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Abstract
This paper reports on the results of the VeRoLog Solver Challenge 2016–2017: the 
third solver challenge facilitated by VeRoLog, the EURO Working Group on Vehi-
cle Routing and Logistics Optimization. The authors are the winners of second and 
third places, combined with members of the challenge organizing committee. The 
problem central to the challenge was a rich VRP: expensive and, therefore, scarce 
equipment was to be redistributed over customer locations within time windows. 
The difficulty was in creating combinations of pickups and deliveries that reduce 
the amount of equipment needed to execute the schedule, as well as the lengths of 
the routes and the number of vehicles used. This paper gives a description of the 
solution methods of the above-mentioned participants. The second place method 
involves sequences of 22 low level heuristics: each of these heuristics is associated 
with a transition probability to move to another low level heuristic. A randomly 
drawn sequence of these heuristics is applied to an initial solution, after which the 
probabilities are updated depending on whether or not this sequence improved the 
objective value, hence increasing the chance of selecting the sequences that gener-
ate improved solutions. The third place method decomposes the problem into two 
independent parts: first, it schedules the delivery days for all requests using a genetic 
algorithm. Each schedule in the genetic algorithm is evaluated by estimating its cost 
using a deterministic routing algorithm that constructs feasible routes for each day. 
After spending 80 percent of time in this phase, the last 20 percent of the computa-
tion time is spent on Variable Neighborhood Descent to further improve the routes 
found by the deterministic routing algorithm. This article finishes with an in-depth 
comparison of the results of the two approaches.
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1  Introduction

The VeRoLog Solver Challenge 2016–2017 was facilitated by VeRoLog, the EURO 
Working Group on Vehicle Routing and Logistics Optimization and organized in 
cooperation with ORTEC. This challenge inspired a total of 28 teams, worldwide, to 
participate. Table 1 lists the institutions to which the participants were affiliated. The 

Table 1   The participants’ institutions. If known, the names of the participants are also mentioned

Team Institution Country Participants

– CIRRELT Canada
– Erasmus University Rotterdam The Netherlands
– Ho Chi Minh City Vietnam

International University
– Koc University Turkey
akhe Lancaster University United Kingdom Ahmed Kheiri
– Los Andes University Colombia
– Maastricht University The Netherlands
Success Shiraz University Iran Morteza Keshtkaran
– Tages s.c. Italy
– Tata Consultancy Services Unknown
– Universidad de Buenos Aires Argentina
Tau17 Tel Aviv University Israel Yael Arbel

Dafna Piotro
Alona Raucher
Tal Raviv

MLS Universidad de Los Andes Colombia María Ángel
Lucia Paris

– Universidad Torcuato Di Tella Argentina
– University College Dublin Ireland
– University of Groningen The Netherlands
– University of Laguna Spain
– University of Pavia Italy
– University of Pisa Italy
mjg University of the Federal Germany Martin Geiger

Armed Forces Hamburg
– University of Twente The Netherlands
ADDM University of Vienna and Austria Alina Dragomir

Vienna University of Technology David Müller
– Vrije Universiteit Amsterdam The Netherlands
– Warwick University United Kingdom
SunBeams Zaporizhzhya National University Ukraine Igor Kozin

Sergey Borue
Olena Kryvtsun
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first, second, and third prize were awarded during the VeRoLog conference 2017 in 
Amsterdam1.

ORTEC designed and ran the third solver challenge organized by the VeRoLog. 
The previous two editions took place in 20142 and 20153 and were designed and run 
by PTV. This paper concerns the third challenge4,5.

The routing problem central to the VeRoLog Solver Challenge 2016–2017 was 
based on a real-life problem for one of ORTEC’s clients. From this real-life prob-
lem, a few aspects were selected that lead to a new research topic in vehicle routing 
optimization.

The problem concerns a large cattle improvement company, that must regularly 
measure the milk quality at a number of farms (customers). This requires special 
measuring tools, which have to be delivered to the customers at their request. After 
the measurement, typically a few days later, the tools have to be picked up again. 
The scheduling of these deliveries to days and the routing for the planned deliveries 
and pickups are the issues to address in this challenge.

The problem of this challenge is deterministic and revolves over a long horizon, 
meaning that the scheduling of the individual delivery dates has a large impact on 
solution quality. The problem was first introduced by Gromicho et  al. (2015) and 
in the context of the challenge by Dullaert et al. (2017). It combines the following 
decisions:

–	 On which day each delivery request should be served. This leads to a second 
automatic decision: on which day it should be picked up again.

–	 For each day in the planning horizon, which deliveries and which pickups to 
combine in each route and in what sequence.

The main objective is to serve all requests at a minimum cost (see Sect. 2.1), subject 
to the following constraints:

–	 The number of items (equipment or tools) available per type is limitative, making 
them scarce and forcing reuse.

–	 Items can be loaded at the depot or at a customer, but the items on board must 
always satisfy the capacity constraints.

We may recognize some of the aspects of the problem in the available literature. 
The routing part of our problem consists of unpaired pickups and deliveries which 
is central to the Pickup and Delivery VRP (PDVRP) as defined in  Parragh et  al. 
(2008), where they argued that this problem had received the least attention of all 
problems which they have surveyed. Only one paper was known to the authors of 

1  https​://verol​og201​7.scien​cesco​nf.org/.
2  www.euro-onlin​e.org/websi​tes/verol​og/verol​og-solve​r-chall​enge-2014/.
3  www.euro-onlin​e.org/websi​tes/verol​og/news/verol​og-solve​r-chall​enge-2015/.
4  www.euro-onlin​e.org/websi​tes/verol​og/news/verol​og-solve​r-chall​enge-2016-2017/.
5  https​://verol​og201​7.ortec​.com/.

https://verolog2017.sciencesconf.org/
http://www.euro-online.org/websites/verolog/verolog-solver-challenge-2014/
http://www.euro-online.org/websites/verolog/news/verolog-solver-challenge-2015/
http://www.euro-online.org/websites/verolog/news/verolog-solver-challenge-2016-2017/
https://verolog2017.ortec.com/
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Parragh et al. (2008) addressing unpaired pickups and deliveries being repositioned 
by multiple vehicles, namely Dror et al. (1998). The problem being addressed there 
resembles in many aspects the routing of a specific day in our challenge, including 
the scarcity of the goods and the possibility of them being repositioned (shared elec-
tric cars). Dror et al. (1998) developed an exact methodology based on a mixed inte-
ger programming model, but the applicability was limited to very small instances.

Close to the time of writing Parragh et al. (2008), Montané and Galvão (2006) 
designed the first metaheuristic for the routing of unpaired pickups and deliveries by 
multiple vehicles, but no repositioning was considered: each vehicle departs from a 
single depot with the loads to deliver and returns to the same depot with the picked 
up loads. This seems to be the setting generally followed by subsequent research.

Battarra et al. (2014) consider the VRP with simultaneous pickup and delivery 
demands and attribute its origin to the work of Min (1989) which considered simul-
taneous pickup and delivery in the context of a public library. The study of Min 
(1989), which seems to be overlooked by Parragh et al. (2008), also assumes that 
the deliveries come from a depot and the pickups return to the same depot, hence 
disallows relocation. It is worthy to mention that their proposed mathematical model 
includes a parameter to model the traffic congestion, which makes sense since the 
setting of their study was a large urban area. This is simply done by adjusting the 
travel times on the arcs. However, just as in the case of our challenge, no detailed 
consideration is given to the time aspect and the travel times appear only in the 
objective function.

Another aspect that received substantial attention is that of pickups and deliver-
ies of individual items, which is central to so-called dial-a-ride models (Cordeau 
and Laporte 2007). These models deal with the transportation of people and tend 
to focus on the journey of each item (person), which starts at pickup and finishes at 
delivery. Some modifications to this theme include the usage of transfer points as in 
(Masson et al. 2014) and anticipation on expected return transports as in (Schilde 
et al. 2011). The latter adds a coordination aspect that relates to the subject of our 
challenge in the sense that the items being delivered need to be picked up again; 
however, their items (people) are not ‘reusable’ nor ‘exchangeable’.

Simultaneous pickups and deliveries are also central in the literature on routing 
within reverse logistics, see (Dethloff 2001). Researchers in this field tend to focus 
on the transportation of reusable packaging, which seemingly relates to our reloca-
tion of scarce items. However, the relocation— and hence reuse—is out of scope of 
these models: packaging is brought back to depots to be reused in subsequent, not 
yet planned, routes. Typically, no careful inventory of packages is kept since they are 
not perceived as scarce.

In general, routing papers assume the pickup and delivery orders to be a priori 
defined and they should be served on the day of planning.

One area where we do find the multiple day aspect and the choice of delivery day 
is in inventory routing problems as surveyed by Coelho et al. (2014). The main dif-
ference is that in inventory routing models the inventory is managed at the delivery 
location and typically estimated by the routing operator. Goods are not relocated, 
nor they are scarce. Inventory inside the vehicles is simple to manage since loading 
takes place at the depot only, whereas unloading takes place during the route. The 
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intrinsic difficulty of such models comes from the combination of demand forecast-
ing (leading to inventory estimation) with routing and scheduling decisions. These 
scheduling and routing aspects are present in our problem; however, classical inven-
tory routing models lack the relocation and reuse of goods.

