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Abstract. Many systems in science and technology are networks: they consist of nodes with connec-
tions between them. Examples include electronic circuits, power grids, neuronal networks,
and metabolic systems. Such networks are usually modeled by coupled nonlinear maps or
differential equations, that is, as network dynamical systems. Network dynamical systems
often behave very differently from regular dynamical systems that do not possess the struc-
ture of a network, and the interaction between the nodes of a network can spark surprising
emergent behavior. An example is synchronization, the process by which neurons fire si-
multaneously and social consensus is reached. This paper is concerned with synchrony
breaking, the phenomenon that less synchronous solutions emerge from more synchronous
solutions as model parameters vary. It turns out that synchrony breaking often occurs via
remarkable anomalous bifurcation scenarios. As an explanation for this it has been noted
that homogeneous networks can be realized as quotient networks of so-called fundamental
networks. The class of admissible dynamical systems for these fundamental networks is
equal to the class of equivariant (symmetric) dynamical systems of the regular represen-
tation of a monoid (a monoid is an algebraic semigroup with unit). Using this geometric
insight, we set up a framework for center manifold reduction in fundamental networks and
their quotients. We then use this machinery to classify generic synchrony breaking bifur-
cations in three example networks with identical spectral properties and identical robust
synchrony spaces.
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1. Introduction. Network dynamical systems play an important role in many
of the sciences, with applications ranging from population dynamics to neuronal net-
works, and from electrical circuits to the World Wide Web. In broad terms, a network
consists of a set of nodes, representing some quantities of interest, and connections
between them, representing interactions between these quantities. The nodes may be,
for example, people, neurons, transistors, or websites, and the interactions may consist
of social contacts, synapses, electrical signals, or hyperlinks. In many cases, the main
interest lies not in the stationary properties of the network, but rather in the time
evolution of the nodes. One might ask how an age distribution changes, how the brain
processes information, what the change in voltage is, or how a link influences Internet
traffic. Such questions lead to models defined by a network dynamical system.

Although networks have sparked an overwhelming amount of research, many ques-
tions regarding the relation between network structure and dynamical behavior re-
main open. In particular, knowledge of the dynamics of a single isolated node and
of the interaction between pairs of nodes (determined, for example, by experiment)
is typically not sufficient for understanding the dynamics of a network. Indeed, the
global interaction structure of a network often has a major effect on the dynamical
system that it underlies. For example, certain brain diseases have been associated
with anomalous connections between regions of the brain. Likewise, the connection
structure of a power grid is what makes it so challenging to prevent blackouts. Net-
work structure can thus spark surprising dynamical behavior. An important example
of such emergent behavior in networks is synchronization [28]. Synchronization occurs
when the agents of a network behave in unison: it is the process by which consensus
is reached in decision making, and by which neurons fire simultaneously during an
epileptic attack.

This paper is concerned with synchrony breaking. This is the phenomenon that
less synchronous solutions may emerge from more synchronous ones as model pa-
rameters vary. It has been observed that synchrony breaking is often governed by
very unusual bifurcation scenarios [1, 2, 4, 5, 8, 12, 13, 15, 16, 24, 34]. It is a ma-
jor challenge to explain why this occurs and to provide an efficient methodology for
the computation of these bifurcations. The main difficulty here lies in the fact that
network structure, although perfectly well-defined, seems to deny a versatile geomet-
ric description. For example, many tools in dynamical systems theory make use of
coordinate transformations, but most of these transformations do not leave a given
network structure intact [10]---in fact, it can be a real challenge to write down the ones
that do [17]. As a result, many standard techniques from dynamical systems theory
are simply not compatible with the network structure of problems of interest, and
applying these techniques might result in losing a given network structure altogether.
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CENTER MANIFOLDS OF COUPLED CELL NETWORKS 123

Arguably, using such coarse techniques would do little harm if network dynamical
systems behaved similarly to generic dynamical systems, but this is far from the case.
In fact, network systems feature phenomena that are unheard of for generic systems.
Synchronization, for instance, does not occur in generic dynamical systems. Network
systems are also known to display remarkable spectral properties and, as was already
mentioned, anomalous bifurcation scenarios. We conclude that many standard dy-
namical systems techniques are not very suitable for the study of networks.

A successful method for detecting synchronous solutions in network dynamical
systems was developed by Field, Golubitsky, Stewart, and others [10, 20, 23, 33, 35].
This approach is now known as the groupoid formalism, and it has been applied
successfully in, for instance, the study of animal locomotion [21], binocular rivalry
[6], and homeostasis [18]. Recently, DeVille and Lerman showed that the groupoid
formalism has surprising links to category theory [3] and the theory of modular control
systems. But although the groupoid formalism has been particularly successful for
computing patterns of synchrony, it has been less practical for analyzing bifurcation
problems in network dynamics.

We shall therefore work with another framework in this paper, one which appears
more suitable for bifurcation theory. In fact, we shall use the language of hidden
symmetry. Hidden symmetry was discovered in a series of papers by the authors [26,
29, 30], and it entails that networks may be thought of as algebraic structures encoding
symmetry. An important consequence is the fact that every network dynamical system
can be embedded in another dynamical system that possesses (a rather unusual form
of) symmetry. With this in mind, the unexpected bifurcation properties of network
systems are perhaps less surprising: many of the characteristics of synchrony breaking
bifurcations in networks, such as the occurrence of robust invariant spaces, degenerate
eigenvalues, and anomalous generic bifurcation scenarios, are quite prevalent and well
understood in the setting of dynamical systems with symmetry; cf. [11, 19, 22].

The first paper that hints at hidden symmetry is [30]. This paper develops so-
called normal form theory for network dynamical systems. The idea behind normal
form theory is that by applying local coordinate transformations, one may bring a
dynamical system into a simple standardized form. This technique is often used to
classify local dynamical systems and local bifurcation problems. It is also known to be
helpful for analyzing the qualitative properties of dynamical systems near equilibrium
solutions. See [25] for a very complete overview of normal form theory for generic
dynamical systems. As was indicated above, coordinate transformations may easily
destroy the network structure of a dynamical system. As a result, the local normal
form of a network system cannot be expected to possess the same network struc-
ture. This poses a severe obstruction in the classification of local network dynamical
systems, as well as in analyzing synchrony breaking bifurcations.

The key observation of [30] is that the space of dynamical systems with a given
(restricted) network structure is always a subspace of a larger space of dynamical
systems with a more general (weaker) network structure, where this larger space is
moreover preserved under a large class of coordinate transformations. In particular,
it was proved that the normal form of a dynamical system with a given restricted
network structure always possesses the corresponding weaker network structure. It
was only realized in [26] and [29] that the class of dynamical systems that possess this
weaker network structure is actually equal to the class of hidden symmetric dynamical
systems. More precisely, it was proved in [26] that every homogeneous coupled cell
network is a quotient of a so-called fundamental network, where the latter is defined
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124 EDDIE NIJHOLT, BOB RINK, AND JAN SANDERS

purely in geometric terms: the fundamental network is the regular representation of
a certain monoid (a monoid is a semigroup with unit). From this it follows that every
network dynamical system is embedded inside a dynamical system that is equivariant
(symmetric) under the action of a monoid. More technical details on how to construct
this monoid will be provided in section 3.

It turns out that hidden symmetry is a rather versatile geometric property of
a dynamical system (much more so than network structure). Not only is hidden
symmetry preserved under coordinate transformations and in normal forms, but it
was also found that hidden symmetry is compatible with some important dimension
reduction techniques. In particular, it was proved in [29] that hidden symmetry is
preserved under Lyapunov--Schmidt reduction. The aim of this paper is to prove
that hidden symmetry is also compatible with center manifold reduction. This latter
technique is extremely important in the study of local bifurcations. In particular, it
is well known that all the bounded solutions of an ODE that emerge from a steady
state bifurcation are contained in a so-called local center manifold. The main result
of this paper is a center manifold theorem for homogeneous networks. It states that
hidden symmetry can be preserved under center manifold reduction. This means in
particular that local dynamics and bifurcations are strongly restricted by the presence
of hidden symmetry. Theorem 1.1 will be formulated more precisely as Theorems 5.1
and 6.1.

Theorem 1.1. Let \Gamma be an admissible vector field for a fundamental network with
symmetry monoid \Sigma , and let x0 be a fully synchronous steady state of \Gamma . Then there
exists a \Sigma -invariant local center manifold \scrM c for \Gamma near x0.

The restriction \Gamma | \scrM c to this local center manifold is \Sigma -equivariant and can there-
fore be interpreted as an admissible vector field in an appropriate way.

A center manifold of each quotient of the fundamental network is contained in the
center manifold of the fundamental network as a robust synchrony space.

Theorem 1.1 is reminiscent of the well-known result that the local center manifold
of an ODE with a compact symmetry group can be assumed symmetric [9, 11, 14,
19, 22, 36]. The proof of this latter result strongly depends on the fact that every
compact group has an invariant measure, and hence this proof does not apply to hid-
den symmetry (which consists of a semigroup or monoid). Our proof of Theorem 1.1
shows that this technical problem can be overcome for fundamental networks.

The remainder of this paper is organized as follows. In section 2 we illustrate the
impact of hidden network symmetry at the hand of three examples. In section 3 we
introduce our general setup and recall some basic theorems upon which this paper
builds. In section 4 we prove a center manifold theorem for fundamental networks.
After this, sections 5 and 6 are concerned with the symmetry and synchrony properties
that are preserved under center manifold reduction. Finally, in section 7 we apply our
general results to the three examples.

2. Three Examples. To illustrate the impact of hidden symmetry, let us consider
the following three networks. They will be the leading examples of this paper.

1 2

3

A
1 2

3

B
1 2

3

C
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CENTER MANIFOLDS OF COUPLED CELL NETWORKS 125

Networks A, B, and C give rise to the following ODEs:

\.x1 = f(x1, x2, x3, \lambda ),

A : \.x2 = f(x2, x3, x3, \lambda ),

\.x3 = f(x3, x3, x3, \lambda ),

\.x1 = f(x1, x2, x2, x3, \lambda ),

B : \.x2 = f(x2, x3, x2, x3, \lambda ),

\.x3 = f(x3, x3, x2, x3, \lambda ),

\.x1 = f(x1, x2, x1, x3, x2, \lambda ),

C : \.x2 = f(x2, x3, x1, x3, x2, \lambda ),

\.x3 = f(x3, x3, x1, x3, x2, \lambda ).

(2.1)

Here, x1, x2, x3 \in \BbbR describe the states of the cells in the network, while \lambda \in \BbbR is a
parameter. We shall assume that the ``response function"" f : \BbbR 3 \times \BbbR \rightarrow \BbbR is smooth.
Note that the network structure does not change as \lambda varies. Instead, one could think
of the response function f as being variable in \lambda .

The ODEs in (2.1) have several properties that distinguish them from arbitrary
three-dimensional dynamical systems. First of all, one can observe that setting x1 =
x2 = x3 in (2.1) yields that \.x1 = \.x2 = \.x3, and similarly that x2 = x3 implies \.x2 =
\.x3. This means that in all three networks the polydiagonal subspaces or synchrony
subspaces

\{ x1 = x2 = x3\} and \{ x2 = x3\} 

are preserved under the dynamics (i.e., they are flow-invariant). In particular, this
is true for any choice of response function f , so that these invariant subspaces only
depend on the network structure of the ODEs. One therefore calls them robust syn-
chrony spaces. It can also be checked that the above two synchrony spaces are the
only such robust synchrony spaces (in all three examples).

