
VU Research Portal

Reliable Restricted Process Theory

Ghassemi, Fatemeh; Fokkink, Wan

published in
Fundamenta Informaticae
2019

DOI (link to publisher)
10.3233/FI-2019-1775

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Ghassemi, F., & Fokkink, W. (2019). Reliable Restricted Process Theory. Fundamenta Informaticae, 165(1), 1-
41. https://doi.org/10.3233/FI-2019-1775

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303692515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3233/FI-2019-1775
https://research.vu.nl/en/publications/7ce5d0f3-de75-44d3-a48b-5ab95886ef79
https://doi.org/10.3233/FI-2019-1775

Fundamenta Informaticae 165 (2019) 1–41 1

DOI 10.3233/FI-2019-1775

IOS Press

Reliable Restricted Process Theory

Fatemeh Ghassemi∗

University of Tehran

Tehran, Iran

fghassemi@ut.ac.ir

Wan Fokkink
Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

w.j.fokkink@vu.nl

Abstract. Malfunctions of a mobile ad hoc network (MANET) protocol caused by a concep-
tual mistake in the protocol design, rather than unreliable communication, can often be detected
only by considering communication among the nodes in the network to be reliable. In Restricted
Broadcast Process Theory, which was developed for the specification and verification of MANET
protocols, the communication operator is lossy. Replacing unreliable with reliable communica-
tion invalidates existing results for this process theory. We examine the effects of this adaptation
on the semantics of the framework with regard to the non-blocking property of communication
in MANETs, the notion of behavioral equivalence relation and its axiomatization. To utilize
our complete axiomatization for analyzing the correctness of protocols at the syntactic level, we
introduce a precongruence relation which abstracts away from a sequence of multi-hop commu-
nications, leading to an application-level action preconditioned by a multi-hop constraint over the
topology. We illustrate the applicability of our framework through a simple routing protocol. To
prove its correctness, we introduce a novel proof process, based on our precongruence relation.

Keywords: Mobile ad hoc network, restricted broadcast, process algebra, behavioral congru-
ence, refinement.

∗Address for correspondence: University of Tehran, Tehran, Iran.

Received March 2017; revised October 2018.

2 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

1. Introduction

The applicability of wireless communication is growing rapidly in areas like home networks and
satellite transmissions, due to their broadcasting nature. Mobile ad hoc networks (MANETs) consist of
several portable hosts with no pre-existing infrastructure, such as routers in wired networks or access
points in managed (infrastructure) wireless networks. The design of MANET protocols is complicated,
because due to mobility of nodes the topology of communication links is dynamic. Important MANET
protocols such as the Ad hoc On Demand Distance Vector (AODV) routing protocol [43] contained
flaws in their original design and have been revised accordingly. Formal methods can be applied in
the early phases of the protocol development to analyze and capture conceptual errors before their
implementation. For instance, some errors in the design of AODV were found in [6, 40, 33, 51] using
formal techniques.

There are numerous applications of existing formal frameworks such as SPIN [46, 49, 6] and
UPPAAL [49, 50, 26, 36, 11, 15] for the analysis of MANET protocols. Lack of support for com-
positional modeling and arbitrary topology changes motivates developing a new approach, tailored
to the domain of MANETs, with a primitive for local broadcast and supporting the verification of
MANET protocols against changes of the underlying topology. The tailored formal modeling frame-
work should provide some form of wireless communication which varies at the different layers of the
Open Systems Interconnection (OSI) model: physical, data link, network, transport, session, presen-
tation, and application. For instance, the data link layer is responsible for transferring data across the
physical link and handling conflicts due to simultaneous accesses to the shared media. In contrast,
communication at the network layer provides point-to-point communication between two nodes that
are not directly connected through appropriate routing of messages by using the communication ser-
vice of the data link layer. Most frameworks for the formal analysis of MANET protocols, such as
[41, 24, 25, 37, 42, 47, 27, 34, 16, 51], focus on protocols above the data link layer; hence they support
the core services of this layer, which means that local broadcast is the primitive means of communica-
tion. Wireless communication at this layer is non-blocking, i.e., the sender broadcasts irrespective of
the readiness of its receivers, and is asynchronous, i.e., received packets are buffered at the receiver.
The data link layer of a node processes the packet if it is an intended destination. While a node is busy
processing a message, it can still receive messages, buffer them and process them later. However,
if two different nodes broadcast simultaneously with a common node in their range, the latter node
cannot receive both messages and drops one of them, which is called the hidden node problem. We
say that wireless communication is reliable if the intended receivers successfully receive the packet.
In other words, message delivery is guaranteed to all connected neighbors.

Although lossy communication is an integral part of MANETs, mimicking it faithfully in a formal
framework can hamper the formal analysis of MANET protocols. To obtain a deeper understanding
of a malfunctioning of such a protocol due to a conceptual mistakes in its design rather than unreliable
communication, it may be helpful to consider communication reliable, meaning that the possibility of
the hidden node problem is omitted from the framework [33, 16]. Therefore we introduced the process
algebra Reliable Restricted Broadcast Process Theory (RRBPT) in [18], to perform model checking
of MANET protocols in a setting where communication is reliable. It is a variant of Restricted Broad-
cast Process Theory (RBPT) that we introduced previously in [19] for the modeling and analysis of

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 3

protocols above the data link layer. The underlying semantic model of RBPT, a so-called constrained
labeled transition system (CLTS), implicitly considers mobility of nodes with the novel notion of a
network constraint, which abstractly defines a set of topologies: those satisfying the given connec-
tivity constraints. The transitions of a CLTS are annotated with appropriate network constraints to
restrict the behavior to MANETs with a topology of the specified ones. RBPT was extended with a
set of auxiliary operators to reason about MANETs by equational reasoning, so-called Computed Net-
work Process Theory (CNT) [21]. We provided a sound and complete axiomatization for CNT terms
with finite-state behaviors, modulo so-called rooted branching computed network bisimilarity. This
axiomatization enables linearization of processes at the syntactic level to take advantage of symbolic
verification [31, 17], especially when the network is composed of similar nodes [32, 22].

Somewhat surprisingly, all these results do not carry over in a straightforward fashion from RBPT
to RRBPT. To put the model checking approach presented in [18] on a firm basis, the current paper
develops the formal foundations for RRBPT and modifies the core of CNT. In a lossy setting, the non-
blocking property of local broadcast communication is an immediate consequence of the rule Par and

its counterpart for the parallel composition:
t1

a−→ t′1
t1 ‖ t2

a−→ t′1 ‖ t2
, which expresses that if a node is not

ready to participate in a communication, then we can assume that either it was disconnected from the
sender or it was connected but has lost the message. However, in the reliable setting, to guarantee
the non-blocking property, nodes should always be input-enabled. RRBPT provides a sensing operator
which allows to change the control flow of a process depending on the status of node connectivity with
other nodes. The input-enabledness feature is ensured through the RRBPT operational rules, where
the main difference between RRBPT and RBPT is: in RRBPT, nodes lose a communication only
when they are disconnected and are always input-enabled. We recap challenges of bringing input-
enabledness feature in the semantics of RRBPT in the presence of the sensing operator. Furthermore,
the behavioral equivalence relation of CNT setting is not a congruence with respect to parallel compo-
sition anymore. To support the desired distinguishing power, we provide a new bisimulation relation
which guarantees the congruence property for MANETs. RRBPT can be extended in the same way
as RBPT with computed network terms and the auxiliary operators left merge () and communication
merge (|) to provide a sound and complete axiomatization for the parallel composition. However, the
input-enabledness feature and the new sensing operator require new auxiliary operators to assist their
axiomatization. To this aim, we discuss the appropriate axioms of RRBPT. We utilize our axioms to
analyze the correctness of protocols at the syntactic level. To this aim, we facilitate the specification
of the protocol behaviors preconditioned to multihop constraints and then introduce a new notion of
refinement among protocol implementations and their specifications. Such a relation abstracts away
from a sequence of multi-hop communications, leading to an application-level action preconditioned
by a multi-hop constraint over the topology. Therefore, the correctness of a protocol (with a finite-state
behavior) is accomplished by proving that the implementation rewritten into a recursive specification
by our axiomatization (made of only dynamic operators) refines the specification. We demonstrate the
applicability of our framework by analyzing and proving the correctness of a simple routing protocol
inspired by the AODV protocol.

This paper is organized as follows. Sections 2 and 4 introduce our semantic model and explain
how it is helpful in giving semantics to reliable communication. Section 3 introduces the syntax of

4 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

RRBPT. Sections 5 and 6 provide the appropriate notion of behavioral equivalence and axioms in the
reliable setting, respectively. We demonstrate the applicability of our new framework by analyzing a
simple routing protocol in Section 7. We review and compare the related process algebraic frameworks
in depth in Section 8 before concluding the paper.

2. Constrained labeled transition systems

Let Loc denote a set of network addresses, ranged over by `. Viewing a network topology as a directed
graph, it can be defined as γ : Loc → IP (Loc), where γ(A) expresses the set of nodes that are
directly connected to A, and hence, can receive messages from A. A network constraint C is a set
of connectivity pairs : Loc × Loc and disconnectivity pairs 6 : Loc × Loc. In this setting, non-
existence of (dis)connectivity information between two addresses implies lack of information about
this link (which can e.g. be helpful when the link has no effect on the evolution of the network). For
instance, B A denotes that A is connected to B directly and consequently A can receive data sent
by B as before, while B 6 A denotes that A is not connected to B directly and consequently cannot
receive any message from B. The direction of an arrow shows the direction of information flow. We
write {B A,C, B 6 D,E} instead of {B A, B C, B 6 D, B 6 E}. The set Loc is
extended with the unknown address ? to represent the address of a node which is still not known or
concealed from an external observer. For instance, the leader address of a node can be initialized
to this value. Furthermore, to define the semantics of communicating nodes in terms of restrictions
over the topology in a compositional way, the semantics of receive actions can be defined through an
unknown sender, which will be replaced by a known address when the receive actions are composed
with the corresponding send action at a specific node (see Section 4).

A network constraint C is said to be well-formed if ∀`, `′ ∈ Loc (` `′ 6∈ C ∨ ` 6 `′ 6∈ C).
Let Cv(Loc) denote the set of well-formed network constraints that can be defined over the network
addresses in Loc. We define an ordering on network constraints. We say that C1 4 C2 iff C2 ⊆
C1 or ∃ ` ∈ Loc (C2[`/?] ⊆ C1), where d[d1/d2] denotes the substitution of d1 for d2 in d; this
can be extended to processes. E. g., {B A} 4 {? A} and {B A,B C} 4 {B
A}. Each well-formed network constraint C represents the set of network topologies that satisfy
the (dis)connectivity pairs in C, i.e., Γ(C) = {γ | CΓ(γ) 4 C} where CΓ(γ) = {` `′ | `′ ∈
γ(`)} ∪ {` 6 `′ | `′ 6∈ γ(`)} extracts all one-hop (dis)connectivity information from γ. So the empty
network constraint {} still denotes all possible topologies over Loc. The negation ¬C of network
constraint C is obtained by negating all its (dis)connectivity pairs. Clearly, if C is well-formed then so
is ¬C.

Constrained labeled transition systems (CLTSs) provide a semantic model for the operational
behavior of MANETs. Let Msg denote a set of messages communicated over a network and ranged
over by m. Let Act be the network send and receive actions with signatures nsnd : Msg × Loc and
nrcv : Msg , respectively. The send action nsnd(m, `) denotes that the message m is transmitted from
a node with the address `, while the receive action nrcv(m) denotes that the message m is ready to be
received. Let Actτ = Act ∪ {τ}, ranged over by η.

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 5

Definition 2.1. A CLTS is a tuple 〈S,Λ,→, s0〉, with S a set of states, Λ ⊆ Cv(Loc) × Actτ , →⊆
S ×Λ×S a transition relation, and s0 ∈ S the initial state. A transition (s, (C, η), s′) ∈→ is denoted

by s
(C,η)−−−−→ s′.

Generally speaking, the transition s
(C,η)−−−−→ s′ expresses that a MANET protocol in state s with an

underlying topology γ ∈ Γ(C) can perform action η to evolve to state s′.
The semantics of broadcast communication is defined to be reliable if and if only the nodes that are

connected to the sender, as defined by its corresponding network constraint, receive the message. We
remark that the status of the links from the receivers to the sender or between two arbitrary receivers
are not of importance and hence, they are abstracted away. Therefore, by constructing such network
constraints through the semantic rules, reliable communication is brought into our framework.

3. Syntax of RRBPT

Let A denote a countably infinite set of process names which are used as recursion variables in re-
cursive specifications. Besides network send and receive actions, i.e., nsnd(m, `) and nrcv(m), we
assume protocol send and receive actions, denoted by snd , rcv : Msg , i.e., parametrized by messages.
Furthermore, let IAct be a set of internal actions. RRBPT is a two-sorted algebra, consisting of pro-
tocols and networks. The former defines the set of processes that can be deployed on a node of the
network, while the latter defines a MANET network in terms of one node or the parallel composition
of more nodes. The limitations on the application of operators are imposed by the sorts. Most of the
limitations will be dropped later; the two sorts will be merged into a one-sorted algebra in Section 6.
The syntax of RRBPT is given by the following grammar:

p ::= 0 | α.p | p+ p | sense(`, p, p) | A, A def
= p

t ::= [[p]]` | t ‖ t | (ν`)t | τm(t) | ∂m(t)

Deadlock is modeled by 0. The process α.p performs action α and then behaves as p, where α is
either an internal action or a protocol send/receive action snd(m)/rcv(m). Internal actions are useful
in modeling the interactions of a process with other applications running on the same node. Protocol
send/receive actions specify the interaction of a process with its data-link layer protocols: these pro-
tocols are responsible for transferring messages reliably throughout the network. These actions are
turned into their corresponding network ones via the semantics (see Section 4). The process p1 + p1

behaves non-deterministically as p1 or p2. A process name is specified by a recursive equation A
def
= p

where A ∈ A is a name.
The simplest form of a MANET is a node, represented by the network deployment operator [[p]]`,

denoting process p deployed on a node with the known network address ` 6= ? (where ? denotes the
unknown address). A MANET can be composed by putting MANETs in parallel using ‖; the nodes
communicate with each other by reliable restricted broadcast.

MANET protocols may behave based on the (non-)existence of a link. A neighbor discovery ser-
vice can be implemented at the data link layer, by periodically sending hello messages and acknowl-
edging such messages received from a neighbor. The sensing operator sense(`′, p1, p2) examines the

6 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

status of the link from the node, say with address `, that the sensing is executed on, to the node with
the address `′; in case of its existence it behaves as p1, and otherwise as p2. For instance, the term
[[sense(`′, p1, p2)]]` examines the existence of the link ` `′, and then behaves accordingly. As a

running example, P
def
= sense(B, snd(dataB).P, 0) denotes a process that recursively broadcasts a

data message dataB as long as it is connected to B; and Q
def
= rcv(dataB).deliver .Q a process that

recursively receives a data message data and then the internal action deliver upon successful receipt
of data. The network process [[P]]A ‖ [[Q]]B specifies an ad hoc network composed of two nodes with
the network addresses A and B deploying processes P and Q, respectively.

The hide operator (ν`)t conceals the address ` in the process t, by renaming this address to ? in
network send/receive actions. For each message m ∈ Msg , the abstraction operator τm(t) renames
network send/receive actions over the message m to τ , and the encapsulation operator ∂m(t) for-
bids receiving the message m. Let τ{m1,...,mn}(t) and ∂{m1,...,mn}(t) denote τm1(. . . (τmn(t)) . . .) and
∂m1(. . . (∂mn(t)) . . .), respectively.

For example, τMsg(∂Msg([[P]]A ‖ [[Q]]B)) specifies an isolated MANET that cannot receive any
message from the environment, while its communications (i.e., send actions) are abstracted away.

4. Semantics of RRBPT

Let PAct and NAct denote the set of protocol and network send and receive actions respectively, and
IAct the set of internal actions. We assume that α ∈ PAct ∪ IAct , η ∈ NAct ∪ IAct ∪ {τ},
i ∈ IAct , and ι ∈ IAct ∪ {τ}. The operational rules in Table 1 induce a CLTS with transitions of the

form t
β−→ t′, where β ∈ Cv(Loc)×Actτ where Act = NAct ∪ IAct . In these rules, p 6 (C, rcv(m))−−−−−−−−−→

denotes that there exists no p′ such that p
(C′, rcv(m))−−−−−−−−−→ p′ and C′ 4 C. The symmetric counterparts

of the rules Choice, Bro, and Par hold.
Rule Prefix assigns an empty network constraint to each prefixed action, which may be accu-

mulated by further constraints through application of rules Rcv1,2 or Sen1,2. Rule Choice defines
non-deterministic behavior for the protocols. The behavior of a process name is defined in terms of
the process in its right-hand definition by the rule Inv .

The rules Sen1,2 explain the behavior of the sense operator. In case there is a link to the node with
the address ` from the node that is running the sense operator, and currently its address is unknown,
then it behaves like p1; in case this link is not present, it behaves like p2. Therefore, the link status is
combined with the network constraint C generated by its first or second term argument, as given by
Sen1,2 respectively. For instance, by Prefix and Sen1, P only generates a ({? B}, snd(dataB))-
transition.

