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Chapter 13
Relating a Reified Adaptive Network’s
Structure to Its Emerging Behaviour
for Bonding by Homophily

Abstract In this chapter it is analysed how emerging behaviour in an adaptive
social network for bonding can be related to characteristics of the adaptive net-
work’s structure, which includes the structure of the adaptation principles incor-
porated. In particular, this is addressed for adaptive social networks for bonding
based on homophily and for community formation in such adaptive social net-
works. To this end, relevant characteristics of the reified network structure (in-
cluding the adaptation principle) have been identified, such as a tipping point for
similarity as used for homophily. Applying network reification, the adaptive net-
work characteristics are represented by reification states in the extended network,
and adaptation principles are described by characteristics of these reification states,
in particular their connectivity characteristics (their connections) and their aggre-
gation characteristics (in terms of their combination functions). According to this
network reification approach, as one of the results it has been found how the
emergence of communities strongly depends on the value of this similarity tipping
point. Moreover, it is shown that some characteristics entail that the connection
weights all converge to 0 (for persons in different communities) or 1 (for persons
within one community).

13.1 Introduction

In this chapter, the emerging behaviour of the coevolution of social contagion
(Levy and Nail 1993) and bonding by homophily (McPherson et al. 2001; Pearson
et al. 2006) is analysed. In particular, it is analysed how emerging communities
based on the coevolution of social contagion and bonding by homophily can be
related to characteristics of the adaptive network’s structure. For this adaptive case,
this network structure includes the structure of the homophily adaptation principle
that is incorporated. The homophily adaptation principle expresses how ‘being
alike’ strengthens the connection between two persons (McPherson et al. 2001;
Pearson et al. 2006). Social contagion implies that the stronger two persons are
connected, the more they will become alike (Levy and Nail 1993). Thus a reciprocal
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causal relation between the two processes occurs. It is known from simulations
(Axelrod 1997; Holme, and Newman 2006; Sharpanskykh and Treur 2014;
Vazquez 2013; Vazquez et al. 2007) that the emerging behaviour of adaptive
network models combining these two processes as a form of coevolution often
shows community formation. In the resulting network structure within a community
persons have high mutual connection weights and a high extent of ‘being alike’,
and persons from different communities have low mutual connection weights and a
low extent of ‘being alike’.

Relevant characteristics of the network and the homophily adaptation principle
have been identified, such as a tipping point for homophily. As one of the results, it
has been found how the emergence of communities strongly depends on the value
of this tipping point. Moreover, it is shown that some characteristics of the reified
network structure entail that the connection weights all converge to 0 (for states in
different emerging communities) or 1 (for states within one emerging community).

In general, it is a challenging issue for dynamic models to predict what patterns
of behaviour will emerge, and how their emergence depends on the structure of the
model. The latter includes chosen values used for characteristics of the model’s
structure (and settings). This also applies to network models, where behaviour
depends in some way on the network structure, defined by network characteristics
such as connectivity (connections and their weights); e.g., Turnbull et al. (2018). In
this context, the issue is how emerging network behaviour relates to network
structure; for example, see (Treur 2018a). It can be an even more challenging issue
when coevolution that occurs in adaptive networks is considered, in which case by a
mutual causal interaction both the states and the network characteristics change
over time. In this case the connections in the network change according to certain
adaptation principles which depend on certain adaptation characteristics.

In the current chapter, the emergence of communities based on the coevolution
of social contagion (Levy and Nail 1993) and bonding by homophily (McPherson
et al. 2001; Pearson et al. 2006) is analysed in some depth. By mathematical
analysis, it is found out how emerging communities relate to the characteristics of
the network and of the specific homophily adaptation principle used in combination
with a social contagion principle.

The issue was addressed using the Network-Oriented Modeling approach based
on temporal-causal networks (Treur 2016, 2019) as a vehicle. For temporal-causal
networks, characteristics of the network structure are Connectivity, Aggregation,
and Timing, represented by connection weights, combination functions, and speed
factors, respectively. For the type of adaptive networks considered, the connection
weights are dynamic based on the homophily principle. When network reification,
see Chap. 3 or (Treur 2018d) is applied, these adaptation principles are represented
as an extended part of the network using certain reification states in the network
extension. These reification states have their own (reified) network structure char-
acteristics defining their Connectivity, Aggregation, and Timing by their connec-
tion weights, speed factors and combination functions. So, the challenge then is
how the emergent behaviour of the reified adaptive network depends on these
characteristics and, in particular, on Aggregation characteristics of reification states
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in terms of properties of the combination functions used by them for bonding by
homophily.

In Fig. 13.1 the basic relation between structure and dynamics of a reified network
model is indicated by the horizontal arrow in the lower part representing the base level.
For a reified network these also apply to the reification states. The network structure
characteristics (addressed in Sect. 13.5) cover properties of the adaptation principle
based on bonding by homophily represented by the reification states at the reification
level (in Sect. 13.5.1) and properties of the social contagion in the base network (in
Sect. 13.5.2). Properties of the behaviour are discussed in Sect. 13.4 first by a number
of simulation experiments, and they are formalised and related to the network struc-
ture properties (the horizontal arrow in the upper part of Fig. 13.1) in Sect. 13.6.

In the research reported here characteristics of the combination function
describing the aggregation used by the homophily adaptation principle have been
identified that play an important role in community formation, among which the
tipping point for the similarity between two persons. This is the point where ‘being
alike’ turns into ‘not being alike’, or conversely. In this chapter, results are discussed
that have been proven mathematically for this relationship between network struc-
ture and network behavior for the coevolution process. In particular, for emerging
communities what the connections become between persons from one community or
persons from different communities, and how different persons from one community
or from different communities become. Note that these results have not been proven
for one specific model or combination function, but for whole classes of models with
a variety of combination functions that fulfill certain properties.

In this chapter, in Sect. 13.2 the Network-Oriented Modeling approach used is
briefly outlined. In Sect. 13.3 adaptive networks based on homophily are described
and a number of functions that can be used to model them. Section 13.4 shows
some example simulations. In Sect. 13.5 relevant reified network structure char-
acteristics are defined that are used in Sect. 13.6 to prove results on the relation
between network structure and behaviour. In Sect. 13.7 it is shown how the
obtained results relate to the strongly connected components of a network. In
Sect. 13.8 an overview is presented of various simulation experiments concerning
bonding by homophily, most of which in relation to empirical data. Finally,
Sect. 13.9 is a discussion.

Conceptual Representation: 
Network Structure

Numerical Representation: 
Network Dynamics

Properties of the
Network Structure

Properties of Emerging 
Network Behaviour

Fig. 13.1 Bottom layer: the conceptual representation of a reified network model defines the
numerical representation. Top layer: properties of reified network structure entail properties of
emerging reified network behaviour
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13.2 Network-Oriented Modeling by Temporal-Causal
Networks

In order to undertake any mathematical analysis of networks, in the first place, a
solid definition of the concept of network is needed, based on well-defined
semantics. In the current chapter, the interpretation of connections based on
causality and dynamics forms a basis of the structure and semantics of the con-
sidered networks. It is a deterministic dynamic modeling approach, for example in
the line of (Ashby 1960), in contrast to, stochastic modeling approaches as, for
example, used in Axelrod (1997). It can be positioned as a branch in the causal
modelling area which has a long tradition in AI; e.g., see Kuipers and Kassirer
(1983), Kuipers (1984), Pearl (2000). It distinguishes itself by a dynamic per-
spective on causal relations, according to which causal relations exert causal effects
over time, and these causal relations themselves can also change over time.

