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Abstract. [Context] Model transformations are key elements of Model-driven 

Engineering. They allow querying, synthesizing and transforming models into 

other models or code. [Problem] However, as with other software development 

artefacts, they are not free from anomalies and thus require both verification and 

validation techniques. [Objective] The objective of this study is to define a semi-

automated framework for inspecting the correctness (notions of type and 

correspondence) of model transformations, by means of detecting and locating 

anomalies in the transformation rules. [Method] In order to compare the 

correctness of source and target models, we assume that operational behaviour 

can be compared by metrics applied on projections from the source model to the 

target (with deliberate loss of information), which should be preserved by the 

transformation. [Results] We demonstrate the applicability of our framework for 

inspecting the correctness of a model-to-model transformation required in a 

model-driven testing approach. The main result of the study highlights the 

advantages of metrics for detecting any missing, incorrect or unnecessary 

transformation rules that have an impact on the correctness of the model 

transformations. From the research perspective, the feedback produced by the 

implemented tool will be useful for future research. 

Keywords: Model Transformations, Type-Correctness, Correspondence 

Correctness, Inspection, Metrics. 

1 Introduction 

Models are the main artefacts in Model‐Driven Engineering (MDE) and efforts are 

focused on their creation, testing and evolution at different levels of abstraction through 

model transformations. However, as with other software development artefacts, model 

transformations are not anomalies-free and so must be systematically verified and 

validated [1]. Otherwise, anomalies introduced by the transformations will be 

propagated and may produce more anomalies in the subsequent MDE activities.  

M. F. Granda, O. Parra, N. Condori-Fernandez. A Metrics-driven Inspection framework 
for Model Transformations. Proceedings in XXII Ibero-American Conference on 
Software Engineering. La Habana-Cuba. 22-26 April, 2019. 

mailto:otto.parra%7d@ucuenca.edu.ec
mailto:n.condori.fernandez@udc.es
mailto:n.condori-fernandez@vu.nl


2 

Verification and validation are independent procedures that are used together for 

checking that a product (i.e. software artefact) meets requirements and specifications 

and that it fulfills its intended purpose. However, verifying a transformation that 

transforms one artefact into another is fundamentally more complex than verifying an 

individual artefact itself [2]. Thus, some researchers argue that specialist techniques are 

required  [1][2][3] to this task. The inspection is used in researches to validate a 

software artefact, which is analysed against predetermined criteria of entry or against 

the specifications which were used to build the artefact. Applying inspection technique 

to the model transformation validation, one has the documentation of the target model 

as predetermined criterion, which will be compared with the produced model. These 

models (i.e. source and target model) are considered the entries, so that the comparisons 

are done. The goal of our research is to make both type-correctness property and 

correspondence correctness of model transformations measurable. 

But, what is a “correct” transformation? We considered some of the different 

notions of correctness summarized by Rahim and Whittle [1]. These authors claim that 

a transformation satisfies the type-correctness property if its target models is 

conforming to the abstract syntax of the target language. A transformation is said to be 

correct with respect to static semantics if the target models satisfy the well-formedness 

constraints of the target metamodel. A transformation is correct with respect to dynamic 

semantics if the target models preserve a given property of the source model (these 

could be domain properties of the source model such as security, application-specific 

properties, or properties relating to the semantics of the source modelling language, 

e.g., run-to-completion semantics for UML state machines). A transformation can also

be deemed correct if the target model contains the expected target elements 

corresponding to the source elements in the source model. They refer to this aspect of 

correctness as correspondence correctness. They also acknowledge that some 

approaches focus on semantics of model transformation properties of the 

transformation itself—such as termination, confluence of transformation rules, and 

executability. 

In this paper, we present a semi-automated metrics-driven inspection framework 

to measure both type-correctness property and correspondence correctness of a 

complex model transformation used in the context of Model-Driven Engineering. With 

the purpose of demonstrating the applicability of our framework, it was used in an 

model-driven testing approach named CoSTest [4][5]. The main contributions of this 

paper are:  

 A semi-automated process defined for inspecting the correctness of model

transformations.

 Automated tool to support some activities of such process (i.e. model

transformation and report generation).

