VRIJE
UNIVERSITEIT
° AMSTERDAM

VU Research Portal

The spec cloud group’s research vision on faas and serverless architectures
Van Eyk, Erwin; losup, Alexandru; Seif, Simon; Thommes, Markus

published in
WOSC 2017 - Proceedings of the 2nd International Workshop on Serverless Computing, Part of Middleware
2017

2017

DOI (link to publisher)
10.1145/3154847.3154848

document version _
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)

Van Eyk, E., losup, A., Seif, S., & Thdmmes, M. (2017). The spec cloud group’s research vision on faas and
serverless architectures. In WOSC 2017 - Proceedings of the 2nd International Workshop on Serverless
Computing, Part of Middleware 2017 (pp. 1-4). Association for Computing Machinery, Inc.
https://doi.org/10.1145/3154847.3154848

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 27. May. 2021

https://doi.org/10.1145/3154847.3154848
https://research.vu.nl/en/publications/3b57bd3b-0884-44a2-a94a-2aaffb40f3a3
https://doi.org/10.1145/3154847.3154848

The SPEC Cloud Group’s Research Vision on
FaaS and Serverless Architectures

Erwin van Eyk!® and

Alexandru Iosup*!
'TU Delft and *VU, NL, and
3Platform9 Systems Inc., USA
E.vanEyk@atlarge-research.com

ABSTRACT

Cloud computing enables an entire ecosystem of developing, com-
posing, and providing IT services. An emerging class of cloud-based
software architectures, serverless, focuses on providing software
architects the ability to execute arbitrary functions with small over-
head in server management, as Function-as-a-service (FaaS). How-
ever useful, serverless and Faa$ suffer from a community problem
that faces every emerging technology, which has indeed also ham-
pered cloud computing a decade ago: lack of clear terminology,
and scattered vision about the field. In this work, we address this
community problem. We clarify the term serverless, by reducing it
to cloud functions as programming units, and a model of executing
simple and complex (e.g., workflows of) functions with operations
managed primarily by the cloud provider. We propose a research
vision, where 4 key directions (perspectives) present 17 technical
opportunities and challenges.

CCS CONCEPTS

« Computer systems organization — Cloud computing; - Ap-

plied computing — Service-oriented architectures; Event-driven

architectures; » Software and its engineering — Extra-functional
properties;

KEYWORDS

Serverless, FaaS, Cloud computing, Software architecture, Vision.

ACM Reference format:

Erwin van Eyk!® and Alexandru Iosup? !, Simon Seif, and Markus Thémmes.
2017. The SPEC Cloud Group’s Research Vision on FaaS and Serverless Ar-
chitectures. In Proceedings of WoSC’17: Workshop on Serverless Computing,
Las Vegas, NV, USA, December 11-15, 2017 (WoSC’17), 4 pages.
https://doi.org/10.1145/3154847.3154848

1 INTRODUCTION

Cloud computing enables developers of cloud-based software to
increasingly abstract away hardware and operational concerns [1].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WoSC’17, December 11-15, 2017, Las Vegas, NV, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5434-9/17/12...$15.00
https://doi.org/10.1145/3154847.3154848

Simon Seif
SAP SE, Germany
simon.seif@sap.com

Markus Thommes
IBM, Germany
markus.thoemmes@de.ibm.com

After a decade of maturation, developers can rely on Platform-as-a-
Service (PaaS) and Software-as-a-Service (SaaS) when implement-
ing their cloud-based software architectures. Following a durable
trend of miniaturization and commoditization of software services,
we see the emergence of an architecture (model) for cloud-based
software that focuses on executing arbitrary functions without
much server- and resource-management burden put on the cloud
developer or customer. This architecture, which is now commonly
associated with emerging terms such as serverless and Function-as-a-
Service (FaaS), addresses needs for which Paa$S and Saa$ leave many
aspects unanswered or insufficiently addressed. Previous work has
focused on making serverless and Faa$ technically feasible, and
there currently exist tens of platforms offering FaaS services with
various degrees of capability and maturity. In contrast, in this work
we address a community problem: the lack of clearly defined termi-
nology and models, and of a vision regarding promising research
opportunities (challenges).