More specifically, the nodes in a network are interpreted here as states (or state
variables) that vary over time, and the connections are interpreted as causal relations
that define how each state can affect other states over time. This type of network has
been called a temporal-causal network (Treur 2016b); note that the word temporal
here refers to the causality, not to the network. Temporal-causal networks that
themselves change over time as well are called adaptive temporal-causal networks;
e.g., Gross and Sayama (2009). So, in cases of adaptive temporal-causal networks,
in addition to the node states also the connections are assumed to change over time
and are therefore treated like states as well.

A conceptual representation of a temporal-causal network model by a labeled
graph provides a fundamental basis. Such a conceptual representation includes
representing in a declarative manner states (also called nodes) and connections
between them that represent (causal) impacts of states on each other. This part of a
conceptual representation is often depicted in a conceptual picture by a graph with
nodes and directed connections. However, a complete conceptual representation of a
temporal-causal network model also includes a number of labels for such a graph.
A notion of strength of a connection is used as a label for connections, some way to
aggregate multiple causal impacts on a state is used, and a notion of speed of change
of a state is used for timing of the processes. Note that states have one value; they can
relate one by one to states of persons or agents, for example, the strength of their
opinion states. It is also possible to model each person by more than one state, for
example, an opinion and an emotion state per person. In such a case a person does
not relate to a single state but to a subnetwork consisting of multiple states.

The three described notions for network structure characteristics Connectivity,
Aggregation, and Timing, are called connection weight xX,Y, combination function
cY(..), and speed factor ηY. They make the graph of states and connections a labeled
graph (e.g., see Fig. 13.2), and form the defining structure of a temporal-causal
network model in the form of a conceptual representation; for a summary, see also
Table 13.1, top half: rows 1–5. Note that although in general that is not always
required, for the current chapter all connection weights are assumed nonnegative:
xX,Y 2 [0, 1] for all X and Y.
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The interpretation of a network based on causality and dynamics can be
expressed in a formal-numerical way, thus associating semantics to any conceptual
temporal-causal network representation in a detailed numerical-mathematically
defined manner. For a summary, see Table 13.1, bottom half: rows 6 to 10. This
shows how a conceptual representation based on states and connections enriched
with labels for connection weights, combination functions, and speed factors, can
be transformed into a numerical representation (Treur 2016b, Chap. 2). A more
detailed explanation of the difference equation format, taken from Treur (2016b,
Chap. 2, pp. 60–61), is as follows; see also Fig. 13.3. The aggregated impact value
aggimpactY(t) at time t pushes the value of Y up or down, depending on how it
compares to the current value of Y. So, aggimpactY(t) is compared to the current
value Y(t) of Y at t by taking the difference between them (also see Fig. 13.3):
aggimpactY(t) − Y(t). If this difference is positive, which means that aggimpactY(t)
at time t is higher than the current value of Y at t, in the time step from t to
t + Dt (for some small Dt) the value Y(t) will increase in the direction of the higher
value aggimpactY(t). This increase is done proportional to the difference, with
proportion factor ηY Dt: the increase is ηY [aggimpactY(t) – Y(t)] Dt; see Fig. 13.3.
By this format, the parameter ηY indeed acts as a speed factor by which it can be
specified how fast state Y should change upon causal impact.

There are many different approaches possible to address the issue of combining
multiple causal impacts. To provide sufficient flexibility, the Network-Oriented
Modelling approach based on temporal-causal networks incorporates for each state
a way to specify how multiple causal impacts on this state are aggregated by a
combination function. For this aggregation, a library with a number of standard
combination functions are available as options (currently 35), but also own-defined
functions can be added. The difference equations in Fig. 13.3 and in the last row in
Table 13.1 constitute the overall numerical representation of the temporal-causal
network model and can be used for simulation and mathematical analysis; it can
also be written in differential equation format:

Fig. 13.2 Conceptual representation of an example temporal-causal network model: adopted from
Treur (2016b)
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Y tþDtð Þ ¼ YðtÞþ gY cY xX1;YX1 tð Þ; . . .;xXk ;YXk tð Þ� �� Y tð Þ� �
Dt ð13:1Þ

dYðtÞ=dt ¼ gY cY xX1;YX1ðtÞ; . . .;xXk ;YXkðtÞ
� �� Y tð Þ� �

Table 13.1 Conceptual and numerical representations of a temporal-causal network model

Concept Conceptual
representation

Explanation

States and connections X, Y, X!Y Describes the nodes and links of a network
structure (e.g., in graphical or matrix format)

Connection weight xX,Y The connection weight xX,Y 2 [−1, 1] represents the
strength of the causal impact of state X on state
Y through connection X!Y

Aggregating multiple
impacts on a state

cY(..) For each state Y (a reference to) a combination
function cY(..) is chosen to combine the causal
impacts of other states on state Y

Timing of the effect of
causal impact

ηY For each state Y a speed factor ηY � 0 is used to
represent how fast a state is changing upon causal
impact

Concept Numerical representation Explanation

State values
over time t

Y(t) At each time point
t each state Y in the
model has a real
number value,
usually in [0, 1]

Single causal
impact

impactX,Y(t)
¼ xX,Y X(t)

At t state X with a
connection to state
Y has an impact on
Y, using
connection weight
xX,Y

Aggregating
multiple
causal
impacts

aggimpactY ðtÞ
¼ cY ðimpactX1 ;Y ðtÞ; . . .; impactXk ;Y ðtÞÞ
¼ cY ðxX1 ;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ

The aggregated
causal impact of
multiple states Xi

on Y at t, is
determind using
combination
function cY(..)

Timing of
the causal
effect

YðtþDtÞ ¼ YðtÞþ gY aggimpactY ðtÞ � YðtÞ½ �Dt
¼ YðtÞþ gY ½cY ðxX1 ;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ � YðtÞ�Dt

The causal impact
on Y is exerted
over time
gradually, using
speed factor ηY;
here the Xi are all
states with
outgoing
connections to
state Y
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For reified adaptive networks, connection weights are dynamic and therefore
handled by reification states for them, with their own connectivity and aggregation
characteristics in terms of connections and combination functions. This will be
shown in more detail in Sects. 13.3–13.5.

Often used examples of combination functions are the identity function id(.) for
states with impact from only one other state, the scaled sum function ssumk(.) with
scaling factor k, and the advanced logistic sum combination function alogisticr,s(..)
with steepness r and threshold s:

id Vð Þ ¼ V

ssumk V1; . . .;Vkð Þ ¼ V1 þ � � � þVk

k

alogisticr;s V1; . . .;Vkð Þ ¼ 1
1þ e�r V1 þ ��� þVk�sð Þ �

1
1þ ersÞ

� �
1þ e�rsð Þ

ð13:2Þ

Note that for k = 1, the scaled sum function is just the sum function sum(..), and
this sum function can also be used as the identity function in case of one incoming
connection. In addition to the above functions, a Euclidean combination function is
defined as

c V1; . . .;Vkð Þ ¼ eucln;k V1; . . .;Vkð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vn
1 þ � � � þVn

k

k
n

r
ð13:3Þ

where n is the order (which can be any positive natural number but also any
positive real number), and k is a scaling factor. This can be used when all con-
nection weights are non-negative, but in the specific case that n is an odd natural
number, also negative connection weights can be allowed. A Euclidean combina-
tion function is called normalised if the scaling factor k is chosen in such a way that
cðxX1;Y ; . . .;xXk ;YÞ ¼ 1; this is achieved for k ¼ xn

X1;Y þ � � � þxn
Xk ;Y . Note that for

n = 1 (first order) the scaled sum function is obtained:

Fig. 13.3 How aggimpactY(t) makes a difference for state Y(t) in the time step from t to t + Dt
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eucl1;kðV1; . . .;VkÞ ¼ ssumkðV1; . . .;VkÞ ð13:4Þ

Then k ¼ xX1;Y þ � � � þxXk ;Y makes it normalised. For n = 2 it is the second-order
Euclidean combination function eucl2,k(..) defined by:

eucl2;kðV1; . . .;VkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
1 þ � � � þV2

k

k

r
ð13:5Þ

Such a second-order Euclidean combination function is also often applied in
aggregating the error value in optimisation and in parameter tuning using the
root-mean-square deviation (RMSD), based on the Sum of Squared Residuals
(SSR).