 A set of metrics defined to predict the quality properties we propose to measure

(i.e. type-correctness property and correspondence correctness). These metrics

are evaluated at the instance level, meaning that each execution of the

transformations is measured.
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This paper is structured as follows: Section 2 summarizes the work related. Section 3 

presents the framework and the set of proposed metrics to measure the model 

transformation correctness. In section 4, we demonstrate the applicability of our 

framework using an illustrative example. Finally, Section 5 outlines the conclusions 

and future work. 

2 Related Work 

Research in validation using metrics and inspection is still at an early stage, where the 

research focuses on establishing metrics and mapping them to relevant quality attributes 

of model transformations such as maintainability, testability, performance. A survey 

[1] summarizes 57 approaches for verifying model transformations and classify them 

along two dimensions. Firstly, the authors present a coarse-grained classification based 

on the technical details of the approach (i.e., testing, theorem proving, graph theory, 

model checking, inspection and metrics). Secondly, they present a finer-grained 

classification which categorizes approaches according to criteria such as technique, 

effort, tooling, properties verified and type of transformation. 

From these results, we can summarize that only eight approaches are related to 

inspection and metrics of model transformations (see Table 1). In most of them (7 out 

of 8 approaches), the technique is applied on the transformation rules (i.e. direct 

technique) instead of verifying the properties of the generated output (i.e. indirect 

technique). Column 3 in Table 1 shows that only 4 approaches have a tool support. 

Some works (3 out of 8 approaches, see column Property in Table 1) are focussed in 

the preservation of static semantics of models, one approach does not report the 

property and others (4 of 7 approaches) addressed the preservation of dynamic 

semantics of models. About the types of transformation for which the related work is 

applicable, the survey reported 5 of 8 approaches addressing model-to-model (M2M) 

transformation, 1 approach for model-to-code (M2C) transformation and 2 approaches 

for both type of transformations (see fifth column in Table 1). 
Table 1. Categorization of inspection approaches taken from [1] 

Approach Technique Tool Property Transformation 
Type 

Metrics-
driven 

[6] Indirect No - M2C No 

[7] Direct Yes Termination, confluence, 
executability 

M2M Yes 

[8] Direct Yes Termination, confluence, 
executability 

Both No 

[9] Direct Yes Termination, confluence, 
executability 

M2M No 

[10] Direct No Dynamic semantics of models Both Yes 

[11] Direct No Dynamic semantics of models M2M Yes 

[12] Direct Partial Dynamic semantics of models M2M Yes 

[13] Direct No Dynamic semantics of models M2M Yes 

Our 
proposal 

Indirect Partial Correctness of type and 
correspondence  

M2M Yes 

Currently indirect approaches using theorem proving are focused on verifying M2M 

transformations, and these approaches require the translation of the target model into a 
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formalism (e.g. semantic model) that can be handled by a theorem prover [1]. Theorem 

provers are either used to prove that the model transformations can generate target 

models with certain properties or compare the target models with oracles [1].  

In contrast to this type of indirect techniques that use theorem proving, we proposed 

a semi-automated framework for verifying and inspecting the correctness of type and 

correspondence for M2M transformations, which consists of (i) a tool to generate a 

report and support the manual intervention to inspect the target model comparing with 

the expected model (oracle); (ii) set of proposed metrics providing a measure of the 

model transformation correctness achieved. These values then will be used to locate the 

anomalies in transformation rules and correct them. Next section we present the details 

of our approach.  

3 Framework for inspecting the Correctness of Type and 

Correspondence of Model Transformations  

A conceptual overview for a model-to-model transformation (M2M) from a 

modelling language A to B is given in Fig. 1. Two important elements must be stuck 

out in this context: (1) Metamodel constitutes the definition of a modelling language, 

which provides the constructor and the relations with constraints for describing the 

whole class of models that can be represented by that language with a valid semantic. 

(2) A transformation defines a correspondence relation (e.g. transformation rules) 

between elements in a source metamodel A and elements in a target metamodel B. 

Therefore, executing transformation A2B helps build a group of elements in target 

models to conform (well-formed) to their metamodels, using the information from a set 

of elements in source models, which must also agree with their metamodels. 

