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Variations of the Itai-Rodeh Algorithm
for Computing Anonymous Ring Size

Wan Fokkink(B) and Guus Samsom

Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
w.j.fokkink@vu.nl, guus samsom@hotmail.com

Abstract. We propose two adaptations of the probabilistic Itai-Rodeh
algorithm for computing the size of an anonymous asynchronous ring.
This Monte Carlo algorithm (inevitably) allows for wrong outcomes. Our
adaptations reduce the chance that this happens. Furthermore, we pro-
pose a new algorithm that has a better message complexity.

1 Introduction

In an anonymous network, the nodes do not carry a unique ID. Typically, this is
the case if there are no unique hardware IDs (for example, LEGO Mindstorms).
Also, when each node has a unique ID but cannot reveal it to the other nodes, this
is similar to having no unique IDs at all. For instance, nodes may want to hide
such information because of security concerns (e.g. [1]), or because transmitting
and storing IDs may be deemed too expensive, as is the case in the IEEE 1394
serial bus [10].

Itai and Rodeh [11] proposed probabilistic distributed algorithms for anony-
mous rings with asynchronous message-passing communication. One algorithm
elects a leader in such networks, another computes its number of nodes. The
leader election algorithm is inevitably Las Vegas, meaning that it contains infi-
nite executions in which no leader is ever elected. Moreover, it must require that
the nodes know the ring size. The ring size algorithm is inevitably Monte Carlo,
meaning that it contains finite executions in which a wrong ring size is computed.
The general idea of both algorithms is that nodes repeatedly choose a random
ID and then perform an election or ring size algorithm for non-anonymous rings.
If a conflict due to identical IDs by different nodes is detected, a new election or
size estimation round may be started.

Here we propose some adaptations to the Itai-Rodeh ring size algorithm.
First, we let nodes stick to the first random ID they choose, which reduces the
chance of a wrong outcome, because each new choice of random IDs may contain
an undesirable symmetry that leads to a premature termination of the execution.
Second, we prioritize the order in which a node treats incoming messages, to push
estimates of the ring size at the nodes upward as quickly as possible. Finally,
we propose an alternative ring size algorithm that has a worst-case message
complexity of O(N2), as opposed to the message complexity O(N3) of the Itai-
Rodeh ring size algorithm.
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It is with great pleasure that we make this contribution to the Festschrift on
the occasion of the 60th birthday of Catuscia Palamidessi. She has made impor-
tant research contributions on probabilistic systems and anonymity, especially
with regard to security and in the context of the π-calculus.

2 Election in Anonymous Rings

We say that a distributed computer network is anonymous if its nodes do not
carry a unique ID. Some problems that are easily solved in networks with unique
node IDs turn out to be insurmountable in anonymous networks. Boldi and Vigna
[4] provided effective characterizations of the relations that can be computed on
anonymous networks, if a bound on the network size is known.

We first consider election algorithms, which let the nodes in a network choose
one leader among them. This first part is included here because it emphasizes
the importance of the second part: We will see that precomputing the size of an
anonymous ring network plays an important role in electing a leader in such a
network. Moreover, several features of the Itai-Rodeh election algorithm, which
will be explained below, are carried over to the Itai-Rodeh ring size algorithm,
which is the main focus of this paper.

Angluin [2] showed that no election algorithm for anonymous asynchronous
networks always terminates. The idea is that if the initial network configuration
is symmetric (typically, a ring network in which all nodes are in the same state
and all channels are empty), then there is always an infinite execution that
cannot escape this symmetry, meaning that no leader is ever elected. Vice versa,
if one leader has been elected, all nodes can be given a unique ID using a traversal
algorithm (e.g. a depth-first search) initiated by the leader.

In a probabilistic algorithm, a node may flip a coin and perform an event
based on the outcome of this coin flip. For probabilistic algorithms, one can
calculate the probability that an execution from some given set of possible exe-
cutions will occur. Probabilistic algorithms for which all executions terminate
in a correct configuration are in general not so interesting, because any deter-
ministic version of such an algorithm (for example, let the coin flip always yield
heads) produces a correct nonprobabilistic algorithm. Therefore generally two
classes of probabilistic algorithms are considered. A probabilistic algorithm is
Las Vegas if the probability that it terminates is greater than 0 and all termi-
nal configurations are correct. It is Monte Carlo if it always terminates and the
probability that a terminal configuration is correct is greater than 0.