Finally, we mention the research on relocation planning for bike sharing sys-
tems [see  (Fishman 2016) for a survey]. In this problem, the goal is to transport 
bikes from locations where they tend to accumulate to those where they are sought. 
The decision on what level of bike inventory to maintain at every location greatly 
depends on estimations of flows between locations, which makes this problem highly 
stochastic and complex. This complexity is mentioned in, for example, (Schuijbroek 
et al. 2017), which notes that finding provably optimal solutions is practically intrac-
table. Perhaps that is why this domain is quite rich in approaches, including vari-
able neighborhood search heuristics in Rainer-Harbach et al. (2013), branch-and-cut 
algorithm in Raviv and Kolka (2013), cluster-first route-second heuristic in Schuij-
broek et al. (2017), and simulation optimization in Jian et al. (2016). Furthermore, 
these models are sometimes extended with different aspects of the problem, such as 
combining staff-based vehicle redistribution and real-time price incentives for cus-
tomers (Pfrommer et al. 2014).

It is interesting to mention that the repositioning by multiple vehicles addressed 
by Dror et al. (1998) was also in a context of vehicle sharing, in their case electric 
cars, which are indeed much more scarce than the bikes being shared.

We believe that the combination of decisions found in the problem of this chal-
lenge, which is a practical problem faced by some of ORTEC’s customers, is quite 
unique and may lead to subsequent research. Additionally, the richness of the objec-
tive function contributes to the versatility and difficulty of this problem: emphasiz-
ing tool minimization leads to different methodologies being effective than empha-
sizing total distance. To support future research with benchmarking, the challenge 
site remains alive after the challenge has ended.

The problem, including the format of the instance and solution files, and the chal-
lenge rules are described by the challenge team (Gerhard Post, Daan Mocking, Jelke 
van Hoorn, Caroline Jagtenberg and Joaquim Gromicho) which can be found on the 
competition website. Note that this paper contains a recap of the problem descrip-
tion and the challenge rules.

The challenge problem is a simplification of a richer version found by ORTEC’s 
clients, which includes among other features multiple resource capabilities, hetero-
geneous fleet, multiple depots, route synchronization, tight time-windows and adher-
ence to working and driving time directives. Furthermore, the real problem as solved 
by ORTEC for its clients includes an additional phase which is not part of this chal-
lenge: the scheduling and routing of inspectors, who should visit the farms while 
the equipment is present. Each inspector has his or her own home base, skills and 
periods of availability, which makes the whole problem an even greater challenge. 
The problem instances used during the VeRoLog challenge can be downloaded from 
the competition website.

As a curiosity, we mention that a group of undergraduate Business Analyt-
ics students at the Vrije Universiteit in Amsterdam ran a preliminary version of 
the challenge composed of smaller and less restrictive instances, as a case study 
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during a course taught by Joaquim Gromicho. During this case study it became 
evident that there are at least two main ways to tackle the problem: route first, 
schedule second or schedule first, route second. Those that focus first on routing 
day by day and just schedule to meet restrictions were the first to obtain solu-
tions to all instances, while those that develop a sophisticated scheduling of the 
visits prior to routing took longer to design and implement their algorithms, but 
reached higher solution quality.

The remainder of this paper is structured as follows. Section 2 provides a descrip-
tion of the tackled problem. Section 3 describes the algorithms that ended up second 
and third in the ranking of the challenge. Section 4 presents the results, and Sect. 5 
describes the conclusions.

2 � Problem description

The problem discussed in this paper consists in planning of deliveries and pickups 
of tools to customers at their requests to achieve objectives under the presence of 
several constraints.

The problem consists of a set C of customers, a set T of tool kinds, and a set R of 
tool requests. A request r(n, t, c, d, w) asks for n ∈ ℕ tools of one kind t ∈ T  , that 
need to be present at customer c ∈ C for a given number of consecutive days d. The 
delivery of the tools has to fall within a certain time window w given in full days. 
If a customer requires several kinds of tools, this means separate requests are made. 
Note that all requests are known at the moment the planning is made. The tools of 
the request have to be picked up by one vehicle the day after the request is com-
pleted, i.e., precisely d + 1 days after the tools were delivered.

Each problem instance has one depot location where all tools are located at the 
beginning and end of the planning horizon. A vehicle can load a tool at the depot 
and unload it at a customer. Alternatively, after the first day, a vehicle can also pick 
up a tool at customer c1 and deliver it to customer c2 without visiting the depot in 
between. Vehicles can also visit the depot multiple times per day, leaving tools 
and picking them up later for redistribution. To avoid the need for synchronization 
between the vehicles on the same day, only the vehicle that left the tool at the depot 
may pick it up again. Relaxing this constraint would force detailed arrival moments 
at the depot to be modeled to enable checking that tools already brought by a vehi-
cle are available to be taken by another during the same day. If the tools cannot 
be exchanged between vehicles on the same day, the arrival and departure times 
of vehicles at the depot do not need to be synchronized among the vehicles. This 
restriction does not apply if the tool is being picked up on a later day. All vehicles 
must start and end their day at the depot. If a vehicle visits the depot during the day, 
the vehicle route consists of multiple tours.

Each tool kind has a certain size, and the available vehicles all have the same 
capacity with respect to the tool sizes. During any part of a route, the total size on 
board of a vehicle may not exceed its capacity. There is no maximum amount on the 
number of vehicles one can use (although vehicles are not free).
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Every problem instance provides coordinates for each customer as well as a 
depot, allowing the participants to compute the Euclidean distance between any two 
locations. There is an upper bound on the distance that a vehicle can travel in 1 day.

2.1 � Objectives

All requests must be satisfied, and the objective is to minimize a cost function that 
consists of four parts: (1) costs per distance traveled, (2) costs for using a vehicle for 
a day, (3) costs for using a vehicle at all, and (4) a cost per tool, depending on the 
tool kind. The latter was inspired by the real-life problem that this challenge origi-
nated from: the tools involved are in fact rather expensive, and hence it is worth-
while to investigate whether routes can be created which allow for fewer tools to 
be purchased. Each problem instance includes a definition for costs (1)–(4), which 
means that different problem instances emphasize different aspects of this problem. 
This makes it more challenging for the participants to come up with one algorithm 
that tackles all problem instances.

For the challenge rules, including how algorithms are evaluated, we refer the 
reader to Appendix A.

3 � Competitors’ algorithms

Search methodologies are at the core of decision support systems, particularly while 
dealing with computationally difficult optimization problems. The cutting-edge 
methods are often tailored for a specific problem domain by the experts in the area. 
Such systems are custom-made and, often, costly to build. When exact methods can-
not be applied, practitioners and researchers resort to heuristics, which are ‘rule of 
thumb’ methods for solving a given optimization problem. There is a growing inter-
est towards more general, cheaper and intelligent methods. Metaheuristics (Sörensen 
and Glover 2013) and hyper-heuristics (Burke et  al. 2013) are such methodolo-
gies that automate the search process. This section presents the methods that won 
the runner-up and the second runner-up prizes in the VeRoLog Solver Challenge 
2016–2017. The former method employs a hyper-heuristic technique and the latter 
applies an improved genetic algorithm metaheuristic.

3.1 � A sequence‑based selection hyper‑heuristic (Team: akhe)

The main components of selection hyper-heuristics as identified in (Burke et  al. 
2013) are (1) heuristic selection which selects a low level heuristic from a pre-
defined set of low level heuristics and applies it to a candidate solution at each deci-
sion point; and (2) move acceptance which decides whether to continue with the 
newly generated solution or the previous solution. A new field of hyper-heuristic 
methods embedding data science techniques has recently been developed (Asta and 
Özcan 2015). Experiments on a hyper-heuristic benchmark framework (Kheiri and 
Keedwell 2015), urban transit route design problem (Ahmed et al. 2019), wind farm 
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layout optimization problem (Wilson et al. 2018), high school timetabling problem 
(Kheiri and Keedwell 2017) and on water distribution optimization problem (Kheiri 
et al. 2015) have shown that applying a sequence of low level heuristics can poten-
tially improve the quality of solutions more than those that simply select and apply a 
single low level heuristic.

3.1.1 � Overall model

The competing method that took the second place uses a method that applies 
sequences of heuristics. To achieve this, each low level heuristic is associated with 
two probabilities: a transition probability to move to another low level heuristic 
including itself, and another to determine whether to terminate the sequence of low 
level heuristics at this point.

Let [llh0, llh1,… , llhn−1] be the set of low level heuristics. A transition matrix 
(Transition) of size n × n stores scores for each of the n low level heuristics, from 
which we calculate the probabilities of moving from one low level heuristic to 
another (by normalizing the scores given in the matrix). We also define another 
matrix referred to as sequence status matrix (Status) of size n × 2 which specifies 
scores for each of the n low level heuristics in one of two options: add and end.