One may now ask how synchronous solutions emerge or disappear in a local
bifurcation. We will answer this question in section 7 by means of center manifold
reduction, but we shall indicate a few important aspects of this method here. First
of all, let us assume that

f(0, 0) = 0,

so that x = 0 is a fully synchronous steady state for the parameter value \lambda = 0. Center
manifold reduction starts with computing the center subspace at (x, \lambda ) = (0, 0). This
space is determined by the Jacobian matrices of the ODEs in (2.1). Let us write
\gamma \bfi f (x, \lambda ) (i = A,B,C) for the vector fields on the right-hand side of (2.1), and let
us set a := Dx1

f(0, 0), b := Dx2
f(0, 0), c := Dx3

f(0, 0), d := Dx4
f(0, 0), and e :=

Dx5
f(0, 0). In terms of these quantities, the Jacobian matrices are given by

Dx\gamma 
\bfA 
f (0, 0) =

\left(  a b c
0 a b+ c
0 0 a+ b+ c

\right)  , Dx\gamma 
\bfB 
f (0, 0) =

\left(  a b+ c d
0 a+ c b+ d
0 c a+ b+ d

\right)  ,

Dx\gamma 
\bfC 
f (0, 0) =

\left(  a+ c b+ e d
c a+ e b+ d
c e a+ b+ d

\right)  .(2.2)

We may now observe the remarkable fact that all three Jacobian matrices in (2.2)
have a double real eigenvalue equal to a. If we furthermore assume that b \not = 0 and
that b + c \not = 0 (for network A), b + c + d \not = 0 (for network B), b + c + d + e \not = 0
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126 EDDIE NIJHOLT, BOB RINK, AND JAN SANDERS

Table 2.1 Asymptotics in \lambda of the three branches of steady states that emerge from a synchrony
breaking steady state bifurcation in networks \bfA , \bfB , and \bfC . The table also indicates their
stability through the signs of two out of three eigenvalues, where for network \bfC there are
three possible scenarios.

Branches in examples \bfA and \bfB 
Synchrony Asymptotics \lambda < 0 \lambda > 0
Full \sim \lambda  -  - ++
Partial \sim \lambda + -  - +

None \sim 
\surd 
\lambda + - ,  -  - 

Branches in example \bfC 
Synchrony Asymptotics \lambda < 0 \lambda > 0 \lambda < 0 \lambda > 0 \lambda < 0 \lambda > 0
Full \sim \lambda  -  - ++  -  - ++  -  - ++
Partial \sim \lambda ++  -  - + -  - + + -  - +
None \sim \lambda + -  - + ++  -  - + -  - +

(for network C), then this eigenvalue a has algebraic multiplicity two and geometric
multiplicity one (this is again true in all three examples). Such a degeneracy in the
spectrum is very exceptional among Jacobian matrices of arbitrary ODEs, but here it
is forced by the network structure. In particular, it implies that the center manifold
of the ODEs is two-dimensional as soon as a = 0, which in turn indicates that a quite
complicated bifurcation may occur. Using center manifold reduction we shall verify
in section 7 that networks A, B, and C can generically support precisely one type of
steady state bifurcation when the eigenvalue a crosses zero. It is a so-called synchrony
breaking bifurcation in which a fully synchronous branch, a partially synchronous
branch, and a fully nonsynchronous branch of steady states emerge. Table 2.1 lists
the asymptotic growth rates of these branches in \lambda , and their possible stability types.
Note that although network C has identical synchrony and spectral properties as
networks A and B, it admits a totally different generic synchrony breaking steady
state bifurcation. In particular, in network C the stability of the fully synchronous
branch may be transferred either to the partially synchronous branch or to the fully
nonsynchronous branch. Another curiosity is that the nonsynchronous branch of
network C is tangential to the space \{ x2 = x3\} ; i.e., it is partially synchronous to
first order in \lambda (this will be shown in section 7).

We remark that nontrivial invariant subspaces, spectral degeneracies, and anoma-
lous bifurcations are all very common in the setting of equivariant dynamics [19, 22],
where they are forced by symmetry. On the one hand, it is obvious that networks
A, B, and C are not symmetric under any permutation of cells. As a result, none
of the ODEs in (2.2) is equivariant under a linear group action. On the other hand,
it was shown in [31] that the robust synchrony spaces, the degenerate spectrum, and
the unusual bifurcations of networks A, B, and C can all be explained from hidden
semigroup symmetry.

For example, the differential equations of network A are equivariant under the
noninvertible linear map

S : (x1, x2, x3) \mapsto \rightarrow (x2, x3, x3)

that transforms solutions of the ODEs into solutions. In fact, every vector field that
commutes with S is necessarily an admissible vector field for network A. This is
because network A is a so-called fundamental network; see section 3. Moreover, it is
not hard to check that any ODE that admits the symmetry S must have the invariant
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subspaces \{ x1 = x2 = x3\} and \{ x2 = x3\} and that any matrix that commutes with
S must have a double eigenvalue. We will also prove in section 5 that the symmetry
S is inherited by the center manifold of network A. The restrictions that symmetry
imposes on the center manifold dynamics force the remarkable synchrony breaking
bifurcation of network A.

Similar things can be said for networks B and C, even though one can show that
\gamma \bfB f and \gamma \bfC f commute with no linear maps other than the identity. On the other hand,
networks B and C can be realized as quotient networks of networks with semigroup
symmetry. In particular, network B is the restriction to the robust synchrony space
\{ X2 = X3\} of the network differential equations:

(2.3) \widetilde B :

\.X1 = f(X1, X2, X3, X4, \lambda )
\.X2 = f(X2, X4, X3, X4, \lambda )
\.X3 = f(X3, X4, X3, X4, \lambda )
\.X4 = f(X4, X4, X3, X4, \lambda )

2 1

43

\widetilde B
These differential equations commute with the two noninvertible linear maps

(X1, X2, X3, X4) \mapsto \rightarrow (X2, X4, X3, X4),

(X1, X2, X3, X4) \mapsto \rightarrow (X3, X4, X3, X4).
(2.4)

Conversely, every ODE that is equivariant under these two symmetries is necessarily
of the form (2.3) for some f(X,\lambda ); i.e., it is admissible for network \widetilde B. We call

network \widetilde B the fundamental network of network B. It was shown in [26] that every
homogeneous network is the quotient of such a fundamental network with a semigroup
of symmetries. We will recover this fact in section 3.

It turns out that the fundamental network of C is given by

(2.5) \widetilde C :

\.X1 = f(X1, X2, X3, X4, X5, \lambda )
\.X2 = f(X2, X4, X3, X4, X5, \lambda )
\.X3 = f(X3, X5, X3, X4, X5, \lambda )
\.X4 = f(X4, X4, X3, X4, X5, \lambda )
\.X5 = f(X5, X4, X3, X4, X5, \lambda )

1

5

3 4

2 \widetilde C
Indeed, network C arises as the restriction of network \widetilde C to the robust synchrony
space \{ X1 = X3, X2 = X5\} . Moreover, the equations of motion (2.5) of network \widetilde C
are precisely the equivariant ODEs for the noninvertible linear maps

(X1, X2, X3, X4, X5) \mapsto \rightarrow (X2, X4, X3, X4, X5),

(X1, X2, X3, X4, X5) \mapsto \rightarrow (X3, X5, X3, X4, X5).
(2.6)
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128 EDDIE NIJHOLT, BOB RINK, AND JAN SANDERS

The symmetries of networks \widetilde B and \widetilde C are inherited by their center manifolds. We
will see in sections 6 and 7 how they in turn affect the center manifolds of B and C,
thus forcing the anomalous bifurcations in these two original networks.

3. Homogeneous and Fundamental Networks. In this section we give a short
overview of the results and definitions in [26, 29, 30]. We shall be concerned with
ODEs of the general form

\.x1 = f(x\sigma 1(1), . . . , x\sigma n(1)),

\.x2 = f(x\sigma 1(2), . . . , x\sigma n(2)),

...

\.xN = f(x\sigma 1(N), . . . , x\sigma n(N)).

(3.1)

Here, every variable xj takes values in the same vector space V and can be thought
of as the state of cell \#j in a network. For every i \in \{ 1, . . . , n\} ,

\sigma i : \{ 1, . . . , N\} \rightarrow \{ 1, . . . , N\} 

is a function from the collection of cells of the network to itself. Intuitively, these
functions may be thought of as representing the different types of input in the network.
In particular, if i \in \{ 1, . . . , n\} and j, k \in \{ 1, . . . , N\} are such that \sigma i(j) = k, then this
is to be interpreted as cell \#j receiving an input of type i from cell \#k. Note that
there is no reason to assume that any of the functions \sigma i is a bijection.

The way the inputs of a cell are processed is determined by the properties of the
response function f : V n \rightarrow V , whose different arguments distinguish different types
of input. Note that the same response function appears in every component of (3.1),
meaning that every cell responds equally to its inputs. This may be interpreted as the
cells being identical. We therefore say that (3.1) represents a homogeneous coupled
cell network. Another assumption we will make is that the total set of input functions

\Sigma := \{ \sigma 1, . . . , \sigma n\} 

is closed under composition of maps. This is no restriction because one may add com-
positions of input functions to \Sigma until this process terminates; see [30]. Furthermore,
enlarging \Sigma only enlarges the class of admissible vector fields. Being closed under
composition, \Sigma has the structure of a semigroup. To model internal dynamics, we
will moreover assume without loss of generality that \sigma 1 is the identity on \{ 1, . . . , N\} ,
making \Sigma in fact a monoid. For f : V n \rightarrow V , we will then denote the vector field on
the right-hand side of (3.1) by

\gamma f : V N \rightarrow V N .

Example 3.1. Networks A, B, and C are examples of homogeneous networks.
The maps \sigma 1, \sigma 2, \sigma 3, \sigma 4, \sigma 5 are given in this case by

A 1 2 3
\sigma 1 1 2 3
\sigma 2 2 3 3
\sigma 3 3 3 3

B 1 2 3
\sigma 1 1 2 3
\sigma 2 2 3 3
\sigma 3 2 2 2
\sigma 4 3 3 3

C 1 2 3
\sigma 1 1 2 3
\sigma 2 2 3 3
\sigma 3 1 1 1
\sigma 4 3 3 3
\sigma 5 2 2 2
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CENTER MANIFOLDS OF COUPLED CELL NETWORKS 129

For all three networks, these maps are closed under composition; i.e., they form a
semigroup \Sigma .

Definition 3.2. Let P = \{ Pi\} ri=1, Pi \subset \{ 1, 2, . . . , N\} , be a partition of the collec-
tion of nodes of a homogeneous network. The synchrony space or polydiagonal space
corresponding to the partition P is the subspace

SynP := \{ xi = xj if i and j are in the same element of the partition P\} \subset V N .

A synchrony space is called robust if for every f : V n \rightarrow V we have \gamma f (SynP ) \subset SynP ,
i.e., that it is an invariant space for every \gamma f .

It was shown in [30] that adding compositions \sigma i \circ \sigma j to \Sigma so as to make \Sigma closed
under composition does not affect the set of robust synchrony spaces of the network.

The idea is now to define a bigger network that contains the original network
(3.1) as a robust synchrony space. It turns out that the admissible vector fields of
this so-called fundamental network are precisely the equivariant vector fields for the
regular representation of the monoid \Sigma .

Definition 3.3. Assume that \Sigma has been completed to a monoid, and let n = \#\Sigma 
and f : V n \rightarrow V . The fundamental network vector field \Gamma f of the network vector field
\gamma f is the vector field on

\bigoplus 
\sigma i\in \Sigma V = V n defined by

(\Gamma f )\sigma i
= f \circ A\sigma i

.(3.2)

Here the linear maps A\sigma i : V
n \rightarrow V n are defined by

(A\sigma iX)\sigma j := X\sigma j\circ \sigma i .(3.3)

It was shown in [26] that \Gamma f is an admissible vector field for the homogeneous
network that has the elements of \Sigma as its cells, and an arrow of type i from cell \sigma k
to cell \sigma j if \sigma i \circ \sigma j = \sigma k. This latter network can be thought of as a Cayley graph of
\Sigma ; see [26]. The following theorems motivate the introduction of the monoid \Sigma and
the fundamental network. Their proofs can be found in [29]. Nevertheless, we have
chosen to include the proof of Theorem 3.5 due to its importance in this paper and
to illustrate the general method of proof for the theorems in this section.

Theorem 3.4. The linear maps \{ A\sigma i\} \sigma i\in \Sigma form a representation of the monoid
\Sigma . That is, we have A\sigma i

\circ A\sigma j
= A\sigma i\circ \sigma j

for all \sigma i, \sigma j \in \Sigma and A\sigma 1
= Id.

Theorem 3.5. A vector field F : V n \rightarrow V n is of the form F = \Gamma f for some
f : V n \rightarrow V if and only if we have F \circ A\sigma i = A\sigma i \circ F for all \sigma i \in \Sigma .

