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A B S T R A C T

In today’s data center, a diverse mix of throughput-sensitive long flows and delay-sensitive short flows are commonly presented. However, commodity switches
used in a typical data center network are usually shallow-buffered for the sake of reducing queueing delay and deployment cost. The direct outcome is that the
queue occupation by long flows could potentially block the transmission of delay-sensitive short flows, leading to degraded performance. Congestion can also be
caused by the synchronization of multiple TCP connections for short flows, as typically seen in the partition/aggregate traffic pattern. The congestion is usually
transient and any end-device intervention through the timeout-based pathway would result in suboptimal performance. While multiple end-to-end transport-layer
solutions have been proposed, none of them has tackled the real challenge: reliable transmission in the network. In this paper, we fill this gap by presenting
PABO — a novel link-layer design that can mitigate congestion by temporarily bouncing packets to upstream switches. PABO’s design fulfills the following goals:
(i) providing per-flow based flow control on the link layer, (ii) handling transient congestion without the intervention of end devices, and (iii) gradually back
propagating the congestion signal to the source when the network is not capable to handle the congestion. We present the detailed design of PABO and complete
a proof-of-concept implementation. We discuss the impact of system parameters on packet out-of-order delivery and conduct extensive experiments to prove the
effectiveness of PABO. We examine the basic properties of PABO using a tree-based topology, and further evaluate the overall performance of PABO using a
realistic Fattree topology for data center networks. Experiment results show that PABO can provide prominent advantage of mitigating transient congestions and
can achieve significant gain on flow completion time.

1. Introduction

Nowadays, organizations like large companies or universities built
various sizes of data centers for different purpose today. To intercon-
nect all of the data center resources together, a dedicated network
(a.k.a Data Center Network, DCN) is used to support high-speed com-
munications between servers with high availability in data centers. For
reasons of queueing delay and deployment cost, DCN are usually com-
posed of shallow-buffered commodity switches at low costs. However,
data center applications such as web search, recommendation systems
and online social networks can generate a diverse mix of short and long
flows, demanding high utilization for long flows, low latency for short
flows, and high burst tolerance [2]. Long flows lead to queue buildup
in switches, which reduces the amount of buffer space available for
delay-sensitive short flows and burst traffic, leading to frequent packet
losses and retransmissions. Meanwhile, data center applications such
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as real-time applications and data intensive applications produce traffic
that follows the partition/aggregate pattern, overflowing the bottleneck
switch buffer in a short period of time. The final performance of the
partition/aggregate pattern is determined by the slowest TCP connec-
tion that suffers timeout due to packet losses. Therefore, for short flows
and bursty traffic that are delay-sensitive, even a few lost packets can
trigger window reduction and retransmission timeout, causing crucial
performance degradation and high application latencies.

It has been demonstrated by [2] that the greedy fashion of the tradi-
tional TCP and its variants fail to satisfy the performance requirements
of these flows and thus, various TCP-like protocols such as DCTCP [2]
and ICTCP [3] have been proposed dedicatedly for DCN environments.
However, none of the proposals can guarantee one hundred percent
prevention of packet losses or timeouts [4] – the main culprit for
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performance degradation in DCNs, leaving poor performance in most
cases.

The need of end-to-end solutions (on the transport layer) for reli-
able data transmission comes from the fact that reliable point-to-point
transmission mechanisms (on the data link layer) are not available in
the current protocol stack. If packet processing in a link is slower than
packet arrival, excessive packets competing for the same output port of
the switch will lead to queue buildup. Continuous queue buildup will
overflow the output buffer, then the subsequently arrived packets will
be dropped. Neither the source nor the destination will be explicitly
notified about this congestion and thus will have no knowledge of when
and where packet losses have happened. The dropped packets will be
retransmitted by upper-layer congestion control protocols (e.g., TCP,
DCCP), typically through a timeout-based pathway.

As one of the very few proposals toward the goal of providing
reliability on the link layer, PAUSE Frame [5] allows a switch to send
a special frame (namely PAUSE frame) to its upstream switches, which
results in a temporary halt of the data transmission. However, all the
flows on the same link will be affected without considering their contri-
butions on the congestion. To alleviate this situation, PFC (Priority Flow
Control) [5] further extends the idea to support eight service classes
and consequently, PAUSE frames can be sent independently for each
service class. Despite the lack of per-flow control, the parameters in
PFC have to be carefully tuned individually according to each network
circumstance in order to guarantee congestion-free [4].

In this paper, we propose PAcket BOunce (PABO) [1], a novel link-
layer protocol design that can provide reliable data transmission in the
network. Instead of dropping the excess packets when facing buffer
saturation, PABO chooses to bounce them back to upstream switches.
On the one hand, transient congestion can be mitigated at per-flow
granularity, which can help achieve significant performance gain for
short-lived flows and burst flows as in the typical incast scenario [6] in
a DCN. On the other hand, the congestion is gradually back propagated
toward the source and can finally be handled by the source if the
congestion cannot be solved right in the network. To the best of our
knowledge, PABO is among the first solutions for reliable transmission
and in-network congestion mitigation.

Our contributions can be summarized in five aspects: (𝑖) We propose
a novel link-layer protocol, PABO, that supports full reliability and
can handle transient congestions in the network. (𝑖𝑖) We present the
design of PABO and explain its components in detail. (𝑖𝑖𝑖) We complete
a proof-of-concept implementation of PABO in OMNeT++ [7]. (𝑖𝑣)
We investigate into the impact of PABO on the level of packet out-
of-order, based on which we provide some insights for configuring
PABO. (𝑣) We carry out extensive experiments to validate the basic
properties of PABO using a tree topology and to evaluate PABO’s overall
performance using a realistic Fattree topology.

The rest of the paper is organized as follows: Section 2 describes
the design rationale of PABO and details its components one by one.
Section 3 discusses the implementation of PABO. Section 4 analyzes
the relationship between PABO and the level of packet out-of-order.
Sections 5 and 6 present the experimental results. Section 7 summarizes
related work and Section 8 concludes the paper.

2. PABO’s design

PABO is a link-layer solution for congestion mitigation based on
back-propagation. Particularly, it is well suited for data center en-
vironments, where transient congestions (e.g., incast congestion) are
commonly presented [8,9]. In addition, upper-layer congestion control
protocols can be incorporated to achieve smooth congestion handling in
all circumstances by taking advantage of the back propagation nature
of PABO.

Fig. 1. A motivating example to demonstrate the idea of PABO, i.e., solving network
congestion without dropping packets. We assume GigE links in the network.

Fig. 2. An overview of PABO’s design based on a Combined Input and Output Queue
(CIOQ) switch model.

2.1. An example

We provide a motivating example and explain why PABO is superior
in handling congestion by providing reliable transmission in communi-
cation networks. Assume a GigE network and consider the scenario in
Fig. 1, where two short flows F1 (with rate 0.6 Gbps) and F2 (with rate
0.5 Gbps) that consist only tens of packets are destined for the same
host H3. When congestion occurs on the link S4 - H3, PABO will bounce
some of the packets to upstream switches (i.e., S1 and S3, respectively).
The number of bounced packets will depend on the congestion level.
Packet bouncing can be contagious reversely along the forwarding path,
e.g., from S3 to S2. The bounced packets will then be forwarded to H3
again. Consequently, there will be packets bouncing back and forth on
the few links in the network until the congestion vanishes.

2.2. Overview

We assume a general Combined Input and Output Queue (CIOQ)
switch model [10] as depicted in Fig. 2. This simplified switch model
contains following modules: the FIB (Forwarding Information Base,
also known as forwarding table) which contains MAC address-to-port
mappings obtained from MAC address learning, the lookup unit, the
virtual output queues, the output queues, and the output schedulers.
Upon the arrival of a packet from any input interface, the packet will
first go through the lookup unit. The lookup unit decides the output
port for the packet by querying the FIB. Next, the packet will be passed
into the corresponding virtual output queue (illustrated as VOQ in
Fig. 2). The packet will then be sent to the corresponding output queue
through the crossbar and finally to the output interface by the output
scheduler. Our design of PABO involves modifications on the following
components of traditional switches: the lookup unit, the FIB, the output
queue and output scheduler, and packet structure. We will discuss them
one by one in the following subsections.
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2.3. Lookup unit

By querying the FIB, the lookup unit obtains the output port num-
ber for a packet corresponding to the packet’s destination. Instead of
forwarding the packet directly to its destined port, PABO introduces a
probabilistic decision-making process to decide where to forward the
packet. Upon packet arrival, the lookup unit calculates a probability
with which the packet will be bounced to its previous-hop switch. The
calculation is based on a probability function 𝑃 , which follows the
principles:
PRCP-1: The probability should be zero when the queue is almost free
and should be one when the queue is full;
PRCP-2: The probability should increase super-linearly with the queue
utilization at the early stage of bouncing back to prevent the queue
from fast buildup;
PRCP-3: Packets that have already been returned should receive smaller
probability to be bounced back again.