From now on we will consider only anonymous directed ring networks, with
asynchronous communication. That is, nodes do not carry a unique ID and the
network topology is a ring structure in which messages can only travel in a clock-
wise direction. Rings have the symmetric topology required for the impossibility
results regarding election (explained above) and computing network size (which
will be discussed in due course). It is worth noting that for acyclic anonymous
networks, an algorithm exists for computing the network size, whereby the exe-
cution is started at the leaves of the network and works its way toward the center
of the network.
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Itai and Rodeh [11] proposed a Las Vegas election algorithm for anonymous
directed ring networks in which the probability mass of the infinite executions is
0. In other words, the algorithm terminates with probability 1. (Note that this
does allow the presence of infinite executions.) Their algorithm is based on the
Chang-Roberts algorithm [5] for non-anonymous rings. Bakhshi, Fokkink, Pang
and van de Pol [3] proposed a Las Vegas election algorithm for anonymous rings
based on Franklin’s algorithm [9] for non-anonymous rings.

In the Itai-Rodeh election algorithm, nodes choose a random ID and then
select the node with the largest ID as the leader. Since multiple nodes may choose
this largest ID, multiple election rounds may be necessary. In more detail, the
algorithm works as follows. Initially, all nodes are active. At the start of each
round, the active nodes randomly select an ID and send this ID to their clockwise
next neighbor, with a hop counter set to 1. Since nodes are supposed to know the
ring size N , a node can recognize from the hop counter when its own message
returns after completing a round trip. Each message carries an additional bit
that is dirtied if the message visits a node with the same ID that is not its
originator.

Passive nodes simply pass on incoming messages, with the hop counter
increased by 1. An active node that receives a message (for its current round)
compares the ID of the message with its own randomly chosen ID for this round.
There are three cases:

– If the message ID is smaller than the node ID, the message is purged.
– If the message ID is larger than the node ID, the node becomes passive and

the message is passed on, with the hop counter increased by 1.
– If the message ID is equal to the node ID but its hop counter is smaller than

N , then the message is passed on, again with the hop counter increased by
1, but also with a dirtied bit.

If a message returns to its originator with the hop counter N , the recipient checks
whether the bit still clean. If so, the node becomes the leader (and it is certain
that all other nodes are by now passive). If on the other hand the bit has been
dirtied, then the node proceeds to a next election round (because another node
chose the same ID in this round) and chooses a new random ID.

Messages carry the round number of the sender to avoid confusion, in case a
message of an earlier round reaches its destination after some delay. (A variant
of the algorithm without round numbers, in the case of FIFO channels, was
proposed in [7,8].)

3 Computing the Size of an Anonymous Ring

As mentioned above, in the Itai-Rodeh election algorithm it is required that
nodes know the ring size. This requirement is crucial, because there is no Las
Vegas algorithm to compute the size of anonymous rings; every probabilistic
algorithm for computing the size of an anonymous ring must allow for incorrect
outcomes. This implies that there is no Las Vegas algorithm for election in
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anonymous rings if nodes do not know the ring size, because when there is one
leader, network size can be computed using a traversal algorithm initiated by
the leader.

The proof that there is no Las Vegas algorithm to compute the size of an
anonymous ring goes roughly as follows. Suppose that such an algorithm does
exist. We apply it on an anonymous ring of size N > 2. Consider an execution
E that terminates with the correct outcome N . We cut the ring open between
two of its nodes, make a copy of the resulting line of nodes, and glue the two
parts together, yielding an anonymous ring of size 2N . Now we can perform the
execution E twice, on the two halves of this ring. Hereby it is crucial that at the
two places where the two halves were glued together, the recipient of a message
cannot recognize that the message now originates from a node in the other half,
due to anonymity. This execution on the ring of size 2N terminates with the
incorrect outcome N .

The Itai-Rodeh ring size algorithm targets anonymous directed rings. We
have seen that it must be a Monte Carlo algorithm, meaning that it must allow
for incorrect outcomes. However, in the Itai-Rodeh ring size algorithm, the prob-
ability of an erroneous outcome can be arbitrarily close to 0 by letting the nodes
randomly select IDs from a sufficiently large domain.