The rule Int indicates that a node progresses when the deployed protocol on the node performs
an internal action. Interaction between the process p and its data-link layer is specified by the rules
Snd and Rcv1−3: when p broadcasts a message, it is delivered to the nodes in its transmission range,
regardless of their readiness. Rcv1 specifies that a node [[p]]` with an enabled receive action can
perform it successfully if it has a link to a sender (not currently known). In contrast, an enabled
receive action cannot be performed if the node is disconnected from the sender (not currently known).
However, to make the node input-enabled and consequently non-blocking, the node still performs its

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 7

Table 1. Semantics of RRBPT operators.

p1
(C,α)−−−−→ p′1

sense(`, p1, p2)
({? `}∪C,α)−−−−−−−−−−−−→ p′1

: Sen1

α.p
({},α)−−−−→ p

: Prefix

p2
(C,α)−−−−→ p′2

sense(`, p1, p2)
({? 6 `}∪C,α)−−−−−−−−−−−−→ p′2

: Sen2
p1

(C,α)−−−−→ p′1

p1 + p2
(C,α)−−−−→ p′1

: Choice

p
(C,α)−−−−→ p′

A
(C,α)−−−−→ p′

: Inv , A
def
= p

p
(C,α)−−−−→ p′

p
(C′,α)−−−−→ p′

: Exe1, C′ 4 C

p
(C, snd(m))−−−−−−−−−→ p′

[[p]]`
(C[`/?], nsnd(m,`))−−−−−−−−−−−−−−−→ [[p′]]`

: Snd
p

(C, rcv(m))−−−−−−−−→ p′

[[p]]`
(C[`/?]∪{? `}, nrcv(m))−−−−−−−−−−−−−−−−−−−−−→ [[p′]]`

: Rcv1

p 6 (C, rcv(m))−−−−−−−−−→

[[p]]`
(C[`/?], nrcv(m))−−−−−−−−−−−−−→ [[p]]`

: Rcv3
p

(C, rcv(m))−−−−−−−−→ p′

[[p]]`
(C[`/?]∪{? 6 `}, nrcv(m))−−−−−−−−−−−−−−−−−−−−−→ [[p]]`

: Rcv2

p
(C, i)−−−−→ p′

[[p]]`
(C, i)−−−−→ [[p′]]`

: Int
t1

(C1, nsnd(m,`))−−−−−−−−−−−−→ t′1 t2
(C2, nrcv(m))−−−−−−−−−−→ t′2

t1 ‖ t2
(C1∪C2[`/?], nsnd(m,`))−−−−−−−−−−−−−−−−−−−→ t′1 ‖ t′2

: Bro

t
(C,η)−−−−→ t′

t
(C′,η)−−−−→ t′

: Exe2, C′ 4 C
t1

(C1,nrcv(m))−−−−−−−−−−→ t′1 t2
(C2,nrcv(m))−−−−−−−−−−→ t′2

t1 ‖ t2
(C1∪C2,nrcv(m))−−−−−−−−−−−−−→ t′1 ‖ t′2

: Recv

t
(C,η)−−−−→ t′

(ν`)t
(hide(C,`),η[?/`])−−−−−−−−−−−−−→ (ν`)t′

: Hid
t1

(C,ι)−−−→ t′1

t1 ‖ t2
(C,ι)−−−→ t′1 ‖ t2

: Par

t
(C,η)−−−−→ t′ η 6= nrcv(m)

∂m(t)
(C,η)−−−−→ ∂m(t′)

: Encap
t

(C,η)−−−−→ t′

τm(t)
(C,τm(η))−−−−−−−→ τm(t′)

: Abs

receive action but its state is unchanged, as explained in Rcv2. If a protocol does not have any enabled
receive action rcv(m) for the network constraint C, then receiving the message has no effect on the
node behavior, as explained by Rcv3. Consequently, this rule makes nodes input-enabled, meaning
that a node not ready to receive a message will drop it. Therefore, [[P]]A has a ({},nrcv(dataB))-
transition by application of this rule.

8 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

In rules Snd and Rcv1, the network constraint C may have the unknown address due to sensing
operators, which is replaced by the address of the deployment operator, i.e., C[`/?]. Therefore, by
applying Snd to the only transition of P , [[P]]A generates a ({A B},nsnd(dataB, A))-transition.

Exe1 explains that a behavior that is possible for a network constraint, is also possible for a more
restrictive network constraint. This rule is essential for the rule Rcv3. Without such a rule, Rcv3 would

derive a self-loop with the label ({B 6 A}, rcv(dataB)) for [[Q]]B as Q 6 ({B 6 A},rcv(dataB))−−−−−−−−−−−−−−−−−→.
While [[Q]]B also has a ({? B},nrcv(dataB))-transition leading to the behavior [[y]]B , where y ≡
deliver .Q, by the application of Rcv1. For topologies that are in common between the two network
constraints, {? B} and {B 6 A}, [[Q]]B have a non-deterministic behavior on receiving dataB .
By Exe1, Q induces a ({B 6 A, ? B}, rcv(dataB))-transition leading to the behavior y. Finally,

{B 6 A, ? B} � {B 6 A} makes that the premise Q 6 ({B 6 A},rcv(dataB))−−−−−−−−−−−−−−−−−→ does not hold, and
hence the behavior of [[Q]]B is deterministic on receive actions. The counterpart of this rule holds for
the network processes as defined by the rule Exe2.

Rule Recv synchronizes the receive actions of processes t1 and t2 on message m, while combining
together their (dis)connectivity information in network constraints C1 and C2. Rule Bro specifies how
a communication occurs between a receiving and a sending process. This rule combines the network
constraints, while the unknown location (in the network constraint of the receiving process) is replaced
by the concrete address of the sender. In Bro and Recv it is required that the union of network
constraints on the transition in the conclusion be well-formed.

The rule Par prevents evolution of sub-networks on network actions, in contrast to lossy settings,
and enforces all nodes to specify their localities with respect to the sender before evolving the whole
network via Recv or Bro rules. It only allows a process to evolve by performing an internal or a silent
action.

For instance, the MANET [[P]]A ‖ [[Q]]B can generate the ({B A}, nsnd(dataB, A)) transition
induced by the deduction tree below, where y ≡ deliver .Q:

:Prefix
P

({}, snd(dataB))−−−−−−−−−−−−−→ P :Sen1

P
({? B}, snd(dataB))−−−−−−−−−−−−−−−−−−→ P :Snd

[[P]]A
({A B}, nsnd(dataB ,A))−−−−−−−−−−−−−−−−−−−−−−→ [[P]]A

:Prefix
Q

({}, rcv(dataB))−−−−−−−−−−−−→ y
:Rcv1

[[Q]]B
({? B}, nrcv(dataB))−−−−−−−−−−−−−−−−−−−→ [[y]]B

:Bro
[[P]]A ‖ [[Q]]B

({B A}, nsnd(dataB ,A))−−−−−−−−−−−−−−−−−−−−−−→ [[P]]A ‖ [[y]]B

Rule Hid replaces every occurrence of ` in the network constraint and action of β by ?, and hence
hides activities of a node with address ` from external observers. As the receipt by unknown addresses
does not provide any information useful for reasoning about the behavior of MANETs, hide(C, `) also
removes (dis)connectivity pairs with unknown receivers while replacing ` by ?:

hide(C, `) = {`1 `2 ∈ C[?/`] | `2 6=?} ∪ {`1 6 `2 ∈ C[?/`] | `2 6=?}.

Therefore the address ? only represents a sending node with an unknown address. According to Abs ,
the abstraction operator τm converts all network send and receive actions over the message m to τ
and leaves other actions unaffected, as defined by the function τm(η). The encapsulation operator ∂m
disallows receiving the message m, as specified by Encap.

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 9

The semantics of RRBPT was first introduced in [18] with the aim of defining CLTSs with negative
connectivity pairs to illustrate their benefit for model checking MANET protocols. In this research, we
modify its semantics to properly define the behavior of MANETs in the reliable setting. To this end, the
rules of the sensing operator have been modified substantially. The semantics of the sensing operator
in [18] makes [[P]]A move by ({B 6 A, ? A},nrcv(dataB)) and ({B 6 A, ? 6 A},nrcv(dataB))
to [[0]]A while here it has a self-loop with the label of ({B 6 A},nrcv(dataB)). In other words, the
chance of sending dataB is lost after dropping a received message of dataB . Such a drawback is
resolved by the modified rule Rcv3 and removing two previous rules of the sensing operator. Further-
more, the third rule of receive actions has been modified by adding the conjunct C′ � C as a premise
to avoid dropping a message when it can be processed.

5. Rooted branching reliable computed network bisimilarity

Terms of the lossy framework RBPT are considered modulo rooted branching computed network
bisimilarity [21]. This equivalence relation is defined using the following notations:

• ⇒ denotes the reflexive and transitive closure of unobservable actions:

– t⇒ t;

– if t
(C,τ)−−−−→ t′ for some arbitrary network constraint C and t′ ⇒ t′′, then t⇒ t′′.

• t 〈(C,η)〉−−−−−→ t′ iff t
(C,η)−−−−→ t′ or t

(C[`/?],η[`/?])−−−−−−−−−−−→ t′ and η is of the form nsnd(m, ?) for some m.

Intuitively t⇒ t′ expresses that after a number of communications, t can behave like t′. Furthermore,
as the activities of a node with an unknown address can be matched to those with a known address in
our equivalence relation, we define the notion of counterpart action, denoted by 〈(C, η)〉. For example,
an action like ({? B},nsnd(req , ?)) can be matched to an action like ({A B},nsnd(req , A)),
which can be considered as its counterpart denoted by 〈({? B},nsnd(req , ?))〉.

Definition 5.1. A binary relation R on RBPT terms is a branching computed network simulation if

t1Rt2 and t1
(C,η)−−−−→ t′1 implies that either:

• η is of the form nrcv(m) or τ , and t′1Rt2; or

• there are t′2 and t′′2 such that t2 ⇒ t′′2
〈(C,η)〉−−−−−→ t′2, where t1Rt′′2 and t′1Rt′2.

R is a branching computed network bisimulation if R and R−1 are branching computed network
simulations. Two terms t1 and t2 are branching computed network bisimilar, denoted by t1 'b t2, if
t1Rt2 for some branching computed network bisimulation relationR.

This definition distinguishes process terms according to their abilities to broadcast messages, and
therefore, MANET protocols that can only receive are treated as deadlock as they cannot send any
observable message.

10 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

Definition 5.2. Terms t1 and t are rooted branching computed network bisimilar, written t1 'rb t2,
if:

• t1
(C,η)−−−−→ t′1 implies there is a t′2 such that t2

〈(C,η)〉−−−−−→ t′2 and t′1 'b t′2;

• t2
(C,η)−−−−→ t′2 implies there is a t′1 such that t1

〈(C,η)〉−−−−−→ t′1 and t′1 'b t′2.

Rooted branching computed network bisimilarity does not constitute a congruence with respect
to the RRBPT operators. We still want that a receiving MANET (after its first action) be equivalent
to deadlock. In this setting, still [[0]]A 'b [[rcv(m).0]]A, but [[0]]A ‖ [[snd(m).0]]B 6'b [[rcv(m).0]]A ‖
[[snd(m).0]]B , since by application of Rcv1,2, Snd , and Bro:

[[rcv(m).0]]A ‖ [[snd(m).0]]B
({B 6 A},nsnd(m,B))−−−−−−−−−−−−−−−−−→ [[rcv(m).0]]A ‖ [[0]]B

[[rcv(m).0]]A ‖ [[snd(m).0]]B
({B A},nsnd(m,B))−−−−−−−−−−−−−−−−−→ [[0]]A ‖ [[0]]B

while by application of Rcv3, Snd , Bro:

[[0]]A ‖ [[snd(m).0]]B
({},nsnd(m,B))−−−−−−−−−−−−→ [[0]]A ‖ [[0]]B

which cannot be matched to any transition of [[rcv(m).0]]A ‖ [[snd(m).0]]B according to the second
condition of Definition 5.1. However, we observe that the ({},nsnd(m, B))-transition can be matched
to the transition sets of actions ({B 6 A},nsnd(m, B)) and ({B A},nsnd(m, B)), as the network
constraints {B 6 A} and {B A} provide a partitioning of {} while the resulting states of their
corresponding transitions are equivalent. Thus, we revise our Definition 5.1 by generalizing its second
condition.

Intuitively, two MANETs are equivalent if they have the same observable behaviors for all possi-
ble underlying topologies. In the lossy setting, the observable behaviors exclude receive actions, as
the node [[rcv(a).snd(a).0]]A can be distinguished from [[rcv(a).0]]A due to its capability to send a
after its receipt. However, the capability of receiving messages implicitly defines a restriction on the
underlying topology. For instance, the sending action snd(a) in [[rcv(a).snd(a).0]]A is only possible
if the node in question was previously connected to a sender and successfully received a. Thus to
distinguish [[rcv(a).snd(a).0]]A from [[snd(a).0]]A, receive actions are included in the observables in
the reliable setting. Furthermore, as dropping a message may have the same effect as its process-
ing (as explained above), a transition cannot be matched in the same way as in Definition 5.1 and it
may be matched to multiple transitions. A partitioning of a network constraint C consists of network
constraints C1, . . . , Cn such that ∀i, j ≤ n (i 6= j ⇒ Γ(Ci) ∩ Γ(Cj) = ∅) ∧

⋃n
k=1 Γ(Ck) = Γ(C).

Definition 5.3. A binary relation R on RRBPT terms is a branching reliable computed network sim-

ulation if t1 R t2 and t1
(C,η)−−−−→ t′1 imply that either:

• η is a τ action, and t′1 R t2; or

• there are s′′1, . . . , s
′′
k and s′1, . . . , s

′
k for some k > 0 such that ∀i ≤ k(t2 ⇒ s′′i

〈(Ci,η)〉−−−−−→ s′i, with
t1 R s′′i and t′1 R s′i), and 〈C1〉, . . . , 〈Ck〉 constitute a partitioning of 〈C〉.

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 11

R is a branching reliable computed network bisimulation if R and R−1 are branching reliable com-
puted network simulations. Two terms t1 and t2 are branching reliable computed network bisimilar,
denoted by t1 'br t2, if t1 R t2 for some branching reliable computed network bisimulationR.

Trivially (t1 'b t2) ⇒ (t1 'br t2).

Theorem 5.4. Branching reliable computed network bisimilarity is an equivalence.

See Section A for the proof of this theorem.

Definition 5.5. Two terms t1 and t are rooted branching reliable computed network bisimilar, written
t1 'rbr t2, if:

• t1
(C,η)−−−−→ t′1 implies there is a t′2 such that t2

〈(C,η)〉−−−−−→ t′2 and t′1 'br t′2;

• t2
(C,η)−−−−→ t′2 implies there is a t′1 such that t1

〈(C,η)〉−−−−−→ t′1 and t′1 'br t′2.

Corollary 5.6. Rooted branching reliable computed network bisimilarity is an equivalence.

Corollary 5.6 is an immediate consequence of Theorem 5.4 and Definition 5.5.

Theorem 5.7. Rooted branching reliable computed network bisimilarity is a congruence for RRBPT
operators.

See Section B for the proof.

6. Axiomatization for RRBPT

To provide a sound and complete axiomatization for closed RRBPT terms with respect to rooted
branching reliable computed network bisimilarity, the framework should be extended with the com-
puted network terms, i.e., (C, η).t which expresses that the action η is possible for the topologies be-
longing to C, in the same way as [21]. This prefix operator is helpful to transform protocol send/receive
actions into their corresponding network ones. Furthermore, it borrows the operators left merge ()
and communication merge from the process algebra ACP [4] to axiomatize parallel composition. Note
that the interleaving semantics for parallel composition is only valid for internal and unobservable ac-
tions (see rule Par). To axiomatize the behavior of nodes while being input-enabled, we also exploit
two novel auxiliary operators.

RRBPT is extended with new operators and called Reliable Computed Network Process Theory
(RCNT), while its two-sorted limitation is dropped. Its syntax contains:

t ::= 0 | β.t | t+ t | A ,A
def
= t | t | t | t t | t ‖ t | recA · t

sense(`, t, t) | (ν`)t | τm(t) | ∂m(t) | ` : t : t | C B t | [[t]]`

The prefix operator in β.t again denotes a process which performs β and then behaves as t. The
action β can now be of two types: either an internal action or a send/receive action snd(m)/rcv(m),

12 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

denoted by α, or actions of the form (C,nrcv(m)), (C,nsnd(m, `)) and (C, τ), denoted by (C, η),
where the first two actions are called the network receive and send actions, respectively. The new
operator ` : t1 : t2, so-called local deployment, defines the behavior of process t2 deployed at the
network address ` while it only defines the input-enabledness feature with regard to t1. In cases that it
should drop a message (i.e., processing the message has not been defined by t2), it behaves as t1. This
operator is helpful to axiomatize the behavior of the deployment operator in the reliable setting. To
axiomatize the behavior of the sense operator, the framework is extended with the topology restriction
operator C B t which restricts the behavior of t by taking restrictions of C into account.

