
VU Research Portal

An expansion formula for type A and Kronecker quantum cluster algebras

Çanakç, lke; Lampe, Philipp

published in
Journal of Combinatorial Theory. Series A
2020

DOI (link to publisher)
10.1016/j.jcta.2019.105132

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Çanakç, ., & Lampe, P. (2020). An expansion formula for type A and Kronecker quantum cluster algebras.
Journal of Combinatorial Theory. Series A, 171, 1-30. [105132]. https://doi.org/10.1016/j.jcta.2019.105132

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 13. Dec. 2021

https://doi.org/10.1016/j.jcta.2019.105132
https://research.vu.nl/en/publications/a653c617-44ba-40da-9612-5da503ae4629
https://doi.org/10.1016/j.jcta.2019.105132


Journal of Combinatorial Theory, Series A 171 (2020) 105132
Contents lists available at ScienceDirect

Journal of Combinatorial Theory, 
Series A

www.elsevier.com/locate/jcta

An expansion formula for type A and Kronecker 

quantum cluster algebras ✩

İlke Çanakçı a, Philipp Lampe b

a Department of Mathematics, Vrije Universiteit, Amsterdam 1081 HV, 
the Netherlands
b School of Mathematics, Statistics and Actuarial Science (SMSAS), Canterbury 
CT2 7FS, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 November 2018
Accepted 27 August 2019
Available online 31 October 2019

Keywords:
Quantum cluster algebras
Non-commutative rings
Surface cluster algebras
Triangulations
Arcs
Snake graphs
Perfect matchings
Lattices
Stembridge phenomenon
Mathematical physics

We introduce an expansion formula for elements in quantum 
cluster algebras associated to type A and Kronecker quivers 
with principal quantization. Our formula is parametrized by 
perfect matchings of snake graphs as in the classical case. 
In the Kronecker type, the coefficients are q-powers whose 
exponents are given by a weight function induced by the 
lattice of perfect matchings. As an application, we prove that a 
reflectional symmetry on the set of perfect matchings satisfies 
Stembridge’s q = −1 phenomenon with respect to the weight 
function. Furthermore, we discuss a relation of our expansion 
formula to generating functions of BPS states.
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1. Introduction

Cluster algebras were introduced by Fomin–Zelevinsky [29–31] and by Berenstein–
Fomin–Zelevinsky [7] in a series of four articles to give an algebraic framework for the 
study of total positivity and dual canonical bases in Lie theory. Cluster algebras oc-
cur naturally in many areas of mathematics such as representation theory, geometry, 
combinatorics and mathematical physics.

An important class of cluster algebras, namely surface cluster algebras, was intro-
duced by Fomin–Shapiro–Thurston [27] using combinatorics of (oriented) surfaces with 
marked points. Subsequently, Fomin–Thurston [28] gave an intrinsic formulation of sur-
face cluster algebras, building on earlier works of Gekhtman–Shapiro–Vainshtein [34], 
Fock–Goncharov [25,26] and Penner [52], considering hyperbolic structures on the sur-
face. Surface cluster algebras are also important from a classification point of view since 
all but finitely many cluster algebras of finite mutation type are those associated to 
marked surfaces or of rank 2 by Felikson–Shapiro–Tumarkin [23,24].

Quantum deformations of cluster algebras were introduced by Berenstein–Zele-
vinsky [9] to develop a setting for a general notion of canonical bases. Their construction 
also builds on Fock–Goncharov [25,26] but is given in a more systematic way and, in 
particular, they show most structural results of cluster algebras in the quantum setting.

Combinatorial, geometric and representation theoretic aspects of surface cluster al-
gebras have been studied significantly in the classical case. An expansion formula for 
elements in surface cluster algebras was given by [47] extending on [64,62,46] and further 
combinatorial aspects of surface cluster algebras were explored in [14,15,17,16,13]. For 
some results on representation theoretic aspects of surface cluster algebras, see [6,10,18,
59,69]. In the quantum setting most of research goes into understanding cluster variables 
and a ‘good’ basis in representation theoretic terms (see for instance [40,58,57,56,55,60]), 
into identifying quantum cluster algebra structures in Lie theory (see [33,35–37]) or into 
the so-called positivity conjecture which is shown to be true in [21] for all quantum clus-
ter algebras. Representation theoretic expressions for quantum cluster variables were 
given by [60,61]; combinatorial expressions for quantum cluster variables were given by 
[41,42]; geometric descriptions for quantum cluster variables were given by [44]. Also see 
[8] for the non-commutative version of cluster algebras.

In the quantum setting, there is not much known solely for surface type quantum clus-
ter algebras. The aim of this article is to take this direction and extend the expansion 
formula to give explicit Laurent polynomial expressions for quantum cluster variables in 
the quantum cluster algebra of type An and for quantum cluster variables and certain 
other elements in the quantum cluster algebra of Kronecker type considered with princi-
pal quantization. More precisely, for surface type cluster algebras and for their quantum 
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analogues, cluster variables (and quantum cluster variables) are in bijection with (iso-
topy classes) of arcs in the surface. Furthermore, there is a planar graph, called snake 
graph, associated to every arc in the surface. The explicit formula of [47] for elements in 
the cluster algebra is parameterized by perfect matchings of snake graphs. In this article 
we show that they can also be used to give Laurent polynomial expansions for elements 
in the quantum cluster algebra.

To state our main result, we introduce some notation. The quantum deformation of 
a cluster algebra is obtained by making each cluster into a quasi-commuting family of 
variables. Then the quantum cluster algebra Aq is a Z[q±1/2]-subalgebra of the skew-field 
of fractions of the based quantum torus (see Section 2.3). The based quantum torus admits 
a Z[q±1/2]-basis indexed by Zm, denoted { M [a] | a ∈ Zm }.

Let Aq be the quantum cluster algebra with principal quantization associated with an 
adjacency quiver Q of a triangulation of a surface S which is either a disc with (finitely) 
many marked points on the boundary or an annulus with exactly one marked point in 
each boundary component.

Theorem A (Theorem 3.1, Theorem 4.20). With the notation above, let γ be a (general-
ized) arc in S, xγ be the corresponding element in Aq and G be the snake graph associated 
with γ. Then

xγ =
∑
P |=G

qΩ(P )M [ν(P )]

where ν(P ) ∈ Zm is a vector associated with a perfect matching P of G and where 
Ω(P ) = 0 if S is a disc and Ω(P ) is a half-integer given explicitly by the position of 
the perfect matching in the perfect matching lattice if S is the annulus with exactly one 
marked point in each of the boundary components.

We note that our formula coincides with the classical case [47,54] in the limit q → 1. 
For type A, the proof of the theorem uses work of Tran [65] on quantum F -polynomials.

We then get a curious application of Theorem A by comparing our expansion formula 
for self-crossing arcs in the Kronecker type with generating functions of BPS states. 
Relations between BPS states and cluster theory have been studied for example by [1,2,
4,19,20,32,66]. Córdova–Neitzke [20] consider a supersymmetric quantum field theory of 
quiver type whose line defects Wn are parametrized by natural numbers n and compute 
the generating function F (Wn) of BPS states recursively using a Coulomb branch formula 
for small n.

Question A (Question 4.23). Is the following statement true? For n ∈ N, the generat-
ing function F (Wn) coincides with the element associated to a self-crossing arc in the 
quantum cluster algebra of Kronecker type.

We answer the question affirmatively for n ∈ {0, 1, 2, 3, 4}, see Proposition 4.22.
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In an independent work, Huang [39] provides an expansion formula for quantum clus-
ter algebras with boundary coefficients generalizing [47]; here the q-powers of the terms 
are given by recursions in the perfect matching lattice.

If we plug in q = 1 in Theorem A, we obtain the classical expansion formula. The 
substitution q = −1 is related to Stembridge’s q = −1 phenomenon. The snake graph 
G associated with a (non-crossing) arc in the annulus with exactly one marked point 
on each boundary component admits an axis of symmetry. Reflection across this axis 
induces an involution σ on the set of perfect matchings Match(G). Stembridge’s q = −1
phenomenon [64] asserts that the number of fixed points under this involution is equal 
to the evaluation of coefficients at q = −1. We define a map w as a slight variation of 
the map Ω. We then get the following result.

Theorem B (Corollary 5.6). Let p, r ∈ N. There exists X(q) ∈ Z[q] such that the follow-
ing conditions hold.

