
VU Research Portal

Guidelines for architecting android apps

Verdecchia, Roberto; Malavolta, Ivana; Lago, Patricia

published in
Proceedings - 2019 IEEE International Conference on Software Architecture, ICSA 2019
2019

DOI (link to publisher)
10.1109/ICSA.2019.00023

document version
Early version, also known as pre-print

document license
Unspecified

Link to publication in VU Research Portal

citation for published version (APA)
Verdecchia, R., Malavolta, I., & Lago, P. (2019). Guidelines for architecting android apps: A mixed-method
empirical study. In Proceedings - 2019 IEEE International Conference on Software Architecture, ICSA 2019 (pp.
141-150). [8703927] Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/ICSA.2019.00023

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 13. Sep. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303693401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ICSA.2019.00023
https://research.vu.nl/en/publications/2815cea1-8c48-4547-b10d-27f46af4d0eb
https://doi.org/10.1109/ICSA.2019.00023

Guidelines for Architecting Android Apps:
A Mixed-Method Empirical Study

Roberto Verdecchia∗†, Ivano Malavolta†, Patricia Lago†
∗Gran Sasso Science Institute, L’Aquila, Italy

†Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
roberto.verdecchia@gssi.it, {i.malavolta | p.lago}@vu.nl

Abstract—For surviving in the highly competitive market of
Android apps, it is fundamental for app developers to deliver
apps of high quality and with short release times. A well-
architected Android app is beneficial for developers, e.g. in
terms of maintainability, testability, performance, and avoidance
of resource leaks. However, how to properly architect Android
apps is still debated and subject to conflicting opinions usually
influenced by technological hypes rather than objective evidence.

In this paper we present an empirical study on how de-
velopers architect Android apps, what architectural patterns
and practices Android apps are based on, and their potential
impact on quality. We apply a mixed-method empirical research
design that combines (i) semi-structured interviews with Android
practitioners in the field and (ii) a systematic analysis of both
the grey (i.e., websites, on-line blogs) and white literature (i.e.,
academic studies) on the architecture of Android apps. Based on
the analysis of the state of the art and practice about architecting
Android apps, we systematically extract a set of 42 evidence-
based guidelines supporting developers when architecting their
Android apps.

I. INTRODUCTION

Android is accounting for more than 85.9% of global smart-
phone sales worldwide [1], leading thousands of developers to
choose Android as their first go-to development platform [2].
In the last quarter of 2018 more than 2.6 million Android
apps were available in the Google Play, the official Android
app store [3].

For surviving in such a highly competitive market, it is
fundamental for app developers to deliver apps yielding high
quality in terms of e.g., performance, energy consumption,
user experience. Developers are investing great efforts to
deliver apps of high quality and with short release times.
In this context, a well-architected Android app is beneficial
for developers in terms of maintainability, evolvability, bug
fixing (e.g., resource leaks), testability, performance, etc. The
most recent releases of the Android platform are putting more
and more emphasis on the architecture of the apps, with a
special focus on architecturally-relevant components1, such as
those belonging to Android Jetpack2, the recently introduced
collection of Android software components. However, how
to properly architect Android apps is still highly debated
and subject to conflicting opinions, usually influenced by
technological hypes rather than objective evidence.

1https://developer.android.com/topic/libraries/architecture
2https://developer.android.com/jetpack

The goal of this paper is twofold: (i) to characterize the state
of the practice on architecting Android apps and (ii) to provide
a set of evidence-based guidelines for supporting developers
while architecting Android apps. Given the relatively low
maturity of the subject and its tight connection with industry,
we apply a mixed-method empirical research design that com-
bines (i) semi-structured interviews with Android practitioners
in the field, and (ii) a systematic analysis of both the grey
(e.g., websites, on-line blogs, etc.) and white literature (i.e.,
academic studies) on the architecture of Android apps. Specif-
ically, starting from 5 interview transcripts and an initial set of
306 potentially-relevant primary studies, through a rigorously-
defined and replicable process, we select 44 data points, i.e.,
either interview transcripts or primary studies belonging to
the grey/white literature. We analyze each data point in order
to characterize how developers architect Android apps, what
architectural patterns and practices Android apps are based
on, and their potential impact on quality attributes such as
maintainability. Finally, a set of 42 guidelines for architecting
Android apps is systematically synthesized from the obtained
practices. The emerging guidelines are organized around 4
themes including the most adopted architectural patterns and
principles when developing Android apps (e.g., Model-View-
ViewModel3). The main contributions of this study are:

• interviews of 5 practitioners that provide qualitative in-
formation about architecting Android apps;

• a systematic analysis of the grey and white literature
about architecting Android apps;

• a set of 42 evidence-based guidelines for architecting
Android apps;

• the replication package of the study.
The target audience of this paper includes both Android

developers and researchers. Specifically, this study benefits
(i) developers by providing evidence-based guidelines for tak-
ing action towards improving the architecture of their Android
apps, and (ii) researchers by objectively characterizing the
state of the art and practice about architecting Android apps.

The remainder of the paper is organized as follows. The
design of this study is presented in Section II, followed by
the reporting and discussion of the main results in Section III.
Threats to validity and related work are described in Sections
IV and V, respectively. Section VI closes the paper.

3https://developer.android.com/topic/libraries/architecture/viewmodel

https://developer.android.com/topic/libraries/architecture
https://developer.android.com/jetpack
https://developer.android.com/topic/libraries/architecture/viewmodel

II. STUDY DESIGN

In this section we report the research questions (Section
II-A) and the steps of our mixed-method study (Section II-B).

A. Research questions

RQ1: Which are the general characteristics of the archi-
tecture of Android apps? This question can be refined into:
RQ1.1: Which architectural patterns are considered for

architecting Android apps? This research question aims at un-
derstanding which architectural styles/patterns4 are considered
for architecting Android apps. This provides us with a better
understanding of current Android architecture practices, and
sets the context for the next research questions.
RQ1.2: Which libraries are referenced while considering

the architecture of Android apps? With this question we aim
at identifying the programming libraries regarded as most
influential while architecting Android apps. This provides
further data on the technologies considered in order to support
Android architecting processes.
RQ2: How to guide developers when architecting Android

apps? This research question constitutes the core of the study.
By answering it, we aim at synthesizing a set of architec-
tural guidelines for architecting Android apps. This provides
practitioners with actionable guidance when architecting their
Android apps, and supports researchers in future investigations
on Android architecture.
RQ3: Which quality requirements are considered when

developing and reasoning about the architecture of Android
apps? Today developing apps of high quality is fundamental
for surviving in the Android market. This research question
aims to understand which quality requirements (QRs [4], e.g.,
performance, usability, maintainability) are taken into account
when dealing with the architecture of Android apps. This
provides a good understanding of which QRs are potentially
impacted the most by architectural decisions.