To satisfy PRCP-3, we first define a base probability factor 𝑃𝑏 for
each packet according to the number of times the packet has been
bounced, i.e., 𝑛𝑝. When 𝑛𝑝 grows, the base probability factor should
decrease dramatically to intentionally reduce the chance of a packet
being persistently bounced, as this could result in a large delay. To this
end, we use an exponential decay function in the following form for
the base probability factor:

𝑃𝑏(𝑛𝑝) = 𝑒
𝜆

𝑛𝑝+1 (1)

where 𝜆 > 0 is the exponential decay constant. It is always true that
𝑃𝑏(𝑛𝑝) > 1 for any 𝑛𝑝 ∈ Z+

0 .
We introduce a lower threshold 𝜃 ∈ [0, 1) for the output queue

utilization 𝑢𝑞 and define 𝑃 (𝑢𝑞 , ⋅) = 0 if 0 ≤ 𝑢𝑞 ≤ 𝜃 and 𝑃 (𝑢𝑞 , ⋅) = 1 if
𝑢𝑞 = 1. The first equation means that if the output queue utilization is
under the predefined threshold, i.e., the queue is underutilized, there is
no need to bounce packets; the second equation guarantees that when
the output queue is full or overflows, all the upcoming packets have to
be bounced back in order to avoid packet drops. These two equations
ensure the validity of PRCP-1. Then we define for 𝜃 < 𝑢𝑞 < 1,

𝑃 (𝑢𝑞 , ⋅) = 𝛼 ⋅ 𝑃
−𝑢𝑞
𝑏 + 𝛽 (2)

where 𝛼 and 𝛽 are constants. Noting that 𝑃 (𝑢𝑞 , ⋅) also satisfies (𝜃, 0) and
(1, 1), we have

𝛼 =
𝑃 𝜃
𝑏

𝑃 𝜃−1
𝑏 − 1

, 𝛽 = 1
1 − 𝑃 𝜃−1

𝑏

. (3)

Substituting 𝑃𝑏 with Eq. (1) and combining all the above cases, we have
the closed form of 𝑃 satisfying PRCP-2 as

𝑃 (𝑢𝑞 , 𝑛𝑝) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 0 ≤ 𝑢𝑞 ≤ 𝜃,

𝑒
𝜆(𝜃−𝑢𝑞 )
𝑛𝑝+1 − 1

𝑒
𝜆(𝜃−1)
𝑛𝑝+1 − 1

𝜃 < 𝑢𝑞 ≤ 1.
(4)

The curves of function 𝑃 , with 𝜃 = 0.5, under different utilization 𝑢𝑞 are
illustrated in Fig. 3. Note that 𝜃 has a major impact on the proportion of
packets that will be bounced back at a given queue, while 𝜆 can be used
to roughly control the maximum number of hops each bounced packet
will traverse. We will further verify these correlations in Section 6.

2.4. FIB

The FIB maintains mappings between the packet destination MAC
address and the corresponding output port (i.e., interface) that the
packet should be forwarded to. In PABO’s design, the lookup unit relies
on two parameters, 𝑢𝑞 and 𝑛𝑝, to make the forwarding decision for each
packet as we just discussed. While 𝑛𝑝 can be obtained from the packet
that we will describe in Section 2.6, 𝑢𝑞 needs to be available after the
inquiry to the FIB from the lookup unit. To achieve this, we introduce

an extra column named ‘‘Util" in the forwarding table, as shown in
Fig. 2. In addition to maintaining the MAC-port mappings, the FIB also
monitors and updates the output queue utilization 𝑢𝑞 for each output
port. When a packet is forwarded to an output queue, the utilization 𝑢𝑞
of the queue will be updated by the following equation 𝑢𝑞 ← 𝑢𝑞 +1∕𝐶𝑞 ,
where 𝐶𝑞 is the maximum capacity of the queue. When a packet is
expelled by the scheduler at an output queue, the corresponding value
of 𝑢𝑞 in the FIB is also updated according to the following equation
𝑢𝑞 ← 𝑢𝑞 − 1∕𝐶𝑞 .

2.5. Output queue

We separate the bounced packets from the normal packets by assign-
ing the bounced packets higher priority at the output queue (illustrated
as OQ in Fig. 2). This is due to the observation that compared to normal
packets: packets that have already been bounced should be processed
earlier as they have already been delayed during the bouncing process.
To this end, we introduce two virtual sub-queues for the output queue,
namely bounce queue and normal queue (for every service class).
The packets in the bounce queue will enjoy higher priorities when
being scheduled by the output scheduler. For simplicity, we adopt a
straightforward scheduling strategy and we modify the output sched-
uler such that packets from the normal queue will be transmitted only
if the bounce queue is empty. In a sequel, the bouncing delay will be
compensated by reduced queueing delay during their retry process.

2.6. Packet

Each packet in the network will carry a counter 𝑛𝑝 to indicate how
many times the packet has been bounced back. Take again the example
in Fig. 1. When congestion occurs at 𝑆4-𝐻3, suppose the last normally
reached switch for the packets from both flows 𝐹1 and 𝐹2 is 𝑆4. For
packets from flow 𝐹2 bounced back to 𝑆3 by 𝑆4, the value of 𝑛𝑝 will
be increased by one. When the bounced packets are forwarded out
normally to 𝑆4, the value of 𝑛𝑝 will stay the same. If these packets are
bounced from 𝑆4 to 𝑆3 again, 𝑛𝑝 will increase to record the new bounce
behaviors. This counter 𝑛𝑝 will be used by the lookup unit in switches
as an input for the bounce probability calculation. By carefully setting
the probability functions as we have already discussed, the probability
that a packet is bounced back consistently for multiple times will be
significantly reduced.

2.7. End-host support

When persistent congestion occurs, there will be packets bounced
straight back to the source along the reverse direction of the forwarding
path. While end-host involvement is required to support this circum-
stance, the bounced packets can also serve as a congestion notification
for upper-layer congestion control protocols. When receiving a bounced
packet, the source will be notified that the congestion has happened
along the forwarding path, and exceeds the ability of the network to
handle it. In such cases, the source would reduce its sending rate.
The extent of this rate adjustment will depend on the severity of the
congestion, measured by for example the number of bounced packets
the source has received during a certain amount of time. We claim
that more sophisticated transport layer congestion control protocols
can also be incorporated to further handle the congestion smoothly.
The bounced packets received by the source will be injected into the
source’s output queue again for further retransmission, which also
ensures that no packets will be dropped.
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Fig. 3. Probability function 𝑃 (𝑢𝑞 , 𝑛𝑝) for packet bounce decision-making. We set the threshold 𝜃 to 0.5: (a) we set the constant 𝜆 to 5, and we show the curves in cases of 𝑛𝑝 = 0, 1, 2,
respectively, and (b) we show the curves with 𝑙𝑎𝑚𝑏𝑑𝑎 = 5, 15, 25 in the case of 𝑛𝑝 = 0. When 𝑢𝑞 ≤ 0.5, switches forward packets normally; PABO is only involved when 𝑢𝑞 > 0.5.