(1) Up to a power of q±1/2, the polynomial X(q) is equal to 
∑

P qΩ(P ) where the sum 
runs over all P in the graded component Match(G)p,r of the perfect matching lattice.

(2) The value X(−1) is equal to the number of fixed points of the restriction of σ to 
Match(G)p,r.

In other words, the quadruple (Match(G)p,r, σ, X(q), w) satisfies Stembridge’s q = −1
phenomenon.

The paper is organized as follows. Section 2 is devoted to background on surface 
cluster algebras, snake graphs and general introduction to quantum cluster algebras. 
Section 3 concerns with the expansion formula for quantum cluster algebras of type A. 
Section 4 gives the formula for the Kronecker type and links it to BPS states. Finally in 
Section 5, we establish a connection to Stembridge’s q = −1 phenomenon.

Acknowledgments: We would like to thank Hugh Thomas for stimulating discussions and 
for bringing Córdova–Neitzke’s paper to our attention. We would like to thank Dylan 
Allegretti for insightful comments on a previous version of the manuscript.

2. Background on (quantum) cluster algebras and snake graphs

2.1. Cluster algebras

Let us recall some basic features of cluster algebras. For more details we refer the 
reader to the literature.

Let m ≥ n be natural numbers. In this article we use the notations [r] = { k | 1 ≤
k ≤ r } and [r, s] = { k | r ≤ k ≤ s } for r, s ∈ N. Moreover, we denote by I the n × n

identity matrix and by 0 the n × n zero matrix.
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An integer m × n matrix B is called an exchange matrix if the submatrix of B on 
rows and columns [n] is skew-symmetrizable. We denote by Ex(m, n) the set of all m ×n

exchange matrices. A central notion in cluster theory is the mutation μk : Ex(m, n) →
Ex(m, n) for k ∈ [n], defined by B = (bij) �→ μk(B) with

μk(B)i,j =
{
−bij , if i = k or j = k;
bij + (bik|bkj | + |bik|bkj) /2, otherwise.

A cluster is a tuple (x, y) = (x1, . . . , xn, y1, . . . , ym−n) of m algebraically independent 
variables over Q. The elements xi with i ∈ [n] are called cluster variables and the 
elements yi with i ∈ [1, m − n] are called frozen variables. A seed is a triple (B, x, y)
formed by a cluster and an exchange matrix. We extend the notion of mutation to seeds 
in the following way. The mutation of a seed (B, x, y) at k ∈ [n] is the seed (μk(B), x′, y)
where x′ is obtained from x by replacing xk with

x′
k = 1

xk

⎛⎜⎜⎝ ∏
1≤i≤n
bik>0

xbik
i

∏
n+1≤i≤m

bik>0

ybiki−n +
∏

1≤i≤n
bik<0

x−bik
i

∏
n+1≤i≤m

bik<0

y−bik
i−n

⎞⎟⎟⎠ .

The cluster algebra A(B, x, y) is the subalgebra of Q(x, y) generated by all cluster vari-
ables in all seeds obtained from (B, x, y) by sequences of mutations.

Definition 2.1 (Principal coefficients and C-matrices).

(a) Let B̃ be an n × n exchange matrix. The (2n) × n block matrix

B =
(
B̃
I

)

is said to be the extension of B̃ with principal coefficients.
(b) Suppose we mutate B along a sequence i = (ir, . . . , i2, i1) of mutable indices to 

obtain a matrix

μi(B) = Bi =
(
B̃i
Ci

)
.

Then we call Ci the C-matrix (or coefficient matrix) of Bi. The column vectors of 
Ci are called c-vectors.

Let B̃ be an n × n skew-symmetrizable matrix and let B be its extension with 
principal coefficients as above. We choose an initial cluster with cluster variables 
x = (x1, x2, . . . , xn) and frozen variables y = (y1, y2, . . . , yn).
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Suppose we mutate (B, x, y) along a sequence i = (ir, . . . , i2, i1) of mutable indices to 
obtain a seed (Bi, xi, yi). Let x′ ∈ xi. Then we denote the c-vector corresponding to the 
column of C with the same label as x′ by c(x′).

Fomin–Zelevinsky [31, Proposition 6.1] prove that the assignments xi �→ ei and yi �→
−bi, where ei is the i-th standard basis vector and bi is the i-th column vector of B̃, 
define a Zn-grading of the Laurent polynomial ring Z[x±1

i , y±i | i ∈ [n] ] such that each 
cluster variable x′ ∈ A(B, x, y) is homogeneous.

Definition 2.2 (G-matrices). The g-vector g(x′) of a cluster variable x′ ∈ A(B, x, y) is 
given by the degree of x′ with respect to the Zn-grading. The G-matrix of a cluster 
x′ = (x′

1, x
′
2, . . . , x

′
n) is defined to be the matrix with columns g(x′

1), g(x′
2), . . . , g(x′

n).

Suppose we mutate (B, x, y) along a sequence i = (ir, . . . , i2, i1) of mutable indices 
to obtain a seed (Bi, xi, yi). Nakanishi [50, Theorem 4.1] and Nakanishi–Zelevinsky [51, 
Theorem 1.2] prove that the C-matrix of Bi and the G-matrix of xi possess the tropical 
duality CiG

T
i = I.

2.2. Surface cluster algebras and snake graphs

The focus of this article is on cluster algebras of type An and of Kronecker type 
each of which can be realized as a cluster algebra of surface type [27,28]. We will recall 
surface cluster algebras in this section following the exposition in [14,47] in order to give 
a self-contained exposition of the paper.

Let S be a connected oriented 2-dimensional Riemann surface (with possibly empty) 
boundary and M be a finite set of marked points. We further assume that M is contained 
in the boundary of S (though this is not necessary for the general construction) and that 
each boundary component contains at least one marked point. If S is a disc, we let M
to have at least 4 marked points. We call a pair (S, M) bordered surface with marked 
points.

Definition 2.3 (Arcs, compatible arcs, triangulation). Let S be a bordered surface with 
marked points. An arc of S is a non-self-intersecting curve, considered up to isotopy, 
with endpoints at marked points of S. We further assume that an arc is disjoint from 
the boundary of S except the endpoints, which might coincide, and it does not cut out 
a monogon or digon. Two arcs are compatible if they do not intersect in the interior 
of S, that is, there are representatives in the corresponding isotopy classes that do not 
intersect except the endpoints may coincide. A triangulation T is a maximal collection 
of pairwise distinct compatible arcs. The connected components in the complement S\T
are called triangles.

Let S be a bordered surface with marked points and let T = {τ1, . . . , τn} be a tri-
angulation of S. Every triangle Δ is bounded by three arcs τr, τs, τt. Without loss of 
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Fig. 1. The domain of an arc (left) and the construction of its snake graph (right).

generality we may assume that, when going through the boundary of Δ in positive di-
rection, we pass the arcs in order τr → τs → τt → τr. To every triangle Δ we associate 
the n × n matrix BΔ = (bΔij) with entries brs = bst = btr = 1, bsr = bts = brt = −1, and 
bij = 0 otherwise.

Definition 2.4 (Surface cluster algebras). Let S be a bordered surface with marked points 
and T = {τ1, . . . , τn} be a triangulation of S.

• For each τi ∈ T with i ∈ [n] we associate formal variables xi and yi. Then (x, y) =
(x1, . . . , xn, y1, . . . , yn) is an initial cluster.

• The signed adjacency matrix of T is B̃ =
∑

Δ BΔ where the sum runs over all 
triangles. The adjacency quiver QT of (S, T ) is a quiver with vertex set [n] such that 
the number of arrows i → j is equal to bij if bij > 0 and zero otherwise.

• The surface cluster algebra A(S, T ) with principal coefficients is the cluster algebra 
generated by the seed (B, x, y) where B is the principal extension of B̃.

2.2.1. Snake graphs
In this section, we recall the construction of snake graphs of [47]. We fix a surface S

and a triangulation T = {τ1, τ2, . . . , τn}.
Let γ be a (generalized) arc in (S, T ). We consider the domain dom(γ) of γ in (S, T ), 

that is, dom(γ) is the union of all the triangles γ crosses (counted with multiplicity), see 
Fig. 1.

