Proof Suppose in the equilibrium there are p distinct state values V1, …, Vp; then
define the sets

Ci ¼ XjX ¼ Vif g

It can easily be verified in a straightforward manner that these sets fulfill what is
claimed:

(i) By definition all state values in one Ci are equal.
(ii) From Theorem 2(c) it follows that all states with equal values have con-

nections 1, therefore any Ci is fully connected.
(iii) This follows from Theorem 2(a).
(iv) Suppose for some X, Y it holds | X − Y | < s. Then by Definition 1(i) it

follows c(V1, V2, 0) > 0. Therefore 0 cannot be the equilibrium value WX,Y;
from Theorem 2(a) it follows that X = Y, and therefore X and Y are in one Ci.
This implies that the state values in different Ci have distance � s.

■

Theorem 6 (Strongly connected components characterisation) Suppose the
network is weakly symmetric, the combination functions for social contagion
between the base nodes are strictly monotonically increasing, normalised and
scalar-free, and the homophily combination functions for the connections weight
reification states use tipping point s and are strict and symmetric. Suppose at some
time point t the following hold:

(i) Each strongly connected component C is fully connected and all states in
C have a common state value.

(ii) All connections between states from different strongly connected components
have weight 0 and the equilibrium values of these states have distance > s.

Then the network is in an equilibrium state.

Proof First in (a) it is proven that the state values are stationary; next, in b) it is
proven that the connection weights are stationary. Having both stationary, the
network is in equilibrium.
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(a) Consider within any component C any state Y which has only nonzero
incoming connections from states X1, …, Xk. Due to (ii) these necessarily
belong to the same component C. As within C the state values are equal to one
value V and each connection has weight 1 the following holds

aggimpactYðtÞ ¼ cYðX1ðtÞ; . . .;XkðtÞÞ
¼ cYðV ; . . .;VÞ
¼ V cY ð1; . . .; 1Þ
¼ V

¼ YðtÞ

and therefore by Lemma 2(i) it holds dY(t)/dt = 0, so Y(t) is stationary.

(b) Next, it is proven that the connection weights are stationary. Consider the
connection weight reification stateWX,Y for the connection from states X to Y in
the same component C. Suppose as a perturbation from 1 it holds WX,Y(t) < 1.
Given that |X(t) − Y(t)| < s, from Definition 1(i) it follows that c(X(t), Y(t), WX,

Y(t)) > WX,Y(t), and therefore dWX,Y(t)/dt > 0, so it would move upward to 1.
Therefore WX,Y it is stationary. A similar argument for states X and Y in dif-
ferent components shows that WX,Y would move downward to 0, and therefore
is stationary.

As both the states and the connection weights have been proven stationary, it has
been found that the network is in equilibrium.

■

15.9 Analysis of Emerging Behaviour for Classes
of Hebbian Learning Functions

This section presents a number of proofs that were left out from Chap. 14.

Proposition 1 (functional relation for W) Suppose that c(V1, V2, W) is a Hebbian
learning function with persistence parameter l.

(a) Suppose l < 1. Then the following hold:

(i) The function W ! c(V1, V2, W) − W on [0, 1] is strictly monotonically
decreasing

(ii) There is a unique function fl : 0; 1½ �x 0; 1½ � ! 0; 1½ � such for any V1, V2 it
holds
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cðV1;V2; fl V1;V2ð ÞÞ ¼ fl V1;V2ð Þ

This function fl is a monotonically increasing function of V1, V2, and is implicitly
defined by the above equation. Its maximal value is fl 1; 1ð Þ and minimum
fl 0; 0ð Þ ¼ 0.
(b) Suppose l = 1. Then there is a unique function f1 : 0; 1ð �x 0; 1ð � ! 0; 1½ �, such

for any V1, V2 it holds

c V1;V2; f1 V1;V2ð Þð Þ ¼ f1 V1;V2ð Þ

This function f1 is a constant function of V1, V2 with f1(V1, V2) = 1 for all V1,
V2 > 0 and is implicitly defined on (0, 1] x (0, 1] by the above equation.
If one of V1, V2 is 0, then any value of W satisfies the equation c(V1, V2,
W) = W, so no unique function value for f1(V1, V2) can be defined then.

Proof

(a) Consider l < 1. Then by Definition 2(b) the function W ! c V1;V2;Wð Þ � lW

is monotonically decreasing in W, and since l� 1\0 the function W ! ðl� 1ÞW
is strictly monotonically decreasing in W. Therefore the sum of them is also strictly
monotonically decreasing in W. Now this sum is

c V1;V2;Wð Þ � lW þðl� 1ÞW ¼ c V1;V2;Wð Þ �W

So, the function W ! c(V1, V2, W) − W is strictly monotonically decreasing in W;
by Definition 2(d) it holds c(V1, V2, 1) − 1 = l − 1 < 0, and by Definition 2(c) c
(V1, V2, 0) − 0 � 0. Therefore c(V1, V2, W) − W has exactly 1 point with c(V1, V2,
W) − W = 0; so for each V1, V2 the equation c(V1, V2, W) – W = 0 has exactly one
solution W, indicated by fl(V1, V2); this provides a unique function fl: [0, 1] x
[0, 1] ! [0, 1] implicitly defined by c(V1, V2, fl(V1, V2)) = fl(V1, V2). To prove that
fl is monotonically increasing, the following. Suppose V1 �V 0