Fig. 1. Model transformation adapted from [14] 

Our inspection framework focuses on two aspects: type-correctness and 

correspondence correctness for model transformations. For the type-correctness, we 

verify whether a model transformation can generate well-formed target models. Well-

formedness is verified by checking whether the target model conforms to OCL 

constraints of the target metamodel. For the correspondence correctness, we compare 

(i.e. inspect) the structural correspondence between the expected (i.e. oracle) and target 
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models. Therefore, we applied an indirect technique. Fig. 2 shows an overview on how 

our framework operates, its (manual and automatic) activities, input and output 

artefacts. A description of each activity of our proposed framework is as follows:  

1. Defining precisely each modelling languages (both A and B) based on

metamodeling. It is required include traceability information in target metamodel

(see Section 4.1 for an example).

2. Defining the model transformation using a specific set of structural correspondence

rules (i.e. non-conflicting mappings or transformation rules) to transform the source

model into target model (A2B transformation).

3. Deriving and verifying the target model. For any specific (but arbitrary) well-formed

model instance of the source language A, we derive and check if the corresponding

B target model satisfies the well-formedness constraints of the target metamodel

(static semantics) by automatic transformation (e.g., using ATL [15]).

4. Traversing the models and collecting the cross-links (i.e. model attributes) to trace

source elements with the corresponding target elements.

5. Measuring the correctness (type and correspondence) of the model transformation

by applying inspection and the proposed metrics.

6. Taking a decision, although the approach can indicate the correctness level of the

model transformation, the inspector (expert) is who takes a decision for considering

if the target model is correct. If so, then indirectly the transformation and its rules

can be considered are correct as well.

7. In another case, the transformation rules have to be adjusted and the evaluation

process has to be executed again. For this purpose, the report generated in the step 4

helps to locate the anomalies in the transformation rules.

Fig. 2. Overview of our framework for inspecting the correctness of a M2M transformation 
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3.1 Automated tool for inspecting the target model and traversing the models 

The M2M transformation with its transformation rules can be evaluated by performing 

a simple depth-first search on the model instances. Our tool gives support to both third 

and fourth activities of our framework (See Fig. 2), by automating the model 

transformation and generating reports with the trace of the relationship between the 

source and target elements of the models. The model transformations were 

implemented using an ATL (ATLAS Transformation Language) [15] and metamodels 

in Meta Object Facility –MOF [16], the Eclipse Modelling Framework -EMF [17] that 

employs constraints using Object Constraint Language -OCL [18] to precisely describe 

their invariants. 

3.2 Metrics for evaluating the model transformation correctness 

As shown in Fig. 2 the report of generated elements (outcome of the tool) are input of 

the correctness measurement activity.  In this sub-section, we present the metrics with 

scope of both transformation and rule proposed to measure the type correctness and 

correspondence correctness of model transformations. 

Definition of Basic and Derived Metrics with Transformation scope. 

The type-correctness of a transformation (TC_T) is measured by the metric value 

achieved by the respective rules in the target model. ATrule measures the correctness 

of an atomic rule (it does not contain any reference to any rule including self-reference, 

while Crule measures the correctness of the composite rule (CompositeRule), because 

its result depends on two values (1) outcome of its nested rules, which generates 

elements on target model that need others nested rules; and (2) the own ATrule value.  

If an atomic rule generates a correct element, then its ATRule value is 1; otherwise 

its value is 0. Since target model can have a hierarchical structure, TC_T is calculated 

starting from the most nested level of the structure up to the highest level. These derived 

metrics are as follows: 

─ Type-Correctness for rule i, the Crulei value is calculating using the average of the 

sum of its ATrulei values plus the average of its k element values corresponding to 

Crulel or ATrulel of the nested rules. 

𝐶𝑟𝑢𝑙𝑒𝑖 = (ATrule𝑖 +
∑ Crule𝑙| ATrule𝑙k

𝑙=1

𝑘
) /2        (1) 

─ Type-Correctness of the model Transformation (TC_T) corresponds to the 

ACrule value in the top level of the model. This value is multiplied by 100 to obtain 

the percentage of the type-correctness of the transformation. 

TC_T = Crule𝑖 ∗ 100% (2) 

For Correspondence Correctness (CC_T) of a transformation, a similar pattern to 

that for metrics on Type-Correctness is followed. However, we only consider one value 

for correspondence correctness of a CCrule, if the rule is a CompositeRule, we take the 
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composite CCrule value; otherwise we take the ATRule value. The metrics that can be 

used in both transformations are as follows: 

─ Correspondence Correctness for rule i, the CCrulei value is calculated using the 

average of the sum of its k element values corresponding to CCrulel or ATrulel of 

the nested rules. 