Due to the input-enabledness feature of nodes, their behavior is recursive: upon receiving a mes-
sage for which no receive action has been defined, a node drops the message. To this aim, we exploit
the recursion operator recA · t, which specifies the solution of the process name A, defined by the

equation A
def
= t. The process term tA is a solution of the equation A

def
= t if the replacement of A

by tA on both sides of the equation results in equal terms, i.e. tA 'rb t[tA/A]. As we are interested
in equations with exactly one solution, we define a guardedness criterion for network names, in the
same way as [21]. A free occurrence of a network name A in t is called guarded if this occurrence
is in the scope of an action prefix operator (not (C, τ) prefix) and not in the scope of an abstraction
operator [1]; in other words, there is a subterm (C, η).t′ in t such that η 6= τ , and A occurs in t′. A
is (un)guarded in t if (not) every free occurrence of A in t is guarded. A RCNT term t is guarded if
for every subterm recA · t′, A is guarded in t′. This guardedness criterion ensures that any guarded
recursive term has a unique solution.

A term is grammatically well-defined if its processes deployed at a network address through either
a network or local deployment operator, are only defined by action prefix, choice, sense, and process
names.

The operational semantic rules of the new operators are given in Table 2 while the application of

the rules Prefix and Choice in Table 1 is extended to η-like actions. In these rules, t 6nrcv(m)−−−−−−→ denotes

that there exists no t′ such that t
(C′, nrcv(m))−−−−−−−−−−→ t′ for some network constraint C′. The behavior of the

local deployment operator is almost similar to the deployment operator. Its rules Inter ′1 and Inter ′2
are almost the same as Snd and Rcv1, respectively. However, it substitutes Inter ′3 for Rcv2 by which
it only adds transitions containing the disconnectivity pair ? 6 ` for those possible receive actions
of t2 (generated by Rcv1). Rules Choice ′, Inv ′, and Sen ′1,2 are also the same as Choice, Inv , and
Sen1,2, receptively. The difference between the rules of the deployment and local deployment is that
the behavior of the deployment operator is derived regarding the behavior of the deployed protocol
by the rules Snd and Rcv1−3 while the behavior of the local deployment is defined in terms of the
structure of the deployed protocol. Rules Sen ′3,4 make the behavior of sense(`′, t1, t2) input-enabled
toward receive actions that are possible by t1 but not t2 and vice versa. The constraints of the topology
restriction operator C B t is added to the behaviors of t as explained by the rule TR.

The main differences of extended RCNT with CNT are that its deployed nodes are input-enabled
and its communication primitive is reliable. We use the notation

∑
m∈M t to define t[m1/m] + . . .+

t[mk/m], where M = {m1, . . . ,mk}. Furthermore, if (b, t1, t2) behaves as t1 if the condition b holds
and otherwise as t2.

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 13

Table 2. Semantics of the new operators of RCNT

` : t1 : snd(m).t2
({}, nsnd(m,`))−−−−−−−−−−−−→ [[t2]]`

: Inter ′1
t[recA · t/A]

(C,η)−−−−→ t′

recA · t (C,η)−−−−→ t′
: Rec

` : t1 : rcv(m).t2
({? `}, nrcv(m))−−−−−−−−−−−−−−→ [[t2]]`

: Inter ′2

` : t1 : rcv(m).t2
({? 6 `}, nrcv(m))−−−−−−−−−−−−−−→ t1

: Inter ′3
t

(C′,η)−−−−→ t′

C B t (C′∪C,η)−−−−−−−→ t′
: TR

` : t3 : ti
(C, η)−−−−→ t′i i ∈ {1, 2}

` : t3 : t1 + t2
(C,η)−−−−→ t′i

: Choice ′
` : t3 : t1

(C,η)−−−−→ t′1

` : t3 : sense(`′, t1, t2)
({` `′}∪C,η)−−−−−−−−−−−−→ t′1

: Sen ′1

` : t1 : t2
(C, η)−−−−→ t′2

` : t1 : A
(C,η)−−−−→ t′2

: Inv ′, A
def
= t2

` : t3 : t2
(C,η)−−−−→ t′2

` : t3 : sense(`′, t1, t2)
({` 6 `′}∪C,η)−−−−−−−−−−−−→ t′2

: Sen ′2

` : t3 : t1 6
nrcv(m)−−−−−−→ ` : t3 : t2

(C, nrcv(m))−−−−−−−−−→ t′2

` : t3 : sense(`′, t1, t2)
({` `′}, nrcv(m))−−−−−−−−−−−−−−−→ t3

: Sen ′3

` : t3 : t1
(C, nrcv(m))−−−−−−−−−→ t′1 ` : t3 : t2 6

nrcv(m)−−−−−−→

` : t3 : sense(`′, t1, t2)
({` 6 `′}, nrcv(m))−−−−−−−−−−−−−−−→ t3

: Sen ′4

t1
(C1,nrcv(m))−−−−−−−−−−→ t′1 t2

(C2,nrcv(m))−−−−−−−−−−→ t′2

t1 | t2
(C1∪C2,nrcv(m))−−−−−−−−−−−−−→ t′1 ‖ t′2

: Sync1

t1
(C,ι)−−−→ t′1

t1 t2
(C,ι)−−−→ t′1 ‖ t2

: LExe

ti
(C1,nsnd(m,`))−−−−−−−−−−−→ t′i t3−i

(C2,nrcv(m))−−−−−−−−−−→ t′3−i i ∈ {1, 2}

t1 | t2
(C1∪C2[`/?],nsnd(m,`))−−−−−−−−−−−−−−−−−−−→ t′1 ‖ t′2

: Sync2

The axioms regarding the choice, deployment, left and communication merge, and parallel op-
erators are given in Table 3. The axioms Ch1−4, Br , LM 2,3 and S1−4 are standard (cf. [35]). The
axiom Ch5 denotes that a network send action whose sender address is unknown can be removed if
its counterpart action exists, i.e., a send action with the same message and receivers but with a known
sender address (see Section 5). The axiom Ch6 explains that a more liberal network constraint allows
more behavior. Axioms Dep0−7, LM ′

1,2, and TRes1−5 are new in comparison with the lossy setting
of [21]. The axiom (C, η).t1 t2 = (C, η).(t1 ‖ t2) has been replaced by LM ′

1,2 which only allow
internal or unobservable actions of the left operand to be performed.

14 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

Table 3. Axioms for the choice, deployment, left and communication merge, and parallel operators. The sets
M1 and M2 denote Message(t2, ∅) \Message(t1, ∅) and Message(t1, ∅) \Message(t2, ∅) respectively.

Ch1 0 + t = t Ch2 t1 + t2 = t2 + t1

Ch3 t1 + (t2 + t3) = (t1 + t2) + t3 Ch4 t+ t = t

Ch5 (C,nsnd(m, ?)).t+ 〈(C,nsnd(m, ?))〉.t = 〈(C,nsnd(m, ?))〉.t
Ch6 (C1, η).t+ (C2, η).t = (C1, η).t, C2 4 C1

Dep0 [[t]]` = recQ ·
∑

m′ 6∈Message(t,∅)({},nrcv(m′)).Q + ` : Q : t

Dep2 ` : t′ : rcv(m).t = ({? 6 `},nrcv(m)).t′ + ({? `},nrcv(m)).[[t]]`

Dep7 ` : t3 : sense(`′, t1, t2) =
∑

m′∈M1
({` `′},nrcv(m′)).t3

+
∑

m′∈M2
({` 6 `′},nrcv(m′)).t3 + {` `′}B ` : t3 : t1 + {` 6 `′}B ` : t3 : t2

Dep1 ` : t′ : snd(m).t = ({},nsnd(m, `)).[[t]]` Dep6 ` : t′ : i.t = ({}, i).[[t]]`
Dep3 ` : t3 : t1 + t2 = ` : t3 : t1 + ` : t3 : t2 Dep4 ` : t : 0 = 0

Dep5 ` : t′ : A = ` : t′ : t, A
def
= t

TRes1 C1 B (C2, η).t = (C1 ∪ C2, η).t, if C1 ∪ C2 ∈ Cv(Loc)

TRes2 C B (t1 + t2) = (C B t1) + (C B t2) TRes3 C B recA · t = recA · (C B t)
TRes4 C B A = A TRes5 C B 0 = 0

Br t1 ‖ t2 = t1 t2 + t2 t1 + t1 | t2 S1 t1 | t2 = t2 | t1
LM ′

1 (C, η).t1 t2 = 0, η 6∈ IAct ∪ {τ} S2 (t1 + t2) | t3 = t1 | t3 + t2 | t3
LM 2 (t1 + t2) t3 = t1 t3 + t2 t3 S3 0 | t = 0

LM 3 0 t = 0 S4 (C, η).t1 | t2 = 0, η ∈ IAct ∪ {τ}
LM ′

2 (C, η).t1 t2 = (C, η).(t1 ‖ t2), η ∈ IAct ∪ {τ}

Sync1 (C1,nsnd(m1, `)).t1 | (C2,nrcv(m2)).t2 =

if ((m1 = m2), (C1 ∪ C2[`/?],nsnd(m1, `)).t1 ‖ t2, 0)

Sync2 (C1,nrcv(m1)).t1 | (C2,nrcv(m2)).t2 = if ((m1 = m2), (C1 ∪ C2,nrcv(m1)).t1 ‖ t2, 0)

Sync3 (C1,nsnd(m1, `1)).t1 | (C2,nsnd(m2, `2)).t2 = 0

To axiomatize the behavior of a node considering the input-enabledness feature, we need to find the
messages that it cannot currently respond to and then add a summand which receives those message
without processing them. To this aim, axiom Dep0 expresses the behavior of [[t]]` as a recursive
specification which drops messages that it does not handle with the help of the auxiliary function
Message(t,S), and the behavior of t with the help of the local deployment operator ` : Q : t. The
function Message(t,S) returns the set of messages that can be currently processed by t and is defined
using structural induction:

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 15

Message(0,S) = ∅
Message(i.t,S) = ∅, i ∈ IAct

Message(snd(m).t,S) = ∅
Message(rcv(m).t,S) = {m}
Message(t1 + t2,S) = Message(t1,S) ∪Message(t2,S)

Message(sense(`, t1, t2),S) = Message(t1,S) ∪Message(t2,S)

Message(A,S) = Message(t,S ∪ {A}), A 6∈ S,A def
= t

Message(A,S) = ∅, A ∈ S

where S keeps track of process names whose right-hand definitions have been examined. We remark
that Dep0 extends the deployment behavior of the lossy setting with the input enabledness feature
with the help of operator ` : Q : t. The axioms Dep1−7 specify the behavior of the operator ` :
t1 : t2. Axiom Dep1 defines the interaction between the network and data link layers. The protocol
send action (at the network layer) is transformed into its network version (at the data link layer).
Axiom Dep2 indicates that when ` is connected to a sender (which is unknown yet), the receive
action is successful and its behavior proceeds as [[t]]`. Otherwise, the receive action is unsuccessful
and its behavior is defined by t′. Axioms Dep3,4,5 express the effect of the local deployment on
choice, deadlock, and process names, respectively while axioms Dep6,7 define its effect on the prefixed
internal actions and sense operator, respectively.

The behavior of the topology restriction operator is defined by the axioms TRes1−5 in Table 3.
Axiom TRes1 considers the restrictions of C1 by integrating its restrictions with C2 in the computed
network term (C2, η).t if C1 ∪ C2 is well-formed. Axiom TRes2 defines that topology restriction can
be distributed over the choice operator. Axiom TRes3 expresses that the topology restriction operator
can be moved inside and outside of a recursion operator. Axioms TRes4,5 explain that the topology
restriction operator has no effect on a process name and deadlock, respectively.

For instance, the behavior of the MANET [[P]]A, where P
def
= sense(B, snd(dataB).P, 0), Msg =

{dataB}, is simplified as:

[[P]]A =Dep0,5

recQ · ({},nrcv(dataB)).Q +A : Q : sense(B, snd(dataB).P, 0) =Dep7

recQ · ({},nrcv(dataB)).Q + {A B}BA : Q : snd(dataB).P + {A 6 B}BA : Q : 0 =Dep1,4

recQ · ({},nrcv(dataB)).Q + {A B}B ({},nsnd(dataB, A)).Q + {B 6 A}B 0 =TRes1,5

recQ · ({},nrcv(dataB)).Q + ({A B},nsnd(dataB, A)).Q

The behavior of [[Q]]B , where Q
def
= rcv(dataB).deliver .Q, is equated to:

[[Q]]B =Dep0,5

recQ ·A : Q : rcv(dataB).deliver .Q =Dep2

recQ · ({? B},nrcv(dataB)).[[deliver .Q]]A + ({? 6 B},nrcv(dataB)).Q

16 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

Table 4. Axiomatization of hiding, abstraction and encapsulation operators.

Res1 (ν`)(t1 + t2) = (ν`)t1 + (ν`)t2 Res3 (ν`)0 = 0

Res2 (ν`)(C, η).t = (hide(C, `), η[?/`]).(ν`)t

Ecp1 ∂m((C,nsnd(m, `)).t) = (C,nsnd(m, `)).∂m(t)

Ecp2 ∂m((C,nrcv(m)).t) = if ((m 6= m), (C,nrcv(m)).∂m(t), 0)

Abs1 τm((C,nrcv(m)).t) = if ((m = m), (C, τ).τm(t), (C,nrcv(m)).τm(t))

Abs2 τm((C,nsnd(m, `)).t) = if ((m = m), (C, τ).τm(t), (C,nsnd(m, `)).τm(t))

Abs3 τm(t1 + t2) = τm(t1) + τm(t2) Ecp3 ∂m(t1 + t2) = ∂m(t1) + ∂m(t2)

Abs4 τm(0) = 0 Ecp4 ∂m(0) = 0

T1 (C′, η).((C1, η).t+ (C2, η).t+ t′) = (C′, η).((C, η).t+ t′)

iff ∃`, `′ ∈ Loc) · (C1 = C ∪ {` `′} ∧ C2 = C ∪ {` 6 `′}
T2 (C, η).((C′, τ).(t1 + t2) + t2) = (C, η).(t1 + t2)

The axioms of hiding and encapsulation are given in Table 4. Axiom T1 accumulates the network
constraints that constitute a partitioning while T2 removes a τ action which preserves the behavior of
a network after some topology changes. The remaining axioms in this table are similar to the lossy
setting.

Axioms for process names are given in Table 5. Unfold and Fold express existence and uniqueness

of a solution for the equation A
def
= t, which correspond to Milner’s standard axioms, and the Recursive

Definition Principle (RDP) and Recursive Specification Principle (RSP) in ACP. Unfold states that
each recursive operator has a solution (whether it is guarded or not), while Fold states that each
guarded recursive operator has at most one solution.

Table 5. Axioms for process names.

recA · t = t{recA · t/A} Unfold

t1 = t2{t1/A} ⇒ t1 = recA · t2, if A is guarded in t2 Fold

recA · (A + t) = recA · t Ung

recA · ((C, τ).((C′, τ).t′ + t) + s) = WUng1

recA · ((C, τ).(t′ + t) + s), if A is unguarded in t′

recA · ((C, τ).(A + t) + s) = recA · ((C, τ).(t+ s) + s) WUng2

τm(recA · t) = recA · τm(t), if A is serial in t Hid

The behavior of τMsg(∂Msg([[P]]A ‖ [[Q]]B)) by using the axioms of Table 5 is expressed by:

τMsg(∂Msg([[P]]B ‖ [[Q]]B)) =

recQ · ({A B}, τ).({}, deliver).Q + ({A 6 B}, τ).0

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 17

which explains that in case A is connected to B, each sending of dataB is followed by the internal
action deliver

It is not hard to see that the axioms of Table 3, Table 4 and Table 5 provide a sound axiomatization
of RCNT. This can be checked by verifying soundness for each axiom individually.

Theorem 6.1. The axiomatization is sound, i.e. for all closed RCNT terms t1 and t2, if t1 = t2 then
t1 'rb t2.

Our axiomatization is also ground-complete for terms with a finite-state CLTS, but not for infinite-
state CLTSs. For example, recW · ({},nsnd(req , A)).W ‖ ({? B},nrcv(req)).W produces an
infinite-state CLTS, since at each recursive call a new parallel operator is generated. Its equality to
recH · ({},nsnd(req , A)).H cannot be proved by our axiomatization.

Theorem 6.2. The axiomatization is ground-complete, i.e., for all closed finite-state reliable com-
puted network terms t1 and t2, t1 'rb t2 implies t1 = t2.

See sections C and D for the proofs of theorems 6.1 and 6.2, respectively.

7. Case study

In MANETs, nodes communicate through others via a multi-hop communication. Hence, nodes act
as routers to make the communication possible among not directly connected nodes. We illustrate the
applicability of our axioms in the analysis of MANET protocols through a simple routing protocol
inspired by the AODV protocol.

7.1. Protocol specification

The protocol consists of three processes P , M , and Q, each specifying the behavior of a node as the
source (that finds a route to a specific destination), middle node (that relays messages from the source
to the destination), and destination. The description of these process are given in Figure 1.

Process P , deployed at the address A, uses the neighbor discovery service of the data link layer to
examine if it has a direct link to the destination with the address B. If it is connected, then it sends its
data directly by broadcasting the message dataB; otherwise, it initiates the route discovery procedure
by sending the message req , then behaving as P1. This process waits until it receives a reply from
a middle name with the address C or B. In the former case, it behaves as P2 which indicates that
A sends it data through C as long as C is connected to A. In the latter case, it behaves as P which
indicates that A sends it data as long as B is directly connected to A.

