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ABSTRACT
We apply univariate GARCH models to construct a computationally simple filter for
estimating the conditional correlation matrix of asset returns. The proposed Variance
Implied Conditional Correlation (VICC) exploits the polarization result that links the cor-
relation between two standardized variables with the variances of linear combinations
thereof. In a Monte Carlo study, we show that the VICC yields accurate correlation esti-
mates for common choices of the correlation dynamics. We also provide an empirical
application to cross hedging that confirms the effectiveness of the VICC.
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Since all models are wrong the scientist cannot obtain a ‘correct’ one by excessive elaboration.

- George E. P. Box, 1976.

1. Introduction

Financial markets are inherently multidimensional. In this context, portfolio risk involves not only the volatility
of asset returns, but also the correlations among them. The latter can be used for managing diversification and
hedging purposes, and are thus an important element of financial planning for any investor. Due to the dynamic
nature of the comovement between assets, the main difficulty lies in obtaining timely conditional estimates of
the correlation between the asset returns.

Typically, conditional correlations are jointly estimated via a multivariate modeling approach, such as Multi-
variate Generalized AutoRegressive Conditional Heteroskedasticity (MGARCH)models. This approach usually
requires the optimization of a multivariate likelihood function, which can be numerically challenging and can
lead to parameter instability in the case of a general parametrization (Bauwens, Laurent, and Rombouts 2006).
Moreover, most types of MGARCHmodels suffer from the so-called curse of dimensionality which makes their
use in practice often infeasible. More constrained versions of the MGARCH models, like the Dynamic Condi-
tional Correlation (DCC)model of Engle (2002) or the Generalized Orthogonal GARCH (GO-GARCH)model
of van der Weide (2002), are computationally more convenient, but they may be too restrictive in terms of the
conditional correlation dynamics that they can accommodate (see e.g. Caporin and McAleer 2013).

In this paper, we present a simple and flexible filter for estimating the pairwise conditional correlations among
variables. The proposed Variance Implied Conditional Correlation (VICC) exploits the polarization result that
links the correlation between two standardized variables with the variances of linear combinations thereof. The
VICC thus only requires the estimation of univariate variancemodels. There is a rich variety of well-studied uni-
variate variance models available, namely the class of univariate GARCH models, which offer a lot of flexibility
in modeling the univariate variance process, while only requiring the optimization of a univariate likelihood
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function. Furthermore, by using a pairwise estimation method, the VICC avoids the curse of dimensionality
which most types of MGARCHmodels suffer from.

The VICC is referred to as a filter since we do not ambition efficiency under a particular model specification,
but rather aim for reliability and accuracy in terms of correlation estimates under a wide set of possible models
for the conditional correlation dynamics. The use of a filter rather than a fully specified MGARCH model is
consistent with the statement of George E. P. Box (1976) that ‘Since all models are wrong the scientist cannot
obtain a “correct” one by excessive elaboration’. It is also consistent with the view of Caporin andMcAleer (2013)
that, as the exact specification of the conditional correlation is unknown, conditional correlation models should
be considered as filters for obtaining reliable estimates of the conditional correlations, even if they arise through
possible model misspecification.

We expect that, since the VICC only requires the optimization of univariate likelihood functions, it will lead
tomore stable and reliable conditional correlation estimates when comparingwith themore complexMGARCH
models. To assess the reliability of the conditional correlation estimateswe performaMonteCarlo study inwhich
the VICC is misspecified for all the considered correlation processes. However, we indeed find that the VICC
yields accurate correlation estimates for common choices of the correlation dynamics.

We study the usefulness of the VICC to determine the portfolio allocation needed when cross hedging the
weekly S&P 500 return using weekly returns of futures on the interest rate, the exchange rate between the US
Dollar and the Euro, and theVIX.We conclude that VICC-based cross hedging performs at least as good as cross
hedging using the DCC and GO-GARCH model in terms of variance reduction and achieved decorrelation,
while generating a lower turnover and being more simple to compute. Cross hedging by using the VICC also
outperforms the approach of cross hedging using an unconditional hedge ratio and an Exponentially Weighted
Moving Average (EWMA) covariance model in terms of variance reduction and achieved decorrelation.

The remainder of the paper is organized as follows. Section 2 introduces the Variance Implied Conditional
Correlation (VICC) filter and discusses its properties. Section 3 presents a Monte Carlo study to evaluate the
performance of the VICC compared to some benchmark models. In Section 4, we assess the usefulness of the
VICC in an empirical cross hedging application. Section 5 concludes.

2. Variance implied conditional correlation

We first present the well-known polarization result for the unconditional correlation estimator and extend this
result to the conditional case. Next, we use this result to construct the Variance Implied Conditional Correlation
(VICC) pairwise correlation filter.We then elaborate on some further properties of the VICC correlationmatrix
filter. Finally, we use news impact surfaces to analyze the responsiveness of the VICC-based correlation to the
standardized return innovations.

2.1. Definitions

The polarization result connects the variances of a sum of random variables (possibly standardized) and their
difference to their covariance. The result is often used in robust statistics and high-frequency financial econo-
metrics. For example, Gnanadesikan andKettenring (1972) use it to obtain robust estimates of the unconditional
correlation, while Ma and Genton (2002) exploit the polarization result to robustly estimate the autocovariance
function. More recently, Aït-Sahalia, Fan, and Xiu (2010) estimate a high-frequency data based realized covari-
ance via the polarization result. We work with standardized data, henceforth we focus on variables with zero
mean and unit variance. Our first result pertains to the iid case.

Property 2.1: Let Zi and Zj be bivariate standard normally distributed with correlation coefficient ρij. Assume
there are T observations of Zi and Zj collected in samples zi and zj, i.e.

zi = (zi,1, . . . , zi,T) and zj = (zj,1, . . . , zj,T).
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Denote the sample variances of Zi + Zj and Zi − Zj by ĥi+j and ĥi−j, respectively. We then have that ρ̂ij defined
as:

ρ̂ij = ĥi+j − ĥi−j

ĥi+j + ĥi−j

is a consistent estimator for ρij. Moreover, it has the lowest asymptotic variance (i.e. it is the most efficient)
among the following class of estimators,

ρ̂ij(γ ) = ĥi+j(γ )− ĥi−j(γ )

ĥi+j(γ )+ ĥi−j(γ )
,

where ĥi+j(γ ) and ĥi−j(γ ) denote the sample variances of γZi + (1 − γ )Zj and γZi − (1 − γ )Zj, respectively,
with γ ∈ [0, 1].

The consistency of ρ̂ij follows directly from the law of large numbers. We prove the asymptotic efficiency
result in Appendix 1.

For most asset returns, there is overwhelming evidence of time-variation in their comovement. To exploit
this feature, we use time series models in which we denote two time series processes by {Zi,s} and {Zj,s}, whereby
the relevant information set to predict their future comovement changes on each date. The following property
can then be used to obtain a conditional correlation estimate.

Property 2.2: Let {Zi,s} and {Zj,s} be two stochastic time series processes with s ≤ t − 1. Assume that condi-
tionally on the information set Ft−1, Zi,t and Zj,t have mean zero, unit variance, and correlation equal to ρij,t .
We then have that

ρij,t = E[(Zi,t + Zj,t)2 |Ft−1] − E[(Zi,t − Zj,t)2 |Ft−1]
E[(Zi,t + Zj,t)2 |Ft−1] + E[(Zi,t − Zj,t)2 |Ft−1]

,

where E[· |Ft−1] denotes the conditional expectation operator.

It thus follows that the conditional variances of the sum and difference of standardized variables can be
exploited to obtain the pairwise conditional correlation.

2.2. Implementation

We now use Property 2.2 to construct a filter for the conditional correlation matrix Rt of the asset return vector
rt = (r1,t , . . . , rN,t)

′, conditional on the information available up until time t−1. The procedure requires to first
standardize the returns.