13.3 Reified Adaptive Networks for Bonding Based
on Homophily

The homophily principle addresses bonding between persons. It describes how
connections between two persons are strengthened or weakened depending on the
extent of similarity between them: more ‘being alike’ will make the persons more
‘like each other’ (McPherson et al. 2001; Pearson et al. 2006). This is modelled by
how the states X(t) and Y(t) the persons X and Y have at time t compare to each
other, for example, indicating whether at time t they enjoy being physically active
(high value) or not (low value), or indicating the extent to which they agree with a
certain opinion. According to the homophily principle the weight xX,Y of the
connection from X to Y is changing over time dynamically, depending on how the
state levels X(t) and Y(t) differ.

13.3.1 Modeling the Bonding by Homophily Adaptation
Principle by Reification

As the connection weight xX,Y is dynamic, using network reification it is handled as
a reification state WX,Y with its own combination function cWX,Y(V1, V2, W), called
in this chapter a homophily combination function. Here V1 and V2 refer to the values
for X(t) and Y(t) of the states X and Y involved and W to the value WX,Y(t) of the
reified connection weight WX,Y. See Fig. 13.4, where the homophily functions
cWX1 ;Y

ðV1;V2;WÞ and cWX2 ;Y
ðV1;V2;WÞ are indicated as labels (like the labels in

Fig. 13.2) for the reification states WX1;Y and WX2;Y . Similarly labels for adaptation
speed can be added, and labels for the incoming connections for the reification
states.
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Then the standard difference and differential equation format for temporal-causal
networks as shown in Sect. 13.2 is applied:

WX;YðtþDtÞ ¼ WX;YðtÞþ gWX;Y
½cWX;Y ðXðtÞ; YðtÞ;WX;YðtÞÞ �WX;YðtÞ�Dt

dWX;Y=dt ¼ gWX;Y
½cWX;Y ðX; Y ;WX;YÞ �WX;Y �

ð13:6Þ

Here gWX;Y
is the speed factor of connection weight reification state WX,Y. It

determines how fast adaptation takes place. Note that

• WX,Y(t) increases at t if and only if cWX;Y (X(t), Y(t), WX,Y(t)) > WX,Y(t)
• WX,Y(t) decreases if and only if cWX;Y (X(t), Y(t), WX,Y(t)) < WX,Y(t)
• WX,Y(t) is stationary if and only if cWX;Y (X(t), Y(t), WX,Y(t)) = WX,Y(t)

Specific adaptation principles formalising bonding by homophily can be obtained by
picking specific functions for the homophily combination function cWX;Y ðV1;V2;WÞ
for a given application domain, or even different combination functions
cWX;Y ðV1;V2;WÞ for different persons within a given domain. There are many options
for such choices; see, for example, Table 13.2 and Fig. 13.5. Therefore itmay bemore
useful to define classes of such homophily combination functions characterised by
certain properties of them. Then as will be shown in Sect. 13.6, results can be proven
for such a class instead of for each homophily combination function separately.
Formal definitions of such properties of the function cWX;Y ðV1;V2;WÞwill be given in
Sect. 13.5, but here some examples of homophily combination functions are shown.

13.3.2 Various Examples of Homophily Combination
Functions

A very simple example of a homophily combination function cWX;Y ðV1;V2;WÞ is a
linear function in D ¼ V1 � V2j j defined as follows:

WX2,Y

WX1,Y

cWX2,Y(V1, V2, W)

cWX1,Y(V1, V2, W)

Fig. 13.4 Homophily combination functions as labels in the reified network
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Table 13.2 Different options for combination functions cWxX;Y
ðV1;V2;WÞ for the homophily

principle based on a tipping point s; for the graphs depending on D ¼ V1 � V2j j, see Fig. 13.5

Function type Function name Numerical representation Parameters in
Fig. 13.5

Simple Linear slhomos,a(V1, V2, W) W + a W (1 − W) (s- D) a = 6

Simple
quadratic 1

sq1homos,a(V1, V2, W) W + a W (1 − W) (s2 –
D2)

a = 6

Simple
quadratic 2

sq2homos,a,d(V1, V2, W) W + a
((s + d)2 − (D + d)2)

d = 0.15, a = 10

Cubic cubehomos,a(V1, V2, W) W + a (1 − W) (1 − D/s)3 a = 0.9

Logistic 1 log1homos,r(V1, V2, W) W
W þð1�WÞeðD�sÞ r = 10

Logistic 2 slog2homos,r,a(V1, V2, W) W þ a Wð1�WÞ
1þe�ðD�sÞ

r = 4, a = 5

Sine-based sinhomos,a(V1, V2, W) W − a (1 − W) sin(p
(D − s)/2)

a = 2

Tangent-based tanhomos,a(V1, V2, W) W − a (1 − W) tan(p
(D − s)/2)

a = 2

Exponential exphomos,r(V1, V2, W) 1 − (1 − W) er(D−s) r = 10

ho
m

op
hi

ly
 c

om
bi

na
tio

n 
fu

nc
tio

n 
va

lu
e

difference 
|V1 – V2|

Fig. 13.5 Graphs for different options for homophily combination functions cWxX;Y ðV1;V2;WÞ
with tipping point s = 0.2 and W = 0.7 with difference D ¼ V1 � V2j j on the horizontal axis
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cWX;Y V1;V2;Wð Þ ¼ Wþ b s� Dð Þ ð13:7Þ

Here b is a modulation factor that still can be chosen, and s is a tipping point (or
threshold) parameter. This function may have the disadvantage that when W = 0 it
may be negative (when D > s) or when W = 1 it may be higher than 1 (when
D < s), so that it has to be cut off to avoid that the reified connection weight value
WX,Y goes outside the interval [0, 1]. This can also be remedied in a smooth manner
by choosing b as a function b(W) = aW(1 − W) ofW which can suppress the term s
− D when W comes closer to 0 or 1. This function makes that WX,Y will not cross
the boundaries 0 and 1:

cWX;Y V1;V2;Wð Þ ¼ Wþ aW 1�Wð Þ s� V1 � V2j jð Þ ð13:8Þ

Here a is a modulation or amplification parameter; the higher its value, the stronger
the effect (either positive or negative) of homophily on the connection. Using this
homophily combination function, the dynamic relations for WX,Y are:

dWX;Y=dt ¼ gWX;Y
aWX;Y 1�WX;Y

� �
s� X � Yj jð Þ

WX;Y tþDtð Þ ¼ WX;Y tð Þþ gWX;Y
aWX;Y tð Þ 1�WX;Y tð Þ� �

s� X tð Þ � Y tð Þj jð ÞDt
ð13:9Þ

As a variant of this homophily combination function cWX;Y V1;V2;Wð Þ that is
linear in D, the following function can be obtained as a quadratic function of
D ¼ V1 � V2j j:

cWX;Y V1;V2;Wð Þ ¼ W þ aW 1�Wð Þ s2 � V1 � V2ð Þ2
	 


ð13:10Þ

Using this combination function, the dynamic relations for the reification stateWX,Y

are:

dWX;Y=dt ¼ gWX;Y
aWX;Y 1�WX;Y

� �
s� X � Yð Þ2

	 