Proof. We will first show that \Gamma f \circ A\sigma i
= A\sigma i

\circ \Gamma f for all f : V n \rightarrow V and \sigma i \in \Sigma .
We see that on the one hand we have

[(\Gamma f \circ A\sigma i)(X)]\sigma k
= [\Gamma f (A\sigma iX)]\sigma k

= (f \circ A\sigma k
\circ A\sigma i)(X).(3.4)

On the other, we see that

[(A\sigma i
\circ \Gamma f )(X)]\sigma k

= [\Gamma f (X)]\sigma k\circ \sigma i

= (f \circ A\sigma k\circ \sigma i
)(X) = (f \circ A\sigma k

\circ A\sigma i
)(X),(3.5)

where in the last step we have used the result of Theorem 3.4. This proves the first
part of the theorem.
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130 EDDIE NIJHOLT, BOB RINK, AND JAN SANDERS

As for the second, suppose that F \circ A\sigma i
= A\sigma i

\circ F for all \sigma i \in \Sigma . Using the
definition of A\sigma i

and the fact that \sigma 1 \circ \sigma i = \sigma i for all \sigma i \in \Sigma , we see that

[F (X)]\sigma i
= [(A\sigma i

\circ F )(X)]\sigma 1
= [(F \circ A\sigma i

)(X)]\sigma 1
= (F\sigma 1

\circ A\sigma i
)(X)(3.6)

for all X \in V n. Hence we see that F = \Gamma f for f = F\sigma 1
. This proves the second part

of the theorem.

The following theorem provides the relation between the original network \gamma f and
the new network \Gamma f .

Theorem 3.6. For any node p \in \{ 1, . . . , N\} , define the map \pi p : V N \rightarrow V n by

\pi p(x)\sigma j := x\sigma j(p).

Then \pi p is a semiconjugacy between \gamma f and \Gamma f . That is, we have

\pi p \circ \gamma f = \Gamma f \circ \pi p.

Theorem 3.6 follows quite quickly from the following lemma. Both results are
proven in [29].

Lemma 3.7. For any node p \in \{ 1, . . . , N\} and input function \sigma i, we have

A\sigma i
\circ \pi p = \pi \sigma i(p).

Remark 3.8. Note that the map \pi p is injective if and only if

\{ \sigma i(p) : \sigma i \in \Sigma \} = \{ 1, . . . , N\} .

This is to be interpreted as the cell p being influenced by every other cell in the
network. In particular, it is natural to assume that at least one such cell exists in the
(original) network. In that case, the dynamics of \gamma f is embedded in that of \Gamma f as the
restriction of \Gamma f to the space

\{ X\sigma i = X\sigma j if \sigma i(p) = \sigma j(p)\} 

for any such node p for which \pi p is injective. Note that this space is a polydiagonal
space. Furthermore, since it is invariant for every f , we conclude that this space is in
fact a robust synchrony space of the fundamental network.

4. Center Manifold Reduction for Networks. In this section we shall describe
the main result of this paper. We start with a well-known theorem on the existence
of a local invariant manifold near every steady state of an ODE. The most important
feature of this so-called center manifold is that it contains all bounded (small) solu-
tions, such as steady state points and (small) periodic orbits. We then generalize this
result to the setting of fundamental networks in a way that allows us to retain their
symmetries. Because we know from Theorem 3.5 that these symmetries completely
describe the fundamental network vector field, this will in turn allow us to give a full
description of the vector fields that one obtains after restricting to the center mani-
fold. In this section and the ones following it, a norm will always be the Euclidean
norm or an induced operator norm, unless stated otherwise.

Let us first consider differential equations of the general form

\.x = F (x),(4.1)
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where F : \BbbR n \rightarrow \BbbR n is of class Ck for some k \geq 1 and satisfies F (0) = 0. Without
loss of generality, we may write

\.x = Ax+G(x).(4.2)

Here, A = DF (0), from which it follows that G : \BbbR n \rightarrow \BbbR n is again of class Ck

and satisfies G(0) = 0 and DG(0) = 0. Let us furthermore denote by Xc the center
subspace of A. That is, Xc is the span of the generalized eigenvectors corresponding
to the purely imaginary eigenvalues of A. Likewise, we denote by Xh the hyperbolic
subspace of A, which corresponds to the remaining eigenvalues. These two spaces
complement each other in \BbbR n; i.e., we have

\BbbR n = Xc \oplus Xh.(4.3)

Finally, let \pi c and \pi h be the projections onto Xc, respectively, Xh, corresponding
to this decomposition. The following theorem is well known.

Theorem 4.1 (center manifold reduction). Given A \in \scrL (\BbbR n) and k \in \BbbN , there
exists an \epsilon = \epsilon (A, k) > 0 such that the following holds: If G : \BbbR n \rightarrow \BbbR n is of class Ck

with G(0) = 0 and DG(0) = 0 and furthermore satisfies
\bullet supx\in \BbbR n | | DjG(x)| | <\infty for 0 \leq j \leq k,
\bullet supx\in \BbbR n | | DG(x)| | < \epsilon ,

then there exists a function \psi : Xc \rightarrow Xh of class Ck such that its graph in \BbbR n is an
invariant manifold for system (4.1). More precisely, we have

Mc := \{ xc + \psi (xc) : xc \in Xc\} =

\biggl\{ 
x \in \BbbR n : sup

t\in \BbbR 

\bigm| \bigm| | \pi h\phi t(x)\bigm| \bigm| | <\infty 
\biggr\} 
.(4.4)

Here \phi t denotes the flow of (4.1). The function \psi satisfies \psi (0) = 0 and D\psi (0) = 0.
Mc is called the (global) center manifold of (4.1). In particular, it contains all

bounded solutions to (4.1), such as steady state points and periodic solutions.

A comprehensive proof of this theorem can be found in [36]. This reference also
describes a way around the seemingly strict conditions on the size of the nonlinearity
G and its derivatives: if G does not satisfy these conditions, then one simply multiplies
it by a real-valued bump function with small enough support. Since in bifurcation
theory one is generally only interested in orbits close to the bifurcation point, this is
often a viable solution.

Moreover, if the vector fields F and G are equivariant under the action of some
compact group \scrG , then this bump function can be chosen invariant under this action.
As a result, the center manifold is \scrG -invariant. To make this more precise, let us
assume that the action of \scrG is by linear maps \{ Ag : g \in \scrG \} . This will, for example,
be the case after applying Bochner's linearization theorem; see [7]. By compactness
of \scrG , we may also assume that \scrG acts by isometries with respect to a certain norm
| | \cdot | | \scrG . That is, we have | | Agx| | \scrG = | | x| | \scrG for all g \in \scrG and x \in \BbbR n. Let us furthermore
denote by Br an open ball around the origin in \BbbR n of radius r > 0 with respect to
this norm. Let \chi be a smooth bump function from \BbbR n to \BbbR that takes the value 1
inside B1 and 0 outside B2. It can then be shown that the vector field\widetilde G\rho (x) := \chi (\rho  - 1x)G(x)(4.5)

satisfies the necessary bounds of Theorem 4.1 for small enough \rho > 0. However, this
function in general will not be \scrG -equivariant anymore, as the bump function \chi may
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not be \scrG -invariant. Instead, we may define a new bump function

\chi (x) :=

\int 
\scrG 
\chi (Agx)d\mu ,(4.6)

where d\mu denotes the normalized Haar measure on \scrG (or simply the normalized count-
ing measure, if \scrG is finite). The function \chi is now \scrG -invariant by construction. From
this it follows that

G\rho (x) := \chi (\rho  - 1x)G(x)(4.7)

is \scrG -equivariant, because

G\rho (Agx) = \chi (\rho  - 1Agx)G(Agx) = \chi (Ag\rho 
 - 1x)AgG(x)

= \chi (\rho  - 1x)AgG(x) = Ag\chi (\rho 
 - 1x)G(x) = AgG\rho (x).(4.8)

As \scrG acts by isometries, we see that \chi again takes the value 1 inside B1 and vanishes
outside B2. Hence, as is the case for \widetilde G\rho , we may conclude that G\rho satisfies the
necessary bounds of Theorem 4.1 for small enough \rho > 0. It then follows from the
equivariance of F and G\rho that center manifold reduction can in fact be done in an
equivariant manner, meaning that the function \psi : Xc \rightarrow Xh is equivariant and that
Mc is invariant under the symmetries.

Unfortunately we cannot apply the same procedure in the setting of networks
and fundamental networks, as it relies heavily on the symmetries Ag being invertible
(for example, in the existence of an invariant measure). As an example, we note
that any function \chi : \BbbR 3 \rightarrow \BbbR that is invariant under the symmetry (X1, X2, X3) \mapsto \rightarrow 
(X2, X3, X3) of example A would necessarily be constant along the line \{ X2 = X3 =
0\} . It is clear that this would exclude any nontrivial bump function centered around
the origin. Instead, we will show that one can replace the function f in \Gamma f in a way
to make \Gamma f satisfy the necessary bounds. Note that in this way the symmetries of \Gamma f

are not broken.
To formalize this procedure, let us first describe our setting a bit more accurately.

We want to study bifurcation problems, so we will assume from now on that the
response function f depends on parameters; i.e., we assume that

f : V n \times \Omega \rightarrow V with \Omega \subset \BbbR l

is a smooth function of the network states and of parameters \lambda \in \Omega . For the purpose
of center manifold reduction, it is useful to view these parameters as variables of the
ODEs, i.e., to consider the augmented network equations\biggl( 

\.x
\.\lambda 

\biggr) 
=

\biggl( 
\Gamma f (x, \lambda )

0

\biggr) 
,(4.9)

with \Gamma f defined as before by

\Gamma f (x, \lambda )\sigma i := f(A\sigma ix, \lambda ).

We will set x := (x, \lambda ) \in V n \times \Omega and \Gamma f := (\Gamma f , 0) : V n \times \Omega \rightarrow V n \times \Omega and will
henceforth abbreviate (4.9) as

\.x = \Gamma f (x).(4.10)
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It is clear that this system is now equivariant under symmetries of the form

A\sigma i
: (x, \lambda ) \mapsto \rightarrow (A\sigma i

x, \lambda ) for i \in \{ 1, . . . , n\} .

Furthermore, note that in this notation we also have

(\Gamma f )i = f \circ A\sigma i
for i \in \{ 1, . . . , n\} ,

(\Gamma f )i = 0 for i = n+ 1,(4.11)

where we denote by xn+1 the \lambda -part of the vector x = (x, \lambda ) \in V n\times \Omega . Following the
setting of Theorem 4.1, we can write \Gamma f (x) as

\Gamma f (x) = D\Gamma f (0)x+G(x),(4.12)

where G : V n \times \Omega \rightarrow V n \times \Omega satisfies G(0) = 0 and DG(0) = 0. The first thing to
note is that D\Gamma f (0)x is again of the form \Gamma h(x), namely, for

h(x) = Df(0)x =

n+1\sum 
k=1

Dkf(0)xk.(4.13)

Indeed, for i \in \{ 1, . . . , n\} we have

\bigl( 
D\Gamma f (0)x

\bigr) 
i
=

n+1\sum 
j=1

D\Gamma f (0)i,jxj

=

n+1\sum 
j=1

Dj

\bigl( 
f \circ A\sigma i

\bigr) 
(0)xj

=

n+1\sum 
j=1

n+1\sum 
k=1

Dkf(0)
\bigl( 
A\sigma i

\bigr) 
k,j
xj

=

n+1\sum 
k=1

Dkf(0)
\bigl( 
A\sigma i

x
\bigr) 
k
= (\Gamma h(x))i ,(4.14)

whereas

(D\Gamma f (0)x)n+1 =

n+1\sum 
j=1

D\Gamma f (0)n+1,j
xj = 0.(4.15)

It follows that we may write G(x) = \Gamma f (x)  - \Gamma h(x) = \Gamma g(x), where g(x) equals
f(x)  - h(x) = f(x)  - Df(0)x. In particular, assuming that f(0) := f(0, 0) = 0, we
see that g(0) = 0 and Dg(0) = 0. Summarizing, we have the following equivalent of
(4.2):

\Gamma f (x) = D\Gamma f (0)x+ \Gamma g(x) with g(0) = 0 and Dg(0) = 0.(4.16)

We can now proceed to adapt \Gamma g(x) so as to make it satisfy the conditions of Theo-
rem 4.1. To this end, we define Br to be an open ball in V n\times \Omega with radius r centered
around the origin. Furthermore, let \chi (x) be a smooth function from V n \times \Omega to \BbbR 
that takes the value 1 inside B1 and 0 outside B2. Analogous to the procedure for
general vector fields, we now set g\rho (x) := \chi (\rho  - 1x)g(x) for \rho \in \BbbR >0, which equals g
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inside B\rho and which vanishes outside B2\rho . The following two theorems assure us that
the system given by

\.x = D\Gamma f (0)x+ \Gamma g\rho 
(x)(4.17)

satisfies the necessary conditions of Theorem 4.1 for small enough \rho , yet agrees with
our initial system (4.10) in a small enough neighborhood around the origin.