We suppose to have a filter for the conditional mean μ̂i,t and variance ĥi,t of each series of asset returns ri,t
for all N assets:

μ̂i,t = μ̂
(
ri,1, . . . , ri,t−1

)
,

ĥi,t = ĥ
(
ri,1, . . . , ri,t−1

)
. (1)

Traditional filters for the conditional mean are often based on (extensions of) Autoregressive Moving Average
(ARMA)models, while traditional filters for the conditional variance are often based on (extensions of) GARCH
models. There is a rich variety of well-studied ARMA andGARCHmodels which offer a lot of flexibility inmod-
eling the conditional mean and variance process. Without loss of generality, we use the standard GARCH(1,1)
setting of Bollerslev (1986) as a conditional variance filter throughout this paper. We summarize this model in
Appendix 2. Extensions to other GARCH-type models or the inclusion of ARMA terms in the mean filter are
straightforward.
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Using the mean and variance filters in Equation (1), we can compute the standardized returns zi,t as follows:

zi,t = ri,t − μ̂i,t√
ĥi,t

. (2)

Next, we also suppose to have a filter to compute the conditional variances of the sum and difference of these
standardized returns:

ĥi+j,t = ĥi+j(zi,1 + zj,1, . . . , zi,t−1 + zj,t−1),

ĥi−j,t = ĥi−j(zi,1 − zj,1, . . . , zi,t−1 − zj,t−1). (3)

Motivated by Property 2.2, we can now construct the Variance Implied Conditional Correlation (VICC) which
proxies the conditional correlation by using only the univariate conditional variances of Equation (3):

ρ̂ij,t = ĥi+j,t − ĥi−j,t

ĥi+j,t + ĥi−j,t
for i, j ∈ {1, 2, . . . ,N}, (4)

where ρ̂ij,t denotes the bivariate VICC correlation filter.
Next, we stack the various bivariate VICC correlation filters in a N × N matrix R̂t with ones on the diagonal

and with the (i, j)th element equal to ρ̂ij,t , for i �= j. In the bivariate case, it is clear from the determinant value
1 − ρ̂212,t that the resulting correlationmatrix filter is guaranteed to be positive-definite.However, whenN> 2, R̂t
is no longer guaranteed to be positive-definite. Therefore, we define theVICC correlationmatrix as a regularized
version of R̂t based on the regularization approach of Boudt et al. (2019). Specifically, the VICC correlation filter
R̂VICC
t is a convex combination between R̂t and the lagged VICC correlation matrix R̂VICC

t−1 :

R̂VICC
t = (1 − κt) R̂t + κt R̂VICC

t−1 , (5)

where κt ∈ [0, 1] denotes the regularization intensity, which is only different from zero when the smallest
eigenvalue of R̂VICC

t is smaller than or equal to zero. It is given by:

κt = max
{
ψmin − λmin,t

1 − λmin,t
, 0
}
, (6)

where λmin,t is the smallest eigenvalue of G−1
t−1R̂tG

−ᵀ
t−1, with Gt−1 being the square root of R̂VICC

t−1 obtained by
using theCholesky factorization such that R̂VICC

t−1 = Gt−1G
ᵀ
t−1. Furthermore,ψmin is a positive, near-zero tuning

parameter, which we set at 10−6 in the application, and max{·, ·} is the maximum operator. In Appendix 3, we
show the explicit derivation of κt assuming a positive-definite initialization of the VICC correlation filtering
process.

The VICC-based correlation matrix has the typical shrinkage notation as in Ledoit andWolf (2004), but uses
the lagged correlation matrix R̂VICC

t−1 as target matrix instead of the usual target matrices based on the identity
matrix, equicorrelation matrix or single factor model. As such, it is aligned with the time-variation in the cor-
relation filter. As in Boudt et al. (2019), we find that the time-varying regularization parameter κt is typically a
small number and the regularization is only applied when needed. Finally, note in Equations (5) and (6) that
R̂VICC
t = R̂t when λmin,t > ψmin. The regularization should thus not be confused with exponential smoothing

as used in Pozzi, Di Matteo, and Aste (2012), where the weight on the lagged correlation prediction is typically
high and constant over time. The dynamics of the VICC filter are driven by the dynamics in the ĥi+j,t and ĥi−j,t
estimates defining the ρ̂ij,t elements in R̂t .
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2.3. Further properties

A key property of the VICC filter is that its implementation only requires univariate GARCH estimations. It thus
avoids the curse of dimensionality which affects the (quasi-)Maximum likelihood estimation of manymultivari-
ate GARCHmodels (see e.g. Boudt et al. 2019 for a recent survey and Pakel et al. 2019 for a recent discussion in
the context of DCC models). In contrast with the (quasi-)Maximum likelihood estimation of the DCC model,
the VICC parameter estimation is embarrassingly parallel and therefore computationally scalable. A further
property is that the VICC filter is designed to yield a well-defined correlation matrix, irrespective of the mean
andGARCH variance specification used. As such, it is flexible and it can accomodate themany existing GARCH
model specifications (see, e.g. Bollerslev 2010 for an overview). Alternatively, model averaging can be used by
setting:

ρ̂
avg
ij,t =

K∑
k=1

w(k)
ĥ(k)i+j,t − ĥ(k)i−j,t

ĥ(k)i+j,t + ĥ(k)i+j,t

for i, j ∈ {1, 2, . . . ,N}, (7)

where K is the number of GARCH model implementations considered and w(1), . . . ,w(k) are the weights
assigned to each implementation, with

∑K
k=1 w

(k) = 1.
We further have that the VICC filter directly leads to dynamic covariance matrix filters, which are useful

for portfolio optimization (see e.g. Boudt, Daníelsson, and Laurent 2013), dynamic beta estimation (see e.g.
Engle 2016) andmultivariate hedging, as we document in Section 4. In fact, let D̂t be theN × N diagonal matrix

with element (i, i) equal to
√
ĥi,t , as defined in Equation (1). Then the VICC covariance matrix filter is given by:

ĤVICC
t = D̂tR̂VICC

t D̂t , (8)

where the values of D̂t and R̂VICC
t follow from the application of the mean, variance and correlation filters in

Equations (1)–(7). Those equations thus provide a flexible dynamic filtering setup. They do not describe amodel
for the return generating process, for the same reasons as mentioned by Caporin and McAleer (2013) in case of
the DCCmodel. As compared to the DCC filter, the VICC filter uses a different correlation specification and has
the advantage of using univariate estimations. For these reasons, it can thus be seen as an alternative method.

2.4. VICC news impact surface

The VICC correlation filter ρ̂12,t in Equation (4) inherits its dynamic properties from the dynamics in the esti-
mated conditional variances of the sum and difference of the standardized return innovations z1,t and z2,t . Due to
the non-linear transformation of those input series, it is analytically cumbersome to derive the dynamic proper-
ties of theVICCcorrelation filter. Instead, we recommend to use the so-called news impact surface for visualizing
the impact of the standardized return innovation on the VICC correlation filter.

The news impact surface is the multivariate extension of the news impact curve which was proposed by
Pagan and Schwert (1990) and Engle and Ng (1993) to analyze the impact of innovations on the GARCH vari-
ance. Cappiello, Engle, and Sheppard (2006) used news impact surfaces to analyze the impact on correlation
dynamics. The VICC news impact surface depends on the variance processes chosen in Equation (3). Sup-
pose for instance that the VICC in Equation (4) is constructed using a GARCH(1,1) specification in h1+2,t and
h1−2,t with parameters θ = (ω1+2,α1+2,β1+2,ω1−2,α1−2,β1−2)

′ (seeAppendix 2 formore details).We can then
compute the news impact surface of ρ̂ij,t by setting h1+2,t−1 and h1−2,t−1 to their long termmean value (namely,
h1+2 = ω1+2/[1 − α1+2 − β1+2] and h1−2 = ω1−2/[1 − α1−2 − β1−2], respectively). Under these assumptions
we then have that:

ρ̂VICCGARCH(z1, z2) = c + α1+2(z1 + z2)2 − α1−2(z1 − z2)2

d + α1+2(z1 + z2)2 + α1−2(z1 − z2)2
, (9)

with c = ω1+2 − ω1−2 + β1+2h1+2 − β1−2h1−2 and d = ω1+2 + ω1−2 + β1+2h1+2 + β1−2h1−2.
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Figure 1. VICC news impact surfaces in case a symmetric GARCH(1,1) specification is used for the variances of the sum and difference of asset
returns. (a) Persistent VICC correlation with h1+2 > h1−2. (b) Reactive VICC correlation with h1+2 > h1−2. (c) Persistent VICC correlation with
h1+2 < h1−2 and (d) Reactive VICC correlation with h1+2 < h1−2.

Figure 1 shows ρ̂VICCij,t as a function of z1 and z2 with values ranging from −3 to 3. We consider four dif-
ferent news impact surfaces for the VICC-based correlation. The left panels (a) and (c) show persistent VICC
correlation processes, while the right panels (b) and (d) show reactive VICC correlation processes. The top
plots correspond to a positive value for c while c is negative for the lower news impact surfaces. Panel (a) has
the parameter values θ = (0.04, 0.05, 0.85, 0.02, 0.01, 0.90)′. Note that the GARCH processes used for the sum
and difference of the innovations are persistent, leading to a persistent VICC correlation filter with a rather
flat news impact surface. Panel (b) corresponds to the parameter vector θ = (0.04, 0.05, 0.25, 0.02, 0.01, 0.20)′.
The lower persistence of the GARCH(1,1) models lead to a more reactive VICC correlation. A large degree
of comovement in the standardized return innovations has a bigger impact on the resulting VICC-based
correlation estimate. Note that a larger value for either α1+2 or α1−2 would result in an even more reac-
tive VICC correlation. Panels (c) and (d) have the parameter values θ = (0.02, 0.05, 0.85, 0.04, 0.01, 0.90)′ and
θ = (0.02, 0.05, 0.25, 0.04, 0.01, 0.20)′, respectively. Note that only the ω1−2 and ω1−2 parameters are switched
compared to the previous news impact surfaces. In this case when there are no return innovations the VICC
correlations in panels (c) and (d) are negative, i.e. −0.69 and −0.31, respectively.