Process M relays req messages to find a route to B and then behaves as M1. This process waits
until it receives a reply. To model waits with a timeout, it non-deterministically sends a request again.
Upon receiving a reply from C it behaves as M2, indicating that it relays data messages of A as long
as it has a link to C. Finally, process Q sends a reply upon receiving a request message and receives
data messages.

18 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

P
def
= sense(B, snd(dataB).P, snd(req).P1)

P1
def
= rcv(repC).P2 + rcv(repB).P + snd(req).P1

P2
def
= sense(C, rcv(error).P + snd(dataC).P2, snd(req).P1)

M
def
= rcv(req).snd(req).M1

M1
def
= rcv(repB).snd(repC).M2 + snd(req).M1

M2
def
= sense(B, rcv(dataC).snd(dataB).M2, snd(error).snd(req).M1)

Q
def
= rcv(req).snd(repB).Q+ rcv(dataB).deliver.Q

Figure 1. The specification of processes P , M , and Q as a part of our simple routing protocol.

To simplify the route maintenance procedure of AODV, the middle node takes advantage of the
sensing operator when it behaves as M2. Whenever it finds out that it has no link to C, it sends an
error message to its upstream node, i.e., A, to inform it that its route to B through C is not valid. After
sending and receiving the error message, they both initiate the route discovery procedure by sending a
request message.

The network with the three nodes of a source, middle, and destination is specified by

N ≡ τMsg(∂Msg([[P]]A ‖ [[M]]C ‖ [[Q]]B)).

Analyzing (νA)(νB)(νC)N , whose network addresses have been abstracted away, reveals that it is
rooted branching bisimilar to a process with livelock behavior1. Possibly a livelock occurs where data
is not delivered to B as no route can found to B. Such behavior may be the result of a conceptual
mistake in the protocol design or the impossibility of communication between A and B due to their
disconnectivity. We propose a technique in Section 7.2 to discover only those faulty behaviors that are
due to an incorrect protocol design.

The network ∂Msg([[P]]A ‖ [[M]]C ‖ [[Q]]B) can be simplified as:

∂Msg([[P]]A ‖ [[M]]C ‖ [[Q]]B) = (1)

({A B},nsnd(dataB, A)).∂Msg([[P]]A ‖ [[M]]C ‖ [[deliver .Q]]B)+

({A 6 B,A C},nsnd(req , A)).∂Msg([[P1]]A ‖ [[snd(req).M1]]C ‖ [[Q]]B)+

({A 6 B,A 6 C},nsnd(req , A)).∂Msg([[P1]]A ‖ [[M]]C ‖ [[Q]]B).

1The network has been specified in the mCRL2 language [28], following the approach of [18]. The code and its derived
transition system modulo branching bisimilarity by the mCRL2 toolset is available at fghassemi.adhoc.ir/codeFI17.
zip

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 19

Next, we simplify ∂Msg([[P1]]A ‖ [[snd(req).M1]]C ‖ [[Q]]B) as

∂Msg([[P1]]A ‖ [[snd(req).M1]]C ‖ [[Q]]B) = (2)

({A B},nsnd(req , A)).∂Msg([[P1]]A ‖ [[snd(req).M1]]C ‖ [[snd(repB).Q]]B)+

({A 6 B},nsnd(req , A)).∂Msg([[P1]]A ‖ [[snd(req).M1]]C ‖ [[Q]]B)+

({C B},nsnd(req , C)).∂Msg([[P1]]A ‖ [[M1]]C ‖ [[snd(repB).Q]]B)+

({C 6 B},nsnd(req , C)).∂Msg([[P1]]A ‖ [[M1]]C ‖ [[Q]]B).

Now, we continue by extending ∂Msg([[P1]]A ‖ [[M1]]C ‖ [[snd(repB).Q]]B):

∂Msg([[P1]]A ‖ [[M1]]C ‖ [[snd(repB).Q]]B) =

({ },nsnd(req , A)).∂Msg([[P1]]A ‖ [[M1]]C ‖ [[snd(repB).Q]]B)+

({ },nsnd(req , C)).∂Msg([[P1]]A ‖ [[M1]]C ‖ [[snd(repB).Q]]B)+

({B A,C},nsnd(repB, B)).∂Msg([[P]]A ‖ [[snd(repC).M2]]C ‖ [[Q]]B)+

({B A,B 6 C},nsnd(repB, B)).∂Msg([[P]]A ‖ [[M1]]C ‖ [[Q]]B)+

({B 6 A,B C},nsnd(repB, B)).∂Msg([[P1]]A ‖ [[snd(repC).M2]]C ‖ [[Q]]B).

By simplifying the term ∂Msg([[P]]A ‖ [[snd(repC).M2]]C ‖ [[Q]]B), which indicates that A and C
have found a direct route to B, we reach ∂Msg([[P]]A ‖ [[M2]]C ‖ [[Q]]B):

∂Msg([[P]]A ‖ [[snd(repC).M2]]C ‖ [[Q]]B) =

({ },nsnd(repC , C)).∂Msg([[P]]A ‖ [[M2]]C ‖ [[Q]]B)+

({A B},nsnd(dataB, A)).∂Msg([[P]]A ‖ [[snd(repC).M2]]C ‖ [[deliver .Q]]B)+

({A 6 B},nsnd(req , A)).∂Msg([[P1]]A ‖ [[snd(repC).M2]]C ‖ [[Q]]B).

By extending ∂Msg([[P]]A ‖ [[M2]]C ‖ [[Q]]B), we have:

∂Msg([[P]]A ‖ [[M2]]C ‖ [[Q]]B) =

({A B},nsnd(dataB, A)).∂Msg([[P]]A ‖ [[M2]]C ‖ [[deliver .Q]]B)+

({A 6 B},nsnd(req , A)).∂Msg([[P1]]A ‖ [[M2]]C ‖ [[Q]]B).

Finally extending ∂Msg([[P1]]A ‖ [[M2]]C ‖ [[Q]]B) results:

∂Msg([[P1]]A ‖ [[M2]]C ‖ [[Q]]B) =

({A B},nsnd(req , A)).∂Msg([[P1]]A ‖ [[M2]]C ‖ [[snd(repB).Q]]B)+

({A 6 B},nsnd(req , A)).∂Msg([[P1]]A ‖ [[M2]]C ‖ [[Q]]B)+

({C 6 B},nsnd(error , C)).∂Msg([[P1]]A ‖ [[snd(req).M1]]C ‖ [[Q]]B).

20 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

The following scenario, found by above equations, is valid for a topology in which A has only a
multi-hop link to B via C, but B has a direct link to A:

∂Msg([[P]]A ‖ [[M]]C ‖ [[Q]]B)
({A6 B,A C},nsnd(req,A))−−−−−−−−−−−−−−−−−−−−−−−−→ ∂Msg([[P1]]A ‖ [[snd(req).M1]]C ‖ [[Q]]B)

({C B},nsnd(req,C))−−−−−−−−−−−−−−−−−−→ ∂Msg([[P1]]A ‖ [[M1]]C ‖ [[snd(repB).Q]]B)
({B A,C},nsnd(repB ,B))−−−−−−−−−−−−−−−−−−−−−−→ ∂Msg([[P]]A ‖ [[snd(repC).M2]]C ‖ [[Q]]B)

({ },nsnd(repC ,C))−−−−−−−−−−−−−−−→ ∂Msg([[P]]A ‖ [[M2]]C ‖ [[Q]]B)
({A6 B},nsnd(req,A))−−−−−−−−−−−−−−−−−−→ ∂Msg([[P1]]A ‖ [[M2]]C ‖ [[Q]]B)
({A6 B},nsnd(req,A))−−−−−−−−−−−−−−−−−−→ ∂Msg([[P1]]A ‖ [[M2]]C ‖ [[Q]]B)

. . .

The reason is found in the specification of M2 which does not handle request messages, and hence,
for such a topology no data will be received by B although there is a route from A to B and also a
route from B to A. Therefore, we revise M2 as:

M2
def
= sense(B, rcv(dataC).snd(dataB).M2 + rcv(req).snd(repC).M2,

snd(error).snd(req).M1)

The path above also exists in the lossy setting, but with all disconnectivity pairs removed from
the network constraints. However, an exhaustive and therefore expensive inspection of this path is
needed to determine that it is due to a design error. The first transition in the path carries the label
({A 6 B,A C},nsnd(req , A)) in the reliable setting, meaning that B is not ready to receive, and
the label ({A C},nsnd(req , A)) in the lossy setting. The latter label indicates that either B was
not ready to receive or it was not connected to A. So in the lossy setting one has to examine the
origin state to find out if B had an enabled receive action or not. The concept of not being ready to
receive is treated in the same way as a lossy communication. Since only the former may be due to
a conceptual design in the protocol, finding design errors is not straightforward in the lossy setting.
In general the lossy setting will produce a large number of possible error traces that all need to be
examined exhaustively, while the reliable setting will produce no spurious error traces.

7.2. Protocol analysis

The properties of wireless protocols, specially MANETs, tends to be weaker in comparison with the
properties of wired protocols. For instance, the property of packet delivery from the node A to B is
specified as “if there is a path from A to B for a long enough period of time, any packet sent by A,
will be received by B” [16]. The topology-dependent behavior of communication, and consequently
the need for multi-hop communication between nodes, make their properties preconditioned by the
existence of some paths among nodes.

To investigate the topology-dependent properties of MANETs by equational reasoning, it is nec-
essary to enrich our process theory RCNT to specify behaviors constrained by multi-hop constraints.

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 21

To this aim, we extend the action prefix operator of RCNT with actions that are paired with multi-hop
constraints, first introduced in [18] and here extended by negative multi-hop connectivity pairs. View-
ing a network topology as a directed graph, a multi-hop constraint is represented as a set of multi-hop
(dis)connectivity pairs 99K: Loc × Loc and 699K: Loc × Loc. For instance, A 99K C denotes there
exists a multi-hop connection from A to C, and consequently C can indirectly receive data from A.
Let M(Loc) denote the set of multi-hop constraints that can be defined over network addresses in Loc,
ranged over by M. Term (M, ι).t, where ι ∈ IAct ∪ {τ}, denotes that the action ι is possible if
the underlying topology satisfies the multi-hop network constraint M. Formally, a topology like γ
satisfies the multi-hop network constraintM, denoted by γ |=M iff for each ` 99K `′ inM, there is
a multi-hop connection from ` to `′ in γ, and for each ` 699K `′ inM, there is no multi-hop connection
from ` to `′ in γ. To define a well-formed RCNT term, the rule which restricts the application of
the new prefixed-actions to sequential processes, is added to the previous ones. Furthermore, a term
cannot have two summands such that one is prefixed by an action of the form (C, η) and the other by
an action of the form (M, ι). So terms with an action of the form (M, ι) only contain action prefix
(with multi-hop constraints), choice and recursion operators.

To reason about the correctness of a MANET protocol, its behavior can be abstractly specified
by observable internal actions with the required conditions on the underlying topology, i.e., ι-actions
with multi-hop constraints. Intuitively, each communication of a protocol implementation triggers an
internal action. Such communications are abstracted away by τ -transitions. Therefore, we define a
novel preorder relation to examine if a protocol refines its specification. To this aim, a sequence of
τ -transitions is allowed to precede an action that is matched to an action of the specification, as long
as the accumulated network constraints of the τ -transitions satisfy the multi-hop network constraint
of the matched action. By accumulating network constraints, it is ensured that the set of the links that
make the multi-hop connections indicated by the multi-hop constraint hold, will be stable during the
communications. Hence our preorder relation is parametrized by a network constraint to reflect such
accumulated network constraints.

To provide such a relation, we use the notation C=⇒ which is the reflexive and transitive closure of
τ -relations while their network constraints are accumulated:

• t { }==⇒ t;

• if t
(C,τ)−−−−→ t′ for some arbitrary network constraint C and t′ C

′
=⇒ t′′, then t C

′∪C
===⇒ t′′, where C′∪C

is well-formed.

Furthermore, the network constraint C satisfies the multi-hop constraint C, denoted by C |= M iff
∃ γ ∈ Γ(C) (γ |=M). We remark that a network constraint like {A 6 B} may satisfy both multi-hop
constraints {A 99K B} and {A 699K B}, but {A B} only satisfies {A 99K B}.

Definition 7.1. A binary relationRC on RCNT terms is a refinement relation if tRC s implies:

• if t
(C′,η)−−−−→ t′, where C ∪ C′ ∈ Cv(Loc), then

– η = τ and t′ RC∪C′ s, or

22 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

– there is an s′ such that s
(C,η)−−−−→ s′, and t′ RC∪C′ s′, or

– η = ι for some ι ∈ IAct ∪ {τ} and there is an s′ such that s
(M,ι)−−−−→ s′ with C ∪ C′ |=M

and t′ RC∪C′ s′;

• if s
(M,ι)−−−−→ s′, then there are t′′ and t′ such that t C

′
=⇒ t′′

(C′′,ι)−−−−→ t′ with C ∪ C′ ∪ C′′ |=M and
t′ RC∪C′∪C′′ s′ where C ∪ C′ ∪ C′′ ∈ Cv(Loc);

• if s
(C,η)−−−−→ s′, then there is a t′ such that t

(C′,η)−−−−→ t′ with t′ RC∪C′ s′.

The protocol t refines the specification s, denoted by t v s, if t R{ } s holds for some refinement
relationR{ }.

Theorem 7.2. Refinement is a preorder relation and has the precongruence property.

See Section E for its proof. The following proposition is helpful to prove refinement between two
processes:

Proposition 7.3. Suppose ι ∈ IAct . The following rules holds

(C, τ).t v (M, ι).s⇔ C B t v (M, ι).s ∧ C |=M
(C, ι).t v (M, ι).s⇔ C B t v s.

These rules correspond to the transfer conditions of Definition 7.1, and their proofs are discussed in
Section E. Instead of finding a refinement relation and showing that it satisfies the transfer conditions
of Definition 7.1 that its proof process is managed at the semantic level, we propose a proof process
at the syntactic level. To show that t v s, where s and t are closed terms for the specification
and implementation, by our axiomatization, both s and t are rewritten into a set of summands like
(C1, ι1).t1 + . . .+ (Cn, ιn).tn and (M1, ι

′
1).s1 + . . .+ (Mm, ι

′
m).sm for some n ≥ 0 and m ≥ 0. The

proof of t v s can be reduced to proving that:

∀i ≤ n , Ci ∈ Cv(Loc) (∃! j ≤ m (ιi = ι′j ∧ Ci |=Mj ∧ Ci B ti v sj) ∨ (Ci B ti v s))

using the precongruence property of our refinement for the choice operator and the rules of Proposition
7.3. The first disjunct represents the third case of the first transfer condition while the second disjunct
represents the first conditions of both transfer conditions of Definition 7.1. This proof process proceeds
until we reach to a predicate C′ B t′ v s′ to prove for which either we have previously examined
C′′ B t′ v ′s′ where C′ 4 C′′, or it holds trivially.

To analyze the correctness of our simple routing protocol, we investigate if it has the packet de-
livery property. To this end, we verify whether N ≡ τMsg(∂Msg([[P]]A ‖ [[M]]C ‖ [[Q]]B)) refines S,
where S is defined as:

S
def
= ({A 99K B,B 99K A}, deliver).S + ({A 699K B}, τ).0 + ({A 99K B,B 699K A}, τ).0.

Therefore, we exploit the provided equations in Section 7.1 to prove such a refinement at the syntactic
level. To this aim, we match all the resulting terms of τ -transitions to S as long as their accumulated

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 23

network constraints do not exclusively satisfy one of the multi-hop constraints {A 99K B,B 99K A},
{A 99K B,B 699K A} or {A 699K B}. Otherwise, if the accumulated network constraint of a τ -
transition only satisfies {A 699K B} or {A 99K B,B 699K A}, the resulting term of the τ -transition
will be matched to 0.

Thus, we use Equation 1 to show that:

τMsg(∂Msg([[P]]A ‖ [[M]]C ‖ [[Q]]B)) v S⇔
{A B}B τMsg(∂Msg([[P]]A ‖ [[M]]C ‖ [[deliver .Q]]B)) v S∧
{A 6 B,A C}B τMsg(∂Msg([[P1]]A ‖ [[snd(req).M1]]C ‖ [[Q]]B)) v S∧ (3)

{A 6 B,A 6 C}B τMsg(∂Msg([[P1]]A ‖ [[M]]C ‖ [[Q]]B)) v 0

To prove the refinement relation 3, we use the Equation 2 to show that

{A 6 B,A C}B τMsg(∂Msg(P1]]A ‖ [[snd(req).M1]]C ‖ [[Q]]B)) v S⇔
{A 6 B,A C,C B}B τMsg(∂Msg([[P1]]A ‖ [[M1]]C ‖ [[snd(repB).Q]]B)) v S∧
{A 6 B,A C,C 6 B}B τMsg(∂Msg([[P1]]A ‖ [[M1]]C ‖ [[Q]]B)) v 0 (4)

The refinement relation (4) trivially holds as it can be proved with the help of our axiomatization,
especially the rules Fold and TRes1,2, that {A 6 B,A C,C 6 B}B τMsg(∂Msg([[P1]]A ‖ [[M1]]C ‖
[[Q]]B)) is the answer to the equation Q

def
= ({A 6 B,A C,C 6 B}, τ).Q, and trivially

recQ · ({A 6 B,A C,C 6 B}, τ).Q v 0.

