
VU Research Portal

A metrics-driven inspection framework for model transformations

Granda, Maria Fernanda; Parra, Otto; Condori-Fernández, Nelly

2019

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Granda, M. F., Parra, O., & Condori-Fernández, N. (2019). A metrics-driven inspection framework for model
transformations. 321-334. Paper presented at 22nd Ibero-American Conference on Software Engineering,
CIbSE 2019, La Habana, Cuba. https://www.researchgate.net/publication/333093050_A_Metrics-
driven_Inspection_Framework_for_Model_Transformations

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303694249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/805713a6-0dc1-4518-b234-d6d44d4900b9
https://www.researchgate.net/publication/333093050_A_Metrics-driven_Inspection_Framework_for_Model_Transformations
https://www.researchgate.net/publication/333093050_A_Metrics-driven_Inspection_Framework_for_Model_Transformations

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/333093050

A Metrics-driven Inspection Framework for Model Transformations

Conference Paper · April 2019

CITATIONS

0
READS

112

3 authors:

Some of the authors of this publication are also working on these related projects:

SIRE: Skills that Industry Demands from Requirements Engineers View project

HAPPYNESS: Emotion-aware sustainable service quality assurance View project

María Fernanda Granda

University of Cuenca

15 PUBLICATIONS 71 CITATIONS

SEE PROFILE

Otto Parra

University of Cuenca

13 PUBLICATIONS 11 CITATIONS

SEE PROFILE

Nelly Condori-Fernández

University of A Coruña

101 PUBLICATIONS 846 CITATIONS

SEE PROFILE

All content following this page was uploaded by Nelly Condori-Fernández on 23 June 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/333093050_A_Metrics-driven_Inspection_Framework_for_Model_Transformations?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/333093050_A_Metrics-driven_Inspection_Framework_for_Model_Transformations?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/SIRE-Skills-that-Industry-Demands-from-Requirements-Engineers?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/HAPPYNESS-Emotion-aware-sustainable-service-quality-assurance?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Granda-4?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Granda-4?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Cuenca?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria-Granda-4?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Otto-Parra?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Otto-Parra?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Cuenca?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Otto-Parra?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nelly-Condori-Fernandez?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nelly-Condori-Fernandez?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-A-Coruna?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nelly-Condori-Fernandez?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nelly-Condori-Fernandez?enrichId=rgreq-f967cd1ca8caf890529b7412a11dc28c-XXX&enrichSource=Y292ZXJQYWdlOzMzMzA5MzA1MDtBUzo3NzI5OTA0Njc4Mzc5NTJAMTU2MTMwNjY5Nzc2MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Metrics-driven Inspection Framework for Model

Transformations

Maria Fernanda Granda1, Otto Parra1, and Nelly Condori-Fernández2,3

1 Department of Computer Science, University of Cuenca, Cuenca, Ecuador

{fernanda.granda, otto.parra}@ucuenca.edu.ec
2 Department of Computer Science, University of A Coruña, Spain

n.condori.fernandez@udc.es
3 Vrije Universiteit Amsterdam, The Netherlands

n.condori-fernandez@vu.nl

Abstract. [Context] Model transformations are key elements of Model-driven

Engineering. They allow querying, synthesizing and transforming models into

other models or code. [Problem] However, as with other software development

artefacts, they are not free from anomalies and thus require both verification and

validation techniques. [Objective] The objective of this study is to define a semi-

automated framework for inspecting the correctness (notions of type and

correspondence) of model transformations, by means of detecting and locating

anomalies in the transformation rules. [Method] In order to compare the

correctness of source and target models, we assume that operational behaviour

can be compared by metrics applied on projections from the source model to the

target (with deliberate loss of information), which should be preserved by the

transformation. [Results] We demonstrate the applicability of our framework for

inspecting the correctness of a model-to-model transformation required in a

model-driven testing approach. The main result of the study highlights the

advantages of metrics for detecting any missing, incorrect or unnecessary

transformation rules that have an impact on the correctness of the model

transformations. From the research perspective, the feedback produced by the

implemented tool will be useful for future research.

