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Half a bee, philosophically,
must, ipso facto, half not be.
But half the bee has got to be,
vis-à-vis its entity. D’you see?

But can a bee be said to be
or not to be an entire bee,
when half the bee is not a bee,
due to some ancient injury?

Monty Python,
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Chapter 1

Introduction

Violation of the symmetry of CP was first discovered in 1964 in the decays of ‘neutral kaon’
particles by a group of particle physicists lead by V. Fitch and J. Cronin [1]. The phenomenon
of CP violation not only allows one to distinguish between matter and antimatter, but also,
as shown by A. Sakharov in 1967 [2], it is one of the essential ingredients needed to explain
the apparent abundance of matter over antimatter in the universe – one of the most puzzling
questions in modern cosmology.

Following the discovery of CP violation, in 1973 M. Kobayashi and T. Maskawa proposed an
explanation of this phenomenon [3] within the theoretical framework of the electroweak forces,
which are part of the Standard Model of particle physics [4]. The Standard Model describes the
hundreds of observed elementary particles in terms of three generations of quarks and leptons,
as well as the weak, electromagnetic, and strong interactions between them.

The phenomenon of CP violation is incorporated in the Cabibbo-Kobayashi-Maskawa
(CKM) matrix, which describes the weak interactions between the quarks. The weak inter-
actions between quarks are described by coupling constants that are functions of three real
parameters and one irreducible complex phase. The magnitude of all CP violating effects in
the Standard Model is related to this complex phase.

The measurement of the CP violating phase of the CKM matrix [3, 5] is an important
part of todays scientific program in particle physics. Certain relations between the coupling
constants of the CKM matrix can be expressed graphically as triangles in the complex plane.
One of these is referred to as ‘the Unitarity Triangle’. Violation of the CP symmetry manifests
itself as a non-zero area of the Unitarity Triangle. While it is sufficient to measure one of
the triangles’ internal angles α, β, and γ, to demonstrate the existence of CP violation, the
Unitarity Triangle needs to be overconstrained by experimental measurements in order to
demonstrate that the CKM mechanism is the correct explanation of this phenomenon. Several
theoretically clean measurements of the CKM-angle β exist [6, 7], and over the last few years
the CKM-angle α has been constrained quite successfully as well [8, 9]. However, today no
stringent measurement of the CKM-angle γ is available.

In the previous decade two particle accelerators were built to study CP violation in the
decays of a particle known as ‘the B meson’, which is an excellent probe of the Unitarity
Triangle. One of these is the BABAR experiment at the Stanford Linear Accelerator Center in
California. This accelerator provides abundant samples of B mesons, and makes it possible to
perform a direct test of Kobayashi-Maskawa model and the origin of CP violation.

A measurement of sin(2β+γ) can be obtained from the study of the time evolution of the
decays B0 → D(∗)∓π± and B0 → D∓ρ± [10]. As the CP -violating effect to be measured is

1



“thesis” — 2006/12/8 — 11:48 — page 2 — #12

Introduction

small (at the level of 2% or smaller), the measurement is quite challenging experimentally. To
extract γ from the CP -violating observables, some theoretical input parameters are needed.
These parameters can be obtained from the decay rates of B0→π−D

(∗)+
s and B0→ρ−D+

s [11].
In this dissertation, data collected by the BABAR detector have been analyzed and measure-

ments of the CP asymmetry amplitude sin(2β+γ) in the decays of B mesons are presented.
Results based on 232M BB events are presented for the time-dependent analysis of the decays
B0→D(∗)∓π± and B0→D∓ρ±. The measured CP asymmetries are converted into a constraint
on the CKM-angle γ, and, as such, provide an important test of the Standard Model.

Outline

The remainder of this thesis is divided into the following chapters. In Chapter 2 we describe
how CP violation is implemented in the Standard Model, and how B meson decays provide
access to the angles of the Unitarity Triangle. We end with a description of the time-dependent
evolution of the B0→D(∗)∓π± and B0→D(∗)∓ρ± system, and how these decays are sensitive
to the CKM-angle γ. Chapter 3 provides a brief overview of the BABAR experiment, consisting
of the e+e− PEP-II collider and the BABAR detector. In Chapter 4 we present the analysis
technique of the measurement described in this thesis, consisting of three parts: B meson
selection and reconstruction, B-flavor tagging, and the time difference measurement of two
B decays. The phenomenon of ‘tag-side interference’ is dealt with in Chapter 5. An event of
interest measured at the BABAR experiment contains two B mesons that evolve coherently in
time. As a result, CP violation in one B0 meson decay affects the time distribution of the
other, an effect we need to account for in this measurement. Chapter 6 lists the ingredients
of the fit to the time-dependent distributions of the reconstructed B samples. We present a
validation of the fit procedure in Chapter 7. The results of the time-dependent fit are found
in Chapter 8. The systematic uncertainties associated with this measurement are listed in
Chapter 9. The conversion of our measurement into the CKM-angle γ requires several external
input parameters, discussed in Chapter 10. Using these parameters, the extraction of γ is
performed in Chapter 11. We conclude in Chapter 12 with a retrospective and discuss the
prospects for the measurement of the CKM-angle γ.

2
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Chapter 2

CP violation and B physics

Measurements of time-dependent CP asymmetries in B0 decays provide information about
the irreducible phase contained in the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing
matrix [12], which describes CP violation in the Standard Model. This thesis reports mea-
surements of the CP asymmetries in B0→D(∗)∓π± and B0→D∓ρ± decays [13], as published
in Ref. [14]. We denote these decays as B→D(∗)∓h±, where h± is a charged pion or ρ me-
son. The time evolution of B→D(∗)∓h± decays is sensitive to the CP angle γ, because the
CKM-favored decay amplitude B0→D(∗)+h− and the doubly-CKM-suppressed decay ampli-
tude B0→D(∗)+h− interfere due to B0B0 mixing. The relative weak phase between these two
amplitudes is γ. With B0B0 mixing, the total weak phase difference between the interfering
amplitudes is 2β+γ.

In this Chapter we summarize all of the above in more detail, and conclude with a strategy
for the measurement of time-dependent CP asymmetries. Extensive, excellent reviews of CP
violation in general or time-dependent B decays in particular can be found in Refs. [15, 16].

2.1 CP violation in quantum field theory

Examples of discrete symmetry operators in particle physics are C, P , and T , where C stands
for charge conjugation (swapping particles for their anti-particles), P for parity reflection
(space reflection through the origin), and T for time reversal. The symmetry operators P and
C are linear and unitary in nature, while T is anti-linear and anti-unitary. Time reversal, when
applied to a field, takes the complex conjugate of any multiplicative constant or matrix.

The transformational properties of C, P , and T for the scalar fields φ(x), vector fields V (x),
and fermion fields ψ(x) can be found in Ref. [15]. When applying the CP operator, every field
is converted into its adjoint partner. Without derivation, for later comparison we give

CP ψ
′(x)γµψ(x)(CP )† = −ψ(x̃)γµψ

′(x̃)

CP ψ
′(x)γ5γµψ(x)(CP )† = −ψ(x̃)γ5γµψ

′(x̃) (2.1)
CP V µ(x)(CP )† = −V †

µ (x̃) ,

where x̃µ = xµ = (t,−~x).
Since the total Lagrangian L is required to be hermitian (like its Hamiltonian), each La-

grangian term is either self-adjoint, or contains a corresponding adjoint term. A CP transfor-

3
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mation thus converts the fields in a Lagrangian term i into those of the adjoint’s companion.

Li

CP

←−−−−−−−→ L†i
The CP symmetry is satisfied when the operator completely converts the two adjoint La-
grangian terms into each other. For a self-adjoint term this condition is obviously satisfied.
In case of two adjoint terms CP invariance depends upon the CP properties of the coupling
constants (or matrices).

From hermiticity the coupling constant of one adjoint term is the complex conjugated of
the matching other. For CP invariance, the coupling constants need to be identical, i.e. real.
Therefore, CP violation can be accommodated when complex coupling constants are present
in the Lagrangian. (Looking back at the arrow, the imaginary parts of the coupling constants
give a CP -odd transformation.)

It should be stressed that the CP symmetry can still be conserved in a theory with complex
coupling constants. Since physical observables are invariant under global phase transforma-
tions, e.g.

ψ(x) −→ eiφψ(x) ,

sometimes the phases of complex coupling constants can be absorbed through redefinitions of
the quantum fields. A theory is not invariant under CP if, even after a number of phase redef-
initions, one or more ‘irreducible’ phases still cannot be absorbed. In Section 2.3 irreducibility
is discussed for the weak interactions of the Standard Model Lagrangian.

2.2 CP violation through interference

As demonstrated in Section 2.1, irreducible complex coupling constants are necessary for CP
violation to occur. At the quantum level there are other requirements as well.

Let |a〉 be an initial state decaying to final state |b〉. The corresponding CP -conjugated
states, i.e. (sets of) anti-particles, are defined as |ā〉 and |b̄〉. The decay amplitude A = 〈b̄|H|ā〉
is related to A = 〈b|H|a〉 through the CP operation, or, effectively, by swapping each com-
plex coupling constant in A with its conjugated counterpart. Irreducible complex coupling
constants, when involved in particle interactions, thus lead to CP -odd phases in transition
amplitudes. Several decay amplitudes Ai = |Ai| exp (iϕi) may contribute to A. Each phase
ϕi = φi + δi consists of the CP -odd phase φi, induced by irreducible complex coupling con-
stants, and a CP -even phase δi, e.g. generated by final state interactions or finite decay widths.
One has Ai = |Ai| exp i(−φi + δi).

In case of only one decay amplitude A1 (or several amplitudes with identical CP -odd or
identical CP -even phases), the decay rates |A(a → b)|2 and |A(ā → b̄)|2 are equal, and no
CP violation occurs. For two decay amplitudes, A1 and A2, CP violation can happen. Define
∆δ = δ1 − δ2 and ∆φ = φ1 − φ2. One has

|A|2 = |A1 +A2|2

= |A1|2 + |A2|2 + 2Re(A∗2A1)
= |A1|2 + |A2|2 + 2|A1A2| cos(∆φ+ ∆δ) , and

|A|2 = |A1|2 + |A2|2 + 2|A1A2| cos(∆φ−∆δ) . (2.2)

Clearly, the decay rates |A(a→b)|2 and |A(ā→ b̄)|2 are different when

4
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1. φ1 6= φ2 , and

2. δ1 6= δ2 .

In conclusion, apart from a) the presence of one or more irreducible complex coupling
constants, CP violation generally requires: b) interference of two or more transition amplitudes,
c) with different CP -odd and CP -even phases.

2.3 CP violation in weak interactions

In the Standard Model, CP violation is accommodated in the weak quark currents, i.e. in
the interactions between charged W vector bosons and quarks1. W bosons have the ability to
mix different quark generations. Let us arrange the charge 2

3 and the charge −1
3 quarks into

up-type and down-type multiplets

U =

 u
c
t

 ; D =

 d
s
b

 . (2.3)

The charged weak current interactions can then be written as

g√
2

(ULγ
µ VCKM DLW

−
µ +DLγ

µ V †
CKM ULW

+
µ ), (2.4)

where W are the vector bosons. VCKM is the unitary Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix of the three quark generations. Note that in Eq. (2.1) the fields of the two terms
get transformed into each other under the CP operation.

To show that the CKM mixing matrix contains an irreducible phase, we start with the
quark mass terms of the Standard Model Lagrangian, which are given by

−(UMUU +DMDD ) . (2.5)

Using the quark mass eigenstates, by definition the mass matrices MU and MD are diagonal
and real. As the quark weak eigenstates, interacting with the W boson in Eq. (2.4), are not
necessarily equal to the mass eigenstates, VCKM is non-trivial.

The CKM mixing matrix is written as

VCKM =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (2.6)

Each matrix element Vqiqj symbolizes the flavor-changing weak coupling between the quarks
qi and qj .

There are 2n quark fields for n families of quarks. A unitary n×n matrix has a total of n2

independent parameters. From orthogonality, n(n−1)/2 of these are real angles, and n(n+1)/2
are complex phases. Given that all up-type and down-type quark masses are different, one can

1In the Standard Model, CP violation is also likely to occur in neutrino mixing, but this has not yet been
measured. There is a possible source of CP violation in the strong interactions as well, known as ‘the strong CP
problem’. This form of CP violation is not seen, however, and, if it exists at all, must be highly suppressed. See
Ref. [15] for a discussion.

5
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remove (2n − 1) of these phases by redefining the relative phases of the quark fields. From
Eq. (2.5), this does not affect the real diagonal mass matrices MQ. That leaves (n−1)(n−2)/2
complex phases. As a result, for n ≥ 3 irreducible complex phases can be accomodated.

With three quark generations this allows for three real angles and one complex phase in
the weak couplings. In the ‘standard’ parametrization [17], VCKM is written as

VCKM =

 c12c13 s12c13 s13 e
−iδKM

−s12c23 − c12s23s13 e
iδKM c12c23 − s12s23s13 e

iδKM s23c13
s12s23 − c12c23s13 e

iδKM −c12s23 − s12c23s13 e
iδKM c23c13

 , (2.7)

with cij = cos θij and sij = sin θij , and the angles θ12, θ23, θ13 relate to the amount of mix-
ing between generations i and j. The complex phase in the CKM mixing matrix is called
the Kobayashi-Maskawa phase, δKM . Eight conditions must be satisfied for δKM to be irre-
ducible [18], i.e. for having CP violation in the weak quark interactions. These are

δKM 6= 0, π , θij 6= 0, π/2 , for i 6= j ∈ {1, 2, 3} . (2.8)

Unless a specific representation is adopted for VCKM , the CP -violating weak phase may
appear in any of the elements Vqiqj . As such, by default Vqiqj is treated as complex.

Using Eq. (2.2), one can construct a measure of the ‘CP non-conservation’ of the weak
interactions [18]. At least two weak amplitudes with different phases are required for CP
violation. In case of quark-W interactions, the simplest case to consider is a transition involving
four different quarks: two up-type quarks denoted by i and k, and two down-type quarks
denoted by j and l. Define the transition amplitude as

A = (VijVkl)A1 e
iδ1 + (VilVkj)A2 e

iδ2 , (2.9)

where A1,2 are real, and ∆δ = δ1 − δ2 is the CP -even phase from final state interactions. The
amplitude of the CP -conjugate process is

A = (VijVkl)∗A1 e
iδ1 + (VilVkj)∗A2 e

iδ2 , (2.10)

The CP asymmetry is then given by

ACP ≡ |A|2 − |A|2

|A|2 + |A|2

=
2 Im(VijVklV

∗
kjV

∗
il ) sin(∆δ)A1A2

|VijVkl|2A2
1 + |VkjVil|2A2

2 + 2Re(VijVklV
∗
kjV

∗
il ) cos(∆δ)A1A2

. (2.11)

Thus, CP violation in weak decays is proportional to the Jacobian J , defined as

J = Im(VijVklV
∗
ilV

∗
kj) . (2.12)

It can be shown that the measure is phase-convention independent, and, because of unitarity,
independent of the quarks involved [18]. (The constraints in Eq. (2.8) are equivalent to imposing
J 6= 0.)

In summary – ignoring possible contributions from new physics – all CP -violating weak
interaction processes involving quarks, be it kaon or B meson decays, probe the same source
of CP violation. Any such CP -violating process necessarily involves mixing between the quark
generations.

We discuss the unitarity of the CKM mixing matrix in Section 2.4.

6
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2.4 The Unitarity Triangle

From experimental knowledge of the weak hadron interactions, and assuming unitarity and
three generations [17], the current 90% confidence limits on the CKM matrix elements are

|VCKM | =

 0.9739–0.9751 0.221–0.227 0.0029–0.0045
0.221–0.227 0.9730–0.9744 0.039–0.044
0.0048–0.014 0.037–0.043 0.9990–0.9992

 . (2.13)

The structure of VCKM is found to be nearly diagonal, with only small off-diagonal elements
(getting smaller for higher generations), meaning that generation mixing is generally sup-
pressed – a phenomenon called Cabibbo suppression. For this reason, VCKM is written in the
Wolfenstein parametrization [19], which is an expansion in terms of λ = |Vus| = 0.22

VCKM =

 1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 +O(λ4) , (2.14)

where A, ρ, and η are real numbers of order unity.
As explained in Section 2.3, any CP -violating process involves mixing between the three

quark generations, and therefore requires off-diagonal elements. Because of the smallness of
the off-diagonal elements, experimentally CP violation turns out to be very small. In terms of
the Wolfenstein parametrization, Vtd or Vub is required, both suppressed at the level of λ3.

The unitarity of VCKM implies nine constraints on its matrix elements. A review of these
can be found in Ref. [20]. Six of them are orthogonality conditions, and require the sum of
three complex terms to be zero. Graphically, they can be expressed as triangles in the complex
plane – called ‘unitarity triangles’. Three of the triangles, defined as

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = 0 , (2.15)

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0 , (2.16)

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 , (2.17)

are shown in Fig. 2.1.
All unitarity triangles have the same surface area |J |/2, as defined in Eq. (2.12), with

|J | = (3.05± 0.18)× 10−5 [21] . (2.18)

As demonstrated in Section 2.3, CP violation in weak hadron decays is proportional to the
Jacobian J . Therefore, the non-zero area of the triangles generally represents the CP violation
of the weak interactions.

Specifically, the magnitude of CP -violating observables in B meson decays is a function
of angles of the unitarity triangles. The squashed triangles in Figs. 2.1a,b cannot be resolved
without high experimental precision. The third triangle, however, illustrated in Fig. 2.1c, has
large angles (away from zero and not close to π/2 or π), resulting in large CP -violating effects.
Eq. (2.17) is commonly referred to as ‘The Unitarity Triangle’.

The Unitarity Triangle relates directly to CP violation in B decays (each term in Eq. (2.17)
has a b in it), which is the topic of the remainder of this Chapter. Fig. 2.2 shows the rescaled

7
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(c)

(b)

(a)

Figure 2.1: The unitarity triangles defined by: a) Eq. (2.15), b) Eq. (2.16), and c)
Eq. (2.17). All triangles use the same scale and have identical surface ar-
eas.

V Vtd tb
*

V Vcd cb
*V Vud tb

*

V Vcd cb
*

η

γ β

α

0 1ρ

Figure 2.2: Rescaled Unitarity Triangle, with all sides divided by V ∗
cbVcd.

Unitary Triangle, with each term of Eq. (2.17) divided by VcdV
∗
cb. The two bottom corners are

fixed at (0, 0) and (1, 0), and the apex lies at (ρ̄, η̄), with

ρ̄ = ρ(1− λ2/2) , η̄ = η(1− λ2/2) . (2.19)

Both expressions are valid up to O(λ6) compared with their exact expressions [22] .
The three CP angles α, β, γ in Fig. 2.2 are defined by

α ≡ arg
[
−
VtdV

∗
tb

VudV
∗
ub

]
, β ≡ arg

[
−
VcdV

∗
cb

VtdV
∗
tb

]
, γ ≡ arg

[
−
VudV

∗
ub

VcdV
∗
cb

]
. (2.20)

The angles are related through α+β+γ = π. The expressions are phase invariant, since every
index appears twice: either once in V and once in V ∗, or once in the numerator and once in
the denominator.

Knowledge of the length of the sides of the Unitarity Triangle gives an indirect determi-
nation of the angles. The angles can also be measured directly through the observation of CP
violation in certain B decay channels. The consistency of the (in-)dependent measurements
provides an important test of the Standard Model.

The current constraints on the position of apex of the Unitarity Triangle from indirect and
direct measurements of α, β, γ are shown in Fig. 2.3. The indirect and direct measurements of

8
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α, β, and γ are summarized in Table 2.1 [21]. The two sets agree well. The indirect constraints
come from measurements of the oscillation frequencies in Bd and Bs mesons (∆md and ∆ms),
the ratio |Vub/Vcb|, and the CP violation fraction in kaons (εK). The direct measurement of β
is known best, and comes from the decays B→ J/ψKS . The angle α is (mostly) determined
using the decays B→ρ+ρ−. The angle γ is measured with the decays B+→D(∗)0K(∗)+, and
B→D(∗)∓π± and B→D∓ρ±. More about the direct angle measurements in Section 2.5.5.

The numbers in Table 2.1 make clear that γ is by far the least well-known CP angle, as
determined from direct measurements. The direct constraint on the position of the apex of the
Unitarity Triangle comes mostly from the measurements of β and α. A precise measurement
of γ would thus help squeeze the uncertainty of the apex along the ρ̄ axis. This thesis focuses
on the direct measurement of γ using the decays B→D(∗)∓π± and B→D∓ρ± – the theory of
which is discussed in the following Sections.

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

∆md

∆ms
 & ∆md

εK

εK

|Vub/Vcb|

α

βγ

ρ

η

excluded area has CL > 0.95

C K M
f i t t e r

FPCP 06

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2

sin 2β

sol. w/ cos 2β < 0
(excl. at CL > 0.95)

excluded at C
L  >  0.95

γ

γ

α

α

sin 2β

sol. w/ cos 2β < 0
(excl. at CL > 0.95)

excluded at C
L  >  0.95

α

βγ

ρ

η

excluded area has CL > 0.95

C K M
f i t t e r

FPCP 06

Figure 2.3: Existing constraints on the Unitarity Triangle from (left) indirect measure-
ments and (right) direct CP -angle measurements [21].

CP angle Indirect measurements (◦) Direct measurements (◦)

β 24.4+2.6
−1.5 21.7+1.3

−1.2

α 97+5
−16 100+15

−9

γ 60+5
−4 71+22

−30

Table 2.1: Current indirect and direct measurements of the CP angles α, β, and γ [21].
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2.5 CP violation in B decays

Decays of B mesons can provide theoretically clean information about the angles of the Uni-
tarity Triangle. A B0 meson has a definite quark composition [13], and consists of a b quark
and a d̄ anti-quark. The B0 meson has the isospin partner B−, containing a b and ū quark.
The b quark was first discovered in 1977 in the decays of the bound state Υ (1S) ≡ (bb̄) [23].
The average lifetime of hadrons containing a b quark was first measured in 1983 [24]. The
properties B0 and B+ mesons have been summarized in Table 2.2. (Other B mesons exist,
such as B0

s (bs̄) and B−
c (bc̄), but these are not accessible by the BABAR experiment because

they are too heavy.)

Meson Composition Mass ( MeV/c2) Lifetime ( ps) Spin

B0 b̄d 5279.4± 0.5 1.542± 0.016 0
B+ b̄u 5279.0± 0.5 1.674± 0.018 0

Table 2.2: Properties of B mesons.

In the following Sections the discussion is limited to the B0 mesons. Weak interactions
permit a phenomenon called ‘B0B0 oscillation’, which allows a B0 to become B0 (and vice
versa). Given a final state |f〉 accessible to both B0 and B0 decays, B0B0 oscillation thus
provides two interfering amplitudes, which can lead to CP violation under the right conditions.
We discuss how this feature is exploited to determine the CP angle γ.

2.5.1 B0B0 oscillation

The flavor eigenstates |B0〉 and |B0〉, produced in quark-level strong interactions, are not
eigenstates of the weak interactions. Second-order weak interactions allow a B0 meson to
become a B0, as shown in Fig. 2.4. This process is called B0B0 oscillation, and was first
observed in 1987 [26, 27]. The eigenstates of the Hamiltonian, with definite mass and lifetime,
are mixtures of the flavor eigenstates.

Figure 2.4: Box diagrams inducing B0B0 oscillation.

In the Wigner-Weisskopf approximation [25], the time evolution and decay of the B0 meson
system is written in terms of only the flavor eigenstates, i.e.

|ψ(t)〉 ≡ a(t)|B0〉+ b(t)|B0〉 . (2.21)

10
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The wave function ψ(t) evolves according to the Schrödinger equation

i
d

dt

(
a
b

)
= H

(
a
b

)
≡ (M− i

2
Γ)

(
a
b

)
. (2.22)

where the mass and lifetime matrices M and Γ are Hermitian. CPT invariance guarantees
H11 = H22. The matrices can be computed from the weak Hamiltonian HW in second-order
perturbation theory as

Mij = mBδij + 〈i|H∆B=2
W |j〉+

∑
n

1
mB − En

〈i|H∆B=1
W |n〉〈n|H∆B=1

W |j〉 ,

Γij = 2π
∑

n

δ(En −mB)〈i|H∆B=1
W |n〉〈n|H∆B=1

W |j〉 .

Physical states (on-shell), to which both B0 and B0 decay, contribute to Γ, whereas virtual
(off-shell) intermediate states contribute to M. The off-diagonal amplitudes Mij and Γij are
called dispersive and absorptive, respectively.

The mass eigenstates of the Hamiltonian

|BL〉 = p|B0〉+ q|B̄0〉 , (2.23)
|BH〉 = p|B0〉 − q|B̄0〉 , (2.24)

have the complex eigenvalues

M − i

2
Γ±

√
H12H21 , (2.25)

with Γ ≡ Γ11 ≡ Γ22 and M ≡ M11 ≡ M22. The mass and lifetime difference between the
‘heavy’ and ‘light’ eigenstates are

∆md −
i

2
∆Γ = (mH −mL)− i

2
(ΓH − ΓL) = 2

√
H12H21 , (2.26)

where (mH ,mL) and (Γ−1
H ,Γ−1

L ) are the masses and lifetimes of the heavy and light states.
The ratio q/p is expressed as

q

p
=

√
M∗

12 − i
2Γ∗12

M12 − i
2Γ12

. (2.27)

The lifetime difference ∆Γ is sensitive to Γ12, which is produced by decay channels common
to B0 and B0, e.g. B→DD̄. Typically, these decay modes are CKM-suppressed, with branching
fractions at the level O(10−3) or below. More precisely, the Standard Model predicts |q/p|−1 =
(2.5− 6.5)× 10−4 [16, 28]. For this reason ∆Γ is assumed to be negligible [16], and we assume
|q/p| ' 1. On the other hand, the mass difference ∆md is well-known to be [17]

∆md = 0.502± 0.007 ps−1 . (2.28)

In conclusion, the two mass eigenstates have virtually equal lifetimes but noticeably different
masses. This implies that Eqs. (2.26, 2.27) can be simplified to

∆md = 2|M12|, q/p = −|M12|/M12. (2.29)

11
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In terms of the CKM elements, q/p is given by

q

p
=
V ∗

tbVtd

VtbV
∗
td

= e−i2β , (2.30)

where β is the angle from the Unitarity Triangle in Eq. (2.20). Accordingly, β is also called the
B0 mixing phase. The significance of the magnitude |q/p| is further discussed in Section 2.5.4.

Any state |B〉 can now be written as a linear combination of the states |BL〉 and |BH〉,
whose coefficients evolve in time as

aH(t) = aH(0)e−iMHe−
1
2
ΓH t , aL(t) = aL(0)e−iMLe−

1
2
ΓLt , (2.31)

It can be easily shown that the evolution of a pure |B0〉 or |B0〉 state at t = 0 is then given
by

|B0
phys(t)〉 = g+(t)|B0〉+ (q/p)g−(t)|B0〉, (2.32)

|B̄0
phys(t)〉 = (p/q)g−(t)|B0〉+ g+(t)|B0〉, (2.33)

where
g+(t) = e−iMte−Γt/2 cos(∆md t/2), (2.34)

g−(t) = e−iMte−Γt/2i sin(∆md t/2), (2.35)

and we have applied ∆Γ = 0, Γ = 1/τB0 , M = 1
2(MH + ML). Eqs. (2.32, 2.33) demonstrate

that the probability of a B0 to become a B0 oscillates as a function of time and depends on
the mass difference ∆md.

We study the time-evolution of the B0B0 system in more detail in the following Section.

2.5.2 Time-evolution of coherent B0B0 states

At the BABAR experiment, B meson pairs are produced through the process e+e− → Υ (4S)→
BB. To good approximation, equal amounts of B+B− and B0B0 pairs are produced in the
Υ (4S) decay.

A pair of neutral B mesons is produced coherently in a P -wave state. The time evolution
of |B0

physB̄
0
phys〉 is described as

|B0
physB̄

0
phys; tf , tb〉 =

{
|B0

phys(tf )〉|B̄0
phys(tb)〉 − |B̄0

phys(tf )〉|B0
phys(tb)〉

}
/
√

2 . (2.36)

In the Υ (4S) frame the two B’s have equal, back-to-back momenta. The forward and backward
moving B mesons have the proper times tf and tb. Until one meson decays, necessarily at
tf = tb, Eq. (2.36) contains one B0 and one B0. Bose-Einstein statistics requires the total
wave function to be symmetric; the relative minus sign between the terms reflects the anti-
symmetry of the P -wave state.

We insert Eqs. (2.32–2.35) into Eq. (2.36) and introduce

Ai ≡ 〈fi|HW |B0〉 , Ai ≡ 〈fi|HW |B0〉 . (2.37)
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For the amplitude of the process where one B decays to final state f1 at time t1 and the other
to f2 at time t2 we derive

A(t1, t2) =
{
〈f1|HW |B0

phys(t1)〉〈f2|HW |B̄0
phys(t2)〉 − 〈f1|HW |B̄0

phys(t1)〉〈f2|HW |B0
phys(t2)〉

}
/
√

2

=
1√
2
e−(Γ/2+iM)(t1+t2)

{
cos[∆md(t1−t2)](A1A2 −A1A2)

−i sin[∆md(t1−t2)](
p

q
A1A2 −

q

p
A1A2)

}
. (2.38)

The time-dependent rate F for producing the combined final states f1 and f2 is then

F (T,∆t) = Ce−Γ T
{

(|A1|2+|A1|2)(|A2|2+|A2|2)− 4Re(q
p
A∗1A1)Re(

q

p
A∗2A2) (2.39)

− cos(∆md∆t)[(|A1|2−|A1|2)(|A2|2−|A2|2) + 4 Im(
q

p
A∗1A1) Im(

q

p
A∗2A2)]

+ sin(∆md∆t)[Im(
q

p
A∗1A1) (|A2|2 − |A2|2)− (|A1|2 − |A1|2) Im(

q

p
A∗2A2)]

}
,

where C is a normalization constant, and we have substituted T = t1+t2 and ∆t = t1−t2.
The above expression can be integrated over the experimentally unobservable variable T ,

which for t1 ≥ 0 and t2 ≥ 0 takes values between |∆t| and ∞. In Eq. (2.39) this changes the
normalization, and converts exp(−ΓT ) into exp(−Γ|∆t|). In the following text, T is ignored
altogether.

The coherent production of B0B0 leads to two important features, which are exploited
experimentally in the following Chapters.

1. As a consequence of the coherent production of the two B states, one can fit the de-
pendence on ∆t without having to measure the Υ (4S) decay time. Experimentally, the
variable ∆t can be related directly to the distance between the two B decay vertices.

2. At the time of decay of one of the B mesons, say as a B0, quantum coherence forces
the other meson to be a B0. There are final states that directly identify the flavor of
its parent B, called flavor eigenstates or ‘tagging decays’. (In terms of Eq. (2.37), Af or
Af = 0; examples of tagging decays are B0→D∗−l+ν.) Owing to quantum coherence,
at ∆t=0 the flavor eigenstate of one B can thus be inferred from the flavor of the other
– an experimental process called ‘tagging’. So, if one of the B’s produced by the Υ (4S)
decays to a flavor eigenstate, and can be tagged as such, at that time (∆t=0) the other
B is identified to have the opposite flavor. This argument is valid regardless of the order
of two B decays.

2.5.3 Two popular examples

This Section demonstrates two important applications of Eq. (2.39), common in the time-
dependent studies of B decays. Both cases uses |q/p| = 1.

Flavor eigenstates
First, we discuss decays to flavor eigenstates, for which the final state identifies the flavor

of the parent B. Examples are B0 → D∗−l+ν. One B meson produced in the Υ (4S) decay
is (fully) reconstructed in a flavor eigenstate (Brec). The flavor of the other meson (Btag) is
determined inclusively from its decay products.

Such events can be divided into two categories

13
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� Unmixed events: Brec and Btag have different flavors, i.e. one B0 and one B0. The
unmixed amplitudes to be inserted into Eq. (2.39) are{

A1 = Ar A2 = 0
A1 = 0 A2 = At

}
and

{
A1 = 0 A2 = At

A1 = Ar A2 = 0

}
,

where Brec is either a B0 or a B0.

� Mixed events: Brec and Btag have the same flavor, i.e. a B0B0 or B0B0 pair. The mixed
amplitudes for Eq. (2.39) are{

A1 = Ar A2 = At

A1 = 0 A2 = 0

}
and

{
A1 = 0 A2 = 0
A1 = Ar A2 = At

}
.

The time-dependent rates for unmixed and mixed events are then

Funmix(∆t) ∝ e−Γ|∆t| (1 + cos (∆md∆t)) , (2.40)
Fmix(∆t) ∝ e−Γ|∆t| (1− cos (∆md∆t)) . (2.41)

A measurement of the B0B0 oscillation frequency ∆md can be extracted from the mixing
asymmetry

Amix(∆t) =
Funmix(∆t)− Fmix(∆t)
Funmix(∆t) + Fmix(∆t)

= cos (∆md∆t) . (2.42)

Fig. 2.5 shows the ∆t distributions of real unmixed and mixed events (including background
events and resolution effects), together with the corresponding mixing asymmetry. The B0B0

oscillation pattern is clearly visible. From Eq. (2.28), the mixing frequency is about 80 GHz.

CP eigenstates
Second, we discuss B decays to CP eigenstates. These events are used to measure CP

violation. Here, Brec is fully reconstructed in a CP eigenstate, fCP , accessible to both B0 and
B0. A classic example is B→J/ψKS, L. Again, at ∆t=0 the flavor of Brec is inferred from the
decay products of Btag.

Define the decay amplitudes

AfCP
= 〈fCP |H|B0〉, AfCP

= 〈fCP |H|B0〉 . (2.43)

Btag is either a B0 or a B0, so the amplitudes inserted into Eq. (2.39) are{
A1 = AfCP

A2 = At

A1 = AfCP
A2 = 0

}
and

{
A1 = AfCP

A2 = 0
A1 = AfCP

A2 = At

}
.

The time-dependent probabilities are then

F (Btag = B0,∆t) ∝ e−Γ|∆t|
{

1 +
1− |λfCP

|2

1 + |λfCP
|2

cos(∆md∆t)

−
2=mλfCP

1 + |λfCP
|2

sin(∆md∆t)
}

(2.44)

F (Btag = B0,∆t) ∝ e−Γ|∆t|
{

1−
1− |λfCP

|2

1 + |λfCP
|2

cos(∆md∆t)

+
2=mλfCP

1 + |λfCP
|2

sin(∆md∆t)
}

(2.45)

14
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Figure 2.5: Time evolution of: a) unmixed events, b) mixed events, and c) Amix(∆t)
for di-lepton events measured at the BABAR experiment [29]. Likelihood fit
projections are superimposed.

using

λfCP
≡ q

p

AfCP

AfCP

= ηfCP

q

p

Af̄CP

AfCP

. (2.46)

The second form of λfCP
employs

ĀfCP
= ηfCP

Af̄CP
, (2.47)

where ηfCP
is the CP eigenvalue of fCP , and Af̄CP

= 〈f̄CP |H|B0〉.
The time-dependent CP asymmetry is defined as

ACP (∆t) =
FBtag=B0 − FBtag=B0

FBtag=B0 + FBtag=B0

=
1− |λfCP

|2

1 + |λfCP
|2

cos (∆md∆t)−
2=mλfCP

1 + |λfCP
|2

sin (∆md∆t) .

