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A B S T R A C T

Background: Falling is a significant problem in patients with multiple sclerosis (MS) and the majority of falls
occur during dynamic activities. Recently, there have been evidences focusing on falls and local stability of
walking based on dynamic system theory in the elderly as well as patients with cerebral concussion. However, in
patient with MS, this relationship has not been fully investigated. The aim of this study was to investigate local
stability of walking as a risk factor for falling in patients with MS.
Methods: Seventy patients were assessed while walking at their preferred speed on a treadmill under single and
dual task conditions. A cognitive task (backward counting) was used to assess the importance of dual tasking to
fall risk. Trunk kinematics were collected using a cluster marker over the level of T7 and a 7-camera motion
capture system. To quantify local stability of walking, maximal finite-time Lyapunov exponent was calculated
from a 12-dimensional state space reconstruction based on 3-dimensional trunk linear and angular velocity time
series. Participants were classified as fallers (≥1) and non-fallers based on their prospective fall occurrence.
Findings: 30 (43%) participants recorded ≥1 falls and were classified as fallers. The results of multiple logistic
regression analysis revealed that short-term local dynamic stability in the single task condition (P < 0.05, odds
ratio = 2.214 (1.037–4.726)) was the significant fall predictor.
Interpretation: The results may indicate that the assessment of local stability of walking can identify patients who
would benefit from gait retraining and fall prevention programs.

1. Introduction

Falling represents a serious risk for patients with multiple sclerosis
(PwMS); > 50% of patients have a history of at least one fall over a 6-
month period (Gunn et al., 2013a; Kasser et al., 2011). To date, several
risk factors for falling such as worse disability level, progressive type of
disease, use of walking aids, impaired cognition, reduced walking speed
and poorer balance performance have been identified in PwMS
(Cattaneo et al., 2002; Gunn et al., 2013b; Nilsagard et al., 2009).
Among those potentially modifiable risk factors, impaired walking has a
high prevalence i.e., approximately 85% of patients with MS report gait
disturbances as their main complaint (Bethoux and Bennett, 2011;
Sosnoff et al., 2011; Tajali et al., 2017). Given the high frequency of
falls and the incidence of fall-related injuries in PwMS, an early de-
tection of mobility-related risk factors for falling is critical to allow

timely interventions and to prevent the occurrence of recurrent falls in
these patients.

Recently, there has been an increasing recognition that investiga-
tion of local dynamic stability (LDS) based on nonlinear dynamics can
provide a deeper insight regarding the locomotor control and fall risk
(Bruijn et al., 2013; Lockhart and Liu, 2008; Peebles et al., 2017). While
traditional linear measures such as the range, standard deviation, and
coefficient of variation of the time series provide information on the
magnitude of variability within the system, nonlinear measures provide
information on the temporal structure of the time series and variations
of gait patterns over time (Dingwell et al., 2001; Dingwell and Marin,
2006; Stergiou and Decker, 2011). LDS can be assessed during normal
walking using maximal finite-time Lyapunov Exponents (LyE) which
quantify the rate of divergence between neighboring trajectories in a
reconstructed state-space of the system's dynamic (Bruijn et al., 2009;
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Bruijn et al., 2010; Bruijn et al., 2013) The results of previous studies
have revealed that measures of kinematic variability are not well cor-
related with measures of LDS that directly quantify the sensitivity of
gait to small perturbations such as floor irregularities (Dingwell et al.,
2001; Dingwell and Cavanagh, 2001).

Regarding the clinical application of LDS measures, it has been
shown that LDS of walking is a more responsive index to show the ef-
fects of a gait training program in PwMS than other gait performance
tests such as 10-meter walk, 3-minute walk and step frequency (Hilfiker
et al., 2013). However, its ability to predict falls has not been fully
investigated in PwMS. A study on the neurological patients with the
paresis of the lower extremity including MS, stroke, traumatic brain and
spinal cord injury patients showed that LyE discriminated well between
patients with a low walking ability and healthy controls (Reynard et al.,
2014). Nevertheless, the majority of these studies relied on retro-
spective or cross-sectional designs and the predictive value of LDS to
identify fall risk has not yet been confirmed in PwMS (Lockhart and Liu,
2008; Peebles et al., 2017; Reynard et al., 2014; Toebes et al., 2012).
This issue is of great importance since prospective models of fall as-
sessment identify the rate of falling in a certain time period in future,
thereby identifying possible cause and effect relationship (Coote et al.,
2014). In contrast, retrospective or cross sectional studies only reveal
some kind of relationship between a number of factors and fall history.