Keywords: Model Transformations, Type-Correctness, Correspondence

Correctness, Inspection, Metrics.

1 Introduction

Models are the main artefacts in Model‐Driven Engineering (MDE) and efforts are

focused on their creation, testing and evolution at different levels of abstraction through

model transformations. However, as with other software development artefacts, model

transformations are not anomalies-free and so must be systematically verified and

validated [1]. Otherwise, anomalies introduced by the transformations will be

propagated and may produce more anomalies in the subsequent MDE activities.

M. F. Granda, O. Parra, N. Condori-Fernandez. A Metrics-driven Inspection framework
for Model Transformations. Proceedings in XXII Ibero-American Conference on
Software Engineering. La Habana-Cuba. 22-26 April, 2019.

mailto:otto.parra%7d@ucuenca.edu.ec
mailto:n.condori.fernandez@udc.es
mailto:n.condori-fernandez@vu.nl

2

Verification and validation are independent procedures that are used together for

checking that a product (i.e. software artefact) meets requirements and specifications

and that it fulfills its intended purpose. However, verifying a transformation that

transforms one artefact into another is fundamentally more complex than verifying an

individual artefact itself [2]. Thus, some researchers argue that specialist techniques are

required [1][2][3] to this task. The inspection is used in researches to validate a

software artefact, which is analysed against predetermined criteria of entry or against

the specifications which were used to build the artefact. Applying inspection technique

to the model transformation validation, one has the documentation of the target model

as predetermined criterion, which will be compared with the produced model. These

models (i.e. source and target model) are considered the entries, so that the comparisons

are done. The goal of our research is to make both type-correctness property and

correspondence correctness of model transformations measurable.

But, what is a “correct” transformation? We considered some of the different

notions of correctness summarized by Rahim and Whittle [1]. These authors claim that

a transformation satisfies the type-correctness property if its target models is

conforming to the abstract syntax of the target language. A transformation is said to be

correct with respect to static semantics if the target models satisfy the well-formedness

constraints of the target metamodel. A transformation is correct with respect to dynamic

semantics if the target models preserve a given property of the source model (these

could be domain properties of the source model such as security, application-specific

properties, or properties relating to the semantics of the source modelling language,

e.g., run-to-completion semantics for UML state machines). A transformation can also

be deemed correct if the target model contains the expected target elements

corresponding to the source elements in the source model. They refer to this aspect of

correctness as correspondence correctness. They also acknowledge that some

approaches focus on semantics of model transformation properties of the

transformation itself—such as termination, confluence of transformation rules, and

executability.

In this paper, we present a semi-automated metrics-driven inspection framework

to measure both type-correctness property and correspondence correctness of a

complex model transformation used in the context of Model-Driven Engineering. With

the purpose of demonstrating the applicability of our framework, it was used in an

model-driven testing approach named CoSTest [4][5]. The main contributions of this

paper are:

 A semi-automated process defined for inspecting the correctness of model

transformations.

 Automated tool to support some activities of such process (i.e. model

transformation and report generation).

 A set of metrics defined to predict the quality properties we propose to measure

(i.e. type-correctness property and correspondence correctness). These metrics

are evaluated at the instance level, meaning that each execution of the

transformations is measured.

3

This paper is structured as follows: Section 2 summarizes the work related. Section 3

presents the framework and the set of proposed metrics to measure the model

transformation correctness. In section 4, we demonstrate the applicability of our

framework using an illustrative example. Finally, Section 5 outlines the conclusions

and future work.

2 Related Work

Research in validation using metrics and inspection is still at an early stage, where the

research focuses on establishing metrics and mapping them to relevant quality attributes

of model transformations such as maintainability, testability, performance. A survey

[1] summarizes 57 approaches for verifying model transformations and classify them

along two dimensions. Firstly, the authors present a coarse-grained classification based

on the technical details of the approach (i.e., testing, theorem proving, graph theory,

model checking, inspection and metrics). Secondly, they present a finer-grained

classification which categorizes approaches according to criteria such as technique,

effort, tooling, properties verified and type of transformation.

