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Chapter 10
On the Universal Combination Function
and the Universal Difference Equation
for Reified Temporal-Causal Network
Models

Abstract The universal differential and difference equation form an important
basis for reified temporal-causal networks and their implementation. In this chapter,
a more in depth analysis is presented of the universal differential and difference
equation. It is shown how these equations can be derived in a direct manner and
they are illustrated by some examples. Due to the existence of these universal
difference and differential equation, the class of temporal-causal networks is closed
under reification: by them it can be guaranteed that any reification of a
temporal-causal network is itself also a temporal-causal network. That means that
dedicated modeling and analysis methods for temporal-causal networks can also be
applied to reified temporal-causal networks. In particular, it guarantees that reifi-
cation can be done iteratively in order to obtain multilevel reified network models
that are very useful to model multiple orders of adaptation. Moreover, as shown in
Chap. 9, the universal difference equation enables that software of a very compact
form can be developed, as all reification levels are handled by one computational
reified network engine in the same manner. Alternatively, it is shown how the
universal difference or differential equation can be used for compilation by multiple
substitution for all states, which leads to another form of implementation. The
background of these issues is discussed in the current chapter.

10.1 Introduction

Modeling dynamic processes by simulating and analysing differential or difference
equations has a long tradition in almost all scientific disciplines; e.g., Ashby (1960),
Brauer and Nohel (1969), Lotka (1956), Port and van Gelder (1995). The Network-
Oriented Modeling approach (Treur 2016, 2019a, b) based on temporal-causal net-
works also has an underlying differential equation format to model the dynamics. The
recent extension of this approach to reified temporal-causal networks as addressed
in the current book, has extended and generalised the format of the underlying
difference and differential equations in order to enable modeling of networks for
processes that are adaptive of any order; see Chaps. 3–8 or (Treur 2018a, b).
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In Chap. 3 it was shown that when network reification is applied to a
temporal-causal network, it results in a reified network that itself is again a
temporal-causal network. In more abstract mathematical terms this can be formu-
lated by the class of temporal-causal networks being closed under the reification
operator. This is a very convenient closure property for this class of networks, as
because of that all methods developed for temporal-causal networks can also be
applied to reified temporal-causal networks. One important example of this is that it
enables that reification can also be applied to reified networks, so that the reification
can be iterated easily. Thus multilevel reified networks are obtained that in
Chaps. 4–8 turned out very useful to model higher order adaptive networks, for
example to model plasticity and metaplasticity. Another important example is that
mathematical analysis of emerging behaviour as known for temporal-causal net-
works can also be applied to reified temporal-causal networks, in particular both to
the base states and the reification states in a reified network. Chapters 13 and 14 are
examples of such mathematical analyses, where mathematical properties of the
combination function of a reification state are related to emerging behaviour for the
adaptation process.

To prove that the class of temporal-causal networks is closed under reification
there is a central role for the universal combination function and the universal
difference equation that can be used to describe the base states in the reified net-
work. In Chap. 3, Sect. 3.5 this universal combination function was introduced
more or less out of the blue, and the universal difference equation is just derived
from this combination function; that function turned out correct, which provides a
form of verification afterwards. However, this can be done in a better way. Strictly
spoken, it would be possible to derive valid statements from invalid statements, so
confirmative verification of a derived statement is not a strict proof in a logical
sense. Therefore in this chapter the derivation of the universal combination function
is addressed in some more depth and it is also illustrated for specific cases.
However, first a short route is described in Sect. 10.2. After this, the longer route is
described. In Sect. 10.3 each of the different roles is analysed separately and for
each a combination function and difference equation are derived for the base states.
Then, in Sect. 10.4 the universal combination function and universal difference
equation are derived for all roles at the same time. Section 10.5 shows that the
criterion for equilibria for temporal-causal networks also applies to the universal
differential equation in reified temporal-causal networks. In Sect. 10.6 it is shown
how it can be derived from the role matrices. In Sect. 10.7 it is shown how this
universal difference equation can be used for a compilation process by for each state
Y substituting the data from the role matrices in them before simulation time and not
during simulation time. This may be a useful method to simulate very large reified
networks in an efficient manner.
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10.2 A Short Route to the Universal Difference
and Differential Equation

Recall this expression (7) from Chap. 3, Sect. 3.5 for the combination function and
(8) for the difference equation:

cY ðt; p1;1 tð Þ;p1;2 tð Þ; . . .; p1;m tð Þ;p1;m tð Þ;V1; . . .;VkÞ

¼ c1;Y tð Þ bcf1 p1;1;Y tð Þ;p2;1;Y tð Þ;V1; . . .;Vk
� �þ � � � þ cm;Y tð Þbcfm p1;m;Y tð Þp2;m;Y tð Þ; V1; . . .;Vk

� �

c1;Y tð Þþ � � � þ cm;Y tð Þ
ð1Þ

YðtþDtÞ ¼ YðtÞþ gY tð Þ½cYðt;xX1;Y tð ÞX1 tð Þ; . . .;xXk ;YðtÞXk tð ÞÞ � Y tð Þ�Dt ð2Þ

Substituting the former expression (1) in the latter (2), the difference equation
becomes

YðtþDtÞ ¼ YðtÞ

þ gY tð Þ½c1;Y tð Þ bcf1 p1;1;Y tð Þ; p2;1;Y tð Þ;xX1;Y tð ÞX1 tð Þ; . . .;xXk ;Y tð ÞXk tð Þ� �þ � � � þ cm;Y tð Þ bcfm p1;m;Y tð Þ; p2;m;Y tð Þ; cX1;Y tð ÞX1 tð Þ; . . .;xXk ;Y tð ÞXk tð Þ� �

c1;Y tð Þþ � � � þ cm;Y tð Þ � YðtÞ�Dt

ð3Þ

Within the reified network the adaptive values of η, x, c and p are represented
by their reification states H, W, C and P. By substituting these in (3), a difference
equation for the reified network is obtained:

YðtþDtÞ ¼ YðtÞ

þHY tð Þ½C1;Y tð Þ bcf1 P1;1;Y tð Þ;P2;1;Y tð Þ;WX1 ;Y tð ÞX1 tð Þ; . . .;WXk ;Y tð ÞXk tð Þ� �þ � � � þCm;Y tð Þ bcfm P1;m;Y tð Þ;P2;m;Y tð Þ;WX1 ;Y tð ÞX1 tð Þ; . . .;WXk ;Y tð ÞXk tð Þ� �
C1;Y tð Þþ � � � þCm;Y tð Þ � YðtÞ�Dt

ð4Þ

In differential equation format (leaving out references to t), this is

dY=dt ¼ HY ½
C1;Y bcf1 P1;1;Y ;P2;1;Y ;WX1;YX1; . . .;WXk ;YXk

� �þ � � � þCm;Ybcfm P1;m;Y ;P2;m;Y ;WX1;YX1; . . .;WXk ;YXk
� �

C1;Y þ � � � þCm;Y
� Y �

ð5Þ

Note that this difference and differential equation is not yet in the standard format of
a temporal-causal network, as HY is not a constant speed factor. However, it can be
rewritten into the temporal-causal network format when a suitable universal com-
bination function c*Y(..) is defined. It can be verified by rewriting that when using
the combination function defined by (6) below, this universal difference equa-
tion (4) (a) becomes in the standard temporal-causal format, and (b) indeed is
equivalent to the above difference equation in (3). So, define
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c�YðH;C1; . . .;Cm;P1;1;P2;1; . . .;P1;m;P2;m;W1; . . .;Wk;V1; . . .;Vk;VÞ