Initially, elements in both matrices (Transition and Status) are assigned the value 
1. Figure 1 shows the initial score values of the two matrices for n = 4 low level 
heuristics.

At first, a randomly selected low level heuristic (assume llh2 is selected) is added 
to the sequence of low level heuristics. [SEQUENCE: llh2]

The Status matrix is used to decide whether another low level heuristic will be 
selected and added to the sequence or the sequence will end at this point. To make 
one of these two choices, a roulette wheel selection method is applied. For llh2 , the 
probability of adding another low level heuristic is 1/2. Assume that the chosen sta-
tus is add. [SEQUENCE: llh2 , ]

The decision now is to add another low level heuristic to the sequence. This will 
be chosen by a selection procedure based on the roulette wheel selection strategy. 
In our example, the probability of selecting any low level heuristic, given that the 
recently added low level heuristic was llh2 , is 1/4. Assume that the chosen low level 
heuristic is llh1 . [SEQUENCE: llh2 , llh1]

llh0 llh1 llh2 llh3

llh0 1 1 1 1

llh1 1 1 1 1

llh2 1 1 1 1

llh3 1 1 1 1

Transition

add end

llh0 1 1

llh1 1 1

llh2 1 1

llh3 1 1

Status

Fig. 1   Initial score values of the two matrices for n = 4 low level heuristics
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The Status matrix is used again to decide whether another low level heuristic 
will be selected and added to the sequence or the sequence will end at this point. 
For llh1 , which is the recently added low level heuristic, the probability of adding 
another low level heuristic to the sequence is 1/2. Assume that the chosen status 
is end. [SEQUENCE: llh2 , llh1].

In this case the current sequence of low level heuristics ([llh2 , llh1 ]) will be 
applied to the candidate solution in this given order to generate a new solution.

If the new solution improved over the best solution, the scores in both matri-
ces for the relevant low level heuristics are increased by 1 as a reward. This is 
illustrated in Fig. 2. If the new solution does not improve the quality of the best 
solution in hand, then the scores in the matrices will not be updated. This way 
we only increase the chance of selecting the sequences that generate improved 
solutions.

We are now at llh1 , and we continue with the same strategy to construct and 
apply the next sequence of heuristics using the updated scores.

The move acceptance method used in this work is Record-to-Record Travel 
(RRT) move acceptance criterion (Dueck 1993). The idea of RRT is based on the 
simple notion that any new solution, which is not much worse than the best solu-
tion recorded, is accepted. A candidate solution is in the form of a three-dimen-
sional array (days × routes × visits).

Note that the quality of a given solution is evaluated using the main objective 
to be minimized and an estimated (secondary) objective depending on which cost 
type (described in Sect.  2.1) of a given problem instance is set highest. As an 
example, if the main objective is to minimize the number of vehicles, then the 
algorithm will locate the day that has the most number of vehicles (routes) run-
ning and the secondary objective becomes the trip distance of the route that has 
the least total distance on that day. Similarly for the number of used vehicles per 
day, the algorithm attempts to minimize the number of vehicles used per day as 
the main objective, and the trip distance of the route that has the least total dis-
tance as the secondary objective.

The organizers of the challenge provided a set of feasible instances, and con-
firmed that a feasible solution to the problem can be achieved by selecting for 
each visit (delivery or pickup) one vehicle to carry out only this visit. Following 
this, we developed a greedy algorithm to construct an initial feasible solution. 

llh0 llh1 llh2 llh3

llh0 1 1 1 1

llh1 1 1 1 1

llh2 1 2 1 1

llh3 1 1 1 1

Transition

add end

llh0 1 1

llh1 1 2

llh2 2 1

llh3 1 1

Status

Fig. 2   Updated score values of the two matrices
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However, the implemented simple greedy algorithm, which runs in milliseconds, 
often yields a poor quality solution requiring further enhancement.

3.1.2 � Low level heuristics

The sequence-based selection hyper-heuristic approach in this work controls a set 
of 22 low level heuristics to improve the quality of an initially generated solution. 
The low level heuristics are grouped into the following 6 categories: move, swap, 
reverse, add, delete and ruin and recreate.

3.1.3 � Move low level heuristics

–	 LLH0: Moves a visit (delivery, pickup or depot) into a new location inside a 
route (Fig. 3a).

–	 LLH1: Selects two random routes, same day, and a random position on each 
route. The visit in the first position is moved into the second position on the sec-
ond route (Fig. 3c).

–	 LLH2: Selects two random routes from different days and a random position on 
each route. The visit in the first position is moved into the second position on the 
second route. Corresponding visits (pickup or delivery) will be moved to satisfy 
the time window constraint.

–	 LLH3: Moves a block of visits, that is a set of consecutive visits, into a new loca-
tion inside a route.

–	 LLH4: Moves a block of visits into a randomly selected location from another 
route in the same day (Fig. 3e).

–	 LLH5: Moves a block of visits into a randomly selected location from another 
route in different day. Corresponding visits will be moved to satisfy the time win-
dow constraint.

–	 LLH6: Moves a tour, that is visited between two depots, from a route into another 
route in the same day.

–	 LLH7: Moves a tour from a route into another route in different day. Correspond-
ing visits will be moved to satisfy the time window constraint.

3.1.4 � Swap low level heuristics

–	 LLH8: Selects a random route and two random positions and swaps the two vis-
its in these positions (Fig. 3b).

–	 LLH9: Selects two random routes from a randomly selected day, and a random 
position on each route and swaps the visits in these positions (Fig. 3d).

–	 LLH10: Selects two random routes from two different days, and a random posi-
tion on each route and swaps the visits in these positions. Corresponding visits 
will be moved to satisfy the time window constraint.

–	 LLH11: Exchanges block of visits inside a route.
–	 LLH12: Exchanges block of visits between two routes both from the same day 

(Fig. 3f).
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–	 LLH13: Exchanges block of visits between two routes from different days. 
Corresponding visits will be moved to satisfy the time window constraint.

–	 LLH14: Exchanges two tours in a randomly selected route.
–	 LLH15: Exchanges two tours in two different routes in a randomly selected 

day.
–	 LLH16: Exchanges two tours in two different routes from different days. Cor-

responding visits will be moved to satisfy the time window constraint.

(a) Move inside route (b) Swap inside route

(c) Move between routes (d) Swap between routes

(e) Move block between routes (f) Swap block between routes

(g) Add (h) Delete

(i) Reverse (j) Ruin and recreate

Fig. 3   Straight arcs are visits in the route, dashed arcs are visits removed after applying the heuristic, 
curved arcs are visits added after applying the heuristic
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3.1.5 � Reverse low level heuristics

–	 LLH17: Consists in a chronological reversal of a block of visits in a randomly 
selected route (Fig. 3i).

3.1.6 � Add low level heuristics

–	 LLH18: Selects a random route and a random position in this route and adds a depot 
visit into this position (Fig. 3g).

3.1.7 � Delete low level heuristics

–	 LLH19: Deletes a depot visit (Fig. 3h).

3.1.8 � Ruin and recreate low level heuristics

–	 LLH20: Destructs a randomly selected rout generating a partial solution and then 
reconstructs a complete solution at random (Fig. 3j).

–	 LLH21: Same as LLH20 but destructs/reconstructs several routes from a randomly 
selected day.

3.1.9 � Additional remarks and conclusions

Although, the ultimate goal of the development of hyper-heuristic methods is to 
increase the level of generality, by offering methods that have the ability to work on a 
wide range of optimization problems, still it would be interesting to know the position 
of hyper-heuristics with respect to other problem-specific solution methods in a par-
ticular optimization problem while still being general. In this work, a sequence-based 
selection hyper-heuristic has been developed which aims to intelligently and effectively 
control the application of sequences of heuristics as opposed to simple selection of sin-
gle heuristic. The method effectively exploits the features of the problems on the fly as 
indicated in Kheiri and Keedwell (2015). This is a viable approach considering that at 
different points during the search, different sequences of heuristics may be performing 
well.

Preliminary experiments did indicate that large low level heuristics at tour (or block 
of visits) level that tend to move tours around could lead to better results. Of course 
better understanding of this effect requires further work and much more exploration. 
Final results of the challenge suggest that the low level heuristics would need signifi-
cant adjustment to handle the problem more effectively. Interesting future work might 
well try to explore features of instances that are correlated with the different objectives 
defined in Sect. 2.1.
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3.2 � A genetic algorithm metaheuristic (Team: ADDM)

The proposed algorithm decomposes the problem into two independent parts. 
The first part finds a schedule for the delivery day of each request. The second 
part finds the routes of the vehicles for each day according to the predetermined 
schedule.