𝐶𝐶𝑟𝑢𝑙𝑒𝑖 =
∑ [𝐶Crule𝑙 | ATrule𝑙]k

𝑙=1

𝑘
(3) 

─ Correspondence Correctness of the model Transformation (CC_T) corresponds 

to CCrule value in the top level of the model. Both values are multiplied by 100 to 

obtain the percentage of the correspondence correctness of the transformation. 

CC_T = C𝐶𝑟𝑢𝑙𝑒𝑖 ∗ 100% (4) 

Definition of Basic and Derived Metrics with Rule scope. 

The basic metrics with rule scope are shown in Table 2. Expected elements are 

provided by the expert. On the other hand, the elements generated by each rule are 

retrieved from the target model using the information of traceability (i.e. rule used) 

stored in each model element. This report is supported by our tool. The respective 

derived metrics (ratio values) are listed in Table 3. The values of these metrics are only 

at the element level, so that they do not consider the contained elements. The contained 

elements are considered in the next metrics with transformation scope. 

Table 2. Basic metrics to calculate the Correctness of Type and Correspondence of a Rule 
Metric Definition 

N_EGj Total number of elements generated by the rule j 

N_CEGj Total number of Correct Elements generated by the rule j 

N_EEj Number of expected elements to be generated by the rule j 

Table 3. Derived metrics to calculate the Correctness of Type and Correspondence of a Rule 
Metric Definition Formula 

TC_rulej Type-Correctness reached by the rule j N_CEGj / N_EGj (5) 

CC_rulej Correspondence Correctness reached by the rule j N_EGj / N_EEj (6) 

Thanks to the measures (outcome of the correctness measurement activity), the 

inspector (expert) has the information to realize on the differences between the obtained 

model and the expected one. These differences could mean: a) there are unnecessary 

rules in the M2M transformation that generate additional elements of the expected ones, 

b) there are missing rules because the elements were not generated as expected, or c)

the rule is incorrect, the expected output may be different from the actual output because 

an existing rule is not correctly implemented. However, these measures do not to allow 

knowing if the errors are serious or insignificant. In this paper, we considered all errors 

with the same severity, but we could define a weight for each rule type in order to 

classify the error relevance.  

In the following section, we illustrate each activity of our metrics-driven inspection 

framework in the context of model-driven testing, where test case models are 

automatically derived from requirements models. 



8 

4 Application of the inspection framework 

We present (an extract of) a complex model transformation from Communicational 

Analysis (CA) Model [19] to CoSTest’s Test Model (TM) [4] (denoted as CA2TM) in

order to demonstrate the applicability of our framework for measuring the correctness 

of model transformations. We selected this transformation (CA2TM) because during 

the development phase of the CoSTest tool, we were challenged to measure the 

correctness of the model transformations implemented in the tool. Therefore, we 

collected the process and data followed for inspecting and measuring the M2M 

transformation, which are reported in this paper.  

4.1 Defining modelling languages 

CA Model as the source modelling language. CA is used to specify the 

requirement models and includes a Communicative Event (CE) and the message 

structures as main artefacts for specifying the functional requirements. Fig. 3 shows 

the main CA artefacts based on the Sudoku system [20], which defines the

functionality for managing different users, playing with their sudokus and generating 

new ones. 

Fig. 3. Excerpt from a CA model for Sudoku CS, adapted from [20]

CoSTest’s TM as the target modelling language. CoSTest’s TM is used to 

capture the semantics of the test model available in the CoSTest tool. A precise 

metamodeling treatment of CoSTest’s TM was discussed in [4]. However, we have 

updated this metamodel including in Element class the traceability information of each 

one of them (i.e. location and transformation rule attributes) in order to measure the 

proposed correctness metrics. Now, we briefly revisit the metamodel and the 

operational semantics of CoSTest’s TM in Fig. 4, it includes the rules that generate the 

different target model elements.   
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Fig. 4. CoSTest metamodel for our transformation example (taken from [4]) 

4.2 Defining the CA2TM model Transformation 

For the sake of readability, we use concrete syntax to describe instances of requirements 

model (see Fig. 5a) and test model (see Fig. 5b) with two test scenarios (i.e. TS1 and 

TS2) for our example, Sudoku system. As in the CA to TM, model transformation can 

be used to generate a target model of a certain structure (TM) from a source model of 

a different structure CA. Specific structural configurations in the source model (such as 

an Communicative Event node in the CA model, (see Fig. 5) produce specific structural 

configurations in the target model (such as a Test Case in the TM). 