¼ H
C1bcf1 P1;1;P2;1;W1V1; . . .;WkVk

� �þ � � � þCmbcfm P1;m;P2;m;W1V1; . . .;WkVk
� �

C1 þ � � � þCm
þ 1� Hð ÞV

ð6Þ

Then this goes as follows. For more explanation and background on this, see
Sect. 10.3 and further. Consider the following universal differential equation
variant, which is (leaving out the reference to t), and assuming speed factor 1:

dY=dt ¼ c�YðHY ;C1;Y ; . . .;Cm;Y ;P1;1;Y ;P2;1;Y ; . . .;P1;m;Y ;P2;m;Y ;WX1;Y ; . . .;WXk ;Y ;X1; . . .;Xk; YÞ�Y

ð7Þ

This is indeed in temporal-causal format. Using (6) it can be rewritten as

dY=dt ¼ HY ½
C1;Ybcf1 P1;1;Y ;P2;1;Y ;WX1;YX1; . . .;WXk ;YXk

� �þ � � � þCm;Ybcfm P1;m;Y ;P2;m;Y ; ;WX1;YX1; . . .;WXk ;YXk
� �

C1;Y þ � � � þCm;Y
�

þ 1�HYð ÞY � Y

Now note that this last part (1 − HY) Y − Y is just −HY Y. Then this easily can be
rewritten into:

dY=dt ¼ HY ½
C1;Ybcf1 P1;1;Y ;P2;1;Y ;WX1;YX1; . . .;WXk ;YXk

� �þ � � � þCm;Ybcfm P1;m;Y ;P2;m;Y ;WX1;YX1; . . .;WXk ;YXk
� �

C1;Y þ � � � þCm;Y
� Y �

ð8Þ

This (8) is exactly differential equation (5) earlier above; this confirms that the
chosen universal combination function c*Y(..) in (6) to get the reified network in
temporal-causal network format is right. So far this short route. Here the definition
of the combination function (6) may seem to come out of the blue. In the next
sections it is shown (via the longer route) how that can be motivated and derived.

10.3 Downward Causal Connections Defining the Special
Effect of Reification States

The added reification states have to be integrated to obtain a well-connected overall
network. In the first place outward connections from the reification states to the
states in the base network are needed, in order to model how they have their
special effect on the dynamics in the network. More specifically, it has to be defined
how the reification states contribute causally to an aggregated impact on the base
network state. In addition to a downward connection, also the combination function
for the base state has to be defined for the aggregated impact. Both these downward
causal relations and the combination functions will be defined in a generic manner,
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related to how a specific network characteristic functions in the overall dynamics as
part of the intended semantics of a temporal-causal network. That will be discussed
in the current section.

In addition, other connections of the reification states are added in order to model
specific network adaptation principles. These may concern upward connections
from the states of the base network to the reification states, or horizontal mutual
connections between reification states within the upper plain, or both, depending on
the specific network adaptation principles addressed. These connections are not
generic as they are an essential part of the specification of a particular adaptation
principle; they have been illustrated for a number of well-known adaptation prin-
ciples in Chap. 3; see Figs. 3.4–3.10.

10.3.1 The Overall Picture

For the downward connections the general pattern is that each of the reification
states WXi;Y , HY and CY for the reified network characteristics, connection weights,
speed factors and combination functions, has a specific causal connection to state
Y in the base network, as they all affect Y. These are the (pink) downward arrows
from the reification plane to the base plane in Chap. 3, Fig. 3.3; see also Fig. 10.1.
Actually CY is a vector of states (C1,Y, C2,Y, …) with a (small) number of different
components C1,Y, C2,Y, … for different basic combination functions that will be
explained below. Note that combination functions may contain some parameters,
for example, for the scaled sum combination function the scaling factor k, and for
the advanced logistic sum combination function the steepness r and the threshold s.
For these parameters also reification states Pi,j,Y can be added, with the possibility to
make them adaptive as well. More specifically, for each basic combination function
represented by Cj,Y there are two parameters p1,i and p2,i that are reified by
parameter reification states P1,j,Y and P2,j,Y. All depicted (downward and horizontal)

Fig. 10.1 Network reification for temporal-causal networks: downward causal connections from
reification states to base network states
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connections in Fig. 10.1 get weight 1. Note that this is also a way in which a
weighted network can be transformed into an equivalent non-weighted network. In
the extended network the speed factors of the base states are set at 1 too.

Note that the 3D layout of these figures and the depicted planes are just for
understanding; in a mathematical or computational sense they are not part of the
network specification. However, for each of the reification states it is crucial to
know what it is that they are reifying and for what base state. Therefore the names
of the reification states are chosen in such a way that this information is visible. For
example, in the name HY the H indicates that it concerns speed factor (indicated by
η) reification and the subscript Y that it is for base state Y. So, in general the bold
capital letter R in Rsubscript indicates the type of reification and the subscript the
concerning base state Y, or (for W) the pair of states X, Y. This R defines the role
that is played by this reification state. This role corresponds one to one to the
characteristics of the base network structure that is reified: connection weight x,
speed factor η, basic combination function c(..), parameter p. In other words, there
are four roles for reification states:

• the role of connection weight reification states WXi;Y reifying connection
weights xXi;Y

• the role of speed factor reification state HY reifying speed factor ηY
• the role of combination function reification states Cj,Y reifying combination

function cY(..)
• the role of parameter reification state Pi,j,Y reifying combination function

parameter pi,j,Y

In accordance with this encoded role information, in principle each reification
state has exactly one downward causal connection, which goes to the specified base
state Y. In the reified network this downward connection is incorporated according
to its role R in the aggregation of the causal impacts on Y by a new, dedicated
universal combination function for that role. How this is done is explained in more
detail in this section.