We see the emerging model based on running individual cloud
functions as a consequence of the slow but sustained evolution of
computing. For many decades we have witnessed a transition from
relatively large, monolithic applications, to smaller or more struc-
tured applications with smaller execution units (e.g, workflows with
many small tasks). This transition is captured qualitatively by vari-
ous software architectures, for example, the Service-Oriented Ar-
chitecture, and quantitatively by various workload-characterization
and modeling studies, for example of scientific workloads running
on supercomputers and grids between 1990 and 2010 [8].

A function-based model is particularly fitting for bursty, CPU-
intensive, granular workloads. Currently, the use cases for FaaS are
widely varying, including data processing (ETL), stream processing,
edge computing (IoT), and scientific computing [5, 9]. With the
current widespread experimentation around FaaS continuing, it is
likely that other use cases will become apparent in the near future.

However, the FaaS field has a community problem that could
inhibit further adoption and limit growth. Most urgently, the field
lacks a clear terminology and model, and an agenda of research
challenges. Early efforts, such as the seminal analysis of serverless
architectures by Roberts [13], an analysis of possible applications
and a description of technical challenges by Baldini et al. [2], and
ongoing work by CNCF Serverless WG [3] do not comprehensively
address the community problem.

The SPEC RG Cloud Group [6] focuses on terminology, method-
ology, quantitative evaluation, and experimental analysis, in areas
of combined industry and academic interest. An activity within this
group focuses on the emerging cloud-field of serverless and Faa$,

https://doi.org/10.1145/3154847.3154848
https://doi.org/10.1145/3154847.3154848

WoSC’17, December 11-15, 2017, Las Vegas, NV, USA

with the goal of enabling performance evaluation studies of current
and future FaaS platforms. Our main contribution is threefold:

(1) We clarify the terms serverless and FaaS, and provide an
abstract operational model for them (Section 2). Our descrip-
tion includes cloud functions, to be executed as a service
(FaaS) by using operations managed as much as possible by
the cloud provider, and providing means to integrate multi-
ple functions into a complex function (a workflow).

(2) We propose perspectives of where the FaaS field is heading
(Section 3). Our 4 perspectives are: FaaS emerging as a native
cloud-programming model, the increasing separation of busi-
ness and operational logic, the move toward vendor-agnostic
technology, and the increasing focus on non-functional as-
pects (e.g., cost and performance).

(3) Starting from the perspectives, we identify many open chal-
lenges for Faa$ platforms (Section 4). We focus on challenges
for software engineering, application and system operation,
and performance engineering.

2 DEFINING SERVERLESS AND FAAS

In this section, we focus on clarifying “serverless” and “FaaS” through
an architectural framework, using high-level abstractions for the

key concepts. Our approach opens up the field for technological

growth and scientific research, for the next decade. It contrasts

with the industry-led efforts, such as the CNCF Serverless WG [3],

which focus on current technology and aim for standardization.

2.1 Overview of Serverless Architectures

We see serverless architectures as making possible the idea of run-
ning complex, distributed applications built from relatively simple
functions, without requiring the developer (the cloud customer) to
manage servers (e.g., through elastic scheduling or auto-scaling)
or complex operational aspects (e.g., authentication, authorization,
and accounting). Specifically, we see serverless cloud architectures
as defined by three key characteristics: (1) Granular billing: the
user of a serverless model is charged only when the application
is actually executing; (ii) (Almost) no operational logic: operational
logic, such as resource management and autoscaling, is delegated
to the infrastructure, making those concerns of the infrastructure
operator; and (iii) Event-Driven: interactions with serverless appli-
cations are designed to be short-lived, allowing the infrastructure to
deploy serverless applications to respond to events, when needed.

Where does serverless fit among the NIST definition of architec-
tures (models) for cloud computing services [11]? To answer this
question, we focus on who manages the operation of the cloud-
based software, and depict the spectrum of answers in Figure 1:
management by both the cloud user and the cloud provider (as in
PaaS$), to only the cloud provider (as in SaaS). From this perspective,
serverless fits in the gap left between PaaS and Saa$, and partially
overlaps with them. Platform-as-a-Service (Paas) and Software-
as-a-Service (SaaS), although generally not considered serverless,
contain examples of serverless services, such as Auth0 (serverless
authentication) and Fauna (serverless database), which in our view
exhibit the main characteristics of serverless.