B. Research Method

In order to answer the research questions, we adopt a
mixed-method approach consisting of a multivocal literature
review [5] integrated with the results of semi-structured inter-
views with Android practitioners. An overview of the entire
process is shown in Figure 1, while Figure 2 shows the number
of selected data points in each step. The remainder of this
section describes the key individual steps, Step 2a through 4.

1) Multivocal Literature Review (MLR): The literature re-
view is performed by rigorously following well established
guidelines for conducting software engineering literature re-
views [6], [7]. The guidelines are complemented by additional
ones specifically targeted for the inclusion of grey literature in
multivocal studies [8]. To have full control over the number
and quality of the literature considered, the literature review
is designed as a multi-stage process, reported below.

Initial Search. In order to identify the potentially relevant
white literature (WL) studies, a research query is executed

4For the sake of space, from this point onwards, “architectural style” and
“architectural pattern” will be jointly referred to as “architectural pattern”.

on Google Scholar. We opt for such digital library as (i) its
adoption constitutes a sound choice to determine the initial
set of literature for snowballing processes [9], (ii) from a
preliminary execution of the search query it results to be more
inclusive w.r.t. Scopus and IEEE Explore, and (iii) the results
of the query can be processed automatically via tool-support.

Listing 1 shows the search string we use. The query is
purposely designed to be generic, in order to be as encompass-
ing as possible while selecting a significant set of potentially
relevant studies. The execution of the query for the WL returns
206 hits. Regarding the initial search of grey literature (GL),
the query reported in Listing 1 is executed on the regular
Google Search Engine by omitting Google Scholar specific
syntax (i.e., the “intitle” keywords). The search engine is
selected in accordance to the recommendations for including
GL in software engineering multivocal reviews [8]. Due to the
high volume of returned results, we limit the search to the top
100 results as stopping rule. This number proves also to be
the theoretical saturation point [8] of the returned results.

(intitle:architecture OR intitle:architectural
OR intitle:architect OR intitle:architecting)
AND (intitle:android OR intitle:"mobile app")

Listing 1. Search query used for automated search of white literature

Application of Selection Criteria. The search results are
then filtered in order to obtain an initial set of primary studies
by applying a set of well-defined inclusion and exclusion
criteria. In order to systematically control the quality of the
primary studies, three sets of criteria are defined: one general
(i.e., applying for both WL and GL), one specific to WL, and
one specific to GL. A paper is included only if it satisfies all
inclusion criteria and none of the exclusion ones.

TABLE I
SELECTION CRITERIA FOR THE MULTIVOCAL LITERATURE REVIEW

Type Description

General-Inclusion Studies focusing / software architecture
General-Inclusion Studies focusing on design or development of Android apps
General-Exclusion Studies not published in English
General-Exclusion Duplicate or extensions of already included studies
General-Exclusion Studies which are not available
General-Exclusion Studies not focusing on native Android applications, e.g.,

Unity-based videogames, web-based apps

WL-Exclusion Secondary or tertiary studies
WL-Exclusion Studies in the form of editorials, tutorials, books, etc.
WL-Exclusion Studies which have not been peer reviewed

GL-Exclusion Studies reporting exclusively the basic principles about the
Android platform and its architecture

GL-Exclusion Studies reporting exclusively abstract best practices
GL-Exclusion Studies reporting only trivial Android implementations
GL-Exclusion Studies reporting an implementation without a discussion of

its benefits and/or drawbacks
GL-Exclusion Studies written for promotional purposes
GL-Exclusion White literature
GL-Exclusion Videos, webinars, etc.

GL-Quality Is the publishing organization or the author reputable?
GL-Quality Has the author published other studies in the field?
GL-Quality Does the study add value to the research?
GL-Quality Is the presentation of the study of high quality?
GL-Quality Is the study supported by evidence, e.g., examples/data?

In order to further ensure the quality of GL primary studies,
a subset of 5 quality-evaluation criteria presented by Garousi

Step 1: Mixed-Method Study (MMS) Planning

MMS
 Goal Definition

RQs
Definition

Initial Search

White
Literature
Review

Grey
Literature
Review

Google
Search
Engine

Initial Pool of
Sources

Preliminary Set
of Primary

Studies

Snowballing

Primary
Studies
(MLR)

Step 2a: Multivocal Literature Review (MLR)

Step 2b: Practitioners Interviews
Contact
Potential

Interviewees
Conduct

Interviews
Interview
Results

participate in

Android
Developers

Protocol
Definition

Application of
Selection Criteria

Google
Scholar

Step 3: Data Processing and Extraction

Data
Extraction

Data Points
Merge

Data
Points

Extracted
Data

Step 4: Data Synthesis

Data
Synthesis Combined Study

Results
(Answers to RQs)

Step 5: Reporting

MMS
Reporting

MMS
Study

Fig. 1. Mixed-Method Study (MMS): process overview

et al. is adopted [8]. A 3-point Likert scale (yes=1, partly=0.5,
and no=0) is used to assign the quality scores. A GL study is
considered of sufficient quality if it scores at least 2 out of 5
total points. Table I reports the considered selection criteria.

As recommended in [10], two researchers inspect a random
sample of the studies. For assessing the objectivity of this
phase the inter-researcher agreement is measured, achieving
a substantial agreement Cohen Kappa value of 0.79, falling
slightly below the one recommended in [11], equal to 0.80.

The application of the criteria terminates with the inclusion
of 6 WL primary studies and 16 GL primary studies.

Snowballing Process. Once the preliminary set of primary
studies is defined, we conduct a snowballing process. Regard-
ing WL, we adopt a standard iterative backward and forward
snowballing process [9]. During this process, 629 potential
relevant studies are analyzed, leading to the inclusion of 1
additional primary study. For the GL, due to the high volume
of primary studies to be considered, we limit the snowballing
to the links referenced in the GL primary studies (i.e., we do
not consider backward links), and stop the process after the
first iteration. A totality of 16 new primary studies is included
through this snowballing process.