3.2.1 � Scheduling of delivery days

For the scheduling, a genetic algorithm (GA) is used. For a pedagogical introduc-
tion on GA see Wall (1996). Hart et  al. (2005) provide a review on evolution-
ary scheduling literature. The genome sequence represents the day of delivery 
for each request. Therefore, the sequence has a length equal to the number of 
requests. The day specified for each genome has to be within the delivery time 
window for the request. Since every request needs the tools for a specific amount 
of days, the corresponding pickup days can be easily determined. As far as the 
scheduling is concerned, all necessary information is stored in this sequence. Fig-
ure 4 shows an example of a genome sequence.

3.2.2 � Building a population

For building an initial population, two different approaches are used: a greedy 
heuristic and a random schedule generator.

The greedy heuristic picks a request and assigns a delivery day that increases 
costs the least for the overall schedule. Here, a cost estimation is used based on 
the number of required vehicles and tools. If the resulting sequence is feasible, it 
is added to the initial population, otherwise the heuristic restarted. Feasibility is 
determined by checking if the required resources are not exceeding the available 
limit. To avoid a deterministic heuristic, the order of requests is chosen randomly.

The random schedule generator assigns each request a random day for deliv-
ery as long as it is within the allotted time windows. Therefore, the day for the 
sequence is selected between the first and last possible day for delivery. If the 
sequence is determined to be feasible, it is added to the initial population.

The size of the population is adapted to the size of the instance, i.e., the num-
ber of requests. Depending on the problem instance, we choose between 70 and 
300 individuals. Both the greedy heuristic and the random schedule generator ini-
tially generate a pool of individuals two times the population size. The better half 
is kept, the worse half discarded.

Fig. 4   An example of a genome sequence for the genetic algorithm
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3.2.3 � Selection, genetic operators and mutation

The parents for reproduction are chosen out of the whole population with decreasing 
probability the higher the cost of an individual: first, we sort the population by the 
score of each individual. The population is then separated into three parts: the top 
half and the next two quarters. A parent is then chosen with 1/2 probability out of 
the top half, 1/3 probability out of the less-than-average quarter and 1/6 probability 
out of the worst quarter. The same procedure is used for the second parent. This way 
of selecting parents guarantees that individuals with low cost are chosen most of the 
time, but also allows for less than average candidates to take part in the reproduction 
step. As a consequence, it takes longer for populations to converge to local optima. 
Clearly, constructing a selection method is not a rigorous task and there is a lot of 
freedom in the exact details of how to choose individuals. After some testing we 
settled on the above described selection method due to its simplicity and because it 
achieved acceptable results.

For reproduction, a uniform crossover operator is used. Each gene of the child 
sequence has an equal probability of being selected from one of the parents. Fig-
ure 5 shows an example of a uniform crossover.

After the crossover, some mutation might occur: we mutate up to 10 random 
requests, each having a probability of 1/2 to mutate. The mutation shifts a request to 
a different delivery day within the available time windows.

The genetic algorithm runs up to 400 generations or until the population ‘con-
verges’. We define a population to be converged, if the new generation contains more 
than 80 per cent of identical individuals compared to the last generation.

3.2.4 � Routing and schedule evaluation

To get the exact score of a schedule, the routing for the whole planning horizon has 
to be computed. The routing algorithm has to run very often, because our genetic 
approach relies on evaluating the score of a large number of individual schedules 
in a short amount of time. In particular, the genetic algorithm might encounter the 
same individual more than once during its run. Therefore, the score evaluation of 
individual schedules represents the main performance bottleneck of the solver.

Fig. 5   An example of a uniform crossover
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These problems can be solved by choosing a deterministic routing algorithm, 
which provides each schedule with a unique set of routes. As a result, two identi-
cal schedules have the same routing and the same score. Once the routes for a 
schedule are calculated, the score and a hash value of the schedule can be cached 
in a lookup table. The lookup table provides an easy and fast way of checking if 
a particular schedule has been encountered before and obtaining its score with-
out running the routing algorithm again. Furthermore, memory use is also greatly 
improved because it is not necessary to store the routes of each schedule in the 
population. In the rare event that the exact routes are needed (for example when 
writing the best known solution to a file), we simply run the deterministic routing 
algorithm again and obtain the same result as before.

The routing algorithm takes a schedule as input and tries to solve the rout-
ing problem for each day individually. Since each vehicle can return to the depot 
multiple times within a day, each vehicle route can consist of multiple tours. The 
algorithm is comprised of four stages:

1.	 A modified parallel savings algorithm (Clarke and Wright 1964; Rand 2009) with 
sij = k(si0 + sj0 − sij) where k > 1 , if i is a pickup and j a delivery of the same tool. 
Otherwise k = 1 . Since the problem has the quite unique characteristic of allowing 
tools to be passed on from one customer to the next, we favor savings where this 
is the case to minimize tool use. The algorithm is initialized with single requests 
tours. Each initial tour starts at the depot, fulfills a single pickup or delivery 
request and then returns to the depot. The savings algorithm is based on merging 
pairs of tours into increasingly longer tours. For every merge we determine if the 
capacity constraint is fulfilled by iterating through the arcs where each pickup 
reduces the remaining capacity and each delivery increases the remaining capac-
ity of the vehicle. Additionally, maximum distance constraints are checked by 
summing over arc lengths. If constraints are violated, the savings pair is skipped 
and the next pair is considered.

2.	 A 2-opt heuristic (Croes 1958) using best improvement where all combinations of 
arc pairs are selected and the sub-route between the arcs is reversed. Every time 
tours are modified we check for capacity and distance constraints.

3.	 A 3-opt heuristic (Lin and Kernighan 1973) using best improvement where all 
combinations of arc triplets are selected. As with the 2-opt heuristic, we check 
for constraint violations.

4.	 A best fit decreasing bin packing heuristic (Johnson 1973; Martello and Toth 
1990) to combine tours into vehicles routes with the goal to reduce the amount of 
vehicles in use. When packing tours into routes the capacity constraint is always 
fulfilled, as each tour starts and ends at the depot. However, the distance constraint 
must still be checked.

Stages 2–4 use simple cost estimations with different weight parameters for 
tool use, vehicle number and route length. Tools of the same type are assumed 
to always be passed on from a customer to the next to minimize the number of 
tools required from the depot. Depending on the parameter k and the weights, the 
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results of the routing algorithm can vary dramatically for a given schedule. The 
final version of our solver uses 5 different parameter sets, which put emphasis 
on particular aspects of the cost function. During the initial stage of the solver, 
we choose the parameter set which gives the best average score of the initial 
population.

3.2.5 � Post‑optimization for the routing

Once the genetic algorithm finishes (either due to convergence of the population or due 
to reaching the time limit) and a candidate schedule has been found, more computation-
ally intensive improvement heuristics can be used to further improve the routes that 
were determined by the deterministic routing algorithm. Our solver sets aside 20 per 
cent of the available runtime for this post optimization stage. We use variable neighbor-
hood descent (VND) (Hansen and Mladenović 1999) and the following neighborhoods:

1.	 Move Moves a random node (delivery or pickup) to another position and/or tour 
and/or vehicle route.

2.	 Swap Swaps two random nodes from randomly selected tours and vehicles.
3.	 Tour move Moves a random tour to another vehicle.
4.	 Tour swap Swaps two random tours from randomly selected vehicles.

The VND terminates after n iterations without improvement in each neighborhood or 
until available runtime is reached.

3.2.6 � Additional remarks and conclusions

The decomposition approach (i.e., ‘scheduling first, routing second’) was chosen to 
simplify the problem and accommodate the genetic algorithm. In particular, it natu-
rally leads to an appropriate solution representation of individuals in terms of sched-
ules. The genetic algorithm proves to be a powerful metaheuristic for a problem like 
this, where sub-optimal, but feasible solutions can easily be found. The deterministic 
routing and schedule evaluation ensures that routing calculations are not needlessly 
repeated for identical schedules. This results in a great acceleration of the evaluation of 
the later generations. Such optimization is especially important for the (time) resource 
restricted challenge. The parameter values that account for the vastly different costs of 
each instance and the general parameters of the genetic algorithm were set in a trial-
and-error fashion. In the end, participation in the all-time-best challenge with strong 
competition from other teams helped us choose the particular values used in the solver.
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4 � Competition results

4.1 � All‑time‑best challenge

Table  2 shows the characteristics of the all-time-best instances and the cost of 
best obtained solutions. Instances are named using two numbers with the prefixes 
r for requests and d for days. The instances range from 100 to 1000 customers and 
from 5 to 30 days. The last number indicates which cost type is set highest, with 
1: tool cost followed by vehicle cost, 2: tool cost followed by vehicle day cost, 3: 
vehicle cost, 4: vehicle day cost and 5: distance cost. For example, the Instance 
VeRoLog_r100d5_1 has 100 requests over 5 days, with tools having the highest 
cost, and vehicle has the second highest cost. The instances also have between 2 
and 5 different tool kinds that have to be distributed.