3. Monte Carlo study

It is clear that by construction the estimation of the parameters of the variance processes determining the dynam-
ics in theVICC correlationmatrix filter in Equations (4) and (5) is computationally convenient, as it only requires
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univariate GARCHmodel estimations and is thus embarassingly parallel. In this section, we use numerical sim-
ulations to evaluate the performance of the VICC in capturing the dynamics in the conditional correlation for
a broad range of conditional correlation processes. For all the considered processes, the VICC is misspecified.
The study shows that, despite the misspecification, the VICC still yields reliable estimates of the conditional
correlation, whatever the underlying conditional correlation process is. We first discuss the benchmark models
and then present the bivariate and multivariate Monte Carlo study, respectively.

3.1. Benchmarkmodels

We compare the performance of the VICC-based correlation filter against four benchmark estimators by com-
paring theMeanAbsolute Error (MAE) andMean Squared Error (MSE) in estimating the in-sample correlation.
As a first benchmark,we opt for the EWMAcovariancemodelwhich requires no estimation (see e.g. Engle 2009).
We describe the model in Appendix 4. The second benchmark model is the standard workhorse in conditional
correlation estimation, namely the DCC specification of Engle (2002). Its estimation still requires the optimiza-
tion of a multivariate likelihood function. We review the DCC model in Appendix 5. The third benchmark
model is the GO-GARCH model of van der Weide (2002). By using an unobserved independent factor frame-
work, this model is another feasible MGARCHmodel for the estimation of larger systems. We provide details of
the GO-GARCHmodel in Appendix 6. The last benchmark is from the related work of Harris and Shen (2003)
(HS hereafter) in which they imply the conditional covariance via the polarization result applied to variances of
returns rather than to variances of standardized returns. We expect the VICC to be a more reliable estimator,
as the correlation embedded in the HS method is an unbounded function of the univariate variance estimates
which may lead to correlation estimates that violate the absolute bounds for a correlation, i.e. |ρ̂HS

t | > 1. If this
violation occurswe truncate theHS correlation estimate at -1 or 1 as appropriate (see e.g. Zhang 2011).Moreover,
the HS method does not distinguish between the dynamics of the conditional correlation and the conditional
variance. Since the seminal paper of Engle (2002) introducing the DCC model, it has become the standard to
use separate equations for modeling the conditional variances and correlations. Details of the HS method are
provided in Appendix 7.

3.2. Bivariate simulation

We consider a similar bivariate Monte Carlo setup as in Engle (2002) and Creal, Koopman, and Lucas (2011) in
which the true correlation structure can be different from the one assumed by the econometrician. The return
series with conditional variances h1,t and h2,t are constructed as follows:

r1,t =
√
h1,tz1,t ,

r2,t =
√
h2,tz2,t , (10)

where z1,t and z2,t are bivariate standard normally distributed with a (possibly time-varying) correlation coef-
ficient ρt . In a similar way as in Engle (2002), the data generating process further consists of the following two
standard GARCH(1,1) models:

h1,t = 0.01 + 0.05r21,t−1 + 0.94h1,t−1,

h2,t = 0.5 + 0.2r22,t−1 + 0.5h2,t−1. (11)

We examine how the correlation filters perform under different forms of misspecification by considering seven
possible true correlation processes. First, as in Engle (2002) and Creal, Koopman, and Lucas (2011), we consider
the constant, sine, fast sine, step and ramp correlation processes:

• constant ρt = 0.9,
• sine ρt = 0.5 + 0.4 cos(2π t/200),
• fast sine ρt = 0.5 + 0.4 cos(2π t/20),
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• step ρt = 0.9 − 0.5(t > 500),
• ramp ρt = mod (t/200).

The sine correlation process exhibits gradual changes, while the fast sine correlation process contains fast
changes. The step correlation process appears to be constant, but exhibits an abrupt change. These abrupt
changes are also found in the ramp correlation process.

In addition, we also assume a mean-reverting Dynamic Conditional Correlation (DCC) process:

• DCC ρt = Q12,t√
Q11,tQ22,t

,

with Qt =
[
0.1 0.05
0.05 0.1

]
+ 0.05

[
z21,t−1 z1,t−1z2,t−1

z1,t−1z2,t−1 z22,t−1

]
+ 0.85 Qt−1.

The seventh process is a conditional correlation process which is associated to the Diagonal BEKK (DBEKK)
model (Engle and Kroner 1995), namely:

• DBEKK ρt = h12,t√
h1,th2,t

with h12,t = 0.14 + 0.1r1,t−1r2,t−1 + 0.69h12,t−1,

with h1,t and h2,t as defined in Equation (11). In terms of the number of replications and time series length, we
follow Engle (2002) by simulating 200 series of 1000 observations.

Table 1. Mean absolute error andmean squared error of the correlation estimates obtained using the VICC, DCC, EWMA, GO-GARCH and HS
method for the constant, sine, fast sine, step, ramp, DCC and DBEKK correlation processes.

VICC DCC EWMA GO-GARCH HS

Mean absolute error
constant 0.0060 0.0059 0.0276 0.0206 0.0701

(0.0001) (< 0.0001) (0.0002) (0.0002) (0.0008)
sine 0.1312 0.1390 0.1501 0.1688 0.1623

(0.0008) (0.0009) (0.0011) (0.0013) (0.0010)
fast sine 0.2267 0.2266 0.2603 0.2449 0.2370

(0.0003) (0.0003) (0.0004) (0.0004) (0.0004)
step 0.0665 0.0712 0.0791 0.0999 0.1248

(0.0011) (0.0013) (0.0014) (0.0013) (0.0016)
ramp 0.1504 0.1569 0.1551 0.1777 0.1785

(0.0012) (0.0011) (0.0011) (0.0015) (0.0010)
DCC 0.0479 0.0324 0.0741 0.0852 0.0806

(0.0004) (0.0004) (0.0006) (0.0007) (0.0008)
DBEKK 0.0807 0.0819 0.1049 0.0987 0.0821

(0.0004) (0.0004) (0.0008) (0.0006) (0.0004)

Mean squared error
constant 0.0001 0.0001 0.0013 0.0006 0.0076

(< 0.0001) (< 0.0001) (< 0.0001) (< 0.0001) (0.0003)
sine 0.0264 0.0306 0.0347 0.0428 0.0402

(0.0003) (0.0004) (0.0005) (0.0006) (0.0006)
fast sine 0.0669 0.0679 0.0926 0.0795 0.0782

(0.0002) (0.0002) (0.0004) (0.0002) (0.0004)
step 0.0093 0.0112 0.0137 0.0172 0.0249

(0.0003) (0.0003) (0.0004) (0.0004) (0.0008)
ramp 0.0402 0.0439 0.0473 0.0512 0.0520

(0.0006) (0.0006) (0.0007) (0.0008) (0.0010)
DCC 0.0037 0.0019 0.0089 0.0120 0.0109

(< 0.0001) (< 0.0001) (0.0002) (0.0002) (0.0004)
DBEKK 0.0106 0.0109 0.0181 0.0160 0.0119

(< 0.0001) (< 0.0001) (0.0003) (0.0002) (0.0001)

Note: This table presents themean absolute error andmean squared error for each of the seven considered correlation processes and for each
considered correlation estimator. Between parentheses are the Heteroskedasticity and Autocorrelation Consistent (HAC) standard errors.
For each correlation process, the result of the best performing estimator is put in bold.
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Table 1 shows the MAE and MSE of the VICC, DCC, EWMA, GO-GARCH and HS method for each of
the seven considered correlation processes, and their corresponding Heteroskedasticity and Autocorrelation
Consistent (HAC) standard errors between parentheses. The MAE of the VICC ranges in between 0.0060 for
the constant correlation process, and 0.2267 for the fast sine correlation process. In all the cases where the true
correlation process is not a DCC process, the performance of the VICC is either better than (sine, fast sine,
step, ramp and DBEKK) or similar to (constant) the DCC model. Note from the HAC standard errors that for
the sine, step and ramp correlation process the outperformance is statistically significant for both the MAE and
MSE. For the fast sine correlation process the outperformance is only statistically significant for theMSE. In case
the econometrician knows that the true process is a DCC process, it is clearly optimal to use a DCC. However,
in practice, as mentioned by Caporin and McAleer (2013), the DCC process is not a realistic data generating
process. In addition to its better or equal performance, the VICC is also easier to compute. Finally, for all the
considered correlations processes, the EWMA, GO-GARCH and HS method perform (drastically) worse than
both the VICC and the DCC correlation filters.