(2.48)
The amplitudes of the sine and cosine terms relate to different types of CP violation, as
discussed in the following Section.

Using Eqs. (2.30, 2.46), for B→J/ψKS, L one has to good approximation [30]

λfCP
= ηfCP

e−2iβ ⇒ |λfCP
| = 1, ImλfCP

= −ηfCP
sin2β , (2.49)

giving the asymmetry

ACP = −ηfCP
sin2β sin (∆md∆t) . (2.50)
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The amplitude of the time-dependent asymmetry is the key to the CP angle β. In a time-
integrated analysis the sine term vanishes. Therefore, in coherent B0B0 production, the CP
asymmetry can only be determined with an analysis of the ∆t distributions.

The ∆t distributions and asymmetries between B0 tags and B0 tags for the samples B→
J/ψKS (ηf =−1) and B→ J/ψKL (ηf = +1) [6] are shown in Fig. 2.6. The time-dependent
CP asymmetries are clearly visible. The world average value is measured to be [31]

sin 2β = 0.687± 0.032 . (2.51)
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Figure 2.6: a) Reconstructed ηf = −1 candidates (mostly J/ψK0
S) with a B0 tag and

with a B0 tag, and b) the CP asymmetry as functions of ∆t. Figs. c) and d)
are the corresponding plots for the ηf = +1 mode J/ψK0

L. The solid (dashed)
curves represent the fit projections in ∆t for B0 (B0) tags. The shaded regions
represent background contributions.

2.5.4 Three types of CP violation in B decays

CP violation in the B system is generally classified into three categories. Each type of CP vio-
lation works along the principles laid out in Section 2.2, with two interfering decay amplitudes
having different weak and strong phases.

16



“thesis” — 2006/12/8 — 11:48 — page 17 — #27

2.5 CP violation in B decays

Direct CP violation
Also known as ‘CP violation in decay’, this type of CP violation occurs in both neutral

and charged B meson decays. B0B0 mixing is not involved. Given the processes B→ f and
B→ f̄ , with decay amplitudes Af and Af̄ , direct CP violation follows when∣∣∣∣∣Af̄

Af

∣∣∣∣∣ 6= 1 , (2.52)

giving the CP asymmetry

ACP =
1− |Af̄/Af |2

1 + |Af̄/Af |2
6=0 . (2.53)

Like in Section 2.2, Af and Af̄ consist of two (or more) decay paths having different weak and
strong phases.

From Eq. (2.48) it is inferred that a non-zero coefficient in front of the cosine mixing term
is a sign of direct CP violation.
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Figure 2.7: a) B mass distribution of B0→K+π− (solid histogram) and B0→K−π+

(dashed histogram). b) CP asymmetry calculated for ranges of mES.

Direct CP violation has been observed in the processes B0 → K+π− and B0 → K−π+ ,
as shown in Fig. 2.7 [32]. There is a clear non-zero CP asymmetry in B signal window of
mES>5.27 GeV/c2. For this decay channel ACP = −10.8± 1.7% [31].

CP violation in mixing
From Eqs. (2.32) and (2.33)

|〈B0|B0
phys(t)〉|2 =

∣∣∣∣qp
∣∣∣∣2 |g−(t)|2 ,

|〈B0|B0
phys(t)〉|2 =

∣∣∣∣pq
∣∣∣∣2 |g−(t)|2 , (2.54)
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and it follows that the oscillation probabilities of B0→B0 and B0→B0 are different when
|q/p| 6= 1.

CP Violation in mixing is studied in semi-leptonic B0 decays by measuring the asymmetry

ASL =
Γ(B0

phys(t)→ `−ν`X)− Γ(B0
phys(t)→ `+ν`X)

Γ(B0
phys(t)→ `−ν`X) + Γ(B0

phys(t)→ `+ν`X)
=

1− |q/p|4

1 + |q/p|4
(2.55)

The CP asymmetry is expected to be small, at the order of O(10−2), and to date has not been
observed.

In Eq. (2.46), CP violation in mixing generally implies |λf | 6= 1, and again the cosine term
in Eq. (2.48) is non-vanishing.

CP violation in interference between mixing and decay
Consider the final state f , accessible by both B0 and B0 decays. The third type of CP

violation employs B0B0 mixing to interfere the decay paths B0→f and B0→B0→f . This is
illustrated in Fig. 2.8. In path a) a B0 decays directly to state f , with amplitude Af . In path
b) the B0 first mixes to a B0, at which point it acquires the weak phase of q/p, and from there
on decays to f , with amplitude Af . The analog paths for B0→ f̄ are shown in Figs. c) and d).

B0

B0 B0

B0

fA

A

Af

f

f

a)

b)

Af
c)

d)

f

arg(q/p) arg(p/q)

Figure 2.8: The B0 meson can decay a) directly to final state f , or b) first oscillate to a
B0 and then decay to the same final state. For B0 mesons the analog paths
are shown in c) and d).

For f being a CP eigenstate, the interference between mixing and decay has been worked
out in Section 2.5.3. In B→ J/ψKS , for example, the weak phase difference between decay
paths a) and b) comes solely from q/p, acquired in theB0B0 oscillation. Generally, an additional
weak and strong phase difference can be induced by Af over Af . Due to the fact that, in
Eqs. (2.34) and (2.35), g+(t) is real whereas g−(t) is purely imaginary, a CP -even phase of π/2
is picked up.

The case of non-CP eigenstates is similar, and is shown in Section 2.6. Like in Eq. (2.48),
CP violation shows up as a sine (but not a cosine) mixing term in the time evolution of B0

and B0 decays.

2.5.5 Measurements of α, β, γ using B decays

In this Section we discuss briefly how the CKM angles α, β, and γ can be obtained through
the measurements of CP asymmetries in various B decay channels. A detailed discussion falls
outside the scope of this thesis, and can be found in Refs. [16, 15].

In terms of the Wolfenstein parametrization, introduced in Eq. (2.14), the complex CKM
phase is found in Vtd and Vub. As a rule of thumb only Vtd and Vub acquire a non-zero complex

18
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phase

Vtd = |Vtd|e−iβ, Vub = |Vub|e−iγ , (2.56)

and all other CKM couplings do not have complex phases, i.e. Vcb = |Vcb|

1. Angle β. In Section 2.5.3 it is shown that sin 2β is measured using B → J/ψKS, L.
The direct decays of B0→ J/ψKS, L and B0→ J/ψKS, L both involve b̄→ c̄ and b→ c
transitions, which do not generate CKM phases. The phase 2β comes from B0B0 mixing,
due to the t̄→ d̄ and t→d transitions required.

2. Angle γ. As can be seen from Eq. (2.56), γ is obtained through the interference of
a b→ c and b→ u quark transition. Vcb does not carry the CKM phase, whereas Vub

induces the weak phase γ. Example decays are B0→ D̄0K+, decaying through a b→ c
transition, and B0→D0K+, through a b→u transition, where D̄0 and D0 must decay
to same final state. In the next Section we study the interference of B0→D∗−π+ and
B0→B0→D∗−π+, inducing the weak phase 2β+γ.

3. Angle α. The weak phase α is the relative phase between Vub and Vtd. In the Wolfenstein
parametrization α cannot be generated through a direct b transition. Instead, one uses
the unitarity relation sin 2α = − sin(2β + 2γ). Therefore, α can only be studied using
neutral B decays. Again, 2β is picked up through B0B0 oscillation. The phase difference
2γ requires a b→u over b̄→ ū transition. Example decays are B→ρ+ρ− or B→π+π−.

4. New physics. A popular place to look for new physics contributions is in b→ s tran-
sitions. b→ s has no tree level coupling in the Standard Model, and can only happen
through suppressed loop diagrams. Loop diagrams are a natural place for new physics
effects to show up in low energy phenomena. Popular decay channels are B→φKS and
B→η′KS .

2.6 The CKM-angle γ from B0→D(∗)∓π± and B0→D∓ρ± decays

This thesis reports measurements of the CP asymmetries in B0→D(∗)∓π± and B0→D∓ρ±

decays [14]. We denote these decays as B0→D(∗)±h∓, where h∓ is a charged pion or ρ meson.
In this Section we discuss how the angle 2β+γ is obtained from the time-dependent distributions
of B0→D(∗)∓h± [10].

Even though they are not CP eigenstates, the (six) final states D(∗)+h− and D(∗)−h+ are
accessible in both B0 and B0 decays. The leading Feynman diagrams of B→D+π− are shown
in Fig 2.9. There are no known penguin contributions, as can be inferred from the quark
configuration of the final state. Because the Standard Model contributions are tree diagrams,
it is unlikely that large new physics effects would be present.

In the following text we adopt the notation of Ref. [14]. Consider a B0B0 pair produced
at the Υ (4S) resonance. Again, one B is inferred to be a flavor eigenstate (Btag), say using
B0→D∗−l+ν or B0→D∗+l−ν̄, and the other is fully reconstructed (Brec) in the final state
D(∗)+h− or D(∗)−h+. From Eq. (2.39), the proper-time distributions of B→D(∗)±h∓ decays
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Figure 2.9: The CKM-favored amplitude (left) and doubly-CKM-suppressed amplitude
(right) for the final state D+π−.

are

F (B0(∆t)→D(∗)−h+) = Ne−|∆t|/τB0
(
1 + C cos (∆md∆t) + (−1)LS+ sin (∆md∆t)

)
,

F (B0(∆t)→D(∗)−h+) = Ne−|∆t|/τB0
(
1− C cos (∆md∆t)− (−1)LS+ sin (∆md∆t)

)
,

F (B0(∆t)→D(∗)+h−) = Ne−|∆t|/τB0
(
1 + C cos (∆md∆t)− (−1)LS− sin (∆md∆t)

)
,

F (B0(∆t)→D(∗)+h−) = Ne−|∆t|/τB0
(
1− C cos (∆md∆t) + (−1)LS− sin (∆md∆t)

)
,(2.57)

where we neglect the decay width difference, and τB0 = 1/Γ is the B0 lifetime. The angular
momentum of the decay is indicated with L. The cosine and sine terms are from interference
between direct decay and decay after one or several B0B0 oscillations. The S and C parameters
are expressed as

S± = −2Im(λ±)
1 + |λ±|2

, and C =
1− r2±
1 + r2±

, (2.58)

with r+ ≡ |λ+|, r− ≡ 1/|λ−|, and

λ± ≡ λ[D(∗)∓h±] ≡ q

p

A(B0→D(∗)∓h±)
A(B0→D(∗)∓h±)

. (2.59)

Note that λ± depends on the choice of final state.
Assuming no CP violation in mixing (|q/p|= 1), as expected in the Standard Model, to

good approximation q/p is given by Eq. (2.30)

q

p
=
V ∗

tbVtd

VtbV
∗
td

= e−i2β .

For the final state D+π−, with help of Fig. 2.9 the ratio Af/Af is deduced as

A(B0→D+π−)
A(B0→D+π−)

=
VcbV

∗
ud

VcdV
∗
ub

M(B0→D+π−)
M(B0→D+π−)

, (2.60)

where M(B0→D+π−) and M(B0→D+π−) are hadronic decay amplitudes induced by strong
interactions.
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The combination of Eqs. (2.30) and (2.60) and the angle definitions in Eq. (2.20) leads to

λ− = λ[D+π−] = e−i(2β+γ)

∣∣∣∣VcbV
∗
ud

VcdV
∗
ub

∣∣∣∣ M(B0→D+π−)
M(B0→D+π−)

. (2.61)

Extracting the strong phases results in

λ[D+π−] = e−i(2β+γ−δDπ)

∣∣∣∣VcbV
∗
ud

VcdV
∗
ub

∣∣∣∣∣∣∣∣M(B0→D+π−)
M(B0→D+π−)

∣∣∣∣, (2.62)

where δDπ is the strong phase difference between M(B0→D+π−) and M(B0→D+π−).
In case of final state D−π+

A(B0→D−π+)
A(B0→D−π+)

=
VubV

∗
cd

VudV
∗
cb

M(B0→D−π+)
M(B0→D−π+)

. (2.63)

Conservation of CP in the strong interactions guarantees Mf =Mf̄ and M f̄ =Mf , so

λ+ = λ[D−π+] = e−i(2β+γ+δDπ)

∣∣∣∣VcbV
∗
ud

VcdV
∗
ub

∣∣∣∣∣∣∣∣M(B0→D+π−)
M(B0→D+π−)

∣∣∣∣, (2.64)

or
|λ+| = |1/λ−| , r+ = r− ≡ r . (2.65)

Similar expression holds for λ[D(∗)±h∓], except that the hadronic matrix elements have differ-
ent values.

Introducing the parameters rj and δj , with j = Dπ, D∗π, Dρ, Eq. (2.58) simplifies to

Sj
± =

2 rj

1 + [rj ]2
sin(2β+γ±δj) , and Cj =

1− [rj ]2

1 + [rj ]2
. (2.66)

The factor of (−1)L in Eqs. (2.57), first noted in Ref. [33], is absorbed in the strong phase,
δ→ δ + π, without affecting the measurement. From Eq. (2.57) the CP asymmetry can then
be defined as

Aj
CP (∆t) =

FBtag=B0 − FBtag=B0

FBtag=B0 + FBtag=B0

(2.67)

=
2 rj

1 + [rj ]2
sin(2β+γ) cos(δj) sin(∆md∆t) . (2.68)

Using this notation, the time-dependent decay distributions for the final state D−π+ are shown
in Fig. 2.10.

In conclusion, the time evolution of B0→D(∗)±h∓ decays is sensitive to the CP angle γ
because the CKM-favored decay amplitude B0→D(∗)+h−, which is proportional to the CKM
matrix elements VcbV

∗
ud, and the doubly-CKM-suppressed decay amplitude B0 → D(∗)+h−,

proportional to VcdV
∗
ub, interfere due to B0B0 mixing. The relative weak phase between these

two amplitudes is γ. Including B0B0 mixing, the total weak phase difference between the
interfering amplitudes is 2β+γ.
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Figure 2.10: Time-dependent decay distributions for the final state D∗−π+, for a) a B0

tag, and b) a B0 tag. The situation with no doubly-CKM-suppressed contri-
bution on both the reconstruction-side is indicated with the solid line. The
dotted line has r = 0.1, δ = 0, and 2β + γ = 1.86. In these examples, r is
5 times the expected value in order to clearly illustrate the difference with
respect to the case with r = 0.

2.6.1 Observations

From Table 2.1, current indirect measurements give: sin(2β+γ) = 0.94 ± 0.03, cos(2β+γ) =
−0.34 ± 0.10. The angle β is well known from direct measurements, β = 21.7+1.3 ◦

−1.2 , so a
measurement of sin(2β+γ) gives direct constraints on γ.

The angle 2β+γ can only be obtained from the amplitudes of the sine mixing terms,
Sj
±. Assuming M ≈ M , rj , with j = Dπ, D∗π, Dρ, equals |V ∗

ubVcd/VcbV
∗
ud| ≈ 0.02 [17], or

|Sj
±| . 0.04 . The smallness of rj greatly reduces the sensitivity to γ from Sj

±, making this
measurement very challenging.

In theory, the time-dependent study of B decays to the final states D(∗)±h∓ allows one to
extract the parameters rj , sin(2β + γ + δj), and sin(2β + γ − δj) from the amplitudes of the
mixing terms. The cosine amplitudes Cj depend quadratically on rj , and, as a result, are very
close to one. In practice, even at very high statistics there is no sensitivity to extract rj . This
implies that, to extract 2β+γ, the parameters rj are needed as external input parameters, and
must be obtained through other means.

A naive method to get rj is to measure the branching fractions B of the decays B0 →
D(∗)+h− and B0 → D(∗)−h+. The latter decays are Cabibbo allowed and have been mea-
sured [17], with branching fractions at the level of O(10−3) as shown in Table 2.3. Unfortu-
nately, the former branching fractions are doubly Cabibbo suppressed, making their experi-
mental measurements impossible. The expected branching ratios are too small, O(10−6), with
an overwhelming background from the Cabibbo allowed decays. The only feasible way to obtain
rj is to measure B(B0→D

(∗)+
s h−), as explained in Chapter 10.
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2.7 Analysis strategy

Decay mode Measured B (×10−4)

B0→D−π+ 27.6± 2.5
B0→D∗−π+ 27.6± 2.1
B0→D−ρ+ 77± 13

Table 2.3: Measured branching fractions B of the Cabibbo allowed decays B0→D(∗)−h+.

The strong phase differences are expected to be small, modulo π, but reliable estimates do
not exist (see Chapter 10). Fixing the amplitude ratios rj leaves six observables, sin(2β+γ±δj),
and four variables, (2β+γ) and δj . There is a four-fold ambiguity in the extraction of (2β+γ)
from these parameters. Given the true solutions (2β+γ)0 and δ(3)0 = (δDπ

0, δ
D∗π

0, δ
Dρ

0), the
algebraic relations of Sj

± are invariant under the transformations

[2β+γ, δ(3)] → [−(2β+γ)0, π − δ(3)0] ; and (2.69)
→ [π − (2β+γ)0,−δ(3)0] . (2.70)

The presentation in terms of |sin(2β+γ)| is the same for all of these solutions.
For a single decay mode, another degeneracy in (2β + γ) is the transformation

[2β+γ, δ] → [π/2 + δ0, π/2− (2β + γ)0] .

In our analysis with the modes B→D∓π±, B→D∗∓π±, and B→D∓ρ±, this degeneracy is
broken due to possibly different values of δDπ, δD∗π, and δDρ.

Another difficulty in the CP measurement is the possible presence of a non-negligible CP
asymmetries introduced in the decay of the tagging B. (The time evolutions discussed so far
only considered the CP violation on the fully reconstructed side.) The modifications to the
time-dependent evolution of our system are discussed in Chapter 5. They do not affect the
ambiguity in the extraction of 2β+γ.

It is interesting to consider what constraint can be made on the Standard Model from a
measurement of sin(2β+γ). A typical measurement is shown in Fig. 2.11. Notice the four-fold
ambiguity in the extraction γ. Unfortunately, a significant constraint can only be imposed on
the apex position of the Unitarity triangle if the error on sin(2β+γ) is quite small. In part,
this is due to sin(2β+γ) ≈ 1, with d sin(2β+γ)/dγ close to zero, so the variation of sin(2β+γ)
has reduced impact on γ.

Other B decay channels to measure sin(2β+γ) and γ have been proposed. Each of these
has advantages and disadvantages. Like our measurement, all are challenging experimentally.
A comparison with existing measurements of γ is found in Section 12.3.

2.7 Analysis strategy

The Chapter culminates in an analysis strategy for the measurement of time-dependent CP
asymmetries in B0→D(∗)∓π± and B0→D∓ρ± decays.
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Figure 2.11: sin(2β+γ) projected on the (ρ̄, η̄) plane.

2.7.1 Strategy for measurement of time-dependent CP asymmetries

The CKM angle γ can be obtained from the amplitude of the time-dependent CP asymmetry
of Eq. (2.67)

Aj
CP (∆t) =

2 rj

1 + [rj ]2
sin(2β+γ) cos(δj) sin(∆md∆t) ,

which is measurable in the decays of B→D(∗)∓π± and B→D∓ρ±. Together, these occur in
about one in hundred B decays. The amplitude ratios rj equal about 0.02, the smallness of
which greatly reduce the sensitivity to γ. Consequently, in order to have sufficient statistics
for a sensitive CP analysis, it is necessary to produce a large number of B mesons.

Among other, B mesons are produced in the decay of the Υ (4S) meson, which decays
exclusively to a BB pair. Half of these are B0B0 pairs, which evolve coherently in time.
Fig. 2.12 illustrates the topology of a boosted2 Υ (4S) decay.

The measurement of ACP requires knowledge of the time difference ∆t between the decays
of the two B mesons, as produced by the Υ (4S). The value of ∆t can be computed from the
spatial separation between the decay vertices of the B mesons. One B meson (Brec) is fully
reconstructed in the final state D(∗)±h±, and the decay vertex is computed from its decay
products. The remaining particles in the event belong to the other B meson (Btag), and are
combined inclusively to determine its decay vertex.

The next step is to determine whether Brec is a B0 or a B0 at ∆t = 0. This cannot be
deduced from the final state D∗±h∓, which is accessible to both B0 and B0 mesons. Instead,
one employs quantum coherence in the decay of the Υ (4S), which guarantees Brec to be a B0

(B0) if Btag is a B0 (B0) at the time of its decay.
When decaying to a flavor eigenstate, the flavor of Btag can be determined from particle

identification information and kinematic properties of reconstructed particles its the final state.
The procedure is called b-flavor tagging.

2The boost of the Υ (4S) is explained in Section 3.2.
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Figure 2.12: The decay Υ (4S)→ B0B0, where one B decays to the final state D∗−π+,
Brec, and the other B decays in a flavor eigenstate, Btag.

The constraint on the CKM-angle γ from measurements of the observables Sj
± in Eq. (2.66)

is set in Chapter 11. A motivation for the separation of the time-dependent analysis and the
actual extraction of γ from the CP violation related parameters is found there as well. However,
the extraction process first requires knowledge of the size of the amplitude ratios rj , which are
determined in Chapter 10.

2.7.2 Experimental requirements

The experimental requirements for the measurement of time-dependent CP asymmetries in B
decays are described in the following Chapters. The analysis strategy is summarized as follows.

1. The main characteristics of the BABARB factory are described in Chapter 3. This includes
the PEP-II collider, needed to produce B mesons from the Υ (4S) resonance, followed by
a brief description of the BABAR detector, used to detect the B decay products.

2. Chapter 4 discusses the analysis technique, consisting of

(a) the selection criteria of BB events and B decay products, followed by the exclusive
B reconstruction;

(b) the inclusive b-flavor tagging algorithm;

(c) the reconstruction procedure of B decay vertices and the measurement of ∆t.

3. Chapter 6 describes the maximum-likelihood fit to the ∆t distributions and the modeling
of signal and background events.
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Chapter 3

The BABAR experiment

The BABAR experiment consists of the PEP-II asymmetric-energy e+e− collider and the BABAR

detector. Its general design considerations are discussed in Section 3.1.
A detailed description of the PEP-II collider can be found in Refs. [34, 35]. The main

characteristics of the PEP-II collider are summarized in Section 3.2.
A detailed description of the BABAR detector is found in Ref. [36]. A brief overview of

the components of the BABAR detector and their performance is given in Section 3.3. The
BABAR data and Monte Carlo samples used in this analysis are found in Sections 3.4 and 3.5,
respectively. Particle reconstruction and identification are summarized in Sections 3.6 and 3.7.

3.1 Design considerations

The design of the BABAR experiment has been optimized for the study of CP violation in the
decays of neutral B mesons.

The Υ (4S) resonance is a clean source of B mesons, and decays to a B+B− or B0B0

pair. The measurement of time-dependent CP violation requires knowledge of ∆t, the time
difference between the decays of the two B mesons. This can be computed from the distance
between their decay vertices. The Υ (4S), with a mass of 10.58 GeV/c2, is only slightly more
massive than a BB pair. Consequently, with the Υ (4S) produced at rest, the low momenta of
the mesons (p∗B ≈ 340 MeV/c) and the short B0 lifetime (τB0 ≈ 1.5 ps) result in only a small
separation between the decay vertices – too small to be measurable with sufficient precision.

The solution proposed by P. Oddone [37], applied at PEP-II, has been to produce the
Υ (4S), and so the B mesons, with sufficient momentum in the lab frame. The boost of the B
mesons leads to a greater displacement between the vertices, as demonstrated in Fig. 3.1, and
allows the measurement of the spatial separation (about 260 µm average in BABAR).

The branching fractions and reconstruction efficiency of, and/or CP violation in interesting
B decays are typically small. For this reason the PEP-II collider has high luminosity, yielding
tens of millions of B decays per year.

The measurement of the decay-time distributions relies on good vertex reconstruction along
the collision axis and in the transverse plane. The BABAR detector, designed to maximize the
geometric acceptance for the boosted Υ (4S) decay products, possesses large and uniform cov-
erage. High reconstruction efficiency and good momentum resolution for charged particles,
together with reconstruction of the neutral particles, are important ingredients to fully recon-
struct the B decays, and to separate signal events from background.
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Figure 3.1: The Υ (4S)→ BB̄ decay, boosted in the laboratory frame [37].

Another requirement for time-dependent measurements is the determination of the flavor of
one of the two decaying B mesons. As described in Chapter 4, this is done by using the B decay
products like leptons, kaons and other flavor-sensitive features such as low momentum pions
from D∗ decays. For this purpose, BABAR has good particle identification (i.e. high efficiency
and low mis-identification probability) and high tracking efficiency in a wide momentum range.

3.2 The asymmetric e+e− collider PEP-II

PEP-II is an asymmetric-energy e+e− collider, located at the Stanford Linear Accelerator
Center (SLAC). SLAC’s 3.6 km linear accelerator feeds 9.0 GeV electron bunches into a high
energy ring (HER) and 3.1 GeV positron bunches into a low energy ring (LER). The rings have
a circumference of 2.2 km. The particle bunches, kept in orbit by magnets and radio-frequency
acceleration, are collided head-on at a unique interaction region inside the BABAR detector.
At this point, the beams are brought together and separated by a pair of dipole magnets, and
fine-tuning is provided by a series of quadrupole magnets.

High luminosity is achieved by maintaining several hundred bunches of electrons and
positrons in each ring simultaneously. Maximum luminosity is maintained by continuously
‘trickling’ new bunches into the rings. Additionally, trickle injection makes fill-ups unneces-
sary, minimizing down-time from data taking.

The main technical design and operating parameters of PEP-II are listed in Table 3.1 [36].
PEP-II has significantly surpassed its design goals, both in terms of instantaneous and inte-
grated daily luminosity.

PEP-II operates at a center-of-mass (CM) energy of 10.58 GeV, the mass of the Υ (4S)
resonance. The Υ (4S) system is Lorentz boosted in the electron direction, with βγ ≈ 0.55.
The resulting B mesons travel an average distance of 260µm along the electron beam before
they decay. The cross sections for the main physics processes at the Υ (4S) energy are listed
in Table 3.2 [16]. At about 1/nb, the production of Υ (4S)→BB accounts for a quarter of the
total hadronic cross section.

The structure of the Υ resonances are shown in Fig 3.2 [38]. Most of the data are recorded
at the peak of the Υ (4S) resonance (on-resonance data), right above the energy threshold of
BB production. A small portion of the the data (≈ 9%) is taken at a CM energy 40 MeV below
the Υ (4S) peak (off-resonance data) in order to study only e+e− → uū, dd̄, ss̄, cc̄ events. These
are a source of background in many B decay analyses, commonly referred to as continuum
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3.2 The asymmetric e+e− collider PEP-II

Parameters Design Best

Energy HER/LER (GeV) 9.0/3.1 9.0/3.1
Current HER/LER (A) 0.75/2.15 1.8/3.0
# of bunches 1658 1722
Bunch spacing (ns) 4.2 6.3–10.5
σLx (µm) 110 90
σLy (µm) 3.3 4
σLz (mm) 9 9
Luminosity (1033 cm−2s−1) 3 11.2
Luminosity ( pb−1/d) 135 847

Table 3.1: The design and best values of the PEP-II beam parameters, during the period
of 1999–2006. HER and LER refer to the high energy e− and low energy e+

ring, respectively. The horizontal, vertical, and longitudinal RMS size of the
luminous region are indicated with σLx, σLy, and σLz, respectively.

e+e− → X Cross section (nb)

bb̄ 1.1
uū, dd̄, ss̄, cc̄ 3.4

τ+τ− 0.9
µ+µ− 1.2
e+e− ∼ 53

Table 3.2: Production cross sections at
√
s = 10.58 GeV. The e+e− cross section includes

the detector acceptance.

background.
The QED processes e+e−→e+e−, µ+µ−, τ+τ− are mostly used to study and calibrate the

subsystems of the BABAR detector. Only a small fraction of these events is selected by the
trigger, designed to maximize the number of selected hadronic events.

Knowledge of the beam energies is used to compute two important kinematic variables for
selecting B meson candidates and rejecting combinatorial background (see Section 4.1.1). The
energies are computed from the magnetic bending strength, and from the average deviations
of the accelerating radio-frequencies from their central values. The relative energy setting for
each beam is accurate and stable to about 1 MeV. The systematic uncertainty in the PEP-II
calculation is estimated to be 5–10 MeV. The RMS energy spreads of the LER and HER beams
are 2.3 MeV and 5.5MeV, respectively.

The direction of the boost relative to the BABAR coordinate system is measured run-by-run
using e+e− → e+e− and e+e− → µ+µ− events.

The size of the luminous region (or ‘beam spot’) affects the measurement of the distance
between the B decay vertices (see Section 4.3). Events with only two tracks, mostly e+e− →
e+e− and e+e− → µ+µ−, are used to determine the parameters of the beam spot relative to
the BABAR coordinate system. The size, position, and angles of the beam spot are determined
every ten minutes from the collected ensemble of vertices of two-track events. The horizontal
size is around 90 µm. The vertical size is too small to be measured directly, and is about 4 µm
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Figure 3.2: Structure of the Υ resonances [38]. The mass of the Υ (4S) is above the thresh-
old of BB production.

from the measured luminosity. The uncertainties in the average position of the beam spot are
less than a micron in the transverse plane, and about 100 µm along the beam axis. Between
each determination, the random walk in the transverse plane is about 10µm [39].

3.3 The BABAR detector

The design of the BABAR detector has been driven by the time-dependent study of B decays.
Fig. 3.3 shows a longitudinal Section through the BABAR detector. From the interaction

point outward, its sub-detectors are

1. Silicon Vertex Tracker (SVT);

2. Drift CHamber (DCH);

3. Detector of Internally Reflected Čerenkov light (DIRC);

4. ElectroMagnetic Calorimeter (EMC);

5. Superconducting coil generating a magnetic field of 1.5 T; and

6. Instrumented Flux Return (IFR).

Next, we briefly describe the main features of each BABAR subsystem, focusing on those most
relevant to this analysis.

The detector, designed for maximum acceptance of the boosted decay products, is offset
relative to the beam-beam interaction point by 0.37m in the direction of the lower energy
beam. Cylindrical symmetry is maintained around the beam direction. The polar angle θlab

coverage extends to 350 mrad in the forward direction and 400 mrad in the backward direction,
defined relative to the high energy beam.

The right-handed coordinate system [40] is anchored on the drift chamber, with the z-
axis coinciding with its principal axis. This axis is offset relative to the collision axis by about
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Figure 3.3: Longitudinal section of the BABAR detector.

20 mrad in the horizontal plane to minimize perturbations of the beams by the BABAR solenoid
field [41]. The positive y-axis points upward, and the positive x-axis points away from the center
of the PEP-II rings.

3.3.1 Silicon Vertex Tracker (SVT)

The silicon vertex tracker (SVT) is the crucial subdetector for the measurement of B0-meson
decay vertices. The SVT constitutes the inner part of the BABAR tracking system. The second
tracking subsystem, the drift chamber, is discussed in the following Section.

The SVT has been designed to measure the angles and positions of charged particles just
outside the beam pipe. Since the average momentum of charged particles produced in B decays
is less than 1 GeV/c, multiple Coulomb scattering is a significant limitation on the resolution
of the track parameters. Special care has been taken to reduce the volume and the amount of
material in the tracking system.

The SVT is composed of five layers of double-sided silicon strip detectors, as schematically
shown in Fig. 3.4. It is assembled from modules with readout at each end, thus reducing the
inactive material in the acceptance volume. The tracker has a total of 340 silicon detectors
(‘wafers’), covering an area of about 1m2, with a total of 150,000 readout channels. Each SVT
strip has a typical hit resolution of 10 micron.

The inner three layers primarily are closest to the interaction point and provide the angular
and vertex information for a track. They are mounted as close to the beam pipe as possible
(radius of 3.2 cm) to minimize the impact of multiple scattering in the beam pipe on the
extrapolation to the decay vertex. The outer two layers have much larger radii (14.4 cm) in
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Figure 3.4: Transverse view of a section of the SVT.

order to provide the coordinate and the angle measurements needed to link SVT and drift
chamber tracks.

Charged particles with transverse momenta between 60MeV/c and 120 MeV/c, such as low
momentum pions from D∗ decays, do not reach or cannot be reconstructed by the DCH, for
which the SVT provides all tracking information.

Since the SVT is not a rigid body, the relative positions of its wafers need to be aligned from
time to time (called ‘local alignment’). The alignment procedure is performed with cosmic rays,
and e+e− and µ+µ− events. The local alignment is relatively stable in time and the procedure
is performed only after detector access or a magnet quench. The SVT local alignment is a
source of systematic bias or distortion in the measurement of the distance of the two B decay
vertices, and is accounted for in the CP asymmetry analysis.

3.3.2 Drift Chamber (DCH)

Combined with the SVT, the drift chamber forms the BABAR tracking system. The main
purpose of the drift chamber is to determine the momentum measurement of charged particles.
The DCH also supplies trigger information and a measurement of the energy loss dE/dx used
for particle identification.

A longitudinal cross view of the drift chamber is shown in Fig. 3.5. The readout electronics
are mounted on the backward end-plate of the chamber, minimizing the amount of material in
front of the calorimeter end-cap. The chamber is 280 cm long and occupies the radial region
of 22< r < 80 cm. It consists of 7, 104 small, approximately hexagonal cells, arranged in 40
cylindrical layers. The 40 layers are grouped into 10 super layers.

Each cell consists of a tungsten-rhenium sense wire surrounded by six aluminum field
wires. The field wires are at ground potential. A positive high voltage of 1, 930V applied to
the sense wires. Two cell types exist with different geometry along the z direction: axial and
stereo cells. The former run parallel to the z axis (forming axial layers), while the latter are
tilted at a small stereo angle (stereo layers), which varies between 45 and 77 mrad. Stereo
cells provide longitudinal information for the tracks, while both cell types provide curvature
information. With 40 layers, the DCH can provide up to 40 measurements of space coordinates
per track, ensuring high reconstruction efficiency for tracks with transverse momentum greater
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Figure 3.5: Longitudinal view of a section of the DCH.

than 100 MeV/c.
The DCH is filled with a 80 : 20 mixture of helium and isobutane. The gas mixture, wire

material, and thickness, have been chosen to keep multiple scattering to a minimum. At normal
incidence the DCH is only 1.08× 10−2 radiation lengths long.

The DCH determines the global coordinate system for the BABAR detector. Because of
seismic activity the SVT moves with respect to the drift chamber, and has to be aligned on
a run-to-run basis (‘global alignment’). The alignment procedure is performed with e+e− and
µ+µ− events. The global alignment procedure determines three translation and three rotation
parameters by minimizing the difference between the track parameters obtained with the SVT-
only and DCH-only track fits.

