
VU Research Portal

Using UML in Architecture-Level Modifiability Analysis

Lassing, N.; Rijsenbrij, D.; van Vliet, H.

published in
ICSE 2001 Workshop on Describing Software Architecture with UML
2001

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Lassing, N., Rijsenbrij, D., & van Vliet, H. (2001). Using UML in Architecture-Level Modifiability Analysis. In ICSE
2001 Workshop on Describing Software Architecture with UML (pp. 41-46)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303692108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/3d93429a-6bcb-4c0d-92b7-3388421df724

Using UML in Architecture-Level Modifiability Analysis

Nico Lassing, Daan Rijsenbrij and Hans van Vliet
Vrije Universiteit, Faculty of Sciences

De Boelelaan 1081A
1081 HV Amsterdam

The Netherlands
+31 20 4447768

{nlassing, daan, hans}@cs.vu.nl

ABSTRACT
In our scenario-based method for software architecture-level
modifiability analysis of business information systems, we
use architectural views to determine and express the effect of
change scenarios. We distinguish four architectural views.
We used the Unified Modeling Language (UML) notation
to formalize the information captured in these views. This
paper reports on the experience we gained in this process.

Keywords
Software architecture, software architecture analysis, archi-
tectural views, view model, modifiability

1 INTRODUCTION
We have defined a scenario-based method for architecture-
level modifiability analysis of business information systems,
ALMA [2], based on the software architecture analysis
method (SAAM) [6]. ALMA consists of five steps: goal
setting, architecture description, change scenario elicitation,
change scenario evaluation and interpretation. In the archi-
tecture description step, we make use of architectural views
that are used in subsequent steps to determine and express
the effect of change scenarios. An architectural view is a rep-
resentation of a system from a certain perspective. Views are
constructed according to viewpoints that establish the tech-
niques used for its creation [5]. We distinguish four view-
points that are useful in modifiability analysis.

We found that in the description step of ALMA it is impor-
tant to make a distinction between the internals of a system,
i.e. its micro architecture, and the role of a system in its en-
vironment, i.e. its macro architecture [8]. At both levels we
identify two viewpoints, the conceptual viewpoint and de-
velopment viewpoint at the micro architecture level and the
context viewpoint and the technical infrastructure viewpoint
at the macro architecture level. The micro architecture level
viewpoints rougly coincide with viewpoints identified ear-
lier by Kruchten in his 4+1 View Model [7] and by Soni et

al. [12]. The viewpoints at the macro architecture level are
new.

Initially, we used informal notation techniques to express the
information in views. However, we noticed that this leads to
lack of clarity about the semantics of the views. We next used
the Unified Modeling Language (UML) notation [3] to for-
malize the information captured in these views [9]. This pa-
per reports on the experiences that we gained in this process.
Section 2 introduces the viewpoints, section 3 discusses the
experiences and section 4 contains a summary and some con-
cluding remarks.

2 VIEWPOINTS FOR MODIFIABILITY
In our method for architecture-level modifiability analysis ar-
chitectural description plays an important role. The descrip-
tion of a system’s software architecture allows us to deter-
mine the effect of change scenarios and, in addition, guides
the change scenario elicitation process [10]. These activities
require a number of architectural views. Based on our expe-
riences with architecture-level analysis, we have identified
four viewpoints that capture decisions concerning modifia-
bility [9]. Two of these viewpoints concern the system in its
environment, the macro architecture level, and two concern
the internals of the system, the micro architecture level.

The viewpoints identified at the macro architecture level are
the context viewpoint and the technical infrastructure view-
point. Thecontext viewpoint gives an overview of systems
in the environment with which the system communicates.
The technical infrastructure viewpoint addresses the re-
lationships of the system to its technical environment. At the
micro architecture level, we identify the conceptual view-
point and the development viewpoint. Theconceptual view-
point gives an overview of the high-level design elements of
the system, representing concepts from the system’s domain.
These elements may be organized according to a specific ar-
chitectural style. Thedevelopment viewpointconcerns de-
cisions related to the structure of the implementation of the
system. These decisions are captured in prescriptions for the
building blocks that will be used in the implementation of
the system.

The micro architecture level viewpoints coincide with the
logical and the development viewpoint in Kruchten’s 4+1

1

View Model [7] and the conceptual and the code architec-
ture identified by Soni et al. [12]. The macro architecture
viewpoints were not identified before and are discussed in
this section. A more elaborate treatment can be found in [9].