2) Practitioners Interviews: In order to complement the
data extracted from the MLR, we conduct semi-structured
interviews with Android practitioners. This step consists in
designing a survey based on our research questions, contacting
potential interviewees, conducting the semi-structured inter-

Google
Search
Engine

Google
Scholar

Initial
search

206

100

Application of
selection criteria

16

6

Snowballing

32

7

Android
Developers

Data points
merge

18

Contact potential
interviewees

5

Conduct
interviews

44

Fig. 2. Steps of the Mixed-Method Study (MMS)

views, and post-processing the interview results. Interviewees
are selected via convenience sampling by exploiting our col-
laboration network. Developers are required to be affiliated to
different companies, belong to distinct business domains, and
possess at least 5 years of Android development experience.
Out of 18 contacted practitioners, 5 result to be available for
the interview. Interviews range between 30 and 60 minutes.

3) Data Processing and Extraction: After the collection of
the WL/GL primary studies and survey results, referred jointly
as data points, the resulting 44 data points are uniformed
and merged into a single pool. Subsequently, we extract from
the data points the information necessary in order to answer
our research questions. The data necessary to answer RQ1

is extracted by inspecting the data points, and subsequently
identifying which architectural patterns and libraries are con-
sidered. In order to extract architectural practices (RQ2) we
conduct iterative content analysis sessions [12] involving two
authors of the paper. Finally, to answer RQ3, the data points
are inspected to extract which QRs are deemed to be impacted
by architectural decisions. The entirety of the data extracted is
mapped to the originating data points for the sake of backward
traceability and replication purposes.

4) Data Synthesis: Finally, the extracted data is processed
and synthesized in order to answer our research questions.
In order to answer RQ1 and RQ3 the extracted data can
be processed quantitatively. Differently, in order to answer
RQ2, we carry out a keywording process [13]. This process
consists of grouping the architectural practices extracted from
the data points according to their semantic similarity. This is
achieved by labelling the single practices with representative
keywords. The process is iterated by refining the keywords, till
the grouped practices can be merged into a single guideline.
Practices mapped to a guideline in this fashion are referred
to as supporting practices. The first round of keywording
leads to the identification of the general themes considered,
while the subsequent ones to the formulation of the guidelines.
Figure 3 summarizes the relationships between the elements
of the resulting catalogue of guidelines.

For more details on the research method, research execution,
and extracted data, we refer the reader to the replication

package of this study5. The package is made available with
the aim of supporting independent verification and replication.
It contains (i) the rigorous research protocol defined a priori
which we follow, (ii) the entirety of the search and selection
execution data, (iii) the raw data extracted from the data
points, and (iv) the documentation of data analysis processes
accompanied by the relative results.

extracted from

Practice
supports

Guideline
groups

Theme Catalogue

Android MVP MVVM Clean
ArchitectureData

points

organizes

* * **

*

1

Fig. 3. Relationship between the elements of the catalogue of guidelines

III. RESULTS

A. RQ1: Characteristics of Architecting Android Apps
1) Android architectural patterns (RQ1.1): The inspection

of the extracted data lead to the identification of 7 architectural
patterns considered when developing Android apps.

Fig. 4. Overview of architectural pattern recurrence

As shown in Figure 4, the most recurrent pattern results to
be Model-View-Presenter (MVP), which is reported in 18 data
points. Model-View-ViewModel (MVVM) results the second
most frequent pattern. This could be associated to the re-
cent introduction by Google of the ViewModel architectural
component6. Due to its potentially drastic impact on Android
architecture development, we expect the MVVM pattern to
experience a fast growing trend of adoption in the coming
years. Clean architecture principles [14] appear also to be
frequently considered in the context of architecting Android
apps. Some data points also report ad-hoc custom solutions,
such as MVP extended through manager classes, message-
driven architectures, and architectures heavily relying on Rx-
Java. Nevertheless, such architectural solutions appear to be
fragmented and slightly less popular. Other architectural pat-
terns, i.e.,, Model-View-Controller (MVC), View-Interactor-
Presenter-Entity-Router (VIPER) [15], and hexagonal archi-
tecture [16], result to be only scarcely considered.

Findings for RQ1.1 (Android Architecture pat-
terns): MVP is the most considered pattern, followed
by MVVM. Clean architecture principles applied to
Android apps are also frequently discussed. Heteroge-
neous ad-hoc solutions are also considered.

5https://github.com/AndroidGuidelines/ReplicationPackage
6https://android-developers.googleblog.com/2017/05/

android-and-architecture.html

2) Libraries considered while architecting apps (RQ1.2):
An overview of the most recurrent libraries referenced when
discussing Android architecture are reported in Figure 5.

Fig. 5. Overview of library recurrence

Not surprisingly, RxJava7 is the most mentioned library.
RxJava enables a crucial programming paradigm for mobile
apps, namely reactive programming. By adopting reactive
programming, it is possible to efficiently deal with concur-
rency and asynchronous tasks, which are inherent to the
mobile context. The second most recurrent library is Dagger8,
a framework maintained by Google which implements the
dependency injection pattern. This library constitutes a popular
choice in order to manage dependencies, and potentially avoids
unnecessary boilerplate code. JetPack, a recently released
official Android library focusing on architectural components,
is less popular. While the architectural relevance of such
library in the Android ecosystem is clear, the lower occurrence
of such library can be attributed to its recent release, and hence
to the time required for its adoption. The other referenced
libraries, like Retrofit, Robolectric, Mockito, are less recurrent,
potentially due to their lower architectural relevance, hence
pointing to a well scoped selection of data points. Interestingly,
only 8 out of the 15 libraries reported are explicitly conceived
for Android (see Figure 5). This shows that the Android ar-
chitecture is “open”, i.e., influenced by many generic libraries.
In addition, of the Android specific libraries, only a few focus
on architecture (JetPack, Moxy9, and Mosby10).

Findings for RQ1.2 (Architecturally relevant libra-
ries): RxJava is the most referenced library, followed
by Dagger, JetPack, and Retrofit. Approximately half
of the libraries are Android-specific, while only few
focus specifically on Android architecture.