So, it can be easily proved that τMsg(∂Msg([[P]]A ‖ [[M]]C ‖ [[Q]]B)) v S .

8. Related work

Related frameworks to ours are CBS# [41], CWS [39], CMAN [24, 25], CMN [37] and its timed ver-
sion [38], bKlaim [42], ω-calculus [47], SCWN [27], CSDT [34], AWN [16] and its timed extension
[10], the broadcast psi-calculi [7] and wRebeca [51]. These approaches have already been compared
in [21] with regard to modeling issues, such as topology and mobility, as well as behavioral congru-
ence relations, in particular observables and distinguishing power. As all these approaches, except
the approach of [39], focus on protocols above the data like layer, we investigate their capabilities to
faithfully support the properties of wireless communication at this layer, i.e., being non-blocking and
asynchronous. Recall that the non-blocking property ensures the sender broadcasts irrespective of the
readiness of its receivers while asynchronicity makes the received packets be buffered at the receiver
when it is busy with processing other messages. Furthermore, we compare our behavioral equivalence
relation to those with a reliable setting.

All these approaches, except [51], provide an algebraic framework. Among them only [42] is
intrinsically asynchronous, centered around the tuple space paradigm; broadcast messages are output
into the tuple spaces of neighboring nodes to the sending node.

The non-blocking property is a consequence of either nodes being input-enabled or the commu-
nication primitives being lossy. In the former case, the asynchronous property is achieved through

24 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

abstract data specifications [13] in line with the approach from [29, 30], in which the sum operator
plays a pivotal role. Each process is then parametrized by a variable of the queue type with a sum-
mand which receives all possible messages (if the queue is empty). Conversely, this property of the
communication cannot be obtained in the frameworks with a lossy communication primitive such as
CMN, CMAN, ω-calculus, SCWN, and the broadcast psi-calculi.

To make a process input-enabled while communication is synchronous, three approaches are fol-
lowed. In the first approach, followed by AWN, the semantics is equipped with a rule similar to our
rule Rcv3 with a negative premise which expresses that if a node is not ready to receive, the message
is simply ignored [16]. Due to our implicit modeling of topology, the negative premise of our rule is
more complicated to characterize the unreadiness of nodes regarding the underlying topology. In the
second approach, followed by CDST, counterparts for the rules Bro and Recv are defined with nega-
tive premises to cover cases when a process cannot participate in the communication [34]. The third
approach, provided by CSB#, eliminates negative premises, to remain within the de Simone format of
structural operational semantics [16], in favor of actions which discard messages [41]. Therefore, the
semantics is augmented by rules that trigger the ignore actions for any sending node, receiving nodes
for disconnected locations, and deadlock. Furthermore, the rules Bro and Recv are modified to cover
cases when a process ignores a message.

Among the reliable settings, only CDST provides a behavioral equivalence relation, based on the
notion of observational congruence: the receive and send actions are observable while transitions
changing the underlying topology are treated as unobservable. However, due to implicit modeling
of topology and mobility, our behavioral equivalence relation has been parametrized with network
constraints while it considers the branching structure of MANETs.

9. Conclusion

We introduced the reliable framework RRBPT, suitable to specify and verify MANETs, with the aim to
catch errors in design decisions. We discussed the required changes at the semantic model by extend-
ing the network constraints with negative connectivity links. Furthermore, we revised the equivalence
relation of the lossy setting to preserve required behavior in the reliable framework. Then we demon-
strated which axioms should be added to /removed from the reliable setting. We provided an analysis
approach at the syntactic level, exploiting a precongruence relation and our axiomatization. We ap-
plied our analysis approach to a simple routing protocol to prove that it correctly finds routes among
connected nodes.

References
[1] Baeten J, Bravetti M. A ground-complete axiomatization of finite state processes in process algebra, Proc.

16th Conference on Concurrency Theory, 3653, Springer, 2005, ISBN 3-540-28309-9.

[2] Basten T. Branching bisimilarity is an equivalence indeed!, Information Processing Letters, 1996;
58(3):141–147. URL https://doi.org/10.1016/0020-0190(96)00034-8.

[3] Bengtson J, Johansson M, Parrow J, Victor B. Psi-calculi: Mobile processes, nominal data, and logic, Proc.
24th Annual IEEE Symposium on Logic in Computer Science, IEEE, 2009, ISBN 978-0-7695-3746-7.

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 25

[4] Bergstra J, Klop JW. Process algebra for synchronous communication, Information and Control,
1984;60(1-3):109–137. URL https://doi.org/10.1016/S0019-9958(84)80025-X.

[5] Bezem M, Groote JF. Invariants in process algebra with data, Proc. 5th Conference of Concurrency Theory,
836, Springer, 1994, ISBN 3-540-58329-7.

[6] Bhargavan K, Obradovid D, Gunter CA. Formal verification of standards for distance vector routing pro-
tocols, Journal of the ACM, 2002;49(4):538–576. doi:10.1145/581771.581775.

[7] Borgström J, Huang S, Johansson M, Raabjerg P, Victor B, Pohjola J Å, Parrow J. Broadcast psi-
calculi with an application to wireless protocols, Software and System Modeling, 2015;14(1):201–216.
doi:10.1007/s10270-013-0375-z.

[8] Bourke T, van Glabbeek RJ, Höfner P. A mechanized proof of loop freedom of the (untimed) AODV
routing protocol, Proc. 12th Symposium on Automated Technology for Verification and Analysis, 8837,
Springer, 2014, ISBN 978-3-319-11935-9.

[9] Bourke T, van Glabbeek RJ, Höfner P. Showing invariance compositionally for a process algebra for
network protocols, Proc. 5th Conference on Interactive Theorem Proving, 8558, Springer, 2014, ISBN
978-3-319-08969-0.

[10] Bres, E., van Glabbeek, R. J., Höfner, P.: A timed process algebra for wireless networks with an application
in routing (extended abstract), Proc. 25th European Symposium on Programming, 9632, Springer, 2016,
ISBN 978-3-662-49497-4.

[11] Chiyangwa S, Kwiatkowska M. A timing analysis of AODV, Proc. 7th IFIP Conference on Formal Meth-
ods for Open Object-based Distributed Systems, 3535, Springer, 2005, ISBN 3-540-26181-8.

[12] Clarke EM, Emerson EA. Design and synthesis of synchronization skeletons using branching-time tem-
poral logic, Proc. Workshop on Logic of Programs, 131, Springer, 1981, ISBN 3-540-11212-X.

[13] Ehrich H, Loeckx J, Wolf M. Specification of Abstract Data Types, John Wiley, 1996, ISBN 978-0-471-
95067-7.

[14] Fall KR, Stevens WR. TCP/IP Illustrated, vol. 1, Addison-Wesley, 2011, ISBN 0-13-280818-8.

[15] Fehnker A, van Glabbeek RJ, Höfner P, McIver A, Portmann, M, Tan WL. Automated analysis of AODV
using UPPAAL, Proc. 18th Conference on Tools and Algorithms for the Construction and Analysis of
Systems, 7214, Springer, 2012, ISBN 978-3-642-28755-8.

[16] Fehnker A, van Glabbeek RJ, Höfner P, McIver A, Portmann M, Tan WL. A process algebra for wireless
mesh networks, Proc. 21st European Symposium on Programming, 7211, Springer, 2012, ISBN 978-3-
642-28868-5.

[17] Fokkink WJ, Pang J, van de Pol JC. Cones and foci: A mechanical framework for protocol verification,
Formal Methods in System Design, 2006;29(1):1–31. doi:10.1007/s10703-006-0004-3.

[18] Ghassemi F, Fokkink WJ. Model checking mobile ad hoc networks, Formal Methods in System Design,
2016;48(1-2):159–189. doi:10.1007/s10703-016-0254-7.

[19] Ghassemi F, Fokkink WJ, Movaghar A. Restricted broadcast process theory, Proc. 6th Conference on
Software Engineering and Formal Methods, IEEE, 2008, ISBN 978-0-7695-3437-4.

[20] Ghassemi F, Fokkink WJ, Movaghar A. Equational reasoning on ad hoc networks, Proc. 3rd Conference
on Fundamentals of Software Engineering, 5961, Springer, 2009, ISBN 978-3-642-11622-3.

26 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

[21] Ghassemi F, Fokkink WJ, Movaghar A. Equational reasoning on mobile ad hoc networks, Fundamenta
Informaticae, 2010;105(4):375–415.

[22] Ghassemi F, Fokkink WJ, Movaghar A. Verification of mobile ad hoc networks: An algebraic approach,
Theoretical Computer Science, 2011;412(28):3262–3282. URL https://doi.org/10.1016/j.tcs.

2011.03.017.

[23] van Glabbeek RJ, Höfner P, Portmann M, Tan WL. Modelling and verifying the AODV routing protocol,
Distributed Computing, 2016;29(4):279–315. doi:10.1007/s00446-015-0262-7.

[24] Godskesen J. A calculus for mobile ad hoc networks, Proc. 9th Conference on Coordination Models and
Languages, 4467, Springer, 2007, ISBN 978-3-540-72793-4.

[25] Godskesen J. A calculus for mobile ad-hoc networks with static location binding, Proc. 15th Workshop on
Expressiveness in Concurrency, 2009;242(1):161–183. doi:10.1016/j.entcs.2009.06.018.

[26] Godskesen J, Gryn O. Modeling and verification of security protocols for ad hoc networks using UPPAAL,
Proc. 18-th Nordic Workshop on Programming Theory, 2006.

[27] Godskesen J, Nanz S. Mobility models and behavioural equivalence for wireless networks, Proc. 11th
Conference on Coordination Models and Languages, 5521, Springer, 2009, ISBN 978-3-642-02052-0.

[28] Groote JF, Mathijssen A, Reniers M, Usenko Y, van Weerdenburg M. The formal specification language
mCRL2, Methods for Modelling Software Systems, 06351, Schloss Dagstuhl, 2006, ISSN 1862-4405.

[29] Groote JF, Ponse A. µCRL: A base for analysing processes with data, Proc. 3rd Workshop on Concurrency
and Compositionality, GMD-Studien Nr. 191, 1991.

[30] Groote JF, Ponse A. Syntax and semantics of µCRL, Proc. Workshop on Algebra of Communicating
Processes, Workshops in Computing, Springer, 1995, ISBN 978-3-540-19909-0.

[31] Groote JF, Springintveld J. Focus points and convergent process operators: A proof strategy for protocol
verification, Journal of Logic and Algebraic Programming, 2001;49(1-2):31–60. URL https://doi.

org/10.1016/S1567-8326(01)00010-8.

[32] Groote JF, van Wamel J. The parallel composition of uniform processes with data, Theoretical Computer
Science, 2001;266(1-2):631–652. URL https://doi.org/10.1016/S0304-3975(00)00324-8.

[33] Höfner P, van Glabbeek RJ, Tan WL, Portmann M, McIver A, Fehnker A. A rigorous analysis of AODV
and its variants, The 15th ACM International Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems, ACM, 2012, ISBN 978-1-4503-1628-6.

[34] Kouzapas D, Philippou A. A process calculus for dynamic networks, Proc. Conference on Formal Tech-
niques for Distributed Systems, 6722, Springer, 2011, ISBN 978-3-642-21460-8.

[35] Luttik B. https://doi.org/10.1016/S0304-3975(00)00324-8, Ph.D. Thesis, University of Amsterdam, 2002.

[36] McIver A, Fehnker A. Formal techniques for analysis of wireless networks, Proc. 2nd Symposium on
Leveraging Applications of Formal Methods, IEEE, 2006, ISBN 978-0-7695-3071-0.

[37] Merro M. An observational theory for mobile ad hoc networks, Information and Computation,
2009;207(2):194–208. URL https://doi.org/10.1016/j.ic.2007.11.010.

[38] Merro M, Ballardin F, Sibilio EA. A timed calculus for wireless systems, Theoretical Computer Science,
2011;412(47):6585–6611. URL https://doi.org/10.1016/j.tcs.2011.07.016.

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 27

[39] Mezzetti N, Sangiorgi D. Towards a calculus for wireless systems, Proc. 22nd Conference on Mathemati-
cal Foundations of Programming Semantics, 2006;158:331–353. URL https://doi.org/10.1016/j.

entcs.2006.04.017.

[40] Namjoshi KS, Trefler RJ. Loop freedom in AODVv2, Proc. 35th IFIP Conference on Formal Techniques
for Distributed Objects, Components, and Systems, 9039, 2015, ISBN 978-3-319-19194-2.

[41] Nanz S, Hankin C. A framework for security analysis of mobile wireless networks, Theoretical Computer
Science, 2006;367(1-2):203–227.
URL Aframeworkforsecurityanalysisofmobilewirelessnetworks,.

[42] Nanz S, Nielson F, Nielson H. Static analysis of topology-dependent broadcast networks, Information and
Computation, 2010;208(2):117–139. doi:10.1016/j.ic.2009.10.003.

[43] Perkins CE, Belding-Royer EM. Ad-hoc on-demand distance vector routing, Proc. 2nd Workshop on Mo-
bile Computing Systems and Applications, IEEE, 1999, ISBN 0-7695-0025-0.

[44] Plotkin GD. A structural approach to operational semantics, Journal of Logic and Algebraic Programming,
2004;60-61:17–139. doi:10.1016/j.jlap.2004.05.001.

[45] Prasad KVS. A calculus of broadcasting systems, Science of Computer Programming, 1995;25(2-3):285–
327. URL https://doi.org/10.1016/0167-6423(95)00017-8.

[46] de Renesse R, Aghvami AH. Formal verification of ad-hoc routing protocols using SPIN model checker,
Proc. 12th Mediterranean Electrotechnical Conference, IEEE, 2004, ISBN 0-7803-8271-4.

[47] Singh A, Ramakrishnan CR, Smolka SA. A process calculus for mobile ad hoc networks, Science of
Computer Programming, 2010;75(6):440–469. URL https://doi.org/10.1016/j.scico.2009.07.

008.

[48] Usenko Y. Linearization in µCRL, Ph.D. Thesis, Eindhoven University of Technology, 2002.

[49] Wibling O, Parrow J, Pears A. Automatized verification of ad hoc routing protocols, Proc. 24th
IFIP Conference on Formal Techniques for Networked and Distributed Systems, 3235, Springer, 2004.
doi:10.1007/978-3-540-30232-2 22.

[50] Wibling O, Parrow J, Pears A. Ad hoc routing protocol verification through broadcast abstraction, Proc.
25th IFIP Conference on Formal Techniques for Networked and Distributed Systems, 3731, Springer,
2005, ISBN 3-540-29189-X.

[51] Yousefi B, Ghassemi F, Khosravi R. Modeling and efficient verification of wireless ad hoc networks,
Formal Aspect of Computing, 2017;29(6):1051–1086. doi:10.1007/s00165-017-0429-z.

A. Branching reliable computed network bisimilarity is an equivalence

To prove that branching reliable computed network bisimilarity is an equivalence, we exploit semi-
branching reliable computed network bisimilarity, following [2].

Definition A.1. A binary relation R on computed network terms is a semi-branching reliable com-

puted network simulation, if t1Rt2 implies whenever t1
(C,η)−−−−→ t′1:

28 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

• either η = τ and there is a t′2 such that t2 ⇒ t′2 with t1Rt′2 and t′1Rt′2; or

• there are s′′1, . . . , s
′′
k and s′1, . . . , s

′
k for some k > 0 such that ∀i ≤ k (t2 ⇒ s′′i

〈(Ci,η)〉−−−−−→ s′i, with
t1Rs′′i and t′1Rs′i), and 〈C1〉, . . . , 〈Ck〉 constitute a partitioning of 〈C〉.

R is a semi-branching reliable computed network bisimulation if R and R−1 are semi-branching
reliable computed network simulations. Computed networks t1 and t2 are semi-branching reliable
computed network bisimilar if t1Rt2, for some semi-branching reliable computed network bisimula-
tion relationR.

Lemma A.2. Let t1 and t2 be computed network terms, and R a semi-branching reliable computed
network bisimulation such that t1Rt2.

• If t1 ⇒ t′1 then ∃t′2 · t2 ⇒ t′2 ∧ t′1Rt′2

• If t2 ⇒ t′2 then ∃t′1 · t1 ⇒ t′1 ∧ t′1Rt′2

Proof:
We only give the proof of the first property. The second property can be proved in a similar fashion.
The proof is by induction on the number of⇒ steps from t1 to t′1:

• Base: Assume that the number of steps equals zero. Then t1 and t′1 must be equal. Since t1Rt2
and t2 ⇒ t2, the property is satisfied.

• Induction step: Assume t1 ⇒ t′1 in n steps, for some n ≥ 1. Then there is t′′1 such that t1 ⇒ t′′1 in

n−1⇒ steps, and t′′1
(C,τ)−−−−→ t′1. By the induction hypothesis, there is a t′′2 such that t2 ⇒ t′′2 and

t′′1Rt′′2 . Since t′′1
(C,τ)−−−−→ t′1 and R is a semi-branching reliable computed network bisimulation,

there are two cases to consider:

– there is a t′2 such that t′′2 ⇒ t′2, t′′1Rt′2, and t′1Rt′2. So t2 ⇒ t′2 such that t′1Rt′2.