Context View
The context viewpoint gives an overview of the system and
the systems in its environment with which it communicates.
This communication can take the form of file transfer, a
shared database or ‘call/return’ (see [4]). In the analysis this
view is used to assess which systems have to be adapted to
implement a change scenario. This view also includes an
identification of the owners of the various systems, which
is useful for determining who is involved in the changes
brought about by a change scenario. Figure 1 gives an
overview of the concepts used in a context view and their
notation technique.

SYSTEM. A system is a collection of components organized
to accomplish a specific function or set of functions. A sys-
tem is depicted using the standard UML-notation for a com-
ponent with the stereotype «system».

SHARED DATABASE. A shared database is a database that
is used by several systems. The type of dependency this
exposes is that when adaptations to one of the systems us-
ing this database requires (structural) adaptations to this
database, other systems may have to be adapted as well. The
notation for a shared database is the symbol for a data store
with the stereotype «shared». The fact that a system uses the
database is indicated through a dashed arrow (UML-notation
for dependencies).

OWNER. An owner is an organizational unit financially re-
sponsible for the development and management of a system,
or simply put the entity that has to pay for adaptations to
the system. Ownership is an important notion with respect
to modifiability, because the involvement of different owners
in adaptations complicates the required changes (for a more
elaborate treatment of this topic see [8]). The owner of a
system or shared database is indicated as an attribute of the
object.

FILE TRANSFER. File transfer denotes that one system
(asynchronously) tranfers information to another system us-
ing a file. The dependency created by this type of communi-
cation mostly concerns the structure of the files transferred:
if the structure of the information exchanged between the
systems changes, the file structure has to be adapted, requir-
ing the systems to be adapted as well. Another type of de-
pendency is the technology/protocol used for transferring the
file. File transfer between two systems is depicted using a di-
rected link with stereotype «file transfer».

CALL /RETURN. A call/return relationship between systems
denotes that one system calls one or more of the procedures
of another system. This entails direct communication be-
tween systems. This type of relationship brings about a

number of dependencies. They include the technology used,
the structure of the parameters and, additionally, the systems
have to be able to ‘find’ and ‘reach’ each other. A call/return
relationship between systems is depicted using a directed
link with stereotype «call/return».

Technical Infrastructure View
The technical infrastructure viewpoint contains an overview
of the dependencies of the system on elements of the techni-
cal infrastructure (operating system, database management
system, etc.). The technical infrastructure is often shared
by a number of systems within an organization. Common
use of infrastructural elements brings about dependencies be-
tween these systems: when a system owner decides to make
changes to elements of the technical infrastructure, this may
affect other systems as well.

Additional dependencies are created when an organization
decides to define a standard for the technical infrastructure.
Such a standard prescribes the products to be used for in-
frastructural elements like the operating system, middleware,
etc. A standard is often defined to make sure that systems
function correctly in an environment in which the infrastruc-
ture is shared, but, at the same time, it limits the freedom
of the individual owners to choose the products to be used
for their systems. These influences are also captured in this
viewpoint.

Figure 2 gives an overview of the concepts used in a technical
infrastructure view and their notation technique.

DEPLOYMENT ELEMENT. A deployment element is a unit
of a software system that can be deployed autonomously. A
deployment element is represented using the UML-notation
for a component with stereotype «deployment».

STANDARD . Standards prescribe the use of certain deploy-
ment elements. A standard is represented by the UML-
notation for a package with stereotype «standard». Ele-
ments that are prescribed by this standard are indicated with
a dashed arrow.

DEPENDENCY. A dependency exists between two ele-
ments if changes to the definition of one element may cause
changes to the other [3]. A dependency between two deploy-
ment elements is indicated using the standard UML notation
for dependency, i.e. a dashed arrow.

NODE. A node is a computer on which a number of deploy-
ment elements are physically located. A node is represented
using the standard UML notation for node, i.e. a shaded rect-
angle.