Proposition 4.2. For any function g : V n \times \Omega \rightarrow V and any \rho > 0, there exists
an open neighborhood in V n\times \Omega centered around the origin on which \Gamma g(x) and \Gamma g\rho 

(x)
agree.

Proof. Remember that we have \Gamma g(x)n+1 = \Gamma g\rho 
(x)n+1 = 0 for every x \in V n \times \Omega ,

and hence there is nothing to check here. For i \not = n+ 1, the ith component of \Gamma g(x)
equals g \circ A\sigma i

(x), whereas that of \Gamma g\rho 
(x) equals g\rho \circ A\sigma i

(x). Because g and g\rho agree

on B\rho , these components are equal on the set A - 1
\sigma i

(B\rho ), which by the linearity of A\sigma i

is an open set containing 0. The required neighborhood is then obtained by taking
the intersection of these sets for the different values of i.

Theorem 4.3. Let g : V n \times \Omega \rightarrow V be of class Ck for some k > 0. For all \rho > 0
and 0 \leq j \leq k we have

sup
x\in V n\times \Omega 

| | Dj\Gamma g\rho (x)| | <\infty .(4.18)

If g furthermore satisfies g(0) = 0 and Dg(0) = 0, then

lim
\rho \downarrow 0

sup
x\in V n\times \Omega 

| | D\Gamma g\rho 
(x)| | = 0.(4.19)

Proof. We start with the claim on boundedness. It is clear that we only need
to show this for the separate components of \Gamma g\rho 

(x) and their derivatives. However,
writing g\rho = H we see that every (nontrivial) component of \Gamma g\rho 

(x) can be written in
the general form

\Gamma g\rho 
(x)i = (H \circ A\sigma i

)(x),(4.20)

where H is a Ck-function with compact support in V n \times \Omega . It is clear that any
function that can be written in this way is uniformly bounded. Moreover, taking the
derivative gives

D(H \circ A\sigma i
)(x) = DH(A\sigma i

x) \cdot A\sigma i
= ((DH \cdot A\sigma i

) \circ A\sigma i
)(x),(4.21)

which is again of the form (4.20), where our new H is now given by the Ck - 1-function
DH \cdot A\sigma i

. We conclude by induction that indeed the first k derivatives of \Gamma g\rho 
are

uniformly bounded. This proves the first part of the theorem.
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As for the second claim, let i \in \{ 1, . . . , n\} , j \in \{ 1, . . . , n+ 1\} and \rho > 0. Then

sup
x\in V n\times \Omega 

| | D\Gamma g\rho 
(x)i,j | | = sup

x\in V n\times \Omega 
| | Dj(\Gamma g\rho 

)i(x)| | 

= sup
x\in V n\times \Omega 

| | Dj(g\rho \circ A\sigma i
)(x)| | 

= sup
x\in V n\times \Omega 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n+1\sum 
k=1

Dkg\rho (A\sigma i
(x))(A\sigma i

)k,j

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\leq 

n+1\sum 
k=1

sup
x\in V n\times \Omega 

| | Dkg\rho (A\sigma i
(x))| | \cdot | | (A\sigma i

)k,j | | 

\leq 
n+1\sum 
k=1

sup
x\in V n\times \Omega 

| | Dkg\rho (x)| | \cdot | | (A\sigma i
)k,j | | 

\leq 
n+1\sum 
k=1

sup
x\in V n\times \Omega 

| | Dkg\rho (x)| | ,(4.22)

where in the last step we have used the fact that every component of A\sigma i
is either

some identity matrix or a zero-matrix, from which it follows that | | (A\sigma i
)k,j | | \leq 1 for

all 1 \leq k, j \leq n+ 1. From the above we see that it is sufficient to prove that

lim
\rho \downarrow 0

sup
x\in V n\times \BbbR 

| | Dg\rho (x)| | = 0.(4.23)

The proof of this fact can be copied directly from [36], the only difference being that
g\rho (x) does not map V n \times \Omega to itself. Nevertheless, we will reproduce it here for the
sake of completeness. For all \rho > 0 we have

sup
x\in V n\times \Omega 

| | Dg\rho (x)| | = sup
| | x| | \leq 2\rho 

| | Dg\rho (x)| | 

= sup
| | x| | \leq 2\rho 

| | \chi (\rho  - 1x)Dg(x) + \rho  - 1g(x)D\chi (\rho  - 1x)| | 

\leq sup
| | x| | \leq 2\rho 

| | \chi (\rho  - 1x)| | sup
| | x| | \leq 2\rho 

| | Dg(x)| | 

+ \rho  - 1 sup
| | x| | \leq 2\rho 

| | g(x)| | sup
| | x| | \leq 2\rho 

| | D\chi (\rho  - 1x)| | 

\leq sup
| | x| | \leq 2\rho 

C1| | Dg(x)| | + \rho  - 1C2 sup
| | x| | \leq 2\rho 

| | g(x)| | ,

(4.24)

where we have set

C1 := sup
x\in V n\times \Omega 

| | \chi (x)| | (4.25)

and

C2 := sup
x\in V n\times \Omega 

| | D\chi (x)| | .(4.26)

By the mean value theorem we have, whenever | | x| | \leq 2\rho ,

| | g(x)| | = | | g(x) - g(0)| | \leq | | x| | sup
| | x| | \leq 2\rho 

| | Dg(x)| | .(4.27)
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136 EDDIE NIJHOLT, BOB RINK, AND JAN SANDERS

Combining inequalities (4.24) and (4.27), we get

sup
x\in V n\times \Omega 

| | Dg\rho (x)| | 

\leq sup
| | x| | \leq 2\rho 

C1| | Dg(x)| | + \rho  - 1C2 sup
| | x| | \leq 2\rho 

| | x| | sup
| | x| | \leq 2\rho 

| | Dg(x)| | 

= sup
| | x| | \leq 2\rho 

C1| | Dg(x)| | + \rho  - 1C2 \cdot 2\rho sup
| | x| | \leq 2\rho 

| | Dg(x)| | 

= (C1 + 2C2) sup
| | x| | \leq 2\rho 

| | Dg(x)| | .

(4.28)

Because g(x) is at least C1 and Dg(0) = 0, it follows that

lim
\rho \downarrow 0

sup
x\in V n\times \Omega 

| | Dg\rho (x)| | = (C1 + 2C2) lim
\rho \downarrow 0

sup
| | x| | \leq 2\rho 

| | Dg(x)| | = 0.(4.29)

This proves the theorem.

Theorem 4.3 implies that the system

\.x = D\Gamma f (0)x+ \Gamma g\rho (x)(4.30)

admits a global center manifold for small enough \rho > 0. Recall that the vector field
on the right-hand side of (4.30) can be written as

D\Gamma f (0)x+ \Gamma g\rho (x) = \Gamma h(x) + \Gamma g\rho (x) = \Gamma h+g\rho (x),(4.31)

where h(x) = Df(0)x. It follows that this vector field is again \{ A\sigma i
\} -equivariant.

Moreover, by Proposition 4.2, (4.31) agrees with our initial vector field \Gamma f on an
open neighborhood around the origin. In the coming sections we shall investigate the
properties of the center manifold of (4.30).

5. Symmetry and the Center Manifold. Recall that the global center manifold
of an ODE at a steady state point contains all its bounded solutions, such as the steady
state points and periodic orbits near the steady state. Therefore, when studying local
bifurcations one is often only interested in the dynamics on this manifold. We will
now show that the center manifold dynamics inherits the symmetries of the original
fundamental network. Moreover, we show that every possible equivariant vector field
on the center manifold may arise after center manifold reduction.

We begin by fixing some notation. Given a smooth function f : V n \times \Omega \rightarrow V , we
may view the restriction \Gamma f (\bullet , 0) of \Gamma f to \{ \lambda = 0\} as a function from V n to itself.
Let us denote this function by

\Gamma f,0 : V n \rightarrow V n.

We will then write
Wc,Wh \subset V n

for, respectively, the center subspace and the hyperbolic subspace of D\Gamma f,0(0). Recall
that we have

V n =Wc \oplus Wh,(5.1)

and let us denote by Pc and Ph, respectively, the projection on Wc and Wh corre-
sponding to this decomposition. The spacesWc andWh are invariant under the action
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CENTER MANIFOLDS OF COUPLED CELL NETWORKS 137

of \{ A\sigma i
\} ni=1. More generally, given any differentiable function F : \BbbR n \rightarrow \BbbR n and linear

function B : \BbbR n \rightarrow \BbbR n such that

F \circ B = B \circ F,(5.2)

we also have that

DF (0) \circ B = B \circ DF (0).(5.3)

From this it follows that B maps the center and hyperbolic subspaces of DF (0) into
themselves. The following theorem states that the dynamics of \Gamma f , restricted to its
center manifold, is conjugate to a \Sigma -equivariant system on Wc.

Theorem 5.1. Let k \geq 1, and let f : V n\times \Omega \rightarrow V be of class Ck. Assume that the
vector field \Gamma f (x) satisfies the conditions of Theorem 4.1, so that its center manifold
Mc exists. Then the projection P : V n \times \Omega \rightarrow Wc \times \Omega , given by P (x, \lambda ) := (Pc(x), \lambda ),
has the property that its restriction P | Mc

bijectively conjugates \Gamma f | Mc
to an ODE on

Wc \times \Omega of the form

\.x = R(x, \lambda ),

\.\lambda = 0.
(5.4)

Here, R :Wc \times \Omega \rightarrow Wc is a Ck-function satisfying the following:
\bullet R(0, 0) = 0.
\bullet The center subspace of DR0(0) is the full space Wc, where we have set R0 =
R(\bullet , 0) :Wc \rightarrow Wc as the restriction of R to \{ \lambda = 0\} .

\bullet R(A\sigma i
x, \lambda ) = A\sigma i

R(x, \lambda ) for all i \in \{ 1, . . . , n\} and (x, \lambda ) \in Wc \times \Omega . Here
A\sigma i denotes the restriction of A\sigma i to Wc.

We will call the map R : Wc \times \Omega \rightarrow Wc of the preceding theorem the reduced
vector field of the network vector field \Gamma f . Note that the statement of Theorem 5.1
is not that any vector field R that satisfies the conclusions of Theorem 5.1 can be
obtained as the reduced vector field of a network vector field. This issue will be
addressed in Theorems 5.4 and 5.5 and Remarks 5.6 and 5.7, where it is shown that
indeed Theorem 5.1 exactly describes all possible reduced vector fields.

The result of Theorem 5.1 hinges mostly on a corollary of Theorem 4.1, which
states that symmetries of a vector field are passed on to its center manifold. More
precisely, we have the following result.

Lemma 5.2. Let F be an arbitrary vector field on \BbbR n satisfying the conditions of
Theorem 4.1. Keeping with the notation, let \psi : Xc \rightarrow Xh be the map whose graph is
the center manifold. Given a linear map B : \BbbR n \rightarrow \BbbR n such that F \circ B = B \circ F , we
also have \psi \circ B = B \circ \psi . Furthermore, the center manifold is invariant under B; i.e.,
we have Bx \in Mc whenever x \in Mc.

Proof. We will begin by showing the invariance of Mc. We remarked earlier
that DF (0) commutes with B whenever F does and that both Xc and Xh are B-
invariant spaces. From this it follows that the projections \pi c and \pi h with respect to
the decomposition

\BbbR n = Xc \oplus Xh(5.5)

commute with B as well. Recall that the center manifold is given by

Mc = \{ x \in \BbbR n :
t\in \BbbR 
sup | | \pi h\phi t(x)| | <\infty \} ,(5.6)
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138 EDDIE NIJHOLT, BOB RINK, AND JAN SANDERS

where \phi t(x) denotes the flow of F . Moreover, we have the following equality for the
flow, valid for all x \in \BbbR n and t \in \BbbR :

\phi t(Bx) = B\phi t(x).(5.7)

This follows directly from the symmetry of F . Now suppose x \in Mc. Then

| | \pi h\phi t(Bx)| | = | | \pi hB\phi t(x)| | 
= | | B\pi h\phi t(x)| | \leq | | B| | | | \pi h\phi t(x)| | .

