
VU Research Portal

Reasoning at Scale

Urbani, Jacopo

published in
Encyclopedia of Big Data Technologies
2018

DOI (link to publisher)
10.1007/978-3-319-63962-8_317-1

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Urbani, J. (2018). Reasoning at Scale. In S. Sakr, & A. Zomaya (Eds.), Encyclopedia of Big Data Technologies
(pp. 1-6). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-63962-8_317-1

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303696375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-63962-8_317-1
https://research.vu.nl/en/publications/89f65224-2bf2-4fdd-9da3-e326ed19fc26
https://doi.org/10.1007/978-3-319-63962-8_317-1

R

Reasoning at Scale

Jacopo Urbani
Vrije Universiteit Amsterdam, Amsterdam,
The Netherlands

Synonyms

Inference; Knowledge base; Rule-based
processing

Definition

Reasoning is the process of deriving new conclu-
sions from knowledge bases using a series of log-
ical steps. Reasoning at scale refers to the ability
of applying this process to very large knowledge
bases, such as modern knowledge graphs that are
available on the Web.

Overview

The Web contains a very large amount of semi-
structured datasets that cover encyclopedic
knowledge, social or co-authorship networks,
experimental results, etc. This data is encoded
using RDF (Brickley et al. 2014), and it is
interlinked to each other following the principles
of linked open data, thus forming a large network
of datasets called the Web of Data (WoD) (Bizer
et al. 2009).

Automated reasoning can derive a wealth of
nontrivial knowledge from these datasets, which
can be used, for instance, to augment the WoD
with new knowledge or to detect inconsistencies.
Unfortunately, the large size of the WoD makes
reasoning a challenging task. In fact, the datasets
might be too large to be stored in a single ma-
chine, requiring thus some form of distributed
computing. Moreover, parallelizing the compu-
tation is not trivial due to factors like the input
skewness or special corner cases that require
sequential processing.

What constitutes the state of the art for rea-
soning on a large scale? To answer this question,
this chapter offers a broad overview of the most
recent efforts to execute rule-based reasoning on
large inputs. More in particular, it describes the
most important optimizations that can be applied
to improve the efficiency of reasoning. Some
of these optimizations work only with specific
rules, while others are more generic. Even though
none of them work with all possible inputs, in
practice they turned out to be very effective as
they enabled reasoning on large knowledge bases,
with up to 100 billion triples in the largest exper-
iments.

What Is Scale?

Generally speaking, the term scalability refers to
the ability of a system to handle larger instances
of a given problem. There can be several reasons
that hinder the scalability of a system. First,

© Springer International Publishing AG, part of Springer Nature 2018
S. Sakr, A. Zomaya (eds.), Encyclopedia of Big Data Technologies,
https://doi.org/10.1007/978-3-319-63962-8_317-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63962-8_1&domain=pdf
http://link.springer.com/Inference
http://link.springer.com/Knowledge base
http://link.springer.com/Rule-based{\penalty -\@M } processing
https://doi.org/10.1007/978-3-319-63962-8_317-1

2 Reasoning at Scale

the problem might have an unfavorable compu-
tational complexity which precludes termination
within a reasonable time. Second, the algorithms
might be poorly implemented. In this case, the
system cannot scale well despite the problem is
tractable. Third, the hardware might not have
enough resources to carry on the computation.
Scalability is thus a property that can be judged
from three different angles: the theoretical com-
plexity, the implementation, and the hardware
requirements.

Before discussing the state of the art and de-
scribe how it deals with these challenges, it is im-
portant to define more precisely what reasoning is
supposed to compute. Let KB be a generic RDF
dataset, that is, a set of RDF statements. This
dataset can be represented as a labeled directed
graph where each triple hs; p; oi maps to an edge
that connects s to o and is labeled with p. These
graphs are typically called knowledge graphs. Let
KG D .V;E/ be such a knowledge graph where
V is the set of entities and E the labeled edges
that connect the entities. Given in input a knowl-
edge graphKG, the goal of reasoning is to derive
new knowledge that can be inferred from KG.
This knowledge takes the form of new triples
which can be logically deduced from the KG. For
now, it is assumed that V is complete, i.e., KG
already contains all the entities of interest. With
this assumption in mind, then the triples derived
from reasoning can be represented by new edges
in KG.

The derivation of new triples is determined by
a set of rules, which must be provided as input.
Rules are expressions of the form

B1; : : : ; Bn ! H (1)

where B1; : : : ; Bn are called atoms. An atom is
an expression p.x/ where p is a predicate and
x D x1; : : : ; xm is a tuple of terms that
can be either variables or constants. A
fact is an atom without any variable. In
our context, facts are used to represent the
KG. They can be unary (e.g., to express
the isA relation – Person.Mark/), binary
(e.g., livesIn.Mark;Amsterdam/), or ternary
(e.g., T .Mark; livesIn;Amsterdam/). The

set of atoms B1; : : : ; Bn is called the rule’s body,
while H is the rule’s head.