B. RQ2: Android Architecture Guidelines

In order to answer RQ2, a total of 212 architectural prac-
tices are extracted from the selected data points. The first round
of keywording leads to the classification of the practices into
four emergent themes: general Android architecture, MVP,
MVVM, and Clean Architecture. By applying recursively the
keywording process, the practices are further clustered, till the
synthesis of 42 architectural guidelines, reported in Table II.
As proxy for maturity of the guidelines, we utilize the number

7https://github.com/ReactiveX/RxJava
8https://google.github.io/dagger/
9https://github.com/Arello-Mobile/Moxy
10https://github.com/sockeqwe/mosby

https://android-developers.googleblog.com/2017/05/android-and-architecture.html
https://github.com/ReactiveX/RxJava
https://google.github.io/dagger/
https://github.com/Arello-Mobile/Moxy
https://github.com/sockeqwe/mosby

TABLE II
GUIDELINES FOR ARCHITECTING ANDROID APPS (ID = GUIDELINE IDENTIFIER, #SP = NUMBER OF SUPPORTING PRACTICES)

ID #SP Architectural guideline

Generic for Android

A-1 18 Decouple components and explicitly inject/manage the dependencies among them.
A-2 17 Design components to be as independent as possible, build them around the features of the app and make them Android-independent.
A-3 16 Counter the tendency of Activities to grow too big in size due to functionality/responsibility bloat.
A-4 14 Strive towards separation of concerns in your architecture, where each component has well defined responsibility boundaries, a purpose, (set of)

functionality, and configuration.
A-5 10 When starting a new project, carefully select a fitting architectural pattern to adhere to.
A-6 8 Organize your Java/Kotlin packages and files either by layer or by app feature.
A-7 7 Take full advantage of libraries. Do not try to reinvent the wheel and loose time by implementing boilerplate code. Focus on what makes your app stand

out from the rest and delegate what is left to libraries.
A-8 7 Locally cache data for supporting offline-first experience.
A-9 6 Use exclusively interfaces to let app modules communicate. This protects the architectural structure and helps defining a clear responsibility of modules.
A-10 5 Avoid nested callbacks, as they could lead to a “callback hell”. Approximatively, more than 2 levels of callbacks are considered to reduce maintainability

and understandability. This problem is commonly fixed by taking advantage of the RxJava library.
A-11 4 Employ well-defined and accepted coding standards, as they improve both code understandability and maintainability.
A-12 3 Use a dedicated module to persist as much relevant data as possible. This data source should be the single source of truth driving the UI.
A-13 3 Take into consideration the lifecycle of Android components (e.g., Activities and Services) – also with respect to other components – and design them

as short-lived entities.
A-14 1 Have special care in designing background tasks, especially by considering the apps’ lifecycle.
A-15 1 Use permissions consistently. Every component of an app that has a permission must be declared also at the app level.

MVP-specific

MVP-1 9 Provide Views with data which is ready to be displayed.
MVP-2 5 Presenters should be Android- and framework-independent.
MVP-3 5 Access (and cache) the data provided by Models via app-scoped dedicated components.
MVP-4 4 Clearly define contracts between Views and Presenters.
MVP-5 4 The lifecycle of Presenters should follow the lifecycle of the Views, but not by replicating the complexity of the lifecycles of Android components.
MVP-6 3 Avoid to delegate too many responsibilities to Presenters, as they have the tendency to become bloat classes.
MVP-7 2 Make Presenters dependent on Views, and not Activities.
MVP-8 2 Views are passive and should always manage and expose only their state.11

MVP-9 2 Strive towards putting as much of the app’s business logic as possible in Presenters.
MVP-10 2 Inject dependencies to Presenters into the Views when instantiating the Presenters, as this reduces coupling issues and null checks.
MVP-11 1 If an app has multiple Presenters, do not let them communicate with each other.
MVP-12 1 If necessary, retain fragments for avoiding memory leaks due to configuration changes in the activities.

MVVM-specific

MVVM-1 5 Models, Views, and ViewModels should exclusively expose their state instead of state and data separately.
MVVM-2 4 The app should possess a single source of truth of data.
MVVM-3 3 Models should be evolvable/testable independently from the rest of the app.
MVVM-4 3 ViewModels should not refer to View-specific components.
MVVM-5 2 Views should always know about changes after ViewModels, no matter how trivial an operation may be.
MVVM-6 2 Adopt one Model for each feature of the app.
MVVM-7 2 Keep ViewModels as simple as possible. When needed, transfer responsibility to other layers, e.g., Models or other components such as data transformers,

components factories, etc.
MVVM-8 1 The state of the app should be defined in the Models only, whereas Views and ViewModels should be stateless.
MVVM-9 1 The data produced by the Models should be reliable and of high quality.
MVVM-10 1 Networking or data access functionalities should be performed exclusively by Models.

Clean Architecture

CLEAN-1 13 Business logic should be completely decoupled from the Android framework.
CLEAN-2 5 The outer architectural layer should contain the entirety of the app’s UI components.
CLEAN-3 4 The framework and devices layer should include the entirety of the app components which depend on Android.
CLEAN-4 4 Each architectural layer should possess its own data model.
CLEAN-5 2 Keep the UI thread as lightweight and isolated as possible.

of supporting practices (SP) of each guideline. Due to space
limitations in the remainder of this section we document only
the top-5 guidelines for each theme.

1) General Android Architecture Guidelines: The first and
most recurrent theme regards generic architectural practices
for Android, i.e., not specific to any particular architectural
pattern. In total, 120 practices are collected and synthesized
into the following 15 general Android architecture guidelines.

A-1: “Decouple components and explicitly inject/manage
the dependencies among them”. While not strictly necessary,
utilizing a dependency injection framework can drastically
simplify the management of dependencies between Android
architectural components. This supports a clean decoupling of

11This guideline applies also for MVVM with the support of 3 practices.

architectural components and avoids unnecessary boilerplate
for connecting them. Doing so not only improves the maintain-
ability of the app, but also improves its testability by providing
the possibility to inject mock implementations. The Dagger
framework is commonly recommended to inject dependencies
and solve problems afflicting reflection-based solutions.

A-2: “Design components as independent entities as
possible, build them around the features of the app and
make them Android-independent”. As also remarked by two
interviewees, a recurrent problem arises when common func-
tionalities are not provided in base classes. This often leads to
duplicated code, reducing the maintainability and testability of
the app. Ideally, components should be independent from each
other and their business logic should be clear and explicitly

separated. By quoting one of the data points “your architecture
should scream the purpose of the app”. Decoupled components
make it easier to focus on app functionalities and their issues,
without dealing with bloatware. Additionally, this enables a
higher testability of the core logic of the app by making com-
ponents unit-testable (ideally without requiring an emulator).
Finally, by decoupling the business logic from frameworks,
more emphasis is put on the business logic, making an app
more testable, maintainable, and of low technical debt.

A-3: “Counter the tendency of Activities to grow too big
in size due to functionality/responsibility bloat”. Android
Activitiesshould ideally contain exclusively logic handling the
user interface (UI) and operating system interactions. Never-
theless, a common architectural issue consists of delegating too
many functionalities and responsibilities to a single Activity.
This leads to Activities slowly becoming god-classes. As the
Android framework does not support the reuse of methods
implemented in activities, code tends to be directly copied into
other ones, increasing code duplication and impacting neg-
atively the app’s maintainability. Additionally, testing might
become a challenging task, as complex business logic could
reside in Activities, which by themselves result arduous to unit
test. Finally, as activities are kept in memory at runtime, “god-
activities” can lead to the deterioration of apps’ performance.