In addition to the gait problems commonly reported by PwMS
(Bethoux and Bennett, 2011; Comber et al., 2016), cognitive impair-
ments are also experienced by 65% of PwMS (Gianni et al., 2014; Gunn
et al., 2013a). Although there are a number of studies which have in-
vestigated the effects of dual tasking on LDS of walking in various po-
pulations (Fino, 2016; Lamoth et al., 2011; van Schooten et al., 2016),
no studies have yet investigated the association between dual task tests
of LDS and fall risk in PwMS. In the elderly, the results of a previous
study revealed that LDS of walking decreased under a cognitive dual
task condition (Lamoth et al., 2011). Moreover, the results of a recent
study in the cerebral concussed patients demonstrated a significant
decrease in the LyE under a cognitive dual task condition (Fino, 2016).
However, none of these studies investigated the predictive ability of
LDS measures under dual task conditions. This issue is important since
walking in the real world requires paying attention to various en-
vironmental features and at the same time recovering from perturba-
tions to avoid falls. Therefore, the purpose of the current study was to
prospectively assess the predictive ability of LDS of walking and its dual
task costs (DTCs) to identify fall risk in PwMS. Based on the current
available evidences (Learmonth et al., 2016; Mofateh et al., 2017; Tajali
et al., 2017; Wajda and Sosnoff, 2015), it was hypothesized that LyE
and their dual task costs (DTCs) can predict future falls in PwMS. In-
formation obtained from this study will help clinicians to prescribe fall
treatment and prevention programs based on the underlying gait defi-
cits in the single or dual task conditions.

2. Methods

2.1. Participants

Seventy PwMS were recruited from the Khuzestan MS Patients'
Society. Inclusion criteria were as follow: (2) a definite diagnosis of MS
(of any subtype) as diagnosed by a neurologist, (2) an expanded dis-
ability status scale (EDSS, physician version) of 0 to 5.5, (3) no MS
relapses 30 days prior to testing, and (4) the ability to walk in-
dependently for at least 2-min on a treadmill. Individuals who stopped
repeatedly were excluded since a correct LDS assessment requires a
minimal number of 85 consecutive gait cycles (Bruijn et al., 2013; Riva
et al., 2014). Each participant signed an inform consent form that had
been approved by the Internal Review Board of the University. Age,
gender and the self-administered EDSS score for disease severity and
other patients' characteristics are reported in Table 1.

2.2. Procedures

Participants were assessed under the 2 experimental conditions,
each lasting for 2-min: (1) single-task walking, (2) dual-task walking.
Kinematic data were collected using a 7-camera motion capture system
(Qualisys Inc., Sweden) at a sampling rate of 100 samples/s. Spherical
retro-reflective markers, 10 mm in diameter, were attached to the heels
bilaterally to calculate heel strike events. Moreover, a cluster of 3 in-
frared retro-reflective markers was placed over the level of T7 to cal-
culate LDS (Bruijn et al., 2010; Bruijn et al., 2013). This location was
chosen based on the fact that maintaining stability of the trunk is a
critical aspect of locomotion (Bruijn et al., 2013).

For the single-task walking condition, patients were instructed to
walk straight ahead, while barefoot, at a self-selected comfortable
walking speed on a motorized treadmill (Biometrix, length: 1.5 m,
width: 0.5 m). Handrails of the treadmill were removed. To provide
safety during walking, a harness was suspended from the ceiling and
was loosely fixed around the waist of each participant. For the dual-task
condition, participants were instructed to walk while counting back-
ward aloud by 3 from a randomly selected number between 200 and
300. The conditions were randomly selected and a rest period of 5 min
was given to prevent fatigue effects.

Subjects were tested at their self-selected walking speed during the
experiment. To get familiarized with the treadmill walking and also
obtain the preferred speed, participants were asked to walk for 5 min
before commencing the test procedure. They were asked to walk on the
treadmill commencing at 0.8 km/h, gradually increasing the speed by
0.1 km/h until they report their preferred speed (Mofateh et al., 2017).
The speed of the treadmill was again increased and decreased in
0.1 km/h intervals to reconfirm the preferred speed (Mofateh et al.,
2017). Participants were given enough rest before the actual experi-
ment.

2.3. Data analysis

Maximum LyE were calculated to quantify LDS in this study (Bruijn
et al., 2010). Firstly, trunk position data were filtered by a 4th order
zero-lag Butterworth low pass filter with the cut off frequency of 20 Hz.
Then, trunk linear velocities were obtained by differentiating the
average position of trunk cluster markers while angular velocities of the
trunk were calculated using the Euler method (Siciliano and Khatib,
2016). All analyses were performed on the velocity time series to
minimize the effects of non-stationarity in the position data.