From these results, we can summarize that only eight approaches are related to

inspection and metrics of model transformations (see Table 1). In most of them (7 out

of 8 approaches), the technique is applied on the transformation rules (i.e. direct

technique) instead of verifying the properties of the generated output (i.e. indirect

technique). Column 3 in Table 1 shows that only 4 approaches have a tool support.

Some works (3 out of 8 approaches, see column Property in Table 1) are focussed in

the preservation of static semantics of models, one approach does not report the

property and others (4 of 7 approaches) addressed the preservation of dynamic

semantics of models. About the types of transformation for which the related work is

applicable, the survey reported 5 of 8 approaches addressing model-to-model (M2M)

transformation, 1 approach for model-to-code (M2C) transformation and 2 approaches

for both type of transformations (see fifth column in Table 1).
Table 1. Categorization of inspection approaches taken from [1]

Approach Technique Tool Property Transformation
Type

Metrics-
driven

[6] Indirect No - M2C No

[7] Direct Yes Termination, confluence,
executability

M2M Yes

[8] Direct Yes Termination, confluence,
executability

Both No

[9] Direct Yes Termination, confluence,
executability

M2M No

[10] Direct No Dynamic semantics of models Both Yes

[11] Direct No Dynamic semantics of models M2M Yes

[12] Direct Partial Dynamic semantics of models M2M Yes

[13] Direct No Dynamic semantics of models M2M Yes

Our
proposal

Indirect Partial Correctness of type and
correspondence

M2M Yes

Currently indirect approaches using theorem proving are focused on verifying M2M

transformations, and these approaches require the translation of the target model into a

4

formalism (e.g. semantic model) that can be handled by a theorem prover [1]. Theorem

provers are either used to prove that the model transformations can generate target

models with certain properties or compare the target models with oracles [1].

In contrast to this type of indirect techniques that use theorem proving, we proposed

a semi-automated framework for verifying and inspecting the correctness of type and

correspondence for M2M transformations, which consists of (i) a tool to generate a

report and support the manual intervention to inspect the target model comparing with

the expected model (oracle); (ii) set of proposed metrics providing a measure of the

model transformation correctness achieved. These values then will be used to locate the

anomalies in transformation rules and correct them. Next section we present the details

of our approach.

3 Framework for inspecting the Correctness of Type and

Correspondence of Model Transformations

A conceptual overview for a model-to-model transformation (M2M) from a

modelling language A to B is given in Fig. 1. Two important elements must be stuck

out in this context: (1) Metamodel constitutes the definition of a modelling language,

which provides the constructor and the relations with constraints for describing the

whole class of models that can be represented by that language with a valid semantic.

(2) A transformation defines a correspondence relation (e.g. transformation rules)

between elements in a source metamodel A and elements in a target metamodel B.

Therefore, executing transformation A2B helps build a group of elements in target

models to conform (well-formed) to their metamodels, using the information from a set

of elements in source models, which must also agree with their metamodels.

Fig. 1. Model transformation adapted from [14]

Our inspection framework focuses on two aspects: type-correctness and

correspondence correctness for model transformations. For the type-correctness, we

verify whether a model transformation can generate well-formed target models. Well-

formedness is verified by checking whether the target model conforms to OCL

constraints of the target metamodel. For the correspondence correctness, we compare

(i.e. inspect) the structural correspondence between the expected (i.e. oracle) and target

5

models. Therefore, we applied an indirect technique. Fig. 2 shows an overview on how

our framework operates, its (manual and automatic) activities, input and output

artefacts. A description of each activity of our proposed framework is as follows:

1. Defining precisely each modelling languages (both A and B) based on

metamodeling. It is required include traceability information in target metamodel

(see Section 4.1 for an example).

2. Defining the model transformation using a specific set of structural correspondence

rules (i.e. non-conflicting mappings or transformation rules) to transform the source

model into target model (A2B transformation).