A-4: “Strive towards separation of concerns in your ar-
chitecture, where each component has well defined respon-
sibility boundaries, a purpose, (set of) functionality, and
configuration”. Architectural components of an app should
have a single, well defined, responsibility. As a component
grows bigger, it should be split up. By following the single
responsibility principle, the app architecture naturally supports
the structure of developer teams and development stages.
Additionally, monoliths are detected in the early stages and
modules become testable in isolation. Finally, if the app is built
using Gradle, modularization can improve the performance of
the build process and ease the development of Instant apps12.
It is important to notice that, while modularization may imply
little effort if considered early in the project, it might become
an extremely expensive process in later development stages.

A-5: “When starting a new project, carefully select
a fitting architectural pattern to adhere to”. Picking the
right architectural pattern (e.g., MVP or MVVM) for the
context and business goals of the app is a crucial decision. By
adhering to an architectural patter selected a priori, separating
responsibilities into components becomes a more straightfor-
ward process, and the growth of architectural technical debt is
hindered. It is important to note that, when a certain level of
adaptability/maintainability is not required, the selection of an
ill-suited architectural pattern might lead to over-engineering.
Choosing the architectural pattern to adopt is hence a non-
trivial decision which should be taken by considering the
context of apps, and their business/organizational goals.

2) MVP-specific Android Architecture Guidelines: The sec-
ond most considered theme regards practices related to the

12https://developer.android.com/topic/google-play-instant

MVP architectural pattern. In total, 40 practices are collected
and synthesized in the following 12 MVP-specific guidelines.

MVP-1: “Provide Views with data which is ready to be
displayed”. The view layer of Android apps tends to become
bloated with responsibilities, and hence becomes harder to
maintain. In order to alleviate such problem, Activities and
Fragments can be provided with preprocessed data ready
to be displayed. This can be achieved by delegating data-
processing tasks to one or more dedicated components. In such
manner, Activities and Fragmentsare relieved from the task
of transforming and filtering domain-specific data, potentially
improving the testability and usability of the app.

MVP-2: “Presenters should be Android- and
framework-independent.”. To abstract Presenter components
from the implementation details, Presenters should ideally
avoid dependencies to the Android framework. This also
entails not creating a lifecycle in Presenters, as it may hinder
their maintainability and evolvability. In order to access app
resources and preferences, View and Model components can
be used instead, respectively. Additionally, by developing
Presenters as only dependent on Java, the testability of
Presenters drastically improves, as now non-instrumented
unit-test cases can be written for such components.

MVP-3: “Access (and cache) the data provided by
Models via app-scoped dedicated components”. When
developing an Android app, a common issue which might
emerge is related to restoring the state of Views. This issue
can be solved by adapting slightly the architecture of apps.
Specifically a data manager component (e.g., a data store or
Jetpack Repository) can be introduced. This component is
responsible for data related tasks such as fetching data from the
network, caching results or returning already cached data. By
scoping such component at the app level and not at the one of
single Activities, issues relative to restoring View states, e.g.,
in the occurrence of a screen orientation change, are solved
through an architecturally maintainable solution.

MVP-4: “Clearly define contracts between the Views and
the Presenters”. Before starting to develop a new app feature,
a good architectural practice consists in writing a contract
documenting the communication between the View and the
Presenter. The contract should document for each event in
the View which is the corresponding action in the Presenter.
By implementing contract interface classes, the source code
of apps become more understandable, as the relation between
the View and the Presenter is explicitly documented.

MVP-5: “The lifecycle of Presenters should follow the
lifecycle of the Views, but not by replicating the complexity
of the lifecycles of Android components”. By having call-
backs related to the Activity lifecycle in Presenters, Presenters
become tightly coupled to Activities lifecycle. This can have
a negative impact in terms of maintainability. From an archi-
tectural perspective, Presenters should not be responsible for
data-related tasks. It is hence advised not to retain Presenters.
An alternative solution would be to use a caching mechanism
to retain data, keep Presenters stateless, and destroy Presenters
when their corresponding Views are destroyed.

https://developer.android.com/topic/google-play-instant

3) MVVM-specific Android Architecture Guidelines: An-
other recurrent theme identified in the practices regards the
MVVM pattern. In total, 24 practices are collected and syn-
thesized in the following 10 MVP-specific guidelines.

MVVM-1: “Models, Views, and ViewModels should
exclusively expose their state instead of events or data
separately”. For example, to ensure that Views display up-
to-date content, it is recommended that ViewModels expose
states rather than just events. This can be achieved by bundling
together the data that needs to be displayed. In such way,
when one of the fields to be displayed changes, a new state is
emitted and the View is updated. This entails that each user
interaction involves an action in the ViewModel, enabling a
clean separation of concerns between MVVM components.

MVVM-2: “The app should possess a single source
of truth of data”. In the context of mobile applications,
consistency of data can become an issue. While caching
mechanisms allow to save energy and bandwidth, multiple data
sources can create inconsistencies and even conflicting Views.
In order to avoid such issues, it is recommended to designate
a dedicated component as single source of truth for the
entire app. Specifically, in the context of MVVM, the Room
persistence library13 is an official architectural component of
Android which is specifically tailored for such task.

MVVM-3: “Models should be evolvable/testable in-
dependently from the rest of the app”. Well-designed
ViewModels should completely decouple Views from Model
classes. In such way, by strictly adhering to the MVVM
pattern, Models and Views can evolve independently and be
tested with ease. Additionally, by applying the inversion of
control principle and implementing ViewModels decoupled
from the Android framework, it is possible to test ViewModels
via unit tests. In contrast, if the binding between the MVVM
components is too complex and intertwined, testing and de-
bugging Android apps can become a cumbersome challenge.

MVVM-4: “ViewModels should not refer to View-
specific components”. Passing context to ViewModel in-
stances can result in a dangerous practice. In fact by storing the
reference to an Activity in a ViewModel, once the Activity gets
destroyed (e.g., due to a screen rotation), a memory leak could
occur. By quoting a Google Android Developer Advocate:
“The consumer of the data should know about the producer,
but the producer - the ViewModel - doesn’t know, and doesn’t
care, who consumes the data.”14. In order to adhere to this
guideline, the LiveData15 architectural class provided by the
Jetpack library can be used, so that Activities can simply
observe the changes of the ViewModel’s data.