The general picture is that the base states have more incoming connections now,
some of which have specific roles, with special effects according to their role.
Therefore in the reified network new combination functions for the base states are
needed. These new combination functions can be expressed in a universal manner
based on the original combination functions, and the different reification states, but
to define them some work is needed. As the overall approach is a bit complex, to
get the idea, first the four roles W, H, C and P relating to the different types of
characteristics are considered separately in Sects. 10.3.2–10.3.4; they are illustrated
in Box 10.1–10.3. For the overall process, combining all three roles W, H, C and
P for all base network structure characteristics, see Sect. 10.3 and Box 10.4.
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10.3.2 Downward Causal Connections for Role
W for Connection Weight Reification

First, consider only connection weight reification indicated by role W. The original
difference equation for base state Y based on the original combination function cY(..)
is

YðtþDtÞ ¼ YðtÞþ gY ½cYðxX1;Y tð ÞX1 tð Þ; . . .;xXk ;Y tð ÞXkðtÞÞ � YðtÞ�Dt ð9Þ

The new combination function c*Y(..) has to aggregate two types of values:

• the base state values X1(t),…, Xk(t) for the base states from which state Y gets its
incoming connections

• the reification state values WX1;Y tð Þ . . .; WXk ;Y tð Þ for connection weights

Therefore it has to have arguments for all of these values:

c�Y ðWX1;Y tð Þ; . . .;WXk ;Y tð Þ;X1 tð Þ; . . .;XkðtÞÞ

so c*Y(..) has to have this format:

c�Y ðW1; . . .;Wk;V1; . . .;VkÞ

A requirement for this new combination function c*Y(..) in the reified network is

YðtþDtÞ ¼ YðtÞþ gY c�YðWX1;Y tð Þ; . . .; WXk ;Y tð Þ;X1 tð Þ; . . .;XkðtÞÞ � YðtÞ� �
Dt

ð10Þ

As these two difference Eqs. (9) and (10) must have the same result for Y(t) and Y
(t + Dt), the requirement for c*Y(..) is that (when WXi;Y tð Þ ¼ xXi;Y tð ÞÞ it holds

c�YðWX1;Y tð Þ; . . .;WXk ;Y tð Þ;X1 tð Þ; . . .;XkðtÞÞ ¼ cY ðxX1;Y tð ÞX1 tð Þ; . . .;xXk ;Y tð ÞXkðtÞÞ

So the new combination function c*Y(..) for this role has to be defined by

c�Y ðW1; . . .;Wk;V1; . . .;VkÞ ¼ cYðW1V1; . . .;WkVkÞ ð11Þ

where

• Wi stands for WXi;Y tð Þ
• Vi stands for Xi(t)
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In Box 10.1 an example of this combination function relating to Fig. 10.1 is
shown. Indeed the requirement is fulfilled when WXi;Y tð Þ ¼ xXi;Y tð Þ:

c�YðWX1;Y tð Þ; . . .;WXk ;Y tð Þ;X1 tð Þ; . . .;XkðtÞÞ ¼ cY ðxX1;Y tð ÞX1 tð Þ; . . .;xXk ;Y tð ÞXkðtÞÞ

Box 10.1 Example of the derived combination function for connection
weight reification role WX1;Y and WX2;Y in the reified network for base state
Y from Fig. 10.1.

In this box an example relating to Fig. 10.1 where m = 2, bcf1(..) =
eucln,k(..) for n = 1, bcf2(..) = alogisticr,s(..), where eucl1,k(..) is assumed for
Y.

For connection weight reification the new combination function c*Y(..) for
Y is

c�YðW1;W2;V1;V2Þ ¼ cYðW1V1;W2V2Þ ¼ euclð1; k;W1V1;W2V2Þ
¼ ðW1V1 þW2V2Þ=k

where

W1 ¼ WX1;Y tð Þ
W2 ¼ WX2;Y tð Þ
V1 ¼ X1 tð Þ
V2 ¼ X2 tð Þ

10.3.3 Downward Causal Connections for Role H for Speed
Factor Reification

Second, reification of speed factors in terms of role H is addressed separately; in the
new situation in the reified network the combination function needs an extra
argument for HY(t). It turns out that to make it work also an extra argument for the
current value Y(t) is needed, for the timing modeled by the speed factor:

c�Y ðHY tð Þ;xX1;YX1 tð Þ; . . .;xXk ;YXk tð Þ; Y tð ÞÞ

So, the format for c*Y(.) becomes:

c�YðH;V1; . . .;Vk; VÞ
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The requirement for this new function is that (when HY(t) = ηY(t)) it holds

YðtþDtÞ ¼ YðtÞþ g�Y ½c�YðHY tð Þ;xX1;YX1 tð Þ; . . .;xXk ;YXk tð Þ; Y tð ÞÞ � Y tð Þ�Dt
ð12Þ

It is assumed that the new speed factor η*Y is 1; then since (9) and (12) should
describe the same values for Y the requirement becomes:

c�YðHY tð Þ;xX1;YX1 tð Þ; . . .;xXk ;YXk tð Þ; Y tð ÞÞ � Y tð Þ
¼ gY tð Þ½cYðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ � Y tð Þ�

This can be rewritten into

c�YðHY tð Þ;xX1;YX1 tð Þ; . . .;xXk ;YXk tð Þ; Y tð ÞÞ
¼ gY tð ÞcY ðxX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞþ ð1� gY tð ÞÞYðtÞ

Now define the combination function c*Y(..) by

c�YðH;V1; . . .;Vk; VÞ ¼ HcYðV1; . . .;VkÞþ ð1� HÞV ð13Þ

where

• H stands for HY(t)
• Vi stands for xXi;Y Xi(t)
• V stands for Y(t)

This is a weighted average (with weights speed factor H and 1 − H) of cY(V1, …,
Vk) and V. Again, in Box 10.2 an example of this combination function relating to
Fig. 10.1 is shown. Also here the requirement is fulfilled for HY(t) = ηY(t).

Box 10.2 Example of the derived combination function for speed factor
reification role H in the reified network for base state Y from Fig. 10.1.
In this box an example relating to Fig. 10.1 where m = 2, bcf1(..) = eucln,k(..)
for n = 1, bcf2(..) = alogisticr,s(..), where eucl1,k(..) is assumed for Y.
For speed factor reification the new combination function c*Y(..) for Y is

c�YðH;V1;V2; VÞ ¼ HcYðV1;V2Þþ ð1� HÞV
¼ H euclð1; k;V1;V2Þþ ð1� HÞV
¼ HðV1 þV2Þ=kþð1� HÞV
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where

• H stands for HY(t)
• Vi stands for xXi;YXi tð Þ
• V stands for Y(t)

10.3.4 Downward Causal Connections for Roles
C and P for Combination Function Weight
and Parameter Reification

To make reification of combination functions more practical, for the base network a
countable number of basic combination functions bcf(..) is assumed. From this
sequence of basic combination functions for any arbitrary m a finite subsequence
bcf1(..),.., bcfm(..) of m basic combination functions can be chosen to be used in a
specific application. For example with m = 3:

bcf1 ::ð Þ ¼ idð::Þ; bcf2 ::ð Þ ¼ ssumk ::ð Þ; bcf3 ::ð Þ ¼ alogisticr;s ::ð Þ

Note that when more than one argument is used in id(..), the outcome is the sum
of these arguments (only one of them will be nonzero when Y has only one
incoming connection). For each state Y in the base network combination function
weights cj;Y are assumed: numbers c1;Y , c2;Y ,… � 0 that change over time.
Moreover, combination function parameters p1,i,Y, p2,i,Y are assumed for each basic
combination function bcfi(..) for Y. The actual combination function cY(.) at time t is
expressed as a weighted average by:

cY ðt; p1;1;Y ; p2;1;Y ;...;p1;m;Y ; p2;m;Y ;;V1; . . .;VkÞ

¼ c1;Y tð Þ bcf1 p1;1;Y ; p2;1;Y ; V1; . . .;Vk
� �þ � � � þ cm;Y tð Þbcfm p1;m;Y ; p2;m;Y ;V1; . . .;Vk

� �

c1;Y tð Þþ � � � þ cm;Y tð Þ
ð14Þ

In this way it can be expressed that for Y at each time point t a weighted average
of the indicated basic combination functions is applied. This involves multiple basic
combination functions if more than one of cj;Y (t) has a nonzero value; just one basic
combination function is selected for cY(.), if exactly one of the cj;Y tð Þ is nonzero.
This approach makes it possible, for example, to smoothly switch to another
combination function over time by decreasing the value of cj;Y tð Þ for the earlier
chosen basic combination function and increasing the value of cj;Y tð Þ for the new
choice of combination function; see Chap. 3, Sect. 3.7 for an example.