3.3.3 Detector of internally reflected Čerenkov light (DIRC)

The DIRC is a Čerenkov-based detector devoted to particle identification (PID), designed to
provide separation of pions and kaons from momenta of about 500 MeV/c to 4.5 GeV/c. The
DIRC is placed between the DCH and the calorimeter, and occupies only a small radial volume
(10 cm). The detector is composed of 156 synthetic fused silica bars, 4.9m long, oriented parallel
to the z axis, with a rectangular cross section, 1.7× 3.5 cm.

The bar material has been chosen for its resistance to ionizing radiation, its long attenuation
length, large index of refraction (n= 1.473), and low chromatic dispersion within the wave-
length acceptance. A charged particle above the Čerenkov threshold emits Čerenkov photons,
with an angle θc with respect to its track

cos θc =
1
nβ

, (3.1)

where β = v/c, v is the velocity of the particle, and c is the speed of light. For particles with
β close to 1 some photons will always lie within the total internal reflection limit.

The Čerenkov light is transported to either one or both ends of the bars by total internal
reflection, preserving θc at each reflection. To avoid instrumenting both ends of the bars,
a perpendicular mirror is placed at the forward end. Photons emerge at the backward end
into a toroidal water tank, called ‘the standoff box’, where they are detected by an array of
photomultiplier tubes (PMTs). This array forms the backward wall of the tank, located beyond
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the backward end of the magnet. Fig 3.6 shows a schematic view of the DIRC detector and
illustrates the principles of light production, transport, and imaging.
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Figure 3.6: Schematics of the DIRC fused silica radiator bars and imaging region.

Images of the Čerenkov rings are reconstructed from the position and time of arrival of the
signals in the PMTs. The Čerenkov light pattern is essentially a conic Section, where the cone
opening-angle is the Čerenkov production angle, modified by refraction at the exit from the
fused silica window. Time information is used to exclude other tracks in the same event as the
source of the photon, and to reject beam-induced background hits.

The angular resolution on a single photon is about 10 mrad, while the time resolution is
about 1.7 ns, close to the intrinsic time spread of a PMT. In absence of systematic errors, the
resolution on θc is the single photon angle resolution divided by the square root of the number
of photons detected. Measured on µ+µ− events, this resolution is about 2.5 mrad.

3.3.4 Electromagnetic calorimeter (EMC)

The electromagnetic calorimeter (EMC) has been designed to detect electromagnetic showers
with excellent energy and angular resolution, over an energy range from 20 MeV to 4 GeV.
This allows the detection of low-energy π0 and η0 mesons from B decays, and higher energy
photons and electrons from other radiative processes.

A longitudinal section of the EMC subdetector is shown in Fig. 3.7. The EMC is made of
6,580 thallium doped cesium iodide (Cs(Tl)) crystals. The crystals are arranged in modules
that are supported individually from an external structure: a barrel and forward end-cap. The
barrel is arranged in 48 distinct rings with 120 identical crystals each. The end-cap holds 820
crystals arranged in eight rings. The crystals, with radiation lengths between 16.0 and 17.5
X0, are each read out with a pair of silicon photodiodes.

The amount of material in front and in-between the crystals is minimized in order to obtain
the desired resolutions. At normal incidence there are in total 0.41 radiation lengths in front
of the EMC.
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Figure 3.7: EMC longitudinal section.

3.3.5 Instrumented flux return (IFR)

The instrumented flux return (IFR) has been designed to identify muons and to detect neutral
hadrons, such as KL mesons.

Fig. 3.8 shows a 3D view of the IFR barrel and end-caps. The magnet flux return steel in the
barrel and the two end doors (end-caps) is segmented into layers, increasing in thickness from
2 cm to 10 cm. Single gap resistive plate chambers (RPCs) are inserted between the absorbers
to detect streamers from ionizing particles through external capacitive readout strips.

There are 19 layers of RPCs in the barrel and 18 in the end-caps. Additionally, two cylin-
drical layers of RPCs with four readout planes are placed in front of the magnet cryostat to
detect particles exiting the EMC.
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Figure 3.8: View of IFR barrel and end-caps.

The IFR reconstruction algorithm groups hits in the RPCs into clusters. A charged particle
is associated to IFR clusters if the cluster is a predefined distance from the intersection of its
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trajectory with the RPC planes.

3.3.6 Trigger system and data acquisition

The trigger system is designed to select events of interest with a high, stable, and well-
understood efficiency, while rejecting background events and keeping the total event rate under
370 Hz.

Interesting events include BB and other qq̄ events, as well as QED events needed for diag-
nostic and calibration purposes. The production rates of these events at the Υ (4S) resonance
for a luminosity of 1 × 1034 cm−2 s−1 are shown in Table 3.3. Background events are due to
interactions of the beams with residual gas or the beam pipe, with typical rates up to 70 kHz.

Event Cross Production Level 1 Trigger
type Section (nb) Rate (Hz) Rate (Hz)

BB 1.1 10.7 10.7
uu +dd +cc +ss 3.4 34.0 33.7

e+e− ∼53 530 520
µ+µ− 1.2 11.7 10.3
τ+τ− 0.9 9.3 8.0

Table 3.3: Cross sections, production and trigger rates for the principal physics processes
at 10.58GeV/c2 for a luminosity of 1× 1034 cm−2s−1.

The trigger is implemented as a two-level hierarchy, the Level 1 (L1) in hardware, followed
by the Level 3 (L3) in software. The trigger system is designed to accommodate up to ten
times the expected PEP-II background rates at design luminosity.

The L1 trigger is responsible for interpreting incoming detector signals, and recognizing and
removing beam-induced background to a level acceptable for the L3 software trigger. The L1
trigger decision is based on charged tracks in the DCH above a preset transverse momentum,
showers in the EMC, and tracks detected in the IFR. During normal operation, the L1 is
configured to have an output rate of typically 2.5 kHz.

The L3 responds to the L1 output, performs a rate reduction for the main physics sources,
and identifies and flags special categories of events needed for luminosity determination, diag-
nostic, and calibration purposes. The L3 filter acceptance for physics is about 280 Hz, while
90 Hz contain the other special event categories. The selected events are then stored for offline
processing.

At a luminosity of 1× 1034 cm−2 s−1, the trigger efficiency exceeds 98% for all BB events.

3.4 Data sample

The integrated luminosity delivered by PEP-II and recorded with BABAR between October
1999 and July 2004 is shown in Fig. 3.9. During that period, the luminosity recorded by
BABAR has been about 244 fb−1, including 22.7 fb−1 of off-peak data [42]. About 209 fb−1 of
on-resonance data, corresponding to 230 million BB̄ pairs, are used in the analysis presented
in this thesis.
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Figure 3.9: The integrated luminosity delivered by PEP-II and recorded by BABAR between
October 1999 and July 2004.

The relative luminosity is monitored by PEP-II through the measurement of radiative
Bhabha scattering. The absolute luminosity is measured offline by BABAR from e+e− and
µ+µ− production. The absolute luminosity has an estimated systematic error of about 1.5%,
with negligible statistical uncertainty.

3.5 Monte Carlo sample

We use Monte Carlo simulation of the BABAR detector response based on GEANT4 soft-
ware [43] to validate the analysis procedure and to estimate some of the background event
levels. Particle production and decays are simulated in an event generator program, Evt-
Gen [44], interfaced to LUND/JETSET [45]. Table 3.4 shows the fully-simulated Monte Carlo
samples considered in this analysis, compared with the available data sample.

3.6 Particle reconstruction

This Section briefly discusses charged and neutral particle reconstruction in BABAR.

3.6.1 Charged particle reconstruction

A typical BB event has an average multiplicity of 11 charged tracks. Track reconstruction uses
information from both the SVT and the DCH, as well as the L3 trigger.

Charged track finding is based on three different algorithms [46], and starts with pattern
recognition in the DCH. The first algorithm uses the L3 trigger routine for finding and linking
superlayer-based track segments from moderate-to-high pt tracks, originating from the interac-
tion point. Two other tracking algorithms are designed to find tracks with lower pt, which did
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Sample Generated events (M) Luminosity (fb−1)

On-resonance data – 209
Signal cocktail 21.3 3133
Generic B0B0 546 995
Generic B+B− 540 981
Continuum cc̄ 418 321
Continuum uū, dd̄, ss̄ 711 340

Table 3.4: Fully-simulated Monte Carlo samples considered in this analysis. The ‘sig-
nal cocktail’ sample is a mixture of B→D(∗)∓h± (h= π, ρ, a1) events, with
branching fractions taken from the PDG.

not pass through the entire DCH, or that did not originate from the interaction point. These
algorithms use track segments not assigned to previously reconstructed tracks. All tracks found
are refit with a Kalman filter [47], which takes into account the distribution of material in the
detector and a detailed map of the magnetic field.

The tracks are extrapolated through the intervening material and field into the SVT, where
silicon-strip hits are added if consistent within extrapolation errors. Among the possible SVT
segments those with the smallest residuals and the largest number of SVT layers are kept, and
a Kalman fit is performed to the full set of DCH and SVT hits. Any remaining SVT hits are
passed to two complementary, standalone track finders. Finally, an attempt is made to match
SVT- and DCH-only track segments to recover tracks scattered in the support tube.

Parameter Description

ω Curvature of the track, the inverse of the transverse momentum pt

z0 Distance along the z axis between the POCA and the origin
d0 Distance in the x–y plane between the POCA and the origin
φ0 Azimuth angle of POCA

tanλ Dip angle of the track relative to the transverse plane

Table 3.5: Parameters describing the trajectory of a charged track. POCA stands for the
point of closest approach of the trajectory to the z axis.

The trajectory of a charged particle is defined by five parameters, listed in Table 3.5. The
resolutions of the five track parameters are monitored with e+e− and µ+µ− events and checked
offline in multi-hadron events and cosmic ray muons. The measured resolutions depend on the
transverse momentum pt of the tracks. Using cosmic ray tracks with pt of about 3GeV/c, the
resolutions are: σd0 = 23µm, σφ0 = 0.43 mrad, σz0 = 29µm, and σtan λ = 0.53× 10−3.

The left-hand side of Fig. 3.10 shows the the dependence of d0 and z0 resolutions on the
transverse momentum pt, measured with tracks from hadronic events. The right-hand side of
Fig. 3.10 shows the resolution on the transverse momentum pt as measured with cosmic muons
traversing both the DCH and the SVT. The data are well represented by the linear function

σpt/pt = (0.13± 0.01)% · pt + (0.45± 0.03)%,
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where pt is measured in GeV/c. For a track with pt of 1 GeV/c the resolution is about 5MeV/c.
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Figure 3.10: Resolution as a function of the transverse momentum pt for: (left) impact
parameters d0 and z0, measured with multi-hadron events, and (right) the
transverse momentum pt, measured with cosmic muons traversing the DCH
and the SVT.

For later use, a good quality track, GoodTrack, consists of a charged track satisfying

1. p < 10 GeV/c,

2. d0 < 1.5 cm,

3. z0 < 10 cm,

4. pt > 100 MeV/c, and

5. 12 or more DCH hits.

3.6.2 Reconstruction of neutral particles

Neutral particles, such as photons and π0s, form electromagnetic showers in the EMC. A
typical electromagnetic shower spreads over many adjacent crystals, forming a ‘cluster’ of
energy deposits. Pattern recognition algorithms are used to identify these clusters, and to
differentiate single clusters, having one energy maximum, from merged clusters, with more
than one local energy maximum – also referred to as ‘bumps’. Bumps occur, for example,
when photons from high-energy π0 or η decays are unresolved, resulting in two close showers.

Clusters are reconstructed around initial seed crystals, containing at least 10 MeV of de-
posited energy, E. Neighboring crystals are added to the cluster if E > 1 MeV. If the newly
added crystal has E>3 MeV, its neighbors are also considered for inclusion in the cluster. Local
maxima within a cluster are defined as candidate crystals that have an energy exceeding each
of its neighbors. The position of each bump is calculated with a center-of-gravity method [48].
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The algorithms also check whether a bump is generated by a charged or a neutral particle.
Neutral particles are required not to match to any charged track extrapolated from the tracking
volume to the inner surface. The distance between a track impact point and the bump centroid
is calculated, and compared with Monte Carlo expectations for different particle species. If the
distance is consistent with the expectation, the bump is associated with the charged particle.
Otherwise, it is assumed to originate from a photon.

The energy resolution of the calorimeter is measured from a radioactive source at low
energies, and is derived from Bhabha scattering at high energies. At normal incidence, the
energy resolution for photons is

σE

E
=

2.3%
E1/4(GeV)

+ 1.9% . (3.2)

The constant term, dominant at energies greater than 1 GeV, comes from leakage or absorption
in the material between and in front of the crystals. The resolution worsens at smaller angles.
The angular resolution is dominated by the transverse size of the crystals and by the distance
from the interaction point

σθ = σφ =
3 mrad√
E(GeV)

+ 2 mrad . (3.3)

For energies below 2GeV, the mass resolution of π0 mesons is typically used to determine the
energy resolution [49]. The π0 mass resolution in hadronic events is 7 MeV/c2 (see Fig. 3.11).
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Figure 3.11: Invariant mass of two photons in BB events. The energies of the photons
and the π0 are required to exceed 30MeV and 300MeV, respectively. The
solid curve is a fit to the data.

For use in Section 4.1.2, the label GoodPhoton is assigned to all energy bumps in the EMC
not associated with a charged track, with

1. an energy E>30 MeV,
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2. a shower shape consistent with photon interactions (lateral shape λlat [50] less than 1.1),
and

3. lab-frame polar angle 0.41 < θlab < 2.409 rad (i.e. withing the fiducial volume of the
EMC).

3.7 Particle identification

The flavor determination of B mesons, described in Chapter 4, relies on efficient particle
identification and low misidentification probability for kaons, electrons, and muons. Particle
identification (PID) in BABAR is briefly discussed in the following Sections.

3.7.1 Kaon identification

The momenta of the kaons used for b-flavor tagging extend up to 2MeV/c, with most of
them less than 1GeV/c as they come from secondary decays of charmed mesons. In the full
reconstruction of B decays kaon identification is also required in a high momentum range, e.g.
1.7<pK<4.2 GeV/c in B0→K+π− decays.

Kaons are distinguished from pions and protons on the basis of specific energy-loss measure-
ments dE/dx in the SVT and DCH, and the number of Čerenkov photons and the Čerenkov
angle in the DIRC [51, 52]. PID below 700 MeV/c exploits primarily dE/dx measurements in
the DCH and the SVT, while at higher momenta the dominant contribution comes from DIRC
information.

The distribution of the measured dE/dx in the DCH for selected control samples is shown
in Fig. 3.12 as a function of momentum. The dE/dx information of the DCH is able to separate
pions from kaons at relatively low momenta.
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p d

Figure 3.12: Measurement of dE/dx in the DCH as a function of track momentum. The
curves show the Bethe-Bloch predictions derived from selected control sam-
ples of particles of different masses.

The Čerenkov angle as a function of momentum for kaons and pions from a D0 control
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sample is shown Fig. 3.13. The K–π separation is greater than 8.0σ at 2.0 GeV/c, decreasing
to 2.5σ at 4.2 GeV/c.

This analysis uses kaon selectors based on likelihood ratios computed from the DIRC,
SVT and DCH information for different particle hypothesis (typically π, K and p). Different
selectors exist, designed for different needs of efficiency and mis-identification level. Typically,
loose kaon identification is used in exclusive B reconstruction, while the b-flavor tagging is
based on tighter criteria. For example, the most loose kaon requirement, NotAPion, has a nearly
constant kaon-identification efficiency of about 96% and a pion-misidentification probability of
not larger than 30%, for tracks in the transverse momentum between 1.0 and 2.5 GeV/c. The
Tight selector has values of 20% and 2%, respectively.
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Figure 3.13: The Čerenkov angle θc as a function of momentum for tracks from a control
sample of D0 → K−π+ decays.

3.7.2 Electron identification

The EMC is crucial for electron identification. Electrons are separated from charged hadrons
primarily by the ratio of the energy deposited in the EMC to the track momentum, and by the
lateral shape of the electromagnetic shower [50, 53]. In addition, dE/dx energy loss in the DCH
and the DIRC Čerenkov angle are required to be consistent with the electron hypothesis [54].

As for kaons, different electron selectors exist with different levels of efficiency and misiden-
tification probability. The right-hand side of Fig. 3.14 shows the electron efficiency and pion
mis-identification probability for two selector as a function of lab momentum. The electron
efficiency is measured with e+e− → e+e−e+e− events, while the pion mis-identification prob-
ability is measured from selected charged pions from Ks and τ three-prong decays.
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Figure 3.14: The electron efficiency (left axis) and pion mis-identification probability
(right axis) as a function of lab momentum for two selectors.

3.7.3 Muon identification

Muons are identified by measuring the number of traversed interaction lenghts n, from the
outside of the DCH through the iron of the IFR, and ∆n, the difference between n and the
predicted penetration depth for a muon of the same momentum and angle [55]. The projected
intersections of a track with the RPC planes are computed, where for each readout lane all
strip clusters detected within a predefined distance are associated with the track. The average
number and RMS of the distribution of RPC strips per layer give additional µ/π discrimination
power, as pions produce more hadronic interactions than muons.

The performance of the muon identification is assessed on kinematically selected samples of
muons from e+e−→e+e−µ+µ−, µ+µ−γ events, and from charged pions from Ks and τ three-
prong decays. Fig. 3.15 displays the muon efficiency and pion misidentification probability as
a function of lab momentum. Again, different muon selectors exist, with different levels of
efficiency and purity. For a Tight selection of muons, nearly 60% efficiency is achieved with a
pion fake rate of <2.5%.
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scale) as a function of laboratory track momentum.
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Chapter 4

Analysis technique

The data sample used in this analysis is a standard sample in the BABAR experiment [56].
The sample selection and B reconstruction process are summarized in Section 4.1. Although
improvements to the sample selection have been studied (and can be made), for simplicity
of reference and publication [14] it was decided to leave the selection, except for one minor
alteration, unchanged.

The b-flavor tagging and ∆t extraction procedure were used in the BABAR measurements of
∆md and sin 2β, prior to the analysis of the time-dependent CP -asymmetries in B0→D(∗)∓h±.
For this analysis the same techniques have been used. An excellent review of BABAR’s time-
dependent analysis techniques is found in Ref. [56].

Since the efficiency for full reconstruction of B mesons is small, O(10−3), an inclusive
method is used to infer the flavor and decay vertex from the decay products of the tagging B
meson. This analysis employs the BABAR GeoKin vertexer [57] and Tag04 tagger [58].

The selected data sample, after ∆t extraction and b-flavor tagging, is summarized in Sec-
tion 4.4.

4.1 Selection and reconstruction of B mesons

This Section first discusses the selection and reconstruction of the B→D(∗)∓h± candidates
used in our analysis, and ends with a signal and background description in terms of the mass
variable mES , which will be described shortly.

4.1.1 Discriminating observables

For the the time-dependent CP analysis only Υ (4S)→ BB events are needed. However, in
addition to BB from Υ (4S) decays, the e+e− collisions at PEP-II produce many final states,
as listed in Table 3.2. All are potential background sources to B decay analyses.

A collection of observables, exploited by most B analyses, is used to discriminate between
the events of Υ (4S)→BB, continuum events e+e−→ qq̄ (q = u, d, s, c), and the QED events
e+e−→ e+e−, µ+µ−, τ+τ−, and γγ. Most of these variables discriminate signal events from
continuum qq̄ events on the basis of their different, characteristic topologies, and are thus
called topological variables. In a signal event, the B mesons have low momenta in the Υ (4S)
rest frame (≈ 340 MeV/c), and the decay of each B meson is nearly isotropic. In addition, in a
signal event there is no correlation between the directions of the decay products coming from
the two B mesons. In a qq̄ event the event shape has a two-jet structure, and a direction exists
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that characterizes the whole event (the ‘jet axis’). Fake B candidates from such an event have
less isotropic decay shapes in the Υ (4S) rest frame, and the directions of the decay products
of the two B meson candidates tend to be correlated, as they lie within the two jets.

Finally, one can construct discriminating variables that exploit the kinematic constraints
of the Υ (4S)→BB decay.

BB event selection

Most QED events produced by PEP-II have less than three tracks per event [16]. QED events
are rejected by selecting events with at least three good tracks (see Section 3.6.1) and a visible
energy greater than 4.5 GeV.

The visible energy W is defined as the sum over the energy of all good tracks and neutral
particles (see Section 3.6.2)

W =
Tracks∑

i

√
m2

π + p2
i +

Neutrals∑
j

Ej (4.1)

The distribution of the visible energy W is shown in Fig. 4.1. The requirements above remove
nearly all QED events and select the BB and continuum events.
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Figure 4.1: For the main physics processes at the Υ (4S) energy: (left) the distribution of
the visible energy W, and (right) the distribution of R2. The distributions are
normalized to the same area.

The lth Fox-Wolfram moment [59], Hl, is the momentum-weighted sum of the lth order
Legendre polynomial, computed from the cosine of the angle between all pairs of particles

Hl =
∑
i<j

|~pi||~pj |Pl(cos θij)
E2

T

, (4.2)

where the sum runs over all good charged tracks and neutrals in the event, Pl is the lth

order Legendre polynomial, ~pi,j are the particle momenta, θij is the angle between particles
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i and j, and ET is the total energy of the event. Each moment Hl is a multipole moment
of the momentum distribution in an event. For continuum events Hl ∼ 1 when l even, and
Hl ∼ 0 when l odd. Neglecting the particle masses, energy-momentum conservation requires
that H0 = 1.

The quadrupole moment H2 can discriminate between events with a jet-like structure of
momentum (continuum background from uū, dd̄, ss̄, and cc̄ events) and those with a more
spherically symmetric topology (BB events). The normalized ratio R2 = H2/H0 is very close
to unity for events with back-to-back tracks, such as QED events, and approaches zero for
isotropic BB events. The R2 distributions for the physics processes at the Υ (4S) energy are
shown in Fig. 4.1. In order to reduce background from continuum events, R2 is required to be
less than 0.5.

The selection efficiency of BB events, using the criteria described above, is about 95%.

The B thrust axis

Additional rejection of continuum events is provided using the ‘thrust axis’ [60] of selected B
candidates, ~TB. The thrust axis of a set of particles is defined as the direction that maximizes
the sum of the longitudinal momenta of the set. The thrust axis for a reconstructed B candidate
(Brec) is obtained1 by maximizing the ratio RT

RT =
∑

i |~TB · ~p∗i |∑
i

√
~p∗i · ~p∗i

, (4.3)

where ~p∗i is the three-momentum of particle i in the Υ (4S) rest frame, and the sum runs over
the events’ charged and neutral particles not used in the reconstruction of Brec.

The thrust angle θT is defined as the angle between the momentum of Brec, ~p∗B, and the
thrust axis of the rest of the event. The cosine of θT is obtained as

cos θT =
~p∗B · ~TB

|~p∗B||~TB|
. (4.4)

In a qq̄ background event the decay particles of Brec, as well as the other particles in the event,
lie in one of the two jets. Therefore, the Brec decay axis is roughly co-linear with the thrust
axis of the rest of the event, and | cos θT | is peaked at one. For an isotropic BB event, the
momentum of Brec is uncorrelated with the thrust axis of the rest of the event (which comes
from the decay of the other B meson), resulting in a uniform distribution of | cos θT |.

The selection cuts on | cos θT | vary between the decay modes B→D(∗)∓h±, and are de-
scribed in the next Section.

Kinematic variables

The final B candidates are identified using a pair of nearly orthogonal kinematic variables,
which exploit the kinematic constraints of the Υ (4S)→ BB decay [61]. Both variables are
Lorentz invariants.

1. In the Υ (4S) frame the ‘energy difference’, ∆E, is expressed as

∆E = E∗
B − E∗

beam, (4.5)
1The thrust axis is calculated after the B reconstruction in Section 4.1.2.
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where E∗
B is the reconstructed energy of the B meson, and E∗

beam is half the Υ (4S) energy
(
√
s/2), which represents the best estimate for the energy of the B meson. Hence, ∆E is

simply the difference between the reconstructed and the expected B energy, and is around
zero for signal candidates. The ∆E resolution, σ∆E is dominated by the momentum
resolution. The size of σ∆E depends on the reconstructed B decay mode.

In the lab frame ∆E becomes

∆E = (2qB · q0 − s)/2
√
s, (4.6)

where
√
s is the total energy in the e+e− center-of-mass (CM) frame, and qB and q0 are

the laboratory four-momenta of the B candidate and the e+e− system, q0 = qe+ + qe− .

2. The second kinematic variable is the ‘energy-substituted mass’, mES , defined in the e+e−

CM frame as
mES =

√
E∗2

beam − p∗2B (4.7)

where p∗B is the CM momentum of the B meson, obtained from the momenta of its decay
products. Therefore, mES is the mass of the B, computed with E∗

B substituted by E∗
beam.

Given that p∗2B � E∗2
beam, the resolution in mES is dominated by the spread in E∗

beam,
and it is largely independent of the reconstructed B decay.

The standard implementation of mES is in the laboratory frame, using

mES =
√

(s/2 + ~p0 · ~pB)2/E2
0 − p2

B , (4.8)

where ~pB and ~p0 are the spatial momenta of the B candidate and the e+e− system, and
E0 is the total energy in the lab frame.

By definition, mES and ∆E are dependent variables. However, as their sources of experi-
mental resolution are uncorrelated (beam energy for mES vs momentum resolution for ∆E),
practically the two variables are uncorrelated as a result.

In the (mES ,∆E) plane signal candidates accumulate around mES =mB and ∆E=0 MeV.
Typically, the B ‘signal region’ is defined as

mES > 5.27 GeV/c2 , |∆E| < N σ∆E , (4.9)

where σ∆E is the decay-mode dependent ∆E resolution, and N is set to about 2.5 for our
selected B→D(∗)∓h± candidates.

The exact selection cuts applied to ∆E are given in Section 4.1.2. The signal and back-
ground mES distributions are described in Section 4.1.3.

4.1.2 B→D(∗)∓h± Selection

The multi-hadron events considered for B selection are required to have at least 3 good tracks,
a visible energy W>4.5 GeV, and R2 < 0.5. The B reconstruction process proceeds from the
final state tracks and neutrals, to the light intermediate states, to the heavier D(∗) mesons,
and ends with the B mesons. Vertex and mass-constrained fits are applied to improve the
resolution on the measured momenta and/or energy of intermediate mesons, and to reduce
contributions from combinatorial background [62].
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Analysis technique

The lightest mesons are summarized in Table 4.1, together with their reconstructed decay
modes and selection cuts.

The decay modes of the charmed mesons reconstructed in this analysis, D0 and D−, are
listed in Table 4.2. Loose PID is required for the charged kaons (NotAPion, see Section 3.7.1)
to reduce combinatorial background. The vertex fit probability P (χ2) is required to be larger
than 0.1%. A D candidate is selected when its reconstructed mass m satisfies |m−m0|/σm<3,
where m0 is the nominal mass, and the uncertainty σm is calculated from the measured error
matrices of the tracks involved. The momentum p∗ in the Υ (4S) frame must lie between 1.3
and 2.5 GeV/c. The lower bound reduces combinatorial background, whereas the upper bound
lowers charmed contributions from the process e+e−→cc̄.

For the decay D0→K+ρ−, a large component in D0→K+π−π0, backgrounds are large
due to the wide ρ mass. The decay has angular momentum one, and hence a cos2θ helicity
distribution. For this mode the cut of | cos θDπ|>0.4, where θDπ is the helicity angle between
the D and π in the ππ0 rest frame, reduces background combinations by about 40%.

Meson PDG mass ( MeV/c2) Decay mode B (%)

D0 1865 K+ π− 3.80± 0.09
K+ π− π0 13.0± 0.8
K+ π− π+ π− 7.5± 0.3
K0

S π
+ π− 3.0± 0.2

D− 1869 K+ π− π+ 9.1± 0.6
K0

S π
− 1.4± 0.1

Table 4.2: Selected decay modes of D0 and D− mesons and their branching fractions B.

In the decay D∗+→D0π+ the difference of the masses of the D∗+ and D0 is just above
the π threshold (δm0 = 145.4 MeV/c2 [17]), and the resulting ‘soft’ pion carries very little
momentum. The decay mode has a branching fraction of 67.7% [17]. D∗− candidates are
constructed combining a D0 and a charged pion with a momentum between 70 and 450MeV/c.
The lower limit is the threshold for track reconstruction in the SVT, and the higher limit is the
maximum possible soft pion momentum in the lab frame. The reconstructed mass difference
δm = m(D0π−)−m(D0) is used to select the D∗− candidates. The resolution on δm is improved
in the D∗− vertex fit by constraining the soft pion to originate from the beam spot. In the
fit, the vertical size of the beam spot (≈ 4µm) is increased to 40µm to account for the small
transverse flight of a B meson.

The reconstructed δm value is required to be within 0.8 MeV/c2 of its nominal value for all
D0 modes, and within 1.1 MeV/c2 for D0→K+π−π0. The cut corresponds to about 2.5σδm,
with σδm the RMS of the observed δm distribution in data.

The branching fractions for the reconstructed decay modes B→D(∗)∓π±, D∓ρ± are at the
level of O(10−3), and have been cited earlier in Table 2.3. The B candidates are formed from
combinations of a D(∗) candidate, constrained to its nominal mass, and a π+/ρ+ candidate.
The hard pion is required not to qualify as a tight kaon (!Tight, see Section 3.7.1)) to reject
background from B→D(∗)∓K± events. The selection cuts, which vary per B and D decay
mode, are summarized in Table 4.3. The ∆E cut corresponds to roughly 2.5σ∆E , where σ∆E

is the measured ∆E resolution, which varies between 18 and 32 MeV.

50



“thesis” — 2006/12/8 — 11:48 — page 51 — #61

4.1 Selection and reconstruction of B mesons

B Mode D−/D0 mode | cos θT | |∆E| ( MeV) Other requirements

D− π+ K0
S π

− < 0.9 < 42.5 pπ, pK > 200 MeV/c
K+ π− π+ < 0.9 < 45 pπ, pK0

S
> 200 MeV/c

D− ρ+ K0
S π

− < 0.8 < 75 pπ, pK > 200 MeV/c
K+ π− π+ < 0.8 < 75 pπ, pK0

S
> 200 MeV/c

D∗− π+ K+ π− – < 45 pπ, pK > 200 MeV/c
K+ π− π0 – < 52.5 pπ, pK > 200 MeV/c
K+ π− π+ π− – < 45 pπ, pK > 200 MeV/c
K0

S π
− π+ – < 37.5 pπ, pK0

S
> 200 MeV/c

Table 4.3: Selection criteria for B0→D−π+/ρ+ and B0→D∗−π+ decays.

If more than one B→D∓h± candidate passes the selection cuts per event, the best candi-
date is chosen based on the following criteria.

1. Select the charged D candidate with |m−m0|/σm closest to zero.

2. If the same D candidate is used in more than one B candidate, pick the candidate with
the lowest |∆E| value.

A similar algorithm is used for B→D∗∓π± candidates. The best candidate is chosen based
on of lowest value of

χ2
D =

(
m−m0

σm

)2

+
(
δm− δm0)

σδm

)2

. (4.10)

If this is not sufficient, the candidate is chosen with the best value of ∆E.
In the time-dependent fit we only use events with a successful flavor tag – see Section 4.2.

Also, we select events with ∆t ∈ [−20, 20] ps and require the uncertainty σ∆t to be less than
2.5 ps – see Section 4.3. The final data sample, after these additional cuts, is presented in
Section 4.4.

4.1.3 Signal and background mES description

Signal yields and sample purities are extracted from a fit to the mES distributions in data in
Section 4.4. As discussed in Section 4.1.1, signal candidates accumulate around the nominal B
mass, mB, in the mES ‘signal region’ with mES >5.27. The mES ‘sideband region’ is defined
as 5.20 <mES < 5.27, and is fully dominated by background events. Fig. 4.2 illustrates the
composition of the candidates in the mES signal and sideband regions.

The signal component of B candidates is parameterized with a Gaussian, G(mES), with
mean mB and width σm, centered at the B meson mass.

We distinguish between two types of background in the sample of selected B candidates.
The first background is called combinatorial background and arises from random combinations
of charged tracks and neutral showers from both B mesons in BB events or from continuum
events. The second background is the so-called peaking background. Peaking background con-
sists of mis-reconstructed B decays whose mES values concentrate near the nominal B mass.

The mES distribution of combinatorial background is by definition smoothly distributed,
and does not peak near the B mass. It is parameterized with a threshold function, commonly
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Figure 4.2: Typical composition of the mES distribution.

called the Argus function [63]

A(mES ;m0, κ) = mES

√
1− (mES/m0)2 exp

{
κ

(
1− (mES/m0)2

) }
, (4.11)

where m0 is the upper kinematic limit, fixed at the beam energy Ebeam (5.291 GeV/c2), and
κ controls the slope of the function. The Argus shape parameter κ depends on the B decay
mode.

Peaking background consists of events in which, for example, a true B+→D∗0π+ decay is
mis-reconstructed as a B0→D∗−π+ candidate. The slow π0 from the D∗0 candidate is replaced
by a random charged track with a similar energy. The energy difference ∆E for this fake B
candidate can be sufficiently close to zero, and the mES value of this candidate is near the
nominal B mass, causing an enhancement not accounted for by the Argus shape.

We use the Cruijff function to describe peaking background events [64]

C(mES ;σ(L,R), α(L,R),mB) = exp
{
− (mES −mB)2

2σ2(L,R) + α(L,R)(mES −mB)2
}
. (4.12)

The Cruijff function is simply a Gaussian with left- and right-handed widths, σ(L,R), plus
first order corrections to these widths, α(L,R).

In data, only a small fraction of the events in the mES signal region is due to the peaking
background contribution. This fraction is determined using fully simulated Monte Carlo events
in Section 4.1.4. The impact of the peaking background on the measured CP asymmetries is
taken into account as a systematic uncertainty in Section 9.2.4.

ThemES distributions in data are modeled with the sum of G(mES), C(mES), andA(mES).
For use in the ∆t fit, each event is assigned a probability to be signal or background, f , on the
basis of its energy-constrained mass mES and the fit to the mES distributions in data. The
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4.1 Selection and reconstruction of B mesons

probabilities are defined as

f sig(mES) =
G(mES)

G(mES) +A(mES) + C(mES)
,

fpeak(mES) =
C(mES)

G(mES) +A(mES) + C(mES)
,

f comb(mES) =
A(mES)

G(mES) +A(mES) + C(mES)
, (4.13)

and satisfy by construction f sig + fpeak + f comb = 1.