MVVM-5: “Views should always know about changes
after ViewModels, no matter how trivial an operation
may be”. Adhering to this guideline implies that all the logic
in the Views should be moved to the ViewModels. While the

13https://developer.android.com/jetpack/arch/room
14https://medium.com/upday-devs/android-architecture-patterns-part-3-

model-view-viewmodel-e7eeee76b73b
15https://developer.android.com/topic/libraries/architecture/livedata

purpose of ViewModels is to pre-process data to be ready
to use by Views, it might be tempting to implement minor
operations in Views. Nevertheless, adhering to this guideline
guarantees a higher level of consistency and reliability of all
the components which are based on the ViewModels.

4) Clean Architecture Android Guidelines: While rather a
set of architectural practices than a pattern, clean architecture
results to be a common theme in Android architecture liter-
ature. In total, 28 practices on this theme are collected and
synthesized into the following 5 architectural guidelines.

CLEAN-1: “Business logic should be completely de-
coupled from the Android framework”. By adhering to
the clean architecture principles, the innermost layers of an
app (i.e., where all the business logic of the app resides)
should be “frontend agnostic”. This means that this layers are
completely decoupled from the Android framework, and could
be ideally implemented as pure Java packages. Additionally,
as this layers represent the core of Android apps, they should
be developed before all other layers. Changes to the innermost
layers should be driven exclusively by business decisions.

CLEAN-2: “The outer architectural layer should contain
the entirety of the app’s UI components”. In order to ensure
a clear separation of concerns among the clean architecture
layers of an app, it is paramount that everything related to
Android UI is grouped in a module residing in the outer
architectural layer. As the other architectural layers of the
app should be “frontend agnostic” (see guideline CLEAN-1),
different patterns (e.g., MVP or MVVM) can be implemented
in this layer. Activities and Fragments should not handle any
other logic than the one necessary to render the UI. This allows
a clear separation of concern among the architectural layers
of an app, enhancing the understandability, modifiability and
testability of its components.

CLEAN-3: “The framework and devices layer should in-
clude the entirety of the app components which depend on
Android”. In accordance to the clean architecture principles,
all components related to the framework should be grouped
in the outer architectural layer. This includes all components
which contain Android specific implementations, which should
not be present in the business logic layers. Examples include,
in addition to the user interface model, the data persistence
module (e.g., LiveData, DAOs, ORMs, Shared Preferences,
Retrofit, etc.) and eventual dependency injection frameworks.

“CLEAN-4: Each architectural layer should possess its
own data model”. By implementing a data model at every
layer, a high degree of decoupling between layers can be
achieved. Specifically, by following this guideline, the outer
layers of apps can be implemented without any explicit knowl-
edge of the implementation details of the inner layers. This
means that the origin of the data becomes transparent to the
client and hence, in a repository pattern fashion, data sources
can be added, removed, or changed without much effort.

CLEAN-5: “Keep the UI thread as lightweight and
isolated as possible”. In accordance to guidelines CLEAN-1
and CLEAN-2, presenters residing in the outer layers of
apps modeled through clean architecture principles should

https://developer.android.com/jetpack/arch/room
https://developer.android.com/topic/libraries/architecture/livedata

be kept lightweight. In fact, Presenters should be composed
with interactor components, i.e., use cases residing in the
business logic layers, which are responsible for executing tasks
outside the main UI thread of the app. Once the task are
finished, the Views are updated through a callback with the
processed data. Besides callback-based communication among
components, other techniques used in order to keep the UI
thread lightweight rely on the inversion of control principle
and intent-based communication.

Throughout this study we notice that low-level technical
concerns (e.g., management of screen rotation, access to
sensors) are often intertwined with architectural concerns (e.g.,
how to structure the whole app, how UI events should flow
within the app) without a clear separation between them. Our
emerging guidelines can help Android developers in starting to
(i) abstract from the low-level details of the app, and (ii) reason
on its overall structure and related architectural concerns.

Finally, it must be noted that the identified guidelines should
be seen as recommendations, rather than strict rules to be
followed at any cost. Indeed, by quoting one of our data points:
“No architecture is perfect for every use-case and Architecture
Guidelines are just recommendations. Hence [developer] feel
free to use whatever suites your use-case.”. In other words,
we advise developers not to consider the guidelines provided
in Table II as a whole, but rather to reflect carefully on which
ones should be applied in their projects, depending on the
current technical, business, and organizational context.

Findings for RQ2 (Android Architectural Guide-
lines): 212 architectural practices are extracted and
synthesized into 42 architectural guidelines, reported in
Table II. Four main overarching themes emerge from
the guidelines: generic Android architecture guidelines,
MVP-specific, MVVM-specific, and Clean Architecture.
The 5 most mature guidelines per theme are detailed,
while the remaining are documented in Table II.

C. RQ3: Quality Requirements

Figure 6 shows the QRs considered when architecting
Android apps. We observe that maintainability, testability, and
performance are the highest ranking ones.

Fig. 6. Quality Requirements considered while architecting Android apps

Overall, the results gathered for RQ3 are in line with what
is intuitively evinced by inspecting the results of RQ2. In
fact, a high number of guidelines deal with modularization,

separation of concerns, and deal with components size cou-
pling, etc. The application of such principles impacts primarily
maintainability and testability, as discussed in Section III-B.
Interestingly, those principles are also strongly related to the
maintainability issues frequently occurring over the lifetime of
Android apps [17]. Additionally, guidelines such as avoiding
“god-activities” (A-3) or use specific data management solu-
tions (MVP-3) can drastically impact the performance of apps.
Architectural guidelines influencing primarily other QRs are
overall less frequent.

Moreover, we observe that most quality requirements regard
development-time QRs (e.g., maintainability, testability) rather
than runtime attributes (e.g., performance, energy). The focus
on static QRs in Android emerges also from the guidelines
reported in Section III-B. In fact, most of the synthetized
guidelines consider development-time architectural views of
apps (e.g., A-1) rather than runtime ones (e.g., A-8).

Findings for RQ3 (Android Architecture Quality
Requirements): Maintainability, testability, and perfor-
mance are the most considered QRs when architecting
Android apps. Most QRs regard development-time at-
tributes.

IV. THREATS TO VALIDITY

External Validity. The primary threat to this category is
represented by the selection of the data points, which might
not be representative of the state of the art and practice. To
mitigate this threat, we adopt 3 different data sources (semi-
structured interviews, WL, and GL). This leads to a more
heterogeneous set of data points for our study. Additionally,
to ensure the soundness and quality of the MLR data points, a
thorough selection and quality evaluation process is conducted
via a set of well-defined evaluation criteria. To identify the in-
terviewees, convenience sampling is adopted. This constitutes
a threat to external validity, mitigated by selecting interviewees
that resulted heterogeneous in terms of type of apps developed,
company, background and developer role.