Fix an orientation of γ. For each crossing of γ with T , we will associate a weighted 
tile, i.e. a square of fixed side length drawn in the plane with sides aligned horizontally 
and vertically, as follows:

• if γ crosses an arc τi, the associated weighted tile Gi has face weight w(Gi) = τi and 
edge weights induced by the quadrilateral Qi in T which contains τi as diagonal, see 
Fig. 1;

• glue successive tiles Gi1 , Gi2 , . . . , Gik as follows: set the diagonals τk and τk+1 from 
the top-left corner to the bottom-right corner of Gk and Gk+1, respectively and glue 
the tiles Gk and Gk+1 along the edge with weight induced from the third side of the 
triangle bounded by τk and τk+1 in T , see Fig. 1.
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Remark 2.5. The snake graph Gγ associated to an arc γ in a triangulated surface is simply 
an unfolding of the domain of γ where zig-zag pieces in the triangulation correspond to 
straight subgraphs in Gγ and fans in the triangulation correspond to corner subgraphs 
in Gγ . The edge and face weights on Gγ are induced by the triangulation T .

Definition 2.6. A perfect matching of a graph G is a set of edges of G such that each 
vertex v in G is incident to precisely one edge e in P . We denote by Match(G) the set 
of perfect matchings of the graph G, and for brevity we write P |= G if P is a perfect 
matching of G.

The set Match(Gγ) of a snake graph Gγ admits a rich combinatorial structure which 
we will discuss next.

Definition 2.7 (Perfect matching lattice). The perfect matching graph L(G) of a snake 
graph G is defined as follows: its vertices are the perfect matchings of G, and two vertices 
are connected by an edge if the perfect matchings are obtained from each other by a 
single twist.

By [47], the perfect matching graph admits a lattice structure with maximal and 
minimal perfect matchings given by those containing only boundary edges of G. We refer 
to [47] for a precise definition of the minimum and maximum perfect matchings and 
explain the lattice later in more detail.

Example 2.8. The minimal and maximal perfect matchings of the snake graph 

are and and its perfect matching lattice is given in Fig. 2.

The twist admits a nice combinatorial interpretation. For every perfect matching P of 
a snake graph G, we consider the symmetric difference Sym(P ) = (P ∪Pmin)\(P ∩Pmin). 
The set Sym(P ) defines a union of cycles in the planar realization of G. We say that a 
tile G of G is twisted if it lies in the interior of one of these cycles. The set of twisted tiles 
of P is denoted by Twist(P ). Furthermore, for an arc τ we define Twist(P )τ to be the 
subset of Twist(P ) consisting of the tiles G with face weight τ . The name is justified by 
a theorem of Musiker–Schiffler–Williams according to which the set Twist(P ) is equal to 
the set of tiles twisted along any shortest path from Pmin to P in L(G).

Musiker–Schiffler–Williams [48, Theorem 5.2] show that the graph L(G) is the Hasse 
diagram of the poset Match(G, ≤) when we define P1 ≤ P2 if and only if Twist(P1) ⊆
Twist(P2). In fact, it is a distributive lattice with minimal element Pmin and maximal 
element Pmax. Their theorem is a consequence of work by Propp [54, Theorem 2].
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Fig. 2. The lattice of perfect matchings of a snake graph.

2.2.2. Laurent polynomials associated to snake graphs
Let S be a surface with triangulation T = {τ1, τ2, . . . , τn}. Let γ be an arc in S and 

G its associated snake graph. Let P be a perfect matching of G. Then

• we assign formal variables xτi , yτi to each arc τi in T , and often use the abbreviations 
xi = xτi and yi = yτi ;

• the weight monomial x(P ) of P is given by x(P ) =
∏
e∈P

xw(e);

• the height monomial y(P ) of P is given by y(P ) =
∏

G∈Twist(P )

yw(G);

• the crossing monomial of γ with respect to T is given by cross(γ, T ) =
∏
j∈J

xj where 

J is the index set of the arcs in S that γ crosses;
• the Laurent polynomial associated to G with respect to T is defined as

xG = 1
cross(γ, T )

∑
P |=G

x(P )y(P ).

Theorem 2.9 ([47]). Let S be a surface with triangulation T and let A(S) be the cluster 
algebra associated to S. Let γ be a (generalized) arc of S and G be its associated snake 
graph with respect to T and xG be the Laurent polynomial associated to γ. Then xG = xγ.

Remark 2.10. Let xγ ∈ A(S, T ) be the cluster variable associated to an arc γ. The weight 
monomial from Section 2.2.2 is related to the g-vector of xγ with respect to the initial 
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seed associated with T , see [48, Proposition 6.2]; namely

g(xγ) = deg (x(Pmin)) − deg (cross(T , γ)) ∈ Zn. (1)

In the above situation, for every perfect matching P of Gγ we put

ν(P ) = (deg (x(P )) − deg (cross(T , γ)) , y(P )) ∈ Z2n.

2.3. Quantum cluster algebras

In this section we give a brief introduction to quantum cluster algebras. The section 
follows Berenstein–Zelevinsky [9]. Let q1/2 be an indeterminate and let q−1/2 be its 
formal inverse.

Definition 2.11 (Principal quantization). Let B̃ be an n × n skew-symmetric matrix. We 
consider the extension with principal coefficients B of size (2n) × n and a (2n) × (2n)
matrix Λ as follows:

B =
(
B̃
I

)
, Λ =

(
0 −I

I −B̃

)
.

We call the pair (B, Λ) the principal quantization pair of B̃ and call Λ the principal 
quasi-commutation matrix of B̃.

Zelevinsky [67, Example 0.5] proves that the principal quantization pair (B, Λ) at-
tached to a skew-symmetric n × n matrix B̃ is always compatible, that is, the matrices 
obey the relation BTΛ = (I 0).

Fomin–Zelevinsky’s sign coherence conjecture asserts that the entries in a c-vector are 
either all non-negative or all non-positive. Fomin–Zelevinsky [31, Proposition 5.6] prove 
that the sign coherence conjecture is equivalent to the constant term conjecture for 
F -polynomials. This conjecture holds true by a result of Derksen–Weyman–Zelevinsky 
[22, Theorem 1.7]. Later different proofs of sign-coherence were given by Nagao [49, 
Theorem 9.9], Plamondon [53, Theorem 3.13] and Gross–Hacking–Keel–Kontsevich [38, 
Corollary 5.5]. We use sign-coherence in the proof of the following proposition.

Proposition 2.12. Let B̃ be an n × n skew-symmetric matrix. If we mutate the principal 
quantization pair (B, Λ) along a sequence i = (ir, . . . , i2, i1) of mutable indices, then

μi(B,Λ) = (Bi,Λi) =
((

B̃i
Ci

)
,

(
0 −GT

i
Gi GiB̃

T
i G

T
i

))
.

Proof. By construction Bi = μi(B) is obtained from B by ordinary matrix multiplica-
tion, hence the form of Bi follows from Definition 2.1. We can show by induction that 
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the upper left part of Λi is zero. Let i′ = (ir−1, . . . , i1). By definition Λi = ET
ε Λi′Eε, 

where we use the same notation as Berenstein–Zelevinsky [9, Equation (3.2)]. The sign 
coherence of the c vectors implies there is a always a sign ε such that Eε is block diago-
nal, which proves that the upper left part of Λi is zero. Moreover, the pair (Bi, Λi) must 
satisfy the compatibility condition BT

i Λi = (I 0) so that the lower left part of Λi is 
equal to Gi due to the relation CiG

T
i = I. The upper right part of Λi must be equal to 

−GT
i due to skew-symmetry. The structure of the lower right part can be read off from 

the compatibility condition. �
Suppose that Λ is a skew-symmetric integer m ×m matrix. The based quantum torus

T (Λ) is a Z[q±1/2]-algebra with Z[q±1/2]-basis { M [a] | Zm } indexed by Zm; on basis 
elements the multiplication is defined as

M [a]M [b] = q
1
2a

T ΛbM [a + b] (2)

for all a, b ∈ Zm.
The based quantum torus T (Λ) is an Ore domain and it is contained in its skew field 

of fractions F . We refer the reader to [9] for details about this construction. Note that F
is an algebra over Q(q1/2). We say that two elements f1, f2 ∈ F are q-commuting if there 
exists an integer k such that fifj = qk/2fjfi. Examples of q-commuting elements include 
the basis elements of the based quantum torus: for all a, b ∈ Zm we have M [a]M [b] =
qa

T ΛbM [b]M [a].
A quantum cluster is a tuple (x′, y′) = (x′

1 . . . , x
′
n, y

′
1, . . . , y

′
m−n) of m pairwise 

q-commuting elements in F . The elements x′
i with i ∈ [n] are called quantum cluster 

variables and the elements y′i with i ∈ [1, m − n] are called frozen variables. The quan-
tum cluster (x, y) = (M [e1], . . . ,M [em]), where ei denotes the i-th standard basis vector 
of Zm, is called the initial quantum cluster. The exponents arising in the q-commutativity 
relations among the quantum cluster and frozen variables in a quantum cluster (x′, y′)
assemble a skew-symmetric matrix Λ′. We call Λ′ the q-commutativity matrix of the 
quantum cluster. We denote the basis elements in the based quantum torus T (Λ′) by 
MΛ′ [a] with a ∈ Zm.