3. Implementation

To validate the effectiveness of PABO, we completed a proof-
of-concept implementation based on the INET framework for OM-
NeT++ [7]. Our implementation code is open-sourced at [11]. By
overriding the corresponding link-layer modules, we created Ether-
net switches and host models that can support PABO. The detailed
modifications made to each module will be explained in the following.
EtherSwitch. We mainly modify the implementation of its submod-
ules including 𝙼𝙰𝙲𝚁𝚎𝚕𝚊𝚢𝚄𝚗𝚒𝚝, 𝙴𝚝𝚑𝚎𝚛𝚀𝚘𝚜𝚀𝚞𝚎𝚞𝚎. In 𝙼𝙰𝙲𝚁𝚎𝚕𝚊𝚢𝚄𝚗𝚒𝚝, We
alter the implementation of the forwarding strategy (i.e., function
𝚑𝚊𝚗𝚍𝚕𝚎𝙰𝚗𝚍𝙳𝚒𝚜𝚙𝚊𝚝𝚌𝚑𝙵𝚛𝚊𝚖𝚎) by applying our probability-based forward-
ing decision-making mechanism. During the decision-making process,
the required queue utilization of the corresponding output interface is
obtained by dividing instantaneous queue length by queue capacity.
Furthermore, we disable the MAC address self-learning process when
receiving bounced packets, as the destination addresses of bounced
packets are already in the forwarding table. 𝙴𝚝𝚑𝚎𝚛𝚀𝚘𝚜𝚀𝚞𝚎𝚞𝚎 is a typ-
ical buffer module type, which is composed of classifier, queue, and
scheduler. In addition to the default 𝚍𝚊𝚝𝚊𝚀𝚞𝚎𝚞𝚎 (as 𝚗𝚘𝚛𝚖𝚊𝚕𝚀𝚞𝚎𝚞𝚎), we
introduce another queue called 𝚋𝚘𝚞𝚗𝚌𝚎𝚀𝚞𝚎𝚞𝚎. We alter the classifier
in order to separate bounced packets from normal ones. Bounced
packets are stored in 𝚋𝚘𝚞𝚗𝚌𝚎𝚀𝚞𝚎𝚞𝚎, while normal packets are sent
into 𝚗𝚘𝚛𝚖𝚊𝚕𝚀𝚞𝚎𝚞𝚎. The 𝚗𝚘𝚛𝚖𝚊𝚕𝚀𝚞𝚎𝚞𝚎 and 𝚋𝚘𝚞𝚗𝚌𝚎𝚀𝚞𝚎𝚞𝚎 are with the
𝙳𝚛𝚘𝚙𝚃𝚊𝚒𝚕𝚀𝚞𝚎𝚞𝚎 type. Finally, we modify the output scheduler
𝙿𝚛𝚒𝚘𝚛𝚒𝚝𝚢𝚂𝚌𝚑𝚎𝚍𝚞𝚕𝚎𝚛 where we give priorities to the packets in the
𝚋𝚘𝚞𝚗𝚌𝚎𝚀𝚞𝚎𝚞𝚎 to reduce delay.
EtherFrame. This is a message type representing link-layer IEEE
802.3 Ethernet frame [12]. It contains the common header fields and
payloads. To keep track of the value of 𝑛𝑝, i.e., the number of times the
packet has been bounced back, we add a non-negative integer counter
𝚋𝚘𝚞𝚗𝚌𝚎𝚍𝙷𝚘𝚙 in the Ethernet header of an Ethernet frame [12]. This
counter will increase by one every time the packet is bounced back by
one hop and will stay the same if the packet is forwarded normally.
Then we introduce three other parameters for further analysis. We
introduce another counter 𝚋𝚘𝚞𝚗𝚌𝚎𝚍𝙳𝚒𝚜𝚝𝚊𝚗𝚌𝚎 for each packet to indicate
how far (measured by the number of hops) it has been bounced from its
last normally reached switch before it was first bounced. This counter
will increase by one if the packet is bounced and will decrease by
one if the packet is normally forwarded. For each packet, to record
the farthest distance it has been bounced, we introduce the parameter
𝚖𝚊𝚡𝙱𝚘𝚞𝚗𝚌𝚎𝚍𝙳𝚒𝚜𝚝𝚊𝚗𝚌𝚎. Meanwhile, we also add a non-negative integer
counter 𝚝𝚘𝚝𝚊𝚕𝙷𝚘𝚙 to record the total number of hops (normal plus
bounced, including the sender) that the packet has traversed in the
network.
Host. The host is 𝚂𝚝𝚊𝚗𝚍𝚊𝚛𝚍𝙷𝚘𝚜𝚝 type — an example host contains
modules related to link layer, network layer, transport layer and ap-
plication layer. We mainly make modifications to the link layer of the
𝚂𝚝𝚊𝚗𝚍𝚊𝚛𝚍𝙷𝚘𝚜𝚝 to generate our host model. Ideally, PABO is so far only

used for mitigating transient congestion in the network without the
involvement of end-hosts. However, it is possible that the congestion
condition persists too long and the bounced packets will finally reach
the sender. To handle this situation, we modify the 𝙴𝚝𝚑𝚎𝚛𝙼𝙰𝙲 module
in the 𝚂𝚝𝚊𝚗𝚍𝚊𝚛𝚍𝙷𝚘𝚜𝚝 to avoid dropping bounced packets that are not
destined for this host. Then we modify the 𝙴𝚝𝚑𝚎𝚛𝙴𝚗𝚌𝚊𝚙 module to
check whether there is bounced packet or not. If so, the bounced
packets will be sent to the sender’s buffer for retransmission. Note
that the type of sender’s buffer is also 𝙴𝚝𝚑𝚎𝚛𝚀𝚘𝚜𝚀𝚞𝚎𝚞𝚎. As a result,
the same modifications we made for switches can also be applied for
𝚂𝚝𝚊𝚗𝚍𝚊𝚛𝚍𝙷𝚘𝚜𝚝.

In addition to the PABO implementation, we make some special
modifications to the transport layer of the 𝚂𝚝𝚊𝚗𝚍𝚊𝚛𝚍𝙷𝚘𝚜𝚝 to measure the
level of packet out-of-order. In the TCP sender, we record the sending
order of each packet into a special queue called 𝚜𝚎𝚗𝚝𝚂𝚎𝚚𝚀𝚞𝚎𝚞𝚎. We
maintain a send counter in the TCP sender. Every time a new packet
is sent, the packet is labeled with a unique sending order 𝑠𝑖, and this
mapping information (packet 𝑖, 𝑠𝑖) will be recorded into 𝚜𝚎𝚗𝚝𝚂𝚎𝚚𝚀𝚞𝚎𝚞𝚎

until the packet 𝑖 is ACKed. If packet 𝑖 is retransmitted, the sender
will look up in 𝚜𝚎𝚗𝚝𝚂𝚎𝚚𝚀𝚞𝚎𝚞𝚎 to find the corresponding 𝑠𝑖, and label
the retransmitted packet with it. In the TCP receiver, we maintain a
reception counter. Each received packet is assigned a receiving order 𝑟𝑖
(loss and duplicate packets are ignored). For each packet, we calculate
the difference between its 𝑠𝑖 and 𝑟𝑖. Finally, we can get a distribution
of displacement of packets, which will be used for further analysis.

The real-world deployment of PABO includes packet structure,
switch function, and end-host support. PABO requires a counter to
be added as a new field in the header of an Ethernet frame, indicat-
ing the number of times the packet has been bounced. This counter
adds two octets to the head. PABO is designed in the scope of a
CIOQ switch, which is commonly used in switches today [13,14]. Our
implementation of an EtherSwitch module in OMNet++ resembles a
CIOQ switch structure. Therefore, it can be used for reference in the
actual deployment. The modification to a CIOQ switch includes two
parts: the lookup unit and the output queue. In our implementation in
OMNet++, the 𝙼𝙰𝙲𝚁𝚎𝚕𝚊𝚢𝚄𝚗𝚒𝚝 module corresponds to the lookup unit;
and the 𝙴𝚝𝚑𝚎𝚛𝚀𝚘𝚜𝚀𝚞𝚎𝚞𝚎 corresponds to the output queue structure. In
the end-hosts, modifications should be made to support the function of
PABO, including link layer and transport layer modification. The link
layer modification can refer to the implementation of 𝚂𝚝𝚊𝚗𝚍𝚊𝚛𝚍𝙷𝚘𝚜𝚝.
The retransmission in the transport layer can be largely avoided as
PABO improves the reliability of the network since packets will not
be dropped because of buffer overflow. Meanwhile, the threshold that
triggers fast retransmit should be carefully set so that fast retransmit
only happen when there is really a need, e.g., packets are corrupted
due to reasons such as hardware failures.

The overhead of PABO includes the traffic overhead brought by
packet structure modification, and time overhead of the probabilistic
decision-making. To record the number of bounced times for each
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packet, 𝑛𝑝 is introduced as a new header field of 2 bytes in the Ethernet
frame for simplicity. In the probabilistic decision-making process, the
required PABO operations for each packet arriving at a switch are listed
as follows: Firstly, calculate outbound buffer utilization based on the
instantaneous queue size; Secondly, if the utilization is higher than the
bounce threshold 𝜃, calculate the bounce probability based on 𝑛𝑝 of
the packet and decide the forwarding port based on the probability;
Finally, forward the packet the decided port. At nanosecond granular-
ity provided by OMNET++, we did not observe any noticeable time
overhead brought by PABO.

4. Packet out-of-order analysis

Out-of-order delivery [15] is the delivery of packets arriving at
receiver disobeying their sending order. TCP requires the in-order
of packets, which means the receiving order of the packets is sup-
posed to be the same as their sending order. Out-of-order packets
will generate sequence holes on the receiver side and then, TCP will
duplicate the ACK to request the missing packets. Three continuous
duplicate ACKs brought by out-of-order packets can trigger spurious
fast retransmit [16], bringing unnecessary packet delay as well as
reduced congestion window. Studies have shown that packet out-of-
order delivery is not rare [17,18] and it can be caused by multiple
factors such as packet loss, parallelism within routers or switches,
different path delays in packet-level multi-path routing, route fluttering
and so on [15]. To deal with this problem, [19] increases the number of
duplicate acknowledgments required to trigger fast retransmit and [20]
disables fast retransmit entirely.

In our case, PABO allows packets to be retuned on the forwarding
path in order to guarantee no packet loss. On the other hand, this
bouncing behavior will disturb the packet forwarding direction, thus
inevitably leading to increased number of out-of-order packets. This
effect on packet out-of-order is also a congestion indication that PABO
tries to convey to TCP. If the number of duplicate ACKs grows to a
certain threshold, TCP can finally handle the congestion by suppress-
ing the sending rate. However, window reduction should be avoided
in transient congestions as it can result in unnecessary performance
damage, while things can be solved right by using PABO instead. In this
section, we will dissect the impact of each of the system parameters
(e.g., 𝜃 and 𝜆 in the bounce probability function (4)) to packet out-
of-order. From the analysis, we provide insights focusing on PABO
configuration. Meanwhile, we observe the performance of PABO on
how packet out-of-order affects the flow completion time.