WX;Y tþDtð Þ ¼ WX;Y tð Þþ gWX;Y
aWX;Y tð Þ 1�WX;YðtÞ

� �
s� XðtÞ � YðtÞð Þ2

	 

Dt

ð13:11Þ

In Table 13.2 and Fig. 13.5 these linear and quadratic combination function and
a number of other examples of homophily combination functions are depicted, with
D ¼ V1 � V2j j on the horizontal axis and cWX;Y ðV1;V2;WÞ on the vertical axis for s
= 0.2 and W = 0.7. In Sect. 13.6 the results that have been proven are general in the
sense that they apply to all of such functions, not just one specific function. To this
end, in Sect. 13.5 relevant properties shared by these functions are defined. The
simple linear combination function slhomos,a(V1, V2, W) was used in Blankendaal
et al. (2016), and the simple quadratic combination function sqhoms,a(V1, V2, W) in
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van Beukel et al. (2017). A more advanced logistic combination function based on
log2homos,r,a(V1, V2, W) was explored in Boomgaard et al. (2018).

13.4 Example Simulations for the Coevolution of Social
Contagion and Bonding

In this section, a few example simulations for the coevolution of social contagion and
bonding based on homophily are described. It will be shown how communities
emerge and more specifically how their emergence depends on properties of the
chosen functions for homophily. These examples will be used in Sect. 13.6 to illus-
trate the results that have been proven. The examples concern a fully connected social
network of 10 states with speed factors ηY = 0.1 for states Y and initial valuesWX,Y(0)
for the reified connection weight from state X to state Y as shown in Table 13.3.

As combination functions for social contagion for the states, the normalised
scaled sum functions were used, and as combination functions for the connections
for each WX,Y the simple linear homophily function slhomos,a(V1, V2, W) with
tipping point s = 0.1, and speed factor gWX;Y

¼ 0:4. The graphs in the left-hand side
of Figs. 13.6 and 13.7 show time on the horizontal axis and activation values of
states at the vertical axis until it ends up in an equilibrium state, i.e., all values
become constant. In the same figures on the right-hand side matrices with the final
connection weights are shown.

13.4.1 Simulations for Varying Homophily Modulation
Factor

The homophily modulation factor a is varying from 1 to 10 in Fig. 13.6, and from
11 to 15 in Fig. 13.7. More specifically, at the left-hand side of Figs. 13.6 and 13.7
graphs of simulations of the state values are shown up to time point 100

Table 13.3 Connection matrix for the initial connection weights and state speed factor for the
example network

Connections X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0.1 0.2 0.1 0.2 0.15 0.1 0.25 0.25 0.1
X2 0.25 0.25 0.2 0.1 0.2 0.15 0.25 0.25 0.25
X3 0.1 0.25 0.1 0.2 0.15 0.1 0.25 0.1 0.15
X4 0.25 0.15 0.25 0.15 0.8 0.25 0.15 0.25 0.25
X5 0.25 0.2 0.1 0.2 0.25 0.2 0.1 0.2 0.15
X6 0.25 0.1 0.25 0.25 0.25 0.1 0.25 0.25 0.1
X7 0.2 0.1 0.2 0.15 0.2 0.2 0.2 0.15 0.25
X8 0.1 0.25 0.1 0.25 0.05 0.15 0.25 0.1 0.25
X9 0.25 0.15 0.25 0.15 0.2 0.1 0.2 0.15 0.15

X10 0.2 0.25 0.2 0.2 0.1 0.2 0.15 0.8 0.2
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(with Dt = 0.05); at the right-hand side the connection matrices are shown at time
point 500 (with Dt = 0.25), with an accuracy of 3 digits (0 means < 0.001, 1
means > 0.999). It turns out that all connection weights converge to 0 or 1.

Note that the modulation factor a models the strength of the effect of homophily.
A higher a makes that connections change earlier in the coevolution process (com-
pared to the pace of the social contagion) and due to that more clusters occur, as can
be seen in Fig. 13.6. For a = 1 all states end up in one cluster (all become connected
by weights 1), for a = 5 in two clusters (two subgroups of states {X1, X2, X8, X9, X10}
and {X3, X4, X5, X6, X7} get connections with weight 1 and form clusters in this way;
between these clusters the weights are 0), and for a = 10 in three clusters: {X1, X8},
{X2, X9, X10} and {X3, X4, X5, X6, X7}). Moreover, it can be observed that no clusters
emerge with state values at a distance less than tipping point s ¼ 0:1.

Fig. 13.6 Simulations of the example network for homophily modulation factor a = 1, 5 and 10
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13.4.2 Exploring the Birth of an Extra Cluster

Still increasing the modulation factor a, Fig. 13.7 zooms in at the birth of a fourth
cluster. For a = 11 it can be seen that for the cluster {X3, X4, X5, X6, X7} the states
X5 and X6 join X3, X4, and X7 in a very late stage, and (compared to the case a = 10
in Fig. 13.6) even a slight hesitation for that may be observed from time point 20 to
40 while the values of X5 and X6 (around 0.7) have distance of about the tipping
point s = 0.1 from the values (around 0.8) for X3, X4, and X7. This hesitation can be
confirmed, as increasing the modulation factor a by just 0.4 to 11.4 shows how a
fourth separate cluster emerges for {X5, X6}. This fourth cluster converges to state

Fig. 13.7 Simulations of the example network for homophily modulation factor a = 11, 11.4 and
15
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value 0.683 whereas the other cluster {X3, X4, X7} converges to state value 0.796,
which is a difference of 0.113: just above the tipping point s = 0.1. This may
suggest that the model keeps the clusters at a distance of at least s; this is one of the
issues that will be analysed further in Sect. 13.6. For higher values of a, such as
a = 15 no more than these four clusters emerge.

13.5 Relevant Aggregation Characteristics for Bonding
by Homophily and for Social Contagion

This section addresses definitions for the characteristics for the network structure
and in particular also for the homophily adaptation principle that have been iden-
tified as relevant for the adaptive network’s behavior (following the upward arrow
in the left side of Fig. 13.1).

13.5.1 Relevant Aggregation Characteristics for Bonding
by Homophily

As adaptation principles are specified by the network characteristics of their reifi-
cation, in particular the combination functions of the reification states for the
adaptive connection weights, the properties of the aggregation are described as
properties of such homophily combination functions. The following are considered
plausible assumptions for a homophily combination function c(V1, V2, W) for
reification state WX,Y for xX,Y; here D = |V1 − V2|:

• c(V1, V2, W) is a function: [0, 1] � [0, 1] � [0, 1] ! [0, 1]
• c(V1, V2, W) is a monotonically decreasing function of D
• For D close to 0 and W < 1 it holds c(V1, V2, W) > W (i.e., WxX;Y will increase)
• For D close to 1 and W > 0 it holds c(V1, V2, W) < W (i.e., WxX;Y will decrease)

Note that when the first condition is not fulfilled, usually the function is cut off at 1
(when its value would be above 1) or at 0 (when its value would be below 0); see
also in Fig. 13.5. Relatively simple functions c(V1, V2, W) that satisfy these
requirements are obtained when a tipping point s (a fixed number between 0 and 1)
is assumed such that for 0 < WX,Y < 1 it holds

• upward change of WX,Y when D \s c(V1, V2, W) > W when D < s
• no change of WX,Y when D ¼ s c(V1, V2, W) = W when D = s
• downward change of WX,Y when D [ s c(V1, V2, W) < W when D > s

These criteria are formalised in the following definition of properties of any
function c(V1, V2, W), but considered here as properties for homophily combination
function in particular. So for the function c(V1, V2, W), keep in mind that this is
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applied to a homophily combination function for reification state WX,Y of xX,Y. It
will be shown in Sect. 13.6 how these properties relate to the equilibrium behaviour
of the network.