(5.8)

From this it follows that

t\in \BbbR 
sup | | \pi h\phi t(Bx)| | <\infty .(5.9)

Hence, Bx is an element of Mc as well.
To show that \psi \circ B = B \circ \psi , note that the center manifold is (also) given by

Mc = \{ xc + \psi (xc) : xc \in Xc\} .(5.10)

In other words, given an element x \in Mc we may write x = xc + \psi (xc) for some
xc = \pi c(x) \in Xc. From this we see that

\pi h(x) = \psi (xc) = \psi (\pi c(x)).(5.11)

Now given xc \in Xc, we know that xc +\psi (xc) is an element of Mc. Hence by our first
result, so is Bxc +B\psi (xc). Applying (5.11) to the latter gives

\pi h(Bxc +B\psi (xc)) = \psi (\pi c(Bxc +B\psi (xc))).(5.12)

Hence, since \psi (xc) is an element of Xh and B leaves both Xc and Xh invariant, (5.12)
reduces to

B\psi (xc) = \psi (Bxc).(5.13)

This proves the equivariance of \psi .

Since we want to apply center manifold reduction to \Gamma f , let us denote by

W c,Wh \subset V n \times \Omega 

the center and hyperbolic subspaces of D\Gamma f (0). These spaces are invariant under the
action of \{ A\sigma i

\} ni=1, as follows from the equivariance of D\Gamma f (0). We write P c and Ph

for the projections corresponding to

V n \times \Omega =W c \oplus Wh.(5.14)

The following lemma relates the center and hyperbolic subspaces of D\Gamma f (0) to those
of D\Gamma f,0(0).

Lemma 5.3. The space Wh satisfies

Wh = (Wh, 0) \subset V n \times \Omega .(5.15)

Furthermore, setting l := dim\Omega , there exist vectors \{ wi\} li=1 inWh and a basis \{ \lambda i\} li=1

for \Omega such that the vectors wi := (wi, \lambda i) \in V n \times \Omega satisfy

W c = (Wc, 0)\oplus span\{ wi : i = 1, . . . , l\} .(5.16)
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Proof. By the definition of \Gamma f , we see that its linearization is of the form

D\Gamma f (0) =

\biggl( 
D\Gamma f,0(0) v

0 0

\biggr) 
,(5.17)

corresponding to the natural decomposition of V n \times \Omega . Here, v is a linear map from
\Omega to V n that is of no further importance to us. Now suppose that v\kappa \in V n is a
generalized eigenvector of D\Gamma f,0(0) corresponding to the eigenvalue \kappa \in \BbbR . It can
then be seen from the above matrix that (v\kappa , 0) \in V n\times \Omega is a generalized eigenvector
of D\Gamma f (0) corresponding to the same eigenvalue. This likewise holds for complex
eigenvalues. In particular, we conclude that

(Wc/h, 0) \subset W c/h.(5.18)

Next, we note that the spectrum of D\Gamma f (0) can be obtained from that of D\Gamma f,0(0)
by l times adding the eigenvalue 0. Since 0 is a purely imaginary number, it follows
that we have in fact

(Wh, 0) =Wh.(5.19)

Moreover, we see that there exist vectors \{ w\prime 
i\} li=1 in V n \times \Omega such that

W c = (Wc, 0)\oplus span\{ w\prime 
i : i = 1, . . . , l\} .(5.20)

In fact, these w\prime 
i are generalized eigenvectors of D\Gamma f (0) for the eigenvalue 0 that are

not in (Wc, 0). Writing w\prime 
i = (wi,c+wi,h, \lambda i) for wi,c/h \in Wc/h and \lambda i \in \Omega , and noting

that

V n \times \Omega =W c \oplus Wh,(5.21)

we may conclude that \{ \lambda i\} li=1 forms a basis for \Omega . If we now set wi := (wi,h, \lambda i) =:
(wi, \lambda i), we see that indeed

(Wc, 0)\oplus span\{ wi : i = 1, . . . , l\} 
= (Wc, 0)\oplus span\{ w\prime 

i : i = 1, . . . , l\} =W c.(5.22)

This proves the lemma.

We are now in a position to prove Theorem 5.1. In any center manifold, the
projection \pi c :Mc \subset \BbbR n \rightarrow Xc gives rise to a conjugate system on the center subspace
Xc. However, since the space W c is in general not equal to Wc \times \Omega , some more work
has to be done. Recall that we denote by Pc and Ph, respectively, the projections on
Wc and Wh, corresponding to the decomposition

V n =Wc \oplus Wh.(5.23)

Likewise, we denoted by P c and Ph the projections on W c and Wh for

V n \times \Omega =W c \oplus Wh.(5.24)

Because the spaces Wc/h and W c/h are \{ A\sigma i\} - and \{ A\sigma i
\} -invariant, respectively, it

follows that Pc/h and P c/h commute with A\sigma i , respectively, A\sigma i
.
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140 EDDIE NIJHOLT, BOB RINK, AND JAN SANDERS

Proof of Theorem 5.1. We begin by constructing a vector field on W c conjugate
to \Gamma f | Mc

, satisfying an analogue of the three bullet points in Theorem 5.1. From it,
we then construct the required vector field on Wc \times \Omega .

It is clear that the projection P c| Mc : Mc \rightarrow W c defines a global chart for the
manifold Mc. Hence, by taking the pushforward of \Gamma f | Mc we get a Ck-vector field R1

on W c defined by

R1(xc) = P c\Gamma f (xc + \psi (xc)) for xc \in W c.(5.25)

We note that it has the following properties: First of all, because \psi (0) = 0 and
\Gamma f (0) = 0, we see that

R1(0) = P c\Gamma f (0) = 0.(5.26)

Next, the derivative of R1 at the origin satisfies

DR1(0)v = P cD\Gamma f (0)(v +D\psi (0)v) = P cD\Gamma f (0)v(5.27)

for all v \in W c, where we have used that D\psi (0) = 0. Hence, we have the identity
DR1(0) = P cD\Gamma f (0)| W c

. From this it follows that the spectrum of DR1(0) lies
entirely on the imaginary axis. Finally, the vector field R1 shares the symmetries of
\Gamma f . Indeed, by using Lemma 5.2 we get

R1(A\sigma i
xc) = P c\Gamma f (A\sigma i

xc + \psi (A\sigma i
xc)) = P c\Gamma f (A\sigma i

xc +A\sigma i
\psi (xc))

= P cA\sigma i
\Gamma f (xc + \psi (xc)) = A\sigma i

P c\Gamma f (xc + \psi (xc))

= A\sigma i
R1(xc)

(5.28)

for all i \in \{ 1, . . . , n\} and xc \in W c.
Next, we define the linear map

P \prime :W c \rightarrow Wc \times \Omega , (x, \lambda ) \mapsto \rightarrow (Pc(x), \lambda ).(5.29)

By Lemma 5.3, we know that the space W c can be written as

W c = (Wc, 0)\oplus span\{ wi : i = 1, . . . , l\} (5.30)

for vectors wi = (wi, \lambda i) with wi \in Wh and \{ \lambda i\} li=1 a basis for \Omega . Because P \prime is the
identity on (Wc, 0) and sends the elements wi = (wi, \lambda i) to (0, \lambda i), we conclude that
it is a bijection. Furthermore, the map P \prime is \{ A\sigma i

\} -equivariant, as

P \prime \circ A\sigma i
(x, \lambda ) = P \prime (A\sigma i

x, \lambda ) = (Pc(A\sigma i
x), \lambda )

= (A\sigma i
Pc(x), \lambda ) = A\sigma i

(Pc(x), \lambda ) = A\sigma i
\circ P \prime (x, \lambda )(5.31)

for all i \in \{ 1, . . . , n\} and (x, \lambda ) \in W c. Note that this also implies the \{ A\sigma i
\} -invariance

of Wc \times \Omega . Taking the pushforward of R1 under P \prime now yields a Ck-vector field R2

on Wc \times \Omega given by

R2(x) = P \prime \circ R1 \circ P \prime  - 1(x) = P \prime \circ P c \circ \Gamma f [P
\prime  - 1(x) + \psi (P \prime  - 1(x))](5.32)

for x in Wc \times \Omega . From the properties of R1 it follows that R2 maps 0 to 0, that
DR2(0) has a purely imaginary spectrum, and that R2 is \{ A\sigma i

\} -equivariant.
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Finally, we want to show that the conjugacy P := P \prime \circ P c : V
n \times \Omega \rightarrow Wc \times \Omega is

as stated in Theorem 5.1, i.e., that P (x, \lambda ) = (Pc(x), \lambda ). However, we know that P c

vanishes on Wh = (Wh, 0), and hence so does P . Likewise, we may conclude that P
is the identity on (Wc, 0), as both P c and P \prime are. Moreover, for any of the elements
wi := (wi, \lambda i) \in W c we have that P (wi, \lambda i) = P \prime (wi, \lambda i) = (0, \lambda i), where we have
used that wi \in Wh. This proves that P is indeed of the required form. In particular,
since it is the identity on the \Omega -component, and since \Gamma f (x) has \Omega -component 0, we
conclude that

R2(x) = P \prime \circ P c \circ \Gamma f [P
\prime  - 1(x) + \psi (P \prime  - 1(x))]

= P \circ \Gamma f [P
\prime  - 1(x) + \psi (P \prime  - 1(x))](5.33)

has a vanishing \Omega -component as well. Therefore, we may write it as

R2(x, \lambda ) = (R(x, \lambda ), 0),(5.34)

and it follows from the properties of R2 that R(0, 0) = 0, that DR0(0) has a purely
imaginary spectrum, where we have set R0 := R(\bullet , 0), and that R is \{ A\sigma i

\} -equivariant
for fixed \lambda . This proves the theorem.

Next we want to describe all the reduced vector fields R that can be obtained
after center manifold reduction in a fundamental network vector field through the
procedure of Theorem 5.1. We start with the linear part of R.

Theorem 5.4. Let \Gamma f be a fundamental network vector field satisfying the con-
ditions of Theorem 4.1, and let R :Wc \times \Omega \rightarrow Wc be its corresponding reduced vector
field. Then the linear part of R is given explicitly by

DxR(0, 0) = D\Gamma f,0(0)| Wc ,

D\lambda R(0, 0) = Pc \circ D\lambda \Gamma f (0, 0).(5.35)

Moreover, let

V n =W1 \oplus W2(5.36)

be any decomposition of V n into \{ A\sigma i\} -invariant spaces and suppose that we are given
a linear map

\~R :W1 \times \Omega \rightarrow W1(5.37)

such that \~R| W1\times \{ 0\} has a purely imaginary spectrum. Assume furthermore that \~R
intertwines the action of \{ A\sigma i

\} on W1 \times \Omega with that of \{ A\sigma i
\} on W1, i.e., that

R(A\sigma i
xc, \lambda ) = A\sigma i

R(xc, \lambda ) for all (xc, \lambda ) \in Wc \times \Omega and all \sigma i \in \Sigma . Then there exists
a fundamental network vector field \Gamma g such that the center and hyperbolic subspaces
of D\Gamma g,0(0) are equal to W1, respectively, W2, and such that (the linear part of) its

reduced vector field is equal to \~R.