For each basic combination function weight cj;Y a different reification state Cj,Y

is added. The value of that state represents the extent to which that basic
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combination function bcfj(..) is applied for state Y. Moreover, the combination
function parameters are reified by P1,1,Y(t), P2,1,Y(t),…, P1,m,Y(t), P2,m,Y(t). The new
combination function c*Y(..) needs additional arguments for them, so it gets this
format:

c�YðC1;Y ðtÞ; . . .Cm;YðtÞ;P1;1;Y tð Þ;P2;1;Y tð Þ; . . .;P1;m;Y tð Þ;P2;m;Y tð Þ;xX1;YX1 tð Þ; . . .;xXk ;YXk tð ÞÞ

By using variables Cj, and Pi,j for the reified weights Cj,Y(t) and reified parameter
values Pi,j,Y(t), the combination function format for c*Y(..) becomes

c�YðC1; . . .;Cm;P1;1;P2;1;...; P1;m;P2;m;V1; . . .;VkÞ

Now the following two difference equations should make the same values for Y:

YðtþDtÞ ¼ YðtÞþgY ½cYðt; p1;1;Y ; p2;1;Y ;...; p1;m;Y ; p2;m;Y ;;xX1;YX1 tð Þ; . . .;xXk;YXk tð ÞÞ � Y tð Þ�Dt
YðtþDtÞ ¼ YðtÞþgY ½c�YðC1;Y ðtÞ; . . .Cm;Y ðtÞ;P1;1;Y ;P2;1;Y ;...; P1;m;Y ;P2;m;Y ;;xX1;YX1 tð Þ; . . .;xXk;YXk tð Þ; Y tð ÞÞ � Y tð Þ�Dt

Therefore the following requirement for the combination function c*Y(C1, …, Cm,
P1,1, P2,1, …, P1,m, P2,m, V1, …, Vk) is obtained:

c�YðC1;YðtÞ; . . .Cm;YðtÞ;P1;1;Y tð Þ;P2;1;Y tð Þ; . . .;P1;m;Y tð Þ;P2;m;Y tð Þ;xX1;YX1 tð Þ; . . .;xXk;YXk tð ÞÞ
¼ cYðt; p1;1;Y tð Þ; p2;1;Y tð Þ; . . .; p1;m;Y tð Þ; p2;m;Y tð Þ;xX1;YX1 tð Þ; . . .;xXk;YXk tð ÞÞ

which is

c�YðC1;YðtÞ; . . .Cm;YðtÞ;P1;1;Y tð Þ;P2;1;Y tð Þ; . . .;P1;m;Y tð Þ;P2;m;Y tð Þ;xX1;YX1 tð Þ; . . .;xXk;YXk tð ÞÞ

¼ c1;Y tð Þbcf1 p1;1;Y tð Þ; p2;1;Y tð Þ;xX1;YX1 tð Þ; . . .;xXk;YXk tð Þ� �þ . . .þ cm;Y tð Þ bcfm p1;1;Y tð Þ; p2;1;Y tð Þ;xX1;YX1 tð Þ; . . .;xXk ;YXk tð Þ� �

c1;Y tð Þþ . . .þ cm;Y tð Þ

To fullfill this requirement the combination function c*Y(C1, …, Cm, P1,1,
P2,1, …, P1,m, P2,m, V1, …, Vk) has to be defined by

c�YðC1; . . .;Cm;P1;1;P2;1; . . .;P1;m;P2;m;V1; . . .;VkÞ

¼ C1bcf1 P1;1;Y ;P2;1;Y ;V1; � � � ;Vk
� �þ � � � þCm bcfm P1;m;Y ; P2;m;Y ; V1; . . .;Vk

� �
C1 þ . . .þCm

ð15Þ

where

• Cj stands for the combination function weight reification Cj,Y(t)
• Pi,j for the combination function parameter reification Pi,j,Y(t)
• Vi for the value xXi;Y Xi(t) for base state Xi.
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Box 10.3 Example of a derived combination function in the reified network
for base states Y from Fig. 10.1 for combination function reification roles
C and P
In this box an example relating to Fig. 10.1 where m = 2, bcf1(..) = eucln,k(..)
for n = 1, bcf2(..) = alogisticr,s(..), where first eucl1,k(..) is assumed for Y
For combination function reification, assuming C1,Y(0) = 1, C2,Y(0) = 0, the
new combination function c*Y(..) for Y is

c�Y ðC1;C2;P1;1;P2;1;P1;2;P2;2;V1;V2Þ

¼ C1 bcf1 P1;1;Y ; P2;1;Y ;V1;V2
� �þC2 bcf2 P1;2;Y ; P2;2;Y ;V1;V2

� �
C1 þC2

¼ C1 eucl 1; k;V1;V2ð ÞþC2alogistic r; s;V1;V2ð Þ
C1 þC2

¼ C1
V1 þV2

k þC2alogistic r; s;V1;V2ð Þ
C1 þC2

where

• Cj stands for the combination function weight reification Cj,Y(t)
• Pi,j for the combination function parameter reification Pi,j,Y(t)
• Vi for the state value Xi(t) of base state Xi.

This enables over time change from combination function eucln,k(..) to
combination function alogisticr,s(..) where first C1 = 1 and C2 = 0, and later
C2 becomes 1 and C1 becomes 0.

Using this combination function, by substitution for the variables it can easily be
verified that the requirement is indeed fulfilled. Note that it has to be guaranteed that
the case that all Cj become 0 does not occur. For a given combination function
adaptation principle, this easily can be achieved by normalising the Cj for each
adaptation step so that their sum always stays 1. In Box 10.3 an example of this
combination function relating to Fig. 10.1 is shown.

10.4 Deriving the Universal Combination Function
and Difference Equation for Reified Networks

Based on the preparation in the previous section, in the current section the universal
combination function and universal difference equation for reified networks which
apply to all roles at once are presented.
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10.4.1 Deriving the Universal Combination Function
for Reified Networks

It has been discussed above how in the reified network the causal relations for the
base network states can be defined separately for each of the three types of network
characteristics. By combining these three in one it can be found that this universal
combination function for base states Y does all at once:

c�Y ðH;C1; . . .;Cm;P1;1;P2;1; . . .;P1;m;P2;m;W1; . . .;Wk;V1; . . .;Vk;VÞ

¼ H
C1bcf1 P1;1;Y ; P2;1;Y ;W1V1; . . .;WkVk

� �þ � � � þCmbcfm P1;m;Y ; P2;m;Y ; W1V1; . . .;WkVk
� �

C1 þ � � � þCm
þð1� HÞV

¼ H½C1bcf1 P1;1;Y ;P2;1;Y ;W1V1; . . .;WkVk
� �þ � � � þCmbcfm P1;m;Y ;P2;m;Y ;W1V1; . . .;WkVk

� �
C1 þ � � � þCm

� V � þV

ð16Þ

where

• H stands for the speed factor reification HY(t)
• Cj for the combination function weight reification Cj,Y(t)
• Pi,j for the combination function parameter reification Pi,j,Y(t)
• Wi for the connection weight reification WXi;Y tð Þ
• Vi for the state value Xi(t) of base state Xi

• V for the state value Y(t) of base state Y

See Box 10.4 for a general derivation of this universal combination function and
Box 10.5 for an example of its use.