4.1.4 Peaking background composition

Peaking background consists of mis-reconstructed B decays whose mES values concentrate
near the nominal B mass, and, as such, are recognized as signal events. An example is the
decay B0 → D(∗)−K+, where the hard kaon is mis-reconstructed as a pion. In general, the
fraction of peaking background candidates is larger for final states with higher multiplicities.
The fractions of peaking background in data are determined using the generic BB (B0B0 and
B+B−), fully-simulated Monte Carlo (MC) sample, described earlier in Section 3.5. After event
selection and reconstruction – see Section 4.1.2 – this sample amounts to 165198 signal and
26674 background events, the equivalent of 4.5 times the number of BB events in data.

We split the reconstructed MC candidates into B → D∗∓π±, B → D∓π±, and B → D∓ρ±

decays and, for each mode, determine the corresponding peaking background fraction as fol-
lows. First, we fit themES distribution of the signal andBB background events with a Gaussian
and Argus function, described in Eq. (4.11), respectively. Second, the Argus parameters are
fixed, meaning the κ shape parameter and its normalization. We remove all signal MC events
and redo the mES fit on the remaining BB background events with the Argus and a Cruijff
function – the latter described in Eq. (4.12). For each B decay mode α(R) is set to zero. The
peaking background fraction per B mode is determined as the ratio of the number of BB
events in the Cruijff function, P , see Fig. 4.3, over the Gaussian yield from the first fit to
the combined signal and BB background sample.

The same routine is applied to the signal events and B0B0 background or B+B− background
to find the corresponding B0 or B+ peaking background contributions. All fractions are listed
in Table 4.4. The B0 or B+ peaking background fractions do not add up exactly to the
combined BB contribution because, for the individual B0 and B+ fits, the Argus component
sometimes accounts for more and sometimes accounts for less peaking background.

Decay mode B± fraction (%) B0 fraction (%) combined (%) relative B0 fraction

B0 → D−π+ 1.2± 0.1 1.6± 0.1 2.8± 0.1 0.57
B0 → D∗−π+ 1.1± 0.2 1.0± 0.1 2.2± 0.1 0.47
B0 → D−ρ+ 0.8± 0.2 0.8± 0.2 2.5± 0.2 0.50

Table 4.4: Estimated peaking background contributions to the reconstructed B decay
modes from: B+B− background, B0B0 background, and (combined) BB back-
ground. The errors are statistical only. The last column shows the relative B0

peaking background fraction used in the time-dependent fit to data.
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Figure 4.3: Monte Carlo BB background contributing to the decays: a) B→D∓π±, b)
B→D∗∓π±, and c) B→D∓ρ±. The results of the mES fit described in the
text are superimposed.
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4.2 The b-flavor tagging procedure

In the mES fit to data, described in detail in Section 4.4, we fix the combined peaking
background fractions relative to the overall signal yield, and fix the peaking background shapes
to the Cruijff shapes in Fig. 4.3. In the time-dependent fit we split the combined peaking
background into a B0 mixing-component and a double-exponential B+ component, as detailed
in Section 6.3.2. The relative peaking background fractions used in the ∆t fit to data are shown
in the last column of Table 4.4.

In Table 4.5 one finds the dominant B decay modes contributing to the peaking back-
ground, determined by sorting all background B decay modes found in the signal box (mES>
5.27 GeV/c2). Background from B0 and B+ decays that peaks in the mES signal region is
nearly all due to charmed final states.

B0→D−π+ % B0→D∗−π+ % B0→D−ρ+ %

B+→D∗0π+ 43 B+→D∗0π+ 28 B+→D0ρ+ 20
B0→D∗−π+ 6 B0→D∗−µ+ν 9 B+→D∗0ρ+ 10
B+→D0ρ+ 4 B+→D0ρ+ 9 B0→D∗−ρ+ 10
B+→D0K+ 3 B0→D∗−ρ+ 5 B0→D∗−a+

1 5

Table 4.5: Decay modes with the largest contributions to the peaking background.

In the previous sin(2β+γ) analyses [65] the main sources of peaking background (≈ 35%)
for the decay modes B → D∓π± and B → D∗∓π± were B0 → D−K+ and B0 → D∗−K+,
respectively, with kaons mis-reconstructed as pions. In this analysis these background modes
have been filtered out in the selection process by applying the !Tight kaon filter to the hard
pion of B→D(∗)∓π± candidates (see Section 4.1.2).

4.2 The b-flavor tagging procedure

The procedure of identifying the flavor of the tagging B meson on the basis of its decay
products is called b-flavor tagging, or B tagging. As discussed in Section 2.7, B tagging is
a vital ingredient in the time-dependent CP analysis of B0→D(∗)∓h± decays. This analysis
employs the so-called BABAR Tag04 algorithm [58].

The flavor tagging procedure analyzes an event after removing all tracks from the fully
reconstructed B (Brec). The tagging algorithm is split into two layers. The first layer consists
of nine neural networks, called subnets or subtaggers. Each subnet is specialized in recognizing
a ‘tag signature’, such as the presence of leptons from semi-leptonic B decays – discussed in the
following Section. The second layer is a neural net that combines the output of these subnets,
produces the combined ‘flavor tag’ for Btag, and sorts events into ‘tagging categories’ – see
Section 4.2.2

The performance of the BABAR tagging algorithm has been optimized and trained with
large samples of fully simulated Monte Carlo events [58].

To quantify the discriminating power of each tagging category the tagging power Qi =
εi(1− 2wi)2 is used, where εi is the fraction of events associated to tagging category i and wi

is the mistag fraction, i.e. the probability of assigning the incorrect tag to an event in this
category. The statistical errors of the CP asymmetries measured in this analysis are inversely
proportional to

√
Q, with Q =

∑
iQi.
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The mistag fractions and tagging performance are measured directly in data, and are there-
fore presented and discussed in Section 8.2. The impact of mistagging on the time-dependent
distributions is presented in Section 6.2.2.

4.2.1 Tag signatures

The BABAR flavor tagging algorithm is based on the correlations between the flavor of neutral
B mesons and the charge of particles in the final state, such as leptons, kaons, and soft pions.
These correlations, or ‘tag signatures’, are summarized below.

Leptons from semi-leptonic B decays

b c u,
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Figure 4.4: a) Primary leptons from B decays, and b) secondary leptons with the opposite
charge, produced by the cascade decay b̄→ c̄→ s̄.

Semi-leptonic B→Xlν decays (see Fig. 4.4a) constitute roughly 20% of all B decays, and
produce electrons or muons whose charge has the same sign as the b quark. Since these leptons
are the ‘primary’ decay products of the virtual W boson, as emitted by the b quark, they carry
large momenta p∗l in the B center-of-mass frame. Thus, they can be distinguished from slower,
‘secondary’ leptons from b̄→ c̄→ s̄ cascades, which exhibit the opposite b quark-lepton correla-
tion (see Fig. 4.4b). Primary leptons are also faster than most pions and kaons produced by B
decays. This permits discrimination of misidentified leptons and purely kinematic selection of
semi-leptonic decays when no lepton PID is available. Last but not least, primary leptons do
not suffer from so-called tag-side interference – an important feature for this analysis, discussed
in detail in Chapter 5.

Three neural networks are used to recognize primary leptons: two examine identified elec-
trons or muons, respectively, and the other only considers kinematics. Kinematics and strict
lepton identification make the semi-leptonic B decays the cleanest – and hence most reliable
– flavor tagging signature. As we shall see in Table 8.6, lepton tags are not very efficient
(εl ≈ 8.7%), but they are very accurate (wl ≈ 3.8%), resulting in Ql ≈ 7.4%.

Strangeness produced in B decays

Most kaons in B0 decays come from the decay chain b̄→ c̄→ s̄, as illustrated in Fig. 4.5. The
kaons can have both the same and opposite charge sign as the b quark. The fractions of B0

decays with a kaon are [66]

n(B0 → K+X) = 0.58± 0.01± 0.08 ,
n(B0 → K−X) = 0.13± 0.01± 0.05 . (4.14)
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4.2 The b-flavor tagging procedure

The majority of kaons in B0 decays thus has a positive charge. Hence, an identified charged
kaon provides a powerful flavor tag signature.

c
s
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+
Kb
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−

+
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d
π −d

B

c,u
s u

s

Figure 4.5: Sources of charged kaons in the decay of a B0 meson.

Hadronization to a kaon of the s̄ quark in the chain b̄→ c̄→ s̄ is the primary source of ‘right-
sign’ correlation between the b quark and the kaon charge. This cascade also emits two virtual
W bosons that can hadronize to kaons, but this process is Cabibbo-suppressed compared with
pion and Ds production (|Vus|2 ≈ 0.04). In Fig. 4.5 the W+ produces a K+, which is another
source of right-sign correlation. Likewise, the W− from the c̄ decay can result in a wrong-sign
kaon.

The tagging algorithm identifies kaons using one subnet. No kinematic separation between
wrong and right-sign kaons is possible (unlike primary leptons), leaving kaon identification as
the only tag signature. The three (or less) best kaon candidates determine the B flavor from
the sum of products of each kaon’s charge and kaon likelihood.

Based on the same line of reasoning, the tagging algorithm includes a Λ subtagger. Tagging
information comes from the fact that the Λ baryon is most likely to contain an s quark produced
in the decay b→c→s. Therefore, a Λ indicates a B0 while a Λ indicates a B0.

Kaon tags are more efficient than leptons tags, but less accurate. From Table 8.6 ‘kaon’
tags (including the Λ tagger) have a combined efficiency of about 28%, a mistag probability
of roughly 11%, and result in Qk ≈ 16.8%. The Λ subnet has an individual tagging power of
only about Q ≈ 0.3% [58].

Soft and hard pions
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Figure 4.6: The decay B0→D∗−π+, ρ+, a+
1 . The charge of the soft pion πs and that of

the direct pion πh are correlated with the charge of the b quark.
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As mentioned in Section 4.1.2, in the D∗+→D0π+ decay the masses of the D∗+ and D0 are
very close. The resulting pion carries very little momentum, and is called soft, or πs. Viewed in
the CM frame of the B, the soft pion flies in the nearly the same direction as the D0. When the
D∗ originates from a B (see Fig. 4.6), the sign of its charge, and hence that of πs, is opposite
to that of the b quark.

The slow-pion subtagger examines pions with p∗πs
< 250 MeV/c, and identifies slow pions

using PID information, p∗πs
, and the angle between its flight direction and the thrust axis of

the remaining B decay products. The selection of soft pions suffers from high background,
resulting in a large mistag fraction.

Another subnet exploits the correlation between the kaon and the slow pion from the D∗.
This subnet studies all oppositely charged kaon and slow pion combinations, along with the
kaon likelihood, the slow pion information, and the angle between the two tracks.

Even more tagging information is available when the W+ in Fig. 4.6 hadronizes as a pion.
The pion πh has significant momentum, and its charge correlates directly to the flavor of the
b quark. The same holds in the decay B0 → D−π+. The so-called maximum p∗ subtagger
attempts to determine the B flavor by selecting the track with the highest CM momentum
that originates from less than 1 mm of the beam in the x–y plane.

The charge of πh is opposite to that of πs, which can also be used to determine the B
flavor. This information is employed in the ‘fast-slow-correlation’ subnet, which examines all
oppositely charged πs and πh combinations, using the available soft and hard pion information
and the angle between the two tracks.

From Table 8.6 these tagging signatures have a combined efficiency of about 38%, Qπ ≈
5.9%, and an average mistag probability as high as 30%.

4.2.2 Tagging categories

Each subtagger provides a continuous output whose sign and magnitude reflect the B flavor
and confidence in its result. A set of charged particles belonging to Btag can exhibit any of the
tag signatures of Section 4.2.1. It may therefore be identified by several of the 9 subnets.

The second neural network combines the output of the subnets. The output is another
continuous variable NN , with values between −1 and +1, where candidates with NN close to
+1 (−1) are more likely to be a B0 (B0). Based on NN , the most likely flavor tag is assigned
to each event. The estimated mistag probability w for Btag is obtained as (1+NN)/2. The
output of the tagging algorithm is shown in Fig. 4.7.

Each event with an estimated mistag probability of less than 45% is assigned to one of
six hierarchical, mutually exclusive tagging categories. The estimated mistag probability is
not used elsewhere in this analysis. The selection criteria defining the tagging categories are
described in Ref. [58]. The categories are named after the class(-es) of tag signature they
(mostly) contain.

The Lepton tagging category contains events with an identified lepton, i.e. with semi-
leptonic B decays. Other events are divided into categories based on their estimated mistag
probability. Events dominated by kaon signatures tend to have a wide range of mistag proba-
bilities, so two categories are defined: Kaon I and Kaon II. It also includes the lambda tags.
The K-Pi category roughly contains the slow-pion/kaon tags.

The slow-pion and fast-slow-correlation tags, having similar mistag probabilities, are in-
cluded in the Pion category. The last category, called Other, mostly collects events from the
inclusive p∗ tag.
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Figure 4.7: Output of the BABAR tagger [58]. The dashed and solid histograms are the
distributions obtained for true B0 and B0 tags, respectively.

As will become clear in Chapter 8, background levels and the ∆t resolution depend upon
the tagging category.

The motivation for having tagging categories, instead of a per-event mistag probability,
is historical, and comes from the fact that earlier tagging algorithms in BABAR were split by
tag signature. To optimize the tagging power Q, studies have been performed with per-event
mistag probabilities and a larger number of categories, but with no significant improvements.

4.3 Time difference measurement

The time difference between the B decay times, ∆t ≡ trec − ttag, is determined from the
measured separation ∆z between the vertices of the reconstructed B meson (Brec) and the
flavor-tagging B meson (Btag) and the Lorentz boost of the Υ (4S). The ∆t resolution is
dominated by the resolution of the Btag vertex position.

4.3.1 ∆z reconstruction

The decay vertex of the Brec candidate is reconstructed using all its daughters’ charged tracks.
Daughter tracks from K0

S or D candidates are first fit to a separate vertex, and the resulting
momentum and position are used in the fit to the Brec vertex. The typical resolution on the
zrec vertex position is about 65µm.

The Btag vertex is constructed with an inclusive technique, using all tracks in the event
not associated to Brec. In order to reduce possible biases and tails from long-lived particles,
K0

S and Λ candidates are used in the fit instead of their daughters. Pairs of oppositely-charged
tracks consistent with photon conversions (γ→e+e−) are excluded. The remaining tracks and
composite candidates serve as input in the geometrical fit to the Btag vertex.

The three-momentum of the Btag candidate and the estimated production point of the
B0B0 pair are included in the vertex fit. This so-called beam constraint helps in removing
tracks that do not come directly from the Btag candidate. The two are obtained as follows.
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The three-momentum ~prec and the decay vertex of the Brec candidate are measured with good
precision. The average beam spot ellipsoid has been determined in the rolling calibration,
discussed in Section 3.2. Owing to the small size of the beam spot in y, the intersection of the
two provides a good estimate of the production point of the B0B0 pair. The three-momentum
~pΥ (4S) of the Υ (4S) is obtained from the beam energies. Momentum conservation then yields
~ptag = ~pΥ (4S)−~prec. From the two a ‘pseudo’ track is formed, which is used along with the
other tracks to find the Btag vertex.

The Btag vertex is determined with an iterative procedure, aimed at reducing biases from
decay daughters of charmed mesons, which have a long decay length. For example, D0 and
D+ mesons have a decay lengths cτ of about 130µm and 300µm, respectively, resulting in
detached vertices from the B decay point. Since all particles are boosted forward, the resulting
bias is always positive in ztag. After each iteration, tracks with a large χ2 contribution to the
fit (∆χ2>6) are removed, and the vertex is refit. This process is repeated until no track fails
the χ2 requirement, or only two tracks are left. The RMS resolution in z for the Btag vertex is
about 160µm. Any remaining bias is modeled in the ∆t resolution function; more about this
in in Section 4.3.3.

The spatial separation between the Brec and Btag decay points is computed from the
reconstructed decay vertices. Although the decay points are known in three dimensions, because
of the boost along z only ∆z is important. The algorithm that computes ∆z also provides a
per-event estimate σ∆z of the uncertainty on ∆z, accounting for the correlation between Btag

and Brec from the use of the pseudo track.
The overall ∆z resolution of the BABAR detector is about 180µm, and is dominated by

the tag-side vertex reconstruction. The absolute scale of the measurement of ∆z depends on
the assumed positions of the silicon wafers in the SVT, the impact of which is treated in
Sections 9.3.3 and 9.3.4.

4.3.2 ∆t measurement

Neglecting the B momentum in the Υ (4S) rest frame (≈ 340 MeV/c), referred to as ‘the boost
approximation’, the relation between ∆z and ∆t is simply given by

∆z = βγ∆t, (4.15)

where βγ is the average Υ (4S) boost factor (βγ = 0.55). The boost factor is calculated from
the beam energies, monitored every 5 seconds, and has a precision of 0.1% [56].

Compared with the experimental resolution on ∆z, the effect of the boost approximation on
∆t is quite small. As the momentum of a fully reconstructed Brec is measured to good precision,
however, a correction is applied to account for the small B momentum in the Υ (4S) frame.
A Lorentz transformation is applied to correct for the 20 mrad angle between the detector
symmetry axis and the beam direction, i.e. the boost axis. The impact on the ∆t measurement
of the spread in the two beam energies, which results in a spread in the Υ (4S) momenta of
about 6 MeV/c, is negligible.

The exact relation between ∆t and ∆z is more complicated [67]

∆z = βγγ∗recc∆t+ γβ∗recγ
∗
rec cos θ∗rec c (trec + ttag) , (4.16)

where θ∗rec, β
∗
rec, and γ∗rec are the polar angle with respect to the beam direction, the velocity,

and the boost factor of Brec in the Υ (4S) frame, and trec +ttag is the the sum of the decay
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times. Instead of measuring trec+ttag, which can only be determined with poor resolution, its
expectation value is estimated by

〈trec + ttag〉 = τB + |∆t| . (4.17)

The difference in ∆t between Eqs. (4.15) and (4.16) is small because γ∗rec = 1.002 and
β∗rec =0.064. The event-by-event difference between ∆t computed in the two ways has an RMS
of 0.2ps. Eq. (4.16) improves the ∆t resolution by about 5% [56], and removes a bias that
increases when ∆t increases.

As vertex quality cuts, in the final data sample we only include events with ∆t ∈ [−20, 20] ps.
This is a very loose requirement considering the B0 lifetime of 1.536 ps. Events outside this
region are surely mis-reconstructed. Furthermore, we require the uncertainty σ∆t to be less
than 2.5 ps.

4.3.3 Detector ∆t resolution function

The measured and true values of ∆t differ due to the finite detector resolution in the measure-
ment of the decay vertices. The detector response for ∆t, called the ∆t resolution function R,
is approximated by three Gaussian distributions with different widths and means

Rreso(δt, σ∆t|ftail, foutlier, Score, δcore, Stail, δtail, σoutlier, δoutlier) =

(1− ftail − foutlier)
exp−1

2

(
δt−δcore·σ∆t

Scoreσ∆t

)2

√
2πScoreσ∆t

+ftail

exp−1
2

(
δt−δtail·σ∆t

Stailσ∆t

)2

√
2πStailσ∆t

+foutlier

exp−1
2

(
δt−δoutlier·σ∆t

σoutlier

)2

√
2πσoutlier

, (4.18)

where δt = ∆tmeas−∆ttrue is the measured value of ∆t minus its true value, and σ∆t is the
measured event-by-event error on ∆t, computed by the vertex fit. The resolution function is
assumed to be independent of ∆ttrue.

For most events in data, the decay time difference ∆t is well reconstructed (fcore = 1 −
ftail − foutlier ≈ 94%). Their distribution of (∆tmeas−∆ttrue)/σ∆t can be described by a single
‘core’ Gaussian with an RMS close to one. To account for a possible deviation from unit RMS,
we allow for a global scale factor Score to the error on ∆t. In the fit to data, the scale factor
Score and is split by Lepton and non-lepton tagging categories. The distribution of the per-
event errors σ(∆t) for a sample of fully reconstructed B→D(∗)∓π±, ρ±, a±1 decays is shown in
Fig. 4.8a.

For a small fraction of events the ∆t error, Scoreσ∆t, underestimates the true ∆t uncertainty.
These events are described by two other Gaussians in the resolution function: a ‘tail’ and an
‘outlier’. The parametrization of the tail Gaussian is identical to the parametrization of the
core Gaussian. The RMS (σoutlier =8 ps) and the mean (δoutlier =0 ps) of the outlier Gaussian
are fixed and do not use the calculated σ∆t values. The fractions of the outlier and the tail
Gaussians, the means of the core and the tail Gaussian, and the sigma of the core Gaussian
for the signal candidates are free fit parameters.
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Figure 4.8: a) Distribution of event-by-event uncertainty on ∆t (σ∆t) for the sample of
neutral B decays to flavor eigenstates D(∗)−π+, ρ+, a+

1 . The histogram corre-
sponds to Monte Carlo simulation and the points to data. The distributions
have been normalized to the same area. b) Offset of the mean δt residual vs
σ∆t from Monte Carlo simulation.

The systematic uncertainties regarding the choice of the resolution function parameteriza-
tion are discussed in Sections 9.1.1–9.1.4 and 9.2.3. For background candidates the fraction of
events in the tail Gaussian is fixed to zero in order to reduce the number of parameters. In
Section 9.2.3 we discuss the (small) systematic error from this simplification.

As mentioned earlier in Section 4.3.1, a bias in ∆t is caused by tracks from secondary
charmed particle decays in the Btag vertex. The mean bias in (∆tmeas − ∆ttrue) is shown in
Fig. 4.8b. Because ztag is typically overestimated, the bias in ∆t is negative. In general, the
bias depends on the momenta and fraction of tracks from secondary charm decays used in the
reconstruction of the tagging B vertex, and can be different per tagging category. We allow
separate δcore parameters for the Lepton and non-lepton tagging categories.

In addition, it has been found that the bias is larger for events with larger σ∆t [68], as
demonstrated in Fig. 4.8b. To model this, we scale the mean biases of the core and tail Gaussian,
δcore and δtail, by σ∆t. The correlation, illustrated in Fig. 4.9, can be explained as follows. The
major axis of the Btag vertex error ellipse comes from charm decay products, and is oriented
along the charm meson flight direction. Thus, the z error of the vertex fit is correlated with
the D flight length along the z axis. In particular, a D traveling in the forward direction tends
to have both a larger flight length, introducing a larger bias on the vertex position estimate,
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and a larger error along the z-axis.

z direction

D decay vertex

tracks from charm decay

primary tracks

tagB     decay vertex

θ

Figure 4.9: The figure shows two flight directions of the D in the rest frame of the de-
tector. In one case the D travels in the transverse plane, with angle θ, and
in the other case in the forward direction, where the flight length in z tends
to be larger. The projection of the error ellipse on the z axis is larger for the
D meson flying in the forward direction.

The time-evolutions for B0B0 oscillations are convolved with the resolution function to
take into account the uncertainties in ∆t. The convolution is discussed in Section 6.2.3.

4.3.4 Correlations between mistag fraction w and σ∆t

There is a known, linear correlation between σ∆t and the mistag fraction w. Namely, w increases
as a function of σ∆t [69, 70]. This can be understood qualitatively through the parameters’ mu-
tual dependence on (

∑
i p

2
ti)

− 1
2 , where the sum runs over the transverse momenta of all tracks

in the Btag vertex.Intuitively, this vertex is constructed with smaller uncertainty when using
high-momentum tracks with good-precision trajectories. Second, due to the hard spectrum of
right-sign tagged kaons, the flavor-tagging algorithm has a smaller mistag rate for high-energy
particles.

The correlation is negligible for events in the lepton category, having the smallest mistag
fraction. Furthermore, for these events the Btag vertex-determination is dominated by high-
momentum tracks. The correlation is stronger for the hadronic tagging categories, which have
higher mistag fractions and rely mainly on identified kaons in the final state for flavor tagging.
In Section 4.2 it has been discussed that a K+ (right-sign), or a total positive charge of
all kaons, indicates a B0, while a K− (wrong-sign), or a total negative charge for all kaons,
indicates a B0. The probability of assigning the wrong flavor tag, based on the charge of the
kaons, is higher because of wrong-sign kaons present in many B decays. And usually, wrong-
sign kaons are present in events with higher multiplicity due to charge conservation, which
results in a softer momentum spectrum.
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The effect of the correlation between w and σ∆t on the measured CP asymmetries is
small [71, 72]. In our nominal fit the mistagging correlation is accounted for, and the average
dilutions (D = 1−2w) and dilution differences (∆D) for B0 and B0 tags – introduced in
Section 6.2.2 – are parametrized as

D = D0 +DS σ∆t,

∆D = ∆D0 + ∆DS σ∆t. (4.19)

The description holds up well to the cut σ∆t < 2.5 ps. The slopes of the average dilutions
σ∆t for each tagging category are left free in the likelihood fit. The slopes for the dilution
differences for B0 and B0 tags S∆D are fixed to zero.

4.4 Data sample summary

The Section presents a summary of the data sample used in the time-dependent analysis in
Chapter 8.

In the maximum-likelihood fit to the ∆t distributions of the samples B→D(∗)∓π± and
B→D∓ρ±, the probability of an event to be signal (or background) used the measured value of
mES , and is based on the (fitted) distribution of mES for signal and background. as indicated
in Eq. (4.13). The result of the mES fit to data is presented in this Section.

The mES fit is performed to all samples simultaneously, with a subset of the parameters
split by tagging category and B and D(∗) decay mode. The amount of background varies
within the B decay modes and tagging categories, and also slightly for each D(∗) decay mode.
For example, B → D∗∓π± decays have a higher signal purity than B → D∓π±/ρ± decays,
and, likewise, the Lepton tagging category has less background events than the non-lepton
(‘N-Lept.’) tagging categories. Hence, the mES fit with certain parameters split per category
provides a better estimate of the signal probability.

As described in Section 4.1.3, each distribution is fit to the sum of a Gaussian (for signal
events), an Argus function (for combinatorial background events), and a Cruijff function
(for background events that peak in mES , not described by the Argus function). The peak-
ing background functions in mES are fixed to the shapes obtained in Section 4.1.4 from the
reconstructed sample of generic, fully-simulated Υ (4S)→ BB events.

The results of the mES fit are summarized Table 4.6. The signal yields from the mES fit
for the various tagging categories and B⊗D modes are shown in Table 4.7. The combinatorial
background yields are shown in Table 4.8. The B⊗D modes have been labeled Dst, D, R for the
B→D∗∓π±, B→D∓π±, B→D∓ρ± decays respectively, and these names are concatenated
with a description of the D decay, e.g. making ‘DstKpi’ for B0 → D∗−π+ with D̄0 → K+π−

following the D∗− decay. From Tables 4.6-4.8 there are 118 free parameters, of which 96
determine signal and background yields, and 16 fixed parameters, mostly related to the peaking
background description.

Distributions of mES for B→D(∗)∓h±, where the tagging categories and corresponding D
decay modes have been summed, are shown in Fig. 4.10. The result of the fit, used to determine
the event-by-event signal probability, is overlaid on the data. Fig. 7.17 in Section 7.6 shows
the corresponding residual plots.

In Table 4.6 the signal purity P – defined as the fraction of signal yield over total number
of events – and combinatorial background fraction have been calculated for events in the signal
box, i.e. for events withmES>5.27 GeV/c2. The signal, combinatorial and peaking background
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Parameter B→D∓π± B→D∗∓π± B→D∓ρ±

Signal yield 14617± 129 13694 ± 120 8517± 99
Peak. bkg. yield 421.1± 3.7 308.0 ± 2.7 218± 2.5
Comb. bkg. yield 13996± 131 5950 ± 84 9823± 107
P (%) 84.5± 0.3 91.1 ± 0.2 79.7± 0.4
Comb. bkg. fraction (%) 13.0± 0.3 6.8 ± 0.2 18.3± 0.4
mB (MeV/c2) 5280.01± 0.02 5279.98 ± 0.02 5279.97± 0.04
σm (MeV/c2) 2.46± 0.02 2.52 ± 0.02 2.80± 0.03
End point (MeV/c2) 5290.5 (fixed)
Argus parameter κ Lepton N-Lept. Lepton N-Lept. Lepton N-Lept.

κ[DKpipi] −109± 40 −19± 4 – –
κ[DKspi] −40± 11 −27± 1 – –
κ[DstKpi] – −80± 27 −28± 3 –
κ[DstKpipi0] – −75± 32 −37± 3 –
κ[DstKspipi] – −115± 65 −7± 4 –
κ[DstK3pi] – −118± 83 −21± 6 –
κ[RKpipi] – – −87± 10 −40± 1

κ[RKspi] – – −31± 29 −38± 5

Peak. bkg. fraction (%) 2.9 (fixed) 2.2 (fixed) 2.6 (fixed)
Cruijff p.b. parameters Left Right Left Right Left Right
σpb (MeV/c2) (fixed) 3.2 2.6 3.0 2.5 3.6 3.4
αpb (fixed) 0.096 0.0 0.0 0.0 0.044 0.0

Table 4.6: Summary of results of the mES fit to the data sample.

Signal yield Lepton Kaon I Kaon II K-Pi Pion Other

DKpipi 1464± 39 1952± 46 2925± 58 2504± 53 2463± 54 1711± 45
DKspi 181± 14 223± 16 356± 20 311± 19 311± 19 217± 16
DstKpi 566± 24 685± 27 1080± 33 865± 30 945± 31 607± 25
DstKpipi0 359± 19 440± 22 673± 27 559± 25 622± 26 400± 21
DstK3pi 544± 24 689± 27 1058± 34 873± 31 934± 32 610± 26
DstKspipi 130± 11 180± 14 294± 17 185± 14 233± 16 167± 13
RKpipi 934± 31 1130± 35 1804± 46 1320± 40 1447± 41 1003± 35
RKspi 111± 11 133± 12 220± 16 147± 13 157± 13 112± 11
Total 4288± 66 5430± 77 8408± 97 6763± 87 7113± 90 4825± 74

Table 4.7: Signal yields from the mES fit to data, split by tagging category (row) and
B⊗D mode (column).
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Figure 4.10: The mES distributions in the signal region for, from top to bottom, the
B→D∓π±, B→D∗∓π±, and B→D∓ρ± sample for the events that satisfy
the selection criteria, fit with the function described in the text. The dashed
curves indicate the sum of the combinatorial and peaking background con-
tributions.

yields are measured over the entiremES range. The fractions of peaking background are defined
relative to the signal yields of B decay modes.

As seen in Fig. 4.10, the likelihood to find signal events in the mES sideband, with 5.20<
mES<5.27 GeV/c2, is practically zero. Notice in Table 4.6 that the average signal purity varies
from 80% to over 90% between the three B decay modes. In total, 36, 828± 202 signal events
are available in the ∆t fit to determine CP violation related parameters.
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Comb. bkg. yield Lepton Kaon I Kaon II K-Pi Pion Other

DKpipi 149± 14 1402± 42 3161± 62 2611± 56 3043± 61 2511± 55
DKspi 17± 5 160± 14 283± 19 211± 16 248± 18 201± 16
DstKpi 7± 4 173± 14 345± 20 265± 18 290± 18 208± 15
DstKpipi0 24± 6 267± 18 541± 25 392± 22 411± 22 312± 19
DstK3pi 25± 6 355± 21 644± 27 433± 22 470± 24 375± 21
DstKspipi 3± 3 56± 8 107± 11 92± 10 82± 10 72± 9
RKpipi 220± 17 878± 32 2135± 49 1902± 46 2161± 49 1724± 44
RKspi 18± 5 85± 10 204± 15 179± 14 184± 14 134± 12

Table 4.8: Combinatorial background yields from the mES fit to data, split by tagging
category (row) and B⊗D mode (column).
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Chapter 5

Tag-side interference

Interference between CKM-favored b→ cud and doubly-CKM-suppressed b→ ucd amplitudes
in final states used for B flavor tagging gives deviations from the standard time evolution
assumed in CP -violation measurements at B factories producing coherent B0B0 pairs. The
time-dependent analysis of B→D(∗)∓h± decays (h = π, ρ), used for measuring sin(2β+γ),
must incorporate this possible tag-side interference, which could produce asymmetries as large
as the expected signal asymmetry.

5.1 Introduction

An essential ingredient in CP violation measurements in B0 decays is flavor tagging. In this
Chapter, we point out a subtlety of flavor tagging previously overlooked in many CP violation
analyses, describe its impact on the measurement of sin(2β+γ), and show how to address it.

In the PEP-II asymmetric B-factory B0B0 meson pairs are produced in e+e− interactions
at the Υ (4S) resonance, where the pair evolves coherently in a P -wave state until one of the
B mesons decays. Typically, as in this measurement, one B decay is fully reconstructed and
the flavor (whether it’s a B0 or B0) of this B, at the time of the other B’s decay, is inferred
from the decay products of the other B (the tag B). At the time the first of the two B mesons
decays, the B mesons are known to be in opposite flavor states. In terms of the time difference
between the two B decays, ∆t ≡ trec − ttag, the time-dependent CP asymmetry is defined as

ACP (∆t) ≡
N

(
tag B0,∆t

)
−N

(
tag B0,∆t

)
N (tag B0,∆t) +N

(
tag B0,∆t

) , (5.1)

where N is the number of events at ∆t with a B0 or B0 as the tag B.
As described in Section 4.2.1, charged leptons and kaons are often used to infer the flavor

of the tag B meson. The charge of a lepton from a semi-leptonic B decay has the same sign
as the charge of the b quark that produced it. For example, a high-momentum e+ (e−) would
indicate that the tag B was a B0 (B0) at the time of its decay. Similarly, a K+(K−) more
often than not comes from a B0 (B0). This works because the most likely b decay is b → c
and the most likely c decay is c → s; thus the s quark usually has the same charge as the b
quark. However, the lepton or kaon charge does not always correctly indicate the tag-B flavor:
mistags can arise from either incorrect particle identification or from other B decay chains
that produce wrong-sign leptons or kaons. As a result, the mistag fraction must be measured
from data in order to determine the true CP asymmetry from the measured one.
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It is usually assumed that the measured CP asymmetry is entirely due to the interfering
amplitudes contributing to the fully reconstructed B decay mode, and that the individual
tagging states, such as B0 → D+π−, are dominated by a single B decay amplitude. In other
words, if only one B decay amplitude contributes to the tagging final state, it is safe to
assume that all interference effects, such as CP violation, are due to the evolution of the
fully reconstructed B. This assumption, which is valid for semi-leptonic B decays, ignores the
possibility of suppressed contributions to the tag-side final state with different weak phases,
such as happens for non-leptonic decays.

These suppressed contributions may be important for kaon tags. For example, the D+π−

final state with D+ → K−π+π+, which is usually associated with a B0 decay, can also be
reached from a B0 through a b → ucd decay. Its amplitude is suppressed relative to the
dominant B0 decay amplitude (b → cud) by a factor of roughly |(V ∗

ubVcd)/(VcbV
∗
ud)| ≈ 0.02,

and has a relative weak phase difference of γ. Both Feynman diagrams have been shown in
Fig. 2.9 in Section 2.6. The tag-side b→ cud and b→ ucd amplitudes interfere, and, through
the coherent evolution of the B0B0 pair, alter the time evolution of ACP (∆t). In the following
Sections we investigate the consequences of this (small) ‘tag-side interference’ effect on the
time-dependent CP -asymmetry measurement of B→D(∗)∓h± decays (h = π, ρ), at B factories
that use coherent B decays.