3. Deriving and verifying the target model. For any specific (but arbitrary) well-formed

model instance of the source language A, we derive and check if the corresponding

B target model satisfies the well-formedness constraints of the target metamodel

(static semantics) by automatic transformation (e.g., using ATL [15]).

4. Traversing the models and collecting the cross-links (i.e. model attributes) to trace

source elements with the corresponding target elements.

5. Measuring the correctness (type and correspondence) of the model transformation

by applying inspection and the proposed metrics.

6. Taking a decision, although the approach can indicate the correctness level of the

model transformation, the inspector (expert) is who takes a decision for considering

if the target model is correct. If so, then indirectly the transformation and its rules

can be considered are correct as well.

7. In another case, the transformation rules have to be adjusted and the evaluation

process has to be executed again. For this purpose, the report generated in the step 4

helps to locate the anomalies in the transformation rules.

Fig. 2. Overview of our framework for inspecting the correctness of a M2M transformation

6

3.1 Automated tool for inspecting the target model and traversing the models

The M2M transformation with its transformation rules can be evaluated by performing

a simple depth-first search on the model instances. Our tool gives support to both third

and fourth activities of our framework (See Fig. 2), by automating the model

transformation and generating reports with the trace of the relationship between the

source and target elements of the models. The model transformations were

implemented using an ATL (ATLAS Transformation Language) [15] and metamodels

in Meta Object Facility –MOF [16], the Eclipse Modelling Framework -EMF [17] that

employs constraints using Object Constraint Language -OCL [18] to precisely describe

their invariants.

3.2 Metrics for evaluating the model transformation correctness

As shown in Fig. 2 the report of generated elements (outcome of the tool) are input of

the correctness measurement activity. In this sub-section, we present the metrics with

scope of both transformation and rule proposed to measure the type correctness and

correspondence correctness of model transformations.

Definition of Basic and Derived Metrics with Transformation scope.

The type-correctness of a transformation (TC_T) is measured by the metric value

achieved by the respective rules in the target model. ATrule measures the correctness

of an atomic rule (it does not contain any reference to any rule including self-reference,

while Crule measures the correctness of the composite rule (CompositeRule), because

its result depends on two values (1) outcome of its nested rules, which generates

elements on target model that need others nested rules; and (2) the own ATrule value.

If an atomic rule generates a correct element, then its ATRule value is 1; otherwise

its value is 0. Since target model can have a hierarchical structure, TC_T is calculated

starting from the most nested level of the structure up to the highest level. These derived

metrics are as follows:

─ Type-Correctness for rule i, the Crulei value is calculating using the average of the

sum of its ATrulei values plus the average of its k element values corresponding to

Crulel or ATrulel of the nested rules.

𝐶𝑟𝑢𝑙𝑒𝑖 = (ATrule𝑖 +
∑ Crule𝑙| ATrule𝑙k

𝑙=1

𝑘
) /2 (1)

─ Type-Correctness of the model Transformation (TC_T) corresponds to the

ACrule value in the top level of the model. This value is multiplied by 100 to obtain

the percentage of the type-correctness of the transformation.

TC_T = Crule𝑖 ∗ 100% (2)

For Correspondence Correctness (CC_T) of a transformation, a similar pattern to

that for metrics on Type-Correctness is followed. However, we only consider one value

for correspondence correctness of a CCrule, if the rule is a CompositeRule, we take the

7

composite CCrule value; otherwise we take the ATRule value. The metrics that can be

used in both transformations are as follows:

─ Correspondence Correctness for rule i, the CCrulei value is calculated using the

average of the sum of its k element values corresponding to CCrulel or ATrulel of

the nested rules.

𝐶𝐶𝑟𝑢𝑙𝑒𝑖 =
∑ [𝐶Crule𝑙 | ATrule𝑙]k

𝑙=1

𝑘
(3)

─ Correspondence Correctness of the model Transformation (CC_T) corresponds

to CCrule value in the top level of the model. Both values are multiplied by 100 to

obtain the percentage of the correspondence correctness of the transformation.