Box 10.4 Deriving the universal combination function and universal differ-
ence equation in the reified network for base states.
Here the overall situation is addressed in which all base network structure
characteristics x, η, c, p are reified together by reification statesW, H, C, and
P, respectively. The format for the new combination function c*Y(..) needs
arguments for all states in the following manner:

c�YðHYðtÞ;C1;Y tð Þ; . . .;Cm;Y tð Þ;P1;1;Y tð Þ;P2;1;Y tð Þ; . . .;P1;m;Y tð Þ;
P2;m;Y tð Þ;WX1;Y tð Þ; . . .;WXk ;Y tð Þ; X1 tð Þ; . . .;Xk tð Þ; YðtÞÞ

Assuming speed factor η*Y = 1, and connection weights are 1 for the reified
network, a new combination function c*Y(..) is needed such that

YðtþDtÞ ¼ YðtÞþ gY tð Þ½cY ðt;xX1;Y tð ÞX1 tð Þ; . . .;xXk ;Y tð ÞXkðtÞÞ � YðtÞ�Dt
YðtþDtÞ ¼ YðtÞþ ½c�Y ðHYðtÞ;C1;Y tð Þ; . . .;Cm;Y tð Þ;P1;1;Y tð Þ;P2;1;Y tð Þ; . . .;P1;m;Y tð Þ;P2;m;Y tð Þ;WX1;Y tð Þ; . . .;WXk;Y tð Þ; X1 tð Þ; . . .;
Xk tð Þ; Y tð ÞÞ � Y tð Þ�Dt
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So, the requirement for c*Y(..) is:

c�YðHY tð Þ; C1;Y tð Þ; . . .;Cm;Y tð Þ;P1;1;Y tð Þ;P2;1;Y tð Þ; . . .;P1;m;Y tð Þ;P2;m;Y tð Þ;WX1;Y tð Þ; . . .;WXk ;Y tð Þ; X1 tð Þ; . . .;Xk tð Þ; YðtÞÞ
¼ Y tð ÞþgY tð Þ½cYðt;xX1;Y tð ÞX1 tð Þ; . . .;xXk ;Y tð ÞXkðtÞÞ � YðtÞ�

Assume

cYðt; c1;Y tð Þ; . . .; cm;Y tð Þ; p1;1;Y tð Þ; p2;1;Y tð Þ; . . .; p1;m;Y tð Þ; p2;m;Y tð Þ;V1; . . .;VkÞ

¼ c1;Y tð Þbcf1 p1;1;Y tð Þ; p2;1;Y tð Þ;V1; . . .;Vk
� �þ � � � þ cm;Y tð Þbcfm p1;m;Y tð Þ; p2;m;Y tð Þ;V1; . . .;Vk

� �

c1;Y tð Þþ � � � þ cm;Y tð Þ

and Cj,Y(t) = cj,Y(t), HY(t) = ηY(t), WXi;Y tð Þ ¼ xXi;Y tð Þ, and Pi,jY(t) = pi,j,
Y(t) for all i and j.
Now given the above expression the new universal combination function
c*Y(…) has to be defined by:

c�YðH;C1; . . .;Cm;P1;1;P2;1; . . .;P1;m;P2;m;W1; . . .;Wk;V1; . . .;Vk;VÞ

¼ H
C1bcf1 P1;1;P2;1;W1V1; ::;WkVk

� �þ � � � þCmbcfm P1;m;P2;m;W1V1; ::;WkVk
� �

C1 þ � � � þCm
þð1� HÞV

where

• H stands for the speed factor reification HY(t)
• Cj for the combination function weight reification Cj,Y(t)
• Pi,j for the combination function weight reification Pi,j,Y(t)
• Wi for the connection weight reification WXi;Y tð Þ
• Vi for the state value of base state Xi

• V for the state value Y(t)

Then

c�Y ðHY tð Þ;C1;Y tð Þ; . . .;Cm;Y tð Þ;P1;1;Y tð Þ;P2;1;Y tð Þ; . . .;P1;m;Y tð Þ;P2;m;Y tð Þ;WX1;Y tð Þ; . . .;WXk ;Y tð Þ; X1 tð Þ; . . .;Xk tð Þ; YðtÞÞ

¼ gY tð Þ c1;Y tð Þbcf1 xX1;Y tð ÞX1 tð Þ; . . .;xXk;Y tð ÞXk tð Þ� �þ � � � þ cm;Y tð Þbcfm xX1;Y tð ÞX1 tð Þ; . . .;xXk ;Y tð ÞXk tð Þ� �

c1;Y tð Þþ � � � þ cm;Y tð Þ
þ 1� gY ðtÞÞYðtÞð Þ

¼ YðtÞþ gY ðtÞ½
c1;Y tð Þbcf1 p1;1;Y ; p2;1;Y ;xX1;Y tð ÞX1 tð Þ; . . .;xXk ;Y tð ÞXk tð Þ� �þ � � � þ cm;Y tð Þbcfm p1;m;Y ; p2;m;Y ;xX1;Y tð ÞX1 tð Þ; . . .; pXk ;Y tð ÞXk tð Þ� �

c1;Y tð Þþ � � � þ cm;Y tð Þ � YðtÞ�

¼YðtÞþ gY ðtÞ½cY t;xX1;Y ðtÞX1 tð Þ; . . .;xXk;Y ðtÞXk tð Þ� �� Y tð Þ�

So, this universal combination function c*Y(..) indeed fulfills the requirement.
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Box 10.5 An example of the use of the universal combination function for all
roles H, C, P and W.
Example for Fig. 10.1. For reification of connection weights, speed factors
and combination functions and their parameters together, and bcf1(..) is the
euclidean function eucl(..) with order n = 1 and bcf2(..) the logistic function
alogistic(..), and C1,Y(0) = 1, C2,Y(0) = 0 (so first eucl1,k(..) is assumed for Y),
the new combination function c*Y(..) for Y is (where P1,1 for the order n of
eucln,k(..) is assumed 1):

c�Y ðH;C1;C2;P1;1;P2;1;P1;2;P2;2;W1;W2;V1;V2;VÞ

¼ H
C1bcf1 P1;1;P2;1;W1V1;W2V2

� �þC2bcf2 P1;2;P2;2;W1V1;W2V2
� �

C1 þC2
þ ð1� HÞV

¼ H
C1eucl P1;1;P2;1;W1V1;W2V2

� �þC2 alogistic P1;2;P2;2;W1V1;W2V2
� �

C1 þC2
þ ð1� HÞV

¼ H
C1

W1V1 þW2V2
P2;1

þC2 alogistic P1;2;P2;2;W1V1;W2V2
� �

C1 þC2
þð1� HÞV

10.4.2 The Universal Difference Equation for Reified
Networks

In summary, the universal combination function found above in (8) is

c�Y ðH; C1; . . .;Cm;P1;1;P2;1; . . .;P1;m;P2;m;W1; . . .;Wk;V1; . . .;Vk;VÞ

¼ H
C1bcf1 P1;1;Y ;P2;1;Y ;W1V1; ::;WkVk

� �þ � � � þCmbcfm P1;m;Y ;P2;m;Y ;W1V1; . . .;WkVk
� �

C1 þ � � � þCm
þð1� HÞV

¼ H½C1bcf1 P1;1;Y ;P2;1;Y ;W1V1; . . .;WkVk
� �þ � � � þCmbcfm P1;m;Y ;P2;m;Y ;W1V1; . . .;WkVk