– or there are s′′′1 , . . . , s
′′′
k and s′1, . . . , s

′
k for some k > 0 such that ∀i ≤ k (t′′2 ⇒ s′′′i

(Ci,τ)−−−−→ s′i,
with t′′1Rs′′′i and t′1Rs′i), and C1, . . . , Ck constitute a partitioning of C. By definition,

s′′′i
(Ci,τ)−−−−→ s′i yields s′′′i ⇒ s′i. Consequently for any arbitrary i ≤ k, t2 ⇒ s′i such that

the relation t′1Rs′i holds.
ut

Proposition A.3. The relation composition of two semi-branching reliable computed network bisim-
ulations is again a semi-branching reliable computed network bisimulation.

Proof:
LetR1 andR2 be semi-branching reliable computed network bisimulations with t1R1t2 and t2R2t3.

Let t1
(C,η)−−−−→ t′1. It must be shown that

• either η = τ and there is a t′3 such that t3 ⇒ t′3 with t1R1 ◦ R2t
′
3 and t′1R1 ◦ R2t

′
3; or

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 29

• ∃s′1, . . . , s′k, s′′1, . . . , s′′k ∀i ≤ k (t3 ⇒ s′′i
〈(Ci,η)〉−−−−−→ s′i ∧ t1R1 ◦ R2s

′′
i ∧ t′1R1 ◦ R2s

′
i), where

〈C1〉, . . . , 〈Ck〉 constitute a partitioning of 〈C〉.

Since t1R1t2, two cases can be considered:

• η = τ and there is a t′2 such that t2 ⇒ t′2 with t1R1t
′
2 and t′1R1t

′
2. Lemma A.2 yields that there

is a t′3 that t3 ⇒ t′3 with t′2R2t
′
3. It immediately follows that t1R1 ◦ R2t

′
3 and t′1R1 ◦ R2t

′
3.

• there exist s∗∗1 , . . . s
∗∗
j , s∗1 . . . s

∗
j for some j > 0 such that ∀i ≤ j (t2 ⇒ s∗∗i

〈(Ci,η)〉−−−−−→ s∗i ,
t1R1s

∗∗
i , t′1R1s

∗
i), and 〈C1〉, . . . , 〈Cj〉 is a partitioning of 〈C〉. Since t2R2t3 and t2 ⇒ s∗∗i ,

Lemma A.2 yields that there are s′′′1 , . . . , s
′′′
j such that ∀i ≤ j (t3 ⇒ s′′′i ∧ s∗∗i R2s

′′′
i). Two

cases can be distinguished:

– either η = τ and for some i ≤ j, s∗∗i
(Ci,τ)−−−−→ s∗i implies there is an s′′i such that s′′′i ⇒ s′′i

with s∗∗i R2s
′′
i and s∗iR2s

′′
i . It follows immediately that there is an s′′i such that t3 ⇒ s′′i

with t1R1 ◦ R2s
′′
i and t′1R1 ◦ R2s

′′
i ; or

– for all i ≤ j, s∗∗i
〈(Ci,η)〉−−−−−→ s∗i implies there are s′′i1 , . . . , s

′′
iki

and s′i1 , . . . , s
′
iki

for some ki > 0

such that ∀o ≤ ki (s′′i ⇒ s′′io
〈(Cio ,η)〉−−−−−−→ s′io , s∗∗i R2s

′′
io

, s∗iR2s
′
io

), and 〈Ci1〉, . . . , 〈Ciki 〉 is

a partitioning of 〈Ci〉. Since t3 ⇒ s′′i , we have ∀i ≤ j, ∀o ≤ ki (t3 ⇒ s′′io
〈(Cio ,η)〉−−−−−−→ s′io

with t1R1 ◦ R2s
′′
io

, t′1R1 ◦ R2s
′
io

), and {〈Cio〉 | i ≤ j, o < ki} is a partitioning of 〈C〉.
ut

Corollary A.4. Semi-branching reliable computed network bisimilarity is an equivalence relation.

It is not hard to see that the union of semi-branching reliable computed network bisimulations is
again a semi-branching reliable computed network bisimulation.

Proposition A.5. The largest semi-branching reliable computed network bisimulation is a branching
reliable computed network bisimulation.

Proof:
Suppose R is the largest semi-branching reliable computed network bisimulation for some given
CLTS. Let t1Rt2, t2 ⇒ t′2, t1Rt′2 and t′1Rt′2. We show that R′ = R ∪ {(t′1, t2)} is a semi-branching
reliable computed network bisimulation.

1. If t′1
(C,η)−−−−→ t′′1 , then it follows from (t′1, t

′
2) ∈ R that

• either η = τ and there is a t′′2 such that t′2 ⇒ t′′2 with t′1Rt′′2 and t′′1Rt′′2 . Finally t2 ⇒ t′2
results t′1R′t′′2 and t′′1R′t′′2; or

• there are s′′′1 , . . . , s
′′′
k and s′′1, . . . , s

′′
k for some k > 0 such that ∀i ≤ k (t′2 ⇒ s′′′i

〈(Ci,η)〉−−−−−→ s′′i
with (t′1, s

′′′
i), (t′′1, s

′′
i) ∈ R) and 〈C1〉, . . . , 〈Ck〉 is a partitioning of 〈C〉. And t2 ⇒ t′2 yields

∀i ≤ k (t2 ⇒ s′′′i
〈(Ci,η)〉−−−−−→ s′′i , with (t′1, s

′′′
i), (t′′1, s

′′
i) ∈ R′).

30 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

2. If t2
(C,η)−−−−→ t′′2 , then it follows from (t1, t2) ∈ R that

• either η = τ , and there is a t′′1 such that t1 ⇒ t′′1 with t′′1Rt2 and t′′1Rt′′2 . Furthermore,
(t1, t

′
2) ∈ R, t1 ⇒ t′′1 , and Lemma A.2 imply there is a t′′′2 such that t′2 ⇒ t′′′2 with

(t′′1, t
′′′
2) ∈ R. Similarly (t′1, t

′
2) ∈ R, t′2 ⇒ t′′′2 , and Lemma A.2 imply there is a t′′′1 such

that t′1 ⇒ t′′′1 with (t′′′1 , t
′′′
2) ∈ R. From (t′′′1 , t

′′′
2) ∈ R, (t′′′2 , t

′′
1) ∈ R−1, and (t′′1, t2) ∈ R,

we conclude (t′′′1 , t2) ∈ R ◦ R−1 ◦ R. And from (t′′′1 , t
′′′
2) ∈ R, (t′′′2 , t

′′
1) ∈ R−1, and

(t′′1, t
′′
2) ∈ R, we conclude (t′′′1 , t

′′
2) ∈ R ◦ R−1 ◦ R.

• or there are s′′′11 , . . . , s
′′′
1k

and s′′11 , . . . , s
′′
1k

for some k > 0 such that ∀i ≤ k (t1 ⇒

s′′′1i
〈(Ci,η)〉−−−−−→ s′′1i with (s′′′1i , t2), (s′′1i , t

′′
2) ∈ R) and 〈C1〉, . . . , 〈Ck〉 is a partitioning of

〈C〉. Since (t1, t
′
2) ∈ R and t1 ⇒ s′′′1i , by Lemma A.2, there are s′′′21 , . . . , s

′′′
2k

such that

∀i ≤ k (t′2 ⇒ s′′′2i and (s′′′1i , s
′′′
2i

) ∈ R). Since s′′′1i
〈(Ci,η)〉−−−−−→ s′′1i , there are s∗∗2i1 , . . . , s

∗∗
2iki

and s∗2i1 , . . . , s
∗
2iki

for some ki > 0 such that ∀o ≤ ki (s′′′2i ⇒ s∗∗2io
〈(Cio ,η)〉−−−−−−→ s∗2io with

(s′′′1i , s
∗∗
2io

), (s′′1i , s
∗
2io

) ∈ R) and 〈Ci1〉, . . . , 〈Ciki 〉 is a partitioning of 〈Ci〉. Since t′2 ⇒ s′′′2i
and s′′′2i ⇒ s∗∗2io , we have ∀i ≤ k, o ≤ ki (t′2 ⇒ s∗∗2io). By assumption, (t′1, t

′
2) ∈ R, so

by Lemma A.2 there are s∗∗11 , . . . , s
∗∗
1K

, where K =
∑k

i=1 ki, such that ∀z ≤ K (t′1 ⇒ s∗∗1z

and (s∗∗1z , s
∗∗
2io

) ∈ R, where z = (
∑i−1

j=1 kj) + o). Since s∗∗2io
〈(Cio ,η)〉−−−−−−→ s∗2io , there

are s∗∗∗1z1
, . . . , s∗∗∗1z

k′z
and s

′
1z1
, . . . , s

′
1z

k′z
for some k′z > 0 such that ∀j ≤ k′z (s∗∗1z ⇒

s∗∗∗1zj

〈(Cioj ,η)〉
−−−−−−−→ s

′
1zj

with (s∗∗∗1zj
, s∗∗2io), (s

′
1zj
, s∗2io) ∈ R) and 〈Cio1 〉, . . . , 〈Ciok′z

〉 is a parti-

tioning of 〈Cio〉. And t′1 ⇒ s∗∗1z yields ∀i ≤ k, o ≤ ki, j ≤ k′z(t
′
1 ⇒ s∗∗∗1zj

〈(Cioj ,η)〉
−−−−−−−→ s

′
1zj

with
(s∗∗∗1zj

, s∗∗2io) ∈ R ∧ (s∗∗2io , s
′′′
1i

) ∈ R−1 ∧ (s′′′1i , t2) ∈ R
⇒ (s∗∗∗1zj

, t2) ∈ R ◦ R−1 ◦ R
(s
′
1zj
, s∗2io) ∈ R ∧ (s∗2io , s

′′
1i

) ∈ R−1 ∧ (s′′1i , t
′′
1) ∈ R

⇒ (s
′
1zj
, t′′2) ∈ R ◦ R−1 ◦ R,

where z = (
∑i−1

l=1 kl) + o), and {〈Cioj 〉 | i ≤ k, o ≤ ki, j ≤ k
′
z} is a partitioning of 〈C〉.

By Proposition A.3,R◦R−1 ◦R is a semi-branching reliable computed network bisimulation.
SinceR is the largest semi-branching reliable computed network bisimulation, and clearlyR ⊆
R ◦R−1 ◦ R, we haveR = R ◦R−1 ◦ R.

So R′ is a semi-branching reliable computed network bisimulation. Since R is the largest semi-
branching reliable computed network bisimulation,R′ = R.

We will now prove thatR is a branching reliable computed network bisimulation. Let t1Rt2, and

t1
(C,η)−−−−→ t′1. We only consider the case when η = τ , because for other cases, the transfer condition

of Definition 5.3 and Definition A.1 are the same. Two cases can be distinguished:

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 31

1. There is a t′2 such that t2 ⇒ t′2 with t1Rt′2 and t′1Rt′2: we proved above that t′1Rt2. This agrees
with the first case of Definition 5.3.

2. There are s′′1, . . . , s
′′
k and s′1, . . . , s

′
k for some k > 0 such that ∀i ≤ k (t2 ⇒ s′′i

〈(Ci,τ)〉−−−−−→ s′i
with t1Rs′′i and t′1Rs′i) and 〈C1〉, . . . , 〈Ck〉 constitute a partitioning of 〈C〉. This agrees with the
second case of Definition 5.1.

ConsequentlyR is a branching reliable computed network bisimulation. ut

Since any branching reliable computed network bisimulation is a semi-branching reliable com-
puted network bisimulation, this yields the following corollary.

Corollary A.6. Two computed network terms are related by a branching reliable computed network
bisimulation if and only if they are related by a semi-branching reliable computed network bisimula-
tion.

Corollary A.7. Branching reliable computed network bisimilarity is an equivalence relation.

Corollary A.8. Rooted branching reliable computed network bisimilarity is an equivalence relation.

Proof:
It is easy to show that rooted branching reliable computed network bisimilarity is reflexive and sym-
metric. To conclude the proof, we show that rooted branching reliable computed network bisimilarity

is transitive. Let t1 'rbr t2 and t2 'rbr t3. Since t1 'rbr t2, if t1
(C,η)−−−−→ t′1, then there is t′2 such that

t2
〈(C,η)〉−−−−−→ t′2 and t′1 'br t′2. Since t2 'rbr t3, there is a t′3 such that t3

〈(C,η)〉−−−−−→ t′3 and t′2 'br t′3.

Equivalence of branching reliable computed network bisimilarity yields t3
〈(C,η)〉−−−−−→ t′3 with t′1 'br t′3.

The same argumentation holds when t3
(C,η)−−−−→ t′3. Consequently the transfer conditions of Defini-

tion 5.5 holds and t1 'rbr t3. ut

B. Rooted branching reliable computed network bisimilarity is a con-
gruence

Theorem B.1. Rooted branching reliable computed network bisimilarity is a congruence for terms
with respect to RCNT operators.

Proof:
We need to prove the following cases:

1. [[t1]]` 'rbr [[t2]]` implies [[α.t1]]` 'rbr [[α.t2]]`;

2. [[t1]]` 'rbr [[t2]]` and [[t′1]]` 'rbr [[t′2]]` implies [[t1 + t′1]]` 'rbr [[t2 + t′2]]`;

3. [[t1]]` 'rbr [[t2]]` and [[t′1]]` 'rbr [[t′2]]` implies [[sense(`′, t1, t
′
1)]]` 'rbr [[sense(`′, t2, t

′
2)]]`;

32 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

4. [[t1]]` 'rbr [[t2]]` implies ` : t : t1 'rbr ` : t : t2 for any arbitrary term t;

5. t1 'rbr t2 implies (C, η).t1 'rbr (C, η).t2;

6. t1 'rbr t2 and t′1 'rbr t′2 implies t1 + t′1 'rbr t2 + t′2;

7. t1 'rbr t2 implies (ν`)t1 'rbr (ν`)t2;

8. t1 'rbr t2 and t′1 'rbr t′2 implies t1 ‖ t′1 'rbr t2 ‖ t′2;

9. t1 'rbr t2 and t′1 'rbr t′2 implies t1 t′1 'rbr t2 t′2;

10. t1 'rbr t2 and t′1 'rbr t′2 implies t1 | t′1 'rbr t2 | t′2;

11. t1 'rbr t2 implies ∂M (t1) 'rbr ∂M (t2);

12. t1 'rbr t2 implies τM (t1) 'rbr τM (t2);

13. t1 'rbr t2 implies C B t1 'rbr C B t2.

Clearly, if t1 'rbr t2 then t1 'br t2 is witnessed by the following branching reliable computed
network bisimulation relation:

R′ = {R | t1
(C,η)−−−−→ t′1 ⇒ ∃t′2 · t2

〈(C,η)〉−−−−−→ t′2 ∧ t′1 'br t′2 is witnessed byR}

∪ {R | t2
(C,η)−−−−→ t′2 ⇒ ∃t′1 · t1

〈(C,η)〉−−−−−→ t′1 ∧ t′1 'br t′2 is witnessed byR}
∪ {(t1, t2)}.

We prove the cases 1, 2, 4, 7, 10, 11, and 13 since the proof of the cases 3 and 6 are similar to the
case 2, the case 5 is similar to the case 1, the cases 8 and 9 are similar to the case 10, and the case 12
is similar to the case 11.

Case 1. The first transitions of [[α.t1]]` and [[α.t2]]` are the same with application of the rule Snd (if α
is a send action), Rcv1 (if α is a receive action), or Rcv2,3 (for receiving (C,nrcv(m))which are not
derivable from Rcv1), and by assumption [[t1]]` 'rbr [[t2]]` implies [[t1]]` 'br [[t2]]`. Thus the transfer
conditions of Definition 5.5 hold.

Case 2. Every transition [[t1 + t′1]]`
(C,η)−−−−→ t owes to [[t1]]`

(C,η)−−−−→ t or [[t′1]]`
(C,η)−−−−→ t by application of

Choice, or is implied by application of Rcv3, i.e., [[t1 + t′1]]`
(C,nrcv(m))−−−−−−−−−→ [[t1 + t′1]]` iff there exists

no t1 + t′1
(C′,rcv(m))−−−−−−−−→ t∗ for some t∗ such that C′ 4 C. We assume that C is the greatest network

constraint derived by Rcv3 as the other can be derived by application of Exe2. For the former case,

[[t1]]` 'rbr [[t2]]` and [[t′1]]` 'rbr [[t′2]]` imply there is t′ such that [[t2]]`
(〈C,η)〉−−−−−→ t′ or [[t′2]]`

〈(C,η)〉−−−−−→ t′

and t 'br t′. Thus [[t2 + t′2]]`
〈(C,η)〉−−−−−→ t′ with t 'br t′. For the latter case by the rule Choice, there

exists no t1
(C′,rcv(m))−−−−−−−−→ t∗ and t′1

(C′,rcv(m))−−−−−−−−→ t∗ for some t∗ such that C′ 4 C. Thus by the rule

Rcv3, [[t1]]`
(C,nrcv(m))−−−−−−−−−→ [[t1]]` and [[t′1]]`

(C,nrcv(m))−−−−−−−−−→ [[t′1]]`. We remark that transitions derived by
application of Rcv3 are those that cannot be derived from Rcv1,2. The greatest value of the network

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 33

constraints of such transitions have no pair in the form of ? ` or ? 6 `. This implies that such
transitions can not be mimicked by application of Rcv1,2 (since they will add constraints of the form

? ` or ? 6 `) . Therefore, [[t1]]` 'rbr [[t2]]` and [[t′1]]` 'rbr [[t′2]]` imply that [[t2]]`
(C,nrcv(m))−−−−−−−−−→ [[t2]]`

and [[t′2]]`
(C,nrcv(m))−−−−−−−−−→ [[t′2]]` which can be only derived by application of the rule Rcv3. Therefore,

there exists no t2
(C′,rcv(m))−−−−−−−−→ t∗ and t′2

(C′,rcv(m))−−−−−−−−→ t∗ for some t∗ such that C′ 4 C. Hence,

[[t2 + t′2]]`
(C,nrcv(m))−−−−−−−−−→ [[t2 + t′2]]`.