Definition 1 (Tipping point and strict tipping point)

(a) The function c(V1, V2, W): [0, 1] � [0, 1] � [0, 1] ! [0, 1] has tipping point s
for V1 and V2 if for all W with 0 < W < 1 and all V1, V2 it holds

(i) c(V1, V2, W) > W , |V1 − V2| < s
(ii) c(V1, V2, W) = W , |V1 − V2| = s
(iii) c(V1, V2, W) < W , |V1 − V2| > s

(b) The function c(V1, V2,W) has a strict tipping point s if it has tipping point s and
in addition it holds:

(i) If |V1 − V2| < s then c(V1, V2, 0) > 0
(ii) If |V1 − V2| > s then c(V1, V2, 1) < 1

Note Definition 1(a) can be reformulated in the sense that any function c(V1, V2,
W) that is monotonically decreasing in D = |V1 − V2| and goes for any W with
0 < W < 1 through the point with D = |V1 − V2| = s and c(V1, V2, W) = W has
tipping point s. This is illustrated in Fig. 13.5 by the yellow areas. In particular, this
applies to all example functions shown in Table 13.2 as Fig. 13.5 shows that they
all are monotonically decreasing and go through the point (0.2, 0.7) for which
D = 0.2 and c(V1, V2, W) = 0.7.

Note that condition (b) of this Definition 1 is not fulfilled when |V1 – V2| < s and
c(V1, V2, 0) =0 or when |V1 − V2| > s and c(V1, V2, 1) =1. For example, for
slhomos,a(V1, V2, W) and sqhomos,a(V1, V2, W) these cases do occur as always
slhomos,a(V1, V2, 0) = 0 and slhomos,a(V1, V2, 1) = 1 due to the factor W(1 − W),
and the same for sqhomos,a(V1, V2, W). Therefore they do have a tipping point but
they do not have a strict tipping point. In the third paragraph in Sect. 13.8 it is
discussed how in a practical application having a tipping point but not having a
strict tipping point is not a big problem, but some care is needed in not assigning
initial values 0 or 1 to connection weights, as these values will never change in such
cases. Note that when a function with strict tipping point s is used, any two nodes X,
Y with xX,Y(t) = 0 (which usually is interpreted as not being connected) can become
connected over time: when |X(t) − Y(t)| < s, then by Definition 1(b)(i) it holds
WX,Y(t′) > 0 for t′ > t.

Some examples of combination functions having a strict tipping point s have
been explored in more detail in Sharpanskykh and Treur (2014) and Boomgaard
et al. (2018). In the former the advanced quadratic combination function
aqhomos,r(V1, V2, W) and in the latter the advanced logistic function
alog2homos,r,a(V1, V2, W) has been explored; see also Treur (2016, Chap. 11,
p. 309):
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aqhomos;r V1;V2;Wð Þ ¼ Wþ Pos a s2� V1�V2ð Þ2
	 
	 


1�Wð Þ
� Posð�aðs2�ðV1�V2Þ2ÞÞW

alog2homos;r;a V1;V2;Wð Þ ¼ Wþ Pos a 0:5� 1�W
1þ e�rð V1�V2j j�sÞ

� �� �

� Pos �a 0:5� W
1þ e�r V1�V2j j�sð Þ

� �� �
ð13:12Þ

Here Pos(x) = (|x| + x)/2. The following lemma shows some properties of this
operator.

Lemma 1

(a) Pos(x) = x when x is positive, else Pos(x) = 0.
So always Pos(x) � 0, and when Pos(x) > 0, then Pos(−x) = 0.

(b) For any numbers a and b the following are equivalent:

(i) a PosðxÞþ b Posð�xÞ ¼ 0
(ii) a PosðxÞ ¼ 0 and b Posð�xÞ ¼ 0
(iii) x ¼ 0 or x[ 0 and a ¼ 0 or x\0 and b ¼ 0.

This format using the double Pos(..) function can often be used to create a com-
bination function satisfying the strict tipping point condition as a variation on a
combination function satisfying only the tipping point condition. This is shown in
the following proposition that assumes any close distance function denoted by d(s,
D). More specifically, the following proposition makes it quite easy to obtain
functions with tipping point s or with strict tipping point s. For a proof of these
Propositions, see Chap. 15, Sect. 15.8.

Proposition 1 Suppose for any function d(s, D) it holds

dðs;DÞ[ 0 iff D\s

dðs;DÞ\0 iff D[ s

Then the following hold:

(a) For any a > 0 the function

c V1;V2;Wð Þ ¼ W þ aWð1�WÞ dðs; V1�V2j jÞ

satisfies the tipping point condition, but not strict
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(b) For any a > 0 the function

c0ðV1;V2;WÞ ¼ W þ aPosðdðs; V1�V2j jÞÞð1�WÞ � aPosð�dðs; V1�V2j jÞÞW

satisfies the strict tipping point condition.

Proposition 1 can easily be applied to simple linear or quadratic functions
d(s, D) such as:

dðs;DÞ ¼ s� D

dðs;DÞ ¼ s2 � D2

but also to functions such as

dðs;DÞ ¼ 0:5� 1
1þ e�rðD�sÞ

as is shown in Proposition 2(b) and (c).
The following proposition shows for four cases how it can be proven that some

homophily combination function satisfies the tipping point or strict tipping point
conditions. For proofs, see Chap. 15, Sect. 15.8.

Proposition 2

(a) log1homs,a(V1, V2, W) has tipping point s, and is not strict
(b) slog2homs,a(V1, V2, W) has tipping point s, and is not strict
(c) alog2homs,a(V1, V2, W) has a strict tipping point s
(d) exphomos,r(V1, V2, W) has a tipping point s and is not strict

The following proposition shows that weighted averages of functions with tip-
ping point s also have a tipping point s, and the same for having a strict tipping
point.

Proposition 3 A weighted average (with positive weights) of homophily combi-
nation functions with tipping point s also has tipping point s, and with strict tipping
point s, also has strict tipping point s.

13.5.2 Relevant Aggregation Characteristics for Social
Contagion

When more characteristics on network structure and adaptation combination
functions are assumed, more refined results can be found, as will be shown in
Sect. 13.6. Next, consider the combination functions used for social contagion of
the states.
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Definition 2 (Properties of combination functions for social contagion)

(a) A function c(..) is called monotonically increasing if

Ui �Vi for all i ) c U1; . . .;Ukð Þ� c V1; . . .;Vkð Þ

(b) A function c(..) is called strictly monotonically increasing if

Ui �Vi for all i; andUj\Vj for at least one j ) c U1; . . .;Ukð Þ\c V1; . . .;Vkð Þ

(c) A function c(..) is called scalar-free if c(aV1, …, aVk) = a
c V1; . . .;Vkð Þfor all a[ 0

Definition 3 (Normalised network) A network is normalised or uses normalised
combination functions if for each state Y it holds cYðxX1;Y ; . . .;xXk ;YÞ ¼ 1, where
X1, …, Xk are the states from which Y gets incoming connections.