� �
C1 þ � � � þCm

� V � þV

Based on this, the following universal difference equation describes the
dynamics of each base state Y within the reified network; in cases of full reification
it has no state-specific parameters for network structure characteristics, only vari-
ables; therefore it is the same for all states Y:
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YðtþDtÞ ¼ Y tð Þ
þ c�YðHY tð Þ; C1;Y tð Þ; . . .;Cm;Y tð Þ;P1;1;Y tð Þ;P2;1;Y tð Þ; . . .;P1;m;Y tð Þ;P2;m;Y tð Þ;WX1;Y tð Þ; . . .;WXk ;Y tð Þ; X1 tð Þ; . . .;Xk tð Þ; YðtÞÞ � YðtÞ� �

Dt

¼ Y tð Þ

þ ½HY tð ÞC1;Y tð Þbcf1 P1;1;Y tð Þ;P2;1;Y tð Þ;WX1;Y tð ÞX1 tð Þ; . . .;WXk ;Y tð ÞXk tð Þ� �þ � � � þCm;Y tð Þbcfm P1;m;Y tð Þ;P2;m;Y tð Þ;WX1;Y tð ÞX1 tð Þ; . . .;WXk ;Y tð ÞXk tð Þ� �
C1;Y tð Þþ � � � þCm;Y tð Þ

þ ð1� HY tð ÞÞY tð Þ � Y tð Þ�Dt
¼ Y tð Þ

þ ½HY tð ÞC1;Y tð Þbcf1 P1;1;Y tð Þ;P2;1;Y tð Þ;WX1;Y tð ÞX1 tð Þ; . . .;WXk ;Y tð ÞXk tð Þ� �þ � � � þCm;Y tð Þbcfm P1;m;Y tð Þ;P2;m;Y tð Þ;WX1;Y tð ÞX1 tð Þ; . . .;WXk ;Y tð ÞXk tð Þ� �
C1;Y tð Þþ � � � þCm;Y tð Þ

�HY tð ÞY tð Þ�Dt
¼ Y tð Þ

þ HY tð Þ½C1;Y tð Þbcf1 P1;1;Y tð Þ;P2;1;Y tð Þ;WX1 ;Y tð ÞX1 tð Þ; . . .;WXk ;Y tð ÞXk tð Þ� �þ � � � þCm;Y tð Þbcfm P1;m;Y tð Þ;P2;m;Y tð Þ;WX1;Y tð ÞX1 tð Þ; . . .;WXk ;Y tð ÞXk tð Þ� �
C1;Y tð Þþ � � � þCm;Y tð Þ � Y tð Þ�Dt

ð17Þ

So, this universal difference equation is what defines the dynamics of the whole
base network within the reified network. Its differential equation variant is

dYðtÞ=dt

¼ HY ðtÞ½
C1;Y ðtÞbcf1 P1;1;Y tð Þ;P2;1;Y tð Þ;WX1;Y tð ÞX1 tð Þ; . . .;WXk ;Y tð ÞXk tð Þ� �þ � � � þCm;Y tð Þbcfm P1;m;Y tð Þ;P2;m;Y tð Þ;WX1;Y tð ÞX1 tð Þ; . . .;WXk ;Y tð ÞXk tð Þ� �

C1;Y tð Þþ � � � þCm;Y tð Þ � YðtÞ�

or by leaving out t:

dY=dt

¼ HY ½
C1;Ybcf1 P1;1;Y ;P2;1;Y ;WX1;YX1; . . .;WXk ;YXk

� �þ � � � þCm;Ybcfm P1;m;Y ;P2;m;Y ;WX1;YX1; . . .;WXk ;YXk
� �

C1;Y þ � � � þCm;Y
� Y �

ð18Þ

By structure-preserving implementation based on the above universal difference
equation, the software environment as described in Chap. 9 has been developed. As
can be seen there in Boxes 9.3 and 9.4, the above universal difference equation just
occurs in Matlab format in that software environment. However, starting from the
above universal difference equation, a different path to implementation can be
followed as well. This will be discussed in next section.

10.5 The Criterion for a Stationary Point for the Universal
Difference Equation

Recall the criterion for a stationary point:

Criterion for stationary points and equilibria in temporal-causal network
models

A state Y in an adaptive temporal-causal network model has a stationary point at t if
and only if
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gY ¼ 0 or cYðxX1;Y tð ÞX1ðtÞ; . . .;xXk ;Y tð ÞXkðtÞÞ ¼ YðtÞ

where X1, …, Xk are the states with outgoing connections to Y.
An adaptive temporal-causal network model is in an equilibrium state at t if and

only if for all states the above criteria hold at t.

Now suppose that some or all of the characteristics ηY, xXk ;Y , cY(..) are reified.
Then the above equation becomes the universal differential equation. What is the
criterion then? The format shown in (17) above can be rewritten into the format of
(18) above; when is the right hand side 0?

HY ½
C1;Ybcf1 P1;1;Y ;P2;1;Y ;WX1;YX1; . . .;WXk ;YXk

� �þ � � � þCm;Ybcfm P1;m;Y ;P2;m;Y ;WX1;YX1; . . .;WXk ;YXk
� �

C1;Y þ � � � þCm;Y
� Y � ¼ 0

This right hand side of this is 0 if and only if

HY ¼ 0 or

C1;Ybcf1 P1;1;Y ;P2;1;Y ;WX1;YX1; . . .;WXk ;YXk
� �þ � � � þCm;Ybcfm P1;m;Y ;P2;m;Y ;WX1;YX1; . . .;WXk ;YXk

� �
C1;Y þ � � � þCm;Y

¼ Y

Now notice that the part

C1;Ybcf1 P1;1;Y ;P2;1;Y ;WX1;YX1; . . .;WXk ;YXk
� �þ � � � þCm;Ybcfm P1;m;Y ;P2;m;Y ;WX1;YX1; . . .;WXk ;YXk

� �
C1;Y þ � � � þCm;Y

is precisely cY( xX1;Y tð Þ X1(t), …, xXk ;Y tð Þ Xk(t)) in the old criterion above, so this
has exactly the same form as the old criterion. Therefore the above criterion also
can be used when some or all of the characteristics ηY, xXk ;Y tð Þ, cY(..) are adaptive.