CC_T = C𝐶𝑟𝑢𝑙𝑒𝑖 ∗ 100% (4)

Definition of Basic and Derived Metrics with Rule scope.

The basic metrics with rule scope are shown in Table 2. Expected elements are

provided by the expert. On the other hand, the elements generated by each rule are

retrieved from the target model using the information of traceability (i.e. rule used)

stored in each model element. This report is supported by our tool. The respective

derived metrics (ratio values) are listed in Table 3. The values of these metrics are only

at the element level, so that they do not consider the contained elements. The contained

elements are considered in the next metrics with transformation scope.

Table 2. Basic metrics to calculate the Correctness of Type and Correspondence of a Rule
Metric Definition

N_EGj Total number of elements generated by the rule j

N_CEGj Total number of Correct Elements generated by the rule j

N_EEj Number of expected elements to be generated by the rule j

Table 3. Derived metrics to calculate the Correctness of Type and Correspondence of a Rule
Metric Definition Formula

TC_rulej Type-Correctness reached by the rule j N_CEGj / N_EGj (5)

CC_rulej Correspondence Correctness reached by the rule j N_EGj / N_EEj (6)

Thanks to the measures (outcome of the correctness measurement activity), the

inspector (expert) has the information to realize on the differences between the obtained

model and the expected one. These differences could mean: a) there are unnecessary

rules in the M2M transformation that generate additional elements of the expected ones,

b) there are missing rules because the elements were not generated as expected, or c)

the rule is incorrect, the expected output may be different from the actual output because

an existing rule is not correctly implemented. However, these measures do not to allow

knowing if the errors are serious or insignificant. In this paper, we considered all errors

with the same severity, but we could define a weight for each rule type in order to

classify the error relevance.

In the following section, we illustrate each activity of our metrics-driven inspection

framework in the context of model-driven testing, where test case models are

automatically derived from requirements models.

8

4 Application of the inspection framework

We present (an extract of) a complex model transformation from Communicational

Analysis (CA) Model [19] to CoSTest’s Test Model (TM) [4] (denoted as CA2TM) in

order to demonstrate the applicability of our framework for measuring the correctness

of model transformations. We selected this transformation (CA2TM) because during

the development phase of the CoSTest tool, we were challenged to measure the

correctness of the model transformations implemented in the tool. Therefore, we

collected the process and data followed for inspecting and measuring the M2M

transformation, which are reported in this paper.

4.1 Defining modelling languages

CA Model as the source modelling language. CA is used to specify the

requirement models and includes a Communicative Event (CE) and the message

structures as main artefacts for specifying the functional requirements. Fig. 3 shows

the main CA artefacts based on the Sudoku system [20], which defines the

functionality for managing different users, playing with their sudokus and generating

new ones.

Fig. 3. Excerpt from a CA model for Sudoku CS, adapted from [20]

CoSTest’s TM as the target modelling language. CoSTest’s TM is used to

capture the semantics of the test model available in the CoSTest tool. A precise

metamodeling treatment of CoSTest’s TM was discussed in [4]. However, we have

updated this metamodel including in Element class the traceability information of each

one of them (i.e. location and transformation rule attributes) in order to measure the

proposed correctness metrics. Now, we briefly revisit the metamodel and the

operational semantics of CoSTest’s TM in Fig. 4, it includes the rules that generate the

different target model elements.

9

Fig. 4. CoSTest metamodel for our transformation example (taken from [4])

4.2 Defining the CA2TM model Transformation

For the sake of readability, we use concrete syntax to describe instances of requirements

model (see Fig. 5a) and test model (see Fig. 5b) with two test scenarios (i.e. TS1 and

TS2) for our example, Sudoku system. As in the CA to TM, model transformation can

be used to generate a target model of a certain structure (TM) from a source model of

a different structure CA. Specific structural configurations in the source model (such as

an Communicative Event node in the CA model, (see Fig. 5) produce specific structural

configurations in the target model (such as a Test Case in the TM).