3.3. Multivariate simulation

Tables 2 and 3 present the MAE and MSE results, respectively, for the N-dimensional returns simulated
using a two-block Dynamic Equicorrelation (DECO) specification for the conditional correlation matrix

Table 2. Mean absolute error for the the lower diagonal elements of the simulated 10 × 10 two-block DECO correlation matrix using the
VICC, DCC, EWMA and GO-GARCHmethod.

ρ2,t

ρ1,t constant sine fast sine step ramp DCC DBEKK

VICC constant 0.0108
sine 0.1113 0.1546
fast sine 0.1760 0.1832 0.2452
step 0.0615 0.1250 0.1728 0.0877
ramp 0.1235 0.1663 0.1894 0.1329 0.1732
DCC 0.0658 0.1191 0.1483 0.0915 0.1245 0.0767
DBEKK 0.0777 0.1287 0.1617 0.0994 0.1361 0.0861 0.0972

DCC constant 0.0086
sine 0.1522 0.1921
fast sine 0.1848 0.2016 0.2546
step 0.0760 0.1476 0.1861 0.1011
ramp 0.1574 0.1838 0.2043 0.1524 0.2061
DCC 0.0667 0.1319 0.1501 0.0977 0.1348 0.0761
DBEKK 0.0805 0.1426 0.1644 0.1057 0.1472 0.0865 0.0990

EWMA constant 0.0487
sine 0.1276 0.1646
fast sine 0.2039 0.2009 0.2693
step 0.0831 0.1383 0.1934 0.1006
ramp 0.1344 0.1742 0.2075 0.1438 0.1761
DCC 0.1103 0.1466 0.1877 0.1254 0.1515 0.1371
DBEKK 0.1124 0.1498 0.1945 0.1279 0.1556 0.1392 0.1417

GO-GARCH constant 0.0310
sine 0.1382 0.1344
fast sine 0.1848 0.1919 0.2394
step 0.0996 0.1561 0.1911 0.0965
ramp 0.1453 0.1666 0.1946 0.1580 0.1509
DCC 0.0775 0.1308 0.1519 0.1114 0.1332 0.0830
DBEKK 0.0893 0.1427 0.1663 0.1223 0.1454 0.0933 0.1045

Note: This table presents themeanabsolute error for the the lower diagonal elements of the simulated 10 × 10 two-blockDECOcorrelation
matrix using the VICC, DCC, EWMA and GO-GARCH method. The 28 considered correlation processes are combinations of the constant,
sine, fast sine, step, ramp, DCC and DBEKK correlation processes described in Section 3.2. For each correlation process, the result of the
best performing estimator is put in bold.
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Table 3. Mean squared error for the the lower diagonal elements of the simulated 10 × 10 two-block DECO correlation matrix using the
VICC, DCC, EWMA and GO-GARCHmethod.

ρ2,t

ρ1,t constant sine fast sine step ramp DCC DBEKK

VICC constant 0.0002
sine 0.0223 0.0344
fast sine 0.0498 0.0485 0.0767
step 0.0087 0.0250 0.0468 0.0156
ramp 0.0312 0.0419 0.0522 0.0304 0.0468
DCC 0.0082 0.0212 0.0333 0.0136 0.0249 0.0093
DBEKK 0.0117 0.0243 0.0381 0.0161 0.0290 0.0117 0.0148

DCC constant 0.0001
sine 0.0364 0.0485
fast sine 0.0536 0.0564 0.0807
step 0.0122 0.0320 0.0512 0.0198
ramp 0.0435 0.0500 0.0594 0.0375 0.0608
DCC 0.0085 0.0264 0.0340 0.0156 0.0297 0.0091
DBEKK 0.0126 0.0297 0.0391 0.0180 0.0338 0.0118 0.0153

EWMA constant 0.0040
sine 0.0282 0.0412
fast sine 0.0682 0.0621 0.1018
step 0.0138 0.0314 0.0604 0.0201
ramp 0.0373 0.0496 0.0670 0.0377 0.0539
DCC 0.0212 0.0334 0.0552 0.0259 0.0379 0.0295
DBEKK 0.0223 0.0345 0.0586 0.0271 0.0401 0.0304 0.0316

GO-GARCH constant 0.0015
sine 0.0308 0.0276
fast sine 0.0533 0.0540 0.0757
step 0.0157 0.0365 0.0530 0.0159
ramp 0.0369 0.0435 0.0562 0.0392 0.0380
DCC 0.0106 0.0265 0.0355 0.0190 0.0289 0.0109
DBEKK 0.0143 0.0307 0.0411 0.0226 0.0334 0.0138 0.0172

Note: This table presents the mean squared error for the the lower diagonal elements of the simulated 10 × 10 two-block DECO correlation
matrix using the VICC, DCC, EWMA and GO-GARCH method. The 28 considered correlation processes are combinations of the constant,
sine, fast sine, step, ramp, DCC and DBEKK correlation processes described in Section 3.2. For each correlation process, the result of the best
performing estimator is put in bold.

given by:

Rt =
[
(1 − ρ21,t)IN1 0

0 (1 − ρ22,t)IN2

]
+
(
ρ1,tLN1
ρ2,tLN2

) (
ρ1,tL′

N1
ρ2,tL′

N2

)
, (12)

where ρ1,t and ρ2,t denote the dynamic equicorrelation parameters in the diagonal blocks, IN is the N-
dimensional identity matrix, LN is a N × 1 vector of ones, and N1 and N2 are the number of assets in each
block with N1 + N2 = N. Note that our setup allows for a direct relation between ρ1,t and ρ2,t and the dynamic
cross-equicorrelation parameter in the off-diagonal blocks. The same process was considered in Lucas, Schwaab,
and Zhang (2017). Rt is a positive definite correlation matrix if and only if ρi,t ∈ (0, 1) for i = 1, 2. We set
both ρ1,t and ρ2,t according to one of the seven bivariate correlation processes which we have defined in
Section 3.2 (i.e. constant ρ1,t = 0.9) and consider all 28 possible combinations for a 10 × 10 correlation matrix
with N1 = N2 = 5.

We use the VICC,DCC, EWMAandGO-GARCHmethod to estimate the 10 × 10 two-blockDECO correla-
tionmatrix and show the resultingMAEandMSE for the lower diagonal elements inTables 2 and 3, respectively.1
The MAE of the VICC ranges in between 0.0108 for the constant-constant correlation process, and 0.1894 for
the combination between the ramp and fast sine correlation processes.

For all the cross combinations between the considered correlation processes (i.e. the constant-sine correlation
process), the VICC outperforms all the other benchmark models. The MAE indicates that the outperformance
in the multivariate simulation is more substantial compared to the bivariate simulation setup. For example, the
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MAE difference between the VICC and DCC for the cross combination between the constant and sine corre-
lation processes is equal to 0.04. When the same correlation processes are combined in the two-block DECO
correlation matrix (i.e. the constant-constant correlation process), the DCC method outperforms the VICC
method twice, although not substantially, and the GO-GARCH method outperforms the VICC three times.
Overall, the EWMA seems to be the worst performing model in the multivariate simulation setup. The bottom
line is that in most cases the VICC outperforms all the other benchmark models and that the outperformance
becomes more substantial in higher dimensional correlation matrices.

4. Application

The prediction of conditional correlations is of great practical importance in a lot of financial applications, such
as portfolio optimization, hedging and riskmanagement. In this section, we examine whether the VICC can be a
useful tool in the estimation of conditional hedge ratios. We first introduce the concept of futures cross hedging.
Next, we present the data. Then, we explain how the cross hedging performance of the various hedge ratios can
be measured, and finally we show the bivariate and multivariate cross hedging results.

4.1. Cross hedging

Futures cross hedging is a hedging strategy where futures contracts of a (correlated) asset that differs from the
underlying asset are used.2 Often, an investor cross hedges when he wants to avoid a certain type of exposure in
his portfolio. More specifically, we consider three cross hedging applications where the investor seeks to protect
his S&P 500 index portfolio value against changes in (either) the interest rate, the exchange rate between the US
Dollar and the Euro, or the VIX index. He aims to achieve this by cross hedging his fixed long spot position in the
S&P 500 index using the CBOT 10-y US T-Note (TY), the CME Euro FX (EC) and the CBOEVIX (VX) futures,
respectively. We consider bivariate as well as multivariate cross hedging. In the former the investor only wants
to eliminate one type of exposure, while in the latter all three types of exposure are eliminated simultaneously.
In a similar way as in Wang, Wu, and Yang (2015), we assume that the investor rebalances his hedging position
at the close of each trading week.