Internal Validity. To mitigate potential threats to internal
validity, we follow a rigorous research protocol defined a
priori. To avoid biases related to data collection through semi-
structured interviews, we perform such step prior to the MLR
execution and by following an interview guide as part of the
protocol. Internal validity threats of the MLR are mitigated by
following established guidelines for conducting WL reviews
[6], [7] integrated with guidelines for the inclusion of GL [8].

Construct Validity. The most prominent threat to construct
validity regards the potential inappropriateness of data point
selection. To mitigate this treat we use multiple data sources.
As suggested by Wholin et al. [10], the quality of the MLR
selection process is ensured by measuring inter-researcher
agreement on a random subsample of potentially relevant
studies. Additionally: (i) we perform the MLR by adhering to
well-documented search and selection processes predefined in
a rigorous protocol, and (ii) the semi-structured interviews are

conducted exclusively with developers with at least 5 years
of experience. The adoption of Google Scholar and Google
Search Engine might constitute a bias due to their underlying
algorithms. We mitigate this threat by using well-defined
selection criteria and conducting a snowballing process.

Conclusion validity. The data extraction and synthesis
processes are conducted by strictly adhering to the a priori
defined protocol, designed specifically to collect the data
necessary to answer our RQs. This reduces potential biases
associated to such processes and guarantees that the extracted
data is appropriate for our RQs. Furthermore, the study
was conducted by adhering to best practices from several
sources [6]–[10]. We document each phase of our study in a
publicly available research protocol, thus aiding replicability.
To ensure the quality of the guidelines, the keywording process
and guideline synthesis is conducted collaboratively by two
researchers. Conflicts are managed with the intervention of
a third researcher. Possible threats related to the interview
process are mitigated by conducting internal and external
pilots during the interview design phase. This is repeated
several times to extensively refine the interview process.

V. RELATED WORK

Despite the wide diffusion of Android apps and their
increasing complexity [18], at the time of writing we found
a surprising low number of research studies about the
architecture of mobile apps. By mining and reverse engi-
neering the architecture of more than 1,400 Android apps,
Bagheri et al. studied the role of software architecture in
the design and development of mobile software, extracted
the architectural principles that have been applied by app
developers, and identified architectural anti-patterns of the
Android programming model [19]. They found that Android
apps are complex, composed of tens of components, and
organized according to multiple architectural styles. These
findings motivated us to investigate how developers architect
Android apps, eventually leading to the results in this study.
Even though our study and that of Bagheri et al. share the
same target audience, i.e., Android developers and researchers,
the research goals are profoundly different: Bagheri et al.
focus on known architectural principles and how they are
reflected in the Android programming model, whereas we aim
at characterizing the state of the art and practice on architecting
Android apps. Moreover, the methodologies applied in the two
studies are completely different – Bagheri et al. mined the
apps from app stores and statically analyzed their bytecode,
whereas we contact Android practitioners complemented with
a systematic analysis of the grey and white literature.

An exploratory study targeting common architectural char-
acteristics of 12 real Android applications is reported in [20].
The study is based on the partial extraction of the architecture
of the apps using the JDepend tool, followed by the manual
analysis of the source code of the targeted apps. The main
results of such manual analysis revealed that MVC is a
recurrent pattern in Android (although with some violations).
In our work we apply a totally different research methodology,

where we target professional developers working on industrial
projects, rather than developers working on open-source apps.
Also, the work proposed in [20] is exploratory in nature and
aims at observing the characteristics of the architecture of An-
droid apps, whereas we aim at providing actionable guidelines
for helping developers during their everyday activities.

A new MVC-based architectural pattern called Android
Passive MVC, is proposed in [21], with the aim of producing
Android apps with better maintainability, extensibility, perfor-
mance, and less complexity. The proposed pattern has been
applied to an example of social networking app in collabora-
tion with a development company. Differently from [21], we
do not aim at providing a new architectural pattern, rather we
accept the existence of many pre-existing ones in Android apps
(also confirmed in [19], [20]) and aim at supporting developers
while architecting Android apps, without forcing them to learn
and apply new (potentially unsupported) architectural patterns.

The authors of [22] performed a preliminary study on
how to develop Android apps according to the Software
Product Line (SPL) approach. Their case study shows that
an adaptation of the principles for SPLs can be adopted for
developing Android apps. We differ as we do not imply a
change in developers’ habits by means of a new development
paradigm like SPL, but aim at supporting them in taking better-
informed decisions about the architecture of their apps.

A study about the challenges faced by mobile app devel-
opers (not only Android) has been proposed by Joorabchi
et al. [23]. The challenges have been extracted in a qualitative
manner from a combination of 12 interviews with practitioners
and an on-line questionnaire with 188 participants. Differently
from us, they focus on mobile apps in general (incl. web
and hybrid apps) and are orthogonal to architectural concerns,
i.e., they do not cover the challenges directly related to
architecture, but focus on challenges related to e.g., testing.
Interestingly, in our study we found some confirmation of their
insights, e.g., the importance of testability, partially managed
by following the MVP or MVVM patterns.

From a methodological perspective, multivocal studies (i.e.,
systematic studies targeting both grey and white literature)
are being published only recently in the field of software
engineering [5], e.g., investigating code smells in testing
artifacts [24], the startups ecosystem [25], and microservices
[26]. Researchers are also complementing multivocal studies
with other research methodologies (e.g., semi-structured inter-
views in our case), thus leading to mixed-method studies. For
example, Maro et al. combined a tertiary literature review, a
case study with a company, and a multivocal literature review
to identify challenges and solutions about software traceability
in the automotive domain [27]. In the literature there is no
multivocal study on mobile apps. So, even though also our
research combines a multivocal study with other research
methodologies (e.g., interviews), the subjects and therefore the
outcomes of our study are novel by focussing on architecting
practices for Android apps.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a mixed-method empirical study on the
state of the art and practice on architecting Android apps.
A key result of our study is the set of 42 evidence-based
guidelines for architecting Android apps. In addition to the
guidelines, our study reveals that: (i) so far there are very
few academic articles targeting Android architecture (this may
be an emerging research gap for academic researchers), (ii)
MVP and MVVM are the most recurring architectural patterns,
(iii) RxJava, Dagger, and JetPack are the most mentioned
libraries when dealing with the architecture of Android apps,
and (iv) maintainability, testability, and performance are the
most considered QRs when architecting Android apps.