The rules to accomplish the structural transformations may be simple (i.e. the 

mapping correspondence is 1 to 1) or complicated (i.e. the mapping correspondence is 

1 to n) (see some examples in Table 4).  

In essence, we expect that the correspondence conditions are independently specified 

for a model transformation, and an independent tool checks if these conditions are 

satisfied by the instance models, after the model transformation has been executed. We 

also require that the model transformation builds up a structure for bookkeeping the 

mapping between the source and target models (e.g. using cross-link attributes as the 

Element class shown in Fig. 4). 

Fig. 5. Examples using graphical concrete syntax of (a) CA model, (b) CoSTest’s TM 
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Table 4. Some transformations and mapping correspondences used in our CA2TM case study 

CA TM mapping correspondence 

Model Test Model 1:1 

Precedence Precedence 1:n 

Communicative Event Test Case 1:1 

Assertion 1:1 

Textual Requirement Assertion 1:1 

Iteration Link 1:n 

Node (End, Start) - Informational 

Logical node (And, Or) - Informational 

Organisational actor -  Not used 

4.3 Deriving and Verifying the Target Model  

The transformation rules previously defined are formalized using ATL language, 

an XMI (XML Metadata Interchange) [16] representation then is generated 

automatically, which would yield the target model (Fig. 5b) as the output when 

supplying (the XMI representation of) the Sudoku’s CA model (Fig. 3) as the input. 

The target model can be checked automatically to prove any model property using 

existing model checker tools or invariants in the same transformation tool (see an 

example of invariants in Fig. 6). Fig. 6 shows some OCL invariants used as the static 

semantics that are checking when the target model (TM) in our CA2TM transformation 

is derived. These example of constraints include that names must be unique within their 

respective contexts, classes must have a name and the multiplicity constraints for 

relations, and so on. 

 
Fig. 6. Some OCL invariants used for the target model of the CA2TM transformation 

If the verification succeeds, then we conclude that the model transformation is 

correct with respect to static semantic of the pair (p, q) of properties for the specific 

pairs of source and target models having semantics defined by a set of transformation 

rules. Otherwise, property p is not preserved by the model transformation and 

debugging can be initiated based upon the error trace(s) retrieved by the model checker. 

As before, this debugging phase may fix problems in the model transformation or in 

the specification of the target language. However, there are anomalies on 

transformation rules that are difficult to detect such as elements that have type-

correctness problems (e.g. element names are syntactically incorrect) as well as 

correspondence correctness problems (e.g. missing or unnecessary elements). 

Therefore, in the Section 3.2, we present a set of metrics that will help to detect this 

kind of problems. 
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4.4 Traversing the Models 

Since the metamodels of both the source and target models are available with the 

transformations, and the trace information (i.e. name, location and trule in the Element 

class, see Fig. 4) is included in the target metamodel, we have implemented the code of 

a model traverser in our tool to trace source elements with the corresponding target 

elements, and generate a report for inspection. This trace information needs to be 

analysed each time the rules specification changes. We call the model traverser at the 

end of each execution of the transformation, supplying to it the source and target model 

instances with the trace information (see example presented in Section 4.1). 

4.5 Measuring the Correctness of the CA2TM model Transformation 

To show how metrics measure the correctness in a model, we will use the data of 

a partial test model TM1 of our illustrative example (i.e. Sudoku system), with four test 

cases (i.e. TC1 – TC4) and one precedence Pr1. 

Firstly, we used the report of the elements obtained by the M2M transformation 

using the tool (see Tables 5 and 6). Second, the expert compares that the report of 

elements is equal to the expected report otherwise it has to be completed with the 

missing elements before calculating the metrics (e.g. row highlighted in Table 5 is 

added because it is a missing element in the output model). Third, the expert checks the 

output model with expected model and assign the values ATrulei for each model 

element. In our example, there are some elements that have type-correctness problems 

(e.g. parameter and trigger names are syntactically incorrect because they include 

spaces) as well as correspondence correctness problems (e.g. unnecessary elements). 