Then, using a spline interpolation, linear and angular velocity time
series of each trial were time normalized to n × 100 (n = number of
strides) so that each stride approximately consisted of 100 samples. This
issue is important since LyE algorithm is sensitive to both the number of
data samples and the number of gait cycles (Bruijn et al., 2010). Heel
strike events were determined when the sign of heel marker ante-
roposterior (AP) velocity changed. To reconstruct the state-space, the

Table 1
Demographic and clinical characteristics of non-faller and faller groups.

Characteristics Non-fallers Fallers P-value

Number of participants (%) 40 (57%) 30 (43%) NA
Age (yr) 33.12 (8.05) 35.48 (9.71) 0.29
Gender (female/male) 34/6 15/15 < 0.01
BMI (kg/m2) 26.21 (5.34) 23.76 (2.98) < 0.05
Disease duration (yr) 3.78 (4.00) 5.48 (5.38) 0.13
EDSSS 3.15 (0.96) 4.18 (0.56) < 0.01
Gait speed 1.80 (0.31) 1.68 (0.27) 0.11
Type of MS Relapsing-remitting 40 26 0.11

Secondary progressive 0 4
Primary progressive 0 0

Note. Values are mean (standard deviation) or as otherwise indicated. EDSSS:
self-administered expanded disability status scale. NA: not applicable.
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maximum available number of strides across all subjects was selected so
that each state space consisted of exactly the same number of samples.
The dimension of the state-space was 12 including linear, angular ve-
locities and their delayed copies. Since after the time normalization,
time series contained the same number of samples and the same base
frequencies, a fixed time delay of 25 samples was used so that it re-
presents a 90-degree phase shift equivalent to a derivative. Then, short
(λs) and long (λl) time LyE were calculated from the reconstructed
state-space using Rosenstein's algorithm. After that, the nearest neigh-
bors were identified for each point and the distances between trajec-
tories were determined as a function of time. The divergence curves
were calculated from the reconstructed state-space and the average of
the logarithm of the divergence curves was determined. From this
curve, λs and λl were identified as the linear slopes over the duration of
one step and one stride respectively (Reynard et al., 2014).

Furthermore, in order to estimate cognitive motor interference, we
calculated dual-task cost (DTC) for λs and λl.

=DTC S D
S

100

where S equals single-task performance and D is equal to dual-task
performance for each parameter.

2.4. Follow-up assessment of falls

In contrast to retrospective approach of fall assessment which
questions on the number of falls experienced several months before
testing and may be subjected to recall bias, prospective approach
measures the rate of falling in a certain time period after the initial
assessment (Coote et al., 2014; Gianni et al., 2014; Nilsagard et al.,
2009). Therefore, we define a time period of 6 months and follow-up
the rate of falling in this period. For this purpose, subjects were asked to
record their falls on the fall calendars and return these calendars at the
end of each month. In addition, they were contacted during the first
week of the fall count to remind them to count their falls.

For the purpose of patients' monitoring, research assistants tele-
phoned each patient every 6 weeks, on average, to follow up each in-
dividual's fall data. A fall was defined as an unexpected event that re-
sults in ending up on the ground, floor, or any lower surface (Coote
et al., 2014; Tajali et al., 2017). Based on the previous studies, patients
were classified as fallers if they had reported one or more falls during
the 6-month follow up period (Gianni et al., 2014; Tajali et al., 2017).

2.5. Statistical analysis

Firstly, univariate logistic regression analysis was conducted to
determine the predictive ability of each variable separately. Then,
variables with a P < 0.1 were entered into multiple logistic regression
analysis adjusted by the demographic and clinical variables. Odds ratios
(OR) and 95% confidence intervals (CI) were calculated for each re-
gression analysis. Furthermore, in order to have a comprehensive as-
sessment of the two patient groups, a series of independent t-tests were
done to allow between group comparisons of fallers and non-fallers on
all outcome measures of this study. All analyses were conducted using
the IBM SPSS statistics software (Version 22). Significance level was set
at P < 0.05.