The gap between PaaS and SaaS$ is large, which explains the
emergence in this space of FaaS architectures (discussed in Sec-
tion 2.3) and Backend-as-a-Service (BaaS). We see FaaS$ as tightly

van Eyk et al.

Serverless

PaaS FaaS BaaS SaaS

Both user and provider Cloud Provider
Who manages the Operational Logic?

Figure 1: Serverless and FaaS vs. PaaS and SaaS.

Event / Business Integrations

Function / Business Logic

Operational Logic

Figure 2: The FaaS model for Cloud Function deployment.

integrated with the notion of executing cloud functions, and, as
such, a core component of serverless architectures. Useful especially
for applications with narrow functionality, e.g., mobile applications,
the (Mobile-)Backend-as-a-Service ((M)BaaS) focuses more than
FaaS on operational logic, providing a more configurable, vendor-
specific framework with many built-in components that simplify
operation, such as user management and data-storage[13]. Thus,
we see Baa$ as a more tailored, vendor-specific approach to FaaS,
and focus in the remainder of this work on FaaS.

2.2 Cloud Function: Simple to Workflow-Like

We define a cloud function as a small, stateless, on-demand service
with a single functional responsibility. The function implements
specific business logic, depending on the goal of the application.
For example, for a file-sharing system, file-compression could be
implemented as a cloud function; however, for an enterprise system,
compressing files is part of how the system is operated.

We identify three main characteristics of cloud functions. First,
cloud functions are short-lived: each function takes in typically
small input and produces output after a typically short amount of
time, which means they can be easily operated automatically (for
example, they can be easily auto-scaled). Second, a cloud function
is devoid of operational logic: any operational concerns are delegated
to the platform (operational, cloud-managed) layer, which allows
the cloud function to be platform-agnostic. Third, a cloud function
is context-agnostic, unaware of how or why it is used.

A cloud function can quickly become complex. To overcome
complexity, we envision composed (integrated) cloud functions, sim-
ilar to classic workflows. The workflow structure is a concession
made to facilitate operation, but preserves the integrity of the cloud
function abstraction and also facilitates development.

2.3 Function-as-a-Service

We see FaaS as a cloud architecture, enabling developers with little
to no experience of operational logic to create, monitor, and invoke
cloud functions. Current Faa$ platforms (such as AWS Lambda,
Google Cloud Functions, Fission, and OpenWhisk) deploy, monitor,
and manage cloud functions, tending to operational concerns such
as resource auto-scaling, traffic routing, and log aggregation.
Unlike the abstract concept of cloud functions, FaaS cannot com-
pletely abstract away all operation logic from the user. The FaaS
user can still change parameters and configurations, such as the
suggested memory size or number of CPUs of the underlying func-
tion host, which influence the operation of the deployed cloud
function. To address this situation, we propose a layered model for

The SPEC Cloud Group’s Research Vision on
Faa$ and Serverless Architectures

FaaS$ and depict it in Figure 2, with the cloud function (business
logic) represented as the middle layer.

The Operational Logic layer focuses on deploying, executing, and
monitoring the cloud function. This could include routing and throt-
tling incoming requests to functions, isolating functions using vir-
tualization, provisioning (auto-scaling), and allocating appropriate
resources to the functions. This layer is currently platform-specific;
without a common standard, operational logic is not transferable
from platform to platform, or from cloud provider to cloud provider.

The Event / Business Integration layer defines how, why, and
when the business logic is executed. It integrates the business logic
and couples it to events sources, triggering the cloud function on
the occurrence of arbitrary events. These events can originate from
timers to execute the cloud function periodically, from incoming
messages from message queues, from changes to files and other
system objects, or from HT TP requests to a specific endpoint. This
layer is therefore context-specific, as specific events sources are
directly coupled to the required cloud functions.