4.1. Measuring packet out-of-order

To measure the level of packet out-of-order delivery in a packet
flow, various methods have been proposed. Among them, Reorder
Density (RD) captures packet out-of-order delivery by a weighted dis-
tribution of the displacement of packets [21]. Consider a sequence
of packets sent in the order of [1, 2,… , 𝑁], which is referred to as
sending index 𝑠𝑖 for packet 𝑖. When arriving at the receiver side, each
packet 𝑖 will be assigned a receiving index recording the order of
reception, denoted by 𝑟𝑖. The difference between the sending index and
the receiving index, denoted by 𝑑𝑖 for each packet 𝑖, is calculated as

𝑑𝑖 = 𝑟𝑖 − 𝑠𝑖. (5)

If 𝑑𝑖 > 0, packet 𝑖 is considered to be late; 𝑑𝑖 < 0 means that
packet 𝑖 arrives earlier than expected; 𝑑𝑖 = 0 means there is no out-
of-order event occurred. RD also introduces a threshold 𝐷𝑇 > 0 on
|𝑑𝑖|, beyond which an early or a late packet is deemed lost. Lost or
duplicate packets will not be assigned any receive index. Then, we
define distribution vector 𝑆[𝑘] which contains the number of packets
with a displacement of 𝑘. By normalizing it to the total number of

Fig. 4. The network topology used for investigating the impact of PABO on the level
of packet out-of-order, and also for conducting the hop-by-hop evaluation of PABO.

non-duplicated received packets 𝑁 , we obtain the following weighted
distribution of displacements, denoted by 𝑅𝐷[𝑘].

𝑅𝐷[𝑘] = 𝑆[𝑘]
𝑁

,−𝐷𝑇 ≤ 𝑘 ≤ 𝐷𝑇 . (6)

Based on RD, we now derive a new metric called reorder entropy to
quantitatively analyze the properties of the distribution [22]. Reorder
entropy uses a single value to characterize the level of out-of-order in a
packet flow, reflecting the fraction of packets displaced and the severity
of packet displacement. The formal definition of reorder entropy is
given by

𝐸𝑅 = (−1) ⋅
𝑖=𝐷𝑇
∑

𝑖=−𝐷𝑇

(𝑅𝐷[𝑖] ⋅ ln𝑅𝐷[𝑖]). (7)

It can be verified that larger reordering entropies represent a more
dispersed distribution of packet displacement, translating into a more
severe packet out-of-order event. If there is no packet out-of-order at
all, the reorder entropy should be equal to zero.

4.2. Impact of PABO on reorder entropy

To explore the impact of PABO on packet out-of-order, we conduct
some experiments to investigate how the reorder entropy changes
with different PABO parameters. In particular, we tune the values for
parameters 𝜃 and 𝜆 in the bounce probability function as in Eq. (4) and
we report our major observations, based on which we discuss possible
ways to improve PABO in terms of packet out-of-order.
Simulation Setup. We adopt a tree-based network topology consisting
of three servers (i.e., H1, H2 and H3) and one client (i.e., H4) connected
by seven switches, as depicted in Fig. 4. All the links in the network are
assumed to have the same rate of 1 Gbps. We consider a scenario where
the client establishes and maintains three concurrent TCP connections
with the three servers, respectively. The topology shows that the client
is three-hop away from each of the servers and the data flows from all
the servers will be aggregated at the last-hop switch directly connected
to the client. All the experimental results presented in this section
will be combined measurement results of the three concurrent TCP
connections.
Traffic. We create communication patterns in the considered scenario
to simulate the expected congestion conditions. The related simulation
parameters are summarized in Table 1. In our experiment, we set up
one TCP session for each of the TCP connections during the whole
simulation time. Each of the TCP session includes four TCP requests,
in which the hosts behave in a request–reply style: The client sends
a request (200B) with the expected reply length (1 MiB) to the server,
then the server responds immediately with the requested length of data.
Each TCP request represents an appearance of transient congestion at
switch S7 due to the fact that all the three servers will send data to
the client in a synchronized fashion. This setting simply emulates the
partition/aggregate traffic pattern that is very popular in a data center
network and can be conveniently monitored. In the rest of the paper, we
will refer to the above traffic as the partition/aggregate traffic for ease
of expression. We repeat this partition/aggregate traffic ten times and
analyze the average results. The time gap between TCP requests is set
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Table 1
Parameters for packet out-of-order analysis.

Parameters Value

Link rate 1 Gbps
TCP request length 200 B
TCP reply length 1 MiB
Queue size 100 pkt
Advertised window 45,535 B
Gap between requests 1 s

Fig. 5. The relationship between entropy and 𝜃, 𝜆 in bounce probability function.
Darker color of a grid means smaller entropy. In general, the change of 𝜃 has greater
influence on entropy than that of 𝜆.

to one second, which is enough to avoid overlaps between the periodic
congestion appearances. To simulate a transient congestion (e.g., incast
congestion), we set up small buffer sizes and bursty flow rates. More
specifically, the queue capacities of both 𝚍𝚊𝚝𝚊𝚀𝚞𝚎𝚞𝚎 and 𝚋𝚘𝚞𝚗𝚌𝚎𝚍𝚀𝚞𝚎𝚞𝚎

in all the switches and hosts are set to 100. To remove the limit on flow
rate by the congestion control mechanism in TCP, we set 𝚜𝚜𝚝𝚑𝚛𝚎𝚜𝚑 to
be arbitrarily high so that the servers will perform slow start without
the limit of 𝚜𝚜𝚝𝚑𝚛𝚎𝚜𝚑. At the same time, the advertised window of the
client is set to 45,535 bytes to enable the growth of flow rate. We also
disable fast retransmit in TCP and set the retransmission timeout (RTO)
to its upper bound 240 s [23]. This way, the packet out-of-order caused
by packet retransmission is eliminated so we can observe the packet
out-of-order brought only by the bouncing behavior of PABO.
Overview of Packet Out-of-Order Delivery. We first present a brief
overview of packet out-of-order delivery under different parameter
settings. We use reorder entropy (referred to as entropy hereafter for
the ease of expression) to quantify the level of packet out-of-order.
By tuning the values for the parameters, namely 𝜃 and 𝜆, we make
observations on how the entropy changes accordingly. The experimen-
tal results are depicted in Fig. 5. As we can observe that, the entropy
declines along the 𝜃 axis, e.g., when 𝜃 increases, the threshold for PABO
to bounce back packets becomes higher and thus, less packets will be
bounced under a certain traffic condition, as a result of which packet
out-of-order is less severe. Along the 𝜆 axis, the variation of entropy is
less significant. Note that the entropy converges to a minimal point in
cases that the switch will only bounce back packets when the buffer is
full.
Separate Impact of Parameters 𝜃 and 𝜆. We now focus on analyzing
how 𝜃 and 𝜆 affect on packet out-of-order separately. In addition to the
entropy that measures the level of packet out-of-order, we calculate the
variance of the buffer utilization of all the switches in the network. Note
that the variance can be used to roughly characterize the effectiveness
of PABO as PABO utilizes the buffer of upstream switches to avoid
packet loss, leading to a more even distribution of packets among
the switch buffers in the network. Meanwhile, we define timeRatio to
measure the scope of affected packets under different pairs of 𝜃 and 𝜆.
For those utilization of the buffers that will be considered during the

probabilistic decision-making process, we calculate the average time
ratio of them over 𝜃.

Fig. 6 depicts the separate impact of 𝜃 and 𝜆 on the entropy, the
variance, and the timeRatio. We select three representative values for
𝜃 and 𝜆 respectively to conduct further analysis. It can be generated
observed that the entropy in all the six figures is highly correlated to
timeRatio, which confirms that PABO can affect the level of packet
out-of-order.

Fig. 6(a)–(c) illustrate the impact of parameter 𝜃 on packet out-of-
order. According to Eq. (4), larger 𝜃 means the less effectiveness of
PABO. We can observe in the three figures that timeRatio reflecting the
affected scope of PABO decreases gradually to a steady point. This is
because most switches are under low utilization, thus the change of 𝜃 in
a lower range can affect more switches. As PABO is gradually losing its
influence, we can observe that the variance in the three figures grows
with similar tendency. However, the decrease tendency is different
for the entropy. In Fig. 6(a), the entropy changes relatively stable
comparing to the other two figures. This can be explained by the change
of affected scope of packets: when 𝜆 is at small value (e.g. 𝜆 = 1), the
change of 𝜃 has much less impact on timeRatio. In Fig. 6(b) and (c), the
entropy drops sharply at first, then remains stable in the middle area,
followed by a further decrease in the end. This is in accordance with
the change of timeRatio. The final decline is reasonable, as the switches
are trying to avoid packet bounces as much as possible.