In Sections 5.2–5.6, we review the general formalism for describing the coherent evolution
of the B0B0 system, define our notation for describing the tag-side amplitude, and state the
assumptions we employ in our analysis. In Section 5.7, we evaluate how tag-side interference
affects the mistag fraction measured from the amplitude of the time-dependent mixing (not
CP ) asymmetry. We find that the tag-side interference effects are not simply absorbed into the
mistag fractions and that, to first order, the mistag fractions are unchanged by tag-side inter-
ference. In Section 5.8 we evaluate how tag-side interference affects the decay time-dependent
techniques used for measuring sin(2β+γ) (e.g. the time-dependent analysis of B→D(∗)∓h±).
We find that tag-side interference effects can be as large as the signal asymmetry. We show
a technique for performing the analysis in a general way, which does not require assump-
tions about the size of tag-side interference effects and maximizes the statistical sensitivity to
(2β + γ). We summarize our conclusions in Section 5.9. The impact of tag-side interference
on the standard mixing-induced CP asymmetry measurements – e.g. sin 2β from B→J/ψKS

and the CP asymmetry in B→π+π− – can be found in Ref. [73].

5.2 General coherent formalism

In Section 2.5.2 we have defined the formalism for describing the time evolution of a pair of
neutral B mesons that are coherently produced in an Υ (4S) decay and then subsequently decay
to final states ft and fr at times tt and tr, respectively, measured in the parent B meson’s rest
frame. For completeness, we summarize it here.

Given the B0 (B0) decay amplitude to fk, Ak (Ak), the complex parameters a± can be
defined as

a+ = At Ar −At Ar , a− =
p

q
At Ar −

q

p
At Ar , (5.2)

where the ‘t’ (‘r’) subscript refers to the tag (reconstructed) B meson or its final state.
Assuming CPT invariance, ∆Γ/Γ� 1, and |q/p| ' 1 (see Section 2.5.1), the resulting time
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dependence of Eq. (2.39), when the tagged meson is a B0, can be expressed as

F (∆t) = e−Γ|∆t| [R+ C cos(∆m∆t) + S sin(∆m∆t)] , (5.3)

and correspondingly when the tagged meson is a B0

F (∆t) = e−Γ|∆t| [
R+ C cos(∆m∆t) + S sin(∆m∆t)

]
, (5.4)

where ∆t ≡ tr−tt. The coefficients satisfy the constraint C2 + S2 = R2 , and are given by

R ≡ 1
2

(
|a+|2 + |a−|2

)
, C ≡ 1

2
(
|a+|2 − |a−|2

)
, S ≡ +Im(a∗+a−) . (5.5)

5.3 Characterization of tagging amplitude

The strength of the doubly-CKM-suppressed (DCS) decays has been expressed in Eq. (2.46)
as

λf =
q

p

Af

Af
. (5.6)

This combination is independent of the choice of phases for the B0 and B0 states. Suppose |f〉
is a final state that is the result of a B0 decay. For example, if |f〉 represents the tag B, a K+

would indicate that the tag B decayed as a B0, assuming the dominant b → cud transition
occurred. Then, like in Section 2.6,

λf = rfe
−2iβ−iγeiδf , (5.7)

where the relative amplitude rf is a real number of order 0.02, and δf is the strong phase
difference of the B0 decay relative to that of the B0 decay, assuming b → cud and b → ucd
transitions for the B0 and B0 decays respectively. If, for this final state, there is only one
mechanism contributing to the B0 decay and to the B0 decay, then for the CP conjugate state
|f〉 we have

λf =
1
rf
e−2iβ−iγe−iδf . (5.8)

We shall make the assumption of a single contributing amplitude except as noted below.
Because the DCS amplitudes are only about 2% of the allowed amplitudes, in what follows

we shall drop all terms that are quadratic or higher in this suppression. In practice we combine
many final states f in a single tagging category, f ∈ T . For the tagging category we then have
effective values of r′ and δ′ defined by

r′eiδ
′
=

∑
f∈T εf |Af |2 rfeiδf∑

f∈T εf |Af |2
, (5.9)

where εf is the relative tagging efficiency for the state f . Notice that

|r′| ≤
∑

f∈T εf |Af |2|rf |∑
f∈T εf |Af |2

, (5.10)

so there is a tendency for contributions from different tagging states to cancel, unless all
contributions have nearly the same strong phase. More about this in Section 5.5. Eq. (5.9)
holds only if terms of order r2f can be ignored, as we are assuming.
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5.4 Time-dependent asymmetry coefficients

In this Section, we evaluate the coefficients R (R), C (C), and S (S) of Eqs. (5.3) ((5.4)). Here
we consider the ‘mixing’ case, where the reconstructed B meson decays in an apparent flavor
eigenstate (e.g. D∗+π−, normally assumed to originate from B0 decay). The ‘CP ’ case, where
the reconstructed B has decayed into a CP eigenstate, can be found in Ref. [73]. Dropping the
common factor At Ar (p/q), we can write a+ and a− in terms of the λ parameters for the tag
and reconstructed B mesons as

a+ = λt − λr

a− = 1− λt λr. (5.11)

Quite generally then,

|a+|2 = |λt|2 − 2 Re λt λ
∗
r + |λr|2

|a−|2 = 1− 2 Re λt λr + |λt|2 |λr|2

Im a∗+a− = Imλr (1− |λt|2) − Imλt (1− |λr|2) . (5.12)

The coefficients for the mixing case are given in Table 5.1, where for the reconstructed B meson
final state we have dropped the subscript f from the amplitude ratio r and from the strong
phase difference δ in λr, defined by Eq. (5.7). The only deviation from the familiar case with no
DCS contributions, to first order in r and r′, is the presence of a small S(S) coefficient. Fig. 5.1
shows an illustration of the time evolution for when the flavor of the two B mesons at the
time of decay was opposite (unmixed) or the same (mixed). The nominal (r = r′ = 0) case is
contrasted with an example of a non-zero DCS contribution in the reconstructed B amplitude
and with an example of non-zero DCS contributions to both the tag and reconstructed B
amplitudes. The amplitude ratios r and r′ have been enlarged by a factor of five with respect
to the expected value (0.02) so that the DCS contributions are more clear.

5.5 Completely inclusive tagging categories

We can relate the effective r′ and δ′ to the 2× 2 matrix Γ that generalizes the decay rate for
the B0B0 system. Let T be the class of states DX, where X represents non-charmed hadrons.
Neglecting the relative tagging efficiency εf for the moment, we have∑

f∈T

q

p
A∗fAf =

∑
f∈T

|Af |2λf =
∑
f∈T

〈B0|H|f〉〈f |H|B0〉rfe−2iβ−iγ+iδf = ΓDX r′e−2iβ−iγ+iδ′ ,

(5.13)
where ΓDX is, up to a trivial normalization, the partial width of B0 into the class of states of
the form DX. On the other hand, we can write∑

F∈T

q

p
A∗fAf =

∑
F∈T

q

p
〈B0|H|f〉〈f |H|B0〉 =

q

p
ΓDX 12 , (5.14)

where ΓDX 12 is the contribution of states of the form DX to the off-diagonal part of the Γ
matrix. So

r′e−2iβ−iγ+iδ′ =
q

p
ΓDX 12/ΓDX . (5.15)
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a) opposite-flavor tag

b) same-flavor tag
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Figure 5.1: Time-dependent decay distributions for the final state D∗−π+, for a) a B0

tag, and b) a B0 tag. The angle (2β + γ) is set to the value 1.86. The situ-
ation with no doubly-CKM-suppressed contribution on both the tag-side and
reconstruction-side is indicated with the solid curve. The dotted curve has
r = 0.1 and δ = 0, but no tag-side interference. The dashed curve represents
the example with r = r′ = 0.1, δ = 0, and δ′ = π. In these examples, the
r and r′ values are ×5 the expected values in order to clearly illustrate the
differences with respect to the case with r = r′ = 0.

If sum over states in Eq. (5.14) were complete, then δ′ would vanish. To see this, imagine
using as a basis of states fS not the physical states that are observed but instead a basis
of states that are eigenstates of the S matrix, that is, a basis of states that each scatter
into themselves. Because we are summing over all states in a collection connected by strong
interactions, there is such a basis. Then the final state interaction phases associated with AfS

and AfS
would both be eiδfS . These would cancel in the product A∗fS

AfS
.

In general, however, because tagging does not capture every state, one should think of
Γ12 and Γ as effective quantities, limited by the partial sum over states. Therefore one can-
not assume that δ′ vanishes. Also, in reality, the relative tagging efficiency εf , set to one in
Eq. (5.13), is not the same for all of the states in T , so the tagging category representing the
class of states DX is not completely inclusive either.

5.6 Estimated size of doubly-CKM suppressed amplitude

In the introduction of this Chapter we have given an estimate for the size of the DCS amplitude
(r), relative to the favored amplitude, to be approximately 0.02, which is simply the ratio of
the CKM elements involved, |(V ∗

ubVcd)/(VcbV
∗
ud)|. Here, we discuss the uncertainty of r′ as well

as what can be assumed, if anything, about the average strong phase difference (δ′) between
the DCS and favored tagging amplitudes.

The decay B0 → D+π− is doubly-CKM suppressed, but its branching fraction has not been
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measured. We can estimate its branching fraction from the related decay mode B0 → D+
s π

−,
using Eq. (10.2)

rDπ ≈

√
B(B0 → D+

s π−)
B(B0 → D−π+)

∣∣∣∣Vcd

Vcs

∣∣∣∣ fD

fDs

.

In Chapter 10 we obtain

rDπ = (1.53± 0.33 (exp.)± 0.08 (theo.))× 10−2 ,

rD∗π = (2.10± 0.47 (exp.)± 0.11 (theo.))× 10−2 ,

rDρ = (0.31± 0.59 (exp.)± 0.02 (theo.))× 10−2 .

For D(∗)π is in good agreement with the naive estimate of 0.02, albeit with large uncertainties.
There are some theoretical arguments for expecting the strong phase difference δ to be

small [89] (modulo π), but we know of at least one case where a non-trivial strong phase has
been observed in B decay1. The size of the effective amplitude ratio, r′, given by Eq. (5.9),
depends on the values of δ the final states included in the tagging category. As Eq. (5.10)
shows, varying over many values of δ between the states will tend to reduce r′.

Given the large uncertainty on the DCS amplitude ratio r for individual final states and
the general lack of knowledge concerning strong phase differences, we conclude that the most
conservative assumptions regarding the effective parameters r′ and δ′ would be to allow r′

values from 0 (full cancellation in the sum) up to 0.04 (no cancellation, with an enhancement
of a factor of two over our estimate of 0.02) and to allow for any value of δ′.

5.7 Mistag calibration with flavor oscillation amplitude

As mentioned earlier, the sign of the tagging kaon charge does not always give the correct flavor
tag. For example, CKM-suppressed D decays, such as D+ → K+K0, can produce wrong-sign
kaons. Pions, incorrectly identified as kaons, can also produce wrong-sign kaons. The amplitude
of any measured asymmetry using kaon tags will be reduced by a factor of (1 − 2ω), called
the dilution factor, where ω is the fraction of tagging kaons that have the wrong sign (mistag
fraction). The mistag fraction ω is usually measured from the amplitude of time-dependent
flavor oscillations in a sample of reconstructed B0 decays to flavor-specific final states [56].
The measured value of the asymmetry C/R will be a direct measurement of (1 − 2ω), which
can then be used to interpret measured CP asymmetry coefficients.

Contrary to what one may guess, the corrections due to DCS amplitude contributions are
not simply absorbed into the mistag fractions. However, to first order in r and r′, the R and C
coefficients are the expected ones, as can be seen in Table 5.1. This means that the measured
mistag fractions will be unaffected by DCS amplitude contributions, either on the tag side or
the reconstructed side.

Using Monte Carlo pseudo-experiments, we find that ∆md is unaffected to the level of
0.001 ps−1 if allowed to float in the fit. The only effect is in the S coefficient, which is usually
assumed to be zero in the analysis of mixing data. We discuss the impact on the measurement
of 2β + γ in Section 5.8.

1The strong phase difference between the longitudinal and parallel polarization amplitudes of the transversity
basis in B → J/ψK∗(892) has been measured [74] to be 2.50± 0.22, which is about 3σ from π, in contradiction
with the factorization prediction of 0 or π.
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Remember that the statements above apply to measurements that only use kaon tags. In
practice, all useful sources of flavor information from the tag side B are employed in order to
maximize the sensitivity of the measurement. The statistical error on the measured asymmetry
scales as 1/

√∑
iQi, where each flavor tagging category contributes Qi = εi(1−2ωi)2 and εi is

efficiency for category i. Lepton flavor tags do not have the problem of a suppressed amplitude
contribution with a different weak phase, so one can assume that r′ = 0 for lepton tags. If a
measurement uses both lepton and non-lepton tags, the magnitude of the tag-side interference
uncertainty will be scaled down by a factor of Qnon−lep/(Qlep + Qnon−lep). For example, the
BABAR flavor tagging algorithm (see Section 8.2) has roughly Qlep ≈ 0.1 and Qnon−lep ≈ 0.2.
This gives a reduction of the tag-side interference uncertainty of about a factor of 2/3.

5.8 Impact on measurement of γ with B→D(∗)∓h± decays

As laid out in Section 2.6, one technique for measuring or constraining γ is to perform a time-
dependent analysis of a decay mode that is known to have a non-zero DCS contribution, such
as B→D(∗)∓h± decays (h = π, ρ). For illustration purposes, here we focus on the final state
D∗+π−. The time-dependent asymmetry coefficients are those given in Table 5.1. In the usual
case, tag-side interference is ignored (r′ = 0) and the amplitude of the sin(∆m∆t) term is
2r sin(2β + γ ± δ), where r is the ratio of the DCS to CKM-favored amplitude contributions
for the reconstructed, or non-flavor-tag, B and δ is the strong phase difference between the
two amplitudes. Measuring r and sin(2β+γ± δ) simultaneously is very challenging due to the
small value of r, so r will have to be constrained from other measurements (see Chapter 10).

Symbol Reco Tag sin(∆m∆t) coefficient

S1 B0 (D∗−π+) B0 (K+) −2 r sin(2β + γ − δ) + 2 r′ sin(2β + γ − δ′)
S2 B0 (D∗−π+) B0 (K−) 2 r sin(2β + γ − δ) + 2 r′ sin(2β + γ + δ′)
S3 B0 (D∗+π−) B0 (K+) −2 r sin(2β + γ + δ) − 2 r′ sin(2β + γ − δ′)
S4 B0 (D∗+π−) B0 (K−) 2 r sin(2β + γ + δ) − 2 r′ sin(2β + γ + δ′)

Table 5.2: The 4 coefficients of the sin(∆m∆t) term in the time-dependence of D∗π. The
2nd and 3rd columns give the interpretation of the observed final state (given
in parentheses) in terms of the dominant amplitude.

Since both r and r′ are expected to be of the same order (≈ 0.02), it is clear that tag-
side DCS interference can not be treated as a perturbation on the usual case. This effect is
illustrated in Fig. 5.1. The time dependent analysis should be performed in a way that is
general enough to accommodate r′ ≈ r and any value of δ′.

Table 5.2 gives the sin(∆m∆t) coefficients, taken from Table 5.1, for the four combinations
of reconstructed and flavor tag B final states, where we have neglected r2, rr′, and r′2 contri-
butions. The minimum number of independent parameters in which the S coefficients can be
written is three. It is useful to rewrite the relations for the S coefficients in the following way

S1 = −a+ b+ c (5.16)
S2 = +a+ b− c (5.17)
S3 = −a− b− c (5.18)
S4 = +a− b+ c , (5.19)
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where the three variables to be determined in the time-dependent analysis are

a ≡ 2 r sin(2β+γ) cos δ (5.20)
b ≡ 2 r′sin(2β+γ) cos δ′ (5.21)
c ≡ 2 cos(2β + γ)

(
r sin δ − r′ sin δ′

)
. (5.22)

This parameterization makes no assumptions about the magnitude of r′ or δ′, and is attractive
for several reasons. First, a does not depend at all on the tag-side parameters r′ and δ′. In
the case where δ = 0, which is favored by some [89], a is exactly what one wants to know
(sin(2β+γ)). Secondly, this parameterization cleanly separates the flavor-tag symmetric and
antisymmetric components; the a and c coefficients are diluted by a factor of (1 − 2ω), while
the b coefficient is not, since it has the same sign for tag-side B0 and tag-side B0 events. In
the following Chapters we use the a, b, and c coefficients as the experimental observables to
be determined in the time-dependent asymmetry analysis.

The set of kaon tagging final states that yields correct tags is in general quite different from
the set of final states that yields incorrect tags. This means that within a tagging category,
the effective r′ and δ′ values for correct tags are different from those for incorrect tags. In the
sum over correct and incorrect tags, the terms linear in r′ that appear in the observables of
the asymmetry are

(1− 2ω)r′eiδ
′
= (1− ω)r′ce

iδ′c − ωr′ieiδ
′
i . (5.23)

This equation gives effective r′ and δ′ parameters in terms of the mistag fraction ω, effective
parameters for correct tags (r′c and δ′c) and incorrect tags (r′i and δ′i). This implies that, in
order to have a completely general parameterization in the data analysis, each tagging category
(kaon, lepton, slow pion, etc.) must have different effective r′ and δ′ parameters, and thus
different b and c parameters, due to the dependence on the mistag fraction ω. One particular
case that is relevant for a kaon tag category is when r′i = 0. In this case r′ = r′c(1−ω)/(1−2ω),
which means that the effective r′ is enhanced by a factor of (1− ω)/(1− 2ω).

The experimental knowledge of δ depends on c, so even though the a parameter does not
depend on r′ and δ′, one does not avoid uncertainties due to r′ and δ′ in the analysis. The best
way to reduce this uncertainty is to take advantage of the fact that lepton tags are immune to
the problem (r′ = 0). If the fit is performed with an independent c coefficient for lepton tags,
clep, then, when combined with the a parameter measured by all flavor tagging categories, it
will help resolve to δ and thus (2β + γ).

If r′ and δ′ are not constrained from other measurements, one must allow for values of r′

and δ′ that are consistent with the measured values of b and c. Since it is possible to have a
measured set of a, b, and c parameters that are consistent with r′ = 0 when r′ 6= 0, one must
always consider all r′ values between 0 and r′max consistent with b and c, where r′max is the
largest allowed single-final-state value. This point is illustrated in Fig. 5.2. The uncertainty on
(2β + γ) due to r′ and δ′ is maximal when a is small. In this case, the sensitivity to (2β + γ)
is mostly from the c coefficient and one must rely on flavor tag categories that are known to
have r′ = 0, such as lepton tags.

Using Monte Carlo pseudo-experiments, we perform a simplified study of the impact of
DCS tag-side interference on a system with only two tagging categories: one for unaffected
lepton tags, and the other containing kaon tags. The significance ratio of both categories is
set to Qlep/Qnon−lep = 0.6. All tests use the realistic value of 0.02 for r and r′. Each category
shares the same a parameter. The lepton category constrains clep, and the kaon category fits b
and c. All fit parameters are unbiased, and consistent with Gaussian distributions. Compared
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Figure 5.2: An example of three amplitude configurations that all give the same set of S
coefficients (see Table 5.2). For each set (a, b, or c) the S coefficients are
consistent with no tag-side interference (r′ = 0), while this is only true in
the first case. Each configuration is represented by four diagrams showing the
addition of the reconstructed and tag-side amplitude vectors in the complex
plane. The observable coefficient (S) is the imaginary part, represented by the
vertical band on the right side of each diagram. The parameters for the three
configurations are: r = 0.02; (2β+γ) = 2.10, 1.87, 1.73; r′ = 0.00, 0.02, 0.03;
δ = 0.30, −0.53, −0.58; and δ′ = NA, 1.57, 1.57.

to the situation with no DCS contribution, having one tagging category and identical errors
for its two parameters a and c, the statistical error on a is unchanged, and that on clep has
increased by a ratio compatible with ((Qnon−lep +Qlep)/Qlep)1/2 = 1.6. The parameters a and
b show a 20% correlation, while all other correlations are smaller than 1%.

One experimental strategy for reducing the uncertainties due to r′ and δ′ would be to
constrain them by performing a time-dependent analysis of a flavor-specific final state that
has no DCS contribution (r = 0), such as D∗+l−ν. For such a final state, the undiluted b
coefficient is the same as for D∗+π− and c now has r = 0. This information can be used to
recover the (2β + γ) sensitivity in the c coefficients in the signal sample that was lost due to
the lack of knowledge of r′ and δ′.

The measured a, b, and c coefficients for the various tagging categories and samples can
be combined by forming a χ2 using the measured parameters and the corresponding, inverted
covariance matrix. This assumes that the measurement uncertainties on the a, b, and c param-
eters are Gaussian. A constraint on (2β + γ) can be derived from the χ2 by scanning the χ2

vs (2β + γ) where for each (2β + γ) value the χ2 is minimized with respect to the unknown
parameters δ, δ′, and r′. If there are no external constraints on r′ and δ′, such as from the
analysis of D∗+l−ν suggested above, the b and c parameters from non-lepton tags do not pro-
vide much information, since r′ must be varied from its minimum value compatible with b to
its maximum possible value (for example, see Fig. 5.2). The non-lepton-tag b and c parameters
still must be included in the time-dependent fit, but they are not very useful in the χ2 analysis
to extract (2β + γ).

An example of the χ2 procedure for a hypothetical measurement where (2β + γ) = 1.86,
r = 0.02, and δ = 0.9 is shown in Fig. 5.3. The measured values of the a, b, and c coefficients
were set to the correct values, so the χ2 is zero at the correct and degenerate solutions. The
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5.8 Impact on measurement of γ with B→D(∗)∓h± decays
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Figure 5.3: Scans of χ2 from measured a, b, and c coefficients as a function of (2β + γ)
illustrating two cases: a) one with non-zero tag-side DCS interference, and
b) one without tag-side interference. The solid curve in both a) and b) was
made with the true value of r′. The dashed curve labeled ’envelope’ in figure a)
encloses from below all χ2 curves made with r′ ranging from zero to arbitrarily
large values. The envelope curve in b) coincides with the χ2 curve made with
the true r′ value of zero. The dotted curves in both a) and b) illustrate χ2

curves with incorrect values of r′. The input values were (2β + γ) = 1.86,
r = 0.02, and δ = 0.9. The tag-side parameters for a) were r′ = 0.02 and δ′ =
0.3. The measured values of the a, b, and c coefficients were set to the correct
values. The statistics of the hypothetical measurement correspond to roughly
450 fb−1 of B factory data from one experiment, including a constraint from
D∗lν. There is a discreet ambiguity that gives exactly the same curves after
adding π to the horizontal axis (2β + γ).

two plots in Fig. 5.3 illustrate two cases: a) one with non-zero tag-side DCS interference, and
b) one without tag-side interference. In addition to the curve which allows for any value of
r′, labeled ‘envelope’, additional curves with fixed values of r′ are included. The statistical
errors correspond to a measurement from D∗π in roughly 450 fb−1 of B-factory data from one
experiment including a constraint from D∗lν.

Three important conclusions can be drawn from Fig. 5.3. First, comparing envelope curves
for the r′ = 0.02 case a) to the r′ = 0 case b), the measurements give nearly identical constraints
on (2β + γ). This means that the uncertainty on r′ and δ′ does not affect the measurement.
The only degradation with respect to the situation with no tag-side interference is that, when
not including D∗+l−ν in the analysis, the non-lepton-tag c parapeters no longer contain useful
information.

The second conclusion is that if r′ is non-zero, the constraint on (2β + γ) can be better
than the case where r′ is zero. If so, the b and c parameters in the D∗lν sample will in general
be non-zero, and one effectively adds a measurement of (2β+γ) from the tag-side B. This can
be seen most clearly from the symmetry between the tag-side and reconstruction-side within
the definitions of a, b, and c in Eqs. (5.20–5.22). An extreme, unrealistic example is given by
the solid curve in case a) of Fig. 5.3. It shows what the constraint looks like if r′ would equal
0.02, and if that information were known precisely and were included in the analysis.
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Tag-side interference

Thirdly, the result for D∗π alone, after varying r′ to arbitrarily large values, is equivalent
to the χ2 curve constructed from only a and clep. In other words, when not including the
D∗lν sample in the analysis, the b and non-lepton-tag c parameters do not contribute to the
sensitivity to (2β + γ). Again, however, these degrees of freedom must still be included in the
time-dependent analysis of the data.

5.9 Conclusions

Interference effects between CKM-favored b → cud and doubly-CKM-suppressed b → ucd
amplitudes in final states used for flavor tagging in coherent B0B0 pairs from Υ (4S) decays
introduce deviations from the standard time evolution assumed in CP violation measurements
at the asymmetric-energy B factories.

In measurements of sin(2β+γ) which explicitly use interference between CKM-favored
and doubly-CKM-suppressed amplitude contributions in the final state that is reconstructed,
such as B→D(∗)∓h± decays (h = π, ρ), tag-side interference effects can be as large as the
interference effects of interest one is trying to measure. In any such analysis, the data must
be analyzed in a way that is general enough to allow for tag-side interference effects. We
have shown a general framework for dealing with tag-side interference effects in sin(2β+γ)
measurements. It is possible to achieve an experimental sensitivity to (2β+γ) similar to the
originally proposed measurements, which ignored this effect.
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Chapter 6

Ingredients of ∆t likelihood fit

The CP violation related parameters containing γ are determined with an unbinned maximum
likelihood fit to the ∆t distributions of the flavor tagged B→D(∗)∓π±, D∓ρ± samples. This
Chapter describes the ∆t likelihood functions for the events in the full data sample.

The likelihood function is summarized in Section 6.1. In Section 6.2 the parametrization
for signal events is obtained from the theoretical distributions by incorporating the mistag
fractions and the ∆t resolution function. Functions for the background components follow in
Section 6.3. The free fit parameters are summarized in Section 6.5.

The likelihood sum and functions described below are implemented in the maximum like-
lihood fitting package RooFit [75].

6.1 Likelihood function

The to-be-maximized likelihood sum over the events in our data sample is given by

lnL =
∑
i,j,k

[
ln

{
H+

i,j,k(η=+,∆t)
}

+ ln
{
H−i,j,k(η=+,∆t)

}
+

ln
{
H+

i,j,k(η=−,∆t)
}

+ ln
{
H−i,j,k(η=−,∆t)

}]
, (6.1)

where, in the likelihood function H±i,j,k, the upper + (−) sign refers to the flavor of Btag as a
B0 (B0), i refers to the tagging category, j refers to the reconstructed B mode, and k refers
to the reconstructed D mode. There are 3 reconstructed modes (Dπ,D∗π,Dρ) and 6 tagging
categories. We have η = +1 (−1) for the final state D(∗)−h+ (D(∗)+h−).

The probability density function H±i,j,k(η,∆t) is made up of three contributions

H±i,j,k(η,∆t) = f sig
i,j,kF

±
i,j(η,∆t) + fpeak

i,j,k P
±
i,j(η,∆t) + f comb

i,j,k B±i,j(η,∆t) , (6.2)

where F(η,∆t)±i,j is the likelihood function for the signal component, and P(η,∆t)±i,j and
B(η,∆t)±i,j are the likelihood functions for the peaking and combinatorial background compo-
nents, respectively.

Each event is assigned a probability to be signal or background, fi,j,k, on the basis of its
energy-constrained mass mES and the fit to the mES distributions in data, as described in
Sections 4.1.3 and 4.4. The mES distribution is modeled with a Gaussian distribution G(mES)
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Ingredients of ∆t likelihood fit

for signal events, an ARGUS parameterization A(mES) for combinatorial background, and a
Cruijff function C(mES) for peaking background. The probabilities are defined as

f sig
i,j,k(mES) =

Gi,j,k(mES)
Gi,j,k(mES) +Ai,j,k(mES) + Ci,j,k(mES)

,

fpeak
i,j,k (mES) =

Ci,j,k(mES)
Gi,j,k(mES) +Ai,j,k(mES) + Ci,j,k(mES)

,

f comb
i,j,k (mES) =

Ai,j,k(mES)
Gi,j,k(mES) +Ai,j,k(mES) + Ci,j,k(mES)

. (6.3)

and are assigned per tagging category and B⊗D mode.
The three fractions satisfy f sig

i,j,k + fpeak
i,j,k + f comb

i,j,k = 1.

6.2 Signal ∆t description

The ∆t distributions for signal events are summarized in Section 6.2.1. These do not account
for the mistag probability introduced in Section 4.2, w, and the effect of the finite ∆t resolution
of Section 4.3.3. The modifications to the ∆t distribution from these effects are described in
Sections 6.2.2 and 6.2.3.

6.2.1 The a, b, c parametrization

The ∆t distributions for B→D(∗)∓h± events with no mistagging and perfect ∆t resolution
have been introduced in Eqs. (2.57–2.57) and 5.16–5.19. They can be summarized as

F±
i,j(η,∆t) =

e−|∆t|/τ

4τ
× [1∓ (aj ∓ ηbi − ηcji )

sin(∆md∆t)∓ η cos(∆md∆t)] , (6.4)

where, again, the upper (lower) sign refers to the flavor of Btag as a B0 (B0), i refers to the
tagging category, j to the reconstructed B mode, and η = +1 (−1) for the final state D(∗)−h+

(D(∗)+h−).
The parameters aj , bi, and cji are left free in the fit to the data (except for blep = 0, see

below). From Eqs. (5.20–5.22) in Chapter 5 the CP violation related parameters are

aj = 2rj sin(2β + γ) cos δj ,

bi = 2r′i sin(2β + γ) cos δ′i ,
cji = 2 cos(2β + γ)(rj sin δj − r′i sin δ′i) . (6.5)

The primed parameters relate to tagside interference, which is absent in semi-leptonic decays
– hence r′lep = 0. The parameters aj , common to all the tagging categories, and cjlep do not
depend on the tagside CP parameters and as a result are sensitive to (2β+γ).

The a, b, c parametrization is completely general since it accounts for different r′i and δ′i
in different tagging categories. The parametrization neglects the terms O([rj ]2), O(r′2i ), and
O(rjr′i). This assumption is safe given the expected values of the parameters involved: rj is at
the level of of 0.02, and r′i .r

j . Consequently, in Eq. (6.4) the amplitude of the cosine mixing
terms is one, which we employ in the following Section.
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6.2 Signal ∆t description

To remove any a-priori assumption on CP violation on the reconstruction side, three sets
of a and c parameters are used for the final states Dπ, D∗π, Dρ. In total, we have 26 a, b, c
parameters

1. aDπ, aD∗π, aDρ ;

2. cDπ
lep , cD

∗π
lep , cDρ

lep ;

3. bki, bkii, bkpi, bpi, both ;

4. cDπ
ki , cDπ

kii , cDπ
kpi , c

Dπ
pi , cDπ

oth ;

5. cD
∗π

ki , cD
∗π

kii , cD
∗π

kpi , cD
∗π

pi , cD
∗π

oth ; and

6. cDρ
ki , cDρ

kii , c
Dρ
kpi, c

Dρ
pi , cDρ

oth .

After fitting for these parameters, a second analysis step is necessary to obtain γ. This process
is described in Chapter 11.

6.2.2 Mistag probability

The mistag probability for each tagging category, wi, is approximately the same for B0 and
B0 tagged events, but not exactly equal. For example, the detector response to positive kaons
differs from that to negative kaons due to differences in the total and charge-exchange cross
sections. As a result, two mistag probabilities are defined for each tagging category

1. wi : fraction of true B0 mesons, tagged as a B0,

2. w̄i : fraction of true B0 mesons, tagged as a B0.

The ∆t distributions change due to mistagging

F ′+
i,j (η,∆t) = (1− w) F+

i,j(η,∆t) + w̄ F−
i,j(η,∆t) ,

F ′−
i,j (η,∆t) = w F+

i,j(η,∆t) + (1− w̄) F−
i,j(η,∆t) , (6.6)

where F ′+
i,j (η,∆t) (F ′−

i,j (η,∆t)) is the distribution of B0 (B0) tagged events, using realistic flavor
tagging. More compactly, in presence of non-zero mistag probabilities the ∆t distributions are
written in terms of dilution factors Di, related to the mistag probabilities as Di = 1 − 2wi.
After some algebra Eq. (6.4) can be expressed as

F ′±
i,j (η,∆t) =

e−|∆t|/τ

4τ
×[(1± ∆Di

2
)∓ (〈D〉i × aj ∓ ηbi − 〈D〉i × ηcji )

sin(∆md∆t)∓ η〈D〉i cos(∆md∆t)] , (6.7)

with the dilution differences ∆Di = Di − D̄i and the average dilutions 〈D〉i = 1
2(Di + D̄i). It

can be observed from Eq. (6.7) that the average dilutions can be extracted from coefficients of
the cosine mixing terms of the Dπ, D∗π, and Dρ samples, and the dilution differences from
the unit terms.

Compared with Eq. (6.4) the CP asymmetries of interest get diluted because of mistagging.
Assuming one tagging category and w= w̄, a CP asymmetry A is reduced by

Ameas = (1− 2w)Atrue. (6.8)
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The expression clarifies why untagged events (w= w̄=0.5) cannot be used for the measurement
of CP asymmetries. Note, however, that the b parameters are unaffected by mistagging as they
have the same sign for B0 and B0 tagged events.

The correlation between the average dilutions and σ∆t for hadronic tagging categories, see
Eq. (4.19), is modeled as

〈D〉i = 〈D〉0i + 〈D〉Si σ∆t . (6.9)

There are 18 additional free parameters in the likelihood fit to account for mistagging in
signal events: 〈D〉0, ∆D, and the 〈D〉S parameters, split by tagging category. As the process
of B tagging is independent of Brec, no distinction is made between the mistag probabilities of
the three reconstructed B modes. The possible systematic uncertainty from this assumption
is expected to be small, and is determined in Section 9.1.5.

6.2.3 The ∆t resolution model

The ∆t resolution function R(δt; p̂) has been described in detail in Section 4.3.3, and is a
function of the residuals δt = ∆tmeas−∆ttrue and the parameter set p̂. As a reminder, it is
modeled as the sum of three Gaussians

R(δt; p̂) =
2∑

n=1

fn

Snσ∆t

√
2π

exp
(
−(δt− δnσ∆t)2

2S2
nσ

2
∆t

)
+

foutlier

σoutlier

√
2π

exp
(
− δt2

2σ2
outlier

)
, (6.10)

where the index n runs over the core and tail components, and the parameters f are the
fractions of events in each component.