Note that cY ðxX1;Y ; . . .;xXk ;YÞ is an expression in terms of the parameter(s) of the
combination function and xX1;Y ; . . .;xXk ;Y . To require this expression to be equal to
1 provides a constraint on these parameters: an equation relating the parameter
value(s) of the combination functions to the parameters xX1;Y ; . . .;xXk ;Y . To satisfy
this property, often the parameter(s) can be given suitable values. For example, for a
Euclidean combination function kY ¼ xn

X1;Y þ . . .þxn
Xk ;Y will provide a normalised

network. This can be done in general:

(1) normalisation by adjusting the combination functions. If any combination
function cY(..) is replaced by c′Y(..) defined as

c0Y V1; . . .;Vkð Þ ¼ cY V1; . . .;Vkð Þ=cY xX1;Y ; . . .;xXk ;Y
� �

then the network becomes normalised: indeed c0AðxX1;Y ; . . .;xXk ;YÞ ¼ 1
(2) normalisation by adjusting the connection weights (for scalar-free combination

functions). For scalar-free combination functions also normalisation is possible
by adapting the connection weights; define:

x0
Xi;Y ¼ xXi;Y=cY xX1;Y ; . . .;xXk ;Y

� �

Then the network becomes normalised; indeed it holds:

cY ðx0
X1;Y ; ::;x

0
Xk ;YÞ ¼ cðxX1;Y=cYðxX1;Y ; ::;xXk ;Y Þ; ::;xXk ;Y=cðxX1;Y ; ::;xXk ;YÞÞ ¼ 1

Definition 4 (Symmetric network and symmetric combination function)

a) A network is called weakly symmetric if for all states X, Y it holds xX,Y >
0 , xY,X > 0. It is fully symmetric if for all states X, Y it holds xX,Y = xY,X.
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b) A homophily combination function c(V1, V2, W) is called symmetric if c(V1, V2,
W) = c(V2, V1, W).

If the homophily combination function c(V1, V2, W) is symmetric, the network is
fully symmetric if the initial values for xX,Y and xY,X are equal. For a proof of the
following proposition, again see Chap. 15, Sect. 15.8.

Proposition 4

(a) When the homophily combination function c(V1, V2, W) is symmetric, and
initially the network is fully symmetric, then the network is continually fully
symmetric.

(b) For every n > 0 a Euclidean combination function of nth degree is strictly
monotonically increasing, scalar-free, and symmetric.

13.6 Relating Adaptive Network Structure to Emerging
Bonding Behaviour

In this section, an analysis is presented of the behaviour of an adaptive network
based on the coevolution of social contagion and bonding by homophily. Here it is
found out how the network and adaptation characteristics defined in Sect. 13.5
(such as a tipping point s), affect the emerging behaviour of the adaptive network.
This relates to horizontal arrow in the upper part of Fig. 13.1. In particular, it is
addressed how these properties imply that over time the network ends up in certain
states (for both the nodes and the connections) that represent community formation.
It will turn out that under certain conditions in terms of the properties defined in
Sect. 13.5, in the end, a number of communities emerge such that:

• Nodes within one community have similar state values
• Connections between nodes within a community are very strong
• Connections between nodes from different communities are very weak

Note that these phenomena were already observed in the simulation examples in
Sect. 13.4, but now it will be proved why under certain conditions they always have
to occur. To formalise this, the following general notions are important; e.g., Brauer
and Nohel (1969), Hirsch (1984), Lotka (1956).

Definition 5 (Stationary point and equilibrium) A state Y has a stationary point
at t if dY(t)/dt = 0, is increasing at t if dY(t)/dt > 0, and is decreasing at t if
dY(t)/dt < 0, and similarly this applies to reification states for adaptive connection
weights x. The network is in equilibrium a t if every state Y and every connection
weight x in the model has a stationary point at t. The equilibrium is attracting if
any small perturbations of its values lead to convergence to the equilibrium values.
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Considering the specific differential equation format for a temporal-causal net-
work model shown in Sect. 13.2, and assuming nonzero speed factors the following
more specific criteria for stationary points, and for increasing and decreasing trends,
in terms of the combination functions and connection weights are easily found:

Lemma 2 (Criteria for a stationary, increasing and decreasing) Let Y be a state
and X1, …, Xk the states from which state Y gets its incoming connections. Then

(i) Y has a stationary point at t , cYðxX1;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ ¼ YðtÞ
(ii) Y is strictly increasing at t , cYðxX1;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ[ YðtÞ
(iii) Y is strictly decreasing at t , cY ðxX1;YX1ðtÞ; . . .;xXk ;YXkðtÞÞ\YðtÞ
Similarly this applies to reification states W representing connection weights x.

13.6.1 Relating Structure and Behaviour Independent
of Social Contagion Characteristics

Theorem 1 presents some of the results found for the relation between the emerging
equilibrium values for states and for connection weights. It is shown how the dis-
tance of the equilibrium values of two states relates to the equilibrium value of their
connections. Note that for now no specific assumption is made on the aggregation
characteristics for social contagion in terms of properties of the combination func-
tions for it. To prove Theorem 1, the following lemma is a useful means. It shows
that when the homophily combination function c(V1, V2, W) satisfies the tipping
point criterion, a connection weight 0 can only be reached for states X and Y when |X
(t) − Y(t)| > s and a connection weight 1 can only be reached for states X and
Y when |X(t) − Y(t)| < s. For proofs, again see Chap. 15, Sect. 15.8.

Lemma 3 Suppose the function c(V1, V2, W) has tipping point s for V1 and V2.
Then

(i) The value 0 for WX,Y can only be reached from WX,Y(t) with 0 < WX,Y(t) < 1
if |X(t) − Y(t)|> s

(ii) The value 1 for WX,Y can only be reached from WX,Y(t) with 0 < WX,Y(t) < 1
if |X(t)− Y(t)|< s.

This lemma already reveals that connection weights xX,Y converging to 0 have
some relation to the state values of X and Y having distance more than s, and
connection weights xX,Y converging to 1 have some relation to the state values of
X and Y having a distance less than s. These relations between connection weights
and state values during a convergence process are made more precise for reaching
an equilibrium state in Theorem 1.

Theorem 1 (Relations between equilibrium values for states and for connec-
tion weights) Suppose the function c(V1, V2, W) has tipping point s for V1 and V2
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and an attracting equilibrium state is given with values X for the states X and WX,Y

for the connection weight reification states WX,Y. Then the following hold:

(a) If |X − Y| < s, then the equilibrium value WX,Y is 1; in particular this holds
when X =Y. Therefore, if WX,Y < 1, then |X − Y| � s, and, in particular,
X 6¼ Y.

(b) If |X − Y| > s, then the equilibrium value WX,Y is 0. Therefore, if WX,Y > 0,
then |X − Y| � s.

(c) 0 < WX,Y < 1 implies |X − Y| = s.

This Theorem 1 explains some of the observations made in Sect. 13.4, in par-
ticular, that in all of these simulations the connection weights all end up either in
value 0 (the state equilibrium values differ at least s) or in value 1 (the state
equilibrium values are equal).

When also some assumptions are made for social contagion, more refined results
can be found, for example, as explored in Treur (2018a). The following is a basic
Lemma for normalised networks with social contagion combination functions that
are monotonically increasing and scalar-free.

Lemma 4 Let a normalised network with nonnegative connections be given with
combination functions that are monotonically increasing and scalar-free; then the
following hold:

(a)

(i) If for some state Y at time t for all nodes XwithxX,Y > 0 it holds X(t) � Y(t),
then Y(t) is decreasing at t: dY(t)/dt � 0.