A quantum seed is a tuple (B′, Λ′, x′, y′) such that (x′, y′) is a quantum cluster with 
q-commutativity matrix Λ′ and there exists a positive integer k such that (B′)TΛ =
(kI 0). The last property is called the compatibility condition.

The mutation μk(B′, Λ′, x′, y′) = (B′′, Λ′′, x′′, y′′) of the quantum seed (B′, Λ′, x′, y′)
at k ∈ [n] is constructed as follows. The quantum cluster (x′′, y′′) is obtained from 
(x′, y′) by replacing x′

k with

x′′
k = MΛ′

(
−ek +

∑
bki>0

bikei

)
+ MΛ′

(
−ek −

∑
bik<0

bikei

)
.
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This cluster consists again of pairwise q-commuting elements by the compatibility condi-
tion. Then Λ′′ is defined as the q-commutativity matrix of (x′′, y′′). Lastly, B′′ = μk(B′)
is given by the usual mutation of exchange matrices.

The quantum cluster algebra Aq(B, Λ, x, y) is the subalgebra of F generated by all 
quantum cluster variables and frozen variables in all quantum seeds that can be obtained 
from (B, Λ, x, y) by sequences of mutations. We also use the shorthand notation Aq(B, Λ)
for Aq(B, Λ, x, y).

3. An expansion formula for quantum cluster algebras of type A

3.1. A quantum expansion formula for type A

Let n ≥ 1 be a natural number. We consider the marked oriented surface (S, M)
which is formed by a disc S with a set M of n + 3 marked points on the boundary. The 
cluster algebra A(S, M) has finite type An. We fix a triangulation T of (S, M), and we 
denote by Q the quiver of T . Without loss of generality we may assume that Q is a 
quiver of type An.

Let (B, Λ) be the principal quantization pair of the signed adjacency matrix of Q. We 
are interested in the quantum cluster algebra Aq(B, Λ). We denote the initial quantum 
cluster by (x, y) = (xi, yi)i∈[1,n].

Our goal is to prove the following theorem about the expansion of quantum cluster 
variables as Z[q±1/2]-linear combinations of quantum Laurent monomials in the initial 
quantum cluster variables. As it turns out, the coefficients are all equal to 1.

Theorem 3.1. If γ is any arc in (S, M), then

xγ =
∑

P |=Gγ

M [ν(P )] ∈ Aq(B,Λ).

The proof of Theorem 3.1 will be given at the end of Section 3.

3.2. Quantum F-polynomials

The main tool in the proof of the expansion formula is quantum F -polynomials. 
These polynomials are a quantized version of the F -polynomials from Fomin–Zelevinsky’s 
fourth cluster algebra article [31]. Quantum F -polynomials have been introduced and 
studied by Tran [65]. Let us recall some notions and results from Tran’s article.

Definition 3.2 (ŷ-variables). Suppose i ∈ [1, n]. Let bi be the i-th column of the exchange 
matrix B. We put ŷi = M [bi]. Moreover, for every subset S = {s1, . . . , sr} ⊆ [1, n] with 
s1 < . . . < sr we set

ŷS = q
1
2

∑
1≤i<j≤r

bsj,si
ŷs1 · · · ŷsr .
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Fig. 3. A successor-closed subset and the corresponding perfect matching.

For two indices i, j ∈ [1, n] we have bTi Λbj = −bji so that

ŷiŷj = M [bi]M [bj ] = q
1
2 bTi ΛbjM [bi + bj ] = q−

1
2 bjiM [bi + bj ] = q−bji ŷj ŷi.

We conclude that ŷS is a standard basis element in Berenstein–Zelevinsky’s quantum 
torus. More precisely, if we denote by bS =

∑
s∈S bs the sum of the column vectors of B

indexed by elements of S, then ŷS = M [bS ].
We consider an arc γ and the associated snake graph Gγ . The weights of the tiles of 

Gγ are given by a subset T ⊆ Q0 such that the full subquiver of Q on the vertex set T
is connected.

Definition 3.3 (Properties of subsets). Suppose that S ⊆ T .

(1) We say that S is successor-closed if the following condition holds. If j ∈ S, i ∈ T

and there exists an arrow j → i in Q, then i ∈ S.
(2) We denote by Φ(S) the number of connected components of the full subquiver of Q

on the vertex set S.

Note that successor-closed subsets of T are in natural bijection with perfect matchings 
of Gγ . More precisely, for every successor-closed subset S ⊆ T there is a unique perfect 
matching P such that the weights of the twisted tiles of P are equal to S.

Example 3.4. Suppose that T = {1, 2, 3, 4, 5} and that the full subquiver of Q on the 
vertex set T is given by the quiver on the left of Fig. 3. Then the set S = {1, 3, 4} is 
successor-closed. In the middle of the figure we display the snake graph and its minimal 
perfect matching. Twisting the tiles labelled 1, 3, 4 yields the perfect matching on the 
right of the figure.

In this example we have |S| = 3 and Φ(S) = 2. Note that the number of arrows inside 
S is equal to 1, which is equal to the difference of the previous two numbers.

We can generalize the observation in the following way.

Proposition 3.5. Suppose that S ⊆ T is successor-closed. Then

|S| − | { (k, j) ∈ S × T | (k, j) ∈ Q1 }| = Φ(S).
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Proof. The full subquiver of Q on the vertex set S is a (directed) forest, i.e. a dis-
joint union of (directed) trees. In every connected component the difference between the 
number of vertices and the number of arrows is equal to 1. �

Recall that gγ denotes the g-vector of the cluster variable xγ. Tran, see [65, Proposition 
7.3], shows that the entry of the g-vector at an index s ∈ Q0 is equal to

(gγ)s = |{ j ∈ T | ∃(s → j) ∈ Q1 }| − 1. (3)

In the next statement we view the g-vector as an element in Z2n via the canonical 
inclusion Zn ↪→ Z2n.

Theorem 3.6 (Tran [65], Theorems 5.3, 7.4). If we put

Fγ =
∑
S⊆T

q
1
2Φ(S)ŷS

where the sum runs over all successor-closed subsets S of T , then

xγ = FγM [gγ ].

The element Fγ is called the quantum F -polynomial.

Proof of Theorem 3.1. We apply Tran’s Theorem 3.6. Using ŷS = M [bS ], where bS is 
the sum of the column vectors of B indexed by S, we obtain

xγ =
∑
S

q
1
2Φ(S)M [bS ]M [gγ ] =

∑
S

q
1
2Φ(S)+1

2 bTSΛgγM [bs + gγ ].

We show that Φ(S) + bTSΛgγ is zero for every successor-closed subset S ⊆ T . This claim 
completes the proof because it implies that every coefficient in the expansion of xγ as a 
linear combination of standard basis elements is equal to 1. Recall that the last n entries 
of gγ are 0 by convention. This implies bTi Λgγ = (gγ)i for every i ∈ S. We use equation 
(3), sum the expression over all i ∈ S and apply Proposition 3.5 to obtain the result. �
4. An expansion formula for the Kronecker quantum cluster algebra

4.1. The setup

We consider the marked oriented surface (S, M) which is formed by an annulus S and 
a set M ⊆ ∂S of two marked points, one on each boundary component. Fig. 4 shows a 
triangulation T of (S, M) by two arcs τ1, τ2. The quiver of T is the Kronecker quiver 
1 ⇒ 2. The quiver of its principal extension, denoted Q, is also shown in Fig. 4. Note 
that Q is an ice quiver with two mutable vertices 1, 2 and two frozen vertices 1′, 2′.
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Fig. 4. A triangulation of an annulus and its associated quiver.

Fig. 5. The exchange graph of the Kronecker cluster algebra.