Case 4 Suppose that ` : t : t1
(C∗,η)−−−−→ t∗. Two cases can be distinguished:

• It owes to the application of one of the rules Inter ′1−3 together with some of the rules Choice ′,
Inv ′, and Sen ′1,2. Therefore, t1 has a subterm in the form of α.t′1 where t∗ ≡ [[t′1]]`, η is
the network action version of α, and C∗ = C∗1 ∪ C∗2 such that C∗1 is the network constraint
added by Inter ′1−3 and C∗2 is added by the rules Sen ′1,2 if they are applied. By application of

Prefix and Snd /Rcv1,2 together with the rules Choice, Inv , and Sen1,2, [[t1]]`
(C∗,η)−−−−→ [[t′1]]`.

The assumption [[t1]]` 'rbr [[t2]]` results that [[t2]]`
〈(C∗,η)〉−−−−−−→ [[t′2]]` and [[t′1]]` 'br [[t′2]]`. We

remark that a transition of t1 owing to Rcv1,2 cannot be matched to a transition of t2 generated
by Rcv3. By the rules Rcv1,2, two transitions are generated with network constraints of the
forms {? `} ∪ C and {? 6 `} ∪ C. Assume that one of these transitions of t1 is matched
to a transition of t2 generated by Rcv3 with the network constraint C (together with Exe2).
Due to our root condition, t1 must also generate a transition with the network constraint C by

application of Rcv3 and this is impossible. Thus [[t2]]`
〈(C∗,η)〉−−−−−−→ [[t′2]]` implies that t2 must have

a subterm in the form of α.t′2. Therefore with a same discussion, ` : t : t2
〈(C∗,η)〉−−−−−−→ [[t′2]]` and

[[t′1]]` 'br [[t′2]]`.

• It owes to either Sen3 or Sen4 as t1 has a subterm of the form sense(`′, t∗1, t
∗∗
1). Assume

it was derived by Sen3 (maybe together with Choice ′, Inv ′, and Sen ′1,2), as the other case

can be proved with the same argumentation. Thus, the assumptions ` : t : t∗1 6nrcv(m)−−−−−−→
and ` : t : t∗∗1

(C,nrcv(m))−−−−−−−−−→ [[t∗∗1
′]]`, where C∗ = {`′ `} ∪ C1, η∗ = nrcv(m) and

t∗ = t hold. These together imply that sense(`′, t∗1, t
∗∗
1) 6 ({? ̀ ′},rcv(m))−−−−−−−−−−−−−→ and hence,

t1 6
({? ̀ ′}∪C1[?/`],rcv(m))−−−−−−−−−−−−−−−−−−−−−→. Therefore, by application of Rcv3, [[t1]]`

(C∗,nrcv(m))−−−−−−−−−−→ [[t1]]`,
and by application of the rules Sen2 and Rcv1 (maybe together with Choice, Inv , and Sen1,2),

[[t1]]`
({`′ 6 ̀ }∪C∪C1[`/?],nrcv(m))−−−−−−−−−−−−−−−−−−−−−−−−→ [[t∗∗1

′]]`. The assumption [[t1]]` 'rbr [[t2]]` implies that

[[t2]]`
({`′ 6 ̀ }∪C∪C1[`/?],nrcv(m))−−−−−−−−−−−−−−−−−−−−−−−−→ [[t∗∗2

′]]`, [[t∗∗1
′]]` 'br [[t∗∗2

′]]`, and [[t2]]`
(C∗,nrcv(m))−−−−−−−−−−→ [[t2]]`

hold. Due to the root condition, the negative pair ` 6 `′ can be only derived when t2 has

a subterm of the form sense(`′, t∗2, t
∗∗
2), where t∗2 6rcv(m)−−−−−→, t∗∗2

(C,rcv(m))−−−−−−−−→ t∗∗2
′. Conse-

quently ` : t : t∗2 6nrcv(m)−−−−−−→ and ` : t : t∗∗2
(C,nrcv(m))−−−−−−−−−→ [[t∗∗2]]`. By application of Sen3,

` : t : t2
(C∗,nrcv(m))−−−−−−−−−−→ t is achieved.

34 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

Case 7. We prove that if t1 'br t2 then (ν`)t1 'br (ν`)t2. Let t1 'br t2 be witnessed by the branching
reliable computed network bisimulation relationR. We defineR′ = {((ν`)t′1, (ν`)t′2)|(t′1, t′2) ∈ R}. We
prove thatR′ is a branching reliable computed network bisimulation relation.

Suppose (ν`)t′1
(C′,η′)−−−−→ (ν`)t′′1 results from the application of Hid on t′1

(C,η)−−−−→ t′′1 . Since
(t′1, t

′
2) ∈ R, there are two cases; in the first case η is a τ action and (t′′1, t

′
2) ∈ R, consequently

((ν`)t′′1, (ν`)t
′
2) ∈ R′. In the second case there are s′′′1 , . . . s

′′′
k and s′′1, . . . , s

′′
k for some k > 0 such that

∀i ≤ k (t′2 ⇒ s′′′i
〈(Ci,η)〉−−−−−→ s′′i with (t′1, s

′′′
i), (t′′1, s

′′
i) ∈ R), and 〈C1〉 . . . , 〈Ck〉 is a partitioning of 〈C〉.

By application of Hid , ∀i ≤ k ((ν`)t′2 ⇒ (ν`)s′′′i with ((ν`)t′1, (ν`)s
′′′
i) ∈ R′). There are two cases

to consider:

• 〈(Ci, η)〉 = (Ci, η): Consequently (ν`)s′′′i
(C′i,η′)−−−−→ (ν`)s′′i where (C′i, η′) = (Ci, η)[?/`].

• 〈(Ci, η)〉 6= (Ci, η): in this case η is of the form nsnd(m, ?), η′ = η, and C′i = Ci[?/`]. If
〈(Ci, η)〉 = (Ci, η)[`/?] then 〈(Ci, η)〉[?/`] = (C′i, η′) holds, otherwise 〈(Ci, η)〉 = (Ci, η)[`′/?],
where `′ 6= `, and hence 〈(Ci, η)〉[?/`] is a counterpart of (C′i, η′). Consequently it holds that

(ν`)s′′′i
〈(C′i,η′)〉−−−−−−→ (ν`)s′′i .

Owing to the fact that a subset of C1[?/`], . . . , Ck[?/`] constitutes a partitioning of C[`/?], and ac-
cording to the discussion above, there are s′′′1 , . . . , s

′′′
j and s′′1, . . . , s

′′
j for some j ≤ k such that

∀i ≤ j, (ν`)t′2 ⇒ (ν`)s′′′i
〈(C′i,η′)〉−−−−−−→ (ν`)s′′i with ((ν`)t′1, (ν`)s

′′′
i), ((ν`)t′′1, (ν`)s

′′
i) ∈ R′), and

〈C′1〉, . . . , 〈C′j〉 is a partitioning of 〈C′〉.
Likewise we can prove that t1 'rbr t2 implies (ν`)t1 'rbr (ν`)t2. To this aim we examine

the root condition in Definition 5.5. Suppose (ν`)t1
(C′,η′)−−−−→ (ν`)t′1. With the same argument as

above, (ν`)t2
〈(C′,η′)〉−−−−−−→ (ν`)t′2. Since t′1 'br t′2, we proved that (ν`)t′1 'br (ν`)t′2. Concluding

(ν`)t1 'rbr (ν`)t2.

Case 10. From the three remaining cases, we focus on the most challenging case, which is the com-
munication merge operator |, as the other operators are proved in a similar way. First we prove that if
t1 'br t2, then t1 ‖ t 'br t2 ‖ t.

Let t1 'br t2 be witnessed by the branching reliable computed network bisimulation relation R.
We define R′ = {(t′1 ‖ t′, t′2 ‖ t′) | (t′1, t

′
2) ∈ R, t′ any computed network term}. We prove that R′

is a branching reliable computed network bisimulation relation. Suppose t′1 ‖ t
(C∗,η)−−−−→ t∗. There are

several cases to consider:

• Suppose η is of the form nsnd(m, `). First let it be performed by t′1, and t participated in the

communication. That is, t′1
(C1,nsnd(m,`))−−−−−−−−−−−→ t′′1 and t

(C,nrcv(m))−−−−−−−−−→ t′ give rise to the transition

t′1 ‖ t
(C1∪C[`/?],nsnd(m,`))−−−−−−−−−−−−−−−−−−→ t′′1 ‖ t′. As (t′1, t

′
2) ∈ R and t′1

(C1,nsnd(m,`))−−−−−−−−−−−→ t′′1 , there are

s′′′1 , . . . , s
′′′
k and s′′1, . . . , s

′′
k for some k > 0 such that ∀i ≤ k (t′2 ⇒ s′′′i

(C1i [`
′/`],nsnd(m,`′))

−−−−−−−−−−−−−−−−→ s′′i ,
where (` =?∨` = `′), with (t′1, s

′′′
i), (t′′1, s

′′
i) ∈ R), and C11 [`′/`], . . . , C1k [`′/`] is a partitioning

of C1[`′/`]. Hence ∀i ≤ k (t′2 ‖ t ⇒ s′′′i ‖ t
((C1i [`

′/`]∪C)[`′/?],nsnd(m,`′))
−−−−−−−−−−−−−−−−−−−−−−−−−→ s′′i ‖ t′ with

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 35

(t′1 ‖ t, s′′′i ‖ t), (t′′1 ‖ t′, s′′i ‖ t′) ∈ R′), and (C11 [`′/`] ∪ C)[`′/?], . . . , (C1k [`′/`] ∪ C)[`′/?] is a
partitioning of (C1[`′/`] ∪ C)[`′/?].

Now suppose that the send action was performed by t, and t′1 participated in the communi-

cation. That is, t′1
(C1,nrcv(m))−−−−−−−−−−→ t′′1 and t

(C,nsnd(m,`))−−−−−−−−−−−→ t′ give rise to the transition

t′1 ‖ t
(C1∪C[`/?],nsnd(m,`))−−−−−−−−−−−−−−−−−−→ t′′1 ‖ t′. Since (t′1, t

′
2) ∈ R and t′1

(C1,nrcv(m))−−−−−−−−−−→ t′′1 , there are

s′′′1 , . . . , s
′′′
k and s′′1, . . . , s

′′
k for some k > 0 such that ∀i ≤ k (t′2 ⇒ s′′′i

(C1i ,nrcv(m))
−−−−−−−−−−→ s′′i with

(t′1, s
′′′
i), (t′′1, s

′′
i) ∈ R), and C11 , . . . , C1k is a partitioning of C1. Therefore, ∀i ≤ k (t′2 ‖ t ⇒

s′′′i ‖ t
(C1i∪C[`/?],nsnd(m,`))

−−−−−−−−−−−−−−−−−−−→ s′′i ‖ t′, and (t′1 ‖ t, s′′′i ‖ t), (t′′1 ‖ t′, s′′i ‖ t′) ∈ R′) and
C11 ∪ C[`/?], . . . , C1k ∪ C[`/?] constitute a partitioning of C1 ∪ C[`/?].

• The case where η is a receive action is proved in a similar way to the previous case.

• Suppose η is a τ action. Assume it originates from t1 by application of Par . Thus t′1
(C,τ)−−−−→ t′′1

and (t′1, t
′
2) ∈ R implies: either (t′′1, t

′
2) ∈ R and consequently (t′′1 ‖ t, t′2 ‖ t) ∈ R′, or there

are s′′′1 , . . . , s
′′′
k and s′′1, . . . , s

′′
k for some k > 0 such that ∀i ≤ k (t′2 ⇒ s′′′i

(Ci,τ)−−−−→ s′′i with
(t′1, s

′′′
i), (t′′1, s

′′
i) ∈ R), and C1, . . . , Ck constitute a partitioning of C. Therefore, ∀i ≤ k (t′2 ‖

t ⇒ s′′′i ‖ t
(Ci,τ)−−−−→ s′′i ‖ t′, and (t′1 ‖ t, s′′′i ‖ t), (t′′1 ‖ t′, s′′i ‖ t′) ∈ R′). The case when

t
(C,τ)−−−−→ t′ implies t′1 ‖ t

(C,τ)−−−−→ t′1 ‖ t′ by application of Par is straightforward.

• The case when η is an internal action is easy to prove (similar to the second case of the previous
case).

Likewise we can prove that t1 'rbr t2 implies t ‖ t1 'rbr t ‖ t2.

Now let t1 'rbr t2. To prove t1 | t 'rbr t2 | t, we examine the root condition from Definition 5.5.

Suppose t1 | t
(C∗,nsnd(m,`))−−−−−−−−−−−−→ t∗. There are two cases to consider:

• This send action was performed by t1 at node `, and t participated in the communication. That is,

t1
(C1,nsnd(m,`))−−−−−−−−−−−→ t′1 and t

(C,nrcv(m))−−−−−−−−−→ t′, so that t1 | t
(C1∪C[`/?],nsnd(m,`))−−−−−−−−−−−−−−−−−−→ t′1 ‖ t′.

Since t1 'rbr t2, there is a t′2 such that t2
(C1,nsnd(m,`′))−−−−−−−−−−−−→ t′2 with (` =? ∨ ` = `′) and

t′1 'br t′2. Then t2 | t
(C1∪C[`′/?],nsnd(m,`))−−−−−−−−−−−−−−−−−−→ t′2 ‖ t′. Since t′1 'br t′2, we proved that

t′1 ‖ t′ 'br t′2 ‖ t′.

• The send action was performed by t at node `, and t1 participated in the communication. That

is, t1
(C1,nrcv(m))−−−−−−−−−−→ t′1 and t

(C,nsnd(m,`))−−−−−−−−−−−→ t′, so that t1 | t
(C1∪C[`/?],nsnd(m,`))−−−−−−−−−−−−−−−−−−→

t′1 ‖ t′. Since t1 'rbr t2, there is a t′2 such that t2
(C1,nrcv(m))−−−−−−−−−−→ t′2 with t′1 'br t′2. Then

t2 | t
(C1∪C[`/?],nsnd(m,`))−−−−−−−−−−−−−−−−−−→ t′2 ‖ t′. Since t′1 'br t′2, we have t′1 ‖ t′ 'br t′2 ‖ t′.

Finally, the case where t1 | t
(C∗,nrcv(m))−−−−−−−−−−→ t∗ can be easily dealt with. This receive action was

performed by both t1 and t.

36 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

Concluding, t1 | t 'rbr t2 | t. Likewise it can be argued that t | t1 'rbr t | t2.

Case 11. We prove that if t1 'br t2, then ∂M (t1) 'br ∂M (t2). Let t1 'br t2 be witnessed by the
branching reliable computed network bisimulation relation R. We define R′ = {(∂M (t′1), ∂M (t′2)) |
(t′1, t

′
2) ∈ R}. We prove that R′ is a branching reliable computed network bisimulation relation.

Suppose that ∂M (t′1)
(C,η)−−−−→ ∂M (t′′1) results from the application of Encap on t′1

(C,η)−−−−→ t′′1 such
that η 6= nrcv(m) ∨ isTypem(m) = F . Since (t′1, t

′
2) ∈ R, two cases can be considered: either

η is a τ action and (t′′1, t
′
2) ∈ R, or there are s′′′1 , . . . , s

′′′
k and s′′1, . . . , s

′′
k for some k > 0 such

that ∀i ≤ k (t′2 ⇒ s′′′i
〈(Ci,η)〉−−−−−→ s′′i with (t′1, s

′′′
i), (t′′1, s

′′
i) ∈ R) and 〈C1〉, . . . , 〈Ck〉 is a parti-

tioning of the network constraint 〈C〉. In the former case, (∂M (t′′1), ∂M (t′2)) ∈ R′. In the lat-

ter case, by application of Par and Encap, ∀i ≤ k (∂M (t′2) ⇒ ∂M (s′′′i)
〈(Ci,η)〉−−−−−→ ∂M (t′′2) with

(∂M (t′1), ∂M (s′′′i)), (∂M (t′′1), ∂M (s′′i)) ∈ R′).
Likewise we can prove that t1 'rbr t2 implies ∂M (t1) 'rbr ∂M (t2). To this aim we examine the

root condition in Definition 5.5. Suppose ∂M (t1)
(C,η)−−−−→ ∂M (t′1). With the same argument as above,

∂M (t2)
〈(C,η)〉−−−−−→ ∂M (t′2). Since t′1 'br t′2, we proved that ∂M (t′1) 'br ∂M (t′2). Concluding that

∂M (t1) 'rbr ∂M (t2).