The rules to accomplish the structural transformations may be simple (i.e. the

mapping correspondence is 1 to 1) or complicated (i.e. the mapping correspondence is

1 to n) (see some examples in Table 4).

In essence, we expect that the correspondence conditions are independently specified

for a model transformation, and an independent tool checks if these conditions are

satisfied by the instance models, after the model transformation has been executed. We

also require that the model transformation builds up a structure for bookkeeping the

mapping between the source and target models (e.g. using cross-link attributes as the

Element class shown in Fig. 4).

Fig. 5. Examples using graphical concrete syntax of (a) CA model, (b) CoSTest’s TM

10

Table 4. Some transformations and mapping correspondences used in our CA2TM case study

CA TM mapping correspondence

Model Test Model 1:1

Precedence Precedence 1:n

Communicative Event Test Case 1:1

Assertion 1:1

Textual Requirement Assertion 1:1

Iteration Link 1:n

Node (End, Start) - Informational

Logical node (And, Or) - Informational

Organisational actor - Not used

4.3 Deriving and Verifying the Target Model

The transformation rules previously defined are formalized using ATL language,

an XMI (XML Metadata Interchange) [16] representation then is generated

automatically, which would yield the target model (Fig. 5b) as the output when

supplying (the XMI representation of) the Sudoku’s CA model (Fig. 3) as the input.

The target model can be checked automatically to prove any model property using

existing model checker tools or invariants in the same transformation tool (see an

example of invariants in Fig. 6). Fig. 6 shows some OCL invariants used as the static

semantics that are checking when the target model (TM) in our CA2TM transformation

is derived. These example of constraints include that names must be unique within their

respective contexts, classes must have a name and the multiplicity constraints for

relations, and so on.

Fig. 6. Some OCL invariants used for the target model of the CA2TM transformation

If the verification succeeds, then we conclude that the model transformation is

correct with respect to static semantic of the pair (p, q) of properties for the specific

pairs of source and target models having semantics defined by a set of transformation

rules. Otherwise, property p is not preserved by the model transformation and

debugging can be initiated based upon the error trace(s) retrieved by the model checker.

As before, this debugging phase may fix problems in the model transformation or in

the specification of the target language. However, there are anomalies on

transformation rules that are difficult to detect such as elements that have type-

correctness problems (e.g. element names are syntactically incorrect) as well as

correspondence correctness problems (e.g. missing or unnecessary elements).

Therefore, in the Section 3.2, we present a set of metrics that will help to detect this

kind of problems.

11

4.4 Traversing the Models

Since the metamodels of both the source and target models are available with the

transformations, and the trace information (i.e. name, location and trule in the Element

class, see Fig. 4) is included in the target metamodel, we have implemented the code of

a model traverser in our tool to trace source elements with the corresponding target

elements, and generate a report for inspection. This trace information needs to be

analysed each time the rules specification changes. We call the model traverser at the

end of each execution of the transformation, supplying to it the source and target model

instances with the trace information (see example presented in Section 4.1).

4.5 Measuring the Correctness of the CA2TM model Transformation

To show how metrics measure the correctness in a model, we will use the data of

a partial test model TM1 of our illustrative example (i.e. Sudoku system), with four test

cases (i.e. TC1 – TC4) and one precedence Pr1.

Firstly, we used the report of the elements obtained by the M2M transformation

using the tool (see Tables 5 and 6). Second, the expert compares that the report of

elements is equal to the expected report otherwise it has to be completed with the

missing elements before calculating the metrics (e.g. row highlighted in Table 5 is

added because it is a missing element in the output model). Third, the expert checks the

output model with expected model and assign the values ATrulei for each model

element. In our example, there are some elements that have type-correctness problems

(e.g. parameter and trigger names are syntactically incorrect because they include

spaces) as well as correspondence correctness problems (e.g. unnecessary elements).

This can be clearly evaluated by assigning to these elements the value 0 to ATrulei,

such as some values in Table 5 and Table 6 are shown.