This can be clearly evaluated by assigning to these elements the value 0 to ATrulei, 

such as some values in  Table 5 and  Table 6 are shown.  

Table 5. Report generated with our tool to calculate the metric TC_T for our illustrative example 

From these results, Table 5 shows that the Type-Correctness of the transformation 

(TC_T) is 0.97=97%, we applied the metrics (1) and (2). In similar way, Table 6 shows 
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that the Correspondence Correctness of the transformation (CC_T) is 0.92=92%, we 

applied the metrics (3) and (4). 

Then, we calculate the TC_rulej and CC_rulej metric values for each transformation 

rule by comparing the number of elements generated with the number of expected 

elements. Table 7 shows the results of calculating the metrics (5) and (6) for our 

transformation example using the data from Table 5 and Table 6. 

From these results, we see that the rules 5.2 and 8.3 are incorrect (see values of 

TC_rulej column in Table 6) because they are generating elements with type-

correctness anomalies (e.g. names with spaces). In the similar way, we see that the rules 

6.2 and 7.2 are generating missing or unnecessary elements (see values of CC_rulej 

column in Table 6 and the anomalies identified in Table 5); therefore, these metrics are 

less than 100%. Since the rule 8.1 being nested in rule 6.2, which generates a missing 

element (see row of the missing trigger in Table 6), so its value also does not reach 

100%. 
Table 6. Report generated using our tool to calculate the metric CC_T for our illustrative example 

Table 7. Values of TC_rulej and CC_rulej calculated for our example 

CA2TM 
Transformation 

rule 

TC_rulej (1) CC_rulej (2) CA2TM 
Transformation 

rule 

TC_rulej 
(1) 

CC_rulej (2) 

1 1/1= 100% 1/1=100% 6.2 - 0/1= 0% 

2.1 4/4 = 100% 4/4 = 100% 7.1 3/3=100% 3/3=100% 

3.1 1/1 = 100% 1/1 = 100% 7.2 3/3=100% 0/3=0% 

4.4 2/2= 100% 2/2 =100% 8.1 9/10=90% 9/10=0.90% 

5.2 3/4=0.75% 4/4=100% 8.3 0/4=0% 4/4=100% 

6.1 3/3=100% 3/3=100% 

4.6 Taking a decision 

The differences found allowed us to take corrective actions to adjust our M2M 

transformation, so that for the next iteration the problems identified in the 
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transformation rules were fixed, achieving 100% in the correctness of type and 

correspondence.  

4.7 Adjusting the transformation rules 

By using the report generated by our tool, we located easily the anomalies in the 

transformation rules, which facilitated the correction process. 

Our framework was applied to CA2TM transformations with ten CA source models. 

Each CA source model contained a variety of characteristics that allowed us to test the 

functioning of the different transformation rules defined for CA2TM transformation 

under review. Due to severe page limitations, we can only provide an overview of a 

illustrative example of the CA2TM transformation, the reader is referred to URL 

(https://costestproject2017.wordpress.com/) for a more detailed information of the 

other CA2TM transformations. Then, the differences found in each iteration allowed 

us to take corrective actions to adjust the M2M transformation, so that for the next 

iteration the problems identified in the transformation rules were fixed. Achieving a 

correctness (type and correspondence) of 100% from the 5th CA2TM transformation.  

5 Conclusions and Future Work 

In this paper, we proposed a semi-automated metrics-driven framework to inspect if a 

model transformation preserves the type correctness and correspondence correctness. 

For this purpose, we have defined a set of basic and derived metrics, which can be 

computed and used to inspect the target model comparing with the expected model 

(oracle). The metrics-driven inspection is supported with a report implemented in the 

tool containing the elements of target and source models.  

We demonstrated the applicability of our framework for inspecting the correctness 

of a complex model transformation from a requirements model (i.e. Communicational 

Analysis model) to test models (i.e. CoSTest’s test model). We found that the defined 

metrics were useful for identifying and locating anomalies (i.e. incorrect, missing and 

redundant rules) in the transformation rules, which improved the effectiveness of the 

model transformation under inspection. Our framework also measures the correctness 

of M2M transformation without having to transform them into any other formalism or 

to abstract any of their features. Naturally, we will continue our research focusing on 

the tool’s scalability and cost (inspection effort) as well as defining weights to classify 

the severity of the founded errors. 
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