Table 2   The characteristics of the all-time-best instances and the cost of best obtained solutions

Instance Customers Tools Capacity Max distance Best solution Obtained by

VeRoLog_r100d5_1 100 3 50 20,000 1,552,435,049 mjg
VeRoLog_r100d5_2 100 2 40 20,000 996,709,544 mjg
VeRoLog_r100d5_3 100 4 40 20,000 119,957,689 mjg
VeRoLog_r100d5_4 99 5 30 15,000 1,359,088,350 Success
VeRoLog_r100d5_5 100 2 45 16,000 300,125,049,016 mjg
VeRoLog_r100d10_1 100 3 50 16,000 1,313,786,538 mjg
VeRoLog_r100d10_2 100 5 35 20,000 1,555,438,898 mjg
VeRoLog_r100d10_3 100 2 40 17,000 155,316,178 mjg
VeRoLog_r100d10_4 100 4 45 15,000 1,114,888,217 Success
VeRoLog_r100d10_5 98 3 35 16,000 43,871,262,004 Success
VeRoLog_r500d15_1 494 4 35 15,000 3,256,089,143 mjg
VeRoLog_r500d15_2 491 3 35 20,000 3,800,352,751 mjg
VeRoLog_r500d15_3 490 2 45 15,000 402,839,699 mjg
VeRoLog_r500d15_4 487 3 35 17,000 2,807,990,462 mjg
VeRoLog_r500d15_5 488 3 45 15,000 251,378,880,010 mjg
VeRoLog_r1000d25_1 950 2 45 15,000 7,004,087,706 mjg
VeRoLog_r1000d25_2 943 4 35 16,000 6,486,405,100 mjg
VeRoLog_r1000d25_3 944 3 50 17,000 207,087,083 mjg
VeRoLog_r1000d25_4 949 4 30 17000 5,598,405,178 mjg
VeRoLog_r1000d25_5 951 3 50 16,000 161,446,120,006 mjg
VeRoLog_r1000d30_1 940 5 40 15,000 5,220,068,560 mjg
VeRoLog_r1000d30_2 942 4 35 15,000 5,181,409,255 mjg
VeRoLog_r1000d30_3 945 4 40 20,000 187,843,389 mjg
VeRoLog_r1000d30_4 930 4 40 16,000 4,562,837,156 mjg
VeRoLog_r1000d30_5 948 3 35 16,000 257,497,762,007 mjg
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While team mjg–who won the finals—is frequently at the top of the ranking, there 
is an example where this team is outperformed6 by team ADDM, who won third 
prize in the finals. This happens, for the problem instance VeRoLog_r100d5_4 (see 
Table 3), consisting of 100 requests and a 5 day planning horizon, where ADDM and 
mjg provided the second and third best solution respectively. For the other instances 
where mjg did not provide the best solution it provided the second best solution. It is 
still possible to upload solutions to the all-time-best challenge.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

mjg
akhe

ADDM
Sunbeams

Success
Tau17
MLS
NSA
AG

Fig. 6   VeRoLog_late_r1000d25_1

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55

mjg
akhe

ADDM
Sunbeams

Success
Tau17
MLS
NSA
AG

Fig. 7   VeRoLog_late_r1000d25_2

1 1.5 2 2.5 3 3.5

mjg
akhe

ADDM
Sunbeams

Success
Tau17
MLS
NSA
AG

Fig. 8   VeRoLog_late_r1000d25_3

6  At the time of writing this article, after the all-time-best challenge has ended.
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Sunbeams

Success
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Fig. 9   VeRoLog_late_r1000d25_4

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

mjg
akhe
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Sunbeams

Success
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Fig. 10   VeRoLog_late_r1000d25_5
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Fig. 11   Mean rank per team, as computed according to the challenge rules. These results are based on 
the submissions of the restricted resources challenge (late instances). The leftmost three bars correspond 
to the teams that reached the finale
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4.2 � Restricted resources challenge

Based on the challenge ranking system, the organizers selected potential finalists, and 
verified that their reported results could have realistically been produced by their sub-
mitted algorithms. This was done by running the algorithms on the same ORTEC-late 
instances and random seeds. Eventually, three participants were selected as finalists for 
the second part of the challenge.

Figures 6, 7, 8, 9, 10 show the performance variation of all competing methods on 
all five versions of VeRoLog_late_r1000d25 dataset. mjg achieved the best results in 
all instances. akhe performs better than ADDM on the first three versions, but ADDM 
found slightly better results compared to akhe on the last two versions (i.e., when vehi-
cle day cost and distance cost are highly penalized, respectively). The same can be 
observed with the other instances.

Figure  11 shows the mean rank of the teams that submitted in the restricted 
resources challenge (on the so-called “ORTEC late instances”). The figure shows a 
large gap between the third and fourth place, which lead to the organizer’s decision to 
allow precisely three participants in the finale.

Table 4 shows the characteristics of the hidden instances and the cost of the current 
best-known solutions. As before, the last integer in the instance name denotes the type 
of most penalized cost as described in Sect. 4.1.

Table  5 summarizes the results. We performed Mann–Whitney–Wilcoxon test 
(Kruskal 1957; Fagerland and Sandvik 2009) with a 95% confidence level to compare 
pairwise performance variations of two given competing methods statistically. The fol-
lowing notations are used: Given competing method A1 versus competing method A2 , 
(1) A1 > (<) A2 denotes that A1 ( A2 ) is better than A2 ( A1 ) and this performance vari-
ance is statistically significant, (2) A1 ≃ A2 indicates that there is no statistically signifi-
cant difference between A1 and A2.

Overall, it is clear that there is an unambiguous hierarchy: mjg (mean rank 1.02) per-
forms better than akhe (rank 2.16) and akhe performs better than ADDM (rank 2.82). 
However, there are some exceptions to this and we focus on some differences between 
the second and third place. For the instances of type 4 (highest cost are of the type 
vehicle day) and type 5 (highest cost are of the type distance) the difference in perfor-
mance between akhe and ADDM is less significant. This can also be observed in the 
late instances submitted by the participants. This suggests that the submitted solvers 
performed in a stable and consistent manner. With regards to instances with high tool 
cost (represented by type 1 and 2), akhe performed better than ADDM. One particu-
lar characteristic of the challenge problem is that tool cost can be avoided if tools are 
not directly delivered to a customer from the depot but transferred between customers 
instead. The results of the late and hidden instances indicate that ADDMs solver pri-
oritizes distance cost over tool cost and, therefore, generally performs worse in such 
cases.
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Table 4   The characteristics of the hidden instances and the cost of best obtained solutions

Instance Customers Tools Capacity Max distance Best known

VeRoLog_hidden_r500d10_1 485 4 50 17,000 8365884102
VeRoLog_hidden_r500d10_2 492 2 35 16,000 5770640038
VeRoLog_hidden_r500d10_3 491 3 40 20,000 744495928
VeRoLog_hidden_r500d10_4 489 5 40 20,000 3774764460
VeRoLog_hidden_r500d10_5 492 3 40 20,000 166281961014
VeRoLog_hidden_r500d15_1 490 4 35 16,000 2696765455
VeRoLog_hidden_r500d15_2 491 3 45 15,000 5295158689
VeRoLog_hidden_r500d15_3 486 5 50 15,000 216780767
VeRoLog_hidden_r500d15_4 492 3 35 17,000 2019397633
VeRoLog_hidden_r500d15_5 493 2 50 16,000 153864525012
VeRoLog_hidden_r1000d20_1 950 4 30 17,000 8176085650
VeRoLog_hidden_r1000d20_2 950 3 50 20,000 4487557411
VeRoLog_hidden_r1000d20_3 942 5 50 16,000 452935897
VeRoLog_hidden_r1000d20_4 946 5 35 16,000 1816133429
VeRoLog_hidden_r1000d20_5 950 3 35 17,000 673881241010
VeRoLog_hidden_r1000d25_1 947 2 40 15,000 2476429490
VeRoLog_hidden_r1000d25_2 961 4 40 16,000 5953632945
VeRoLog_hidden_r1000d25_3 952 4 40 16,000 176042639
VeRoLog_hidden_r1000d25_4 952 2 35 16,000 7253854432
VeRoLog_hidden_r1000d25_5 952 2 45 20,000 445754474005
VeRoLog_hidden_r1500d30_1 1379 4 40 17,000 6446878020
VeRoLog_hidden_r1500d30_2 1372 5 40 16,000 6483597038
VeRoLog_hidden_r1500d30_3 1373 2 45 20,000 115134924
VeRoLog_hidden_r1500d30_4 1374 3 40 16,000 10599076534
VeRoLog_hidden_r1500d30_5 1382 4 50 20,000 1138250720007
VeRoLog_hidden_r1500d40_1 1375 3 40 15,000 3598635808
VeRoLog_hidden_r1500d40_2 1370 5 40 20,000 6035110304
VeRoLog_hidden_r1500d40_3 1367 3 50 16,000 253836767
VeRoLog_hidden_r1500d40_4 1373 4 35 15,000 2670813271
VeRoLog_hidden_r1500d40_5 1385 2 40 15,000 1610263788013
VeRoLog_hidden_r2000d50_1 1785 2 45 16,000 5029970838
VeRoLog_hidden_r2000d50_2 1785 5 30 16,000 4290045748
VeRoLog_hidden_r2000d50_3 1791 5 40 16,000 323926260
VeRoLog_hidden_r2000d50_4 1792 4 35 16,000 18321969466
VeRoLog_hidden_r2000d50_5 1777 4 40 16,000 1047956765006
VeRoLog_hidden_r2000d65_1 1776 2 40 16,000 3989738288
VeRoLog_hidden_r2000d65_2 1773 4 50 16,000 2457293730
VeRoLog_hidden_r2000d65_3 1782 5 40 16,000 195384322
VeRoLog_hidden_r2000d65_4 1767 3 35 17,000 15891623281
VeRoLog_hidden_r2000d65_5 1799 5 45 16,000 1370590324007
VeRoLog_hidden_r2500d70_1 2166 3 45 16,000 4751728213
VeRoLog_hidden_r2500d70_2 2164 5 35 16,000 5599542429
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4.3 � Convergence comparison