3 PERSPECTIVES ON SERVERLESS AND FAAS

In this section, we propose four perspectives that aim to capture the
direction of the serverless field, and in particular of FaaS architec-
tures. Because the field is growing rapidly, and many commercial
and community-driven products already exist, we propose diverse
perspectives that cover non-exhaustively aspects of software engi-
neering (SE), systems (Sys), and performance engineering (PE).

(1) A Cloud-Native Programming Model: Faa$S architectures could
provide support for a programming model that is native to the
cloud, that is, it considers services as naturally as any other pro-
gramming concepts, to be developed, composed, and shared with
ease. This approach has its background in the 1970s flow-based
programming [12], and should offer similar operational benefits
to what modern workflow management systems offer to scientific
computing applications, albeit at less finer granularity than func-
tions [10] and thus with different SE and Sys challenges.

(2) Separation between Business and Operational Logic: A charac-
teristic of cloud functions is the delegation of operational logic to
the cloud provider (see Section 2.2). As more systems are ported to
FaaS$ architectures, the separation between operational and busi-
ness logic will require a clarification of the Dev and Ops roles in
DevOps teams, and a re-assessment of the principles of system
design. Additionally, because serverless leads to the near-absence
of CAPEX, companies will focus on managing the OPEX costs of
running applications, raising interesting PE challenges.

(3) Hybrid Clouds: A vendor-agnostic FaaS layer allows a function
to be deployed to different clouds (a hybrid-cloud deployment). For
example, a composition of functions could reside partially in an
on-premise cluster executing proprietary code, whereas the other
parts of the application are hosted on public clouds, or even on
sensors at the edge of the cloud. Hybrid-cloud deployment still has
to overcome many challenges, across SE, Sys, and PE.

(4) Focus on Cost/Performance: The stateless, short-running cloud
functions enable fine-grained control over performance. A deployed
function can be migrated from one cloud to another seamlessly, if
the new cloud offers a better fit between requirements and achieved
performance. An example of this is the recent rise of spot mar-
kets [15], in which the price for different resource types varies

WoSC’17, December 11-15, 2017, Las Vegas, NV, USA

over time and across resource-providers, triggering financial in-
centives to migrate functions across providers. We forecast that
for individual functions absolute performance will start to matter
less, whereas the overall performance/cost ratio will start to matter
more. This raises interesting challenges in PE.

4 CHALLENGES FOR SERVERLESS AND FAAS

We identify in this section key SE, Sys, and PE challenges (opportu-
nities) in realizing the perspectives we propose in this work.

4.1 Software Engineering Challenges

One of the most pressing issues with the serverless paradigm is the
developer experience [13]. To overcome the SE challenges posed
by the FaaS model, we envision advances in testing, tooling, func-
tionality, and training and education.

(1) Simplicity vs. Completeness: The perceived simplicity of the
FaaS model partly explains its popularity, especially in contrast to
the perceived complexity of distributed systems. However, future
Faa$S platforms will need to support many more use-cases than
today. What is the trade-of between simplicity and expressiveness?

(2) Interoperability: Cloud functions are devoid of operational
logic, theoretically allowing the functions to easily be moved to
other FaaS$ platforms. However, currently each cloud vendor re-
quires a different definition of a cloud function. There is a need for
a vendor-agnostic definition of both the basic cloud-function and
of composite functions, to allow functions to be cloud-agnostic.

(3) Complex Workflows: Allowing developers to compose func-
tions increases application-modularity and encourages the reuse
of functions. Research will need to focus on what composition
models would fit FaaS, on ways to express these compositions of
functions (e.g., AWS Step Functions, Apache OpenWhisk function
composition, Fission Workflows), and on how to support (frequent)
function-updates and hybrid-cloud deployment.

(4) Testing: By delegating operational logic to the infrastructure,
testing can be focused on business-critical logic. There are several
challenges in this area, including how testing FaaS deployments
differs from traditional deployments, how to orchestrate integration
tests in a near-production environment, and how to replicate locally
for testing the third-party, often closed-source cloud platforms.

(5) Education: A key consequence of large-scale adoption of FaaS
is that software engineers do not need vast knowledge of distributed
systems, because the operational concerns, such as autoscaling and
resource management, are handled by the infrastructure. New ques-
tions arise: what knowledge of distributed systems and networking
does a Faa$ user still need to know?, what other notions apply to
Faa$ specifically that need to be taught?, and how to efficiently
teach students and train engineers new to FaaS?