Proof. Recall from the proof of Theorem 5.1 that we have

DR2(0, 0) = P \prime \circ P c \circ D\Gamma f (0)| W c
\circ P \prime  - 1,(5.38)

where R2 = (R, 0) : Wc \times \Omega \rightarrow Wc \times \Omega and where P \prime : W c \rightarrow Wc \times \Omega is given by
P \prime (x, \lambda ) = (Pc(x), \lambda ). The linear map P \prime is the identity on (Wc, 0) and sends the
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elements (wi, \lambda i) \in W c from Lemma 5.3 to (0, \lambda i), from which it follows that we may
write

P \prime  - 1(xc, \lambda ) = (xc +Q(\lambda ), \lambda )(5.39)

for a linear map Q : \Omega \rightarrow Wh. Explicitly this map is given by

Q(\lambda i) = wi(5.40)

for (wi, \lambda i) an element as described in Lemma 5.3 and where we use that \{ \lambda i\} li=1

forms a basis for \Omega . From this we see that

DR2(0, 0)(xc, \lambda ) = P \prime \circ P c \circ D\Gamma f (0)(xc +Q(\lambda ), \lambda )

= P \prime [ (D\Gamma f,0(0)(xc +Q(\lambda )) +D\lambda \Gamma f (0, 0)(\lambda ), 0 ) ]

= (Pc[D\Gamma f,0(0)(xc +Q(\lambda )) +D\lambda \Gamma f (0, 0)(\lambda )], 0 )

= (D\Gamma f,0(0)(xc) + Pc \circ D\lambda \Gamma f (0, 0)(\lambda ), 0),(5.41)

where in the second step we have used that the linearization of \Gamma f is given by

D\Gamma f (0) =

\biggl( 
D\Gamma f,0(0) D\lambda \Gamma f (0, 0)

0 0

\biggr) 
.(5.42)

As R is defined by R2 = (R, 0), we see that indeed

DxR(0, 0) = D\Gamma f,0(0)| Wc
,

D\lambda R(0, 0) = Pc \circ D\lambda \Gamma f (0, 0).(5.43)

This proves the first part of the theorem.
As for the second part, if W1, W2, and \~R are given as in the statement of the

theorem, then we may define a linear vector field on V n \times \Omega = W1 \oplus W2 \oplus \Omega by the
matrix

A :=

\left(  \~R| W1 0 \~R| \Omega 
0 ( - ) IdW2 0
0 0 0

\right)  .(5.44)

We claim that A is a \lambda -family of fundamental network vector fields. Indeed, it follows
from the invariance of W1 and W2 and from the equivariance of \~R that A commutes
with A\sigma i

= (A\sigma i
, Id\Omega ) for all \sigma i \in \Sigma . Note in particular that this implies that the

map

v :=

\biggl( 
\~R| \Omega 
0

\biggr) 
: \Omega \rightarrow V n(5.45)

from the right-hand corner of A satisfies A\sigma iv = v. From this it follows that v\sigma i =
(A\sigma i

v)\sigma 1
= v\sigma 1

for all \sigma i \in \Sigma , where \sigma 1 denotes the unit in \Sigma . Hence the n components
of v(\lambda ) \in V n are all equal. This latter fact is necessarily the case for a \lambda -family of
fundamental network vector fields, since it is only the response function and not the
network structure that depends on \lambda . We will therefore write A = \Gamma g.

It is clear that ( - ) IdW2
has a purely hyperbolic spectrum, whereas \~R| W1

is given
to have only eigenvalues on the imaginary axis. Hence we conclude that the center
and hyperbolic subspaces of D\Gamma g,0(0) are equal toW1, respectively,W2. Furthermore,
it follows from the first part of the theorem that the reduced vector field of A = \Gamma g is

indeed equal to \~R. This concludes the proof.
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Theorem 5.4 tells us that any linear map satisfying the bullet points of Theorem
5.1 can occur as the linear part of the reduced vector field of a fundamental network
vector field. The following result tells us that furthermore any equivariant nonlinear
part can be realized in a reduced vector field.

Theorem 5.5. Let A : V n\times \Omega \rightarrow V n\times \Omega be a (fixed) linear fundamental network
vector field, and let W c, Wh, Wc, and Wh be the invariant spaces determined by A
and A| V n . It follows from Theorem 5.4 that the linear part of the reduced vector field
R of a fundamental network vector field \Gamma f is completely determined by the linear part
of \Gamma f . In particular, if D\Gamma f (0) = A, then we will denote the linear part of R by

\~A := DR(0) :Wc \times \Omega \rightarrow Wc.(5.46)

Let G : Wc \times \Omega \rightarrow Wc be a C1 map satisfying G(0) = 0 and DG(0) = 0, and assume
furthermore that G \circ A\sigma i

= A\sigma i
\circ G for all \sigma i \in \Sigma . Then there exists a fundamental

network vector field \Gamma f with linear part A satisfying the conditions of Theorem 4.1

and with reduced vector field given locally by \~A+G.

Proof. Given G : Wc \times \Omega \rightarrow Wc we may define the vector field (G, 0) on Wc \times \Omega 
by

(G, 0)(xc, \lambda ) := (G(xc, \lambda ), 0).(5.47)

Next, we define the vector field on Wc given by

\~G := P \prime  - 1 \circ (G, 0) \circ P \prime .(5.48)

Note that \~G is \{ A\sigma i
\} -equivariant by construction and satisfies \~G(0) = 0 and D \~G(0) =

0. We furthermore see that \~G has vanishing \lambda -component, as this is the case for
(G, 0) and because P \prime respects the \lambda -component. These properties likewise hold for
the vector field ( \~G, 0) on Wc \oplus Wh = V n \times \Omega , from which it follows that the vector

field A+ ( \~G, 0) is a fundamental network vector field with linear part A.
Finally, let \Gamma f be a fundamental network vector field satisfying the conditions of

Theorem 4.1 and agreeing locally with A + ( \~G, 0) around the origin. The dynamics
on the center manifold of \Gamma f is then conjugate to

P c\Gamma f (xc +\Psi (xc)) = P c[A+ ( \~G, 0)](xc +\Psi (xc))

= P cA(xc +\Psi (xc)) +
\~G(xc)

= A(xc) +
\~G(xc) = (A+ \~G)(xc)(5.49)

for xc \in W c sufficiently close to the origin. Conjugating by P \prime we get the system

\.x = ( \~Ax+G(x), 0)(5.50)

on a neighborhood around the origin in Wc \times \Omega , from which we conclude that the re-
duced vector field of \Gamma f is indeed given locally by \~A + G. This proves the
theorem.

Combining Theorems 5.4 and 5.5 we see that any vector field R satisfying the
bullet points of Theorem 5.1 can be achieved as the reduced vector field of some
fundamental network vector field \Gamma f . The linear part of R is completely determined
by the linear part of \Gamma f , and we see that the nonlinear part of R can be any equivariant
map on Wc (which is determined once the linear part of \Gamma f is fixed). This last
observation will be important in the following remark.
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Remark 5.6. It is well known that a center manifold for the general ODE \.x = F (x)
satisfies the tangency equation

D\psi (xc) \cdot \pi cF (xc + \psi (xc)) = \pi hF (xc + \psi (xc))(5.51)

for xc \in Xc and where the graph of \psi : Xc \rightarrow Xh equals the center manifold. In
particular, keeping \pi c and \pi h, that is, Xc and Xh fixed, one can use this formula to
express any Taylor coefficient of \psi around 0 as a rational function of a finite set of
Taylor coefficients of F around 0. See, for example, [36] or [37]. This phenomenon is
known as finite determinacy.

Returning to the setting of networks, if D\Gamma f (0) and therefore Wc/h and W c/h are
fixed, then the Taylor coefficients of the vector field on W c,

R1(xc) = P c\Gamma f (xc + \psi (xc)),(5.52)

as well as those of

R2(x) = P \prime \circ R1 \circ P \prime  - 1(x) for x \in Wc \times \Omega ,(5.53)

are given by rational functions of the Taylor coefficients of \Gamma f . Combined with The-
orems 5.5 and 5.4 that state that any reduced vector field can be realized at least
locally, we may conclude that if some rational function of the Taylor coefficients of
either of the two vector fields (5.52) or (5.53) is not forced zero by the symmetry, then
it will in general not vanish. More precisely, such a rational function vanishing will be
equivalent to some rational function of the coefficients of \Gamma f vanishing. Note that to
verify the occurrence of some bifurcation, one often needs to check that some rational
functions of the Taylor coefficients of the vector field do not vanish. Therefore, cen-
ter manifold reduction allows us to determine generic bifurcations in network vector
fields. Of course, to verify whether such a bifurcation really occurs in a particular
network, one actually has to compute and evaluate these rational functions, which
may involve quite a complicated computation.

Remark 5.7. Which linear subspaces may occur as the center subspace Wc in a
generic parameter family of network dynamical systems is a surprisingly subtle ques-
tion. It has instigated quite some interesting research on its own, and eventually led to
the following answer. A representation of a semigroup \Sigma is called ``indecomposable""
if its representation space cannot be written as a nontrivial direct sum of invariant
subspaces. A result known as the Krull--Schmidt theorem states that every (finite-
dimensional) representation of \Sigma can be written as the direct sum of indecomposable
representations that is unique up to isomorphism. It is furthermore known that an
indecomposable representation can be classified as being of either real, complex, or
quaternionic type. It was first shown in [29] that under a specific condition on the
representation of \Sigma , a one-parameter steady state bifurcation can generically occur
only if the center subspace Wc is an indecomposable representation of real type. It
was later proven in [27] and [32] that this result holds for all (finite-dimensional) rep-
resentations of \Sigma , so that the previously required condition may be dropped. This
result is then further generalized in [27], where it is shown exactly what generalized
kernel and center subspace to expect in a k-parameter bifurcation in the presence of
semigroup symmetry. In the particular case of our three example networks A, B,
and C, the representation space splits as the direct sum of two indecomposable repre-
sentations of real type, both of which may therefore occur as Wc in a one-parameter
bifurcation. The full space V 3, however, can generically not be equal to Wc in this
case.
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From the above discussion we see that the problem of finding generic bifurcations
for homogeneous coupled cell network vector fields is reduced to finding those for a
class of equivariant reduced vector fields. As it turns out, this latter class admits
a rather straightforward description which states that, roughly speaking, they come
with a network structure themselves. More precisely, we have the following theorem.

Theorem 5.8. Let

V n =W1 \oplus W2(5.54)

be a decomposition of the phase space of a fundamental network into \{ A\sigma i
\} -invariant

spaces, and denote by P1 : V n \rightarrow W1 and i1 : W1 \rightarrow V n, respectively, the projection
onto W1 and the inclusion of W1 into V n.

A map F :W1 \rightarrow W1 is \{ A\sigma i\} -equivariant if and only if the map

i1 \circ F \circ P1

is a fundamental network vector field.

Proof. Recall that both P1 and i1 are \{ A\sigma i
\} -equivariant maps. So if i1 \circ F \circ P1

commutes with A\sigma i
for all i, then so does

F = P1 \circ (i1 \circ F \circ P1) \circ i1.(5.55)

For the same reason, i1 \circ F \circ P1 is \{ A\sigma i
\} -equivariant when F is. Moreover, it follows

from Theorem 3.5 that this property is equivalent to i1 \circ F \circ P1 having the structure
of a fundamental network. Here we use in particular that i1 \circ F \circ P1 is a vector field
on V n. This concludes the proof.

6. Synchrony and the Center Manifold. Until now we have focused on develop-
ing a center manifold theory for fundamental networks. However, of our three leading
examples, only example A is conjugate to its own fundamental network, while net-
works B and C are embedded in a fundamental network as a robust synchrony space.
Moreover, by Theorem 3.6 this is true in general. The following theorem states that
center manifold reduction respects robust synchrony spaces in a natural way.

Theorem 6.1. Let SynP \subset V n be a robust synchrony space in a fundamental
network. For every \lambda 0 \in \Omega , the map P = (Pc, Id) : V

n \times \Omega \rightarrow Wc \times \Omega of Theorem 5.1
maps the space

\{ (x, \lambda ) \in Mc : x \in SynP , \lambda = \lambda 0\} 

bijectively onto the space

\{ (x, \lambda ) \in Wc \times \Omega : x \in SynP , \lambda = \lambda 0\} .

Proof. Recall from Theorem 5.1 that P = P \prime \circ P c is an \{ A\sigma i
\} -equivariant map

that sends a vector (x, \lambda ) in V n\times \Omega to a vector inWc\times \Omega with the same \lambda -component.
Therefore, keeping \lambda = \lambda 0 fixed, we may think of P as an \{ A\sigma i

\} -equivariant map from
V n to Wc. Let us likewise use Mc to denote what is really \{ (x, \lambda ) \in Mc : \lambda = \lambda 0\} .
It follows from Theorem 5.1 that, under these identifications, P | Mc : Mc \rightarrow Wc

is an \{ A\sigma i\} -equivariant bijection between \{ A\sigma i\} -invariant sets. We will keep these
identifications throughout this proof. In particular, what we want to show in this
notation is that P maps Mc \cap SynP bijectively onto Wc \cap SynP .