In this section, we compare akhe and ADDM algorithms on all five versions of 
VeRoLog_late_r1000d25 dataset. Our experiments are performed on Intel(R) 
Core(TM) i7-6500U CPU with a 2.50 GHz, 2.60 GHz and 8.00 GB of RAM. The 
convergence curves of the two algorithms on the selected instances is illustrated 
in Fig.  12. In all the cases, the hyper-heuristic method (akhe) improves the qual-
ity of the candidate solutions at the beginning of the search process rapidly, and 
then the process slows down when reaching the local optimum. The employment 
of the sequence-based strategy seems to lead the search to jump from local optima 
in some cases (e.g., VeRoLog_late_r1000d25_5), allowing further improvement to 
the quality of the solutions. Note that the plotted objective values for ADDM start 
slightly later than akhe. This is due to the initial phase of the solver: before starting 
the genetic algorithm, the initial population is evaluated using the routing algorithm 
with different parameter sets. Each parameter set is geared towards different cost 
priorities. The parameter set with the best average score is then chosen for the rest of 
the evolution. As this takes up some time, the objective value curves start only once 
this phase is completed.

5 � Conclusion

In this paper, two heuristic algorithms were proposed to solve a vehicle routing 
problem with inter-route and intra-route challenges. This problem was the topic of a 
recent competition, referred to as VeRoLog Solver Challenge 2016–2017. It is based 
on a real-life problem of a cattle improvement company that combines routing, 
scheduling and inventory aspects. Instances differed, apart from size, in cost penal-
ties, making the problem potentially relevant from a multi-objective point of view. 
28 teams participated worldwide in the all-time-best challenge that ran for 8 months 
and 9 teams participated in a restricted resources challenge.

Academic challenges, such as the one described in this paper, have the pleas-
ant property that algorithms can be compared objectively. Since it is ensured that: 

Table 4   (continued)

Instance Customers Tools Capacity Max distance Best known

VeRoLog_hidden_r2500d70_3 2181 2 35 15,000 354579316
VeRoLog_hidden_r2500d70_4 2170 4 50 20,000 14479189673
VeRoLog_hidden_r2500d70_5 2140 5 40 17,000 1177525804008
VeRoLog_hidden_r2500d75_1 2160 4 40 15,000 5591086150
VeRoLog_hidden_r2500d75_2 2160 3 35 16,000 3520404346
VeRoLog_hidden_r2500d75_3 2147 5 50 15,000 300634318
VeRoLog_hidden_r2500d75_4 2185 3 45 17,000 15283897582
VeRoLog_hidden_r2500d75_5 2192 2 50 17,000 1625596820006



588	 A. Kheiri et al.

1 3

Ta
bl

e 
5  

S
um

m
ar

y 
of

 th
e 

co
m

pe
tit

io
n 

re
su

lts
 (h

id
de

n 
in

st
an

ce
s)

In
st

an
ce

A
D

D
M

 (A
)

ak
he

 (B
)

m
jg

 (C
)

A
 v

s B
A

 v
s C

B
 v

s C

A
vg

. c
os

t
R

an
k

A
vg

. c
os

t
R

an
k

A
vg

. c
os

t
R

an
k

Ve
Ro

Lo
g_

hi
dd

en
_r

50
0d

10
_1

In
fe

as
ib

le
3

85
43

85
27

56
2

83
65

89
92

89
1

<
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
50

0d
10

_2
73

01
40

49
30

3
59

03
91

63
99

2
57

71
49

37
23

1
<

<
<

Ve
Ro

Lo
g_

hi
dd

en
_r

50
0d

10
_3

86
37

11
08

1
3

81
48

43
76

0
1

81
96

73
85

4
2

<
<

≃

Ve
Ro

Lo
g_

hi
dd

en
_r

50
0d

10
_4

45
61

03
44

07
2

45
87

21
63

76
3

37
99

47
98

93
1

≃
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
50

0d
10

_5
1.

95
04

4E
+

11
2

2.
20

57
9E

+
11

3
1.

70
08

8E
+

11
1

≃
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
50

0d
15

_1
32

67
42

91
12

3
28

38
81

31
51

2
26

97
36

75
24

1
<

<
<

Ve
Ro

Lo
g_

hi
dd

en
_r

50
0d

15
_2

62
64

51
83

70
3

55
18

84
84

25
2

53
11

31
08

71
1

<
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
50

0d
15

_3
30

01
57

42
7

3
25

84
86

75
0

2
21

76
65

07
3

1
<

<
<

Ve
Ro

Lo
g_

hi
dd

en
_r

50
0d

15
_4

23
33

12
51

67
2

26
03

74
27

96
3

20
71

34
67

76
1

>
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
50

0d
15

_5
1.

79
54

2E
+

11
2

1.
79

85
5E

+
11

3
1.

55
01

3E
+

11
1

≃
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
15

00
d3

0_
1

78
48

01
40

14
3

68
81

71
75

34
2

64
67

12
02

69
1

<
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
15

00
d3

0_
2

77
88

92
51

07
3

71
27

09
19

55
2

64
89

99
36

80
1

<
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
15

00
d3

0_
3

13
13

76
61

9
3

12
77

51
60

2
2

11
53

15
36

4
1

≃
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
15

00
d3

0_
4

13
17

33
41

13
2

3
13

16
66

41
85

4
2

10
70

34
47

93
0

1
≃

<
<

Ve
Ro

Lo
g_

hi
dd

en
_r

15
00

d3
0_

5
1.

31
72

8E
+

12
2

1.
34

82
8E

+
12

3
1.

15
18

4E
+

12
1

>
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
15

00
d4

0_
1

43
20

64
99

29
3

38
65

21
07

40
2

35
99

10
66

87
1

<
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
15

00
d4

0_
2

73
16

14
58

98
3

65
35

92
86

82
2

60
81

59
71

71
1

<
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
15

00
d4

0_
3

37
86

41
94

6
3

31
60

00
03

6
2

26
62

49
04

7
1

<
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
15

00
d4

0_
4

35
68

03
67

72
3

32
69

10
48

25
2

26
88

60
19

02
1

<
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
15

00
d4

0_
5

1.
92

54
3E

+
12

2
2.

03
42

3E
+

12
3

1.
62

76
2E

+
12

1
>

<
<

Ve
Ro

Lo
g_

hi
dd

en
_r

20
00

d5
0_

1
58

10
78

47
19

3
52

98
64

85
94

2
50

30
22

46
79

1
<

<
<

Ve
Ro

Lo
g_

hi
dd

en
_r

20
00

d5
0_

2
53

28
46

66
75

3
48

66
23

64
14

2
43

08
68

21
51

1
<

<
<

Ve
Ro

Lo
g_

hi
dd

en
_r

20
00

d5
0_

3
48

64
74

15
0

3
41

82
01

60
1

2
32

48
47

20
1

1
<

<
<



589

1 3

Tackling a VRP challenge to redistribute scarce equipment…

Ta
bl

e 
5  

(c
on

tin
ue

d)

In
st

an
ce

A
D

D
M

 (A
)

ak
he

 (B
)

m
jg

 (C
)

A
 v

s B
A

 v
s C

B
 v

s C

A
vg

. c
os

t
R

an
k

A
vg

. c
os

t
R

an
k

A
vg

. c
os

t
R

an
k

Ve
Ro

Lo
g_

hi
dd

en
_r

20
00

d5
0_

4
25

00
18

90
95

5
3

23
25

29
81

13
6

2
18

51
05

62
24

5
1

<
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
20

00
d5

0_
5

1.
28

42
8E

+
12

3
1.