The triangulation gives rise to a seed of the associated cluster algebra A(x, y, B). The 
set of cluster variables of this cluster algebra admits a natural parametrization by the set 
of integers Z, see Fig. 5. Hence the set of cluster variables of A(x, y, B) can be written as 
{ xn | n ∈ Z }; in this notation the exchange relations become xn−1xn+1 = x2

n+yn−1
1 yn−2

2
for n ≥ 2 and equations for n ≤ 1 can be written down similarly.

Fomin–Zelevinsky’s Laurent phenomenon asserts that xn ∈ Z[x±1
1 , x±1

2 , y1, y2] for ev-
ery n ∈ Z. There are two different explicit formulae to write xn as a Laurent polynomial 
in x. The first formula we state is a variation of a theorem by Caldero–Zelevinsky [12, 
Theorem 4.1]. The authors establish their formula by computing Euler characteristics of 
quiver Grassmannians and by using Caldero–Chapoton’s formula [11]. Later Zelevinsky 
[68] gave a simple inductive proof of the formula.

Theorem 4.1 (cf. Caldero–Zelevinsky). For every n ≥ 0 we have

xn+3 = x−n−1
1 xn+2

2 +
∑

p+r≤n

(
n− r

p

)(
n + 1 − p

r

)
x2p−n−1

1 x2r−n
2 yn+1−r

1 yp2 .

It is easy to see that the cluster variable xn+3 is attached to an arc γ in (S, M) that 
crosses τ1 exactly n + 1 times and crosses τ2 exactly n times. Moreover, it can be seen 
that the snake graph Gn associated to γ is given as follows.

Definition 4.2 (Snake graphs of Kronecker type). The snake graph Gn is the following 
straight snake graph consisting of 2n +1 tiles of alternating face weight 1 and 2 and with 
exactly n + 1 tiles of weight 1 and exactly n tiles of weight 2; the top and bottom edges 
of the tile of face weight 1 have edge weights 2 and the tile of face weight 2 has edge 
weights 1:



16 İ. Çanakçı, P. Lampe / Journal of Combinatorial Theory, Series A 171 (2020) 105132
For some discussion which will become clear later, we also need the snake graph Hn, 
which is obtained from Gn by removing the last tile (with weight 1). Note that Hn

contains exactly n tiles with face weight 1 and exactly n tiles with face weight 2.

The perfect matching Pmin of Gn is formed by all the edges of weight 1 and its 
weight monomial is equal to x(Pmin) = x2n+2

2 . The following statement is a precedent 
of Theorem 2.9 due to [45,46].

Theorem 4.3 (Musiker–Propp, Musiker–Schiffler). Let n ≥ 0. Then we have

xn+3 = 1
xn+1

1 xn
2

⎛⎝ ∑
P |=Gn

x(P )y(P )

⎞⎠ .

Remark 4.4. Suppose that n ≥ 0. The cluster variable x−n corresponds to an arc in 
(S, M) that crosses τ1 exactly n times and crosses τ2 exactly n +1 times. Its snake graph 
is obtained from Gn by reversing the roles of the indices 1 and 2. There are formulae for 
x−n analogous to Theorem 4.1 and 4.3 and all other statements made later in the text. 
For better readability we refrain from writing down statements for both x−n and xn+3
and focus on (quantum) cluster variables with positive indices throughout the text.

In the following we abbreviate Twist(P )τi by Twist(P )i for i ∈ {1, 2}.

Definition 4.5 (Level sets). Let p, r, n be natural numbers. The level set Match(Gn)p,r is 
the set of perfect matchings P of Gn with |Twist(P )1| = n + 1 − r and |Twist(P )2| = p. 
(In other words, Match(Gn)p,r is the set of perfect matchings obtained from Pmin by 
twisting n + 1 − r tiles of weight 1 and p tiles of weight 2.) In this case we also write 
P |=r

p Gn. Similarly, we let Match(Hn)p,r be the set of perfect matchings P of Hn with 
|Twist(P )1| = n − r and |Twist(P )2| = p. In this case we also write P |=r

p Hn.

Remark 4.6. Let p, r, n be natural numbers.

(a) Let P ∈ Match(Gn)\{Pmin}. If a tile G ∈ Twist(P ) has face weight 2, then its 
neighboring tiles G′ and G′′ must belong to Twist(P ) as well. In particular, we must 
have |Twist(P )1| ≥ |Twist(P )2| +1. It follows that Match(Gn)p,r = ∅ unless p +r ≤ n

or (p, r) = (0, n + 1).
(b) A perfect matching satisfies P |=r

p Gn if and only if y(P ) = yn+1−r
1 yp2 .

(c) Combining Theorems 4.1 and 4.3 we see that |Match(Gn)p,r| =
(
n−r
p

)(
n+1−p

r

)
if 

p + r ≤ n. Note that there is a direct combinatorial proof of this identity by 
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Musiker–Propp [45, Section 2.1]. The same authors also show that |Match(Hn)p,r| =(
n−r
p

)(
n−p
r

)
if p + r ≤ n.

4.2. The quantum cluster algebra of Kronecker type

We consider the quantum cluster algebra Aq(B, Λ) constructed from the principal 
quantization pair

B =
(
B̃
I

)
=

⎛⎜⎝ 0 2
−2 0
1 0
0 1

⎞⎟⎠ , Λ =
(

0 −I

I −B̃

)
=

⎛⎜⎝0 0 −1 0
0 0 0 −1
1 0 0 −2
0 1 2 0

⎞⎟⎠ .

The initial seed of Aq(B, Λ) is denoted by (x, y, B, Λ). In particular, we have x1x2 =
x2x1, y1y2 = q−2y2y1 and xiyi = q−1yixi for i ∈ {1, 2}.

By a slight abuse of notation we denote the quantum cluster variables of Aq(B, Λ)
again by xn with n ∈ Z. By equation (1) the g-vector of xn+3 is

g(xn+3) = deg(x(Pmin)) − deg(cross(T , γ)) =
(

0
2n + 2

)
−
(
n + 1
n

)
=

(
−n− 1
n + 2

)
(4)

where γ is the arc corresponding to xn+3. From this we can deduce that the G- and 
C-matrix for the cluster (xn+3, xn+2, y1, y2) are

G =
(
−n− 1 −n
n + 2 n + 1

)
, C = G−T =

(
−n− 1 n + 2
−n n + 1

)
.

So according to Proposition 2.12 we obtain the q-commutativity relations xn+3y1 =
qn+1y1xn+3, xn+3y2 = q−n−2y2xn+3, and y1y2 = q−2y2y1. These relations imply that

x−1
n+2y

n+2
1 yn+1

2 = q1−2(n+2)(n+1)yn+1
2 yn+2

1 x−1
n+2.

Hence the exchange relations become

xn+2xn+4 = x2
n+3 + q−1/2+(n+2)(n+1)yn+2

1 yn+1
2 (n ≥ 0),

xn+4xn+2 = x2
n+3 + q1/2+(n+2)(n+1)yn+2

1 yn+1
2 (n ≥ 0).

4.3. An expansion formula via quantum binomial coefficients

Let us recall some definitions from quantum algebra. Given two natural numbers k, n
with k ≤ n. The quantum integer, the quantum factorial and the quantum binomial 
coefficient are defined as
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Fig. 6. The perfect matchings of H1.

[n]q = qn/2 − q−n/2

q1/2 − q−1/2 , [n]q! =
n∏

k=1

[k]q,
[n
k

]
q

= [n]q!
[k]q![n− k]q!

∈ Q(q±1/2).

For example, [0]q = 0, [1]q = 1 and [2]q = q1/2 + q−1/2. Using the geometric series we 
may write a quantum integer as [n]q =

∑n−1
k=0 q

(2k+1−n)/2 ∈ Z[q±1/2]. More generally, it 
is well-known that 

[
n
k

]
q

also lies in the smaller ring Z[q±1/2].
For all n, k ≥ 0 a quantum version of Pascal’s rule asserts that

[n
k

]
q

= q−
n−k

2

[
n− 1
k − 1

]
q

+ q
k
2

[
n− 1
k

]
q

. (5)

Moreover, quantum integers, factorials and binomial coefficients specialize to the or-
dinary integers, factorials and binomial coefficients, respectively, in the limit q = 1.