Fig. 6(d)–(f) depict the influence of parameter 𝜆 on packet out-of-
order. It is known that larger 𝜆 means the more effectiveness of PABO.
In pace with the growth of 𝜆, timeRatio increases and the variance
decreases with a reasonable range of fluctuation. Moreover, we can
observe from the ordinate range of the above figures that larger 𝜃
leads to the reduced influence of 𝜆 on timeRatio. When 𝜃 is very close
to 1 (e.g. in Fig. 6(f)), the influence of 𝜆 can be ignored, since it
hardly affects the bounce probability. As is demonstrated in Fig. 6(d)
that the entropy rises rapidly at first and then remains a steady point.
However, Fig. 6(e) illustrates an opposite tendency of entropy. This
is because when 𝜃 = 0.5, S7 is the only switch among the topology
in Fig. 4 that satisfies the condition for bouncing back packets. As 𝜆
rises, the percentage of bounced packets continues to grow until it is
infinitely close to one. In this case, higher bounce back percentage at
S7 leads to lower entropy, as the bouncing back process of the packets
is comparable with experiencing an equally extended path.

4.3. Impact of entropy on flow completion time

Following the experiments in 4.2, we also observe how the level
of packet out-of-order affects the performance of PABO in terms of
flow completion time (FCT). FCT is determined by the time taken from
the client sends a request to its reception of the last packet of the
corresponding response. FCT includes the network transmission time
and the data processing time (e.g. data reordering) at the hosts. In
our experiment setting, the network transmission time accounts for a
large proportion of the FCT. Fig. 7 illustrates the relationship between
entropy and FCT. We can observe that with the variation of 𝜆 and 𝜃,
the corresponding entropies are more densely distributed on the right
part of Fig. 7. Results show that with the increase of entropy, there
is no obvious trend in FCT. This is reasonable because the network
transmission time is determined by the arrival time of the last packet.
The parameters of PABO decide when to start bounce back packets and
how many packets are bounced. However, the variation of parameters
will not affect the traffic amount and the packet departure rate at
the output queue of the bottleneck switch. And for this reason, the
arrival time of the last packet remains more or less the same despite
the change of PABO parameters. However, under the condition that
the data processing time accounts for the majority of the FCT, we
acknowledge that FCT should have some linear correlations with the
packet out-of-order level.
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Fig. 6. Separate impact of parameter 𝜃, 𝜆 in bounce probability function on entropy, variance and timeRatio: (a)–(c) the influence of fixed 𝜆 and change of 𝜃, and (d)–(f) the
influence of fixed 𝜃 and change of 𝜆.

Fig. 7. The relationship between the flow completion time and entropy reflecting the level of packet out-of-order. The entropy is derived from the experiment results with the
variation of 𝜆 from 1 to 50 and 𝜃 from 0 to 0.975.

4.4. Discussion

Although the change of PABO parameters does not obviously affect
the flow completion time, the setting of 𝜃 and 𝜆 is still a trade-off issue.
The main idea of PABO is to utilize the buffer of upstream switches to
relieve traffic burdens on the bottleneck switch, making the packets
more evenly distributed in the network. Consequently, the transient
congestion (e.g. the incast problem) is relieved. Smaller 𝜃 and larger
𝜆 make PABO more aggressive and effective. With smaller 𝜃, PABO
tends to bounce back packets earlier, and larger 𝜆 makes the bounce
probability grow faster. In this case, the utilization of each switch is
maintained at a relatively low level, but the level of packet out-of-
order will be more severe. Larger 𝜃 and smaller 𝜆 make PABO more
conservative and less effective. PABO tends to bounce late and the grow
rate of bounce probability is slower. This way, the level of packet out-
of-order is less severe, but the utilization of the bottleneck switch will
be maintained at a relatively high level, which can render the buffer
to be saturated easily. Therefore, we should balance between variance
(representing the effectiveness of PABO) and the entropy (reflecting
the extent of out-of-order), by carefully choosing the parameters for
target networks. The settings of parameters can be categorized into
different cases in terms of traffic characteristics. If traffic condition
is bursty, it can quickly ramp up to high network utilization. In this
case, if 𝜃 is set to a large value, latency can increase because packet
bursts are absorbed in the network buffer. Therefore, it is suggested
that we bounce back early with a small 𝜃 value. If traffic condition

is light and with few burst traffic, 𝜃 should be set to a large value to
largely eliminate congestion in the network. For 𝜆, we suggest a large
value to reduce the level of packet out-of-order. In general, the ideal
objective is to keep maximally the packet bouncing scope right around
the congestion point.

5. Hop-by-hop evaluation

We first conduct simulation studies at a hop-by-hop level to evaluate
the performance of PABO, and we report the experimental results in this
section.

5.1. Simulation setup

We adopt the same topology as Section 4 in Fig. 4, except that the
hosts do not contain any high layer protocols (i.e., IP, TCP). We focus
on only one direction data retransmission for the moment, where three
senders (i.e., H1, H2 and H3) send data simultaneously to a single
receiver (i.e., H4). The data from all the senders will be aggregated
at the last-hop switch (i.e., S7), in which the congestion appears. The
related simulation parameters are illustrated in Table 2. The duration of
all the simulations is set to one second to cover multiple appearances
of periodic congestions and the experiment is repeated ten times. The
links in the network are assumed to have the same rate of 1 Gbps.
Traffic. We imitate a periodic uniform flow by altering the traffic-
generating module. We define uniFlow as a unit of the periodic uniform
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Table 2
Parameters for hop-by-hop evaluation.

Parameters Value

𝜆 50
𝜃 0.8
Link rate 1 Gbps
sendInterval 12 μs
pauseInterval 0.2 s
numPacketsPerGenerate 500 1500 2500
PABO sender queue size 1500 pkt
PABO switch queue size 500 pkt
Payload size 1500 bytes

flow. As the overlap of two consecutive uniFlow may bring persistent
congestions that will overflow the sender’s buffer, we modify the
𝙴𝚝𝚑𝚎𝚛𝚃𝚛𝚊𝚏𝙶𝚎𝚗 module to enable setting of the periodic interval, which
is the 𝚙𝚊𝚞𝚜𝚎𝙸𝚗𝚝𝚎𝚛𝚟𝚊𝚕. In a uniFlow, the packets are sending out at a
uniform rate. We make some modifications to the existing modules in
order to maintain a uniform sending rate. First, we fix the sending inter-
val between packets and define it as 𝚜𝚎𝚗𝚍𝙸𝚗𝚝𝚎𝚛𝚟𝚊𝚕. Then, we introduce
a new parameter 𝚗𝚞𝚖𝙿𝚊𝚌𝚔𝚎𝚝𝚜𝙿𝚎𝚛𝙶𝚎𝚗𝚎𝚛𝚊𝚝𝚎 to specify the number of
packets to be sent in each uniFlow. The duration of each uniFlow
can be roughly calculated by 𝚗𝚞𝚖𝙿𝚊𝚌𝚔𝚎𝚝𝚜𝙿𝚎𝚛𝙶𝚎𝚗𝚎𝚛𝚊𝚝𝚎 × 𝚜𝚎𝚗𝚍𝙸𝚗𝚝𝚎𝚛𝚟𝚊𝚕.
To specify the sending rate, we fix the value of 𝚜𝚎𝚗𝚍𝙸𝚗𝚝𝚎𝚛𝚟𝚊𝚕 to
be 12 μs. Then, we control the traffic amount of each uniFlow by
tuning 𝚗𝚞𝚖𝙿𝚊𝚌𝚔𝚎𝚝𝚜𝙿𝚎𝚛𝙶𝚎𝚗𝚎𝚛𝚊𝚝𝚎. With a stable sending rate, different
𝚗𝚞𝚖𝙿𝚊𝚌𝚔𝚎𝚝𝚜𝙿𝚎𝚛𝙶𝚎𝚗𝚎𝚛𝚊𝚝𝚎 brings different severities of traffic burdens to
the network. We set 𝚙𝚊𝚞𝚜𝚎𝙸𝚗𝚝𝚎𝚛𝚟𝚊𝚕 to be 0.2 s, which is sufficient to
avoid overlaps between two consecutive congestions.
Queue. The input and output queues of both hosts and switches are
with the 𝙳𝚛𝚘𝚙𝚃𝚊𝚒𝚕𝚀𝚞𝚎𝚞𝚎 type. When using PABO, the capacities of
both 𝚗𝚘𝚛𝚖𝚊𝚕𝚀𝚞𝚎𝚞𝚎 and 𝚋𝚘𝚞𝚗𝚌𝚎𝚀𝚞𝚎𝚞𝚎 in switches are set to be 500 by
default. And we specially allocate larger buffers of size 1500 to both
𝚗𝚘𝚛𝚖𝚊𝚕𝚀𝚞𝚎𝚞𝚎 and 𝚋𝚘𝚞𝚗𝚌𝚎𝚀𝚞𝚎𝚞𝚎 in senders to avoid packet loss at the
sender side. In the cases without PABO where 𝚋𝚘𝚞𝚗𝚌𝚎𝚀𝚞𝚎𝚞𝚎 are not
used, we double the capacities of 𝚗𝚘𝚛𝚖𝚊𝚕𝚀𝚞𝚎𝚞𝚎 in both switches and
senders for fairness concern.
Packets. All the packets generated are in the IEEE 802.3 frame formats
with the payload size set to be 1500 bytes.