Table 5. Report generated with our tool to calculate the metric TC_T for our illustrative example

From these results, Table 5 shows that the Type-Correctness of the transformation

(TC_T) is 0.97=97%, we applied the metrics (1) and (2). In similar way, Table 6 shows

12

that the Correspondence Correctness of the transformation (CC_T) is 0.92=92%, we

applied the metrics (3) and (4).

Then, we calculate the TC_rulej and CC_rulej metric values for each transformation

rule by comparing the number of elements generated with the number of expected

elements. Table 7 shows the results of calculating the metrics (5) and (6) for our

transformation example using the data from Table 5 and Table 6.

From these results, we see that the rules 5.2 and 8.3 are incorrect (see values of

TC_rulej column in Table 6) because they are generating elements with type-

correctness anomalies (e.g. names with spaces). In the similar way, we see that the rules

6.2 and 7.2 are generating missing or unnecessary elements (see values of CC_rulej

column in Table 6 and the anomalies identified in Table 5); therefore, these metrics are

less than 100%. Since the rule 8.1 being nested in rule 6.2, which generates a missing

element (see row of the missing trigger in Table 6), so its value also does not reach

100%.
Table 6. Report generated using our tool to calculate the metric CC_T for our illustrative example

Table 7. Values of TC_rulej and CC_rulej calculated for our example

CA2TM
Transformation

rule

TC_rulej (1) CC_rulej (2) CA2TM
Transformation

rule

TC_rulej
(1)

CC_rulej (2)

1 1/1= 100% 1/1=100% 6.2 - 0/1= 0%

2.1 4/4 = 100% 4/4 = 100% 7.1 3/3=100% 3/3=100%

3.1 1/1 = 100% 1/1 = 100% 7.2 3/3=100% 0/3=0%

4.4 2/2= 100% 2/2 =100% 8.1 9/10=90% 9/10=0.90%

5.2 3/4=0.75% 4/4=100% 8.3 0/4=0% 4/4=100%

6.1 3/3=100% 3/3=100%

4.6 Taking a decision

The differences found allowed us to take corrective actions to adjust our M2M

transformation, so that for the next iteration the problems identified in the

13

transformation rules were fixed, achieving 100% in the correctness of type and

correspondence.

4.7 Adjusting the transformation rules

By using the report generated by our tool, we located easily the anomalies in the

transformation rules, which facilitated the correction process.

Our framework was applied to CA2TM transformations with ten CA source models.

Each CA source model contained a variety of characteristics that allowed us to test the

functioning of the different transformation rules defined for CA2TM transformation

under review. Due to severe page limitations, we can only provide an overview of a

illustrative example of the CA2TM transformation, the reader is referred to URL

(https://costestproject2017.wordpress.com/) for a more detailed information of the

other CA2TM transformations. Then, the differences found in each iteration allowed

us to take corrective actions to adjust the M2M transformation, so that for the next

iteration the problems identified in the transformation rules were fixed. Achieving a

correctness (type and correspondence) of 100% from the 5th CA2TM transformation.

5 Conclusions and Future Work

In this paper, we proposed a semi-automated metrics-driven framework to inspect if a

model transformation preserves the type correctness and correspondence correctness.

For this purpose, we have defined a set of basic and derived metrics, which can be

computed and used to inspect the target model comparing with the expected model

(oracle). The metrics-driven inspection is supported with a report implemented in the

tool containing the elements of target and source models.

We demonstrated the applicability of our framework for inspecting the correctness

of a complex model transformation from a requirements model (i.e. Communicational

Analysis model) to test models (i.e. CoSTest’s test model). We found that the defined

metrics were useful for identifying and locating anomalies (i.e. incorrect, missing and

redundant rules) in the transformation rules, which improved the effectiveness of the

model transformation under inspection. Our framework also measures the correctness

of M2M transformation without having to transform them into any other formalism or

to abstract any of their features. Naturally, we will continue our research focusing on

the tool’s scalability and cost (inspection effort) as well as defining weights to classify

the severity of the founded errors.