The following theorem is a generalization of Theorem 4.1 to the quantum cluster alge-
bra Aq(B, Λ). For related formulae for the quantum cluster variables in quantum cluster 
algebras of Kronecker type with different quantizations see Rupel [60, Proposition 1.1]
and Lampe [41, Theorem 5.3]. Szántó [64, Theorem 4.1] provides another quantization of 
Caldero–Zelevinsky’s theorem by counting cardinalities of Kronecker quiver Grassman-
nians over finite fields.

Theorem 4.7. For n ≥ 0 the following relation holds:

xn+3 = x−n−1
1 xn+2

2 +
∑

p+r≤n

[
n− r

p

]
q

[
n + 1 − p

r

]
q

M [2p− n− 1, 2r − n, n + 1 − r, p] .

We will sketch a proof of the theorem later in this section. First, let us introduce some 
notation.

Definition 4.8 (Quantum loop element). Put

s1 =
∑

P |=H1

M [v(P )] .

Remark 4.9.

(a) The snake graph H1 has exactly 3 perfect matchings, see Fig. 6. Hence we can write 
explicitly s1 = M [−1, 1, 0, 0] + M [−1, −1, 1, 0] + M [1, −1, 1, 1].
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(b) The element belongs to the quantum cluster algebra. More precisely,

s1 = M [1,−1, 1, 1] + M [−1,−1, 1, 0] + M [−1, 1, 0, 0] + qM [1, 1, 0, 1] − qM [1, 1, 0, 1]

= (M [2,−1, 0, 1] + M [0,−1, 0, 0]) (M [−1, 0, 1, 0] + M [−1, 2, 0, 0]) − qM [1, 1, 0, 1]

= x0x3 − q1/2x1x2y2 ∈ Aq(B,Λ).

(c) The name s1 is chosen in accordance with the name of the corresponding non-
quantized element in the classical cluster algebra A(x, y, B), see Zelevinsky [68]. 
This element plays a crucial role in the construction of bases of A(x, y, B). It is 
associated with the loop inside the annulus.

Lemma 4.10. The equation xns1 = xn+1 + qxn−1y1y2 holds for every n ≥ 2.

Proof. We prove the lemma by induction on n. Suppose that n = 2. By definition we 
have

x2s1 = x2 (M [−1, 1, 0, 0] + M [−1,−1, 1, 0] + M [1,−1, 1, 1])

= x−1
1 x2

2 + q−1/2x−1
1 y1 + qx1y1y2 = x3 + qx1y1y2.

For the induction step it is enough to show that for every n ≥ 3,

x−1
n xn+1 + qx−1

n xn−1y1y2 = x−1
n−1xn + qx−1

n−1xn−2y1y2

⇔ xn−1xn+1 + qx2
n−1y1y2 = x2

n + qxnxn−2y1y2.

By the exchange relations the last equation is equivalent to

x2
n + q−1/2+(n−1)(n−2)yn−1

1 yn−2
2 + qx2

n−1y1y2

= x2
n + q

(
x2
n−1 + q1/2+(n−2)(n−3)yn−2

1 yn−3
2

)
y1y2

⇔ q−1/2+(n−1)(n−2)yn−1
1 yn−2

2

= qq1/2+(n−2)(n−3)q2(n−3)yn−1
1 yn−2

2 .

This equation is true so that we have proved the lemma. �
Sketch of the proof of Theorem 4.7. Using Lemma 4.10 we can proceed in a similar way 
as in the proof of the closely related formula from [41, Theorem 5.3]. �
Definition 4.11 (Quantum coefficients). For natural numbers p, r, n with p + r ≤ n we 
denote the coefficients in Theorem 4.7 by

cp,r,n =
[
n− r

p

]
q

[
n + 1 − p

r

]
q

.
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Moreover we set c0,n+1,n = 1 and cp,r,n = 0 otherwise. Furthermore, for p + r ≤ n we 
put

dp,r,n =
[
n− r

p

]
q

[
n− p

r

]
q

and set dp,r,n = 0 for p + r > n.

Remark 4.12. The ring homomorphism Z[q±1/2] → Z[q±1/2] defined by q1/2 �→ q−1/2 is 
called bar involution. It is usually denoted by (·). Theorem 4.7 implies that the coeffi-
cients in the quantum Laurent expansion with respect to Berenstein–Zelevinsky’s basis 
elements are bar invariant, that is, cp,r,n = cp,r,n for all p, r, n. For a related result about 
F -polynomials see Tran [65, Corollary 6.5]. For related results about quantum cluster 
varieties see Allegretti–Kim [5, Theorem 1.2 (4)] and Allegretti [3, Theorem 4.7 (3)].

4.4. Expansion formulae via perfect matchings

Notation 4.13. Let us denote the 2n + 1 tiles of the snake graph Gn in Definition 4.2 by

G−n, G−(n−1), . . . , Gn−1, Gn

from left to right. Similarly, denote the 2n tiles of the snake graph Hn by

H−n, H−(n−1), . . . , Hn−2, Hn−1

from left to right.

Definition 4.14 (Exponents of tiles). Let n ≥ 0.

(1) The function α assigns every tile of Gn the half-integer α(Gi) = i/2 if Gi has weight 
1, and the half-integer α(Gi) = −i/2 if Gi has weight 2.

(2) The function α assigns every tile of Hn the half-integer α(Hi) = (i − 1)/2 if Hi has 
weight 1, and the half-integer α(Hi) = −i/2 if Hi has weight 2.

An example is shown in Fig. 7. For every Kronecker snake graph G (e.g. G = Gn or 
G = Hn for some n ≥ 1) define a map

α : Match(G) → 1
2Z, P �→

∑
G∈Twist(P )

α(G).

Definition 4.15 (Expansions from matchings). For n ≥ 0 we put

rn =
∑

P |=Gn

qα(P )M [ν(P )], sn =
∑

P |=Hn

qα(P )M [ν(P )].
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Fig. 7. The map α for G3 (left) and H3 (right).

Notice that α(P ) = 0 for every perfect matching P of H1. Hence the formula for s1 in 
Definition 4.15 agrees with the formula for s1 given in Definition 4.8. Note that s0 = 1
since H0 (the snake graph with no tiles consisting of a single vertical unweighted edge) 
has exactly 1 perfect matching P with ν(P ) = 0 and α(P ) = 0.

Lemma 4.16. The following recursive formulae are true.

(a) rnx1 = q1/2sny1 + rn−1x2, (b) x2sn = rn−1 + q−1/2M [1, 0, 1, 1]sn−1.

Proof. By definition we have

rnx1 =

⎛⎝ ∑
P |=Gn

qα(P )M [ν(P )]

⎞⎠M [1, 0, 0, 0] =
∑

P |=Gn

qα(P )M [ν(P )]M [1, 0, 0, 0]. (6)

Notice that the minimum perfect matching of Gn satisfies ν(Pmin)= (−n− 1,n + 2,0,0)T . 
Here, the first two entries are given by the g-vector (−n −1, n +2) of the cluster variable, 
see equations (1) and (4), and the last two entries are zero because Pmin does not admit 
twisted tiles with weights 1 or 2. Whenever we twist a tile of weight 1 we loose two edges 
of weight 2. Whenever we twist a tile of weight 2 we gain two edges of weight 1. Hence 
every perfect matching satisfies

ν(P ) = (−n− 1 + 2y2(P ), n + 2 − 2y1(P ), y1(P ), y2(P ))T .

Here we use yi(P ) as a shorthand notation for |Twist(P )i| for i ∈ {1, 2}. From this we 
can conclude that

1
2ν(P )TΛ

⎛⎜⎝1
0
0
0

⎞⎟⎠ = 1
2ν(P )T

⎛⎜⎝0 0 −1 0
0 0 0 −1
1 0 0 −2
0 1 2 0

⎞⎟⎠
⎛⎜⎝1

0
0
0

⎞⎟⎠ = 1
2y1(P ).