Let us consider an investor with a one-period hedging horizon who wants to hedge a fixed long spot position
with a one period return rs,t by taking a position in N (correlated) futures contracts with rf ,t representing the
vector of one period futures returns. To simplify the notationwe assume that the investor has a long spot position
of one unit. The hedged portfolio return rp,t is:

rp,t = rs,t − bᵀ
t rf ,t , (13)

where bt denotes a vector containing the futures positions’ units. We follow Kroner and Sultan (1993), among
others, by determining the optimal values for the single-period hedge ratios bt as those that minimize the
conditional variance of the hedged portfolio return.3 This leads to the following optimization problem:

argmin
bt

Var
(
rp,t |Ft−1

)
, (14)

where Var(· |Ft−1) denotes the conditional variance operator with Ft−1 being the available information set up
until time t−1. It follows from the first-order condition that:

b∗
t = H−1

ff ,tHsf ,t , (15)

where b∗
t is a vector containing the optimal hedge ratios at time t conditional on the available information at

time t−1, Hff ,t is the conditional covariance matrix of the futures returns, and Hsf ,t is a vector containing the
conditional covariances between the spot returns and each of the futures returns. In the simple case of bivariate
cross hedging where N = 1, the optimal hedge ratio is equal to the ratio of the conditional covariance between
spot and futures returns to the conditional variance of futures returns.
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We propose to estimate the hedge ratios in Equation (15) by using the VICC covariance matrix filter as
defined in Equation (8). We compare its performance with an unconditional hedge ratio, which is the slope
of the Ordinary Least Squares (OLS) regression of spot returns on futures returns (see e.g. Kavussanos and
Visvikis 2008). The DCC, EWMA, GO-GARCH and HS method are the additional conditional benchmark
estimators.

4.2. Data

The dataset contains daily prices on the S&P 500 index, the CBOT 10-y US T-Note (TY), the CME Euro FX
(EC), and the CBOE VIX (VX) futures from January 1, 2008 until December 31, 2018. We use Friday closing
prices to compute weekly simple percentage returns. If Friday is a holiday, Thursday closing prices are used. We
use the nearest futures contract to delivery and roll over to the next nearest contract when the current contract
reaches the first day of the delivery month or its expiry date to avoid thin trading and expiration effects (see
e.g. Lypny and Powalla 1998). The spot data is obtained via Wharton Research Data Services (WRDS) and the
futures data via Quandl (Stevens Continuous Futures).

Table 4 shows the sample means and standard deviations (in %) of the weekly spot and futures returns on
the S&P 500 index, and the CBOT 10-y US T-Note, the CME Euro FX and the CBOE VIX futures from January
2008 until December 2018. We further report the relative volatilities and the sample correlation coefficients
between the corresponding spot and futures returns, and the unconditional bivariate OLS hedge ratios. Besides
the full-sample summary statistics, we also provide sub-sample summary statistics by dividing the sample into
five sub-samples.

The sub-sample summary statistics from 2008–2010 show the substantial impact of the Financial Crisis of
2008 on the hedge ratio dynamics as the high volatility on the S&P 500 index leads to the highest relative volatility
between spot and futures returns for the Euro FX and VIX futures, and for the second highest relative volatility
between spot and futures returns for the 10-yUST-Note futures, compared to the other sub-samples. Thismeans
that, at constant correlation, the value of the unconditional hedge ratio should be decreasing in the consecutive
sub-samples. However, this is often not the case, as the effect of the decreasing relative volatility is partially
offset by an increase in the absolute value of the correlation. Furthermore, the time-varying correlation also
has a notable impact on the hedge ratio of the Euro FX futures, where the sign of the correlation even changes

Table 4. Full-sample and sub-sample summary statistics of the weekly spot and futures returns over the period January 1, 2008
until December 31, 2018.

μ̂
√̂
h

√̂
hs/̂hf ρ̂sf b̂ μ̂

√̂
h

√̂
hs/̂hf ρ̂sf b̂

2008–2018 2013–2014
S&P 500 0.13 2.52 0.34 1.43
CBOT 10-y US T-Note 0.01 0.84 3.01 −0.35 −1.04 −0.03 0.74 1.92 −0.22 −0.43
CME Euro FX −0.03 1.38 1.82 0.24 0.43 −0.07 0.92 1.55 −0.10 −0.15
CBOE VIX 0.40 9.08 0.28 −0.67 −0.18 0.33 7.24 0.20 −0.80 −0.16

2008–2010 2015–2016
S&P 500 −0.01 3.68 0.10 1.80
CBOT 10-y US T-Note 0.04 1.12 3.29 −0.31 −1.01 −0.02 0.77 2.35 −0.31 −0.73
CME Euro FX −0.05 1.74 2.11 0.36 0.75 −0.11 1.46 1.23 −0.16 −0.20
CBOE VIX 0.23 9.07 0.41 −0.62 −0.25 0.26 9.56 0.19 −0.80 −0.15

2011–2012 2017–2018
S&P 500 0.14 2.41 0.10 1.88
CBOT 10-y US T-Note 0.09 0.78 3.11 −0.63 −1.97 −0.02 0.49 3.85 −0.26 −1.02
CME Euro FX 0.03 1.43 1.68 0.49 0.82 0.09 0.91 2.07 0.05 0.10
CBOE VIX 0.37 10.51 0.23 −0.74 −0.17 0.89 8.80 0.21 −0.73 −0.16

Note: This table presents the sample means (μ̂) and standard deviations (
√̂
h) of the weekly returns (in %) of the S&P 500 index,

and of the CBOT 10-y US T-Note, CME Euro FX and CBOE VIX futures over the period January 1, 2008 until December 31, 2018. The

relative volatility (
√̂
hs/̂hf ) and the sample correlation coefficients (ρ̂sf ) between the corresponding spot and futures returns, and

the unconditional bivariate OLS hedge ratios (̂b) are also reported.
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from positive to negative, and back to positive in the last few years of the sample. These sub-sample summary
statistics show the need for a time-varying hedge ratio and the potential benefits in using separate equations for
estimating the conditional variances and correlations as they show different time series behavior.

4.3. Performancemeasures

We estimate weekly out-of-sample hedge ratios using the VICC, DCC, EWMA, GO-GARCH, HS and OLS
method on a rolling estimation window for cross hedging the S&P 500 index using the CBOT 10-y US T-Note,
the CME Euro FX and the CBOE VIX futures from January 2008 until December 2018. In a similar way as
in Wang, Wu, and Yang (2015), we split our sample into two subsamples, namely an estimation window and
an evaluation window, by splitting it in half. We use the estimation window to compute the one-step-ahead
weekly forecasts of theOHRand the corresponding out-of-sample hedged portfolio returns for all the considered
models. Thenwe reestimate themodel parameters each time by rolling the estimationwindow oneweek forward
and dropping the first observation.4 Finally, we evaluate the models’ cross hedging effectiveness by comparing
the out-of-sample variance reduction, the achieved decorrelation and the stability of the hedge ratio.

We quantify the first measure of hedging effectiveness with the Variance Reduction Ratio (VRR) which com-
pares the variance of the out-of-sample hedged portfolio returns to the variance of the unhedged portfolio
returns as follows:

VRR = 100

(
ĥs − ĥp

ĥs

)
, (16)

where ĥp and ĥs are the sample variances of the weekly hedged and unhedged portfolio returns, respectively.
FollowingWang,Wu, and Yang (2015), we use theDiebold-Mariano test (DM-test) to account for the estimation
uncertainty when evaluating the difference in out-of-sample performance (Diebold and Mariano 2002). We
compare the cross hedging performance of the best performing hedge ratio with each of the competing hedge
ratios. We use the squared weekly out-of-sample returns and a Null hypothesis of equal or worse performance
by the best performing hedge ratio. We refer to the original paper of Diebold and Mariano (2002) for a more
detailed discussion.

The secondmeasure of hedging effectiveness is the achieved decorrelation between the out-of-sample hedged
portfolio returns and the corresponding futures returns. If a hedge ratio is effective, then the resulting hedged
portfolio returns should be uncorrelated with the futures returns. We compute the correlation coefficient
between the out-of-sample hedged portfolio returns and the futures returns, and test whether it is significant
with a Null hypothesis of no correlation.