25
32

4E
+

12
2

1.
05

62
9E

+
12

1
<

<
<

Ve
Ro

Lo
g_

hi
dd

en
_r

20
00

d6
5_

1
48

10
73

42
14

3
42

94
61

59
36

2
39

90
00

78
75

1
<

<
<

Ve
Ro

Lo
g_

hi
dd

en
_r

20
00

d6
5_

2
30

83
40

33
19

3
27

02
85

74
05

2
24

65
26

62
27

1
<

<
<

Ve
Ro

Lo
g_

hi
dd

en
_r

20
00

d6
5_

3
26

14
37

81
7

3
23

80
93

07
8

2
19

59
19

94
6

1
<

<
<

Ve
Ro

Lo
g_

hi
dd

en
_r

20
00

d6
5_

4
20

89
75

65
14

3
2

21
94

92
70

72
9

3
16

05
13

27
50

3
1

>
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
20

00
d6

5_
5

1.
64

54
4E

+
12

3
1.

61
75

2E
+

12
2

1.
38

20
9E

+
12

1
>

<
<

Ve
Ro

Lo
g_

hi
dd

en
_r

25
00

d7
0_

1
59

23
44

93
74

3
51

14
33

58
54

2
47

51
95

38
13

1
<

<
<

Ve
Ro

Lo
g_

hi
dd

en
_r

25
00

d7
0_

2
71

71
25

60
68

3
65

56
98

11
85

2
56

43
93

63
33

1
<

<
<

Ve
Ro

Lo
g_

hi
dd

en
_r

25
00

d7
0_

3
51

95
02

10
6

3
46

98
97

67
4

2
35

47
45

80
5

1
<

<
<

Ve
Ro

Lo
g_

hi
dd

en
_r

25
00

d7
0_

4
18

89
53

90
76

2
3

18
83

65
90

05
2

2
14

61
91

86
23

8
1

≃
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
25

00
d7

0_
5

1.
51

88
8E

+
12

3
1.

43
29

E+
12

2
1.

18
55

9E
+

12
1

<
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
25

00
d7

5_
1

69
52

94
59

96
3

61
56

23
18

38
2

55
97

11
35

28
1

<
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
25

00
d7

5_
2

43
35

14
24

95
3

41
35

07
07

61
2

35
56

43
03

90
1

<
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
25

00
d7

5_
3

42
83

74
92

7
3

38
39

30
75

2
2

30
14

33
09

4
1

<
<

<
Ve

Ro
Lo

g_
hi

dd
en

_r
25

00
d7

5_
4

20
34

73
72

36
9

3
19

51
94

19
31

7
2

15
49

39
12

17
8

1
<

<
<

Ve
Ro

Lo
g_

hi
dd

en
_r

25
00

d7
5_

5
2.

01
46

7E
+

12
3

1.
97

37
E+

12
2

1.
63

35
7E

+
12

1
<

<
<

A
ve

ra
ge

 ra
nk

in
g

2.
82

2.
16

1.
02



590	 A. Kheiri et al.

1 3

0 10 20 30 0 10 20 30

0 10 20 30 0 10 20 30

0 10 20 30

5.5

6

6.5

7

7.5
·109

time [min]

ob
je

ct
iv

e

akhe
ADDM

(a) VeRoLog late r1000d25 1

5

6

7

·109

time [min]

ob
je

ct
iv

e

akhe
ADDM

(b)VeRoLog late r1000d25 2

0.4

0.6

0.8

1

1.2
·109

time [min]

ob
je

ct
iv

e

akhe
ADDM

(c) VeRoLog late r1000d25 3

2

4

6

·109

time [min]

ob
je

ct
iv

e
akhe
ADDM

(d)VeRoLog late r1000d25 4

0.5

1

1.5

·1012

time [min]

ob
je

ct
iv

e

akhe
ADDM

(e) VeRoLog late r1000d25 5

Fig. 12   Comparison of the convergence profile of akhe and ADDM algorithms on VeRoLog_late_
r1000d25 dataset



591

1 3

Tackling a VRP challenge to redistribute scarce equipment…

(1) all researchers are working on exactly the same, well-defined problem, (2) 
there is compensation for run times on different machines, and (3) each algorithm 
is applied to many different problem instances.

We described two different solution methods for the problem central to the 
challenge: the first method, by team akhe, is based on finding promising combi-
nations of low level heuristics. These heuristics, such as move, swap or reverse, 
are combined in sequences that are randomly drawn with probabilities that are 
updated in a tuning process that depends on the problem instance. This algorithm 
is rather generic, in the sense that applying it to different problems would require 
relatively few changes (as long as it is easy to find initial feasible solutions for the 
problem).

The second method, by team ADDM, focuses on decomposing the problem. This 
means that the algorithm is explicitly tackling the problem of assigning tasks to days. 
It spends the first 80% of the computation time on finding good day to day schedules 
using a genetic algorithm. The last 20% of time is spent on Variable Neighborhood 
Descent in order to improve the routing given a certain day to day schedule. One 
might say this approach is intuitive, because the decomposition explicitly deals with 
the scheduling and the routing aspects of the problem.

We can observe differences and similarities between the two approaches. Let us 
focus on the most obvious difference first: team ADDM decomposed the problem 
whereas team akhe did not. While the two approaches appear quite different alto-
gether, we can still find several similarities. First of all, the ‘low level heuristics’ 
as mentioned in akhe’s approach overlap with the heuristics used in team ADDM’s 
neighborhood search. Furthermore, both teams made use of the fact that initial fea-
sible solutions were easy to find. Finally, both approaches were randomized and 
allowed for trying moves that appeared to be unlikely to improve the solution - albeit 
with a smaller probability than those moves that appeared promising.

The ability to compare algorithms objectively makes a challenge a valuable 
opportunity to gain insights into state-of-the-art solution techniques. In this paper, 
we demonstrated that the two solution approaches—although altogether different—
were both effective in solving the -hard optimization problem that underlined 
the VeRoLog Solver Challenge 2016–2017.
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acknowledge the financial support by FWF the Austrian Science Fund (Project number P 27858).

Appendix A: Challenge rules

We summarize the challenge rules, which were originally published in (Dullaert 
et al. 2017). The challenge consisted of three parts, and the first two ran partially 
parallel in time.
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Appendix A1: All‑time‑best challenge

The organizers disclosed 25 instances in December 2016: the “all-time-best 
instances”. Participants were invited to submit a solution to an instance if it was 
better than the best solution submitted so far for this instance. Progress, i.e., the cost 
of the best solution over time, was shown to the participants. This information is 
still visible on the website, and it shows that different instances are won by different 
participants.

The all-time-best challenge ran till July 2, 2017 and the participants were 
rewarded in two ways: for every week during the all-time-best period that their solu-
tion was the best, and additionally for having the best solution at the end of the chal-
lenge. In this part of the challenge, any means, resources and time, were allowed.

Appendix A2: Restricted resources challenge

This challenge had a more “traditional” form: the resources were restricted, espe-
cially the computing time. The time Tlimit (seconds) that each algorithm was 
allowed to run on the organizers’ single core machine is limited by the formula 
Tlimit = 10 + 2|R| . Here |R| is the number of (delivery) requests in the instance. The 
organizers provided a calibration tool, so that each participant could estimate the 
equivalent time on his or her local machine. In addition, it was not allowed to use 
any software that is not freely available for commercial use. In particular, this means 
that for example the use of commercial MILP solvers was forbidden. Each algorithm 
had to run on a new set of 25 instances (available since April 1 2017). Furthermore, 
each solver had to run on each instance, using nine different random seeds, to reduce 
the variance coming from randomized algorithms. Non-randomized algorithms 
could also profit from the random seeds: they were known to be between 108 and 109 
with a different starting digit for each seed, and hence it was possible to detect this 
and run 9 different deterministic algorithms. The corresponding results and solver 
binaries were submitted on May 8, 2017.

The evaluation of algorithms in the restricted resources challenge was done as 
follows. A rank score was calculated per instance for each solver. First, per instance, 
the two best solutions and the two worst solutions found by the solver were removed. 
The remaining five solutions were used to compute the score of the solver. If these 
five solutions were all feasible, their average counted as the score of the solver. 
Alternatively, if there were infeasible solutions among the middle 5 solutions, that 
solver was first ranked with respect to the number of feasible solutions, and second-
ary by the average cost of the feasible ones. Finalists were announced on June 1.

Appendix A3: The finals

The finalists’ solvers were run by the organizers on a set of 50 not previously dis-
closed (the so-called hidden) instances. Again, per solver per instance but equal 
for each finalist, nine runs with different random seeds were done, again with nine 
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different starting digits. A solver ranking per instance was made with the same rules 
as above, as well as a ranking of the solvers based on these scores. The winner of the 
challenge was the participant whose solver had the lowest mean of the ranks.