(6) Migrating legacy systems: As noted by Spillner et al. [14],
legacy Java-based systems have a notion of functions. This makes
migration to cloud functions intuitive. Further research should
investigate how to optimize the migration process, and to what
extend it is possible to automate the extraction of functions from
legacy systems to cloud functions.

(7) Local development environment: Because cloud-functions will
reside in different environments and interact with third-party ser-
vices, the local development processes will also change. What is an
effective development process for applications of cloud-functions?
What tools and IDE features are needed?

WoSC’17, December 11-15, 2017, Las Vegas, NV, USA

4.2 System (Operational) Challenges

The operational side of Faa$ includes both cloud users deploying,
monitoring and maintaining their functions, and cloud providers
managing these functions and the underlying Faa$ platform. The
highly dynamic nature of cloud functions calls for advances in secu-
rity, cost predictability, and cloud function lifecycle management.

(8) Security: Centralizing operational logic in the infrastructure
reduces the attack surface, compared to services maintaining their
own servers and resources. However, research needs to understand
the new security issues introduced by FaaS. For example, because
the infrastructure can share resources among cloud-functions, what
is the ideal security vs. performance/cost trade-off?

(9) Division of concerns: Our layered model for Faa$ introduces
an explicit division between business logic for the function, and
operational logic delegated to the infrastructure. However, it is un-
likely that the developer will avoid operational concerns completely.
Thus: what operational concerns still matter to the developer?, and
which concerns matter only to the infrastructure?

(10) Lifecycle management: FaaS platforms are responsible for
most of the lifecycle of cloud functions. We envision that new
versions of functions will constantly be deployed, facilitated by
the small granularity of these functions. Lifecycle management
concerns, such as versioning at unprecedented scale, remain open.

(11) Management of Non-Functional Requirements (NFRs), such as
performance and availability: We envision that, motivated by OPEX
cost and by open-competition, Faa$ platforms will allow developers
and even users to (dynamically) fine-tune the behavior of deployed
cloud-functions. Research in this area should focus on specifying
(dynamic) NFRs, developing schedulers with support NFRs, and
scheduling policies focusing on NFRs within the FaaS context.

(12) Reference architecture: A reference architecture would pro-
vide developers and researchers with an understanding of the main
components shared by FaaS platforms, facilitating new deployments
and enabling comparisons of designs. Although desirable, for the
moment this remains an open challenge.

4.3 Performance Engineering Challenges

Particularly of interest to the SPEC RG Cloud Group are the chal-
lenges related to PE, engineering and evaluation of FaaS platforms:

(13) Performance isolation: Current FaaS platforms make use of
containerization combined with various performance-optimization
techniques. However, these practices reduce the performance isola-
tion between the functions and the associated invocations. Ways to
reduce the performance isolation, and understanding the performance-
isolation trade-off, are open challenges.

(14) Optimizing overhead: Reducing the overhead of FaaS plat-
forms would help further user adoption, as currently FaaS platforms
can lead to long-tail response times [7]. Investigating ways to re-
duce the overhead, for example by eliminating wait-time due to
cold starts, is a research opportunity.

(15) Engineering for cost-performance: The granular billing (pay-
per-use) characteristic of serverless, where costs are directly related
to business-critical functionality, means there is a direct incentive
to optimize simultaneously performance and OPEX costs [4].

(16) Fair comparison of Faa$S platforms: A comparison between
FaaS platforms on performance, availability, and other common
cloud characteristics, would allow users to select the FaaS platform

van Eyk et al.

that fits their needs and platform developers to further improve
their products. To objectively measure the performance of FaaS plat-
forms, we need: representative workloads, relevant metrics, and fair,
tractable, and meaningful performance evaluation methodologies.

(17) Scheduling policies: In the context of resource management,
FaaS offers opportunities for scheduling policies focusing on indi-
vidual function-invocations. This raises new challenges for granu-
lar, function-oriented scheduling. To make data-driven decisions
in-time, a challenge of scheduling scalability arises.