A last performance measure is the stability of the hedge ratio. A timely hedge ratio should immediately react
to changes in the underlying correlation, and relative volatility, between spot and futures returns. However, if two
separate hedge ratios lead to an equal performance in terms of variance reduction and achieved decorrelation,
themore stable hedge ratio is preferred as it generates less transaction costs.We define amore stable hedge ratio,
as a hedge ratio that generates a lower portfolio turnover. We define the portfolio turnover over the sample with
T observations as follows:

Turnover = 100
1

T − 1

T∑
t=2

|̂bt − b̂t−1|, (17)

where b̂t denotes an estimated hedge ratio. In the case of multiple hedge ratios, we average over all the resulting
turnovers.

4.4. Bivariate results

Let us first consider the actual time series of estimated bivariate hedge ratios for the various methods. We show
these in Figure 2. We observe clear differences in time series properties. The most stable estimate is obtained by
the OLS hedge ratio. The other methods are more reactive to recent data. The VICC and DCC hedge ratio show
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Figure 2. Out-of-sample estimates of the VICC, DCC, EWMA, GO-GARCH, HS and OLS bivariate hedge ratios for the S&P 500 index using either
the 10-y US T-Note, Euro FX and VIX futures as cross hedging asset. (a) 10-y US T-Note. (b) Euro FX and (c) VIX.

a large degree of comovement, while the HS method yields the most volatile predictions of the optimal hedge
ratio. Despite the similar dynamics, the GO-GARCH and EWMA hedge ratio are easy to distinguish from both
the VICC and DCC hedge ratio.
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Figure 3. Out-of-sample estimates of the correlation between the weekly S&P 500 index return and the returns on the 10-y US T-Note, Euro FX
and VIX futures obtained via the VICC, DCC, EWMA, GO-GARCH, HS and OLS models. (a) 10-y US T-Note. (b) Euro FX and (c) VIX.

In Figure 3, we plot the correlation prediction that is associated with each of the hedge ratios. Note that
the correlation and hedge ratio have of course the same sign. They differ by the scaling factor, which is equal
to the ratio of the underlying relative volatility between spot and futures returns. The VICC, DCC, EWMA,
GO-GARCH and OLS yield by construction conditional correlation estimates that are in between −1 and 1. In
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contrast, we observe that the HS correlation effectively violates this condition and is sometimes truncated at−1
or 1 as appropriate. Its interpretation is therefore problematic.

Table 5 shows the VRR, the correlation between the out-of-sample hedged portfolio returns and the futures
returns, and the turnover of the VICC, DCC, EWMA, GO-GARCH, HS and OLS hedge ratios for the bivariate
cross hedging applications. We observe that the VICC hedge ratio is the top performer in terms of variance
reduction for the 10-y US T-Note and Euro FX futures cross hedging applications with a VRR of 9.34 and 0.47
percentage points, respectively. It is also the second best performing hedge ratio for the VIX futures where the
DCC hedge ratio reduces the most portfolio return variance with a VRR of 65.18 percentage points. The DM-
test indicates that the VRR of the VICC and DCC hedge ratios are only significantly different in the Euro FX
futures cross hedging application in favor of the VICC. The HS and OLS hedge ratios are significantly outper-
formed by either the VICC or the DCC hedge ratio in all three applications, while the EWMA hedge ratio is
significantly outperformed twice. The GO-GARCH hedge ratio performs quite well in the 10-y US T-Note and
VIX applications, but performs drastically worse for the Euro FX. Besides the statistical significance, the VRR
numbers indicate that there are some substantial economic gains in using the VICC. For example, for the Euro
FX futures, the VICC hedge ratio has a VRR that is 3.75, 1.42, 12.75, 6.42 and 12.83 percentage points larger
than the VRR of the DCC, EWMA, GO-GARCH, HS and OLS hedge ratio, respectively.

The correlation coefficients of the out-of-sample hedged portfolio returns with the futures returns indicate
that all the hedge ratios, except for the GO-GARCH and OLS hedge ratios, lead to hedged portfolio returns that
are not significantly correlated with the futures returns for each cross hedging application. This means that the
hedge ratios succeed in eliminating the exposure to the interest rate, the exchange rate between the US Dollar
and the Euro, and the VIX. The GO-GARCH hedge ratio fails to eliminate the exchange rate exposure, as the
hedged portfolio returns are still significantly correlated with the Euro FX futures returns, and the OLS hedge
ratio only manages to eliminate interest rate exposure.

Consistent with the stable time series line of the OLS hedge ratio in Figure 2, we find that the portfolio
turnover indicates that the OLS hedge ratio is always by far the most stable hedge ratio. However, as the VRR
and achieved decorrelation indicate, this stability comes at a cost of a less (or even a non-)effective hedging
strategy. One should evaluate whether the higher hedging effectiveness is worth the extra turnover that the
conditional models generate for each particular case. The EWMA hedge ratio is on average the second most

Table 5. Bivariatehedgingperformanceof theVICC,DCC, EWMA,GO-GARCH,HSandOLShedge
ratio for cross hedging the S&P 500 index using the 10-y US T-Note, Euro FX and VIX futures.

VICC DCC EWMA GO GARCH HS OLS

10-y US T-Note
VRR 9.34 8.71 4.69∗∗ 8.72 3.20∗ 4.38∗
ρ̂rp , 10−y US T−Note 0.02 −0.01 0.02 0.09 0.07 0.13∗∗
Turnover 11.60 16.43 9.58 13.64 35.36 1.13

Euro FX
VRR 0.47 -2.81∗ −0.95 -12.28∗∗∗ -5.95∗ -12.36∗∗∗
ρ̂rp , Euro FX −0.04 −0.07 −0.03 −0.17∗∗∗ −0.08 −0.29∗∗∗
Turnover 8.58 13.13 5.61 10.03 22.01 0.75

VIX
VRR 64.60 65.18 62.48∗ 63.82 63.52∗ 60.34∗∗
ρ̂rp , VIX −0.04 −0.04 −0.09 −0.03 −0.03 0.03
Turnover 1.25 1.31 0.49 0.79 1.47 0.07

Note: This table shows the VRR, correlation between the out-of-sample hedged portfolio returns
and the futures returns, and portfolio turnover of the VICC, DCC, EWMA, GO-GARCH, HS and
OLS hedge ratio for bivariate cross hedging the S&P 500 index using the CBOT 10-y US T-Note,
the CME Euro FX and the CBOEVIX futures. The VRR is defined in Equation (16) and the portfolio
turnover is defined in Equation (17). Numbers in bold indicate that it is the highest VRR in the
set. The DM-test is used to determine whether the outperformance in VRR is significant with
a Null hypothesis of equal or worse performance by the best performing hedge ratio, and the
significanceof the correlation is testedwith aNull hypothesis of no correlation. The significance
at the 10%, 5%, and 1% levels are denoted as ∗ , ∗∗ , and ∗∗∗ , respectively.
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stable hedge ratio but again at the cost of a less effective hedging strategy, while the VICC hedge ratio comes
third as a substantially more stable hedge ratio, on average, compared to the DCC and GO-GARCH hedge ratio
(e.g. about a 4.83 and 2.04 percentage points lower turnover for the 10-y US T-Note, respectively). Lastly, the HS
method does not only seem to lead to a poor performance in terms of variance reduction, but also to an unstable
hedge ratio.

Overall, we find that, in terms of variance reduction, the VICC hedge ratio significantly outperforms all the
competing models in at least one of the three bivariate cross hedging applications. Importantly, these bene-
fits are not eliminated by a large turnover as the VICC has a lower turnover, on average, compared with the
second and third best model, namely the DCC and GO-GARCH hedge ratios. This makes the VICC more
appealing to use in practice. A last important finding is that the use of the unconditional OLS hedge ratio sig-
nificantly underperforms in all the applications and fails to eliminate the exposure to the interest rate and the
exchange rate between the US Dollar and the Euro. This finding stresses the importance of conditional cross
hedging.

4.5. Multivariate results

Table 6 shows the VRR, the correlation between the out-of-sample hedged portfolio returns and the futures
returns, and the turnover of the VICC, DCC, EWMA, GO-GARCH and OLS hedge ratios for the multivariate
cross hedging application.5 In terms of VRR, we find that the VICC hedge ratio is the top performer with a VRR
of 65.30 percentage points, and that it significantly outperforms all of the other consideredmodels. The economic
gains vary between 3 to 5 percentage points compared to the DCC, EWMA and OLS hedge ratios. Surprisingly,
the GO-GARCH hedge ratio performs drastically worse with a VRR of only 39.37 percentage points.