For this purpose, let us denote by ic : Wc \rightarrow V n the inclusion of Wc into V n =
Wc \oplus Wh. The map ic \circ P is now an \{ A\sigma i

\} -equivariant map from V n into itself.
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Therefore, we may conclude by Theorem 3.5 that it is a fundamental network vector
field. In particular, we see that it maps SynP into itself, and from this we conclude
that P | Mc

maps Mc \cap SynP into Wc \cap SynP .
On the other hand, it follows that (P | Mc)

 - 1 : Wc \rightarrow Mc is \{ A\sigma i\} -equivariant
as well. Therefore, so is the function iMc \circ (P | Mc)

 - 1 \circ Pc : V n \rightarrow V n, where we use
iMc

:Mc \rightarrow V n to denote the natural inclusion ofMc into V
n. As before, we conclude

that iMc
\circ (P | Mc

) - 1 \circ Pc is a fundamental network vector field and therefore sends
SynP into itself. From this it follows that (P | Mc

) - 1 maps Wc\cap SynP into Mc\cap SynP ,
and we conclude that this in fact happens bijectively. This proves the theorem.

Recall that the linearization of a fundamental network vector field gives rise to a
decomposition of V n into invariant subspaces Wc and Wh. As the possible dynamics
on the former subspace is completely determined by the action of \Sigma on this space, we
may conclude that isomorphic splittings of V n into Wc and Wh give rise to conjugate
dynamics and therefore equivalent bifurcations. However, this reasoning seems to lose
sight of (robust) synchrony spaces, such as the one representing the original network
vector field in its fundamental one. The following theorem settles this, as it tells us
that synchrony spaces do behave well when choosing different decompositions of V n

into invariant subspaces.

Theorem 6.2. Let \{ Wi\} ki=1 and \{ W \prime 
i\} ki=1 be two sets of \{ A\sigma i

\} -invariant sub-
spaces of V n such that

V n =

k\bigoplus 
i=1

Wi =

k\bigoplus 
i=1

W \prime 
i .(6.1)

Suppose furthermore that for every i, Wi and W
\prime 
i are isomorphic as \{ A\sigma i

\} -invariant
subspaces. Then, for any robust synchrony space SynP and any isomorphism \phi j :
Wj \rightarrow W \prime 

j, it holds that \phi j restricts to a bijection between SynP \cap Wj and SynP \cap W \prime 
j.

In particular, for every j there exists an isomorphism between Wj and W \prime 
j respecting

SynP in this way.

Proof. It is clear that if we have proven that any isomorphism between Wj and
W \prime 

j respects SynP , we have then shown that there exists an isomorphism respecting
this synchrony space. This is because Wj and W \prime 

j are isomorphic; i.e., there exists (at
least one) isomorphism between them. Let \phi j now be an isomorphism between Wj

and W \prime 
j . By choosing for every i \not = j an isomorphism \phi i between Wi and W

\prime 
i , we can

define the function \Phi : V n \rightarrow V n given by

\Phi :

k\sum 
i=1

xi \mapsto \rightarrow 
k\sum 

i=1

\phi i(xi)(6.2)

for xi \in Wi. First of all, because this map is an \{ A\sigma i
\} -equivariant map by construc-

tion, we conclude that it is in fact a fundamental network vector field. In particular,
it sends SynP to itself. Second, because it sends an element in Wj to an element in
W \prime 

j , we conclude that \Phi sends the space SynP \cap Wj into the space SynP \cap W \prime 
j . Last,

because \Phi | Wj
= \phi j we conclude that \phi j sends SynP \cap Wj into SynP \cap W \prime 

j . By the same

argument we see that \phi  - 1
j sends SynP \cap W \prime 

j into SynP \cap Wj , from which it follows that
this in fact happens bijectively. This concludes the proof.

Remark 6.3. If we are given two decompositions of V n into invariant subspaces

V n =Wc \oplus Wh =W \prime 
c \oplus W \prime 

h(6.3)
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and if we know that Wc and W \prime 
c are isomorphic, then it follows that the same holds

true for Wh and W \prime 
h. Namely, writing Wc, W

\prime 
c, Wh, and W \prime 

h as the direct sum of
indecomposable representations, we get two indecomposable splittings of V n. By the
Krull--Schmidt theorem such a splitting is unique, from which it follows that Wh and
W \prime 

h are indeed isomorphic as well.

We now have a recipe for classifying the generic bifurcations of a homogeneous
coupled cell network. One has to go through the following steps:

\bullet One first constructs the fundamental network of the homogeneous network.
\bullet Next, one determines all possible representation types of generic center sub-
spaces Wc that can occur in a bifurcation.

\bullet After that, one determines all possible reduced vector fields of the fundamen-
tal network on Wc. This is equivalent to finding all the equivariant vector
fields on Wc. As it turns out, an efficient way of finding these is by using
that F : Wc \rightarrow Wc is symmetric if and only if ic \circ F \circ Pc : V n \rightarrow V n is a
fundamental network vector field. See Theorem 5.8.

\bullet Finally, Theorem 6.1 tells us that the dynamics on the center manifold of
the original network can be found by restricting the dynamics on the center
manifold of the fundamental network to an appropriate synchrony space.
Namely, we know that the dynamics of the original network vector field is
embedded as a robust synchrony space inside the fundamental network and
that center manifold reduction respects it.

Note that if one finds two decompositions V n = Wc \oplus Wh = W \prime 
c \oplus W \prime 

h such that
Wc and W \prime 

c are isomorphic as representations of \Sigma , then for any bifurcation that
occurs along Wc there is an equivalent bifurcation along W \prime 

c. By Theorem 6.2 this
equivalence respects robust synchrony spaces, in particular the one that represents
the original network.

7. Examples. In this section, we illustrate the machinery that we have developed.
We will show which codimension-one steady state bifurcations one can expect in
networks B and C when the phase space of a single cell is V = \BbbR . In particular, it
will become clear that the difference in generic bifurcations can be explained from the
representations of the symmetry semigroups. For network A, this was already shown
in [31] with the help of normal form theory.

7.1. Network B. Recall from section 2 that network B is realized as the robust
synchrony space \{ X2 = X3\} inside the fundamental network

\.X1 = f(X1, X2, X3, X4),

\.X2 = f(X2, X4, X3, X4),

\.X3 = f(X3, X4, X3, X4),

\.X4 = f(X4, X4, X3, X4),

(7.1)

where it can be found by setting X1 = x1, X2 = X3 = x2, and X4 = x3. For
the moment, we suppress the dependence of f on the parameter \lambda in our notation.
Equation (7.1) describes all vector fields on \BbbR 4 that commute with the maps

(X1, X2, X3, X4) \mapsto \rightarrow (X2, X4, X3, X4),

(X1, X2, X3, X4) \mapsto \rightarrow (X3, X4, X3, X4),

(X1, X2, X3, X4) \mapsto \rightarrow (X4, X4, X3, X4).

(7.2)
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It can be shown [26] that any decomposition of \BbbR 4 into indecomposable representations
of these symmetries is isomorphic to the splitting

\BbbR 4 = \{ X1 = X2 = X3 = X4\} \oplus \{ X4 = 0\} (7.3)

with corresponding projections given by

P (X1, X2, X3, X4) = (X4, X4, X4, X4)(7.4)

and

Q(X1, X2, X3, X4) = (X1  - X4, X2  - X4, X3  - X4, 0).(7.5)

Let us first assume that the center subspace is isomorphic to the subrepresentation
Syn0 := \{ X1 = X2 = X3 = X4\} . Theorem 5.8 says that a reduced vector field
F = F (X) : Syn0 \rightarrow Syn0 is equivariant if and only if

(iSyn0
\circ F \circ P )(X1, X2, X3, X4) = (F (X4), F (X4), F (X4), F (X4))(7.6)

is a fundamental network vector field. As this is clearly the case, we see that there
are no constraints on F . In particular, the bifurcation problem reduces to solving
F (X,\lambda ) = 0 given that F (0, 0) = 0 and DXF (0, 0) = 0. This will generically yield a
fully synchronous saddle node bifurcation.

Now for the representation \{ X4 = 0\} : if we parametrize it by X1, X2, and X3,
then a general vector field on this space can be written as

F (X1, X2, X3) =

\left(  F1(X1, X2, X3)
F2(X1, X2, X3)
F3(X1, X2, X3)

\right)  .(7.7)

According to Theorem 5.8, the expression

i\{ X4=0\} \circ F \circ Q(X1, X2, X3, X4) =

\left(    
F1(X1  - X4, X2  - X4, X3  - X4)
F2(X1  - X4, X2  - X4, X3  - X4)
F3(X1  - X4, X2  - X4, X3  - X4)

0

\right)    (7.8)

must be a fundamental network vector field. Using that a fundamental network vector
field is determined by its first component, we obtain the equalities\left(  F1(X1  - X4, X2  - X4, X3  - X4)

F2(X1  - X4, X2  - X4, X3  - X4)
F3(X1  - X4, X2  - X4, X3  - X4)

0

\right)  =

\left(  F1(X1  - X4, X2  - X4, X3  - X4)
F1(X2  - X4, 0, X3  - X4)
F1(X3  - X4, 0, X3  - X4)
F1(0, 0, X3  - X4)

\right)  .(7.9)

Therefore, a general equivariant vector field on \{ X4 = 0\} is given by

F (X1, X2, X3) =

\left(  F1(X1, X2, X3)
F1(X2, 0, X3)
F1(X3, 0, X3)

\right)  ,(7.10)

with the additional condition that F1(0, 0, X3) = 0. Since this means that we may set
F1(X1, X2, X3) = X2G(X1, X2, X3) +X1H(X1, X3), we can write

F (X1, X2, X3) =

\left(  X2G(X1, X2, X3) +X1H(X1, X3)
X2H(X2, X3)
X3H(X3, X3)

\right)  .(7.11)
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Recall also that we are only interested in the dynamics on the synchrony space \{ X2 =
X3\} . We thus have to solve the equations

X2G(X1, X2) +X1H(X1, X2) = 0,
X2H(X2, X2) = 0.

(7.12)

To solve these, let us include the parameter in our notation again and write

G(X1, X2, \lambda ) = C +\scrO (| X1| + | X2| + | \lambda | )(7.13)

and

H(X1, X2, \lambda ) = a1X1 + a2X2 + a3\lambda +\scrO (| X1| 2 + | X2| 2 + | \lambda | 2).(7.14)

Note that H(0, 0, 0) = 0, which follows from the fact that the linearization with
respect to X of the reduced vector field in (7.12) is noninvertible at the origin X1 =
X2 = \lambda = 0. Focusing first on the second equation of (7.12),

X2H(X2, X2, \lambda ) = X2[(a1 + a2)X2 + a3\lambda +\scrO (| X2| 2 + | \lambda | 2)] = 0,(7.15)

we see that either X2 = 0 or, if a1 + a2 \not = 0, that X2 = X2(\lambda ) =  - a3

a1+a2
\lambda +\scrO (| \lambda | 2)

by the implicit function theorem. If we set X2 = 0, then the first equation of (7.12)
reduces to

X1H(X1, 0, \lambda ) = X1[a1X1 + a3\lambda +\scrO (| X1| 2 + | \lambda | 2)] = 0.(7.16)

This gives either X1 = 0 or X1 = X1(\lambda ) =  - a3

a1
\lambda + \scrO (| \lambda | 2) if a1 \not = 0. If we set

X2 = X2(\lambda ) =  - a3

a1+a2
\lambda +\scrO (| \lambda | 2), then the first equation reduces to

 - C a3
a1 + a2

\lambda + a1X
2
1 +\scrO (| X1| 3 + | X1| | \lambda | + | \lambda | 2) = 0.(7.17)

Next, substituting \lambda = \pm \mu 2 and X1 = \mu Y gives us

\mp C a3
a1 + a2

\mu 2 + a1\mu 
2Y 2 +\scrO (| \mu | 3) = 0,(7.18)

or, after dividing by \mu 2,

\mp C a3
a1 + a2

+ a1Y
2 +\scrO (| \mu | ) = 0.(7.19)

For one choice of the sign in \lambda = \pm \mu 2 this gives no solutions with \mu = 0, whereas for
the other we find the solutions

(Y, \mu ) =

\Biggl( 
\pm 

\sqrt{} 
| Ca3| 

| a1(a1 + a2)| 
, 0

\Biggr) 
.(7.20)

Assuming C, a3 \not = 0, the implicit function theorem now tells us that these solutions
continue in \mu as

Y (\mu ) = \pm 

\sqrt{} 
| Ca3| 

| a1(a1 + a2)| 
+\scrO (| \mu | ),(7.21)
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from which it follows that we have the branches

X1(\lambda ) = \pm 

\sqrt{} 
Ca3

a1(a1 + a2)
\lambda +\scrO (| \lambda | ).(7.22)

To summarize, we have found the following solutions to (7.12):

X1(\lambda ) = X2(\lambda ) = 0,

X1(\lambda ) =  - a3
a1
\lambda +\scrO (| \lambda | 2), X2(\lambda ) = 0,

X1(\lambda ) = \pm 

\sqrt{} 
Ca3

a1(a1 + a2)
\lambda +\scrO (| \lambda | ), X2(\lambda ) =  - a3

a1 + a2
\lambda +\scrO (| \lambda | 2).