1 and V2 �V 0
2, then

by monotonicity of V1, V2 ! c(V1, V2, W) in Definition 2(a) it holds

0 ¼ cðV1;V2; fl V1;V2ð ÞÞ � fl V1;V2ð Þ� cðV 0
1;V

0
2; fl V1;V2ð ÞÞ � fl V1;V2ð Þ

So

cðV 0
1;V

0
2; fl V1;V2ð ÞÞ � fl V1;V2ð Þ� 0

whereas

cðV 0
1;V

0
2; fl V 0

1;V
0
2

� �Þ � fl V 0
1;V

0
2

� � ¼ 0
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and therefore

cðV 0
1;V

0
2; fl V 0

1;V
0
2

� �Þ � fl V 0
1;V

0
2

� �� cðV 0
1;V

0
2; fl V1;V2ð ÞÞ � fl V1;V2ð Þ

By strict decreasing monotonicity of W ! c V1;V2;Wð Þ �W it follows that
fl V1;V2ð Þ[ fl V 0

1;V
0
2

� �
cannot hold, so fl V1;V2ð Þ� fl V 0

1;V
0
2

� �
. This proves that fl

is monotonically increasing. From this monotonicity of fl(..) it follows that fl(1, 1)
is the maximal value and fl(0, 0) the minimal value. Now by Definition 1(d) it
follows that fl(0, 0) = c(0, 0, fl(0, 0)) = l fl(0, 0) so fl(0, 0) = l fl(0, 0), and as
l < 1 this implies fl(0, 0) = 0.

(b) Consider l = 1. When both V1, V2 are > 0, and c(V1, V2, W) = W, then W = 1,

by Definition 1(d). This defines a function f1(V1, V2) of V1, V2 2 (0, 1], this time
f1(V1, V2) = 1 for all V1, V2 > 0. When one of V1, V2 is 0 and l = 1, then also by
Definition 1(d) always c(V1, V2, W) = W, so in this case multiple solutions forW are
possible: everyW is a solution, and therefore no unique function value for f1(V1, V2)
can be defined then.

■

Proposition 2 (functional relation for W based on variable separation) Assume
the Hebbian function c(V1, V2, W) with persistence parameter l enables variable
separation by the two functions cs(V1, V2) monotonically increasing and cc
(W) monotonically decreasing:

c V1;V2;Wð Þ ¼ cs V1;V2ð Þ cc Wð Þþ lW

Let hl(W) be the function defined for W 2 [0, 1) by

hl Wð Þ ¼ 1� lð ÞW
cc Wð Þ

Then the following hold.

(a) When l < 1 the function hl(W) is strictly monotonically increasing, and has a
strictly monotonically increasing inverse gl on the range hl([0, 1)) of hl with
W = gl(hl(W)) for all W2 [0, 1).

(b) When l < 1 and c(V1, V2, W) = W, then gl(cs(V1, V2)) < 1 and W < 1, and it
holds

hl Wð Þ ¼ cs V1;V2ð Þ
W ¼ gl cs V1;V2ð Þð Þ

So, in this case the function fl from Theorem 1 is the function composition gl o
cs of cs followed by gl; it holds:
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fl V1;V2ð Þ ¼ gl cs V1;V2ð Þð Þ

(c) For l = 1 it holds c(V1, V2, W) = W if and only if V1 = 0 or V2 = 0 or W = 1.
(d) For l < 1 the maximal value W with c(V1, V2, W) = W is gl(cs(1, 1)), and the

minimal equilibrium value W is 0. For l = 1 the maximal value W is 1 (always
when V1, V2 > 0 holds) and the minimal value is 0 (occurs when one of V1, V2

is 0).

Proof

(a) From cc(W) monotonically decreasing in W it follows that W ! 1/cc(W) is
monotonically increasing on [0, 1). Moreover, the function W is strictly
monotonically increasing; therefore for l < 1 the function hl(W) = (1 − l)
W/cc(W) is strictly monotonically increasing. Therefore hl is injective and has
an inverse function gl on the range of hl: a function gl with gl(hl(W)) = W for
all W 2 [0, 1).

(b) Suppose l < 1 and c(V1, V2, W) = W, then from Definition 2(d) it follows that
W = 1 is excluded, since from both c(V1, V2, W) = W and c(V1, V2, W) = lW it
would follow l = 1, which is not the case. Therefore W < 1, and the following
hold

cs V1;V2ð Þcc Wð Þþ lW ¼ W

cs V1;V2ð Þcc Wð Þ ¼ ð1� lÞW
cs V1;V2ð Þ ¼ ð1� lÞW=cc Wð Þ ¼ hl Wð Þ

So, hl(W) = cs(V1, V2). Applying the inverse gl yields W = gl(hl(W)) = gl(cs
(V1, V2)).
Therefore in this case for the function fl from Theorem 1 it holds:

fl V1;V2ð Þ ¼ W ¼ gl cs V1;V2ð Þð Þ\1

so fl is the function composition gl o cs of cs(..) followed by gl.
(c) For l = 1 the equation c(V1, V2, W) = W becomes cs(V1, V2) cc(W) = 0 and this

is equivalent to cs(V1, V2) = 0 or cc(W) = 0. From the definition of separation
of variables it follows that this is equivalent to V1 = 0 or V2 = 0 or W = 1.

(d) Suppose l < 1 and c(V1, V2, W) = W, then because cs(..) and gl are both
monotonically increasing, the maximal W is gl(cs(1, 1)), and the minimal W is
gl(cs(0, 0)). For l = 1 these values are 1 always when V1, V2 > 0, and any
value in [0, 1] (including 0) when one of V1, V2 is 0. ■
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