Each node p maintains an estimate estp of the ring size; initially estp = 2.
During any execution of the algorithm, estp will never exceed the correct estimate
N . The algorithm proceeds in estimate rounds. Every time a node finds that its
estimate is too conservative, it moves to another round. That is, each node p
initiates an estimate round at the start of the algorithm as well as at every
update of estp. The following detailed description of the algorithm is based on
the ones in [6,12].

In each round, p randomly selects an ID idp from {1, . . . , R} for some positive
number R and sends the message (estp, idp, 1) to its next neighbor. The third
value is a hop count, which is increased by 1 every time the message is forwarded.

Now p waits for a message (est , id , h) to arrive. An invariant of such messages
is that always h ≤ est . When a message arrives, p acts as follows, depending on
the parameter values in this message:

– est < estp:
The estimate of the message is more conservative than p’s estimate, so p
dismisses the message.

– est > estp:
The estimate of the message improves on p’s estimate, so p increases its
estimate. We distinguish between two cases:

• h < est :
The estimate est may be correct. So p sends (est , id , h + 1) to give the
message the chance to complete its round trip. Moreover, p performs
estp ← est .

• h = est :
The estimate est is too conservative because the message traveled est hops
but did not complete its round trip. Therefore p performs estp ← est +1.
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– est = estp:
The estimate of the message and that of p agree. We distinguish between two
cases:

• h < est :
p sends (est , id , h + 1) to give the message the chance to complete its
round trip.

• h = est :
We again distinguish between two cases:
∗ id �= idp:
The estimate est is too conservative because the message traveled est hops
but did not complete its round trip. Therefore p performs estp ← est +1.
∗ id = idp:
Possibly p’s own message returned (or a message originating from another
node est hops before p that unfortunately happened to select the same
ID as p in this estimate round). In this case, p dismisses the message.

When the algorithm terminates, estp ≤ N for all nodes p, because a node
increases its estimate only when it is certain that its current estimate is too
conservative. Furthermore, estp converges to the same value at all nodes p. If
this were not the case, clearly there would be nodes p and q where p is q’s
predecessor in the ring and p’s final estimate is larger than that of q. But then
p’s message in its final estimate round would have increased q’s estimate to p’s
estimate.

The Itai-Rodeh ring size algorithm is a Monte Carlo algorithm: it may ter-
minate with an estimate smaller than N . This can happen if in a round with
an estimate est < N all nodes at distance est from each other happen to select
the same ID. The probability that the algorithm terminates with an incorrect
outcome clearly becomes smaller when the domain {1, . . . , R} from which ran-
dom IDs are drawn is made larger. This probability tends to 0 when R tends to
infinity, for a fixed N .

In particular, if N is a prime number, it is not hard to compute the probability
of a correct outcome, under the simplifying assumption that nodes never skip
an estimate round. Since N is prime, the nodes only terminate with an estimate
1 < est < N if they have all chosen the same identity. Hence, the correct ring
size N is computed if in each election round e = 2, . . . , N − 1, the nodes do not
all select the same identity. In other words, the probability that ring size N is
computed is (

1 − 1
RN−1

)N−2

The side condition that we only consider executions in which no node skips
a round is essential here (and means the probability above is in fact a bit too
conservative). Namely, a node p skips an estimate round if it receives a message
(est , id , h) with either h = est = estp +1 or est > estp +1. In those cases p skips
(at least) the estimate round estp + 1.

The worst-case message complexity of the Itai-Rodeh ring size algorithm is
O(N3): each node starts at most N − 1 estimate rounds, and during each round
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it sends out one message, which takes at most N steps. The worst-case time
complexity is O(N2), under the assumption that messages take at most one
time unit to reach their destination, since then the ith estimate round completes
after at most i·N time units, for i = 1, . . . , N − 1.

4 Adaptations of the Itai-Rodeh Ring Size Algorithm

We now propose some adaptations of the Itai-Rodeh ring size algorithm, with
the aims to increase the chance of a correct outcome and to decrease its message
complexity. We have also performed some simulations of implementations of the
original Itai-Rodeh ring size algorithm and our adaptations, for small values of
N , to get an impression of the impact of the adaptations.