5.2. Effectiveness under different congestion severities

We validate the effectiveness of PABO by comparing it to the stan-
dard link-layer protocol under three different severities of congestion.
Parameters of bounce probability function 𝑃 are fixed as 𝜆 = 50,
𝜃 = 0.8. We set 𝚗𝚞𝚖𝙿𝚊𝚌𝚔𝚎𝚝𝚜𝙿𝚎𝚛𝙶𝚎𝚗𝚎𝚛𝚊𝚝𝚎 to 500, 1500, 2500 to simulate
different severities of congestion, which are respectively referred to as
mild, moderate, and severe. We also measure the cases without PABO
under the same traffic conditions and experimental results show a
packet drop rate of 0.13%, 44.46% and 53.34% at S7, respectively. Note
that the retransmission of those lost packets by upper-layer protocols could
generally result in an order of magnitude increase on packet delay due to
the timeout-based fashion [6].

When PABO is involved, packet loss can be prevented. The number
of bounced packets at each switch in all the three scenarios is illustrated
in Fig. 8(a) and the proportion of 𝚖𝚊𝚡𝙱𝚘𝚞𝚗𝚌𝚎𝚍𝙳𝚒𝚜𝚝𝚊𝚗𝚌𝚎 is shown in
Table 3. As we can observe that, only switch S7 has bounced 56.55% of
all the packets in the mild scenario. When the extent of the congestion
becomes larger, as in the moderate scenario, switches that are one hop
from the receiver (i.e. H4), have bounced packets and there are in total
85.27% of the packets have been bounced one hop away from its last
normally reached switch. When the congestion becomes very severe,
all the switches will be activated for bouncing packets, while there are
still up to 8.82% of the packets being successfully transmitted without
any interference.

The zero packet loss guarantee is achieved at the sacrifice of delay,
as bouncing a packet would inevitably increases its 𝚝𝚘𝚝𝚊𝚕𝙷𝚘𝚙. To

Table 3
Distribution of 𝚖𝚊𝚡𝙱𝚘𝚞𝚗𝚌𝚎𝚍𝙳𝚒𝚜𝚝𝚊𝚗𝚌𝚎.

Scenario # of 𝚖𝚊𝚡𝙱𝚘𝚞𝚗𝚌𝚎𝚍𝙳𝚒𝚜𝚝𝚊𝚗𝚌𝚎

0 1 2 3

Mild 43.45% 56.55% – –
Moderate 14.73% 85.27% – –
Severe 8.82% 84.14% 7.04% –

measure the delay stretch brought by PABO, we collect the values for
𝚝𝚘𝚝𝚊𝚕𝙷𝚘𝚙 from all the packets in three scenarios and presented the CDFs
in Fig. 8(b). We can observe that almost all packets experience a delay
no more than 5 hops in the mild scenario, and up to 86.64% of the
packets traverse no more than 11 hops in the severe scenario, which
are still no more than four times the delay in the normal case. This is
quite acceptable compared to the orders of magnitude delay increases
in retransmission-based approaches.

We also monitor the output queue utilization of switch S4, S5, S6,
and S7 in the mild scenario, and the results are depicted in Fig. 9.
We monitor the utilization levels of 𝚗𝚘𝚛𝚖𝚊𝚕𝚀𝚞𝚎𝚞𝚎 and 𝚋𝚘𝚞𝚗𝚌𝚎𝚀𝚞𝚎𝚞𝚎

separately, and calculate the average utilization of the two queues at
the output. Fig. 9(a) depicts the average utilization of the relevant
switches over the whole duration of the simulation that includes five
appearances of transient congestion. We then focus on the first traf-
fic peak as illustrated in Fig. 9(b), where we notice that when the
𝚗𝚘𝚛𝚖𝚊𝚕𝚀𝚞𝚎𝚞𝚎 utilization of S7 becomes high, packets are bounced to
upstream switches S4, S5, and S6 and thus, the 𝚋𝚘𝚞𝚗𝚌𝚎𝚀𝚞𝚎𝚞𝚎 at S4, S5,
S6, as well as S7, will be used instead of overflowing the 𝚗𝚘𝚛𝚖𝚊𝚕𝚀𝚞𝚎𝚞𝚎

of S7. When the traffic volume declines, the queues at S4, S5, and
S6 will be firstly cleared up and then finally the congestion vanishes
with the drop of the average (first bounce and then normal) queue
utilization of S7. This verifies our claim that PABO can avoid packet loss
and handle congestion by temporarily utilizing the buffers of upstream
switches.

5.3. Impact of parameters

We also explore the impact of the parameters on the effectiveness
of PABO in the moderate scenario. We focus mainly on two parameters
in the bounce probability function 𝑃 and the experimental results are
shown in Fig. 10. We measure the impact of threshold 𝜃 for queue uti-
lization on the proportion of packets being bounced and the exponential
decay constant 𝜆 on the average number of total hops for all packets,
respectively. When setting 𝜆 to a fixed value 50, we notice a clear
trend that the proportion of bounced packets decreases linearly with the
increase of 𝜃, as depicted in Fig. 10(a). Similarly, we fix 𝜃 to be 0.8 and
observe that the average number of total hops, i.e., 𝚝𝚘𝚝𝚊𝚕𝙷𝚘𝚙, increases
gradually stable with the increase of 𝜆 from 0 to 160. Thereafter, it
remains stable with only a negligible variation.

The values for the parameters should be determined according to
the needs of the network operator. The general principle is: smaller 𝜃
and larger 𝜆 improve the effectiveness of PABO, which tends to avoid
the congestion at a earlier time; while larger 𝜃 and smaller 𝜆 would
prefer to reduce the sensitivity of PABO, thus delay the absorption of
the congestion.

6. End-to-end evaluation in realistic topology

We further evaluate the performance of PABO in the Fattree net-
work topology [24] and we present the experimental results in this
section. We simulate different traffic patterns (many-to-one, many-to-
many) to observe the performance of PABO, and then we present the
parameter study of 𝜃 about the impact of PABO on entropy, per-packet
delay and flow completion time.
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Fig. 8. Performance results of PABO: (a) Packet bounce frequency under different severities of congestion, and (b) the CDF of the packet delay measured by 𝚝𝚘𝚝𝚊𝚕𝙷𝚘𝚙.

Fig. 9. Switch output queue utilization under the mild scenario: (a) over the whole duration of the simulation, and (b) over the first traffic peak.

Fig. 10. Impact of the parameters (a) 𝜃 and (b) 𝜆 on the proportion of bounced packets and the average packet delay measured by 𝚝𝚘𝚝𝚊𝚕𝙷𝚘𝚙, respectively. The proportion of
bounced packets decreases linearly with the increase of 𝜃, as 𝜃 is the threshold for PABO begins to work. The average 𝚝𝚘𝚝𝚊𝚕𝙷𝚘𝚙 of each packet increases gradually stable with
the increase of 𝜆, for the growth of 𝜆 means the increasing effectiveness of PABO.

6.1. Fattree implementation

We implement the Fattree routing algorithm (used in two-level rout-
ing table) on 𝙴𝚝𝚑𝚎𝚛𝚂𝚠𝚒𝚝𝚌𝚑, and calling it the 𝙵𝚊𝚝𝚝𝚛𝚎𝚎𝚂𝚠𝚒𝚝𝚌𝚑. For the
reason that this module does not contain network layer, we implement
the two-level routing table on the link layer by applying the following
modifications.
Addressing. Firstly, in line with the Fattree addressing scheme, we
make a one-to-one mapping between an IP address and a MAC address.
To illustrate, the IP address 10.0.0.1 corresponds to the MAC address
0A-AA-0A-00-00-01. All MAC addresses share the same first two octets
0A-AA, and the rest are transformed equivalently. Then we assign the
transformed MAC addresses to each switch and host. Note that all the
MAC ports of a switch share the same MAC address for simplicity,
which will not effect any experimental results.