The final expression for the signal ∆t distribution is obtained by convolving Eq. (6.7), un-
derstood to hold for ∆ttrue, with R(δt; p̂). The likelihood functions for signal events, F±i,j(η,∆t)
in Eq 6.2, become

F±i,j(η,∆t) = F ′±
i,j (η,∆ttrue)⊗R(δt; p̂) . (6.11)

The ∆t distributions described by Eqs. (6.4) and (6.11), for a realistic choice of mistag fractions
and ∆t resolution function, are illustrated in Fig. 6.1. The fit to data is most sensitive to the
resolution function parameters at ∆ttrue≈0, where the distribution corresponding to Eq. (6.4)
shows a clear, sharp peak.

The normalization of these distributions is given by∫ +∞

−∞

(
F+

i,j(η=+,∆t) + F−i,j(η=+,∆t) +

F+
i,j(η=−,∆t) + F−i,j(η=−,∆t)

)
d∆t = 1 . (6.12)

Eq. (6.12) does not account for the possibility to fit over a finite ∆t range. For the measurement
described here we only include the ∆t range from −20 to +20 ps, see Section 4.1.2. However,
the likelihood fit implementation in RooFit implements this in its normalization.
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6.3 Background ∆t description
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Figure 6.1: The ∆t distribution for mixed and unmixed events a) with perfect tagging
and ∆t resolution, and b) with typical mistag fractions and ∆t resolution.
The scale is arbitrary and common to the two plots.

6.3 Background ∆t description

The background composition of the selected B → D(∗)∓h± candidates has been described
in Section 4.1.3. In the ∆t likelihood fit, we distinguish between combinatorial and peaking
background.

Modeling the background time evolution correctly is important in order to avoid biases on
the measured CP parameters. Rather than a description of each physical decay mode, see Ta-
ble 4.5, an empirical parametrization has been adopted, which decomposes the ∆t distributions
into several components.

The combinatorial and peaking background functions, B±i,j(η,∆t) and P±i,j(η,∆t) respec-
tively, consist of various components, sub-indexed with l. The background PDFs are normalized
similar to signal. For example, for the combinatorial background component∫ +∞

−∞

(
B+

i,j,l(η=+,∆t) + B−i,j,l(η=+,∆t) +

B+
i,j,l(η=−,∆t) + B−i,j,l(η=−,∆t)

)
d∆t = 1 . (6.13)

The same holds for the peaking background normalization.
The following Sections describe the ∆t parametrization of each source of background.

6.3.1 Combinatorial background

Combinatorial backgrounds arise from many different sources and the true time-dependence
cannot be derived from first principles. We approximate the physical shapes with analytical
functions. The goal is to provide an empirical description of the background ∆t distribution,
and not to perform a measurement of the ‘physical’ parameters of the background candidates.
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Ingredients of ∆t likelihood fit

This general approach allows for more fit parameters then may be absolutely necessary to
describe the background ∆t distributions. Since the background levels in the signal region are
low, the background and signal fit parameters are largely uncorrelated. This makes the final
result relatively insensitive to the quality of the fit to the background candidates or to the
details of the parametrization of their ∆t dependence.

For the combinatorial background, the ∆t distribution is modeled with a sum of three
components

B±i,j(η,∆t) = pi,j,1B±i,j,1(η,∆t; b̂) +

(1− pi,j,1)
(
(1− pi,j,3)B±i,j,2(η,∆t; b̂) + pi,j,3B±i,j,3(η,∆t; b̂)

)
, (6.14)

where pi,j,l is the fraction of the background component l, which can differ per reconstructed
B mode and Lepton and non-lepton tagging category.

Each component B±i,j,l(∆t; b̂) uses the ∆t resolution function R(δt; b̂), with a common set of
background parameters b̂. The resolution function is the same for each type of combinatorial
background, and consists of a core and outlier Gaussian that take into account a small fraction
of ‘badly reconstructed’ background events. The width and bias of the outlier component are
the same as for signal events, i.e. 8 ps and 0 ps, respectively. The other resolution parameters
are left free in the fit.

The three background components are listed below.

1. Zero lifetime component
This term accounts for combinatorial background from continuum qq̄ events, as the tracks
used to create the B candidate tend to be selected from two hadronic jets, which is not
expected to have a significant lifetime component, even for cc̄ events. We have

B±i,j,1(η,∆t; b̂) =
1
2
(
1∓ ηD′

i,j,1

)
δ(δttrue)⊗R(δt; b̂) , (6.15)

where D′
i,j,1 are effective dilution factors, floated in the fit to the data.

2. Non-zero lifetime component (non-mixing)
An effective lifetime is expected from combinatorial background from BB̄ events, when
tracks from two different B mesons are selected. We have

B±i,j,2(η,∆t; b̂) =
1
4
Γ2

(
1∓ ηD′

i,j,2

)
e−Γ2|δttrue| ⊗R(δt; b̂) , (6.16)

where Γ2 and D′
i,j,2 are effective dilutions, floated in the fit to the data.

3. Non-zero lifetime component (mixing)
A systematic error is assigned in Section 9.2.5 for the possible presence of mixing back-
ground or a CP asymmetric background. The events are modeled with a modified copy
of the signal event function of Eq. (6.11)

B±i,j,3(η,∆t; b̂) =
1
4
Γ3

(
1∓ ηD′

i,j,2

)
e−Γ3|δttrue|(1∓ ηD′

i,j,3 cos ∆md∆ttrue

∓(D′
i,j,3×a∓ ηb−D′

i,j,3 × ηc) sin(∆md∆ttrue)
)
⊗R(δt; b̂) ,(6.17)

where D′
i,j,3 are effective dilutions, and the a, b, c parameters are varied over reasonable

ranges.
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6.4 Reconstruction and tagging efficiencies

The background parameters are mostly extracted from the mES sideband region.
The background lifetimes τl = 1/Γl are not expected to be the exact lifetimes of decaying

particles such as B or D mesons. Due to mis-reconstruction, the background lifetimes can be
smaller or larger. Based on the same argument, we do not expect the mixing frequency of
the background to equal ∆md. And likewise, the ‘dilutions’ D′

i,j,l should not be interpreted
as dilutions due to mistag rates. They contain the effects due to production asymmetry and
flavor mis-assignment: in this sense dilutions are also meaningful for non-signal events.

In the nominal likelihood fit, the fraction of mixing combinatorial background, pi,j,3, is
fixed to zero. We fit for the fraction of background with zero lifetime, split by B mode and
Lepton and non-lepton tagging categories. The generic lifetime of the B background, Γ2, is also
fit for. Separate background dilutions are floated for the zero-lifetime background, non-mixing
background with lifetime, and per B mode and tagging category.

The systematic uncertainty from the parametrization of the combinatorial background is
described in Section 9.2.

6.3.2 Peaking background

The composition of the peaking background of the B→D(∗)∓h± data sample has been analyzed
in Section 4.1.4. For the ∆t description we distinguish between contributions from B0 and B+

decays. Their relative fractions have been summarized in Table 4.4 and are fixed in the fit to
data. The corresponding systematic uncertainty on the a and clep parameters is evaluated in
Sections 9.2.4.

Mis-reconstructed B0 decays have a ∆t distribution similar to signal events. Therefore, the
events are modeled with (a copy of) Eq. (6.11). In the likelihood fit, the same ∆t resolution
function are dilution parameters are used as for the signal events. The peaking background
related a, b, c parameters are likely to be tiny and have been fixed to zero. In Section 9.2.6,
their values are varied over reasonable ranges.

The time-dependence of the background from B+ decays can be described by

P±i,j,1(η,∆t; p̂) =
1
4
ΓB+e−ΓB+ |∆ttrue|(1∓ ηD+

i

)
⊗R(δt; p̂) , (6.18)

where Γ+ = 1/τB+ is the B+ width and the dilutions D+
i are different from the dilutions for

B0 decays. We fix the B+ lifetime to the PDG value [17], and the dilution factors D+
i are

measured with a large sample of fully reconstructed B± mesons [76]. Again, the ∆t resolution
function is the same as for signal events.

6.4 Reconstruction and tagging efficiencies

The efficiency of tagging a B0 could potentially be different from the efficiency of tagging a
B0. Likewise, a potential difference between the reconstruction efficiencies of the final states
D(∗)−h+ and D(∗)+h− could exist.

In the likelihood fit, we do not account for such potential differences1. The impact of relative
tagging and reconstruction efficiency differences is tested in Section 9.1.6.

1The required modifications to the likelihood functions for B0B0 oscillations are described in Refs. [56, 77].
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6.5 Summary of fit parameters

The signal and peaking-background parameters are determined from the ∆t distribution of the
events in the signal region, while the parameters of the combinatorial background components
are dominated by the events in the mES sideband. There are 99 free parameters in the ∆t
likelihood fit. These include the a, b, c parameters, ∆t resolution function parameters, mistag
fractions, and the parameters of the empirical ∆t spectrum of the background events. They
are summarized in Table 6.1.

Description Number of parameters

a, b, c Parameters 26
Signal ∆t resolution function 9
Signal dilutions 18
Background ∆t resolution function 3
Background composition 43
Total 99

Table 6.1: Summary of the free parameters in the maximum-likelihood fit.

In the ∆t fit 29 additional parameters are fixed (not considering the parameters from the
mES fit, which are also fixed, together making a total of 262 fit parameters). These include the
B0B0 oscillation frequency ∆md, the B0 lifetime τB0 , and the peaking background fractions
and dilutions.
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Chapter 7

Validation studies

Various validation tests have been performed to verify the quality of the fit procedure, the
selection criteria and reconstruction chain, and the consistency of the measurement in Chap-
ter 8.

1. The performance of the time-dependent fit algorithm for the D(∗)π and Dρ samples
has been studied with parametrized, fast Monte Carlo experiments (‘fast-parameterized
Monte Carlo studies’) in Section 7.1.

2. The fit model for signal and background and the reconstruction, vertexing, and flavor
tagging chain have been evaluated in Sections 7.2 and 7.3 with large samples of fully
simulated, Geant 4 Monte Carlo events (‘full Monte Carlo studies’), described earlier in
Section 3.5.

3. Agreement between the data and full Monte Carlo samples is tested for the ∆t resolution
function and dilution parameters in Section 7.4.

4. The goodness of fit for data is evaluated in Sections 7.5 and 7.6.

5. Also, the data sample has been split into various subsamples, and the nominal fit has
been performed on a control sample of charged B mesons. See Sections 7.8 and 7.9.

For simplicity, the fit to data is referred to as ‘the nominal fit’.

7.1 Parameterized Monte Carlo studies

To validate the fit procedure and determine possible biases in the CP parameters introduced
by the fit algorithm, a study has been performed with samples of fast parameterized simulated
events. For the Dπ, D∗π, and Dρ modes, 1, 296 samples have been generated with the same
number of signal and background events as in data, summarized in Tables 4.6–4.8. Each gen-
erated D decay mode has the mES signal and background shapes values found in data. Also,
∆t resolution function parameters, dilutions, and background parameters of the fast Monte
Carlo samples have been copied from the nominal fit results, see Tables 8.2–8.4. The study
uses identical σ∆t distributions to the ones in data, split by signal, background, and tagging
categories. The nominal data fit is performed on each generated Monte Carlo sample.

As described in Section 6.2.1, the following CP parameters are floated in the nominal fit:
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Parameter Mean Pull Width

Pseudo configuration 1
aDπ 0.0410± 0.0007 0.04± 0.03 1.06± 0.02
aD∗π 0.0400± 0.0007 0.00± 0.03 1.06± 0.02
aDρ 0.0392± 0.0009 −0.03± 0.03 1.02± 0.02
cDπ
lep 0.0007± 0.0011 0.02± 0.03 1.01± 0.02
cD

∗π
lep −0.0003± 0.0012 −0.01± 0.03 1.04± 0.02
cDρ
lep 0.0007± 0.0016 0.01± 0.03 1.01± 0.02

Pseudo configuration 2
aDπ −0.0003± 0.0008 −0.01± 0.03 0.98± 0.02
aD∗π −0.0006± 0.0008 −0.02± 0.04 1.04± 0.03
aDρ −0.0010± 0.0011 −0.03± 0.03 1.01± 0.03
cDπ
lep 0.0423± 0.0014 0.06± 0.04 1.04± 0.02
cD

∗π
lep 0.0399± 0.0015 0.00± 0.04 1.04± 0.03
cDρ
lep 0.0419± 0.0020 0.03± 0.04 1.04± 0.03

Table 7.1: Fit values and pull distributions for the a and clep parameters in the modes
B→D∓π±, B→D(∗)∓π±, and B→D∓ρ± from two fast Monte Carlo studies
described in the text.

1. Three aj signal parameters, one for each B decay mode j = Dπ, D∗π, Dρ.

2. Three cjlep signal parameters, for the lepton tagging category of each final state.

3. Five bi parameters account for tag-side interference, common amongst the tagging cate-
gories i of D(∗)π and Dρ. For the lepton tagging category, blep ≡ 0.

4. Fifteen cji parameters, like cjlep, but including tag-side interference, one for each B decay
mode and non-lepton tagging category.

Two particular configurations of CP parameters are considered to validate the a, b, c parametriza-
tion. In the first scenario of pseudo-experiments, for each B mode and tagging category, the
aj parameters equal 0.04, and bi and cji equal 0. This corresponds to rj = 0.02, sin(2β+γ) = 1,
δj = 0, and r′i = 0. In the second scenario, aj = 0, bi = 0, and cji = 0.04, corresponding to
rj = 0.02, cos(2β+γ) = 1, δj = 0, and r′i = 0.

Once the samples have been fit, the resulting aj and cjlep distributions – the parameters
most sensitive parameters to sin(2β+γ) – are fit with single Gaussians. Table 7.1 lists the
distributions of the fit values, the errors, and the pulls for aj and cjlep in the two configura-
tions. The mean values of the pull distributions are all consistent with zero, and the widths
are consistent with one. The error distributions obtained for the aj and cjlep parameters are
discussed in Section 7.6.

The fit algorithm gives consistent, unambiguous results. No artificial biases are introduced
in the CP parameters by the algorithm, and the errors are neither over- nor underestimated.

More fast parameterized Monte Carlo studies are performed in Section 7.3.
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7.2 Geant 4 Monte Carlo studies

As a consistency check of the fit models used for signal and background events, discussed in
Chapter 6, and the reconstruction, vertexing, and flavor tagging chain, see Chapter 4, fits
have been performed to all fully simulated, Geant 4 Monte Carlo events (‘the full Monte
Carlo sample’), listed in Section 3.5. The studies have been split in two. To start, we only
test the signal component of the fit model. Then, in the second part, we add the background
component.

First the signal model. The signal Monte Carlo sample amounts to 18.4 times the number
of signal events estimated in data. No CP asymmetry has been generated, i.e. the true values
of a, b, c equal zero. After the event selection, 249, 059 D∗π, 297, 962 Dπ, and 152, 979 Dρ
fully simulated events remain. Only signal events with mES>5.27 GeV/c2 are considered. No
background pdf’s are included in this ∆t fit.

The fit result is projected on ∆t in Figs. 7.1–7.3, split by final state and flavor tag. Tables 7.2
and 7.3 list the fit results split by CP parameters and other signal parameters. All a, b, c
parameters are consistent with zero within 2.3σ. The CP parameters most sensitive to sin(2β+
γ), a and clep, are consistent with zero within their errors, except for cD
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Figure 7.1: Distributions of ∆t for B→D∓π± signal Monte Carlo candidates, split by B
tagging flavor and reconstructed final state. The four plots show candidates
of all tagging categories; the solid curves are fit projections.

We split the signal Monte Carlo sample into 18 independent sets, equal in size, and fit each
one separately. The average results of these fits are shown in the middle column of Table 7.4.
The combined numbers agree with with the fit result of the combined sample.
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Figure 7.2: Distributions of ∆t for B→D∗∓π± signal Monte Carlo candidates, split by
B tagging flavor and reconstructed final state. The four plots show candidates
of all tagging categories; the solid curves are fit projections.

In Fig. 7.4 one can find the pull distributions of the 18 fits for, respectively, the CP pa-
rameters a, b, clep, and the c parameters belonging to non-lepton tagging categories. The a, b
parameters are unbiased within 1.3σ, and the clep pull distribution is unbiased within 1.5σ. A
2.8σ bias is seen in the non-lepton c pull distribution. For completeness, the pull distribution
of all a, b, c parameters combined is also given. The mean is consistent with zero within 1.8σ.
The widths of all distributions agree with one.

The c parameters for the lepton and non-lepton categories are shown separately for two
reasons. First, the lepton category is fit with only fit 2 CP parameters per B mode (blep ≡ 0),
while the other categories are fit with three (the b parameters float). Second, the lepton tagging
category is fit using a separate set of ∆t resolution function parameters. As discussed in
Section 4.3.1 non-lepton tagging categories show a slight bias in the reconstruction of ∆t,
coming from short-lived D decays. The c parameters strongly correlate with the bias parameter
in the core Gaussian of the ∆t resolution function (Eq. (4.18)). This parameter, along with the
core and tail Gaussian scale-factor parameters, has thus been split by lepton and non-lepton
tagging category.

Next, the background fit model is validated. We reuse the 18 independent signal event sets
created earlier.

BABAR has not enough generated Geant 4 uds, cc, and BB background events to create
18 statistically independent, data-like Monte Carlo samples. We retain, respectively, 1.8, 1.7,
and 4.5 times the corresponding number of background events observed in data, see Table 3.4.
The data-size, fully simulated Monte Carlo samples used below therefore contain statistically
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Figure 7.3: Distributions of ∆t for B→D∓ρ± signal Monte Carlo candidates, split by B
tagging flavor and reconstructed final state. The four plots show candidates
of all tagging categories; the solid curves are fit projections.

dependent cc, uds, and BB background samples. The latter have been pulled randomly from
the available background sets. Table 7.5 presents the numbers of events employed in each
sample. The fit strategy applied to each sample is identical to the one to data.

The right-hand column of Table 9.19 summarizes the results of the a, b, c parameters,
averaged over the 18 fits. Because of the common background events, the fit parameters of each
sample are correlated. However, given the high purities of the Dπ, D∗π, and Dρ samples, the
correlation between the a, b, c and background parameters, and given that the a, b, c parameters
are determined from independent signal events, that correlation is small. We ignore it for the
errors on the averaged fit parameters.

The CP parameter results agree with the other columns in Table 9.19. Most are statistically
zero within one sigma, and nearly all within two sigma – consistent with the hypothesis of no
bias.

The average minimal log(likelihood) value (‘goodness of fit’) for the 18 data-size Monte
Carlo samples turns out to be −25, 166, with a spread of about 1, 100. This value is consistent
with the minimal log(likelihood) seen in data, being −25, 213.

In conclusion, the fit models for reconstructed, vertexed, and flavor-tagged signal and
background events perform as desired. Within the statistics of the available Geant 4 Monte
Carlo sample, no biases are observed in the signal parameters used for the extraction of sin(2β+
γ), a and clep.
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Figure 7.4: Pull distribution of the combined CP parameters a, b, clep, and c parameters
of non-lepton tagging categories of the 18 signal Monte Carlo fits. For the
lepton tagging category blep ≡ 0, while for the non-lepton tagging categories
the corresponding b parameters are left to vary in the fit.
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Corrl. Corrl. Corrl. Corrl. Corrl. Corrl.
Parameter Result aDπ aD∗π aDρ cDπ

lep cD
∗π

lep cDρ
lep

CP Parameters
aDπ 0.0002± 0.0047 1.000 0.033 0.024 0.006 0.000 0.000
aD∗π 0.0042± 0.0049 0.033 1.000 0.023 0.001 −0.001 0.001
aDρ 0.0067± 0.0067 0.024 0.023 1.000 0.000 0.000 0.017
cDπ
lep −0.0051± 0.0086 0.006 0.001 0.000 1.000 0.086 0.082
cD

∗π
lep −0.0156± 0.0089 0.000 −0.001 0.000 0.086 1.000 0.079
cDρ
lep −0.0080± 0.0121 0.000 0.001 0.017 0.082 0.079 1.000

Tag-side interference parameters
blep 0.0 (fixed) – – – – – –
bki −0.0017± 0.0046 0.162 0.152 0.108 0.001 0.000 0.002
bkii 0.0001± 0.0045 0.092 0.088 0.065 0.001 0.000 0.001
bkpi 0.0008± 0.0052 0.040 0.037 0.029 0.000 0.000 0.001
bpi 0.0006± 0.0066 0.016 0.014 0.010 0.000 0.000 0.000
both −0.0030± 0.0052 0.004 0.004 0.003 0.000 0.000 0.000
cDπ
ki −0.0069± 0.0079 0.008 0.000 −0.001 0.001 0.001 0.001
cDπ
kii 0.0041± 0.0103 0.003 0.000 0.000 0.001 0.001 0.001
cDπ
kpi 0.0014± 0.0156 −0.002 0.000 0.000 0.000 0.001 0.001
cDπ
pi −0.0045± 0.0232 0.005 0.000 0.000 0.000 0.000 0.000
cDπ
oth −0.0370± 0.0607 0.001 0.000 0.000 0.000 0.000 0.000
cD

∗π
ki −0.0207± 0.0083 −0.001 0.008 −0.001 0.001 0.001 0.001
cD

∗π
kii 0.0038± 0.0107 0.000 0.001 0.000 0.001 0.001 0.001
cD

∗π
kpi −0.0121± 0.0162 0.000 −0.005 0.000 0.000 0.001 0.001
cD

∗π
pi −0.0499± 0.0238 0.000 0.003 0.000 0.000 0.000 0.000
cD

∗π
oth −0.1102± 0.0627 0.000 0.001 0.000 0.000 0.000 0.000
cDρ
ki −0.0273± 0.0116 −0.001 −0.001 0.012 0.000 0.000 0.001
cDρ
kii 0.0036± 0.0145 0.000 0.000 0.003 0.000 0.000 0.001
cDρ
kpi −0.0491± 0.0219 0.000 0.000 −0.001 0.000 0.000 0.000
cDρ
pi 0.0001± 0.0339 0.000 0.000 0.007 0.000 0.000 0.000
cDρ
oth 0.0173± 0.0881 0.000 0.000 0.002 0.000 0.000 0.000

Table 7.2: Results of the simultaneous likelihood fit to the B→D∓π±, B→D(∗)∓π±, and
B→D∓ρ± fully simulated signal Monte Carlo samples (a, b, c parameters).

7.3 Fast Monte Carlo studies continued

The fit model test in Section 7.2, performed with 18 times the amount of signal in data,
gives statistical errors at the level of about 30%, compared to the expected sizes of the CP
asymmetries. Here, we use the available Geant 4 signal sample as a template for generating fast
Monte Carlo signal samples, giving a precise handle on possible biases from using an incorrect
fit model.

In Section 7.1, the dilutions and ∆t resolution parameters have been generated from the
values obtained from the fit to data. In this test, the tagging state, tagging category, and
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Corrl. Corrl. Corrl. Corrl. Corrl. Corrl.
Parameter Result aDπ aD∗π aDρ cDπ

lep cD
∗π

lep cDρ
lep

Signal resolution function parameters
Scale (c), Lepton 1.05± 0.02 −0.001 0.004 0.007 0.017 0.012 0.021
Scale (c), N-Lept. 1.14± 0.01 −0.005 0.002 −0.005 0.001 0.004 0.007
Scale (t), Lepton 2.7± 0.3 −0.005 0.002 −0.009 −0.025 −0.019 −0.004
Scale (t), N-Lept. 3.9± 0.2 −0.008 0.001 −0.007 0.002 0.006 0.009
Width (o) 8.0 (fixed) – – – – – –
δ(∆t) (c), Lepton −0.087± 0.015 0.004 0.000 0.005 0.238 0.228 0.211
δ(∆t) (c), N-Lept. −0.266± 0.007 0.005 −0.002 0.005 −0.006 −0.009 −0.010
δ(∆t) (t) −1.7± 0.1 0.003 −0.001 0.002 0.010 0.008 0.003
δ(∆t) (o) 0.0 (fixed) – – – – – –
f (t) 0.058± 0.007 0.007 −0.001 0.006 −0.001 −0.004 −0.008
f (o) 0.0037±0.0003 0.005 −0.001 0.005 0.001 −0.002 −0.005

Signal dilution parameters
〈D0〉, Lepton 0.956± 0.008 0.015 −0.012 0.007 −0.012 0.008 0.019
〈D0〉, Kaon I 0.933± 0.008 −0.007 −0.003 −0.002 0.000 0.000 0.000
〈D0〉, Kaon II 0.736± 0.007 0.000 0.002 −0.006 0.000 0.000 0.000
〈D0〉, K-Pi 0.538± 0.008 −0.003 −0.001 −0.002 0.000 0.000 0.000
〈D0〉, Pi 0.328± 0.008 −0.002 −0.003 0.001 0.000 0.000 0.000
〈D0〉, Other 0.171± 0.010 0.000 0.002 −0.002 0.000 0.000 0.000
∆D, Lepton 0.002± 0.004 0.001 0.005 −0.007 0.014 −0.018 −0.010
∆D, Kaon I −0.001± 0.004 −0.002 0.004 0.010 0.000 0.000 0.000
∆D, Kaon II 0.013± 0.004 −0.008 −0.007 0.001 0.000 0.000 0.000
∆D, K-Pi 0.039± 0.005 −0.003 −0.002 0.001 0.000 0.000 0.000
∆D, Pi −0.118± 0.005 −0.002 −0.001 0.000 0.000 0.000 0.000
∆D, Other −0.093± 0.007 −0.001 0.000 0.000 0.000 0.000 0.000
D slope, Lepton −0.005± 0.015 −0.014 0.009 −0.010 0.008 −0.008 −0.026
D slope, Kaon I −0.101± 0.015 0.003 0.003 0.003 0.000 0.000 0.000
D slope, Kaon II −0.085± 0.011 −0.001 −0.003 0.004 0.000 0.000 0.000
D slope, K-Pi −0.059± 0.011 0.000 0.001 0.002 0.000 0.000 0.000
D slope, Pi −0.024± 0.010 0.002 0.002 −0.002 0.000 0.000 0.000
D slope, Other −0.002± 0.013 0.000 −0.001 0.002 0.000 0.000 0.000
∆D slope 0.0 (fixed) – – – – – –

External parameters
∆md (ps−1) 0.489 (fixed) – – – – – –
τB0

d
(ps) 1.541 (fixed) – – – – – –

∆Γd (ps−1) 0.0 (fixed) – – – – – –

Table 7.3: Results of the simultaneous likelihood fit to the B→D∓π±, B→D(∗)∓π±, and
B→D∓ρ± data samples (signal parameters).
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7.3 Fast Monte Carlo studies continued

CP Combined signal Split signal Signal and background Glob. corr.

aDπ +0.0002± 0.0047 +0.0001± 0.0049 +0.0017± 0.0051 0.049
aD∗π +0.0042± 0.0049 +0.0050± 0.0052 +0.0026± 0.0052 0.045
aDρ +0.0067± 0.0067 +0.0074± 0.0069 +0.0034± 0.0075 0.038
cDπ
lep −0.0051± 0.0086 −0.0048± 0.0087 −0.014± 0.0088 0.202
cD

∗π
lep −0.0156± 0.0089 −0.0173± 0.0090 −0.018± 0.0093 0.191
cDρ
lep −0.0080± 0.0121 −0.0065± 0.0122 −0.011± 0.0129 0.181
bKI −0.0017± 0.0046 −0.0017± 0.0050 +0.0041± 0.0052 0.049
bKII −0.0001± 0.0045 −0.0000± 0.0046 +0.0003± 0.0048 0.043
bKPi −0.0008± 0.0052 −0.0011± 0.0054 −0.0066± 0.0056 0.015
bOth +0.0006± 0.0066 +0.0012± 0.0068 +0.0020± 0.0072 0.004
bPi −0.0030± 0.0052 −0.0027± 0.0054 −0.0039± 0.0057 0.020
cDπ
KI −0.0069± 0.0079 −0.0075± 0.0084 −0.008± 0.009 0.092
cDπ
KII +0.0041± 0.0103 +0.0029± 0.0102 −0.011± 0.011 0.087
cDπ
KPi +0.0014± 0.0156 +0.0014± 0.0166 −0.023± 0.018 0.065
cDπ
Pi −0.0045± 0.0232 −0.0057± 0.0267 −0.014± 0.029 0.134
cDπ
Oth −0.0370± 0.0607 −0.0337± 0.0619 +0.056± 0.066 0.022
cD

∗π
KI −0.0207± 0.0083 −0.0217± 0.0089 −0.018± 0.009 0.099
cD

∗π
KII +0.0038± 0.0107 +0.0022± 0.0106 −0.007± 0.011 0.087
cD

∗π
KPi −0.0121± 0.0162 −0.0134± 0.0173 −0.012± 0.018 0.061
cD

∗π
Pi −0.0499± 0.0238 −0.0505± 0.0278 −0.060± 0.029 0.095
cD

∗π
Oth −0.1102± 0.0627 −0.1214± 0.0644 −0.121± 0.066 0.026
cDρ
KI −0.0273± 0.0116 −0.0289± 0.0125 −0.015± 0.013 0.096
cDρ
KII +0.0036± 0.0145 +0.0021± 0.0146 +0.003± 0.016 0.074
cDρ
KPi −0.0491± 0.0219 −0.0529± 0.0235 −0.053± 0.026 0.062
cDρ
Pi +0.0001± 0.0339 −0.0005± 0.0383 +0.008± 0.042 0.158
cDρ
Oth +0.0173± 0.0881 −0.0040± 0.0872 −0.047± 0.094 0.023

Table 7.4: Results for the CP parameters from the fit to the ∆t distribution on a signal
Monte Carlo sample (18.4 times the data). Dst = B → D∓π±, D = B →
D(∗)∓π±, and R = B→D∓ρ±. The left column shows the results of the single
fit to the entire dataset. The right column shows the fit to the same sample
split into 18 different pieces.

Sample Events reconstructed Expected in data Ratio

Data 67, 544 – –
Signal MC 674.0k 36, 828 18.3
BB bkg MC 26.7k 5, 946 4.5
cc MC 24.9k 14, 431 1.7
uds MC 18.9k 10, 339 1.8

Table 7.5: Numbers of fully simulated Monte Carlo events used in each test sample.
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Figure 7.5: Efficiency correction applied to the ∆ttrue spectrum as obtained from the full-
simulated Monte Carlo sample, after selection and reconstruction.

mixing state are taken at random from the template full Monte Carlo set.
The reconstructed decay-time difference, ∆tmeas, is obtained from the true time, ∆ttrue,

as follows. Define the difference in ∆t as δ∆t = ∆tmeas − ∆ttrue. A generated event in a
fast Monte Carlo sample, with a certain value of ∆ttrue, is linked with the event in the full
Monte Carlo set – with the decay-time difference δ∆tfull (see Fig. 7.15) and the error σ(∆t; full)

– that has the closest value of ∆ttrue in the same tagging category. For that event we set
∆tmeas = ∆ttrue + δ∆tfull, and assign as error σ(∆t; full). The copied event is removed from the
full Monte Carlo sample to avoid possible correlations between generated events in the fast
Monte Carlo sample. The procedure is repeated for the remaining events in the fast Monte
Carlo sample.

Finally, we apply an efficiency correction to the ∆ttrue spectrum, obtained from the full
Monte Carlo sample (after selection and reconstruction), as shown in Fig. 7.5.

This routine for generating realistic fast Monte Carlo samples has several advantages.
We properly reconstruct all (possible) correlations between ∆ttrue, δ∆t, σ∆t, and the tagging
categories. One can generate any CP asymmetry for the fast MC samples, using as template the
full MC set with no CP asymmetry. (Compared with a re-weighting routine, where this is not
generally possible, this method does not run into phase-space problems.) Also, the algorithm is
far more efficient than re-weighting, which typically keeps only a fraction of all full MC events.
But most importantly, because the CP asymmetries in data are expected to be small, these
fast MC samples allow us to perform a precise, realistic fit bias test.

We generate fast MC samples with 36, 828 events each – the number of signal events in the
data sample – in three configurations for the CP parameters. The first configuration has no
generated CP asymmetry, i.e. a, b, c = 0. In the second configuration, for each B decay mode,
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Figure 7.6: Fitted a and clep parameters of B→Dπ sample. No CP asymmetry has been
generated.

the a parameters are generated equal to 0.10, the c parameters are generated equal to 0, and
also all the other CP parameters, b, equals zero. In the third configuration, the a parameters
are generated equal to 0, the c parameters are generated equal to 0.10, and the b parameters
are again zero.

The fit results of these three tests are shown in Figs. 7.6–7.14. In all figures, the top
row shows the fitted a parameters, and the bottom row shows the fitted clep parameters; the
right-handed column shows the a and clep pull distributions. As can be seen, for all three con-
figurations and all three B modes, the a parameters are statistically unbiased. In addition, but
not shown, biases are neither observed in the b parameters. The clep parameters are positively
biased, though, at the level of 10% compared to the statistical error. This opposed to the
statistically limited, negative biases in the clep parameters, seen in Section 7.2.

The biases are correlated with vertex biases of ∆t, as mentioned at the end of the previous
Section, which – apparently – are not fully accounted for in the resolution function, described
in Eq. (4.18).

The average biases in a and clep over the three fit configurations are listed in Table 7.6.
We account for these systematical fit biases in Section 9.5.

7.4 Resolution function and dilutions in Geant 4 Monte Carlo
events

The agreement between the data and the Monte Carlo samples has been verified by studying
the ∆t resolution function and dilution parameters.
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Figure 7.7: Fitted a and clep parameters of B→D∗π sample. No CP asymmetry has been
generated.
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Figure 7.8: Fitted a and clep parameters of B→Dρ sample. No CP asymmetry has been
generated.