Case 13 Suppose that C B t1
(C′∪C,η)−−−−−−−→ t′1 by application of TR, since t1

(C′,η)−−−−→ t′1. By assumption

t1 'rbr t2 implies that t2
(C′,η)−−−−→ t′2 and t′1 'br t′2. Therefore, by application of the rule TR,

C B t2
(C′∪C,η)−−−−−−−→ t′2, and t′1 'br t′2 concludes that C B t1 'rbr C B t2. ut

C. Soundness of RCNT axiomatization

As two rooted branching computed network bisimilar terms are also rooted branching reliable com-
puted network bisimilar, the soundness of axioms which are in common with the lossy setting are
established [21]. Thus, to prove Theorem 6.1, it suffices to prove the soundness of each new axiom in
comparison with the lossy setting, i.e., Dep0−7, TRes1−5, LM ′

1,2, and T1, modulo rooted branching
reliable computed network bisimilarity.

We focus on the soundness of Dep0 and T1, as the soundness of the remaining axioms can
be argued in a similar fashion. To prove Dep0, we show that both sides of the axiom satisfy the
transfer conditions of Definition 5.5. In following cases, for the sake of brevity, we write X for

recQ ·
∑

m′ 6∈Message(t,∅)({},nrcv(m′)).Q + ` : Q : t. Assume that [[t]]`
(C∗,η)−−−−→ [[t′]]`. Two cases can

be distinguished:

1. It owes to the application Prefix and Snd /Rcv1,2 together with some of the rules Choice, Inv ,
and Sen1,2. Therefore t has a subterm of the form of α.t′ where η is the network action version
of α and C∗ ≡ C∗1 ∪C∗2 such that C∗1 is derived by Snd /Rcv1,2 and C∗2 is derived by Sen1,2 if they
are applied. By application of Inter ′1/Inter ′2,3 together with some of the rules Choice ′, Inv ′,

and Sen ′1,2, ` : X : t
(C∗,η)−−−−→ [[t′]]`. Then, by application of Rec and Choice, X

(C∗,η)−−−−→ [[t′]]`.

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 37

2. It owes to the application of Rcv3 since t 6 (C,rcv(m))−−−−−−−−→, where C∗ = C[`/?], and there exists no

t′ such that t 6 (C
′, rcv(m))−−−−−−−−−→ t′ ∧ C′ 4 C. Two cases can be distinguished:

• Assume that m 6∈ Message(t, ∅). Thus, by application of Rec, Choice and Prefix ,

X
(C,nrcv(m))−−−−−−−−−→ X , where C = {}.

• Assume that m ∈ Message(t, ∅) and consequently t
(C′′,rcv(m))−−−−−−−−−→ t′ for some t′. This

only happens when t has a subterm of the form of sense(`′, t1, t2) for some t1 and t2.

Assume that t1
(C′′′[?/`],rcv(m))−−−−−−−−−−−−−→ t′1, where {? `′} ∪ C′′′[?/`] ∪ C∗1 [?/`] = C′′ and

t2 6 ({}, rcv(m))−−−−−−−−−−→. Thus, t 6
({? ̀ ′}∪C∗1 [?/`],rcv(m))

−−−−−−−−−−−−−−−−−−−−−→ and C ≡ {? `′} ∪ C∗1 [?/`].

Therefore, ` : X : t1
(C′′′∪{ ̀̀ ′},nrcv(m))−−−−−−−−−−−−−−−−−−→ [[t′1]]` and ` : X : t2 6nrcv(m)−−−−−−→, and

by application of Sen4 (and maybe together with Choice ′, Inv ′, and Sen ′1,2), ` : X :

t
({ 6̀ ̀ ′}∪C∗1 ,nrcv(m))

−−−−−−−−−−−−−−−−−−→ X . The case t2
(C′′′[?/`],rcv(m))−−−−−−−−−−−−−→ t′2, where {? `′} ∪

C′′′[?/`] ∪ C∗1 [?/`] = C′′, and t1 6
({}, rcv(m))−−−−−−−−−−→ hold, is proved with a similar discussion

with application of Sen3.

We focus on the soundness of T1. The only transition that (C′, η).((C1, η).t + (C2, η).t + t′)

and (C′, η).((C, η).t + t′) in T1 can do is
(C′,η)−−−−→ and the resulting terms (C1, η).t + (C2, η).t + t′

and (C, η).t + t′ are branching reliable computed network bisimilar, witnessed by the relation R
constructed as follows:

R = {((C1, η).t+ (C2, η).t+ t′, (C, η).t+ t′), (t, t) | t ∈ RCNT}.

The pair ((C1, η).t + (C2, η).t + t′, (C, η).t + t′) satisfies the transfer conditions of Definition 5.3.
Because every initial transition that (C1, η).t+ (C2, η).t+ t′ can perform owing to t′, (C, η).t+ t′ can
perform too. If (C1, η).t + (C2, η).t + t′ can perform a (C1, η) or (C2, η)-transition, (C, η).t + t′ can
also perform it by application of Exe . Vice versa, if (C, η).t+ t′ can perform a (C, η)-transition, then
as C1 and C2 form a partitioning of C, (C1, η).t + (C2, η).t + t′ can perform a corresponding (C1, η)-
or (C2, η)-transition.

D. Completeness of RCNT axiomatization

To define RCNT terms with a finite-state behavior, we borrow the syntactical restriction of [21] on
recursive terms recA · t, following the approach of [1]. We consider so-called finite-state Reliable
Computed Network Theory (RCNTf), obtained by restricting recursive terms recA · t to those that
of which the bound network names do not occur in the scope of parallel, communication merge, left
merge, hide, encapsulation and abstraction operators in t.

We follow the corresponding proof of [21] to prove Theorem 6.2 by performing the following
steps:

1. first we show that each RCNTf term can be turned into a normal form consisting of only
0, (C, η).t′, t′ + t′′ and recA · t′, where A is guarded in t′;

38 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

2. next we define recursive network specifications and prove that each guarded recursive network
specification has a unique solution;

3. finally we show that our axiomatization is ground-complete for normal forms, by showing that
equivalent normal forms are solutions for the same guarded recursive network specification.

Completeness of our axiomatization for all RCNTf terms results from the steps 1 and 3. We only
discuss the first step, as others are exactly the same as in the lossy setting.

Proposition D.1. Each closed term t of RCNTf whose network names do not occur in the scope of
one of the operators ‖, , |, (ν`), τM or ∂M for some ` ∈ Loc and M ⊆ Msg , can be turned into a
normal form.

We prove this by structural induction over the syntax of terms t (possibly open). The base cases of
induction for t ≡ 0 or t ≡ A are trivial because they are in normal form already. The inductive cases
of the induction are the following ones:

• if t ≡ [[0]]`, then by application of Dep0,4 and Ch1 we have t = recQ·
∑

m′ 6∈Msg({},nrcv(m′)).Q,
which is in normal form.

• if t ≡ [[α.t′]]` or t ≡ [[t′ + t′′]]` or [[sense(`′, t′, t′′)]]` or [[A]]`, then t can be turned into a normal
form by application of axioms Dep0−5,6,7 and induction over [[t′]]` and [[t′′]]`.

• if t ≡ (C, η).t′ or t ≡ t′ + t′′, then t can be turned into normal form by induction over t′ and t′′.

• the other cases can be treated in the same way as in [21].

E. Proofs of section 7.2

We first prove Theorem 7.2 which indicates that the refinement relation is a preorder relation and has
the precongruence property, and then we discuss the proof of Proposition 7.3.

E.1. Proof of theorem 7.2

We first show that the refinement relation is a preorder relation and then discuss its precongruence
property. To prove that refinement is a preorder, we must show that it is reflexive and transitive. As it
is trivial that Definition 7.1 is reflexive, we focus on its transitivity property.

Regrading the well-formedness conditions imposed on RCNT terms, the transitivity property of
our refinement relation, i.e., t1 v t2 and t2 v s implies that t1 v s, can be only proved when t1 and t2
have no prefixed-actions with a multi-hop network constraint. For such terms, Definition 7.1 enforces
they mimic the behavior of each other by the second case of first and second transfer condition (as
long as accumulated network constraints are well-formed). In other words, for reliable computed
network terms with no prefixed-actions with multi-hop network constraints, a relation which is strong
bisimulation of [44] is also a refinement.

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 39

Lemma E.1. (Transitive property)
t1 v t2 and t2 v s implies that t1 v s.

Proof:
Assume sets of refinement relations R1

C and R2
C witnessing t1 v t2 and t2 v s, respectively. We

construct a set of refinement relations R′C = {(t′1, s′) | (t′2, s
′) ∈ R2

C ∧ t′1R1
C t2} for any well-

formed network constraint C. We show that t′1R′Cs′ satisfies the transfer conditions of Definition 7.1.

Assume t′1
(C′,η)−−−−→ t′′1 where C ∪ C′ ∈ Cv(Loc). By assumption t′1R1

Ct
′
2 implies that t′2

(C′,η)−−−−→ t′′2
such that t′′1R1

C∪C′t
′′
2 . By the assumption t′2R2

Cs
′, there are three cases to consider:

• η = τ and t′′2 R2
C∪C′ s

′. Thus by construction, t′′1 R′C∪C′ s′.

• There is an s′′ such that s′
(C,η)−−−−→ s′′, and t′′2 R2

C∪C′ s
′′. Thus by construction, t′′1 R′C∪C′ s′.

• η = ι for some ι ∈ IAct ∪ {τ} and there is an s′′ such that s′
(M,ι)−−−−→ s′′ with C ∪ C′ |=M and

t′′2 R2
C∪C′ s

′′. Thus by construction, t′′1 R′C∪C′ s′′.

Assume s′
(C′,η)−−−−→ s′′. The assumption t′2 R2

C∪C′ s
′ implies that there is a t′′2 such that t′2

(C′,η)−−−−→

t′′2 with t′′2 R2
C∪C′ s

′′. By assumption t′1R1
Ct
′
2 implies that t′1

(C′,η)−−−−→ t′′1 such that t′′1R1
C∪C′t

′′
2 , and

consequently t′′1 R′C∪C′ s′′.

Assume s′
(M,ι)−−−−→ s′′. . The assumption t′2 R2

C∪C′ s
′ implies that there are t′′′2 and t′′2 such that

t′2
C′
=⇒ t′′′2

(C′′,ι)−−−−→ t′′2 with t′′′2 R2
C∪C′ s

′ and t′′2 R2
C∪C′∪C′′ s

′′ where C ∪ C′ ∪ C′′ |= M. As every

transition of t′2 is mimicked by t′1, there are t′′′1 and t′′1 such that t′1
C′
=⇒ t′′′1

(C′′,ι)−−−−→ t′′1 with t′′′1 R1
C∪C′ t

′′′
2

and t′′1 R1
C∪C′∪C′′ t

′′
2 . Concluding, there are t′′′1 and t′′1 such that t′1

C′
=⇒ t′′′1

(C′′,ι)−−−−→ t′′1 with t′′′1 R′C∪C′ s′
and t′′1 R′C∪C′∪C′′ s′′ where C ∪ C′ ∪ C′′ |=M. ut

Theorem E.2. Refinement is a precongruence for terms with respect to the RCNT operators.

Proof:
Assume that t1 v s1 and t2 v s2. We first show that t1 + t2 v s1 + s2. There are sets of refinement
relations R1

C and R2
C witnessing t1 v s1 and t2 v s2, respectively. We construct a set of refinement

relationsRC = R1
C∪R2

C∪{(t′1, s1 +s2) | t′1 R1
C s1}∪{(t′2, s1 +s2) | t′2 R2

C s2} for any well-formed
network constraint C. We show that R{ } = {(t1 + t2, s1 + s2)} ∪ R1

{ } ∪ R
2
{ } satisfies the transfer

conditions of Definition 7.1.

Assume t1 + t2
(C′,η)−−−−→ t′1 owing to t1

(C′,η)−−−−→ t′1, where C ∪ C′ ∈ Cv(Loc). By the assumption
t1 R1

{ } s1, three cases can be considered:

• η = τ and t′1 RC∪C′ s1. Thus by construction t′1 RC∪C′ s1 + s2.

• There is an s′1 such that s1
(C,η)−−−−→ s′1, and t′1 R1

C∪C′ s
′
1. Thus by the rule Choice, there is an s′1

such that s1 + s2
(C,η)−−−−→ s′1 and by construction t′1 RC∪C′ s′1.

40 F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory

• η = ι for some ι ∈ IAct ∪ {τ} and there is an s′1 such that s1
(M,ι)−−−−→ s′1 with C ∪ C′ |= M

and t′1 R1
C∪C′ s

′
1. Thus by the rule Choice, there is an s′1 such that s1 + s2

(M,ι)−−−−→ s′1 and by
construction C ∪ C′ |=M and t′1 RC∪C′ s′1.

The same discussion holds if t1 + t2
(C′,η)−−−−→ t′2 owing to t2

(C′,η)−−−−→ t′2.

Assume s1 + s2
(M,ι)−−−−→ s′1 owing to s1

(M,ι)−−−−→ s′1, where C ∪ C′ ∈ Cv(Loc). By assumption

t1R1
C s1 implies there are t′′1 and t′1 such that t1

C′
=⇒ t′′1

(C′′,ι)−−−−→ t′1 with t′′1 R1
C∪C′ s1 and t′1R1

C∪C′∪C′′ s
′
1

where C ∪ C′ ∪ C′′ |= M. Consequently t1 + t2
C′
=⇒ t′′1

(C′′,ι)−−−−→ t′1 with t′′1 RC∪C′ s1 + s2 and

t′1 RC∪C′∪C′′ s′1 where C ∪ C′ ∪ C′′ |=M. The same discussion holds when s1 + s2
(M,ι)−−−−→ s′2 owing

to s2
(M,ι)−−−−→ s′2.

Assume s1 + s2
(C,η)−−−−→ s′1 owing to s1

(C,η)−−−−→ s′1. By assumption t1 R1
C s1 implies there is a

t′1 such that t1
(C′,η)−−−−→ t′1 with t′1 R1

C∪C′ s
′
1. Hence, there is a t′1 such that t1 + t2

(C′,η)−−−−→ t′1 with
t′1 RC∪C′ s′1.

The above discussions together yield t1 + t2 v s1 + s2.

If s1 and s2 have no prefixed-action with a multi-hop network constraint, then we must show the
following cases:

1. (C, η).t1 v (C, η).t2;

2. (ν`).t1 v (ν`).t2;

3. t1 ‖ t2 v s1 ‖ s2;

4. t1 t2 v s1 s2;

5. t1 | t2 v s1 | s2;

6. ∂M (t1) v ∂M (t2);

7. τ(t1) v τ(t2);

8. C B t1 v C B t2;

The above cases result from the congruence property of strong bisimilarity. As we discussed earlier,
for reliable computed network terms with no prefixed-actions with multi-hop network constraints, a
relation which is strong bisimulation of [44] is also a refinement. ut

The proof of Theorem 7.2 is an immediate result of Lemma E.1 and Theorem E.2.

F. Ghassemi and W. Fokkink / Reliable Restricted Process Theory 41

E.2. Proof of proposition 7.3

First we show that (C, τ).t v (M, ι).s ⇒ C B t v (M, ι).s ∧ C |=M. The only transition (C, τ).t

can make is (C, τ).t
(C,τ)−−−−→ t. As ι 6= τ , according to the first case of the first transfer condition of

Definition 7.1, t RC (M, ι).s. We construct R′{ } = RC and show that it induces C B t v (M, ι).s.

This is trivial as any transition C B t
(C∪C′,η)−−−−−−−→ t′ is the result of t

(C′,η)−−−−→ t′. The transition

s
(M,ι)−−−−→ s′ and the assumption tRC (M, ι).s imply that here are t′′ and t′ such that t C

′
=⇒ t′′

(C′′,ι)−−−−→ t′

with C ∪C′∪C′′ |=M and t′ RC∪C′∪C′′ s′ where C ∪C′∪C′′ ∈ Cv(Loc). Two cases can be discussed:

• t′′ ≡ t, and t
{ }
==⇒ t

(C′′,ι)−−−−→ t′ with C ∪ C′′ |= M and t′ RC∪C′′ s′ where C ∪ C′′ ∈ Cv(Loc).

Therefore, C B t { }==⇒ C B t (C′′∪C,ι)−−−−−−−→ t′ with C ∪ C′′ |=M and t′ RC∪C′′ s′ where C ∪ C′′ ∈
Cv(Loc);

• t C
′

=⇒ t′′ is the result of n > 0 τ -transitions. Thus there is t∗ such that t
(C∗,τ)−−−−→ t∗

C∗∗
==⇒ t′′

where C∗ ∪ C∗∗ = C′. Hence, C B t (C∗∪C,τ)−−−−−−−→ t∗
C∗∗
==⇒ t′′. Thus, C B t C

′
=⇒ t′′

(C′′,ι)−−−−→ t′ with
C ∪ C′ ∪ C′′ |=M and t′ RC∪C′∪C′′ s′ where C ∪ C′ ∪ C′′ ∈ Cv(Loc).

Now, we show that (C, ι).t v (M, ι).s ⇒ C B t v s. The only transition (C, ι).t can make is

(C, ι).t (C,ι)−−−→ t. As ι 6= τ and ι ∈ IAct , according to the third case of the first transfer condition of
Definition 7.1, tRC s. We constructR′{ } = RC and show that it induces C B t v s. This is trivial as

any transition C B t (C∪C′,η)−−−−−−−→ t′ is the result of t
(C′,η)−−−−→ t′. The reverse of the rule can be argued in

a similar fashion.