Example: Dutch Tax Department
One of the case studies that we conducted concerns a system
at the Dutch Tax Department. We performed architecture
analysis for the system that will be used by Dutch Customs
to process supplementary declarations. Figure 3 shows the
context view of this system. The figure shows that supple-

2

File transfer

OwnerSystemCall/Return

Shared database

Return

Call
Uses

ToFrom

Has

Has «system»
System

«shared»
Database

Owner

«call/return»
Call

«file transfer»
File

Owner

(a) (b)

Figure 1: (a) Concepts of the context viewpoint and (b) their notation technique

Deployment element

Dependency

Standard

FromTo

Prescribes

(a)

«standard»
Standard

Dependency

(b)

Node

Node

Located-on

«deployment»
Element

Figure 2: (a) Concepts of the TI viewpoint and (b) their notation technique

«system»
Workflow Manager

Customs

«system»
Supplementary Declarations

Customs

«system»
Incoming gateway

Customs

«system»
Outgoing gateway

Customs

«system»
Registration and algorithms

Various

«call/return»
Call

«call/return»
Call

«call/return»
Call

«call/return»
Call

«call/return»
Call

«call/return»
Call

«file transfer»
File

«file transfer»
File

«system»
Measures and rates«shared»

Customers
Tax

Department

«call/return»
Call

«shared»
Charges
Collection

Department

Customs

Figure 3: The context view of the system for processing supplementary declarations

3

Workstation

«standard»
Platform'96

«deployment»
Windows NT 4.0

«deployment»
OCX run-time

«deployment»
Cool:Gen run-time

«deployment»
DCE run-time

«deployment»
Supplementary Declarations Applications

«deployment»
Workflow Manager (inbox, client)

Figure 4: The technical infrastructure view of the system for processing supplementary declarations

mentary declarations that are submitted by clients are col-
lected at the incoming gateway system. This systems con-
verts the declarations to a generic format and transfers them
to the system ‘supplementary declarations’. The declarations
are then processed and messages are sent to clients through
the outgoing gateway system. This process is controlled by
a workflow manager and the systems make use of a number
of common data sources and algorithms.

Figure 4 shows part of the technical infrastructure view of
the system. This figure only shows the workstations of the
system, the complete view also addresses application servers
and database servers. Although this view concerns the same
system, it focuses on a different aspect resulting in a com-
pletely different figure. It shows that there are several in-
frastructural elements with a number of dependencies be-
tween them. The OCX run-time files, for instance, are de-
pendent on the operating system used. If the operating sys-
tem changes, the OCX run-time files may need to be replaced
too. This influences the system’s modifiability.

3 EXPERIENCES WITH UML
When formalizing our viewpoints using UML, we gained a
number of experiences. These are discussed in this section.

Defined Semantics
The main reason why we chose to use UML to describe the
viewpoints was that we experienced that the informal no-
tation techniques we used before resulted in lack of clarity
about the concepts used in these viewpoints. The lines and
boxes used in this informal notation proved to be open for

misinterpretation. Using UML meta models to describe the
concepts of the viewpoints forced us to consider and define
their semantics explicitly.

Formalizing the context viewpoint, for example, revealed
that not only systems have owners, but that databases have
owners as well. We had not considered this before.

Detail versus Precision
A system’s software architecture is an abstraction of the sys-
tem. At the software architecture level a high-level descrip-
tion of the software architecture is created. This means that
not all aspects of the system are specified down to the small-
est detail. Using a formalized notation technique such as
UML for architectural description may suggest that these de-
tails are included. We should be careful not to confusepre-
cisionwith detail. Using UML leads to architectural models
with preciselydefined semantics; we can be precise about
concepts without going into their details.

In the conceptual architectural view of a system, for instance,
the high-level design elements of the system and their con-
nectors are captured [9]. At that level, we do not concern
ourselves with the details of the communication that takes
place between the components distinguished; those are ad-
dressed at lower levels.

Symbol Overload
In general, software architecture has to do with components.
A widely used definition of software architecture is ‘the
structure or structures of the system, which comprise soft-

4

«conceptual»
Register

«conceptual»
Calculate

«conceptual»
Weigh

«conceptual»
Check declaration

Declarations
(incoming
gateway)

Messages
(outgoing
gateway)and charge data

Figure 5: Conceptual view of the system for processing supplementary declarations

ware components, the externally visible properties of those
components, and the relationships among them’ [1]. Most
architectural ‘structures’ or ‘views’ include the notion of
component, although of a different meaning. All of the view-
points that we identified for modifiability analysis include
some kind of ‘component’. At the macro architecture level,
for instance, the context view includes systems as compo-
nents and the technical infrastructure view includes deploy-
ment elements as components. UML includes a single sym-
bol to represent components. This symbol is used in all
views to represent components in their different meanings.
Different pictorial elements for different types of ‘compo-
nent’ would increase the legibility of the various views.