The correlation coefficients of the out-of-sample hedged portfolio returns with the futures returns indicate
that the VICC, DCC and GO-GARCH hedge ratio succeed in simultaneously eliminating the interest rate, the
exchange rate between the US Dollar and the Euro, and the VIX index exposure from the S&P 500 portfolio.
The EWMA hedge ratio fails to do so for the VIX exposure with a significant correlation of −0.10, and the
unconditional OLS hedge ratio for the exchange rate exposure with a significant correlation of−0.16. Again, the
OLS hedge ratio generates the lowest turnover at a cost of a less (and even non-)effective hedging strategy, while
the VICC hedge ratio is considerably stabler than the DCC and GO-GARCH hedge ratio. Finally, note that
the regularization weight (κt) is never different from zero, meaning that the resulting VICC matrix is always
positive-definite by itself.

Table 6. Multivariate hedging performance of the VICC, DCC, EWMA, GO-GARCH
and OLS hedge ratio for cross hedging the S&P 500 index using the 10-y US T-Note,
Euro FX and VIX futures.

VICC DCC EWMA GO GARCH OLS

VRR 65.30 62.05∗∗ 62.31∗ 39.37∗∗∗ 60.87∗
ρ̂rp , 10−y US T−Note 0.02 −0.03 0.03 0.01 0.05
ρ̂rp , Euro FX 0.04 0.06 0.00 −0.06 −0.16∗∗∗
ρ̂rp , VIX −0.03 −0.04 −0.10∗ −0.04 −0.07
Turnover 6.21 7.80 2.97 14.18 0.45

Note: This table shows the VRR, correlation between the out-of-sample hedged
portfolio returns and the futures returns, and portfolio turnover of the VICC,
DCC, EWMA, GO-GARCH and OLS hedge ratio for bivariate cross hedging the S&P
500 index using the CBOT 10-y US T-Note, the CME Euro FX and the CBOE VIX
futures. The VRR is defined in Equation (16) and the portfolio turnover is defined
in Equation (17). Numbers in bold indicate that it is the highest VRR in the set.
The DM-test is used to determine whether the outperformance in VRR is signifi-
cantwith aNull hypothesis of equal orworse performance by the best performing
hedge ratio, and the significance of the correlation is testedwith aNull hypothesis
of no correlation. The significance at the 10%, 5%, and 1% levels are denoted as
∗ , ∗∗ , and ∗∗∗ , respectively.
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Overall, we find that, in terms of variance reduction, the VICC hedge ratio significantly outperforms all the
competing models in the multivariate hedging application, and that the outperformance entails some substan-
tial economic gains. Moreover, the VICC succeeds in eliminating all the relevant exposures with a manageable
turnover. Again, we find that the unconditional OLS hedge ratio fails to eliminate the exposure to the exchange
rate between the US Dollar and the Euro, hence confirming the importance of dynamic cross hedging.

5. Conclusion

Accurate estimates of the conditional correlations between asset returns are of great practical importance in
a lot of financial applications, such as portfolio optimization, hedging and risk management. Traditionally,
they are jointly estimated via MGARCH models which require the optimization of a multivariate likelihood
function. This can be numerically challenging and can lead to parameter instability in the case of a general
parametrization. Moreover, most MGARCHmodels suffer from the so-called curse of dimensionality.

To avoid these issues we present a computationally simple and flexible filter to predict the time-varying cor-
relation matrix of asset returns. The proposed Variance Implied Conditional Correlation (VICC) filter exploits
the polarization result that links the correlation between two standardized variables with the variances of linear
combinations of their standardized values. By using flexible univariate GARCHmodels the VICC only requires
the estimation of univariate likelihood functions and the curse of dimensionality is avoided.

We assess the reliability of the VICC estimates by performing a Monte Carlo study and find that the VICC
yields accurate correlation estimates for common choices of correlation dynamics.We also study the cross hedg-
ing of the S&P 500 against changes in (either) the interest rate, the exchange rate between the US Dollar and the
Euro, and the VIX.We conclude that the VICC either leads to a better, or to an equal, hedging performance com-
pared to standard benchmark models. Moreover, in case of an equal performance it has the benefit of providing
substantially more stable hedge ratio estimates.

The proposed VICC is a flexible framework for dynamic correlation filtering. In this paper, we have focused
on the implementation with a symmetric GARCH(1,1) variance model in the VICC filter and the application to
cross hedging. It would be interesting to investigate the added value of asymmetric news impact surfaces when
using the VICC filter in practice and studying the usefulness in other applications, such as high-dimensional
dynamic portfolio allocation.

Notes

1. We omit the results of the HS method as the use of an improper pairwise correlation estimator causes some severe outliers in
the HS estimates of the 10 × 10 two-block DECO correlationmatrix (i.e. |ρ̂HS

t | > 1). After truncation of the correlations at 1 or
−1 as appropriate, we try two methods to obtain a positive-definite correlation matrix, namely via our proposed regularization
method, and via a brute forcemethod which extracts the negative eigenvalues via an eigendecomposition and sets these equal to
a small positive number (i.e. 10−1) before reconstructing the correlation matrix. While these methods improve the results, they
remain drastically worse compared to all the other models. In practice, additional truncations are needed, but this is beyond
the scope of our paper. The results with and without truncation are available from the authors upon request.

2. Another typical application is direct hedging, which is a hedging strategy in which the futures contract is based on the same
underlying as the spot position. We do not consider this type of hedging in this paper since Wang, Wu, and Yang (2015) find
that, due to model misspecification and estimation errors, an estimated direct hedge ratio often does not lead to substantial
gains with respect to a naive hedging strategy of using a unit hedge ratio.

3. Optimal hedge ratios can also be studied under the expected-utility maximization paradigm. In this regard, note that in the
application a weekly hedging horizon is used and for such short horizon the expected return contribution to the mean-variance
utility function is negligible with respect to the magnitude of the portfolio variance. The optimal hedge ratio obtained under
the expected-utility maximization paradigm is then similar to the one obtained under the minimum variance criterion (see e.g.
Chen, Lee, and Shrestha 2003).

4. We also considered an expanding estimation window but found that, for all methods considered, a rolling estimation window
tend to lead to a better hedging performance. The expanding estimation window results are available from the authors upon
request.

5. Obtaining the multivariate hedge ratios requires the inverse of the 3 × 3 covariance matrix of the futures returns (Hff ,t). How-
ever, the use of an improper correlation estimator may cause some severe outliers in the HS hedge ratios (i.e. |ρ̂HS

t | > 1). After
truncation of the correlations at 1 or −1 as appropriate, we try two methods to obtain a positive-definite correlation matrix,
namely via our proposed regularization method, and via a brute force method which extracts the negative eigenvalues via an
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eigendecomposition and sets these equal to a small positive number (i.e. 10−1) before reconstructing the correlation matrix.
While all these methods lead to an invertible covariance matrix, the resulting multivariate hedge ratios often take extreme val-
ues. As an example, for the 10-y US T-Note futures, the HS hedge ratio ranges between −16.23 and 21.07, while the VICC
hedge ratio ranges between −1.85 and 0.83. The multivariate HS hedge ratios are therefore not usable in practice and lead to
severe underperformance when cross hedging. In practice, additional truncations are needed, but this is beyond the scope of
our paper. The results with and without truncation are available from the authors upon request.
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Appendices

Appendix 1. Optimal γ in the Gaussian case
Under the assumptions of Property 2.2, we have thatZi andZj are bivariate standard normally distributedwith correlation coefficient
ρij. We maximize estimation efficiency by minimizing the scaled asymptotic variance of the sample variance of the weighted sum
between Zi and Zj. This leads to the following objective function:

S+(γ ) = Avar
(√

T − 1 ĥi+j(γ )
)
, (A1)

where Avar(·) is the asymptotic variance operator and ĥi+j(γ ) is the sample variance estimator of the weighted sum of Zi and Zj.
We now assume there are T observations of Zi and Zj collected in samples zi and zj. We then have:

ĥi+j(γ ) = 1
T − 1

T∑
t=1

(
γ zi,t + (1 − γ )zj,t − γ z̄i − (1 − γ )z̄j

)2
= γ 2 1

T − 1

T∑
t=1

(
zi,t − z̄i

)2
︸ ︷︷ ︸

ĥi

+(1 − γ )2
1

T − 1

T∑
t=1

(
zj,t − z̄j

)2
︸ ︷︷ ︸

ĥj

+ 2γ (1 − γ )
1

T − 1

T∑
t=1

(
zi,t − z̄i

) (
zj,t − z̄j

)
︸ ︷︷ ︸

ĥij

, (A2)

https://cran.r-project.org/package=rmgarch
https://cran.r-project.org/package=rugarch
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where z̄i and z̄j are the sample means, ĥi and ĥj are the sample variances, and ĥij is the sample covariance of zi,t and zj,t . Under the
above assumptions we have that, for T → ∞:

Cov

⎛⎜⎝√
T − 1

⎛⎜⎝ ĥi − 1
ĥij − ρij

ĥj − 1

⎞⎟⎠
⎞⎟⎠ =

⎛⎜⎝ 2 2ρij 2ρ2ij
2ρij 1 + ρ2ij 2ρij
2ρ2ij 2ρij 2

⎞⎟⎠ , (A3)

see e.g. Equation (2.1) in Iwashita and Siotani (1994). We can then write S+(γ ) as:

8γ 4
(
ρ2ij − 2ρij + 1

)
− 16γ 3

(
ρ2ij − 2ρij + 1

)
+ 8γ 2

(
ρ2ij − 3ρij + 2

)
+ 8γ

(
ρij − 1

)+ 2. (A4)

Its first and second order derivatives are:

S′
+(γ ) = 32γ 3

(
ρ2ij − 2ρij + 1

)
− 48γ 2

(
ρ2ij − 2ρij + 1

)
+ 16γ

(
ρ2ij − 3ρij + 2

)
+ 8

(
ρij − 1

)
,

S′′
+(γ ) = 96γ 2

(
ρ2ij − 2ρij + 1

)
− 96γ

(
ρ2ij − 2ρij + 1

)
+ 16

(
ρ2ij − 3ρij + 2

)
. (A5)

From the first and second order conditions, it is trivial to see that γ = 0.5 minimizes S+(γ ) for γ ∈ [0, 1] and |ρij| < 1. The same
holds for ĥi−j(γ ) for which the objective function is:

S−(γ ) = Avar
(√

T − 1 ĥi−j(γ )
)
, (A6)

where ĥi−j(γ ) is the sample variance estimator constructed using γ zi,1 − (1 − γ )zj,1, . . . , γ zi,T − (1 − γ )zj,T . Its first and second
order derivatives are:

S′
−(γ ) = 32γ 3

(
ρ2ij + 2ρij + 1

)
− 48γ 2

(
ρ2ij + 2ρij + 1

)
+ 16γ

(
ρ2ij + 3ρij + 2

)
− 8

(
ρij + 1

)
,

S′′
−(γ ) = 96γ 2

(
ρ2ij + 2ρij + 1

)
− 96γ

(
ρ2ij + 2ρij + 1

)
+ 16

(
ρ2ij + 3ρij + 2

)
. (A7)

We find that γ = 0.5 satisfies the first order conditions for a minimum.

Appendix 2. Univariate GARCHmodel
Denote the squared innovation in the return by ε2i,t = (ri,t − μi,t)

2, with μi,t the predicted return, conditional on the information
available at time t−1. The standard GARCH(1,1) specification of Bollerslev (1986) models the conditional variance as a linear
combination of the lagged squared error term ε2i,t−1 and the lagged conditional variance hi,t−1. This leads to the following equation:

hi,t = ωi + αi ε
2
i,t−1 + βi hi,t−1. (A8)

The coefficients ωi,αi and βi should all be positive to ensure a positive variance and the sum of αi and βi should be lower than one
for the conditional variance process to be covariance stationary. Themodel is estimated via Gaussian (Quasi) Maximum Likelihood
estimation using the rugarch package of Ghalanos (2018). We refer to the original paper of Bollerslev (1986) for a more detailed
discussion.

Appendix 3. Calibration of the regularization parameter κt

Given that R̂VICC
t−1 is positive-definite, let Gt−1 be the square root of R̂VICC

t−1 obtained by using the Cholesky factorization such that
R̂VICC
t−1 = Gt−1G

ᵀ
t−1. We can rewrite Equation (5) as follows:

R̂VICC
t = (1 − κt) R̂t + κt Gt−1 G

ᵀ
t−1,

= Gt−1

[
(1 − κt) G−1

t−1 R̂t G
−ᵀ
t−1 + κt IN

]
Gᵀ
t−1. (A9)

Since Gt−1 is positive-definite, R̂VICC
t is positive-definite if (1 − κt) G−1

t−1 R̂t G
−ᵀ
t−1 + κt IN is positive-definite. We ensure this by

setting κt such that the lowest eigenvalue of (1 − κt)G−1
t−1 R̂t G

−ᵀ
t−1 + κt IN equals a small positive numberψmin. This is the case for

the regularized VICC correlationmatrix in Equation (6). To see this, note first that the eigenvalues of (1 − κt)G−1
t−1 R̂t G

−ᵀ
t−1 + κt IN

are linearly related to those ofG−1
t−1 R̂t G

−ᵀ
t−1. Recall that λmin,t is defined as the smallest eigenvalue ofG−1

t−1 R̂t G
−ᵀ
t−1 and note that, if

the vector of eigenvalues of G−1
t−1 R̂t G

−ᵀ
t−1 is λt , then the eigenvalues of (1 − κt) G−1

t−1 R̂t G
−ᵀ
t−1 + κt IN are (1 − κt)λt + κt . It then
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follows that:

(1 − κt)λmin,t + κt = ψmin,

(1 − λmin,t)κt = ψmin − λmin,t ,

κt = max
{
ψmin − λmin,t

1 − λmin,t
, 0
}
. (A10)

Appendix 4. EWMAmodel
Let theN × 1 innovation vector in the returns rt be εt = rt − μ̂t , where μ̂t is aN × 1 vector with the sample averages of the returns
from inception till time t−1. The EWMA prediction is then as follows:

Ht = (1 − δ)εtε
ᵀ
t + δHt−1, (A11)

where Ht is the conditional covariance matrix and δ is the EWMA smoothing parameter. As usual (see e.g. Engle 2009; Daníels-
son 2011), we set δ = 0.94 and initialize the process with the unconditional sample covariance matrix. The EWMA correlation
matrix can then be easily obtained as follows:

Rt = diag{dg(Ht)}−1/2 Ht diag{dg(Ht)}−1/2, (A12)

where the matrix operator dg(·) returns a vector that contains the elements of the main diagonal and diag{·} creates a diagonal
matrix.

Appendix 5. DCCmodel
Let rt be a N × 1 return vector with the following joint dynamics:

rt = μt + Dtzt , (A13)

where μt is a vector with the conditional means,Dt is a diagonal matrix with the conditional standard deviations of the returns on
the main diagonal and zt is a vector with the standardized error terms. The conditional covariance matrixHt can be expressed as:

Ht = DtRtDt , (A14)

in which Rt is the conditional correlation matrix. The diagonal elements of Dt are obtained via the standard GARCH(1,1) model.
The DCC model then specifies the dynamics in Rt using the standardized values z as follows:

Qt = (1 − ω1 − ω2) Q + ω1 ztz
ᵀ
t + ω2 Qt−1,

Rt = diag{dg(Qt)}−1/2 Qt diag{dg(Qt)}−1/2, (A15)

where Qt is a symmetric positive definite matrix and Q is the unconditional covariance matrix of zt . The scalar parameters ω1 and
ω2 are strictly positive and their sum is strictly lower than one. The DCC model is estimated using the standard two-step Gaussian
(Quasi)MaximumLikelihood estimation as implemented in the rmgarch package of Ghalanos (2016).We refer to the original paper
of Engle (2002) for a more detailed discussion.

Appendix 6. GO-GARCHmodel
Following the GO-GARCH model of van der Weide (2002) the innovation vector εt is modeled as a linear combination of K
unobserved factors ft :

εt = Aft , (A16)

where A is a time-invariant, invertible mixing matrix. The factors are specified as follows:

ft = �
1/2
t vt , (A17)

where �
1/2
t is a diagonal matrix with the conditional variances of the factors, and vi,t is an iid random variable with zero mean and

unit variance. The variances of the factors are in our casemodeled via the standard GARCH(1,1) model. The conditional covariance
matrix Ht is A�tAᵀ . To estimate the GO-GARCH model we follow Broda and Paolella (2009) and use the implementation in the
rmgarch package of Ghalanos (2016).
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Appendix 7. Harris and Shen (2003)
Harris and Shen (2003) propose to estimate the conditional covariance hij,t as follows:

ĥHS
ij,t = ĥ+,t − ĥ−,t

4
, (A18)

where ĥ+,t is the estimated conditional variance of the sum of ri,t and rj,t and ĥ−,t that of the difference between them. Both are
obtained by using the standard GARCH(1,1) model. Note that the correlation embedded in the HS method is an unbounded func-
tion of the conditional variance estimates ĥi,t and ĥj,t and may therefore be sensitive to extreme observations in the data. This may

even lead to |̂hHS
ij,t /

√
ĥi,t ĥj,t| > 1. We refer to Harris and Shen (2003) for a more detailed discussion.
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