Notice that rules can be more complex than
in (1). For instance, some body atoms might be
negated, or the head might contain a conjunction
of multiple atoms. All scalable approaches which
will be discussed in this chapter assume that
rules only contain positive atoms and only one
atom occurs in the head of the rule. Moreover,
they assume that every variable in the head must
also appear in the body (safeness condition).
The reason behind these constraints is that they
simplify the computation. For instance, negation
can introduce non-determinism, while dropping
safeness might lead to nontermination.

The computation of the rules can be formal-
ized as follows. Let I be a generic database of
facts (i.e., the input KG); � be a substitution,
i.e., a partial mapping from variables to other
variables or constants; and r 2 P be a rule of the
form (1) in the program P . Then, r.I / D fH� j
B1�; : : : ; Bn� 2 I g is the set of derivations that
can be derived from I using r and P.I / D
S
r2P r.I / is its extension to all rules in the pro-

gram. The exhaustive application of all rules can
be defined recursively by setting P 0.I / D I and
P iC1.I / D P i .I / [P.P i .I //. Since the rules
are safe and the set of constants is finite, there
will be a j s.t. P jC1.I / D P j .I /. In this case,
P j .I / is called the closure or materialization of
I with P .

Materialization with Fixed Rules

Ontological languages are used to serialize
semantic relations in RDF knowledge bases in
a machine-readable format. For instance, they
allow the user to define various semantic relations
like subsumption between classes (e.g., Student
is a subclass of Person) or specify that a relation
is transitive (e.g., ancestorOf or partOf).

Ontological statements like the previous two
examples can be translated into rules by either
considering the standard constructs of the lan-
guage or by also including the ontology at hand.
The following example is useful to understand
this difference.

Reasoning at Scale 3

R

Example 1 Let us assume that the KG
contains the following ontological statements:
h:Bob;isA;:Actori and h:Actor;soc;:
Mani where soc is an abbreviation for the
standard RDF schema IRI of class subsumption.

A rule of the first type could be

T .A;isA; B/; T .B;soc; C /

! T .A;isA; C / (2)

while a rule of the second type could be

isA.A;:Actor/! isA.A;:Man/ (3)

In the first case, rule (2) simply translates the
inference that it is possible to obtain considering
the isA and soc relations. The rule is domain-
independent and can be applied to any KG. In
contrast, rule (3) is simpler because it does not
require any data join but it has the disadvantage
that it can be applied only to the input dataset.

In this chapter, rules of the first type are called
standard rules since they are derived by standard
ontological languages like RDF schema (Brick-
ley et al. 2014) or OWL (Motik et al. 2009).
Standard rules are important because they are
universal in the sense that they do not depend
on a particular input. Therefore, it is possible
to introduce tailor-made optimizations to speed
up their execution without any loss of generality.
However, there are cases when nonstandard rules
are preferable since they might be easier to exe-
cute. The remaining of this section will describe
five optimizations which are crucial to enhance
the scalability of reasoning using standard rules.
The next section will address scalability with
nonstandard rules.

Split instance/schema triples. The first,
and perhaps most effective, optimization on
current knowledge bases consists of splitting
the input statements between the ones that
describe instances and the ones that describe the
schema. The last type of statements is typically
ontological statements that use constructs from
the language (e.g., OWL). One key property of

current large KGs is that they contain many more
instance statements than schema ones, and this is
important because there are many standard rules
which have two body atoms, one which matches
instance statements while the other matches
schema ones (Urbani et al. 2012). Rule (2) is
such an example: Here, typically there will be
many more triples of the form T .A;isA; B/
than of the form T .B;soc; C /.

A strategy to parallelize the computation of
such rules is to simply range-partition the in-
stance triples and assign each range to a different
processor. If the processors operate in separated
memory spaces (e.g., different machines), then
schema triples can be replicated on each space.

After the partitioning is done, the rule can
be executed in parallel without any intermediate
node communication. An example of such com-
putation is graphically depicted in Fig. 1a.

Reducing duplicates. There are cases where
different rules might produce the same derivation.
For instance, the two standard rules

T .A;P;B/; T .P;domain; C /

! T .A;isA; C / (4)

T .B;P;A/; T .P;range; C /

! T .A;isA; C / (5)

can derive the same information for an
entity which is used both as a subject
and as an object in different triples. For
instance, hBob;worksIn;Amsterdami and
hAlice; daughterOf;Bobi can both lead to the
derivation hBob; isA; Personi if the domain
and range of the two predicates are Person.