3. Results

3.1. Participants and fall data

Approximately 43% of participants (30 patients) reported 1 or more
falls during the 6-month follow-up period. Table 1 summarizes parti-
cipants' characteristics including clinical and demographic data for the
two patient groups (non-fallers and fallers). The results of a series of
independent t-tests revealed that there were significant differences in

the EDSSS, BMI and gender between fallers and non-fallers (Table 1).
The results of the univariate logistic regression models revealed that

λs under both the single and dual-task conditions and λl under the
single task condition were the significant fall predictors in PwMS, while
DTC of λs and λl were not significant predictors (Table 2). Since there
were significant differences between fallers and non-fallers regarding
disability, gender and BMI, we conducted multiple regression analysis
and adjusted the effects of these variables. The results of multiple re-
gression analysis revealed that only λs was the significant fall predictor
i.e. the odds of falling was 2.21 times greater with 1 standard deviation
(SD) increase in the λs (Table 3). In addition, the results of series of
independent t-tests revealed that fallers had greater instability in
walking, as determined by λs, λl and cognitive λs, than non-fallers at
the time of assessment (Table 4).

4. Discussion

In the present study, we investigated the predictive ability of LDS
for future fall identification in a sample of PwMS, who were ambulatory
independent. In our sample, 43% of participants experienced at least
one fall over the 6-month follow-up period and were classified as
fallers. The results of the logistic regression analysis, after adjusting for
clinical and demographic variables, revealed that short-term LyE (λs)
under the single-task condition was the significant fall predictor in
PwMS. i.e. reduced LDS of walking at the time of assessment was pre-
dictive of future falls. This finding is novel and significant as this was
the first prospective study that investigated the predictive ability of a
non-linear measure of gait stability (LyE) in PwMS. Although both
groups of fallers and non-fallers were ambulatory with mild-to-mod-
erate disease severity (EDSS < 6) and had similar ages and disease
duration, they had distinct levels of gait LDS which may provide an
insight into a mobility-related factor associated with falling in these
patients. This finding supports the results of previous studies in the
healthy elderly which demonstrated that LyE may be a valid predictor
of falling (Lockhart and Liu, 2008; Toebes et al., 2012; van Schooten

Table 2
Univariate logistic regression analysis with fall incidence (no fall versus ≥1
fall) as the dependent variable.

Predictors B SE Wald df P-value Odds ratio (95% confidence
interval)

λs 0.903 0.294 9.419 1 0.002 2.466 (1.386–4.389)
λl 0.638 0.271 5.548 1 0.018 1.893 (1.113–3.219)
Cognitive λs 0.524 0.265 3.925 1 0.048 1.689 (1.006–2.837)
Cognitive λl 0.315 0.249 1.606 1 0.205 1.370 (0.842–2.231)
DTC λs 0.284 0.259 1.208 1 0.272 1.329 (0.800–2.206)
DTC λl 0.345 0.277 1.552 1 0.213 1.412 (0.821–2.429)

λS: Lyapunov exponent (LyE) over the duration of one step, λl: LyE over the
duration of one stride, cognitive λs: LyE in the dual task condition over the
duration of one step, DTC: dual task cost, B: regression coefficient; SE: standard
error; df: degrees of freedom; adjusted OR: odds ratio; CI: confidence interval.

Table 3
Multiple logistic regression with fall incidence (no fall versus ≥1 fall) as the
dependent variable.

Predictors B SE Wald df P-value Odds ratio (95% confidence
interval)

λs 0.795 0.387 4.222 1 < 0.05 2.214 (1.037–4.726)
λl 0.506 0.352 2.074 1 0.150 1.659 (0.833–3.304)
Cognitive λs 0.432 0.319 1.830 1 0.176 1.540 (0.824–2.877)

Adjusted for BMI, gender and EDSSS, λs: Lyapunov exponent (LyE) over the
duration of one step, λl: LyE over the duration of one stride, cognitive λs: LyE in
the dual task condition over the duration of one step, B: regression coefficient;
SE: standard error; df: degrees of freedom; OR: odds ratio; CI: confidence in-
terval.
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et al., 2016).
There is an increasing evidence that LDS could be used as a perti-

nent bio-marker for identifying various diseases and adverse conditions
such as falling and disability (Reynard et al., 2014; Stergiou and
Decker, 2011; Toebes et al., 2012). Consistent with this hypothesis, in a
cross sectional study, Huisinga et al., found that trunk control during
walking was impaired in PwMS in comparison to the healthy subjects
suggesting that improving trunk stability should be considered as a goal
in the balance rehabilitation protocols (Huisinga et al., 2013). Fur-
thermore, Peebles et al. found differences in the LDS between PwMS
who had a previous fall history and those who had no fall history
(Peebles et al., 2017). Although the results obtained in the aforemen-
tioned study are valuable in terms of investigating a series of nonlinear
and linear gait variability and stability measures in PwMS (Peebles
et al., 2017), they relied on retrospective fall assessment and the pre-
dictive values of these parameters to identify fall risk remained un-
known. Another noteworthy study by van Schooten et al. illustrated
that daily life gait characteristics including LDS were predictive of fu-
ture falls in the elderly (van Schooten et al., 2016). In contrast to our
study, they used a single trunk accelerometer and analyzed a series of
motor control characteristics including gait stability, variability,
smoothness and symmetry in the older adults (van Schooten et al.,
2016). Taken together, these findings revealed that investigation of
parameters related to locomotor control may be a promising approach
to identify patients who require gait retraining in their fall prevention
programs (Hilfiker et al., 2013; van Schooten et al., 2016).