5 CONCLUSION AND ONGOING WORK

The emerging field of serverless and Function-as-a-Service (FaaS)
suffers from a community challenge: defining the main terms and
formulating a long-term vision. Addressing this challenge, in this
work we have defined serverless as an abstract model of cloud
software development. With Faa$S, cloud functions are executed
as services, with operations delegated to infrastructure operating
transparently to cloud developers and their customers. We further
envision 4 perspectives of how serverless and Faa$S could evolve,
and propose 17 technical challenges to be overcome by the next
generation of Faa$S platforms.

This paper is the first step toward the broader goal of the SPEC
RG Cloud Group [6], to develop a general performance evaluation
methodology, and an objective benchmark of FaaS platforms. Our
on-going plans are to help build up a community of interested
researchers and practitioners.

ACKNOWLEDGMENTS

This work is partially supported by the Dutch STW/NWO personal
grant Vidi MagnaData (#14826) and national program COMMIT.

REFERENCES

[1] Michael Armbrust et al. 2010. A view of cloud computing. Commun. ACM 53, 4
(2010), 50-58.

[2] Ioana Baldini et al. 2017. Serverless Computing: Current Trends and Open
Problems. CoRR abs/1706.03178 (2017).

[3] CNCF. 2017. Serverless WG. https://github.com/cncf/wg-serverless. (2017).

[4] Adam Eivy. 2017. Be Wary of the Economics of "Serverless" Cloud Computing.
IEEE Cloud Computing 4, 2 (2017), 6-12.

[5] Nick Gottlieb. 2016. State of the Serverless Community Survey Results. https:
//serverless.com/blog/state-of-serverless-community/. (Nov 2016).

[6] Cloud Group. 2017. SPEC Research Group’s Cloud chapter. https://research.spec.
org/working-groups/rg-cloud.html. (2017).

[7] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkatara-
mani, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2016. Serverless
computation with openlambda. Elastic 60 (2016), 80.

[8] Alexandru Iosup and Dick H. J. Epema. 2011. Grid Computing Workloads. IEEE
Internet Computing 15, 2 (2011), 19-26.

[9] Eric Jonas, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. 2017. Oc-
cupy the Cloud: Distributed Computing for the 99%. In SoCC. 1:1. (In print,
available as CoRR article http://arxiv.org/abs/1702.04024).

[10] Gideon Juve, Ann L. Chervenak, Ewa Deelman, Shishir Bharathi, Gaurang Mehta,

and Karan Vahi. 2013. Characterizing and profiling scientific workflows. Future

Generation Comp. Syst. 29, 3 (2013), 682-692.

Peter M. Mell and Timothy Grance. 2011. SP 800-145. The NIST Definition of Cloud

Computing. Technical Report. Gaithersburg, MD, United States.

[12] J Paul Morrison. 2010. Flow-Based Programming: A new approach to application
development. CreateSpace.

[13] Mike Roberts. 2016. Serverless Architectures. https://martinfowler.com/articles/

serverless.html. (2016).

Josef Spillner and Serhii Dorodko. 2017. Java Code Analysis and Transformation

into AWS Lambda Functions. arXiv preprint arXiv:1702.05510 (2017).

Qi Zhang, Quanyan Zhu, and Raouf Boutaba. 2011. Dynamic resource allocation

for spot markets in cloud computing environments. In UCC. 178-185.

[11

[14

[15

https://github.com/cncf/wg-serverless
https://serverless.com/blog/state-of-serverless-community/
https://serverless.com/blog/state-of-serverless-community/
https://research.spec.org/working-groups/rg-cloud.html
https://research.spec.org/working-groups/rg-cloud.html
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html

	Abstract
	1 Introduction
	2 Defining Serverless and FaaS
	2.1 Overview of Serverless Architectures
	2.2 Cloud Function: Simple to Workflow-Like
	2.3 Function-as-a-Service

	3 Perspectives on Serverless and FaaS
	4 Challenges for Serverless and FaaS
	4.1 Software Engineering Challenges
	4.2 System (Operational) Challenges
	4.3 Performance Engineering Challenges

	5 Conclusion and Ongoing Work
	References