A strategy to remove these types of duplicates
is to group instance triples by the list of terms
which are used in the head. In the previous case,
triples can be grouped either by subject of by
object, depending on the rule. Then, rules can
be executed in parallel on each group. In this
way, it is impossible that two different groups
will produce the same derivation because the
grouping criterion ensures that derivations must
differ by at least one term (i.e., the grouping key).

4 Reasoning at Scale

Instance triples

Schema triples
<a> <subClassOf>
<c> <subProp.Of> <d>

<e> <isA> <a>
<f> <isA> <c>

Proc. 0

Proc. 1

Proc. 2K
no

w
le

d
g

e
B

as
e

Derivations

<f> <isA> <d>

<e> <isA>

(a)

Instance triples

Schema triples
<p> <domain>
<q> <range>

<e> <p> <a>
<f> <q> <e>
<g> <q> <c>

K
no

w
le

d
g

e
B

as
e

<e> isA Proc. 0

Proc. 1

Proc. 2

<c> isA

Derivations
e -> {domain p, range q }

c -> {range q }

(b)

Reasoning at Scale, Fig. 1 (a) Parallel execution of a
rule that requires a join between schema and instance
triples. (b) Execution of a group of rules: in this example,

processor 0 receives all information regarding the entity
“e,” which allows it to apply both rules (4) and (5) and
remove duplicates locally

During the rule computation, duplicates can
still be produced within the same group. How-
ever, in this case they can be removed in parallel
without any synchronization between the various
processors. Figure 1b shows an example of such
computation for rules (4) and (5).

sameAs table. One category of rules which is
widely used in modern knowledge bases encodes
reasoning over the equality of concepts, which
is a relation that is stated with the predicate
owl:sameAs. Equality is transitive (if a is the
same as b and b is the same as c, then a is the
same as c) and symmetric (if a is the same as b,
then b is the same as a); thus rules in this category
produce a large number of materializations.

To improve the performance, reasoners typi-
cally avoid materializing all conclusions but in-
stead build a dedicated table where groups of
equal terms receive a unique representative ID,
and all occurrences of these terms in the KB
are replaced by the corresponding ID. During the
materialization, the reasoner might derive more
equality relations. If this happens, then the table
needs to be updated, and more occurrences must
be replaced with the corresponding ID. Notice
that also rules need to be rewritten if they contain
constants in the table.

After the materialization is computed, the aug-
mented P j .I / will contain a compressed version
of the full materialization since further deriva-

tions can be obtained by simply replacing the
occurrences of representative IDs with each of
the members of their equality group. However, in
practice this operation is often omitted as it can be
trivially computed on-the-fly whenever is needed.

Sorting rule execution. For some standard rule-
sets like the rules from RDF schema, it is possible
to define a rule application order to reduce to the
minimum the chance that the output of one rule
can be used as input for another one. Unfortu-
nately, this optimization guarantees a complete
output only on some specific cases, and it is
not possible to define an execution order which
avoids repeated executions with more complex
rulesets like, for instance, the OWL2 RL/RDF
ruleset (Motik et al. 2009).

Memoization. Another technique that can be
applied to improve the performance is memo-
ization (Urbani et al. 2014). Memoization is a
special type of caching which consists of storing
the output of expensive functions to reduce the
cost of repeated executions. For the problem of
reasoning, memoization can be used to precom-
pute all answers of some particular atoms. This
enables a faster computation of data joins.

An example is useful to clarify this optimiza-
tion. Let us consider, once again, rule (2). This
rule contains two body atoms: One atom matches
instance triples while the other matches schema

Reasoning at Scale 5

R

triples. During the materialization, the number
of facts that match the second atom will change
if other rules derive new triples with soc as
predicate. With memoization, before the mate-
rialization starts a query-driven materialization
procedure like QSQR (Abiteboul et al. 1995)
or Magic set (Bancilhon et al. 1985), two well-
known query-driven algorithms are invoked to
compute all answers for the query T .B;soc; C /.
Once this procedure is terminated, we can safely
assume that the collection of facts that match this
atom is immutable; thus the engine can index this
collection more efficiently to facilitate the execu-
tion of the rule. In some cases, memoization does
not lead to any reduction of the materialization
runtime, while in other cases, the advantage is
significant.

Materialization with Generic Rules

Nonstandard rules are typically easier to execute
since they require less joins and predicates have
a smaller arity (i.e., they are unary or binary
only). On these rules, however, the previous op-
timizations might not be applicable. Still, the
execution can be improved in two ways: Either
by applying more general parallel algorithms or
by considering multiple facts at the same time.
Both types of improvements are described below.

Parallelizing rule execution. Three different
types of parallelism can be applied to the rule
execution: Intra-rule parallelism, inter-rule
parallelism, and instance-based parallelism.