References

1. Rahim, L., Whittle, J.: A survey of approaches for verifying model transformations. Softw.

Syst. Model. 14, 1003–1028 (2015).

2. Stürmer, I., Conrad, M., Fey, I., Dörr, H.: Model Transformation Testing Challenges. In:

Int. Workshop on Soft. Engineering for Automotive systems (SEAS ’06). pp. 45–52 (2006).

https://costestproject2017.wordpress.com/

14

3. Küster, J.M., Heckel, R., Engels, G.: Defining and validating transformations of UML

models. In: Proceedings - 2003 IEEE Symposium on Human Centric Computing Languages

and Environments, HCC 2003. pp. 145–152 (2003).

4. Granda, M.F., Condori-Fernandez, N., Vos, T.E.J., Pastor, O.: Towards the automated

generation of abstract test cases from requirements models. In: 1st International Workshop

on Requirements Engineering and Testing. pp. 39–46. IEEE, Karlskrona, Sweden (2014).

5. Granda, M.F., Condori-fernández, N., Vos, T.E.J., Pastor, Ó.: CoSTest : A tool for

Validation of Requirements at Model Level. In: 25th International Requirements

Engineering Conference - Tool Demo (2017).

6. Stürmer, I., Conrad, M., Fey, I., Dörr, H.: Experiences with model and autocode reviews in

model-based software development. Proc. 2006 Int. Work. Softw. Eng. Automot. Syst. -

SEAS ’06. 45 (2006).

7. Van Amstel, M.F., Lange, C.F., Brand, M.G.: Using metrics for assessing the quality of

ASF+SDF model transformations. In: 2nd International Conference on Theory and Practice

of Model Transformations. pp. 239–248 (2009).

8. Amstel, V., Van Den Brand, M.G.J.: Model Transformation Analysis: Staying ahead of the

maintenance nightmare. In: 4th Int. Conf. on Theory and Practice of Model

Transformations. pp. 108–122 (2011).

9. Van Amstel, M., Bosems, S., Kurtev, I., Pires, L.F.: Performance in Model Transformations:

Experiments with ATL and QVT. Lect. Notes Comput. Sci. 6707, 198–212 (2011).

10. Saeki, M., Kaiya, H.: Measuring Model Transformation in Model Driven Development. In:

Int. Conference on Advanced Information, Systems Engineering. pp. 77–80 (2007).

11. Vignaga, A.: Metrics for Measuring ATL Model Transformations, Tech. rep., Universidad

de Chile. (2009).

12. Kapová, L., Goldschmidt, T., Becker, S., Henss, J.: Evaluating maintainability with code

metrics for model-to-model transformations. In: 6th Int. conference on Quality of Software

Architectures: research into Practice–Reality and Gaps, QoSA’10. pp. 151–166 (2010).

13. Rahimi, S., Lano, K.: Integrating goal-oriented measurement for evaluation of model

transformation. In: Int. Symp. on Computer Science and Soft. Eng. pp. 129–134 (2011).

14. Varró, D., Pataricza, A.: Automated Formal Verification of Model Tranformations. In:

Critical Systems Development in UML. pp. 63–78 (2003).

15. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Sci.

Comput. Program. 72, 31–39 (2008).

16. OMG: MOF 2.0/XMI Mapping Specification, v2.1, https://www.omg.org/spec/XMI/2.1/.

17. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Framework. , Amsterdam (2008).

18. Object Management Group: OCL : Object Constraint Language. (2014).

19. España, S., González, A., Pastor, Ó.: Communication Analysis: A Requirements

Engineering Method for Information Systems. In: 21st International Conference on

Advanced Information Systems Engineering. pp. 530–545 (2009).

20. Tort, A., Olivé, A.: Case Study: Conceptual Modeling of Basic Sudoku,

http://guifre.lsi.upc.edu/Sudoku.pdf.

View publication statsView publication stats

https://www.researchgate.net/publication/333093050