(ii) If, moreover, the combination function is strictly increasing and a state
X exists with X(t) < Y(t) and xX,Y > 0, then Y(t) is strictly decreasing at t:
dY(t)(t)/dt < 0.

(b)

(i) If for some state Y at time t for all nodes XwithxX,Y > 0 it holds X(t) � Y(t),
then Y(t) is increasing at t: dY(t)/dt � 0.

(ii) If, moreover, the combination function is strictly increasing and a state X
exists with X(t) > Y(t) and xX,Y > 0, then Y(t) is strictly increasing at t:
dY(t)(t)/dt > 0.

13.6.2 Relating Structure and Behaviour for Some Social
Contagion Characteristics

Now the more specific theorem is obtained for the connection weights if the
combination functions used for aggregation within social contagion for the states
are assumed strictly monotonically increasing and scalar-free. It states that the
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connection weights in an attracting equilibrium are all 0 or 1, and when s is a strict
tipping point, that depends just on whether they connect states with the same or a
different equilibrium state value.

Theorem 2 (Equilibrium values WX,Y all 0 or 1) Suppose the network is weakly
symmetric and normalised, and the combination functions for the social contagion
for the base states are strictly monotonically increasing and scalar-free. Suppose
that the combination functions c(V1, V2, W) for the reification states for the con-
nection weights have a tipping point s. Then

(a) In an attracting equilibrium state for any states X, Y from X 6¼ Y it follows
WX,Y = 0.

(b) In an attracting equilibrium state for any states X, Y with X = Y it holds
WX,Y = 0 or WX,Y = 1.

(c) If c(V1, V2, W) has a strict tipping point s, then in an equilibrium state for any
X, Y with X = Y it holds WX,Y = 1.

For proofs, see Chap. 15, Sect. 15.8. The following theorem shows the impli-
cations for emerging communities or clusters and distances between different
equilibrium values for nodes.

Theorem 3 (Partition and equilibrium values of nodes) Suppose the network is
weakly symmetric and normalised, the combination functions for the social con-
tagion for the base states are strictly monotonically increasing and scalar-free, and
the combination functions for the reification states for the connection weights use
tipping point s and is strict and symmetric. Then in any attracting equilibrium state
a partition of the set of states into disjoint subsets C1, …, Cp occurs such that:

(i) For each Ci the equilibrium values for all the states in Ci are equal: X =Y for
all X, Y 2 Ci.

(ii) Every Ci forms a fully connected network with weights 1:WX,Y = 1 for all X,
Y 2 Ci.

(iii) Every two nodes in different Ci have connection weight 0: when i 6¼ j, then
X 2 Ci and Y 2 Cj implies WX,Y = 0.

(iv) Any two distinct equilibrium values of states X 6¼ Y have distance � s.
Therefore there are at most p � 1 + 1/s communities Ci and equilibrium
values X.
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13.7 Characterising Behaviour in Terms of Strongly
Connected Components

To analyse connectivity, within Graph Theory the notion of a strongly connected
component has been identified. The main parts of the following definitions can be
found, for example, in Harary et al. (1965, Chap. 3), or Kuich (1970, Sect. 6). See
also Chap. 12 of this volume.

Note that in the current chapter only nonnegative connection weights are
considered.

Definition 6 (reachability and strongly connected components)

(a) State Y is reachable from state X if there is a directed path from X to Y with
nonzero connection weights and speed factors.

(b) A network N is strongly connected if every two states are mutually reachable
within N.

(c) A state is called independent if it is not reachable from any other state.
(d) A subnetwork of a network N is a network whose states and connections are

states and connections of N.
(e) A strongly connected component C of a network N is a strongly connected

subnetwork of N such that it is maximal: no larger strongly connected sub-
network of N contains it as a subnetwork.

Strongly connected components C can be identified by choosing any node X of
N and adding all nodes that are on any cycle throughX. Note also that when a nodeX is
not on any cycle, then it will form a singleton strongly connected component C by
itself; this applies in particular to all nodes ofNwith indegree or outdegree zero. There
are efficient algorithms available to determine the strongly connected components of a
network or graph; for example, see Bloem et al. (2006), Fleischer et al. (2000),
Gentilini et al. (2003),Łacki (2013), Li et al. (2014), Tarjan (1972),Wijs et al. (2016).

The strongly connected components form a partition of the nodes of the graph or
network. By this partition a more abstract, simpler view of the network can be
created, called condensation graph, in which each component becomes one abstract
node; this is defined as follows.

Definition 7 (condensation graph) The condensation graph C(N) of a network
N with respect to its strongly connected components is a graph whose nodes are the
strongly connected components of N and whose connections are determined as
follows: there is a connection from node Ci to node Cj in C(N) if and only if in
N there is at least one connection from a node in the strongly connected component
Ci to a node in the strongly connected component Cj.

An important result is that a condensation graphC(N) is always an acyclic graph. In
a sense, all cycles are locked up inside the components, and the connections between
these components do not contain any cycles. The following theorem summarizes this;
it was adopted from Harary et al. (1965, Chap. 3, Theorems 3.6 and 3.8), or Kuich
(1970, Sect. 6).
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Theorem 4 (Acyclic condensation graph)

(a) For any network N its condensation graph C(N) is acyclic, and has at least one
state of outdegree zero and at least one state of indegree zero.

(b) The networkN is acyclic itself if and only if it is graph-isomorphic to C(N). In this
case, the nodes in C(N) all are singleton sets {X} containing one state X from N.

(c) The network N is strongly connected itself if and only if C(N) only has one
node; this node is the set of all states of N.

Note that in an adaptive network, the strongly connected components and the
condensation graph usually change over time. For example, connection weights that
were 0 can become nonzero, or nonzero connection weights can converge to 0.
From Theorem 3 it immediately follows that in the equilibrium state the Ci defined
there are the strongly connected components of the network. Then the results from
Theorem 3 can be rephrased in the above terms in the following way.

Theorem 5 (Strongly connected components in an attracting equilibrium)
Suppose the network is weakly symmetric and normalised, the combination func-
tions for social contagion between the base nodes are strictly monotonically
increasing and scalar-free, and the homophily combination functions for the con-
nection weight reification states use tipping point s and are strict and symmetric.
Then in any attracting equilibrium state the following hold:

(i) There are at most p � 1 + 1/s strongly connected components.
(ii) Each strongly connected component is fully connected and all states in it

have a common equilibrium state value.
(iii) There are no nonzero connections between states from different strongly

connected components, and the equilibrium values of these states have
distance � s.

(iv) The condensation graph C(N) is totally disconnected: it has no connections
at all.

The following converse holds as well; this shows how equilibrium states can be
characterised by specific properties of the strongly connected components. For a
proof: Chap. 15, Sect. 15.8.

Theorem 6 (Strongly connected components characterisation) Suppose the
network is weakly symmetric, the combination functions for social contagion
between the base nodes are strictly monotonically increasing, normalised and
scalar-free, and the homophily combination function for the connection weight
reification states use tipping point s and are strict and symmetric. Suppose at some
time point t the following hold:

(i) Each strongly connected component C is fully connected and all states in
C have a common state value.

(ii) All connections between states from different strongly connected components
have weight 0 and the equilibrium values of these states have distance > s.

Then the network is in an equilibrium state.
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Note that the situation as characterised is a quite specific situation with trivial
condensation graph, if compared, for example, to a general situation as addressed
in Chap. 12 and Treur (2018c), where usually nontrivial condensation graphs occur.