With intra-rule parallelism, the goal is to dis-
tribute the execution of a single rule among dif-
ferent processors. For example, let us consider
rule (1). In this case, facts that match B1 could be
partitioned into n different partitions depending
on the value of the terms that should be joined
with B2. Similarly, facts that match B2 could be
partitioned in an equivalent number of partitions
in so that “B1” and “B2” facts with the same join
terms will be in the same partition. In this way,
each partition can be processed simultaneously
by concurrent processors.

With inter-rule parallelism, the idea is to let
concurrent processors execute different rules at
the same time. For instance, one processor could
execute rule (4) while another one execute rule
(5). Notice that neither of these two types of
parallelism is perfect: With intra-rule parallelism,
the computation could be unbalanced if some
partitions are much bigger than others. With inter-
rule parallelism instead, the maximum number of
concurrent processors is bound by the number of
rules.

Intra- and inter-based parallelism are well
known in literature and are also used in other
scenarios. The third type of parallelism is a more
recent variant which was first introduced in the
RDFox system (Nenov et al. 2015). The idea
is to let a number of concurrent processors to
continuously pull not-yet-considered facts from
a queue and verify whether they instantiate the
body of a rule. If this occurs, then the system
searches for other atoms in the database to
compute a full rule instantiation. If this process
succeeds, then the processor produces a new
derivation and puts it back in the queue and
database so that it can be further considered,
possibly by other processors.

This type of parallelism is significantly differ-
ent than the other two because here the processors
do not receive a predefined amount of work but
are free to “steal” computation from each other
whenever they become idle. A limitation of this
technique is that it requires a number of data
structures that allow a fast concurrent access.
While hash tables can provide this functionality,
they have the disadvantage that they are not
cache-friendly, that is, they do not use efficiently
the CPU cache.

Set-based rule execution. Another technique
for improving the performance consists of
generating meta-facts which represents multiple
sets of facts. This technique can be intuitively
explained with a simple example. Let us consider
the rule:

P.X; Y /! Q.Y;X/ (6)

and assume that the input database does not
contain any q-facts. In this case, it is clear that

6 Reasoning at Scale

each fact that matches the body will generate
a new q-fact. Thus, the engine can simply cre-
ate one single fact q.y�; x�/ where x� and y�

are special terms which point to set of terms,
namely, all first and second terms that appear in
p-facts. For instance, if the database equals to
fp.a; b/; p.c; d/g, then y� ! ha; ci and x� !
hb; d i. Notice that the engine does not need to
explicitly materialize the lists ha; ci and hb; d i
but can simply store instructions to compute this
list on-the-fly in case it is needed.

This technique was first introduced in the
VLog system (Urbani et al. 2016), and empirical
results show excellent performance against the
state of the art, especially because this technique
becomes more effective with larger databases as
potentially larger sets of facts can be compressed
in a single meta-fact.

References

Abiteboul S, Hull R, Vianu V (1995) Foundations of
databases, vol 8. Addison-Wesley, Reading

Bancilhon F, Maier D, Sagiv Y, Ullman JD (1985) Magic
sets and other strange ways to implement logic pro-
grams. In: Proceedings of the fifth ACM SIGACT-
SIGMOD symposium on principles of database sys-
tems. ACM, pp 1–15

Bizer C, Heath T, Berners-Lee T (2009) Linked data-the
story so far. Int J Semant Web Info Syst 5(3):1–22

Brickley D, Guha RV, McBride B (2014) RDF schema 1.1.
W3C Recomm 25:2004–2014

Motik B, Grau BC, Horrocks I, Wu Z, Fokoue A, Lutz
C, et al (2009) Owl 2 web ontology language profiles.
W3C Recomm 27:61

Nenov Y, Piro R, Motik B, Horrocks I, Wu Z, Banerjee
J (2015) RDFox: a highly-scalable RDF store. In:
International semantic web conference. Springer, pp
3–20

Urbani J, Kotoulas S, Maassen J, Van Harmelen F, Bal H
(2012) WebPIE: a web-scale parallel inference engine
using mapreduce. Web Semant Sci Serv Agents World
Wide Web 10:59–75

Urbani J, Piro R, van Harmelen F, Bal H (2014) Hybrid
reasoning on OWL RL. Semantic Web 5(6):423–447.
https://doi.org/10.3233/SW-130120

Urbani J, Jacobs C, Krötzsch M (2016) Column-oriented
datalog materialization for large knowledge graphs. In:
Proceedings of AAAI, pp 258–264

https://doi.org/10.3233/SW-130120

	Reasoning at Scale
	Synonyms
	Definition
	Overview
	What Is Scale?
	Materialization with Fixed Rules
	Materialization with Generic Rules
	References
	References