10.6 Deriving the Difference and Differential Equation
from the Role Matrices

In the role matrices all information is available to determine the difference or
differential equations. In Box 10.6 it is shown how that can be done. Here it is
assumed that the indicated matrix cell provides the static value from the matrix, or,
if not a static value, the indicated state name Xk for the adaptive value.

Box 10.6 Derivation of the basic differential equation for the network’s
dynamics from the role matrices.
Substitute every characteristic by the reference to the cell in the role matrix
where this is indicated. So, for the combination function of Xj, in Eq. (2) (use
the parameters pi;1;Xj and pi;2;Xj as first two arguments of a basic combination
function):
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• for the combination function weight ci;Xj
substitute mcfw j; ið Þ

• for the parameter pi;1;Xj or pi;2;Xj substitute mcfp j; 1; ið Þ resp. mcfp j; 2; ið Þ
Then from (2) the following expression in terms of the role matrices results:

cY ðV1; ::; VkÞ ¼
mcfw j; 1ð Þbcf1 mcfp j; 1; 1ð Þ;mcfp j; 2; 1ð Þ;V1; . . .;Vkð Þ

þ � � � þmcfw j;mð Þbcfm mcfp j; 1;mð Þ; mcfp j; 2;mð Þ;V1; . . .;Vkð Þ
mcfw j; 1ð Þþ � � � þmcfw j;mð Þ

2
664

3
775

ð19Þ

Suppose in the role base connectivity matrix mb the states specified in the
row for Xj are the states Xi1 , …, Xik ; these also can be denoted by mb(j, 1),
…, mb(j, k). To get the basic differential equation in terms of the role
matrices, as a next step:

• in (3) substitute the single impact xmb j;ið Þ;Xj
mb(j, i) for Vi

• for connection weight xmb j;ið Þ;Xj
substitute mcw j; ið Þ

Then the following is obtained:

cY ð. . .Þ ¼
mcfw j; 1ð Þbcf1 mcfp j; 1; 1ð Þ;mcfp j; 2; 1ð Þ;mcw j; 1ð Þmb j; 1ð Þ; . . .;mcw j; kð Þmb j; kð Þð Þ

þ � � � þmcfw j;mð Þbcfm mcfp j; 1;mð Þ;mcfp j; 2;mð Þ;mcw j; 1ð Þmb j:1ð Þ; . . .;mcw j; kð Þmb j; kð Þð Þ
mcfw j; 1ð Þþ � � � þmcfw j;mð Þ

2
664

3
775

ð20Þ

Now to get the differential equation, as a final step

• for the speed factor gXj
substitute ms j; 1ð Þ

Then the differential equation expression becomes:

dXj=dt ¼ ms j; 1ð Þ
mcfw j; 1ð Þbcf1 mcfp j; 1; 1ð Þ;mcfp j; 2; 1ð Þ;mcw j; 1ð Þmb j; 1ð Þ; . . .;mcw j; kð Þmb j; kð Þð Þ

þ � � � þmcfw j;mð Þbcfm mcfp j; 1;mð Þ;mcfp j; 2;mð Þ;mcw j; 1ð Þmb j:1ð Þ; . . .;mcw j; kð Þmb j; kð Þð Þ
mcfw j; 1ð Þ þ � � � þmcfw j;mð Þ � Xj

2
664

3
775

ð21Þ

Note that for states often only one combination function is selected and has
nonzero weight. Then expression (21) in Box 10.6 simplifies to (e.g., for bcf i(..)):

dXj=dt

¼ ms j; 1ð Þ½bcf i mcfp j; 1; ið Þ;mcfp j; 2; ið Þ;mcw j; 1ð Þmb j; 1ð Þ; . . .;mcw j; kð Þmb j; kð Þð Þ � Xj�
ð22Þ
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As a form of verification, this can be filled for state X2 in the example Social
Network from Chap. 2, Box 2.2, so j = 2, and i = 1 as can be seen in mcfw. It can
be found in mb that k = 9 for X2.

dX2=dt

¼ ms 2; 1ð Þ½bcf1 mcfp 2; 1; 1ð Þ;mcfp 2; 2; 1ð Þ;mcw 2; 1ð Þmb 2; 1ð Þ; . . .;mcw 2; 9ð Þmb 2; 9ð Þð Þ � X2�
ð23Þ

To get the idea, from the role matrices in Chap. 2, Box 2.2, all values can be found,
for example:

ms 2; 1ð Þ ¼ 0:5

mcfp 2; 1; 1ð Þ ¼ 1

mcfp 2; 2; 1ð Þ ¼ 1:55

mcw 2; 1ð Þ ¼ 0:1

mb 2; 1ð Þ ¼ X1

et cetera

This leads to:

dX2=dt

¼ 0:5½bcf1 1; 1:55; 0:1X1; 0:25X3; 0:15X4; 0:2X5; 0:1X6; 0:1X7; 0:25X8; 0:15X9; 0:25X10ð Þ � X2�

Finally, after also incorporating the combination function weights represented in
mcfw it provides:

dX2=dt

¼ 0:5½eucl 1; 1:55; 0:1X1; 0:25X3; 0:15X4; 0:2X5; 0:1X6; 0:1X7; 0:25X8; 0:15X9; 0:25X10ð Þ � X2�
¼ 0:5½0:1X1 þ 0:25X3 þ 0:15X4þ 0:2X5 þ 0:1X6 þ 0:1X7 þ 0:25X8 þ 0:15X9 þ 0:25X10

1:55
� X2�

ð25Þ

10.7 Compilation of the Universal Differential Equation
by Substitution

In the software as described in Chap. 9, the role matrices defining the model are
inspected at every simulation step. There is a second option for implementation by
separating this work from simulation time, in the form of compiling. Doing so, the
one universal difference equation as shown above is instantiated for each of the
states with the entries from the role matrices for that state, so it is replaced by
n specific difference equations with n the number of states. The resulting set of
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specific difference (or differential) equations can be run by any general purpose
software environment for differential equation simulation. As there are many quite
efficient software environments for this, for large-scale reified networks of thou-
sands or even millions of states such environments can be used for successful
simulation. This compilation process will be illustrated for the plasticity and
metaplasticity example network from Chap. 4 (see Fig. 4.3 and Box 4.1).

Suppose in role base connectivity matrixmb the states specified in the row for Xj

are the states Xi1 ; . . .; Xik , which also can be denoted by mb(j, 1), …, mb(j, k). So
consider again the universal differential equation

d = HY [ - ]

Here the parts that need substitution have been highlighted, and the role matrix
where the entries to be substituted can be found are indicated as follows:

Yellow HY from role matrix ms for speed factors
Green from role matrix mcfw for combination function weights
Blue from role matrix mcfp for combination function parameters
Purple from role matrix mcw for connection weights

Here it is assumed that the indicated matrix cell provides the static value from
the matrix, or, if not a static value, the indicated state name Xk for the adaptive
value. For example, in the role matrices in Chap. 4, Box 4.1 it can be seen that X1,
X3, X6, X7, X8, X9 have the standard difference equation with values for the char-
acteristics. So for these states there are just constant values substituted in the
universal difference equation. In other cases, such as X2, there are entries in role
matrices that are just names Xj of states; in these cases just that name Xj has to be
substituted. Note first the number m of combination functions has to be read from
the role matrices mcfw, and per state Y, the number k of incoming base connections
from role matrix mb. For example, from Chap. 4, Box 4.1 it is seen in role matrix
mcfw that m = 3 and for state X4 from the fourth row in role matrix mb that k = 2,
and the states with incoming connections (from mb) are X2 and X3.