13.8 Overview of Other Simulation Experiments

In recent years for a number of the functions from Table 13.2 simulation experi-
ments have been performed for real-world domains and related to empirical data.
An overview of them is shown in Table 13.4. Some of the experiences are the
following.

In general, it was possible to get similar patterns as in the empirical data by using
dedicated Parameter Tuning methods such as Simulated Annealing. As may be

Table 13.4 Overview of simulation experiments for different combination functions

Combination functions Domain and
data

Reference and venue

Homophily Contagion

slhomor,s(..) ssumk(..) Friendships in a
classroom
Glasgow data,
2016

Blankendaal et al. (2016)
ECAI’16

Social media:
blogger
appreciation
Instagram data

Kozyreva et al. (2018)
SocInfo’18

Social media:
music
appreciation
Twitter data

Gerwen et al. (2019)
DCAI’18

ssumk(..)
alogisticr,s(..)

Segregation of
queer
community
Questionnaire
data

Heijmans et al. (2019)
ICICT’19

alogisticr,s(..) Social media:
Zwarte Piet
debate
Twitter data

Roller et al. (2017)
COMPLEXNETWORKS’17

sqhomor,s(..) ssumk(..) Segregation of
immigrants
Literature data

Kappert et al. (2018)
ICCCI’18

alogisticr,s(..) Friendships in a
classroom
Glasgow data,
2016

Beukel et al. (2017, 2019)
PAAMS’17, Neurocomputing 2019

(continued)
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expected the remaining Root Mean Square error differed with the different studies
and domains, and also depends on how fine-grained the scoring scales for the data
were; for example when a 3 points scale was used for empirical data, already
because of that in the [0, 1] interval a variation of 0.15 should be expected within
the empirical data themselves, and for a 5 points scale 0.1. Then an average
deviation between model and empirical data will be at least in that order of mag-
nitude, not smaller than, say 0.15–0.25. This indeed was usually the case in the
examples discussed in Table 13.4.

Using the simple linear or simple quadratic functions slhomor,s(..) or
sqhomor,s(..) the change of connection weights is very slow when the weights are
close to 0 or 1 due to the factor W (1 − W) in the function. The advantage of this
slowing down effect is that the connection weight values stay within the [0, 1]
interval in a natural manner. But the downside of this factor is that when they are
exactly 0 or 1 they will even freeze and not be able to change anyway, and the same
when 0 or 1 are used as initial values. This is because slhomor,s(..) or sqhomor,s(..)
have a tipping point, but no strict tipping point; also see the remark after Definition
1. The same holds for log2homor,s(..). So, when these functions are used, it is
better to initialise all connection weight values between 0.1 and 0.9 instead of in the
full [0, 1] interval. This is different for the advanced linear and quadratic homophily
functions alhomor,s(..) or aqhomor,s(..). For them approaching 0 or 1 is still slow,
but leaving 0 or 1 can be fast: they do have a strict tipping point. Note, however,
that this is not necessarily always a good property. Maybe when a very strong
connection has been formed, even some differences that occur may not affect the
connection immediately. So, in some cases, or for some types of persons the slow
change close to 0 or 1 as shown by slhomor,s(..) or sqhomor,s(..) may even be
more plausible.

Note that in Kozyreva et al. (2018) a slightly different multicriteria variant of the
simple linear homophily function was used that takes into account multiple states in

Table 13.4 (continued)

Combination functions Domain and
data

Reference and venue

Homophily Contagion

aqhomor,s(..) ssumk(..) Scalefree versus
random
networks
Literature data

Sharpanskykh and Treur (2013,
2014) ICCCI’13, Neurocomputing
2014

log2homor,s(..) ssumk(..) Social media:
physical activity
Twitter data

Dijk and Treur (2018)
ICCCI’18

alogisticr,s(..) Friendships in a
classroom
Knecht data,
2008

Boomgaard et al. (2018)
SocInfo’18
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the similarity measure: instead of V1 � V2j j for 1 criterion, for k criteria the fol-
lowing Euclidean distance formula is used to measure similarity:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1;1 � V1;2
� �2 þ � � � þ Vk;1 � Vk;2

� �2q
ð13:13Þ

In Blankendaal et al. (2016) and Beukel et al. (2017) for bonding not only a
homophily principle was used, but also a ‘more becomes more’ principle which can
be considered a variant of what sometimes is called ‘the rich get richer’ (Simon
1955; Bornholdt and Ebel 2001), ‘cumulative advantage’ (de Solla Price 1976), ‘the
Matthew effect’ (Merton 1968), or ‘preferential attachment’ (Barabási and Albert
1999; Newman 2003). For this ‘more becomes more’ principle, in Blankendaal
et al. (2016) a scaled sum combination function was used for the (reified) weights of
the connections to a given other person Y with scaling factor the number k of such
connections (resulting in the average of these connection weights), and in Beukel
et al. (2017, 2019) and advanced logistic sum:

ssumk W1; . . .;Wkð Þ
alogisticr;s W1; . . .;Wkð Þ ð13:14Þ

where W1, …, Wk refer to the values of the reification states for the weights
xX1;Y ; . . .;xXk ;Y of all connections of the other person Y. Note that the first scaled
sum option ssumk(.) adapts to the other person’s average connection weight
independent of the number of connections, whereas the second alogisticr,s(…)
option is more additive as more connections of the other person provide higher
values. In both approaches, the two combination functions for both the homophily
and the more becomes more principle were combined as a weighted sum.

13.9 Discussion

In this chapter, it was analysed how emerging network behaviour (in particular,
community formation) can be related to characteristics of the adaptive network’s
structure for a reified adaptive network modeling bonding based on similarity. Parts
of this chapter were adopted from Treur (2018b). Here the reified network structure
characteristics include the aggregation characteristics in terms of the combination
function specifying the adaptation principle incorporated. This has been addressed
for adaptive social networks for bonding based on homophily (McPherson et al.
2001; Pearson et al. 2006) combined with social contagion for the base states.
Relevant characteristics of the network and the adaptation principle have been
identified, such as a tipping point for similarity for the combination function for the
bonding. As one of the results, it has been found how the emergence of commu-
nities strongly depends on the value of this tipping point. It has been shown, for
example, that some properties of the structure of the base network and the
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adaptation principle modeled by the reification entail that the connection weights all
converge to 0 (for persons in different communities) or 1 (for persons within one
community). More specifically, it has been found how the formation of commu-
nities depends on the value s of this tipping point: there can be no more commu-
nities than 1 + 1/s, assuming state values within the interval [0, 1].

The presented results do not concern results for just one type of network or
combination function, as more often is found. Instead, they were formulated and
proven at a more general level and therefore can be applied not just to specific
networks but to classes of networks satisfying the identified relevant properties of
network structure and adaptation characteristics. Note, however, that the focus in
the current chapter is on deterministic behaviour; therefore stochastic models such
as, for example, the one reported in a nontechnical manner in Axelrod (1997), are
not covered by this analysis.

It may be an interesting research focus for the future to explore whether and how
the analysis results found here have counterparts for stochastic network models.
Besides, in Axelrod (1997) also regional differences are addressed. In a more
extensive application of the models discussed in the current chapter, that may be an
interesting ingredient to address as well.

The results found also have been related to the strongly connected components
of the network (Harary et al. 1965, Chap. 3), or Kuich (1970, Sect. 6).
A characterisation in terms of properties of the strongly connected components and
their relations was found for states of an adaptive network which are attracting
equilibrium states.
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