This term arises as the exponent in the multiplication of the two basis elements in 
equation (6). It follows that

rnx1 =
∑

P |=Gn

qα(P )+1/2y1(P )M [ν(P ) + (1, 0, 0, 0)T ].
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We split the sum into two parts. Let e be the rightmost vertical edge of Gn. The map 
P �→ P ′ = P\{e} induces a bijection between perfect matchings of Gn that contain e
and perfect matchings of the graph Hn. For such a perfect matching P the rightmost 
tile of weight 1 is necessarily twisted. We obtain∑

P |=Gn

e∈P

qα(P )+ 1
2y1(P )M [ν(P ) + (1, 0, 0, 0)T ]

=
∑

P ′|=Hn

qα(P ′∪{e})+ 1
2 |Twist1(P ′∪{e})|M [ν(P ) + (1, 0, 0, 0)T ]

=
∑

P ′|=Hn

qα(P ′∪{e})+ 1
2 |Twist1(P ′)|+ 1

2M [ν(P ′) + (0, 0, 1, 0)T ]

=

⎛⎝ ∑
P ′|=Hn

qα(P ′∪{e})+ 1
2 |Twist1(P ′)|+ 1

2x1(P ′)−y2(P ′)M [ν(P ′)]

⎞⎠M [0, 0, 1, 0]

when we denote ν(P ′) = (x1(P ′), x2(P ′), y1(P ′), y2(P ′))T . We claim that this term is 
equal to q1/2sny1. To prove the claim it is enough to show that the exponent in the term 
in the last line of the previous equation equals α(P ′) + 1/2. The term x1(P ′) − 2y2(P ′)
is invariant under twisting since we gain two edges of weight 1 whenever we twist a 
tile of weight 2. This expression becomes −n for the minimum matching. Hence every 
perfect matching P ′ of Hn satisfies x1(P ′) − 2y2(P ′) = −n. We have α(P ) − α(P ′) =
−1

2y1(P ′) + 1
2 (n + 1) because the map α gets shifted by −1/2 for every tile with label 1

when passing from P to P ′, see Fig. 7, and P contains the twisted rightmost tile with 
exponent (n + 1)/2. This establishes the claim.

Next we investigate the second part of the sum. If e is not contained in a perfect 
matching P of Gn, then P contains the rightmost horizontal edges e1 and e2 of Gn. The 
map P �→ P ′′ = P\{e1, e2} induces a bijection between perfect matchings of Gn that 
contain e1 and e2 and perfect matchings of the graph Gn−1. For such a perfect matching 
P the two rightmost tiles with weights 1 and 2 are not twisted. We obtain∑

P |=Gn

e1,e2∈P

qα(P )+ 1
2y1(P )M [ν(P ) + (1, 0, 0, 0)T ]

=
∑

P ′′|=Gn−1

qα(P ′′∪{e1,e2})+ 1
2 |Twist1(P ′′∪{e1,e2})|M [ν(P ) + (1, 0, 0, 0)T ]

=
∑

P ′′|=Gn−1

qα(P ′′∪{e1,e2})+ 1
2 |Twist1(P ′′)|M [ν(P ′′) + (0, 1, 0, 0)T ]

=

⎛⎝ ∑
P ′′|=Gn−1

qα(P ′′∪{e1,e2})+ 1
2 |Twist1(P ′′)|− 1

2y2(P ′′)M [ν(P ′′)]

⎞⎠M [0, 1, 0, 0].



İ. Çanakçı, P. Lampe / Journal of Combinatorial Theory, Series A 171 (2020) 105132 23
We claim that this term is equal to rn−1x2. We show that the exponent of the term in the 
last line of the previous equation equals α(P ′′). By construction y2(P ) = |Twist2(P ′′)|. 
We have α(P ) −α(P ′′) = −1

2 |Twist1(P ′′)| + 1
2 |Twist1(P ′′)| because the map α gets shifted 

by ±1/2 (depending on the weight) when passing from P to P ′′.
This completes the proof of part (a). Part (b) is shown in a similar way. �

Definition 4.17 (Coefficients from perfect matchings). Let p, r, n be natural numbers such 
that p ≤ n + 1 and r ≤ n. We put

c̃p,r,n =
∑

P |=Gn

y1(P )=n+1−r
y2(P )=p

qα(P ), d̃p,r,n =
∑

P |=Hn

y1(P )=n−r
y2(P )=p

qα(P ).

Remark 4.18. Let n ≥ 0. A combination of Definitions 4.15 and 4.17 yields

rn =
∑
p,r≥0

c̃p,n+1−r,nM [2p− n− 1, 2r − n, n + 1 − r, p],

sn =
∑
p,r≥0

d̃p,n−r,nM [2p− n, 2r − n, n− r, p].

Lemma 4.19. The following recursions hold for all p, r, n.

(a) q
n+1−r

2 c̃p,n+1−r,n = q
n+1

2 d̃p,n−r,n + q
p
2 c̃p,n+1−r,n−1

(b) q−
p
2 d̃p,n−r,n = c̃p,n−r,n−1 + q−

n−r
2 d̃p−1,n−r−1,n−1

(c) q
n+1−r

2 cp,r,n = q
n+1

2 dp,r,n + q
p
2 cp,n+1−r,n−1

(d) q−
p
2 dp,r,n = cp,r,n−1 + q−

n−r
2 dp−1,r,n−1

Proof. We substitute the expressions from Remark 4.18 in Lemma 4.16 and compare 
coefficients. Evaluation of Lemma 4.16 (a) at M [2p − n, 2r − n, n + 1 − r, p] yields part 
(a) of this lemma, evaluation of Lemma 4.16 (b) at M [2p − n, 2r− n + 1, n − r, p] yields 
part (b) of this lemma.

For part (c) we use the quantum Pascal rule to get

cp,r,n =
[
n− r

p

]
q

(
q

r
2

[
n− p

r

]
q

+ q−
n+1−p−r

2

[
n− p

r − 1

]
q

)
= q

r
2 dp,r,n + q−

n+1−p−r
2 cp,r−1,n−1.

Part (d) is proved in the same way as part (c). �
The following theorem is a generalization of Theorem 4.3 to the quantum cluster 

algebra of Kronecker type Aq(B, Λ).
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Theorem 4.20. For every n ≥ 0 the following equality holds true:

xn+3 =
∑
p,r≥0

c̃p,n+1−r,nM [2p− n− 1, 2r − n, n + 1 − r, p] =
∑

P |=Gn

qα(P )M [v(P )] ;

sn =
∑
p,r≥0

d̃p,n−r,nM [2p− n, 2r − n, n− r, p] =
∑

P |=Hn

qα(P )M [ν(P )].

Moreover, sn ∈ Aq(B, Λ).

Proof. We have to show that the equalities cp,r,n = c̃p,n+1−r,n and dp,r,n = d̃p,n−r,n are 
both true for all natural numbers p, r, n. We prove these statements by induction on n.

For the base case suppose that n = 0. In this case the statement for the coefficients d
and d̃ is true because by construction d0,0,0 = d̃0,0,0 = 1 is the only non-zero coefficient. 
For the statement for the coefficients c and c̃, note that the single tile G in the snake 
graph G1 satisfies α(G) = 0. Hence α(P ) = 0 for both perfect matchings P |= G1. This 
implies c̃0,0,0 = c̃0,1,0 = 1 and c̃p,r,0 = 0 otherwise. On the other hand, using [0]q = 1
and [1]q = 1 in Definition 4.11 we see that c0,0,0 = c0,1,0 = 1 and cp,r,0 = 0 otherwise.

The induction step follows from Lemma 4.19. If the statements are true for n − 1, 
then parts (b) and (d) of the lemma imply the statement for the coefficients d and d̃, 
and using this equality together with parts (a) and (c) of the lemma we establish the 
equality of coefficients c and c̃.

Lemma 4.16 (a) implies sny1 ∈ Aq(B, Λ). Since the frozen variable y1 is invertible we 
can conclude that sn lies in Aq(B, Λ). �
Remark 4.21. Some authors do not invert the frozen variables in the definition of a 
(quantum) cluster algebra. Using the recursions from Lemmas 4.10 and 4.16, one can 
prove by induction that sn belongs to the quantum cluster algebra without inverted 
frozen variables.

4.5. BPS states

There is a connection between the elements

sn =
∑

P |=Hn

qα(P )M [ν(P )]

associated to self-crossing arcs and Bogomol’nyi–Prasad–Sommerfield states (BPS states) 
in supersymmetric 4-dimensional quantum field theories. Córdova–Neitzke, see [20], con-
sider a supersymmetric quantum field theory of quiver type whose line defects Wn are 
parametrized by natural numbers n. The authors consider a generating function F (Wn)
of BPS states such that the coefficients are counting BPS states of a given electromag-
netic central charge and a given angular momentum (in the x3 direction).
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Córdova–Neitzke use a Coulomb branch formula, see [20, Equation (3.22)], to com-
pute F (Wn) recursively. The Coulomb branch formula is based on work of Manschot–
Pioline–Sen, see [43], which relates the Coulomb branch to moduli spaces of quiver 
representations. Córdova–Neitzke compute F (Wn) explicitly for n ∈ {0, 1, 2, 3, 4}. A di-
rect comparison with our expansion formula establishes the following proposition.