Structure. Secondly, we modify the structure of 𝙼𝙰𝙲𝚃𝚊𝚋𝚕𝚎 to allow
entries containing prefixes and suffixes (i.e., /m prefixes are the masks
used for left-handed matching, /m suffixes are the masks used for
right-handed matching).
Lookup. Thirdly, we modify the lookup unit of 𝙼𝙰𝙲𝚃𝚊𝚋𝚕𝚎 to allow
two-level route lookup. Prefixes are intended for route matching of
intra-pod traffic, while suffixes for inter-pod traffic. The value of prefix
or suffix is simply used to check the number of octets required for
comparison. To be more specific, if we want to match an entry in the
𝙼𝙰𝙲𝚃𝚊𝚋𝚕𝚎 with a left-handed prefix of N (e.g. 24), we should find from
left to right at least N/8 (e.g. 3) identical octets between this entry
and the destination MAC address, excluding the same first two octets.
This also applies to the match of a right-handed suffix except that the
matching direction is from right to left.

9
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Fig. 11. The Fattree topology used for evaluating the performance of PABO. Using the two-level routing tables described in Section 6.1, packets from source H2 to destination
H10 would take the dashed path.

Routing Example. Here we explain the Fattree two-level routing
algorithm implemented in Fig. 11. For the hosts connected to each
lower-level switch (e.g. S1) in this Fattree structure, the last octets
of the left hosts are 02, and the last octets of the right hosts are 03.
Based on the last octet of the destination MAC address, the algorithm
uses the prefix/suffix matching to disperse different traffic, which we
will explain in a simplified way. In the Fattree topology, each pod
follows similar rules on packet routing. We take pod 0 as an example
to explain inter-pod routing and intra-pod routing separately. For ease
of expression, we refer to S1, S3 as the left-side switches, and S2, S4
as the right-side switches. For inter-pod traffic, the left-side switches
route a packet destined for another pod to the port number same as
the last octet of its destination MAC address (e.g. packet addressed
to 02 forwarded to port 2 and 03 forwarded to port 3). The right-
side switches work in an opposite way (e.g. packet addressed to 02
forwarded to port 3 and 03 forwarded to port 2). We give an example to
explain the route decisions taken for a packet from the inter-pod traffic:
source H2 to destination H10, which is illustrated in Fig. 11. Marked in
the picture are the port numbers of the switches. As the last octet of its
destination is 03, the packet first take the port 3 of S1, then goes out at
the port 2 of S4 to C3, after which there is only one path to take: to be
transmitted to the destination pod, then the destination subnet switch
where it is finally switched to its destination host. For intra-pod traffic,
the first-hop switch follows the same rules as in inter-pod routing, then
the second-hop switch route the packet to its destination subnet switch,
and finally the destination host.

6.2. Simulation setup

We use the Fattree network topology depicted in Fig. 11 to eval-
uate the performance of PABO. We initialize the 𝙼𝙰𝙲𝚃𝚊𝚋𝚕𝚎 of all the
𝙵𝚊𝚝𝚝𝚛𝚎𝚎𝚂𝚠𝚒𝚝𝚌𝚑 using input files that give all the prefixes and suffixes,
and turn off the update function. Meanwhile, to avoid the broadcast
storm brought by ARP request of the hosts, we statically initialize all the
hosts with the IP-address-to-MAC-address mapping information. The
simulation parameters are presented in Table 4. The duration of all the
simulations is set to ten second, which can cover multiple appearances
of periodic congestions. The links in the network are assumed to have
the same rate of 1 Gbps.
Traffic. We simulate different traffic patterns by changing the number
of servers and clients. For each TCP connection, we use the same
partition/aggregate traffic and buffer setup as Section 4, except that

Table 4
Parameters for end-to-end evaluation.

Parameters Value

𝜆 50
𝜃 0.95
Link rate 1 Gbps
TCP request length 200 B
TCP reply length 1 MiB
Queue size 100 pkt
Advertised window 50,000 B

the advertised window is set to 50,000 bytes, and we repeatedly
perform the experiment ten times. When using PABO, we disable all
the retransmissions (both fast retransmit and retransmission timeout) as
well as skipping the related window reduction intended for congestion
control, as the retransmissions are unnecessary due to the reliability of
PABO. In the cases without PABO, we adopt the TCP Reno protocol to
provide network congestion control.
PABO Configuration. We set the system parameters 𝜃 = 0.95, 𝜆 = 50
in both many-to-one and many-to-many scenario experiments.

6.3. Many-to-one scenario

First, we mimic the partition/aggregate traffic by specifying multi-
ple servers responding to one client (i.e., H9) in a synchronized fashion.
We simulate different severities of congestion by changing the number
of servers (i.e., 3 to 1, 6 to 1, 9 to 1, 12 to 1). Then we observe how
PABO performs in different congestions comparing to cases without
PABO.

Fig. 12 demonstrates the packet bounce frequency of each switch
under different many-to-one scenarios. In the 3 to 1 congestion sce-
nario, we choose one host from each pod to be the servers except the
pod with the client H9, i.e., H1, H5, H13. The first aggregate switch
of the three connections is C1. When PABO is not working, the core
switch C1 will be the only switch to experience packet losses with an
overall drop rate of 0.33%. As PABO participates, only C1 bounce back
packets to avoid packet loss at a bounce percentage of 49.83%.

In the 6 to 1 congestion scenario, we add one server from each
pod except pod 2, i.e., H3, H7, H15, then S9 is congested with a
drop rate of 0.51%. There is no significant increase in drop rate and
the number of drop location, as the congestion control mechanism
of TCP Reno is taking effect. For PABO, we can see that as the first
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Fig. 12. Packet bounce frequency of each switch under different many-to-one scenarios,
measured by number of bounced packets at each switch. The total frequency of a
scenario increases with the growth of the number of servers. The middle part is omitted
using a break axis for the convenience of showing data with a wide range.

Table 5
Distribution of 𝚖𝚊𝚡𝙱𝚘𝚞𝚗𝚌𝚎𝚍𝙳𝚒𝚜𝚝𝚊𝚗𝚌𝚎.

Scenario # of 𝚖𝚊𝚡𝙱𝚘𝚞𝚗𝚌𝚎𝚍𝙳𝚒𝚜𝚝𝚊𝚗𝚌𝚎

0 1 2

3 to 1 50.17% 49.83% –
6 to 1 53.24% 46.76% –
9 to 1 56.71% 43.29% –
12 to 1 57.68% 42.32% –
m to m 38.37% 61.63% –

aggregate switches each gathering traffic flows of three connections, C1
and C4 bounce back packets to mitigate congestion. Since most of the
congestion resulted from aggregating three connections is mitigate by
the bouncing back of C1, C4. There is only a small scale of bounce back
in S11 and no bounce back in S12. The highest proportion of bouncing
back is in S9 as it is the last hop that gathers all the traffic flows to H9.

In the 9 to 1 congestion scenario, we further add a server from each
pod except pod 2, i.e., H2, H8 and H14. In this scenario, pod switch S9
is congested with a drop rate of 0.45% without PABO. When PABO is
involved, as aggregate switches of five traffic flows from H1, H2, H5,
H13 and H14, C1 and S11 bounce back packets. For traffic flows from
H3, H7, H8 and H15, the aggregate switch C4 bounces back packets.
As the only path to H9, S9 still account for the highest percentage of
bouncing back. In total, 43.29% of all the packets are bounced back.

In the 12 to 1 congestion scenario, all of the hosts in the first two
pod and three out of four hosts (i.e., H13, H14, H15) in the last pod
are the servers, together with a special intra-pod traffic brought by H11.
Without PABO, both pod switch S9 and core switch C1 are congested
with a total drop rate of 0.52%, while 32.6% of the drop event happen
in C1 and 67.4% happen in S9. With PABO taking effect, C1, C4, S11,
S12 and S9 bounce back 42.32% of the packets.

For all the many-to-one scenarios, Table 5 shows that as the num-
ber of servers increases, the percentage of bounced packet decreases
although the congestion is getting more severe. This is reasonable
because though the percentage of bounced packets is smaller, each
bounced packet is bounced back and forth more frequently around the
congestion point.

Fig. 13 shows the CDF of absolute packet displacement measured
by RD in the 12 to 1 scenario. In cases with PABO, because of the
severe congestion, approximately 50% of the packets arrive at their
destination out of order. The max absolute value of displacement is
95. In cases without PABO, packet loss is the main reason of packet
out-of-order. Although the level of out-of-order is much less severe, the
max absolute value of displacement is up to 76. This means there are
still packets with large displacement values, which can trigger multiple
times of retransmission timeout, resulting in a substantial delay stretch.

Fig. 13. The CDF of absolute packet displacement in the 12 to 1 scenario. In cases
without PABO, the percentage of out-of-order packets is much smaller, but there
are still packets with large displacement values, which can trigger multiple times of
retransmission timeout.

We also focus on the delay comparison between cases with PABO
and cases without PABO. Fig. 14 illustrates the average delay per
packet, regarding the time spent from source to destination. Per-packet
delays are recorded when packets successfully arrive at the receiver
side, thus the delays of dropped packets are not recorded in cases
without PABO. We can see that the average per-packet delay of PABO
is slightly higher than cases without PABO. This is because some of
the packets are bounced back by PABO to avoid packet loss, leading to
per-packet delay stretched. Moreover, with the growth of the server
number in the many-to-one scenario, the standard deviation of per-
packet delay increases as the congestion is becoming more severe. This
confirm our statement that smaller percentage of bounced packets in
more severe congestion means that bounced packets are bounced back
and forth more frequently. For all the many-to-one despite the 12 to
1 scenario, the basic trend for per-packet delay is very related to the
degree of congestion. The exception is because the path of the special
intra-pod traffic existed only in the 12 to 1 scenario is much shorter
than the others.