100



“thesis” — 2006/12/8 — 11:48 — page 101 — #111

7.4 Resolution function and dilutions in Geant 4 Monte Carlo events

 / ndf 2χ  13.469 / 18

C         4.762± 110.804 

      µ  0.001± 0.100 

   σ  0.001± 0.021 

πDa
0.05 0.1 0.15

# 
E

nt
ri

es

0

50

100

150
 / ndf 2χ  13.469 / 18

C         4.762± 110.804 

      µ  0.001± 0.100 

   σ  0.001± 0.021 

 / ndf 2χ  17.758 / 17

C         4.485± 104.308 

      µ  0.001± -0.000 

   σ  0.001± 0.037 

πD
lepc

-0.1 0 0.1

# 
E

nt
ri

es

0

50

100

150
 / ndf 2χ  17.758 / 17

C         4.485± 104.308 

      µ  0.001± -0.000 

   σ  0.001± 0.037 

 / ndf 2χ  12.631 / 16

C         5.385± 125.362 

      µ  0.036± -0.021 

   σ  0.026± 1.035 

)πD(aχ
-4 -2 0 2 4

 / ndf 2χ  12.631 / 16

C         5.385± 125.362 

      µ  0.036± -0.021 

   σ  0.026± 1.035 

 / ndf 2χ  7.848 / 13

C         5.665± 131.872 

      µ  0.035± -0.005 

   σ  0.024± 0.984 

)πD
lep

(cχ
-4 -2 0 2 4

 / ndf 2χ  7.848 / 13

C         5.665± 131.872 

      µ  0.035± -0.005 

   σ  0.024± 0.984 

Figure 7.9: Fitted a and clep parameters of B→Dπ sample. The generated CP asymme-
try: a = 0.10, and clep = 0.
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Figure 7.10: Fitted a and clep parameters of B→D∗π sample. The generated CP asym-
metry: a = 0.10, and clep = 0.
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Figure 7.11: Fitted a and clep parameters of B→Dρ sample. The generated CP asym-
metry: a = 0.10, and clep = 0.
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Figure 7.12: Fitted a and clep parameters of B→Dπ sample. The generated CP asym-
metry: a = 0, and clep = 0.10.
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Figure 7.13: Fitted a and clep parameters of B→D∗π sample. The generated CP asym-
metry: a = 0, and clep = 0.10.
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Figure 7.14: Fitted a and clep parameters of B→Dρ sample. The generated CP asym-
metry: a = 0, and clep = 0.10.
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CP parameter aDπ aD∗π aDρ

Fit bias −0.0004± 0.0004 −0.0001± 0.0004 −0.0004± 0.0005

CP parameter cDπ
lep cD

∗π
lep cDρ

lep

Fit bias +0.0034± 0.0007 +0.0034± 0.0007 +0.0037± 0.0009

Table 7.6: Average fit biases of the parameters aj and cjlep over three fast MC configura-
tions given in the text.

t (ps)∆δ
-10 -5 0 5 10

E
ve

nt
s 

/ (
 0

.1
 p

s 
)

1

10

210

310

410

510

t (ps)∆δ
-10 -5 0 5 10

E
ve

nt
s 

/ (
 0

.1
 p

s 
)

1

10

210

310

410

510

Figure 7.15: The δ∆t residual distribution, as obtained from fully-simulated signal Monte
Carlo events, with the ∆t resolution functions obtained from the fit to data
(dotted) and signal Monte Carlo events (solid) overlaid.

Using Monte Carlo truth information, the signal ∆t resolution function has been extracted
from a fit to the ∆t residuals, δt ≡ ∆tmeas −∆ttrue, of the full Monte Carlo sample of signal
events. The resulting distribution can be compared to the resolution function found in data and
in the fit to signal Monte Carlo events. Results are listed in Table 7.7 and they are overlaid in
Fig. 7.15. The ∆t resolution function parameters agree well for data and the full Monte Carlo.

The dilution parameters, dilution differences, and dilutions slope parameters, as found in
the fits to the full signal Monte Carlo and data samples, are compared in Table 7.7. The
parameter values are found to agree well.

104



“thesis” — 2006/12/8 — 11:48 — page 105 — #115

7.5 Expected statistical errors

Parameter Data Signal MC
Signal resolution function parameters

Scale (c), Lepton 0.95± 0.08 1.05± 0.02
Scale (c), N-Lept. 1.10± 0.04 1.14± 0.01
Scale (t), Lepton 2.1± 1.0 2.7± 0.3
Scale (t), N-Lept. 3.6± 0.4 3.9± 0.2
Width (o) 8.0 (fixed) 8.0 (fixed)
δ(∆t) (c), Lepton −0.01± 0.06 −0.08± 0.02
δ(∆t) (c), N-Lept. −0.19± 0.03 −0.266± 0.007
δ(∆t) (t) −1.9± 0.5 −1.7± 0.1
δ(∆t) (o) 0.0 (fixed) 0.0 (fixed)
f (t) 0.06± 0.02 0.058± 0.007
f (o) 0.004± 0.001 0.0037± 0.0003

Signal dilution parameters
〈D0〉, Lepton 0.94± 0.03 0.956± 0.008
〈D0〉, Kaon I 0.93± 0.03 0.933± 0.008
〈D0〉, Kaon II 0.68± 0.03 0.736± 0.007
〈D0〉, K-Pi 0.54± 0.04 0.538± 0.008
〈D0〉, Pi 0.37± 0.04 0.328± 0.008
〈D0〉, Other 0.22± 0.04 0.171± 0.010
∆D, Lepton 0.03± 0.02 0.002± 0.004
∆D, Kaon I 0.02± 0.02 −0.001± 0.004
∆D, Kaon II 0.01± 0.02 0.013± 0.004
∆D, K-Pi 0.02± 0.02 0.039± 0.005
∆D, Pi −0.13± 0.02 −0.118± 0.005
∆D, Other −0.08± 0.03 −0.093± 0.007

Table 7.7: Signal resolution and dilution parameters as found on data and on fully sim-
ulated signal Monte Carlo.

7.5 Expected statistical errors

To evaluate the goodness of the nominal fit to data, we compare the statistical errors on a and
clep, with the results found from the fast Monte Carlo studies in Section 7.1.

The distributions of statistical errors of a and clep for each B decay are given in Fig. 7.16.
The values from the data fit are indicated with vertical arrows. The errors obtained with
data are in agreement with the error distributions from the fast-parameterized Monte Carlo
samples.

7.6 χ Test

The χ distributions of the mES fit to data are shown in Fig. 7.17, with the corresponding
projections on the χ-axis in the right-hand column. For all three B decay modes, the normalized
χ2 values are relatively large. The pulls of the projected distributions are consistent with zero,
but the widths of the Gaussians are slightly larger than one. The spread in χ increases for
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Figure 7.16: Distributions errors on the fitted values of the a and clep parameters in the
modes B → D−π+, B → D∗−π+, and B → D−ρ+, obtained from the fast
Monte Carlo studies described in the text. The vertical arrows indicate the
corresponding values obtained with data.
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7.7 Results of τB0 and ∆md from data

mES>5.28 GeV/c2, with an apparent overestimate of events close to the kinematic endpoint
of the mES spectrum. To account for the latter dip in χ, the endpoint of the Argus function
in Eq. (4.11) is varied by 2 MeV/c2 in Section 9.2.2.

The B→D∓ρ± signal events tend to leak out into the mES sideband, and are perhaps
better described using a Crystal Ball function [78]. (For practical bookkeeping issues, this is
not done in the mES fit to data.) Second, as also seen in Fig. 4.3 in Section 4.1.4, for B→Dρ
the peaking background shape used in the mES sideband is not perfect. This explains the
structure seen in the χ vs mES graph of B→Dρ events. However, these two effects should not
affect the description of the B→Dρ events in the mES signal box.

The goodness of the fit results presented at the end of Section 7.2 can be supported by
constructing χ distributions of the time-dependent fit to data. To do so, events categorized
by final state and as mixed or unmixed, have been summed up in ∆t bins of 0.2 ps. The
resulting bins obey Poissonian statistics, which is accounted for when calculating χ (see [79],
Eq. (31.12)). The left-hand sides of Figs. 7.18–7.20 show χ versus ∆t for the 12 sets of data.

The right-hand sides of Figs. 7.18–7.20 show the corresponding χ distributions of all bins
with |∆t|<7 ps. Bins for which |∆t|>7 ps have been excluded from these projections, as they
do not contain enough statistics to justify binning1. All χ distributions show pulls consistent
with zero and agree with Gaussians of unit width.

7.7 Results of τB0 and ∆md from data

In the fit to data, the mixing frequency ∆md and the B0 lifetime τB0 have been fixed to
their world averages of ∆md = 0.502 ± 0.007 ps−1 and τ0

B = 1.536 ± 0.014 ps [17]. We check
whether the ∆t distributions are consistent with these values by allowing the corresponding
parameters to vary individually in the fit. Note that the analysis has not been optimized for
these measurements. The fits give ∆md = 0.515± 0.006 ps−1 and τB0 = 1.496± 0.013 ps.

The quoted errors on these numbers are merely statistical. No systematic uncertainties or
Monte Carlo biases have been evaluated. Naive estimates of the systematic errors could be at
the level of 0.009 ps−1 and 0.020 ps [17]. Including these, the fit values agree with the world
average values, as far as a comparison is valid. The value of ∆md is also consistent with BABAR’s
last measurement of hadronic B decays, 0.516 ± 0.016 (stat.) ± 0.010 (syst.), using 30 fb−1 of
data [29]. Similarly, on 20 fb−1 of data, τB0 was found to be 1.546 ± 0.032 ± 0.022 [29]. The
differences observed are accounted for in the systematic error evalutation of a and clep (see
Section 9.4).

As a cross-check, we have also determined the mixing frequency ∆md and the B0 lifetime
τB0 simultaneously on the sample of fully simulated Monte Carlo events, which has generated
values of 0.489ps−1 and 1.541ps respectively. The fit to Monte Carlo events finds the values
0.4935 ± 0.0014 ps−1 and 1.528 ± 0.003 ps. The correlation between the two parameters is
−34%.

The correlations between ∆md and τB0 on the one hand and the a and clep parameters on
the other hand are found to be small, as shown in Table 7.8. So even though the fit values of
∆md and τB0 are slightly biased, they have little to no impact on the measured CP parameters.

1Bins with (too) small statistics show up as the correlated points in the graphs ‘χ vs∆t’. In the range
∆t∈ [−7, 7], they have the tendency to pull the mean of the χ distribution towards negative values.
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Figure 7.17: Plot of χ vs mES for, from top to bottom, B→D∓π±, B→D∗∓π±, and
B→D∓ρ± events.

7.8 Fit by tagging category and data taking period

The a parameters have been split by tagging category in the fit to data. The results, includ-
ing the projections of the fit, are plotted in Fig. 7.21. The parameters show no significant
disagreements.
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Figure 7.18: Plot of χ vs ∆t (left) and the χ distributions (right) for B → Dπ events
categorized as D−π+ or D+π− and as unmixed or mixed.
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Figure 7.19: Plot of χ vs ∆t (left) and the χ distributions (right) for B→D∗π events
categorized as D∗−π+ or D∗+π− and as unmixed or mixed.
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Figure 7.20: Plot of χ vs ∆t (left) and the χ distributions (right) for B → Dρ events
categorized as D−ρ+ or D+ρ− and as unmixed or mixed.
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Correlation aDπ aD∗π aDρ cDπ
lep cD

∗π
lep cDρ

lep

∆md −0.0028 −0.0024 −0.0034 −0.0130 −0.0106 −0.0071
τB0 −0.0024 −0.0035 −0.0025 +0.0086 +0.0088 +0.0019

Table 7.8: Correlations of a and clep with ∆md and τB0.
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Figure 7.21: The a CP parameters split by tagging category for the modes B → Dπ,
B→D∗π, and B→Dρ.

7.9 Fit to charged B control sample

As another cross-check, we have performed the fit to the chargedB data sampleB− → D(∗)0π−,
obtained from Ref. [76] For charged B mesons there are two states to study: B− and B+ decays,
so one can test only one sin(∆md∆t) ‘mixing’ term, with one corresponding CP amplitude, S.
As sine terms we choose +S sin(∆md∆t) for B+ decays, and −S sin(∆md∆t) for B− decays.
Compared with the the a, b, c parametrization used for the B0 sample, this corresponds to the
sine term with the a coefficient.

The available data sample has about 6.8k signal candidates of B− → D(∗)0π−. We obtain
the sine amplitudes given in Table 7.9. Both amplitudes are consistent with zero, as expected.
The results indicate that the fit procedure and model do not create a fake CP asymmetry
where there is none.
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Coefficient Observed asymmetry

SDπ +0.072± 0.136
SD∗π −0.112± 0.105

Table 7.9: Observed sine asymmetries in B− → D0(∗)π−.

7.10 Fit to the mES sideband region

As shown in Fig. 4.10, the likelihood to find signal events in the mES sideband, with mES <
5.27 GeV/c2, is practically zero. Events in that mass region are used to determine the properties
of background events in the ∆t fit.

To verify the validity of the description of background events in the ∆t fit, detailed in
Section 6.3, we have made ∆t projections for themES sideband. They can be seen in Figs. 7.22–
7.24. The background model used does not show any discrepancies.
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Figure 7.22: Distributions of ∆t for B→D∓π± background candidates, split by B tagging
flavor and reconstructed final state. The four plots show candidates of all
tagging categories; the solid curves are fit projections.
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Figure 7.23: Distributions of ∆t for B→D∗∓π± background candidates, split by B tag-
ging flavor and reconstructed final state. The four plots show candidates of
all tagging categories; the solid curves are fit projections.
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Figure 7.24: Distributions of ∆t for B→D∓ρ± background candidates, split by B tagging
flavor and reconstructed final state. The four plots show candidates of all
tagging categories; the solid curves are fit projections.
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Chapter 8

Result of the fit to data

In this Chapter results of the maximum-likelihood fit, described in Chapter 6, to the ∆t
distributions of the B→D(∗)∓π± and B→D∓ρ± sample are presented.

The sample of events used in the fit has been selected in Section 4.1.2. As explained in
Section 4.1.3, the fit to the data sample is performed in two steps. The mES distributions
of all selected events in various sub-categories have been fit in Section 4.4 to determine the
event-by-event signal probability. Now, with this information, the fit to the ∆t distributions
is performed in Section 8.1. The Chapter concludes with a description of the performance of
the B-flavor tagging algorithm in Section 8.2.

The validation of the fit results and a comparison to the results from fully simulated (Geant
4) Monte Carlo events is found in Chapter 7. Finally, the extraction of sin(2β+γ) from the
measured CP parameters is performed in Chapter 11.

8.1 ∆t Fit results

This Section presents the results of the ∆t fit to data.
The maximum-likelihood fit to the ∆t distributions of events in the B → D(∗)∓π± and

B→D∓ρ± samples is performed using the event-by-event signal and background probability,
assigned on the basis of the measured values of mES , using the mES fit results obtained in
the Section 4.4. The ∆t fit is performed to all samples simultaneously, with the floating fit
parameters split by tagging category and/or B decay mode. The function used to describe
signal and background events has been presented in Chapter 6.

The results of the overall ∆t fit to the B → Dπ, B → D∗π, and B → Dρ data sample can
be found in Tables 8.1-8.4. Tables 8.1 and 8.2 list consecutively: the determined CP and tag-
side interference parameters, and parameters related to the signal PDFs. Tables 8.3 and 8.4
list the background parameters: first those for the combinatorial background, then the peaking
background parameters. Each table shows the correlations with the CP parameters of interest:
aDπ, aD∗π, aDρ, cDπ

lep , cD
∗π

lep , and cDρ
lep . There are 99 free parameters in the ∆t fit, while 29

additional parameters have been kept fixed (not considering the parameters obtained from the
separate mES fit, which are also fixed, for a grand total of 262 fit parameters).

A summary of the values used in the extraction of sin(2β+γ) is given in Table 8.5. The
largest correlation between (one of) the CP parameters and any linear combination of the
other free parameters is listed in the right-handed column.

Figs. 8.1–8.3 show the ∆t distribution for data events in signal box, withmES>5.27 GeV/c2,
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for the final states Dπ, D∗π, and Dρ with the likelihood projection superimposed, for all events
together and separated by tagging category. Remember that CP violation, if present, can best
be observed between the mixed events of CP -conjugated final states as the difference in uneven
behavior in ∆t. See Section 7.2 for a comparison with fully simulated Monte Carlo fit results. In
Section 7.10 one can find the ∆t distributions of the mES sideband region, mES<5.27 GeV/c2,
again with all events summed and split by tagging category.

The mixing asymmetries can be defined as

Af
mix =

Nf (∆t; unmixed)−Nf (∆t;mixed)
Nf (∆t; unmixed) +Nf (∆t;mixed)

, (8.1)

with Nf (∆t; (un-)mixed) being the observed number of (un-)mixed events in intervals of ∆t
and final state f . These are shown in Figs. 8.4 and 8.5 for events in the signal box. Ignoring the
∆t resolution, Af

mix = D cos(∆m∆t). Including resolution effects, the cosine term is shifted
slightly upwards and the asymmetry fades out at larger (mis-reconstructed) values of |∆t|.
The first set of plots shows the mixing asymmetries for all tagging categories combined, and
the second set for only the Lepton tagging category. Notice how the mixing asymmetries can
clearly be seen. Each asymmetry is diluted in amplitude because of B-flavor mistagging, hence
the larger amplitudes for the Lepton category.

Fig. 8.6 shows the tagging asymmetries for each final B decay mode j = Dπ, D∗π, Dρ,
defined by

Aj
tag =

N j(∆t;B0
tag)−N j(∆t;B0

tag)

N j(∆t;B0
tag) +N j(∆t;B0

tag)
, (8.2)

where N j(∆t;B0
tag) and N j(∆t;B0

tag) are, consecutively, the observed number of B0-tagged
and B0-tagged events in intervals of ∆t and B decay mode µ. In case of perfect ∆t resolution,
Aj

tag = Daj sin(∆m∆t). Each tagging asymmetry is proportional to aj , and, again, is diluted
because of B-flavor mistagging. The fit projections are shifted slightly downwards. This is
merely a sign of non-zero dilution differences between B0 and B0 tags (∆D) induced by the
tagging algorithm.

It should be noted, as can be seen in Fig. 8.4, that the bias in the resolution function gives
rise to a slightly uneven ∆t behavior in the asymmetry distributions. In relation to this, the
large global correlation (≈ 25%) of any of the clep parameters comes from the Lepton bias
parameter of the core Gaussian of the ∆t resolution function. The a parameters are mostly
correlated to the tag-side interference b parameters and to themselves.

The tag-side interference parameter blep has been fixed to zero, as no tag-side interference
effect is expected in the Lepton tagging category. No significant CP asymmetry is observed in
any of the a, b, c parameters.

8.2 Performance of the B-flavor tagging algorithm

The performance of the tagging algorithm is expressed in terms of the effective tagging power,
defined as Q =

∑
i εi(1− 2〈w〉i)2, where εi and 〈w〉i are the efficiency and the average mistag

probability, respectively, for tagging category i.
The figure of merit Q can be interpreted as follows. A tagging power of, for example, 25%

is the equivalent to an effective tagging efficiency of that same value (so 75% of the signal
events cannot be flavor-tagged, called ‘untagged’ events) with perfect flavor-tagging for the
B-tagged sample (that is, no mis-tagging).
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8.2 Performance of the B-flavor tagging algorithm

Corrl. Corrl. Corrl. Corrl. Corrl. Corrl.
Parameter Result aDπ aD∗π aDρ cDπ

lep cD
∗π

lep cDρ
lep

CP Parameters
aDπ −0.0095± 0.0225 1.000 0.038 0.018 0.002 −0.003 0
aD∗π −0.0400± 0.0225 0.038 1.000 0.023 0.001 −0.055 0.002
aDρ −0.0235± 0.0313 0.018 0.023 1.000 0 −0.003 −0.048
cDπ
lep −0.0331± 0.0424 0.002 0.001 0 1.000 0.080 0.081
cD

∗π
lep 0.0488± 0.0420 −0.003 −0.055 −0.003 0.080 1.000 0.066
cDρ
lep −0.0978± 0.0548 0 0.002 −0.048 0.081 0.066 1.000

Tag-side interference parameters
blep 0.0 (fixed) – – – – – –
bki −0.00431± 0.0226 0.141 0.179 0.086 0 −0.010 −0.003
bkii 0.00313± 0.0203 0.101 0.103 0.059 0 −0.006 −0.002
bkpi 0.0580± 0.0238 0.041 0.048 0.034 0 −0.003 −0.002
bpi 0.00782± 0.0240 0.022 0.020 0.013 0 −0.001 −0.001
both −0.0263± 0.0298 0.006 0.003 0.003 0 0 0
cDπ
ki 0.0405± 0.0385 0.010 0.002 −0.001 0 0 0
cDπ
kii 0.0695± 0.0475 0.010 0 −0.001 0 0 0
cDπ
kpi −0.134± 0.0711 0.007 −0.002 −0.001 0 0 0
cDπ
pi 0.072± 0.260 0.010 −0.001 −0.002 0 0 0
cDπ
oth −0.053± 0.104 −0.002 0 0.003 0 0 0
cD

∗π
ki −0.0831± 0.0381 0.005 −0.008 0 0 0.001 0
cD

∗π
kii −0.0231± 0.0468 −0.001 0 −0.002 0 0 0
cD

∗π
kpi 0.0663± 0.0732 0 −0.007 −0.003 0 0.001 0
cD

∗π
pi 0.210± 0.273 0 0.003 −0.001 0 0 0
cD

∗π
oth 0.065± 0.104 −0.002 0.001 0.002 0 0 0
cDρ
ki −0.0501± 0.0568 0 −0.001 −0.012 0 0 0
cDρ
kii −0.0991± 0.0670 0.002 0.001 0.006 0 0 0
cDρ
kpi 0.047± 0.106 0.001 0 −0.009 0 0 0
cDρ
pi 0.114± 0.151 0.001 0.001 0.012 0 0 −0.001
cDρ
oth 0.749± 0.394 −0.004 −0.001 0.010 0 0 0

Table 8.1: Results of the simultaneous likelihood fit to the B → D∓π±, B → D∗∓π±, and
B → D∓ρ± data samples (a, b, c parameters).

As already mentioned in Section 4.2, the errors on the CP parameters of interest, a and
clep, are proportional to 1/

√
Q. Untagged events do not contribute to the sensitivity to a and

clep, as can be seen from Eqs. (5.16–5.19). They do contribute to the sensitivity to the tag-side
interference parameters b.

The tagging efficiency εi is defined as

εi =
N sig

i

N sig
untag +

∑6
j=1N

sig
j

, (8.3)

where N sig
i is the number of signal events in category i, and N sig

untag is the number of untagged
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Result of the fit to data

Corrl. Corrl. Corrl. Corrl. Corrl. Corrl.
Parameter Result aDπ aD∗π aDρ cDπ

lep cD
∗π

lep cDρ
lep

Signal resolution function parameters
Scale (c), Lepton 0.95± 0.08 −0.012 −0.019 0.027 −0.003 0.031 −0.020
Scale (c), N-Lept. 1.10± 0.04 −0.003 0 −0.003 0.006 0.008 0.006
Scale (t), Lepton 2.1± 1.0 0.022 0.016 −0.042 −0.068 −0.047 −0.048
Scale (t), N-Lept. 3.6± 0.4 0.012 0.001 −0.013 −0.002 0.006 0.001
Width (o) 8.0 (fixed) – – – – – –
δ(∆t) (c), Lepton −0.01± 0.06 −0.011 −0.005 0.006 0.266 0.233 0.230
δ(∆t) (c), N-Lept. −0.19± 0.03 −0.011 −0.004 0.007 0.003 −0.003 0.001
δ(∆t) (t) −1.9± 0.5 0.013 0.005 −0.014 −0.013 −0.008 −0.011
δ(∆t) (o) 0.0 (fixed) – – – – – –
f (t) 0.06± 0.02 −0.002 0 0.002 −0.008 −0.011 −0.009
f (o) 0.004± 0.001 −0.006 −0.003 0.008 0.014 0.002 0.007

Signal dilution parameters
〈D0〉, Lepton 0.94± 0.03 0.009 0.028 0.021 0.017 −0.040 0.022
〈D0〉, Kaon I 0.93± 0.03 0.037 −0.004 −0.008 0 0 0.001
〈D0〉, Kaon II 0.68± 0.03 0.004 −0.004 −0.011 0 0 0.001
〈D0〉, K-Pi 0.54± 0.04 0.004 −0.003 0.016 0 0 −0.001
〈D0〉, Pi 0.37± 0.04 −0.011 −0.014 −0.012 0 0.001 0.001
〈D0〉, Other 0.22± 0.04 0.001 0.003 0.017 0 0 −0.001
∆D, Lepton 0.03± 0.02 0.016 −0.052 0.018 0.039 0.101 0.017
∆D, Kaon I 0.02± 0.02 −0.001 0.033 0.017 0 −0.002 −0.001
∆D, Kaon II 0.01± 0.02 −0.014 0.002 −0.001 0 0 0
∆D, K-Pi 0.02± 0.02 0.002 −0.012 0.002 0 0.001 0
∆D, Pi −0.13± 0.02 −0.001 −0.003 −0.005 0 0 0
∆D, Other −0.08± 0.03 0 −0.002 −0.001 0 0 0
D slope, Lepton −0.02± 0.05 0 0 −0.015 −0.004 0.002 −0.002
D slope, Kaon I −0.05± 0.06 −0.027 0.001 0.009 0 0 −0.001
D slope, Kaon II 0.00± 0.05 −0.001 0.006 0.008 0 0 −0.001
D slope, K-Pi −0.04± 0.05 −0.009 0 −0.014 0 0 0.001
D slope, Pi −0.01± 0.05 0.008 0.013 0.014 0 −0.001 −0.001
D slope, Other −0.07± 0.06 0.006 −0.002 −0.022 0 0 0.001
∆D slope 0.0 (fixed) – – – – – –

External parameters
∆md (ps−1) 0.502 (fixed) – – – – – –
τB0

d
(ps) 1.536 (fixed) – – – – – –

∆Γd (ps−1) 0.0 (fixed) – – – – – –

Table 8.2: Results of the simultaneous likelihood fit to the B → D∓π±, B → D∗∓π±, and
B → D∓ρ± data samples (signal parameters).
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8.2 Performance of the B-flavor tagging algorithm

Corrl. Corrl. Corrl. Corrl. Corrl. Corrl.
Parameter Result aDπ aD∗π aDρ cDπ

lep cD
∗π

lep cDρ
lep

Combinatorial background resolution function
Scale (c) 1.37± 0.01 −0.002 0 0.002 0 0 0.002
δ(∆t) (c) −0.016± 0.011 0.001 0.001 0 −0.002 0.002 −0.001
Width (o) 8.0 (fixed) – – – – – –
δ(∆t) (o) 0.0 (fixed) – – – – – –
f (o) 0.020± 0.002 −0.001 0 −0.003 −0.001 0 −0.003

Combinatorial background dilutions (1)
〈D〉Dπ

lep , τ=0 0.62± 0.28 0.003 −0.002 −0.001 0.007 0.003 −0.002
〈D〉Dπ

ki , τ=0 0.56± 0.03 0 0 0 0 0 0
〈D〉Dπ

kii , τ=0 0.45± 0.02 0.001 0 0.001 0 0 0
〈D〉Dπ

kpi , τ=0 0.31± 0.03 0 0 0 0 0 0
〈D〉Dπ

pi , τ=0 0.15± 0.03 0 0 0 0 0 0
〈D〉Dπ

oth, τ=0 0.08± 0.03 −0.001 0 0 0 0 0
〈D〉D∗π

lep , τ=0 0.64± 0.60 0 0.005 0 −0.002 0.002 −0.003
〈D〉D∗π

ki , τ=0 0.88± 0.04 −0.002 0.001 0 0 0 0
〈D〉D∗π

kii , τ=0 0.69± 0.03 0 0 0 0 0 0
〈D〉D∗π

kpi , τ=0 0.48± 0.04 0 0.001 0 0 0 0
〈D〉D∗π

pi , τ=0 0.14± 0.05 0 0 0 0 0 0
〈D〉D∗π

oth , τ=0 0.08± 0.05 −0.001 0 0 0 0 0
〈D〉Dρ

lep , τ=0 1.26± 0.46 −0.001 −0.002 −0.013 −0.001 0.002 −0.016
〈D〉Dρ

ki , τ=0 0.59± 0.06 −0.002 0 0.005 0 0 0
〈D〉Dρ

kii , τ=0 0.58± 0.05 −0.001 0 0.001 0 0 0
〈D〉Dρ

kpi, τ=0 0.35± 0.05 0 0 −0.002 0 0 0
〈D〉Dρ

pi , τ=0 0.13± 0.05 0 0 0 0 0 0
〈D〉Dρ

oth, τ=0 0.07± 0.06 −0.001 0 0.001 0 0 0
Combinatorial background lifetimes and fractions

τ , comb. bkg. (ps) 1.39± 0.05 0.001 0 0.004 0 0 0.005
fDπ(τ=0), Lepton 0.33± 0.10 −0.003 0 0.001 −0.004 0 0.001
fDπ(τ=0), N-Lept. 0.81± 0.01 −0.002 0 0.002 0 0 0.003
fD∗π(τ=0), Lepton 0.28± 0.18 0 −0.005 0 −0.001 0 0
fD∗π(τ=0), N-Lept. 0.78± 0.02 0 0 0.002 0 0 0.003
fDρ(τ=0), Lepton 0.23± 0.12 0.001 0 0.012 0 0.001 0.009
fDρ(τ=0), N-Lept. 0.60± 0.02 0 0 0.001 0 0 0.004
f(τ >0, mix) 0.0 (fixed) – – – – – –

Table 8.3: Results of the simultaneous likelihood fit to the B → D∓π±, B → D∗∓π±, and
B → D∓ρ± data samples (background parameters).
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Result of the fit to data

Corrl. Corrl. Corrl. Corrl. Corrl. Corrl.
Parameter Result aDπ aD∗π aDρ cDπ

lep cD
∗π

lep cDρ
lep

Combinatorial background dilutions (2)
〈D〉Dπ

lep , τ >0 0.40± 0.16 −0.001 0 0 −0.006 0 0
〈D〉Dπ

ki , τ >0 0.48± 0.10 0.002 0 0 0 0 0
〈D〉Dπ

kii , τ >0 0.45± 0.07 −0.001 0 0 0 0 0
〈D〉Dπ

kpi , τ >0 0.38± 0.10 0.001 0 0 0 0 0
〈D〉Dπ

pi , τ >0 0.01± 0.09 0 0 0 0 0 0
〈D〉Dπ

oth, τ >0 0.09± 0.11 0 0 0 0 0 0
〈D〉D∗π

lep , τ >0 0.08± 0.29 0 −0.003 0 0.001 −0.007 0.001
〈D〉D∗π

ki , τ >0 0.41± 0.11 0 −0.002 0 0 0
〈D〉D∗π

kii , τ >0 0.57± 0.10 0 0.002 0 0 0
〈D〉D∗π

kpi , τ >0 0.47± 0.13 0 −0.001 0 0 0
〈D〉D∗π

pi , τ >0 0.12± 0.14 0 0.001 0 0 0
〈D〉D∗π

oth , τ >0 0.09± 0.15 0 0 0 0 0
〈D〉Dρ

lep , τ >0 0.35± 0.12 0 0 0.005 0.001 0.001 0.018
〈D〉Dρ

ki , τ >0 0.39± 0.09 0.001 0 −0.005 0 0
〈D〉Dρ

kii , τ >0 0.10± 0.07 0 0 −0.001 0 0
〈D〉Dρ

kpi, τ >0 0.09± 0.08 0 0 0.003 0 0
〈D〉Dρ

pi , τ >0 0.14± 0.08 0 0 0 0 0
〈D〉Dρ

oth, τ >0 0.04± 0.09 0 0 0 0 0
Peaking background lifetimes and fractions

τ , peak. bkg. (ps) 1.668 (fixed) – – – – – –
fDπ

pb bkg. (%) 2.9 (fixed) – – – – – –
fD∗π

pb bkg. (%) 2.2 (fixed) – – – – – –
fDρ

pb bkg. (%) 2.6 (fixed) – – – – – –
fDπ

pb (B0) (%) 57.0 (fixed) – – – – – –
fD∗π

pb (B0) (%) 47.0 (fixed) – – – – – –
fDρ

pb (B0) (%) 50.0 (fixed) – – – – – –
B+ Peaking background dilutions (B0 p.b. dilutions have been fixed to signal values)

〈D0〉, Lepton 0.9708 (fixed) – – – – – –
〈D0〉, Kaon I 0.9018 (fixed) – – – – – –
〈D0〉, Kaon II 0.7666 (fixed) – – – – – –
〈D0〉, K-Pi 0.6179 (fixed) – – – – – –
〈D0〉, Pi 0.3621 (fixed) – – – – – –
〈D0〉, Other 0.1724 (fixed) – – – – – –
∆D, Lepton −0.0116 (fixed) – – – – – –
∆D, Kaon I 0.0305 (fixed) – – – – – –
∆D, Kaon II −0.0028 (fixed) – – – – – –
∆D, K-Pi 0.0250 (fixed) – – – – – –
∆D, Pi −0.0985 (fixed) – – – – – –
∆D, Other −0.1047 (fixed) – – – – – –
D slope 0.0 (fixed) – – – – – –

Peaking background resolution parameters have been fixed to signal values

Table 8.4: Results of the simultaneous likelihood fit to the B → D∓π±, B → D∗∓π±, and
B → D∓ρ± data samples (background parameters).
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8.2 Performance of the B-flavor tagging algorithm

Parameter Fit (stat. error) Global correlation (%)

aDπ −0.010± 0.023 19
aD∗π −0.040± 0.023 23
aDρ −0.024± 0.031 14
cDπ
lep −0.033± 0.042 30
cD

∗π
lep +0.049± 0.042 31
cDρ
lep −0.098± 0.055 27

Table 8.5: Summary of fit variables used for the extraction of sin(2β+γ).

Category N sig ε (%) 〈w〉 (%) ∆w (%) Q (%)

Lepton 4288± 66 8.7± 0.1 3.8± 0.5 −1.1± 0.9 7.4± 0.2
Kaon I 5430± 77 11.0± 0.1 4.7± 0.6 −0.5± 1.0 9.0± 0.2
Kaon II 8408± 97 17.0± 0.2 16.1± 0.6 −0.8± 1.2 7.8± 0.3
K-Pi 6763± 87 13.7± 0.2 24.1± 0.8 −1.3± 0.9 3.7± 0.2
Pion 7113± 90 14.4± 0.2 31.9± 0.8 4.2± 1.5 1.9± 0.2
Other 4825± 74 9.8± 0.1 41.3± 1.0 6.7± 1.2 0.3± 0.1
Total 49368± 220 74.6± 0.2 30.1± 0.5

Table 8.6: Tagging performance on data signal events.

signal events. The signal yields per tagging category have been repeated in Table 8.6. With the
mES fit like in Section 4.4, the nominal data set, this time including the untagged events, is
determined to contain 49, 368± 220 signal events (which equals the denominator of Eq. (8.3)),
resulting in the tagging efficiencies listed in Table 8.6.

The average mistag fraction 〈w〉i and difference ∆wi for B0 and B0 tags are related to the
dilution parameters 〈D〉i and ∆Di in Section 6.2.2. The numbers listed in Table 8.6 have not
been converted from the dilutions found in Table 8.2. They are obtained from the nominal fit
to data with the dilution slope parameters, D slope, fixed to zero. This to make sure that the
dilution parameter are averaged over σ∆t, as in the historical definition of Q. (See Section 4.3.4
for the dependence of 〈D〉i on σ∆t.)

Using the numbers in Table 8.6, the effective tagging power Q is found to be 30.1± 0.5%
for this analysis. The mistag probabilities, efficiencies, and performance are consistent with
those found using fully simulated Monte Carlo events.