Architectural Styles
Architectural styles are an important tool to communicate
the rationale that is used for a system. Architectural styles
include among others a pipe-and-filter architecture and a
blackboard architecture [11]. One of the downsides of UML
is that it does not provide any facilities for showing that a
system follows a specific architectural style.

For instance, for the system ‘supplementary declarations’ at
the Dutch Tax Department a pipe-and-filter architecture is
used for processing declarations. In UML notation this leads
to the model shown in Figure 5. This model shows that there
are four components that communicate in some way with
each other. However, it is not apparent from this figure that
these components are organized using a pipe-and-filter style.
This has to be pointed out in the textual description that ac-
companies this view.

Suitability for Stakeholders
One of the reasons for using software architecture is that it is
a vehicle for stakeholder communication [1]. Stakeholders
include both technical people such as designers and devel-
opers, and non-technical people such as clients and possibly
future users. The nature of UML models is mostly technical.
A relevant question is whether such technically oriented ar-
chitectural models are suitable for all stakeholders. Perhaps,
another notation technique is more suitable for communicat-
ing the architecture to the non-technical stakeholders.

4 CONCLUSIONS
In the method for architecture-level modifiability analysis
that we advocate, four viewpoints are used to capture the
information required. We used the UML to formalize the no-
tation technique for these viewpoints. This paper discusses
the experiences we gained in this process.

We experienced that formalizing the viewpoints using UML
is useful, because it forces us to consider the semantics of the
concepts used. The downside of UML is that it does not pro-
vide any facilities for representing architectural styles. With
respect to the notation techniques provided by UML, we ex-
perienced that the nature of UML diagrams may suggest de-
tail that is not yet present at the architecture level. In addi-
tion, we found that it may be confusing that some symbols
are used in a number of viewpoints representing different
concepts. And finally, we found that UML diagrams may
not be appropriate for all stakeholders in a system’s software
architecture.

ACKNOWLEDGEMENTS
This research is mainly financed by Cap Gemini Nether-
lands.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman.Software Archi-
tecture in Practice. 1998. Addison Wesley, Reading,
MA.

[2] P. O. Bengtsson, N. Lassing, J. Bosch and H. van
Vliet. Analyzing software architectures for modifiabil-
ity. Technical Report HK-R-RES–00/11-SE, Högskolan
Karlskrona/Ronneby. 2000.

[3] M. Fowler. UML Distilled: A Brief Guide to the Stan-
dard Object Modeling Language, 2nd edn. Addison
Wesley, Reading, MA. 1999.

[4] V. Gruhn and U. Wellen. Integration of heteroge-
nous software architectures - an experience report. In:
P. Donohoe, ed.Software architecture: Proceedings of
the First Working IFIP Conference on Software Archi-
tecture (WICSA1), pages 437–454, Kluwer Acadamic
Publishers, Dordrecht, The Netherlands. 1999.

[5] IEEE. IEEE Recommended Practice for Architecture
Description. IEEE Std 1471, 2000.

[6] R. Kazman, G. Abowd and L. Bass. Scenario-Based
analysis of software architecture. IEEE Software
13(6): 47–56, 1996.

[7] P. Kruchten. The 4+1 view model of architecture.IEEE
Software12(6): 42–50, 1995.

[8] N. Lassing, D. Rijsenbrij and H. van Vliet. Towards a
broader view on software architecture analysis of flexi-
bility. In Proceedings of the 6th Asia-Pacific Software

5

Engineering Conference ’99 (APSEC’99), pages 238–
245. 1999.

[9] N. Lassing, D. Rijsenbrij and H. van Vliet.Viewpoints
on modifiability. Technical report, Vrije Universiteit,
Amsterdam. 2000.

[10] N. Lassing, D. Rijsenbrij and H. van Vliet.Scenario
Elicitation in Software Architecture Analysis. Technical
report, Vrije Universiteit, Amsterdam. 2000.

[11] M. Shaw and P. Clements. A field guide to boxology:
Preliminary classification of architectural styles for soft-
ware systems. InProceedings of the 21st International
Computer Software and Application Conference (Comp-
Sac), Washington, D.C., 1997.

[12] D. Soni, R. L. Nord and C. Hofmeister. Software ar-
chitecture in industrial applications. In R. Jeffrey and
D. Notkin, eds,Proceedings of the 17th International
Conference on Software Engineering, pages 196–207,
ACM Press, New York, 1995.

6