Proposition 4.22. For n ∈ {0, 1, 2, 3, 4} we have sn = F (Wn).

Question 4.23. Does sn = F (Wn) hold for all n ∈ N?

Several authors have studied variations of the question in the classical commutative 
setup. Gaiotto–Moore–Neitzke [32, Section 5] conjectured that if q = 1, then F (Wn) is 
equal to a Fock–Goncharov canonical basis element in a cluster variety. Córdova–Neitzke 
give a second method to calculate F (Wn) using the Higgs branch. Allegretti [3] relates 
generating functions of BPS states calculated via the Higgs branch to elements in cluster 
algebras.

5. The Stembridge phenomenon

Stembridge’s q = −1 phenomenon [63, Section 0] asserts the following: Suppose that 
we have a finite set B of combinatorial origin together with a natural weight function w ∈
B → Z. We consider the Laurent polynomial X(q) =

∑
b∈B qw(B) ∈ Z[q±1] with X(1) =

|B|. Moreover suppose that B admits a natural involution σ : B → B. Stembridge’s 
phenomenon asserts that often X(−1) = |Bσ| is equal to the number of fixed points in 
B under the action of σ : B → B.

We consider the quantum cluster algebra attached to the Kronecker quiver from Sec-
tion 4. Suppose that p, r, n are natural numbers with p + r ≤ n. The graph Gn admits a 
horizontal and a vertical axis of symmetry. We consider the reflection across the vertical 
axis of symmetry. The reflection induces an involution σ : Match(Gn) → Match(Gn). Note 
that σ leaves the height monomial y(P ) of a perfect matching invariant. By restriction 
we obtain an involution σ : Match(Gn)p,r → Match(Gn)p,r. To construct the polynomial 
X let us introduce the following variation of quantum numbers and quantum binomial 
coefficients.

Definition 5.1 (Gaussian integers and binomial coefficients and evaluations at q = −1). 
Let k, n be natural numbers with k ≤ n.

(a) The polynomial (n)q = (qn−1)/(q−1) = 1 +q+ . . .+qn−1 ∈ Z[q] is called Gaussian 
integer. The Gaussian factorial is defined as (n)q! = (n)q(n −1)q . . . (1)q ∈ Z[q]. The 
Gaussian binomial coefficient is defined as (nk )q = (n)q!/[(k)q!(n − k)q!] ∈ Z[q].

(b) The natural numbers (n)−1, (n)−1! and (nk )−1 are defined to be the evaluations of 
the polynomials in part (a) at q = −1.
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Remark 5.2. The Gaussian integers and quantum integers agree up to a power of q1/2. 
In particular,

[n]q = q
1−n

2
qn − 1
q − 1 = (n)q, [n]q! = q−n(n−1)/4(n)q!,

[n
k

]
q

= q−k(n−k)/2
(n
k

)
q
,

cp,r,n = q−[r+(n−r−p)(p+r)]/2
(
n− r

p

)
q

(
n + 1 − p

r

)
q

.

Let us describe the evaluation of Gaussian binomial coefficients at q = −1.

Lemma 5.3. For all natural numbers n, k with k ≤ n the following equation holds:

(
n

k

)
−1

=
{

0 if k ≡ 1 (mod 2) and n ≡ 0 (mod 2);(�n/2	
�k/2	

)
otherwise.

Proof. In this proof, all congruences are read modulo 2. The polynomial (n)q ∈ Z[q] is 
divisible by q + 1 if and only if n is even. In this case we may write (n)q = (q + 1)hn for 
some polynomial hn ∈ Z[q] with hn(−1) = n/2. If n is odd, then (n)−1 = 1.

Thus, when we write the rational function (nk )q in lowest terms, the irreducible poly-
nomial q + 1 occurs with multiplicity n/2� − k/2� − (n − k)/2�. This multiplicity 
is equal to 1 if k ≡ 1 and n ≡ 0, and it is 0 otherwise. In particular, 

(
n
k

)
−1 = 0 if 

(k, n) ≡ (1, 0). For (k, n) �≡ (1, 0) (mod 2) we may evaluate 
(
n
k

)
q

= (n)q!/[(k)q!(n − k)q!]
at q = −1 by replacing every (l)q with 1 for every odd l and every (l)q with l/2 for every 
even l. The desired equality follows. �

The following corollary is a direct consequence of Lemma 5.3.

Corollary 5.4. Suppose that p, r, n are natural numbers with p + r ≤ n. If (p, r, n) is 
congruent to (1, 0, 0), (1, 1, 1), (0, 1, 1), or (1, 1, 0) modulo 2, then(

n− r

p

)
−1

(
n + 1 − p

r

)
−1

= 0.

If (p, r, n) is congruent to (0, 0, 0), (0, 1, 0), (0, 0, 1), or (1, 0, 1) modulo 2, then(
n− r

p

)
−1

(
n + 1 − p

r

)
−1

=
(
(n− r)/2�

p/2�

)(
(n + 1 − p)/2�

r/2�

)
.

Theorem 5.5. Assume that p, r, n are natural numbers such that p + r ≤ n. Then(
n− r

p

)
−1

(
n + 1 − p

r

)
−1

= |{P ∈ Match(Gn)p,r | σ(P ) = P }|.

Proof. We distinguish the following cases:
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(1) Assume that n is even. In this case the central tile of Gn has weight 1.
(1.1) Assume that p is even.

(1.1.1) Assume that r is even. Then for every P |=r
p Gn the number of tiles 

G ∈ Twist(G)1 of weight 1, namely n +1 − r, is odd. Hence the central 
tile must be twisted.
A perfect matching P |=r

p Gn with σ(P ) = P is uniquely determined 
by a perfect matching of the full subgraph isomorphic to Hn/2 on the 
left of the central tile (because this determines the structure of P on 
the right of the central tile). Hence the number of matchings P |=r

p Gn

with σ(P ) = P is equal to the cardinality of the set Match(Hn/2)p′,r′

where p′ = p/2 and r′ = r/2. Remark 4.6 and Lemma 5.3 imply that 
|{P ∈ Match(Gn)p,r | σ(P ) = P }| is equal to(

(n− r)/2
p/2

)(
(n− p)/2

r/2

)
=

(
n− r

p

)
−1

(
n + 1 − p

r

)
−1

.

(1.1.2) Assume that r is odd. Then for every P |=r
p Gn the number of tiles 

G ∈ Twist(G)1 of weight 1, namely n + 1 − r, is even. Hence the 
central tile cannot be twisted, and locally at the central tile the perfect 
matching contains the top and the bottom edges.
A perfect matching P |=r

p Gn with σ(P ) = P is uniquely determined by 
a perfect matching of the full subgraph isomorphic to G(n−2)/2 on the 
left of the central tile (because this determines the structure of P on 
the right of the central tile). Hence the number of matchings P |=r

p Gn

with σ(P ) = P is equal to the cardinality of the set Match(G(n−2)/2)p′,r′

where p′ = p/2 and r′ = (r + 1)/2. Remark 4.6 and Lemma 5.3 imply 
that |{P ∈ Match(Gn)p,r | σ(P ) = P }| is equal to(

(n− r − 1)/2
p/2

)(
(n− p)/2
(r − 1)/2

)
=

(
n− r

p

)
−1

(
n + 1 − p

r

)
−1

.

(1.2) Assume that p is odd. Any perfect matching P |=r
p Gn with σ(P ) = P arises 

from Pmin by twisting the same number of tiles labelled 2 on each side of the 
central tile. Hence |{P ∈ Match(Gn)p,r | σ(P ) = P }| = 0. The desired equality 
follows from Corollary 5.4.

(2) The case when n is odd can be dealt with in an analogous way. �
Corollary 5.6. Let p, r, n be natural numbers with p + r ≤ n. Put

X(q) =
(
n− r

p

)
q

(
n + 1 − p

r

)
q

= q[r+(n−r−p)(p+r)]/2
∑

P |=r
pGn

qα(P )

and define a map w : Match(Gn)p,r → N by
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P �→ r + (n− r − p)(p + r)
2 + α(P ).

Then the quadruple (Match(Gn)p,r, σ, X, w) satisfies Stembridge’s q = −1 phenomenon.
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