References

Ahmed L, Mumford C, Kheiri A (2019) Solving urban transit route design problem using selection hyper-
heuristics. Eur J Oper Res 274(2):545–559

Asta S, Özcan E (2015) A tensor-based selection hyper-heuristic for cross-domain heuristic search. Inf 
Sci 299:412–432

Battarra M, Cordeau JF, Iori M (2014) Pickup-and-delivery problems for goods transportation. In: 
Toth P, Vigo D (eds) Vehicle Routing, chap  6, pp 161–191. doi:https://epubs.siam.org/doi/
pdf/10.1137/1.9781611973594.ch6

Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Qu R (2013) Hyper-heuristics: a survey 
of the state of the art. J Oper Res Soc 64(12):1695–1724

Clarke G, Wright JW (1964) Scheduling of vehicles from a central depot to a number of delivery points. 
Oper Res 12(4):568–581

Coelho LC, Cordeau JF, Laporte G (2014) Thirty years of inventory routing. Transp Sci 48(1):1–19
Cordeau JF, Laporte G (2007) The dial-a-ride problem: models and algorithms. Ann Oper Res 

153(1):29–46
Croes GA (1958) A method for solving traveling-salesman problems. Oper Res 6(6):791–812
Dethloff J (2001) Vehicle routing and reverse logistics: the vehicle routing problem with simultaneous 

delivery and pick-up. OR-Spektrum 23(1):79–96
Dror M, Fortin D, Roucairol C (1998) Redistribution of self-service electric cars: a case of pickup and 

delivery. Tech. Rep. RR-3543, INRIA
Dueck G (1993) New optimization heuristics: the great deluge algorithm and the record-to-record travel. 

J Comput Phys 104(1):86–92
Dullaert W, Gromicho J, van Hoorn J, Post G, Vigo D (2017) The VeRoLog solver challenge 2016–2017. 

J Veh Rout Algorithms 1:1–3. https​://doi.org/10.1007/s4160​4-016-0001-7
Fagerland MW, Sandvik L (2009) The Wilcoxon–Mann–Whitney test under scrutiny. Stat Med 

28(10):1487–1497
Fishman E (2016) Bikeshare: a review of recent literature. Transp Rev 36(1):92–113
Gromicho JA, Haneyah S, Kok L (2015) Solving a real-life vrp with inter-route and intra-route chal-

lenges. https​://doi.org/10.2139/ssrn.26105​49
Hansen P, Mladenović N (1999) An introduction to variable neighborhood search. In: Meta-heuristics, 

Springer, pp 433–458
Hart E, Ross P, Corne D (2005) Evolutionary scheduling: a review. Genetic Progr Evol Mach 

6(2):191–220
Jian N, Freund D, Wiberg HM, Henderson SG (2016) Simulation optimization for a large-scale bike-

sharing system. In: Proceedings of the 2016 Winter Simulation Conference, IEEE Press, Piscataway, 
NJ, USA, WSC ’16, pp 602–613

Johnson DS (1973) Near-optimal bin packing algorithms. PhD thesis, Massachusetts Institute of 
Technology

Kheiri A, Keedwell E (2015) A sequence-based selection hyper-heuristic utilising a hidden Markov 
model. In: Proceedings of the 2015 on genetic and evolutionary computation conference, GECCO 
’15, pp 417–424

Kheiri A, Keedwell E (2017) A hidden markov model approach to the problem of heuristic selec-
tion in hyper-heuristics with a case study in high school timetabling problems. Evolut Comput 
25(3):473–501

Kheiri A, Keedwell E, Gibson MJ, Savic D (2015) Sequence analysis-based hyper-heuristics for water 
distribution network optimisation. Procedia Engineering 119:1269–1277, computing and Control 
for the Water Industry (CCWI2015) Sharing the best practice in water management

Kruskal WH (1957) Historical notes on the Wilcoxon unpaired two-sample test. J Am Stat Assoc 
52(279):356–360

https://doi.org/10.1007/s41604-016-0001-7
https://doi.org/10.2139/ssrn.2610549


594	 A. Kheiri et al.

1 3

Lin S, Kernighan BW (1973) An effective heuristic algorithm for the traveling-salesman problem. Oper 
Res 21(2):498–516

Martello S, Toth P (1990) Lower bounds and reduction procedures for the bin packing problem. Discrete 
Appl Math 28(1):59–70

Masson R, Lehuede F, Peton O (2014) The dial-a-ride problem with transfers. Comput Oper Res 
41:12–23

Min H (1989) The multiple vehicle routing problem with simultaneous delivery and pick-up points. 
Transp Res Part A: General 23(5):377–386. https​://doi.org/10.1016/0191-2607(89)90085​-X

Montané FAT, Galvão RD (2006) A tabu search algorithm for the vehicle routing problem with simulta-
neous pick-up and delivery service. Comput OR 33:595–619

Parragh S, Doerner K, Hartl R (2008) A survey on pickup and delivery problems: Part II: Transporta-
tion between pickup and delivery locations. Journal für Betriebswirtschaft 58:81–117. https​://doi.
org/10.1007/s1130​1-008-0036-4

Pfrommer J, Warrington J, Schildbach G, Morari M (2014) Dynamic vehicle redistribution and online 
price incentives in shared mobility systems. IEEE Trans Intell Transp Syst 15(4):1567–1578

Rainer-Harbach M, Papazek P, Hu B, Raidl GR (2013) Balancing bicycle sharing systems: a variable 
neighborhood search approach. In: Middendorf M, Blum C (eds) Evolutionary computation in com-
binatorial optimization. Springer, Berlin, pp 121–132

Rand GK (2009) The life and times of the savings method for vehicle routing problems. ORiON 
25(2):125–145

Raviv T, Kolka O (2013) Optimal inventory management of a bike-sharing station. IIE Trans 
45(10):1077–1093

Schilde M, Doerner K, Hartl R (2011) Metaheuristics for the dynamic stochastic dial-a-ride problem with 
expected return transports. Comput Oper Res 38(12):1719–1730

Schuijbroek J, Hampshire R, van Hoeve WJ (2017) Inventory rebalancing and vehicle routing in bike 
sharing systems. Eur J Oper Res 257(3):992–1004

Sörensen K, Glover FW (2013) Metaheuristics. In: Gass SI, Fu MC (eds) Encyclopedia of operations 
research and management science. Springer, Berlin, pp 960–970

Wall MB (1996) A genetic algorithm for resource-constrained scheduling. PhD thesis, Massachusetts 
Institute of Technology

Wilson D, Rodrigues S, Segura C, Loshchilov I, Hutter F, Buenfil GL, Kheiri A, Keedwell E, Ocampo-
Pineda M, Özcan E, Pena SIV, Goldman B, Rionda SB, Hernandez-Aguirre A, Veeramachaneni K, 
Cussat-Blanc S (2018) Evolutionary computation for wind farm layout optimization. Renew Energy 
126:681–691

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

Affiliations

Ahmed Kheiri1   · Alina G. Dragomir2 · David Mueller3 · Joaquim Gromicho4,5 · 
Caroline Jagtenberg4 · Jelke J. van Hoorn4

	 Alina G. Dragomir 
	 alina‑gabriela.dragomir@univie.ac.at

	 David Mueller 
	 david.mueller@tuwien.ac.at

	 Joaquim Gromicho 
	 Joaquim.Gromicho@ortec.com

	 Caroline Jagtenberg 
	 C.J.Jagtenberg@gmail.com

https://doi.org/10.1016/0191-2607(89)90085-X
https://doi.org/10.1007/s11301-008-0036-4
https://doi.org/10.1007/s11301-008-0036-4
http://orcid.org/0000-0002-6716-2130


595

1 3

Tackling a VRP challenge to redistribute scarce equipment…

	 Jelke J. van Hoorn 
	 Jelke.vanHoorn@ortec.com

1	 Department of Management Science, Lancaster University Management School, 
Lancaster LA1 4YX, UK

2	 Faculty of Business, Economics and Statistics, University of Vienna, Vienna, Austria
3	 Institute for Theoretical Physics, Vienna University of Technology, Vienna, Austria
4	 ORTEC, Houtsingel 5, 2719 EA Zoetermeer, The Netherlands
5	 School of Business and Economics, Vrije Universiteit, De Boelelaan 1105, Amsterdam, 

The Netherlands


	Tackling a VRP challenge to redistribute scarce equipment within time windows using metaheuristic algorithms
	Abstract
	1 Introduction
	2 Problem description
	2.1 Objectives

	3 Competitors’ algorithms
	3.1 A sequence-based selection hyper-heuristic (Team: akhe)
	3.1.1 Overall model
	3.1.2 Low level heuristics
	3.1.3 Move low level heuristics
	3.1.4 Swap low level heuristics
	3.1.5 Reverse low level heuristics
	3.1.6 Add low level heuristics
	3.1.7 Delete low level heuristics
	3.1.8 Ruin and recreate low level heuristics
	3.1.9 Additional remarks and conclusions

	3.2 A genetic algorithm metaheuristic (Team: ADDM)
	3.2.1 Scheduling of delivery days
	3.2.2 Building a population
	3.2.3 Selection, genetic operators and mutation
	3.2.4 Routing and schedule evaluation
	3.2.5 Post-optimization for the routing
	3.2.6 Additional remarks and conclusions


	4 Competition results
	4.1 All-time-best challenge
	4.2 Restricted resources challenge
	4.3 Convergence comparison

	5 Conclusion
	Acknowledgements 
	References