Our results provide developers with an organized set of
guidelines for taking action towards improving the architec-
ture of their apps (e.g., when adopting MVP, strive towards
making Presenters Android- and frameworks-independent – cf.
MVP-2). Researchers, in turn, can benefit from the provided
overview of the state of the art and practice, e.g., for tailoring
their research towards those QRs that concern developers the
most when dealing with the architecture of their apps.

This study opens for many future research directions.
Firstly, we are planning a large-scale confirmatory study
involving practitioners for checking the correctness and com-
pleteness of the proposed guidelines. Secondly, properly de-
signed analysis tools might automatically check violations of
guidelines via static and/or dynamic analysis techniques, and
recommend solutions for those violations. Furthermore, we
strive towards the implementation of an Android reference ar-
chitecture [28], in order to lay the foundations for compliance-
based architectural technical debt analyses [29]. Thirdly, it
would be interesting to empirically assess how applying the
proposed guidelines can actually impact the quality of the
mobile app, thus enabling developers to quantitatively assess
the gains in having well-architected apps, potentially speeding
up the industrial adoption of the proposed guidelines.

REFERENCES

[1] “Global mobile OS market share in sales to end
users from 1st quarter 2009 to 1st quarter 2018,”
2018. [Online]. Available: https://www.statista.com/statistics/266136/
global-market-share-held-by-smartphone-operating-systems/

[2] “Global developer population and demographic study 2017,”
2017. [Online]. Available: https://evansdata.com/press/viewRelease.
php?pressID=244

[3] “Number of available applications in the Google
Play Store from December 2009 to June 2018,”
2018. [Online]. Available: https://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/

[4] ISO/IEC, “ISO/IEC 25010 - Systems and software engineering - Systems
and software Quality Requirements and Evaluation (SQuaRE) - System
and software quality models,” Tech. Rep., 2010.

[5] V. Garousi, M. Felderer, and M. V. Mäntylä, “The need for multivocal
literature reviews in software engineering: complementing systematic
literature reviews with grey literature,” in Proceedings of the 20th
International Conference on Evaluation and Assessment in Software
Engineering. ACM, 2016, p. 26.

[7] D. Budgen and P. Brereton, “Performing systematic literature reviews
in software engineering,” in Proceedings of the 28th international
conference on Software engineering. ACM, 2006, pp. 1051–1052.

[6] B. Kitchenham and P. Brereton, “A systematic review of systematic
review process research in software engineering,” Information and
software technology, vol. 55, no. 12, pp. 2049–2075, 2013.

[8] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including
grey literature and conducting multivocal literature reviews in software
engineering,” Information and Software Technology, 2018.

[9] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th
international conference on evaluation and assessment in software
engineering. ACM, 2014, p. 38.

[10] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[11] B. Kitchenham, R. Pretorius, D. Budgen, O. P. Brereton, M. Turner,
M. Niazi, and S. Linkman, “Systematic literature reviews in software
engineering–a tertiary study,” Information and software technology,
vol. 52, no. 8, pp. 792–805, 2010.

[12] W. Lidwell, K. Holden, and J. Butler, Universal principles of design.
Rockport Pub, 2010.

[13] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conduct-
ing systematic mapping studies in software engineering: An update,”
Information and Software Technology, vol. 64, pp. 1–18, 2015.

[14] R. C. Martin, Clean architecture: a craftsman’s guide to software
structure and design. Prentice Hall Press, 2017.

[15] J. Gilbert and C. Stoll, “Architecting iOS Apps with VIPER.” [Online].
Available: https://www.objc.io/issues/13-architecture/viper/

[16] E. Wolff, Microservices: flexible software architecture. Addison-Wesley
Professional, 2016.

[17] I. Malavolta, R. Verdecchia, B. Filipovic, M. Bruntink, and P. Lago,
“How Maintainability Issues of Android Apps Evolve,” in 2018 IEEE
International Conference on Software Maintenance and Evolution (IC-
SME). IEEE, 2018, pp. 334–344.

[18] A. I. Wasserman, “Software engineering issues for mobile application
development,” in Proceedings of the FSE/SDP workshop on Future of
software engineering research. ACM, 2010, pp. 397–400.

[19] H. Bagheri, J. Garcia, A. Sadeghi, S. Malek, and N. Medvidovic,
“Software architectural principles in contemporary mobile software:
from conception to practice,” Journal of Systems and Software, vol. 119,
pp. 31–44, 2016.

[20] E. Campos, U. Kulesza, R. Coelho, R. Bonifácio, and L. Mariano,
“Unveiling the Architecture and Design of Android Applications,” in
Proceedings of the 17th International Conference on Enterprise Infor-
mation Systems-Volume 2, 2015, pp. 201–211.

[21] K. Sokolova, M. Lemercier, L. Garcia, and L. C. Saint Luc, “Towards
High Quality Mobile Applications: Android Passive MVC Architecture,”
International Journal On Advances in Software, vol. 7, no. 2, pp. 123–
138, 2014.

[22] T. Dürschmid, M. Trapp, and J. Döllner, “Towards architectural styles
for Android app software product lines,” in Proceedings of the 4th
International Conference on Mobile Software Engineering and Systems.
IEEE Press, 2017, pp. 58–62.

[23] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges in
mobile app development,” in Empirical Software Engineering and
Measurement, 2013 ACM/IEEE International Symposium on. IEEE,
2013, pp. 15–24.

[24] V. Garousi and B. Küçük, “Smells in software test code: A survey of
knowledge in industry and academia,” Journal of Systems and Software,
vol. 138, pp. 52–81, 2018.

[25] N. Tripathi, P. Seppänen, G. Boominathan, M. Oivo, and K. Liukkunen,
“Insights into startup ecosystems through exploration of multi-vocal
literature,” Information and Software Technology, vol. 105, pp. 56–77,
2019.

[26] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, “The pains and
gains of microservices: A systematic grey literature review,” Journal of
Systems and Software, vol. 146, pp. 215–232, 2018.

[27] S. Maro, J.-P. Steghöfer, and M. Staron, “Software traceability in the
automotive domain: Challenges and solutions,” Journal of Systems and
Software, vol. 141, pp. 85–110, 2018.

[28] R. Verdecchia, “Identifying Architectural Technical Debt in Android Ap-
plications through Compliance Checking,” in International Conference
on Mobile Software Engineering and Systems, 2018.

[29] R. Verdecchia, I. Malavolta, and P. Lago, “Architectural Technical Debt
Identification: The Research Landscape,” in International Conference on

Technical Debt (TechDebt), 2018.

https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://evansdata.com/press/viewRelease.php?pressID=244
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.objc.io/issues/13-architecture/viper/