(7.23)

Note that in all cases we have X4 = 0, and hence the first branch is fully synchronous,
the second is partially synchronous, and the last is fully asynchronous.

To determine the stability of these branches, we linearize the vector field in (7.12)
in the X-variables to obtain the Jacobian\Bigl( 

2a1X1 + a2X2 + a3\lambda +\scrO (| X1| 2 + | X2| + | \lambda | 2) C +\scrO (| X1| + | X2| + | \lambda | )
0 2(a1 + a2)X2 + a3\lambda +\scrO (| X2| 2 + | \lambda | 2)

\Bigr) 
.

For the fully synchronous branch, this Jacobian reduces to

(7.24)

\biggl( 
a3\lambda +\scrO (| \lambda | 2) C +\scrO (| \lambda | )
0 a3\lambda +\scrO (| \lambda | 2)

\biggr) 
;

hence we find two times the eigenvalue a3\lambda + \scrO (| \lambda | 2). Likewise, for the partially
synchronous branch we find a3\lambda +\scrO (| \lambda | 2) and  - a3\lambda +\scrO (| \lambda | 2). For the fully nonsyn-

chronous one we find \pm 2a1

\sqrt{} 
Ca3

a1(a1+a2)
\lambda +\scrO (| \lambda | ) and  - a3\lambda +\scrO (| \lambda | 2). In particular, we see

that the partially synchronous branch is always a saddle, and the fully synchronous
branch can only give its stability to the fully nonsynchronous one.

Recalling that network B can be obtained from network \widetilde B by making the iden-
tifications X1 = x1, X2 = X3 = x2, and X4 = x3, and using that the center subspace
in \widetilde B is given by \{ X4 = 0\} , the above analysis proves the claims on network B of the
introduction.

7.2. Network C. Recall from section 2 that network C is realized inside the
fundamental network

\.X1 = f(X1, X2, X3, X4, X5),

\.X2 = f(X2, X4, X3, X4, X5),

\.X3 = f(X3, X5, X3, X4, X5),

\.X4 = f(X4, X4, X3, X4, X5),

\.X4 = f(X5, X4, X3, X4, X5)

(7.25)

by setting X1 = X3 = x1, X2 = X5 = x2, and X4 = x3. This latter system describes
all vector fields on \BbbR 5 with the symmetries

(X1, X2, X3, X4, X5) \mapsto \rightarrow (X2, X4, X3, X4, X5),

(X1, X2, X3, X4, X5) \mapsto \rightarrow (X3, X5, X3, X4, X5),

(X1, X2, X3, X4, X5) \mapsto \rightarrow (X4, X4, X3, X4, X5),

(X1, X2, X3, X4, X5) \mapsto \rightarrow (X5, X4, X3, X4, X5).

(7.26)D
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As shown in [26], the center and hyperbolic subspaces of its linearization at a fully
synchronous point will generically define a splitting of \BbbR 5 isomorphic to

\BbbR 5 = \{ X1 = \cdot \cdot \cdot = X5\} \oplus \{ X4 = 0\} .(7.27)

Projections corresponding to this decomposition are given by

P (X1, X2, X3, X4, X5) = (X4, X4, X4, X4, X4)(7.28)

and

Q(X1, X2, X3, X4, X5) = (X1  - X4, X2  - X4, X3  - X4, 0, X5  - X4).(7.29)

If we take the fully synchronous space to be the center subspace, then generically we
again obtain a fully synchronous saddle node bifurcation, as was the case in network
B as well. If instead we take \{ X4 = 0\} to be the center subspace, then a reduced
vector field for system (7.25) corresponds to an equivariant vector field on this space.
Following Theorem 5.8, these correspond to the functions F = (F1, F2, F3, F5) : \BbbR 4 \rightarrow 
\BbbR 4 such that the expression

i\{ X4=0\} \circ F \circ Q(X1, . . . , X5) =

\left(      
F1(X1  - X4, X2  - X4, X3  - X4, X5  - X4)
F2(X1  - X4, X2  - X4, X3  - X4, X5  - X4)
F3(X1  - X4, X2  - X4, X3  - X4, X5  - X4)

0
F5(X1  - X4, X2  - X4, X3  - X4, X5  - X4)

\right)      
is a fundamental network vector field. This yields the equalities\left(      

F1(X1  - X4, X2  - X4, X3  - X4, X5  - X4)
F2(X1  - X4, X2  - X4, X3  - X4, X5  - X4)
F3(X1  - X4, X2  - X4, X3  - X4, X5  - X4)

0
F5(X1  - X4, X2  - X4, X3  - X4, X5  - X4)

\right)      

=

\left(      
F1(X1  - X4, X2  - X4, X3  - X4, X5  - X4)
F1(X2  - X4, 0, X3  - X4, X5  - X4)
F1(X3  - X4, X5  - X4, X3  - X4, X5  - X4)
F1(0, 0, X3  - X4, X5  - X4)
F1(X5  - X4, 0, X3  - X4, X5  - X4)

\right)      .

(7.30)

It follows that a general equivariant vector field on \{ X4 = 0\} is of the form

F (X1, X2, X3, X5) =

\left(    
F1(X1, X2, X3, X5)
F1(X2, 0, X3, X5)
F1(X3, X5, X3, X5)
F1(X5, 0, X3, X5)

\right)    ,(7.31)

with the additional condition that F1(0, 0, X3, X5) = 0. This latter condition can be
reformulated by writing

F1(X1, X2, X3, X5) = X1G(X1, X3, X5) +X2H(X1, X2, X3, X5),(7.32)
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from which it follows that a general \Sigma -equivariant vector field has the form

F (X1, X2, X3, X5) =

\left(    
X1G(X1, X3, X5) +X2H(X1, X2, X3, X5)
X2G(X2, X3, X5)
X3G(X3, X3, X5) +X5H(X3, X5, X3, X5)
X5G(X5, X3, X5)

\right)    .(7.33)

If we now restrict our focus to networkC, i.e., to the synchrony space \{ X1 = X3, X2 =
X5\} , then the steady state problem reduces to solving the equations

X1G(X1, X1, X2, \lambda ) +X2H(X1, X2, \lambda ) = 0,

X2G(X2, X1, X2, \lambda ) = 0.
(7.34)

At this point, we include the parameter again to investigate generic steady state
bifurcations. So we shall write

G(X1, X2, X3, \lambda ) = a1X1 + a2X2 + a3X3 + a4\lambda +\scrO (| X| 2 + | \lambda | 2),
H(X1, X2, \lambda ) = C + b1X1 + b2X2 + b3\lambda +\scrO (| X| 2 + | \lambda | 2).

(7.35)

The second line in (7.34) is solved when X2 = 0 or when

G(X2, X1, X2, \lambda ) = a1X2 + a2X1 + a3X2 + a4\lambda +\scrO (| X| 2 + | \lambda | 2) = 0.(7.36)

Assuming a2 \not = 0, the implicit function theorem then gives us that locally all the
solutions to (7.36) are given by

X1 = X1(X2, \lambda ) =  - a1 + a3
a2

X2  - 
a4
a2
\lambda +\scrO (| X2| 2 + | \lambda | 2).(7.37)

Let us first assume that X2 = 0. The first line in (7.34) is then solved when
X1 = 0 or when X1(\lambda ) =

 - a4

a1+a2
\lambda +\scrO (| \lambda | 2), assuming a1 + a2 \not = 0. Next, suppose we

have the relation X1 = X1(X2, \lambda ) =  - a1+a3

a2
X2 - a4

a2
\lambda +\scrO (| X2| 2+ | \lambda | 2). The first line

in (7.34) then becomes the equation

\biggl[ 
 - a1 + a3

a2
X2  - 

a4
a2
\lambda 

\biggr] \biggl( 
(a1 + a2)

\biggl[ 
 - a1 + a3

a2
X2  - 

a4
a2
\lambda 

\biggr] 
+ a3X2 + a4\lambda 

\biggr) 
+X2

\biggl( 
C + b1

\biggl[ 
 - a1 + a3

a2
X2  - 

a4
a2
\lambda 

\biggr] 
+ b2X2 + b3\lambda 

\biggr) 
+\scrO (| X2| 3 + | \lambda | 3) = 0,

(7.38)

which can be rewritten as

CX2 +
a24a1
a22

\lambda 2 +\scrO (| X2| 2 + | \lambda | | X2| + | \lambda | 3) = 0.(7.39)

Hence, assuming C \not = 0, the implicit function theorem gives the solution

X2 = X2(\lambda ) =
 - a24a1
Ca22

\lambda 2 +\scrO (| \lambda | 3).(7.40)

Combined with the relation X1 = X1(X2, \lambda ) =  - a1+a3

a2
X2  - a4

a2
\lambda + \scrO (| X2| 2 + | \lambda | 2),

we then get

X1(\lambda ) =
 - a4
a2

\lambda +\scrO (| \lambda | 2).(7.41)
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To summarize, we have found the three bifurcation branches

X1(\lambda ) = X2(\lambda ) = 0,

X1(\lambda ) =
 - a4

a1 + a2
\lambda +\scrO (| \lambda | 2), X2(\lambda ) = 0,

X1(\lambda ) =
 - a4
a2

\lambda +\scrO (| \lambda | 2), X2(\lambda ) =
 - a24a1
Ca22

\lambda 2 +\scrO (| \lambda | 3),

(7.42)

where furthermore we have that X4 = 0 in all three cases. Note that this makes the
first branch fully synchronous, the second partially synchronous, and the last fully
nonsynchronous. Note, however, that this third branch is partially synchronous up to
first order.

A stability analysis similar to that in section 7.1 yields the eigenvalue a4\lambda +\scrO (| \lambda | 2)
twice for the fully synchronous branch. We thus assume that a4 \not = 0. For the partially
synchronous branch we then find the eigenvalues  - a4\lambda +\scrO (| \lambda | 2) and a1a4

a1+a2
\lambda +\scrO (| \lambda | 2).

For the fully nonsynchronous branch we find \beta 1\lambda +\scrO (| \lambda | 2) and \beta 2\lambda +\scrO (| \lambda | 2), where
\beta 1 and \beta 2 satisfy

\beta 1 + \beta 2 =  - a4
2a1 + a2

a2
and \beta 1 \cdot \beta 2 = a24

a1
a2
.(7.43)

Note that for positive values of a1

a2
the expression 2a1+a2

a2
= 2a1

a2
+1 is necessarily posi-

tive as well. Hence, the fully nonsynchronous branch either takes over the stability of
the fully synchronous one or remains a saddle. The same holds true for the partially
synchronous solution. However, when this latter branch gains the stability of the
fully synchronous one, then it must hold that a1

a1+a2
< 0. From this it follows that

a2

a1
= a1+a2

a1
 - 1 < 0, and we see that in this case the nonsynchronous branch is nec-

essarily a saddle. We note that it is also possible that both the partially synchronous
and the fully nonsynchronous branches are saddles, as there are values of a1 and a2
for which a1

a2
is negative but a1

a1+a2
= (a2

a1
+ 1) - 1 is positive.

As network C is obtained from the fundamental system (7.25) by setting X1 =
X3 = x1, X2 = X5 = x2, and X4 = x3, we see that the results obtained above hold
for this former system under these identifications. This proves the claims on network
C of the introduction.
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