4.1 Choose a Random ID Only Once

A first, simple adaptation of the Itai-Rodeh ring size algorithm is to let the nodes
stick to the first random ID they choose, instead of selecting a new random ID
at each increased estimate. That this is beneficial for the chance of a correct
outcome is clear in the case that N is prime. In that case the only possibility for
a wrong outcome is if all nodes choose the same ID at the start. In other words,
the probability that ring size N is computed is

1 − 1
RN−1

Basically, the principle that is essential for the Itai-Rodeh election algorithm,
letting a node choose a new random ID at each round, is harmful for the Itai-
Rodeh ring size algorithm. The latter algorithm may terminate with a wrong
outcome if the chosen IDs in an estimate round display a certain symmetry.
Letting the nodes choose a new ID at each round increases the chance that in
some round the chosen IDs contain a detrimental symmetry.

4.2 Prioritization of Received Messages

For simplicity, the analysis of the probability that the correct ring size is com-
puted, at the end of Sect. 3, assumed that nodes never skip an estimate round.
Since estimations of the ring size are guaranteed to be conservative, the possibil-
ity that a node skips an estimate round increases the chance that an execution
of the Itai-Rodeh ring size algorithm terminates with the correct outcome. To
increase the chance that estimate rounds are skipped, it is beneficial to define a
prioritization on the order in which a node p treats concurrently received mes-
sages in its buffer.

– First of all, the priority is based on the value of est .
– Second, the priority is based on the value of h.
– Third (so if two received messages carry the same estimate and hop counter),

a message with an identity different from idp has a higher priority than a
message with the identity idp.

In all three cases the priority aims to increase the chance that estp skips a value.
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4.3 Each Node Sends Out Only One Message

To decrease the worst-case message complexity from O(N3) to O(N2), we let
each node send out only one message, which in the worst case (from the point
of message complexity) completes the entire round trip. We exclude the value
estp of the sender p from the message, so that it only contains the ID of p and
a hop count. The intention is that each of these messages completes the round
trip and helps to increase estimates of visited nodes on the way.

Again, initially estp = 2 at each node p, and estp will never exceed N . Each
node p randomly selects an ID idp from {1, . . . , R} for some positive number R
and sends the message (idp, 1) to its next neighbor. Now p waits for a message
(id , h) to arrive.

When p receives a message m = (idp, h) with h ≥ estp, it assumes that this
message originates from p itself, so (only) in that case the received message is
not forwarded, while estp is updated to h. If p later receives another message
showing that the value estp = h is too conservative, then p must forward the
message m after all. Therefore a Boolean variable passivep is set when p receives
m, to recall that p must send the message (idp, estp + 1) if the value of estp is
increased at some later moment in time. Initially the value of passivep is false.

When node p receives a message (id , h), it acts as follows, depending on the
parameter values in this message:

– h < estp:
p forwards the message with the hop count increased by 1, i.e., (id , h + 1).

– h ≥ estp:
If passivep = true, then p forwards (idp, estp+1), because p earlier stopped the
incoming message (idp, estp) by mistake. (We note that in this case h > estp,
because a node never receives two different messages with the same hop
count.) Moreover, p then performs passivep ← false. We distinguish between
two cases:
∗ id �= idp:
Since the message does not originate from p, the value of estp is too conserva-
tive. Therefore p performs estp ← h + 1. Furthermore, it forwards (id , h + 1).
∗ id = idp:
Possibly p’s own message returned (or a message originating from another
node h hops before p that unfortunately happened to select the same ID as
p). Then p performs estp ← h. Moreover, p performs passivep ← true, to
recall that it did not forward the message (idp, estp).

Since no message can be forwarded beyond the node it originated from, it
is not hard to see that the algorithm terminates, and that then estp ≤ N at
all nodes p. Moreover, the passivep flags ensure that each node at any moment
has stopped at most one message. Since each node sends out one message, this
implies that each node stops exactly one message permanently. Clearly, the IDs
of a node p and of the message m that is stopped permanently at p coincide,
and the final value of estp coincides with the value of the hop counter of m.
The fact that the predecessor q of p in the ring forwarded m implies that upon
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termination, estq ≥ estp. Since this inequality holds for each pair of neighbors
in the ring, it follows that upon termination, all nodes carry the same estimate.

This algorithm has worst-case message complexity O(N2) (compared to
O(N3) for the Itai-Rodeh ring size algorithm), because each node sends out
only one message, which takes at most N steps.