That makes the following format in particular for X4

dX4=dt

¼ HX4 ½
C1;X4bcf1 P1;1;X4 ;P2;1;X4 ;WX2;X4X2;WX3;X4X3

� �þC2;X4bcf2 P1;2;X4 ;P2;2;X4 ;WX2X4X2;WX3;X4X3
� �þC3;X4bcf3 P1;3;X4 ;P2;3;Y ;WX2;X4X2;WX3;X4X3

� �
C1;X4 þC2;X4 þC3;X4

� X4�

So consider this state X4 further. In role matrix cfw for connection function
weights it can be seen that the weights Cj;X4 are values 0, 1 and 0, respectively.
Substituting these values makes the equation much simpler:

dX4=dt ¼ HX4 ½bcf2 P1;2;X4 ;P2;2;X4 ;WX2X4X2;WX3;X4X3
� �� X4�
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In role matrix mcw for connection weights it can be seen that state name X5 is
indicated for the connection from X2. So that name has to be substituted for WX2;X4 .
The other weight has just constant value 1 in role matrix mcw, so then 1 can be
substituted for WX3;X4 . Then this is obtained with the remaining spots for further
substitution highlighted:

dX4=dt ¼ HX4 ½bcf2 P1;2;X4 ;P2;2;X4 ;X5X2;X3
� �� X4�

Also in role matrix mcfp for the parameters for X4 there is an adaptive one,
namely the second parameter or the second combination function indicates X7 as an
adaptive value, so this has to be substituted for P2;2;X4 ; for P1;2;X4 the value 5 is
indicated. These substitutions make

dX4=dt ¼ HX4 ½bcf2 5;X7;X5X2;X3ð Þ�X4�

The speed factor 0.5 from role matrix ms can be substituted, and the function
alogisticr,s(..) can be substituted for bcf2 ::ð Þ:

dX4=dt ¼ 0:5½alogistic5;X7
X5X2;X3ð Þ � X4� ð26Þ

Similarly the following instantiated difference equations can be found

dX2=dt ¼ 0:5 alogistic5;X6
ðX1Þ � X2

� �

dX5=dt ¼ X8 hebbX9ðX2;X4;X5Þ � X5½ � ð27Þ

For these functions their detailed formulae can be substituted. For example, for
Hebbian learning

hebbX9ðX2;X4;X5Þ ¼ X2X4 1 � X5ð ÞþX9X5

this makes it

dX5=dt ¼ X8 X2X4 1 � X5ð ÞþX9X5 � X5½ � ð28Þ

The equations for the other states do not involve adaptive characteristics, so then
just values found in the role matrices are substituted. See Box 10.6 for the complete
outcome of the compilation.

This illustrates how the universal differential equation can be compiled by replacing
it by a set of specific differential equations for each of the states that can be entered in a
general purpose differential equation solver. This may imply a gain in efficiency
during simulation, which may be beneficial when large scale reified networks are
simulated, for example, with thousands of states. The compilation process itself can be
time consuming if done by hand, but in future that could also be automated.
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Box 10.6 The result of complete compilation for the reified network for
plasticity and metaplasticity

dX1/dt = 0
dX2/dt = 0.5 [alogistic5;X6

(X1) - X2]
dX3/dt = 0.2 [alogistic5,0.2(X2) – X3]
dX4=dt = 0.5 ½alogistic5;X7

X5X2;X3ð Þ � X4�
dX5/dt = X8 [X2X4 (1 − X5) + X9X5 − X5]
dX6/dt = 0.3 [alogistic5,0.7(−0.4X2, −0.4X4, X6) − X6]
dX7/dt = 0.3 [alogistic5,0.7(-0.4X2, -0.4X4, X6) − X7]
dX8/dt = 0.5 [alogistic5,1(X2, X4, −0.4 X5, X8) − X8]
dX9/dt = 0.1 [alogistic5,1(X2, X4, X5, X9) − X9]

There is a generic way to write the compiled differential equations down in a
symbolic manner, in terms of the cell references in the role matrices as follows.
Substitute every reification state by the reference to the cell in the role matrix where
this is indicated. So, for the equation of Xj:

• for HXj substitute ms j; 1ð Þ
• for Ci;Xj substitute mcfw j; ið Þ
• for Pi;1;Xj or Pi;2;Xj substitute mcfp j; 1; ið Þ or mcfp j; 2; ið Þ
• for WXi;Xj substitute mcw j; ið Þ
Then the following equation results

dXj=dt ¼ ms j; 1ð Þ½
mcfw j; 1ð Þbcf1 mcfp j; 1; 1ð Þ;mcfp j; 2; 1ð Þ;mcw j; 1ð Þmb j; 1ð Þ; . . .;mcw j; kð Þmb j; kð Þð Þ

þ � � � þmcfw j;mð Þbcfm mcfp j; 1;mð Þ;mcfp j; 2;mð Þ;mcw j; 1ð Þmb j:1ð Þ; . . .;mcw j; kð Þmb j; kð Þð Þ
mcfw j; 1ð Þþ � � � þmcfw j;mð Þ � Xj�

ð29Þ

When for states often only one combination function is selected and has nonzero
weight, (5) simplifies to (e.g., for bcf i(..)):

dXj=dt ¼ ms j; 1ð Þ½bcf i mcfp j; 1; ið Þ;mcfp j; 2; ið Þ;mcw j; 1ð Þmb j; 1ð Þ; . . .:;mcw j; kð Þmb j; kð Þð Þ � Xj�
ð30Þ

Here, to evaluate this expression, the references in the cells of the role matrices are
interpreted as strings; so, for example, if in that cell it is written X4, then that is
substituted in the above expression to get the resulting differential equation.
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10.8 Discussion

In this chapter a more in depth analysis was presented for the universal differential
or difference equation that is an important basis for reified temporal-causal net-
works. It was shown how this equation can be derived and it was illustrated by
some examples. Due to the existence of this specific universal difference or dif-
ferential equation, it can be guaranteed that any reification of a temporal-causal
network is itself also a temporal-causal network: the class of temporal-causal net-
works is closed under reification. That means that dedicated modeling and analysis
methods for temporal-causal networks can also be applied to reified temporal-causal
networks. In particular, reification can be done iteratively so that multilevel reified
network models are obtained that are very useful to model multiple orders of
adaptation. In addition, the fact that the universal difference or differential equation
is the same for all states, and has not a number of instantiations for different states,
makes that it indeed is universal. This supports structure preserving implementation
where the core of the program code for the computational reified temporal-causal
network engine has the same simple universal structure expressed in only a few
lines of code, as can be seen in Chap. 9, Sect. 9.4.3, Box 9.4.
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