Among the variables investigated in this study, the LDS measures in
the dual-task condition and their DTCs were not predictive of the future
falls in PwMS. Although there was significant between-group differ-
ences in the dual-task test variables, in terms of prediction and after the
adjustment of disability, gender, and BMI; these variable did not yield
to a significant prediction. Regarding the predictive validity of DTC of
laboratory gait measures, only the DTC of traditional gait parameters
including gait speed and stride length were investigated previously in
PwMS (Etemadi, 2016). In a study by Etemadi, gait was assessed
through an electronic walkway and only the DTC of walking speed was
found to be predictive of the future falls in PwMS (Etemadi, 2016).
Regarding other patient's populations, in a longitudinal study by Fino,
the effect of dual taking on the LDS of walking was assessed in 5 pa-
tients with cerebral concussion (Fino, 2016). The results revealed a
significant decrease in the LDS and an increase in stride time variability
during dual-task walking despite similar single-task stability and
variability with healthy controls (Fino, 2016). However, in this study
no association between DTC of LDS and falling was investigated.
Overall, the controversy obtained in the results of our study with pre-
vious studies regarding dual tasking may be due to differences in the
study design, study variables, experimental conditions (over ground
versus treadmill walking) or the level of cognitive task difficulty used in
the previous experiments.. Maybe, the use of more attentional de-
manding tasks (serial seven subtraction) in the more challenging en-
vironments (narrow-based walking) may provide additional insight into

the effects of dual-tasking on the fall prediction in PwMS.
From a methodological perspective, we measured long-term LDS in

a shorter time interval (one stride versus 4–10 stride). The logic behind
this analysis was the fact that previous studies that measured λl in 4–10
stride did not reveal any sensitivity or between- group differences for
this variable (Dingwell et al., 2001; Dingwell and Marin, 2006). We
hypothesized that this may be due to the fact that λl is measured in an
interval where most divergence is damped down due to either explicit
control and/or the attractor size limitations (physiological or anato-
mical constraints). In fact, we again found a predictive ability only for
the short-term LDS not the long-term. Therefore, short- term LDS seems
to be a more valid indicator to estimate the probability of falling in
PwMS (Bruijn et al., 2010).

Although this study highlighted an association between a decreased
dynamic stability and an increased fall risk in PwMS, several limitations
are needed to be considered. Firstly, the fall incidence in our sample
was less than what is commonly reported in the literature (< 50%)
(Gianni et al., 2014; Gunn et al., 2013a), which may affect the results of
this study. Secondly, the method of this study cannot be applied to very
poor walkers and hence the applicability is limited to a subset of pa-
tients with an independent walking ability. Furthermore, patients of
this study were assessed with a laboratory-based set-up including a
motion analysis system and a treadmill. The use of wireless trunk ac-
celerometers during over ground walking in daily life may enhance the
assessment of LDS in the real life situations or in the clinical settings
(van Schooten et al., 2016). In addition, they seem to be more time
efficient than laboratory-based measurements. Future studies shall
utilize three dimensional trunk accelerometers to investigate the pre-
dictive validity of a series of nonlinear measures, combined with sub-
jective measures (Tajali et al., 2017), in a larger sample of MS patients
to develop an optimal model to predict the fall risks associated with
walking.

5. Conclusion

In conclusion, this study supports using the LDS to predict the
probability of falling in PwMS, thereby incorporating it into the fall risk
assessments and fall prediction models. As the reduced ability to re-
spond effectively to intrinsic or small extrinsic perturbations during
walking can predispose patients to larger perturbations and to falling
(Pai et al., 2014a), investigation of the effects of perturbation-based gait
rehabilitation programs on the rate of falling is recommended in these
patients (Pai et al., 2014b).This issue is important as the results of
previous studies revealed that traditional fall prevention programs in-
cluding stretching, strengthening, yoga and balance training were not
effective in reducing the rate of future falling in PwMS (Gunn et al.,
2015).
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