4.4 Implementation and Simulation Results

We implemented in Java the original Itai-Rodeh ring size algorithm, as well as
the two adaptations proposed in Sects. 4.1 and 4.2, and the following pseudocode
description of our algorithm proposed in Sect. 4.3 which describes how a node p
acts when it receives a message (id , h). (Initially estp has the value 2, passivep
has the value false, and p sends the message (idp, 1) to its successor nextp in the
ring.)

if h < estp then
send (id , h + 1) to nextp;

else
if passivep = true then

send (idp, estp + 1) to nextp;
passivep ← false;

end
if id �= idp then

estp ← h + 1;
send (id , h + 1) to nextp;

else
estp ← h;
passivep ← true;

end

We ran a million simulations for both N = 12 and N = 13, to get an
impression of the impact of the adaptations on the performance. These numbers
were chosen because 12 has relatively many divisors while 13 is prime. The
outcomes of these experiments with regard to the Itai-Rodeh ring size algorithm
and the adaptations proposed in Sects. 4.1 and 4.2 are plotted in Fig. 1. The
horizontal axis charts the possible ring sizes, ranging from 2 up to and including
N −1, while the vertical axis expresses how many of the experiments produced a
certain ring size; in the plot for N = 12, these numbers must be multiplied with
104. On the horizontal axis, the correct ring size N has been excluded because
this column would dwarf the other ones. Already with these small values for N ,
the simulations took a significant amount of time, due to the message complexity
of O(N3).

For N = 12 the impact of sticking to the first chosen ID is already significant,
and for N = 13 it makes the probability of computing a size between 2 and
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Fig. 1. Simulation results for three variants of the Itai-Rodeh ring size algorithm, with
N = 12 and N = 13.

13 drop to 0, because 13 is prime. The impact of imposing priorities on the
order in which concurrently received messages are treated is rather dramatic
in our experiments. (In this implementation we included ID changes, to clearly
distinguish the effects the two optimizations have on the performance of the Itai-
Rodeh algorithm.) This dramatic effect is due to the fact that in our simulations,
channel delays were chosen to be negligible, so that in-buffers at nodes will often
contain multiple messages. In case of a larger channel delay, in-buffers will mostly
contain no more than one message, in which case clearly prioritization has no
effect at all. Finally, we note that for N = 13, the dip in wrong outcomes for the
values 3, 4, and 5 for the original Itai-Rodeh algorithm is caused by the fact that
nodes may skip estimate rounds, as explained at the end of Sect. 3. The chance
that this happens is larger for small values of estp, because then it is more likely
that a message (est , id , h) arrives at p with h = est = estp + 1 or est > estp + 1.

In Fig. 2 the simulation results of our ring size algorithm from Sect. 4.3 are
plotted, again for N = 12 and N = 13. For the sake of a clear comparison
with the original Itai-Rodeh algorithm, we refrained from using prioritization
of received messages. It can be observed that the probability of computing a
wrong outcome is comparable to the original Itai-Rodeh algorithm without ID
changes. However, these simulations took much less time, owing to the message
complexity of O(N2).
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Fig. 2. Simulation results for our ring size algorithm, with N = 12 and N = 13.

5 Conclusion

We proposed two optimizations of the Itai-Rodeh algorithm for computing the
size of an anonymous ring: nodes stick to the first random ID they select, and the
treatment of received messages is prioritized to stimulate the fast propagation
of larger estimates through the ring. Furthermore, we proposed a new algorithm
for computing the size of an anonymous ring, in which each node sends out only
one message, so that the worst-case message complexity is O(N2) (compared to
O(N3) for the Itai-Rodeh algorithm).

The implementations and the simulation experiments are available at
https://github.com/gsamsom/Itai-Rodeh-simulatie.

In [8], the probabilistic model checker PRISM was used to analyze a finite-
state version of the Itai-Rodeh leader election algorithm. Moreover, this algo-
rithm served as a benchmark for different optimization techniques for probabilis-
tic model checking, e.g. in [13]. Likewise, to complement our simulation results, it
would be interesting to apply probabilistic model checking to analyze the proba-
bility that the different variations of the Itai-Rodeh ring size algorithm terminate
correctly, on anonymous rings of varying sizes. Moreover, these variations could
be employed for a benchmark in probabilistic model checking.
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