Fig. 15 depicts the average flow completion time in each scenario,
which refers to the time taken from the client sends a request to its
reception of the last packet of the corresponding response, neglect-
ing the reordering process in the receive buffer. Therefore, the flow
completion time is determined by the arriving time of the last packet.
From the figure, we can see that cases with PABO have obvious advan-
tage over cases without PABO in all the scenarios. Though bouncing
slightly increases per-packet delay, packet drops and retransmissions
are avoided, which can bring orders of magnitude delay increases.
Therefore, the arriving time of the last packet can be improved by
PABO. Moreover, the advantage of PABO on flow completion time in
the many-to-one scenario grows increasingly evident with the conges-
tion becoming more severe (excluding the 12 to 1 scenario for the
influence of intra-pod traffic).

6.4. Many-to-many scenario

Second, we evaluate PABO under the many-to-many scenario, which
consists of two partition/aggregate traffic. In this scenario, H1, H5 and
H13 are the servers that respond to the request of client H9. In the
meantime, H4, H8 and H16 respond to the request of client H10. For
each 3 to 1 traffic, the first aggregate switches are the core switch C1
and C2 respectively. Then the two 3 to 1 traffic aggregate at S11 and
go separately at the output ports of S9. Without PABO, the drop rate is
0.54%, with all the packet losses occur in S11. By using PABO, 61.63%
of the packets are bounced back, with 18.35% bounced at C1, 18.77%
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Fig. 14. Average per-packet delay under different congestion scenarios. The results
with PABO is slightly higher than the results without PABO as PABO bounces back
some of the packets.

Fig. 15. Average flow completion time in each congestion scenario. The results with
PABO has obvious advantage over the results without PABO, for packet losses leading
to the orders of magnitude delay increases in retransmission-based approaches of TCP
Reno.

at C2 and 62.88% at S11. In the many-to-many scenario, the per-packet
delay of PABO is still higher than cases without PABO, for over half of
all the packets are bounced back. As for the results of flow completion
time, PABO still has great advantage over the normal case.

6.5. Impact of parameter 𝜃

We make evaluations to observe how the parameter 𝜃 in the bounce
probability function of PABO affects on the experiment results under
the many-to-many scenario. We neglect the small values of 𝜃, because
it is unnecessary to bounce back too early. Therefore, we only focus on
the domain of 𝜃 ≥ 0.5. The results are illustrated in Fig. 16. It shows
that with the increase of 𝜃, entropy remains stable then drops when 𝜃 is
close to 1, which is similar to the previous result in Section 4. As to the
effect of 𝜃 on the flow completion time, it shows no obvious regularity.
For no matter when PABO starts to bounce back packets, the bounced
packets are absorbed inside the network to queue up for being finally
handled by the destination end host. Therefore when using PABO, the
arrival time of the last packet is determined by the limit of the last hop
switch connected to the destination, rather than the bounce threshold
𝜃. For results of per-packet delay, there is also no obvious regularity.
Smaller values of 𝜃 avoid congestion at an earlier time, which result in
larger percentage of bounced packets and relatively smaller bounced
frequency for each packet. Similarly, larger 𝜃 values tend to avoid
packet loss as well as maintaining high utilization of switches, thus the

percentage of bounced packets is smaller and the bounced packets are
bounced back and forth more frequently.

7. Related work

We summarize some representative works on congestion control in
data center networks and make a comparison with PABO in this section.
Transport layer. As the most frequently used transport layer pro-
tocol, TCP provides reliable end-to-end communication on unreliable
infrastructures. Despite several variants of the traditional TCP protocol,
the reactive fashion to congestion (i.e., timeout) and the slow-start
nature in adjusting the sending window size cannot satisfy the growing
requirements for small predictable latency and large sustained through-
put in data center environments [2]. ICTCP [3] aims at preventing
incast congestion through adjusting the advertised windows sizes at
the receiver side by estimating the available bandwidth and RTT.
DCTCP [2], another TCP variant developed for data center environ-
ment, take advantage of the Explicit Congestion Notification (ECN)
feature [25] on switches to predict the extent of the congestion and
provide smooth adjustments on the sending window size accordingly.
Clove and ALB are solutions running in end-hosts and focusing on traf-
fic load balancing on multiple paths. Clove [26] makes use of the virtual
switch in the end-host hypervisor to control packet routing by changing
the packet header. It relies on Equal-cost multi-path routing (ECMP)
on switches to reroute flowlets over multiple paths, for the purpose
of getting high link utilization and low packet reordering. ALB [27]
further improves performance by eliminating inaccurate congestion
feedbacks under asymmetric topologies. These end-to-end solutions do
not assume any reliability in the network and thus are orthogonal to
PABO.
Network layer. AQM (Adaptive Queue Management) is an intelligent
probabilistic packet dropping mechanism designed for switch buffer to
avoid global synchronization among flows as can be frequently seen in
traditional drop-tail queue settings (e.g., RED [28] and PI [29]). ECN
(Explicit Congestion Notification) [25] allows end-to-end congestion
notification and ECN-enabled switches can set a marker (i.e., CE) in
the IP header of the packet to signal impending congestion. This infor-
mation will be echoed back to the sender with the ACK for this packet.
While both can provide packet drop prevention at some degree, there
is no guarantee on that no packet will be dropped. Fastlane [30] is an
agile congestion notification mechanism, which aims at informing the
sender as quickly as possible to throttle the transmission rate by sending
explicit, high-priority drop notifications to the sender immediately at
the congestion point.
Link layer. This research line aims at providing hop-by-hop reliability
inside the network through a backpressure-alike feedback loop. Among
them, PAUSE Frame [5] is one of the flow control mechanisms for
Ethernet, basing on the idea of sending PAUSE frame to halt the
transmission of the sender for a specified period of time. However,
PAUSE frame is per-link based and cannot differentiate among flows,
which leads to performance collapse of all the flows on the link. PFC
(Priority Flow Control) [5] further extends to provide individual flow
control for several pre-defined service class. While it brings about some
mitigation on inter-flow interference, the number of service class is still
not enough in many circumstances. Moreover, the parameters of both
PAUSE frame and PFC are very difficult to tune to ensure full reliability,
making them unpractical [31]. BCN (Backward Congestion Notifica-
tion) [32] and FECN (Forward Explicit Congestion Notification) [33]
are queue-based mechanisms that provide congestion notification for
rate control mechanisms. BCN monitors the queue length of the switch,
and it will send messages to the source for rate control when the queue
length is above some predefined level. FECN probes the congestion
condition proactively and periodically along the path to the destination,
then it will use feedbacks from the network to adjust sending rate of
the source. However, flows are not differentiated in BCN and FECN,
thus the rate control mechanism will affect all the flows on the link.
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Fig. 16. The relationship between 𝜃, entropy, per-packet delay and flow completion time in the many-to-many scenario.

DIBS [4] solves local and transient congestions by detouring packets
via a random port at the same switch when congestion occurs on a link.
While adopting a similar idea of sharing switch buffers to mitigate tran-
sient congestion, PABO has three major additional merits: (𝑖) Packets
are detoured by bouncing to upstream switches, which can minimize
inter-flow interference on other paths, and is more manageable in
maintaining packet order: bounced packets of a flow that queue up in
the bounce queue are transmitted following First In First Out (FIFO)
order along the same path. (𝑖𝑖) The bounced packets can also serve as a
congestion notification for upstream nodes (switches or end-hosts). (𝑖𝑖𝑖)
For considerations on reducing per-packet delay, the bounced packets
are differentiated from normal packets and are limited in the number
of times to be bounced.

8. Conclusion and future work

In this paper, we proposed a reliable data transmission protocol —
PABO, for the link layer. When facing buffer saturation, PABO bounces
the excess packets to upstream switches to avoid packet loss, which
can mitigate transient congestion in network at per-flow granularity.
We complete a proof-of-concept implementation, and investigate into
the impact of PABO on the level of packet out-of-order, and then we
provide useful insights for configuring PABO. Extensive simulations
have proved the effectiveness of PABO, showing that PABO has obvious
superiority of flow completion time over the traditional protocol stack
by guaranteeing zero packet loss in all cases. The appropriate configur-
ing of PABO can vary with different network conditions. For network
operators, we provide insights on how to configure PABO under known
network conditions. However, network conditions vary greatly within
different target networks. We claim that decision-making frameworks
like reinforcement learning can be used to assist in monitoring and
predicting network dynamics in the future. After the prediction, the
predicted network dynamic results can be used to make PABO more
properly configured.
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