Notice that about 75% percent of all selected B candidates is assigned a flavor tag. The
Lepton tag category has the smallest mistag fraction, as expected. The kaon categories have
the highest tagging efficiencies and, as a consequence, the highest Q values. The remaining
categories show a difference in the mistag fractions forB0 andB0 mesons. This can be explained
due to the different interaction cross sections ofK+ andK− mesons with the detector material,
or different reconstruction efficiencies for negative and positive soft pions.
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Result of the fit to data
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Figure 8.1: Distributions of ∆t for B0→D±π∓ candidates split by B tagging flavor and
reconstructed final state. The top four plots show candidates in all tagging
categories, and the bottom four plots show candidates tagged with leptons
only. The solid curves are fit projections. The background contributions are
represented by the dashed curves, and the signal contributions by the dotted
curves.
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8.2 Performance of the B-flavor tagging algorithm
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Figure 8.2: Distributions of ∆t for B0→D∗±π∓ candidates split by B tagging flavor and
reconstructed final state. The top four plots show candidates in all tagging
categories, and the bot-tow four plots show candidates tagged with leptons
only. The solid curves are fit projections. The background contributions are
represented by the dashed curves, and the signal contributions by the dotted
curves.
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Result of the fit to data
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Figure 8.3: Distributions of ∆t for B0→D±ρ∓ candidates split by B tagging flavor and
reconstructed final state. The top four plots show candidates in all tagging
categories, and the bot-tow four plots show candidates tagged with leptons
only. The solid curves are fit projections. The background contributions are
represented by the dashed curves, and the signal contributions by the dotted
curves.
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Figure 8.4: The ∆t mixing asymmetries for, from top to bottom, B0→D±π∓,
B0→D∗±π∓, and B0→D±ρ∓ events in the signal box, split by reconstructed
final state. The solid curves are fit projections. All tagging categories have
been lumped together.
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Result of the fit to data
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Figure 8.5: The ∆t mixing asymmetries for, from top to bottom, B0→D±π∓,
B0→D∗±π∓, and B0→D±ρ∓ signal events in the tagging category, split by
reconstructed final state. The solid curves are fit projections.
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8.2 Performance of the B-flavor tagging algorithm
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Figure 8.6: The ∆t tagging asymmetries for, from top to bottom, B0→D±π∓,
B0→D∗±π∓, and B0→D±ρ∓ events in the signal box. All tagging categories
are shown together. The solid curves are fit projections.
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Result of the fit to data
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Chapter 9

Evaluation of systematic
uncertainties

Potential sources of systematic uncertainties in the measured CP asymmetries can be roughly
grouped into several categories:

1. the signal parametrization and assumptions in the analysis technique (section 9.1),

2. the background description (section 9.2),

3. uncertainties in determination of the decay-time difference (section 9.3),

4. externally fixed parameters (section 9.4), and

5. Monte Carlo corrections (section 9.5).

All contributions are summarized in Section 9.6.
Systematic uncertainties are determined from data or from samples of simulated events.

9.1 Signal parametrization

The parametrization of the signal ∆t distribution is discussed in Chapter 6. In this Section the
description of the ∆t signal resolution model is varied. Next, the analysis technique assumes
common ∆t resolution functions and a similar performance of the flavor-tagging algorithm
between the Dπ, D∗π, and Dρ samples, and equal tagging and reconstruction efficiencies for
B0 and B0 decays. The systematic effects due to these assumptions are estimated in this
Section.

9.1.1 Common ∆t resolution function

The triple-Gaussian ∆t resolution model and its parameters have been described in Sec-
tion 4.3.3. In the nominal fit, the same set of ∆t resolution function parameters is used to
fit the Dπ, D∗π, and Dρ samples. The assumption of a common ∆t resolution function has
been tested using fully-simulated Monte Carlo events (section 3.5), on which we perform the
fit with a single set and with three separate sets of resolution function parameters. The shifts
in the CP parameters are listed in Table 9.1.
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Evaluation of systematic uncertainties

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

Different reso. −0.0004 +0.0002 −0.0001 +0.0001 +0.0002 0
Syst. Error 0.0004 0.0002 0.0001 0.0001 0.0002 0

Table 9.1: Shifts in the a and clep parameters observed when using separate sets of reso-
lution function parameters in Dπ, D∗π, and Dρ simulated events.

9.1.2 Fixed ∆t signal resolution function parameters

All resolution function parameters, discussed in Section 4.3.3, are left free in the fit to data,
except for the mean and width of the outlier resolution component. The systematic contri-
butions of the fixed outlier component are obtained by separately varying these parameters
and repeating the fit. The width (bias) of the outlier Gaussian is conservatively varied by
4.0 (2.0) ps around is nominal values of 8.0 (0.0) ps. These values and variations are large
compared with the B0 lifetime (≈ 1.5 ps) and the maximum σ∆t value allowed (2.5 ps). The
observed differences are shown in Table 9.2. The two variations are considered uncorrelated,
and the biggest shifts are added in quadrature to assign the final systematic uncertainties.

Width / bias (ps) δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

4.0/0.0 +0.0005 +0.0003 +0.0011 +0.0016 +0.0037 +0.0039
12.0/0.0 +0.0002 0 0 0 +0.0006 +0.0001
8.0/−2.0 0 0 −0.0004 +0.0015 +0.0017 +0.0009
8.0/+2.0 +0.0003 0 +0.0003 −0.0011 −0.0008 −0.0004
Syst. Error 0.0006 0.0003 0.0013 0.0022 0.0041 0.0040

Table 9.2: Systematic uncertainties in the a and clep parameters due to the fixed parame-
ters used in the triple Gaussian resolution function. The largest contributions
have been added in quadrature to obtain the assigned systematic uncertainties.

9.1.3 Signal ∆t resolution model

By default, the common ∆t resolution function used to describe the signal components of
the data sample is the triple-Gaussian model, as discussed in Section 4.3.3. To evaluate the
sensitivity to the choice of this description, the data fit is repeated with an alternative model
called GExp [68]

GExp(δt;µ, σ, τ, ft, fo) = (1−ft−fo)G(µ, σ) + ftG(0 ps, σ)⊗ eδt/τ + foG(0 ps, 8 ps) , (9.1)

with δt ≡ ∆tmeas−∆ttrue, and G(µ, σ) is a Gaussian with mean µ and width σ.
Like the triple-Gaussian model, the GExp model consists of a core and outlier Gaussian.

To account for biases from charm decays, the tail Gaussian is convoluted with a one-sided
exponential, having an effective lifetime τ . The tail fraction ft is taken to be different for each
tagging category.

The shifts in CP parameters between the nominal triple-Gaussian and GExp models are
shown in Table 9.3, and are assigned as systematic uncertainties.
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9.1 Signal parametrization

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

GExp +0.0005 +0.0003 −0.0004 −0.0017 −0.0014 −0.0020
Syst. Error 0.0005 0.0003 0.0004 0.0017 0.0014 0.0020

Table 9.3: Systematic uncertainties in a and clep parameters due to model dependency of
the ∆t signal resolution. Differences in CP asymmetries are listed when using
the GExp model instead of the triple-Gaussian.

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

Art Effect +0.0004 −0.0011 −0.0002 +0.0011 +0.0012 −0.0010
Syst. Error 0.0004 0.0011 0.0002 0.0011 0.0012 0.0010

Table 9.4: Systematic uncertainties in the a and clep parameters due to ∆t resolution
differences for true-tag and mis-tag events.

9.1.4 ∆t resolution functions for correctly and incorrectly tagged events

In the analysis a common ∆t resolution function has been applied for all signal events. Different
resolution functions can apply to correctly (true-tag) and incorrectly (mis-tag) tagged events,
the so-called ‘Art-effect’. For example, B decays in the lepton tagging category may have a
larger bias in ∆t when tagged by secondary leptons (with opposite charge) from cascade charm
decays. The effect of resolution differences between the two subsets has been estimated using
simulated events.

To do so, the available signal Monta Carlo sample (section 3.5) has been split into true-
tag and mis-tag events using Monte Carlo truth information, and the ∆t resolution function
parameters of the entire sample and both sub-samples have been determined by fitting the
appropriate residual δt ≡ ∆tmeas−∆ttrue distributions.

Next, a toy Monte Carlo study has been performed with 600 toy Monte Carlo samples,
having the generated CP parameters a = 0.04 and b, c = 0.00. Of these, 300 samples are
generated with the common resolution parameter set for all the events, as obtained from
the fully simulated events, and the other 300 samples have been generated with the different
resolution parameter sets for correctly and incorrectly tagged events. All samples have been
fitted using a common ∆t resolution function. Table 9.4 shows the average differences in the
a and clep parameters obtained in the two cases. The observed differences in Table 9.4 have
been assigned as systematic uncertainties.

9.1.5 Common dilutions and dilution differences

In the fit to data, the same set of dilution, dilution difference, and dilution slope parameters
(see Section 6.2.2) has been used to fit the Dπ, D∗π, and Dρ samples. A source of systematic
uncertainties comes from possible differences in these parameter sets between the three data
samples. The effect of assuming common dilutions, dilution differences, and dilution slopes has
been evaluated on the sample of fully-simulated Monte Carlo events, presented in Section 3.5,
performing the fit with a single set of dilutions and with three separate sets of dilutions. The
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Evaluation of systematic uncertainties

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

Diff. dilutions +0.0001 +0.0001 −0.0005 +0.0006 +0.0002 +0.0005
Syst. Error 0.0001 0.0001 0.0005 0.0006 0.0002 0.0005

Table 9.5: Systematic uncertainties in a and clep from the assumption of common dilu-
tions, dilution differences, and dilution slopes as obtained from Dπ, D∗π, and
Dρ simulated events.

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

εrec(B0) > εrec(B0) +0.0002 +0.0001 −0.0002 +0.0004 +0.0001 −0.0002
εrec(B0) < εrec(B0) 0 0 +0.0002 −0.0001 +0.0001 0
εtag(B0) > εtag(B0) −0.0006 −0.0003 −0.0001 −0.0009 −0.0007 −0.0004
εtag(B0) < εtag(B0) −0.0001 −0.0001 +0.0002 +0.0002 −0.0003 0
Syst. Error 0.0006 0.0003 0.0003 0.0010 0.0007 0.0004

Table 9.6: Systematic uncertainties in the a and clep parameters due to the assumption
of equal tagging and reconstruction efficiencies between B0 and B0 decays.
The largest contributions have been added in quadrature to obtain the assigned
systematic uncertainties.

observed shifts in CP parameters are shown in Table 9.5 and have been assigned as systematic
uncertainties.

9.1.6 Different reconstruction and tagging efficiencies for B0 and B0 decays

The nominal fit configuration ignores possible differences in reconstruction and tagging effi-
ciency between B0 and B0 decays, see Section 6.4. Two toy Monte Carlo studies have been
performed to test the assumption of equal efficiencies.

First the tagging efficiency (εtag) difference, an estimate of which, 1.3%, is taken from
Ref. [76]. A total of 900 Monte Carlo samples have been generated with no CP asymme-
tries, with consecutively: 300 samples having εtag(B0) > εtag(B̄0) by 1.3%, 300 samples with
εtag(B0) < εtag(B̄0) by 1.3%, and 300 samples with equal tagging efficiencies. The efficiency
corrections are applied to both signal and background events.

Second, we perform a similar study for the reconstruction efficiency (εrec) difference. We use
a difference of 0.7% [76]. Again, a total of 900 toy Monte Carlo samples have been generated
with no CP asymmetries, with: 300 samples having εreco(B0) > εreco(B̄0) by 0.7%, 300 samples
with εreco(B0) < εreco(B̄0) by 0.7%, and 300 samples with equal reconstruction efficiencies.
Again, the efficiency difference is applied equally to signal and background events.

All toy samples have been fit with the nominal fit configuration.
For both studies, Table 9.6 shows the average shifts in the a and clep parameters compared

to the equal efficiency cases. The tagging and reconstruction efficiency differences are consid-
ered uncorrelated, and the largest shifts observed are added in quadrature to obtain the final
systematic uncertainties on the a and clep parameters.
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9.2 Background description

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

Simultaneous mES⊗∆t fit +0.0002 +0.0002 +0.0001 +0.0004 +0.0005 −0.0003
Syst. Error 0.0002 0.0002 0.0001 0.0004 0.0005 0.0003

Table 9.7: Systematic uncertainties related to signal probability fluctuations, obtained
from running a simultaneous mES⊗∆t fit.

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

Floating Ebeam 0 0 −0.0001 0 −0.0002 +0.0002
Syst. Error – – 0.0001 – 0.0002 0.0002

Table 9.8: Systematic uncertainties on the a and clep parameters from the fixed end point
Ebeam in the description of the mES spectrum.

9.2 Background description

The choice of the emperical description of the ∆t distribution of background events, discussed
in Chapter 6, is a possible source of systematic effects. In addition, certain background param-
eters have been fixed in the fit to data, either because they are extracted from independent
fits, for example fits to the mES distribution, or they have been evaluated from simulated
events. We consider background parameter variations and their impact on the measured CP
asymmetries.

9.2.1 Signal probability

For reasons of speed the nominal fit has been split in two parts. First the fit to the mES distri-
butions is performed; its parameters are fixed, and subsequentially the tagged ∆t distributions
are fitted. Events in the signal region, contributing to the ∆t fit, get assigned (non-zero) signal
probabilities based on the measured values of mES and the outcome of the mES fit. The uncer-
tainty on the mES fit results, leading to variations in the event-by-event signal probabilities,
can affect the observed values for the CP asymmetries.

The size of this effect is determined by fitting mES and ∆t simultaneously. The observed
shifts in the a and clep parameters compared with the nominal fit configuration are shown in
Table 9.7, and are assigned as systematical uncertainties on the signal probability.

9.2.2 Beam energy Ebeam in mES fits

In the mES fits used to acquire event-by-event signal probabilities, see Section 4.1.3, the center-
of-mass beam energy Ebeam is fixed to 5.291 GeV/c2, see Eq. (4.11). The E∗

beam parameter is
known with an uncertainty of about 0.002 GeV/c2 [36]. Variatons in Ebeam can change the
signal probability and the fitted CP amplitudes. The systematic uncertainties on a and clep
are evaluated by floating the beam energy parameter and redoing the mES fit. Table 9.8 shows
the corresponding contributions.
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Evaluation of systematic uncertainties

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

Bkg. tail −0.0001 0 −0.0001 0 0 −0.0001
Syst. Error 0.0001 – 0.0001 – – 0.0001

Table 9.9: Shifts observed in the a and clep parameters when including a tail Gaussian in
the background ∆t resolution model.

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

total fraction 0 ±0.0002 ±0.0001 ±0.0001 ±0.0004 ±0.0006
relative fraction B+/B0 0 ±0.0001 0 ±0.0002 0 ±0.0002
Syst. Error – 0.0002 0.0001 0.0002 0.0004 0.0006

Table 9.10: Variations in a and clep from uncertainties in the amount and composition
of the peaking background. The shifts been added in quadrature to obtain the
systematic uncertainties.

9.2.3 Background ∆t resolution model

The background ∆t resolution function employed in the nominal fit is modeled by a double-
Gaussian, see Section 6.3.1. Compared to the signal ∆t resolution model in Eq. (4.18), it has
a core and outlier component, but no tail. As a systematic check, we include a tail Gaussian
for the background events and redo the fit. The systematic differences are given in Table 9.9.

9.2.4 Fraction and composition of peaking background

In the fit to data, the fractions of peaking background for the D(∗)π and Dρ samples have been
fixed to the values found in Section 4.1.4 (see Table 4.4). The relative fractions of B+ and B0

decays in the peaking background are fixed as well, also estimated from simulated events. To
account for the uncertainties in these values, in the nominal fit the total peaking background
fractions have been varied conservatively by 1%, and the relative fractions are varied by 10%.
The largest contributions are shown in Table 9.10. The shifts been added in quadrature to
obtain the assigned systematic uncertainties on a and clep.

9.2.5 CP content of combinatorial background

The emperical description of the ∆t distribution for the background has been discussed in Sec-
tion 6.3. In the nominal parametrization, there are no CP -violating effects in the combinatorial
background. To evaluate the validity of this assumption, the background model is modified to
include sine mixing terms, with the same a, b, c parametrization as used in the ∆t distribution
for signal events (Eq. (6.4)).

We vary the corresponding a, b, and c parameters of the combinatorial background with
the values 0.06, 0.03, and 0.06 respectively – approximately twice the expected asymmetries
in the D(∗)π samples. The corresponding variations in a and clep are shown in Table 9.11. To
calculate the assigned systematic uncertainties, we add in quadrature the largest deviations
for the three sets of variations.
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9.2 Background description

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

CP Argus a ±0.0009 ±0.0007 ±0.0029 ±0.0001 ±0.0002 ±0.0006
CP Argus b 0 ±0.0001 ±0.0004 0 ±0.0001 ±0.0003
CP Argus c 0 ±0.0001 ±0.0002 ±0.0002 ±0.0001 ±0.0026
Syst. Error 0.0009 0.0007 0.0029 0.0002 0.0002 0.0027

Table 9.11: Systematic uncertainties on the a and clep parameters from the assumption
of no CP violation in the combinatorial background.

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

CP Peak a ±0.0009 ±0.0006 ±0.0007 0 0 0
CP Peak b ±0.0001 0 ±0.0001 0 0 0
CP Peak c 0 0 0 ±0.0009 ±0.0006 ±0.0007
Syst. Error 0.0009 0.0006 0.0007 0.0009 0.0006 0.0007

Table 9.12: Systematic uncertainties on the a and clep parameters from the assumption
of no CP violation in the B0 component of the peaking background.

9.2.6 CP content of peaking background

In the nominal model, no CP violation in the B0 peaking background is assumed, discussed in
Section 6.3.2. The effect of potential CP content of this background component is estimated
with the same CP -violating model as used to describe signal events (Eq. (6.4)). We vary the
peaking background’s a, b, and c parameters with the values 0.06, 0.03, and 0.06, like in Sec-
tion 9.2.5, and, to calculate the systematical uncertainties, add the largest shift in quadrature
for the three sets of variations. The deviations observed in the a and clep parameters are listed
in Table 9.11.

9.2.7 B → D∓ρ′ ± and non-resonant B → D∓π±π0 background

For the B→D∓ρ± mode we consider additional sources of background with the same final
state D∓π±π0, where the π±π0 system is not produced through the ρ± resonance. Interfering
sources of background can introduce a dependence of the λDρ

± parameters of Eq. (2.59) on
mππ0 . We have studied the dependency using the distribution of mππ0 in Ref. [81].

The possible background contributions have been evaluated with a data sample of 130273
B0 → D−π+π0 candidates, on which the requirements on the ρ helicity and on mππ0 have
been removed. Three interfering components are considered: B0→D−ρ+ (the signal), B0→
D−ρ+(1450) with a pole mass of (1465±25) MeV/c2 and a width of (400±60) MeV/c2 [17] for the
ρ+, both described with P -wave relativistic Breit-Wigner functions [82, 83], and a non-resonant
component, B0→D−(π+π0)nr. Contributions from the decay modes B0→D∗−π+ (D∗−→
D−π0) and B0 → D̄∗∗0π0 (D̄∗∗0 → D−π+) are negligible due to the kinematic constraints
imposed on the ρ daughter particles.

We perform a fit to the binned mππ0 distribution to extract the amplitudes of the three
components, where for each bin the combinatorial background has been subtracted, as es-
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Evaluation of systematic uncertainties

timated from the corresponding mES distribution, and the number of peaking background
events has been estimated using fully simulated Monte Carlo events. The result of the fit is
shown in Fig. 9.1. The fraction of B0→D−ρ+(1450) and B0→D−(π+π0)nr events in the mass
window 620 < mππ0 < 920 MeV/c2 is found to be smaller than 0.02 at 90% confidence level
(C.L.). This limit is obtained performing 1000 toy Monte Carlo studies, where the measured
amplitudes of the three components are varied over their statistical and systematical errors.
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Figure 9.1: mππ0 distribution for the combinatorial-background subtracted B→D∓π±π0

sample, containing 16214 events. The solid curve is the fit projection, con-
sisting of the three interfering components described in the text and an mES

peaking background contribution, indicated with the dashed line.

Ignoring higher-order terms, using the notation of Ref. [81] we have∣∣∣∣∣ |ADρ′ |2 + |ADππ0 |2 + 2Re(ADρA
∗
Dρ′) + 2Re(ADρA

∗
Dππ0) + 2Re(ADρ′A

∗
Dππ0)

|ADρ|2

∣∣∣∣∣ < 0.02 , (9.2)

where each CKM-favored amplitude Ai = aie
iδi Lρ i gi(Ω) consists of a complex constant aie

iδi ,
a Breit-Wigner propagator Lρ i, and an angular function gi(Ω). We integrate over the helicity
angles Ω, and in each term the angular cross-product is replaced with an ‘integrated angular
efficiency’

Φij ≡
∫

2 ε(Ω) Re(gig
∗
j ) dΩ , (9.3)

with the angular efficiency defined as ε(Ω). (The factor of 2 is absent for diagonal terms.) In
practice themππ0 distribution is fit for the constants aDρ′ and aDππ0 cos(δDππ0), aDππ0 sin(δDππ0).
The constant aDρe

iδi is normalized to one, and the phase difference δDρ′ is fixed to π.
Eq. (9.2) is similar to the correction to the amplitude S of the sine mixing term in Eq. (2.58)

(again ignoring higher order terms)

∆S =
2Im( q

pA
′A∗)

|A|2
, (9.4)
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9.3 Uncertainties in determination of the decay-time difference

aDρ cDρ
lep

Non-resonant Dππ0 0.0016 0.0016
Syst. Error 0.0016 0.0016

Table 9.13: Systematic uncertainties due to possible B → D∓ρ′± and non-resonant B →
D∓π±π0 background picked up in the B → D∓ρ± selection.

as induced by the presence of B → D∓ρ′±(1450) and non-resonant B → D∓π±π0. Here A is
the CKM-favored amplitude sum ADρ +ADρ′ +ADππ0 , where again each term has a lineshape
and angular contribution, and A′ is the CKM-suppressed amplitude A′Dρ +A′Dρ′ +A

′
Dππ0 with,

similarly, A′i = a′ie
iδ′i Lρ i gi(Ω). Note that Ai and A′i share the same lineshape and angular

contributions. Again, angular cross-terms get replaced with the angular efficiencies Φij after
the angular integration.

Writing a′i as ri×ai, where ri is the ratio parameter r introduced in Section 2.6 (measured
to be < 0.01, but conservatively taken to be 0.02), one sees that Eq. (9.4) is approximately
(50/2) times smaller than Eq. (9.2), i.e. at the level of 0.0008. This assumes no ‘conspiracy’
between the the strong phases δi, resulting in an unnaturally small limit1 in Eq. (9.2). Given
the uncertainty in ri, we multiply the limit with a factor of two, and copy the result for both
aDρ and cDρ

lep . The biases are found to be at most 0.0016, and are summarized in Table 9.13.

9.3 Uncertainties in determination of the decay-time difference

The decay-time difference ∆t is calculated from the boost factor of the Υ (4S) and the spatial
distance ∆z between the two B decay vertices in an event. Hence, systematic sources in the re-
construction of the decay vertices and the knowledge of the Υ (4S) boost translate to systematic
effects on ∆t, which result in systematic uncertainties on the measured CP asymmetries.

Detector-related sources, not accounted for by the measurement technique, include no
perfect knowledge of: the z-scale of the detector, the internal alignment of the SVT wafers, and
the position of the interaction point used to constrain vertex fits. Also, we consider quality cuts
on ∆t and σ∆t in the evaluation of the systematic uncertainties in the decay-time difference.

9.3.1 Quality cuts on ∆t and σ∆t

In the final data sample we only include events with ∆t ∈ [−20, 20] ps, as mentioned in Sec-
tion 4.1.2. This is a very loose requirement considering the B0 lifetime of ≈ 1.5 ps. Furthermore,
we require the uncertainty σ∆t to be less than 2.5 ps.

These cuts have been varied in the fit to data. The ∆t cut has been set to 30 ps and to
10 ps, and the cut on σ∆t has been set at 2 ps and 3 ps. Table 9.14 summarizes the variations
observed in the a and clep parameters. To obtain the assigned systematic uncertainties, the
largest contributions have been added in quadrature.

1Any such cancellation should be (largely) undone since the measured coefficients ai and δi are varied to
obtain the upper limit on the fraction of interfering background.
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Evaluation of systematic uncertainties

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

|∆t|<30 ps 0 +0.0005 +0.0005 +0.0023 +0.0023 +0.0016
|∆t|<10 ps −0.0017 +0.0005 +0.0009 +0.0010 +0.0009 +0.0009
σ(∆t)<3 ps 0 −0.0001 0 0 +0.0001 0
σ(∆t)<2 ps −0.0004 −0.0005 −0.0013 0.0001 +0.0007 −0.0014
Syst. Error 0.0017 0.0007 0.0016 0.0023 0.0024 0.0021

Table 9.14: Changes in a and clep when varying the cuts on ∆t and σ∆t.

9.3.2 Beam spot position

For each run of data, the average position of the luminous region (beam spot) is computed
every 10 minutes, using e+e−→e+e− and e+e−→µ+µ− events (see Section 3.2). The ∆t vertex
algorithm uses the position of the beam spot as a geometrical constraint in reconstructing the
Brec and Btag decay vertices. The strongest constraint comes from the vertical position of the
beam spot, the determination of which has a precision better than 1 µm. The actual beam spot
size in y is 4 µm, and the amount of random walk in consecutive beam spot measurements
is approximately 8 µm [39]. As a result, the production vertex is constrained to average y
position, assuming a size of 10 µm.

Two effects have been considered to evaluate the sensitivity of our measurement to the
beam spot position.

1. In the computation of ∆t on data, the measured y position has been varied by 20 µm.

2. The assumed width of the beam spot in y is doubled to 20 µm, and is set to the actual
tracking resolution of (typically) 35µm.

The processing of the data sample is redone for each of these configurations. To avoid
changes in a and clep due to events entering or leaving the sample, we restrict the analysis to
the overlapping events in all reprocessed sets, including the nominal data set.

For each reprocessed sample we perform the nominal fit. The resulting differences with
the nominal beam spot scenario are shown in Table 9.15. Note that the largest shifts are seen
in the CP asymmetries of the D∗π sample, where the beam spot position is also used as an
additional geometric contraint on the origin of the soft pion in the computation of the D∗−

vertex, as explained in Section 4.1.2.
As systematic uncertainties on the a and clep parameters due to the uncertainty in the y

position of the interaction point, we take the average of the +20 µm and −20 µm variations,
and add that in quadrature to the average of the variations in width.

9.3.3 SVT alignment and boost uncertainty

Reconstruction of the B-decay vertices, and so the distance ∆z, relies on accurate tracking of
charges particles. For particles originating from the beam spot, the measurements of trajectory
parameters are heavily dependent on the silicon vertex tracker (see Section 3.3.1), and in
particular on the relative positions of its silicon strips and wafers – referred to as the SVT local
alignment. So-called ‘misalignment’ occurs when the particle hits and tracks are reconstructed
using incorrect positions and/or orientations of the sensors.

138



“thesis” — 2006/12/8 — 11:48 — page 139 — #149

9.3 Uncertainties in determination of the decay-time difference

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

y + 20µm −0.0038 −0.0058 −0.0074 −0.0019 −0.0028 +0.0030
y − 20µm −0.0013 −0.0055 −0.0001 −0.0032 +0.0124 +0.0098
absolute average 0.0026 0.0058 0.0038 0.0026 0.0076 0.0064
σ(y)=20 µm −0.0011 −0.0064 0 −0.0048 +0.0116 +0.0113
σ(y)= tracking reso. +0.0018 −0.0045 −0.0029 −0.0034 +0.0002 −0.0048
absolute average 0.0015 0.0055 0.0015 0.0041 0.0059 0.0081
Syst. Error 0.0029 0.0079 0.0040 0.0049 0.0096 0.0103

Table 9.15: Systematic uncertainties in a and clep from the uncertainty in the position
of the beam spot. The systematic error comes from the variation of the y
position, and from increasing σ(y) to 20µm and to the tracking resolution
(about 35µm), all compared with the nominal beam spot measurement.

The local alignment of the SVT is determined amongst others from e+e− → µ+µ− events
by studying the tracks’ impact parameters d0 and z0 (see Table 3.5) as a function of azimuthal
angle φ0 [84]. The actual positions of wafers are expressed in terms of rotations and translations
with respect to the ‘perfect’ alignment set, where all wafers are at their nominal positions.

The effect of systematic uncertainties in the local alignment has been modeled using the
simulated signal events, by default reconstructed using the perfect alignment set. Four realistic
deformation scenarios of the SVT have been tested to evaluate the systematical errors from
the uncertainty of the positions of the SVT wafers [84]. The simulated events are reprocessed
for each of these misalignment scenarios, and for each we perform the nominal fit.

A boost misalignment SVT scenario is also tested, like in the paragraph above, to estimate
the uncertainty in the knowledge of the boost on the measured CP asymmetries. Uncertainty
in the boost affects the measurement of ∆t direclty throught the relation ∆z = βγ c∆t. At
BABAR , the Υ (4S) boost is known with a relative uncertainty of 0.1%, based on the PEP-II
knowledge of the beam energies [36].

In the reprocessing a small number of events (< 1%) come into or fall out of the analysis
sample due to the changes in the alignment or the boost. To avoid statistical changes in a and
clep, we restrict the analysis to overlapping events that pass all cuts in all of the sets, including
the perfect alignment. About 325k of signal Monte Carlo events remain, or ≈ 18times the
amount of data.

The results of the misaligned samples are compared with the results for a and clep with no
misalignment reconstruction. The misalignment model that gives the largest shift determines
the final systematic error. These numbers we add in quadrature to the ‘boost’ misalignment.
Fit results are summarized in Table 9.16.

9.3.4 Uncertainty in the z-scale

Uncertainties in the z-scale directly affect measurements of ∆t through the (approximate)
relation ∆z = βγ c∆t. The z-scale in BABAR is quantified by reconstructing the beam pipe
length with positrons and electrons interacting with the beam pipe wall; a relative uncertainty
of 0.6% is assigned to the evaluation of this measurement [85]. The effect of the uncertainty
on the boost has been evaluated in data through scaling the measured values of ∆t and σ∆t
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Evaluation of systematic uncertainties

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

Misalignment ‘SVT1-4’ +0.0011 −0.0007 −0.0010 +0.0018 −0.0035 −0.0009
Boost +0.0004 +0.0006 −0.0005 −0.0007 +0.0004 −0.0005
Syst. Error 0.0013 0.0009 0.0011 0.0019 0.0035 0.0010

Table 9.16: Systematic uncertainties in a and clep as determined from recommended SVT
misalignment and boost scenarios.

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

z scale +0.6% +0.0003 −0.0001 0 −0.0003 −0.0004 −0.0004
z scale −0.6% −0.0003 +0.0003 +0.0001 +0.0004 +0.0003 +0.0005
Syst. Error 0.0003 0.0003 0.0001 0.0004 0.0004 0.0005

Table 9.17: Systematic uncertainties on a and clep from uncertainties in the z-scale.

up and down by 0.6%, and repeating the nominal fit.
The variations seen in a and clep are shown in Table 9.17. The largest shifts are taken as

the final systematic uncertainties.

9.4 External parameters

In the nominal fit to data the mixing frequency ∆md and the B0 lifetime τB0 have been fixed
to the world average values of ∆md = 0.502±0.007 ps−1 and τ0

B = 1.536±0.014 ps [17]. The fit
to data is repeated varying these parameters with 1σ, and also by leaving the parameters free,
seperately. The latter fit scenarios have been discussed in Section 7.7. The variations in a and
clep are summarized in Table 9.18. For both parameter variations, the systematic uncertainties
are conservatively assigned to come from the ‘floating’ fit cases on data.

As discussed in Section 9.18, we have floated the mixing frequency ∆md and the B0 lifetime
τB0 simultaneously on the sample of simulated events, which has generated values of 0.489 ps−1

and 1.541 ps respectively. The observed differences in a and clep compared with the non-
floating case are also shown in Table 9.18. The correlations of ∆md and τB0 with the a and
clep parameters are found to be small, as already shown in Table 7.8, and thus have little to
no impact on the measured CP parameters.

9.5 Fit biases and Monte Carlo uncertainty

As systematic uncertainties coming from the B → D(∗)π and B → Dρ selection criteria and
reconstruction chain, we assign the statistical errors on the a and clep coefficients as obtained in
the validation fit to the sample of simulated events (performed in Section 7.2). See Table 9.19
for the numbers.

Secondly, we account for the fit biases observed in the pseudo Monte Carlo experiments per-
formed in Section 7.3. The biases and errors given in Table 7.6 have been added quadratically.
The results are shown in Table 9.19.
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9.6 Summary of systematic uncertainties

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

∆md

+1σ +0.0009 −0.0003 0 0 0 −0.0005
−1σ −0.0009 +0.0004 +0.0001 +0.0001 +0.0006 −0.0004
τ0
B

+1σ +0.0002 +0.0002 +0.0001 +0.0005 +0.0002 +0.0010
−1σ −0.0002 −0.0002 0 −0.0005 −0.0001 −0.0010
∆md and τ0

B floating +0.0012 −0.0012 −0.0001 −0.0013 −0.0013 −0.0018
∆md and τ0

B floating (MC) −0.0003 0 0 −0.0005 −0.0005 −0.0003
Syst. Error 0.0012 0.0012 0.0001 0.0013 0.0013 0.0018

Table 9.18: Systematic uncertainties on a and clep from the uncertainties in the world
average values of ∆md and τB0.

Variation δaDπ δaD∗π δaDρ δcDπ
lep δcD

∗π
lep δcDρ

lep

MC uncertainty ±0.0051 ±0.0052 ±0.0075 ±0.0088 ±0.0093 ±0.0129
Fit bias ±0.0005 ±0.0004 ±0.0006 ±0.0035 ±0.0035 ±0.0038
Syst. Error 0.0051 0.0052 0.0075 0.0095 0.0099 0.0134

Table 9.19: Monte Carlo statistical uncertainties on the a and clep coefficients.

9.6 Summary of systematic uncertainties

The systematic errors on a and clep are summarized in Tables 9.20 and 9.21. Notice that the
total systematic uncertainties are dominated by detector-related effects and the Monte Carlo
uncertainties. The systematic uncertainties on a and clep are approximately three times smaller
than the statistical errors.
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Source Coefficient
aDπ aD∗π aDρ

Signal parametrization
Common ∆t signal resolution [9.1.1] ±0.0004 ±0.0002 ±0.0001
Fixed signal resolution parameters [9.1.2] ±0.0006 ±0.0003 ±0.0013
Signal resolution model [9.1.3] ±0.0005 ±0.0003 ±0.0004
Art effect [9.1.4] ±0.0004 ±0.0011 ±0.0002
Common dilutions [9.1.5] ±0.0001 ±0.0001 ±0.0005
Tagging and Reconstruction efficiency [9.1.6] ±0.0006 ±0.0003 ±0.0003

Background description
Signal probability: D(∗)π/ρ samples [9.2.1] ±0.0002 ±0.0002 ±0.0001
mES endpoint [9.2.2] 0 0 ±0.0001
Background resolution model [9.2.3] ±0.0001 0 ±0.0001
Fraction and composition of peak. bkg. [9.2.4] 0 ±0.0001 ±0.0001
CP content comb. background [9.2.5] ±0.0009 ±0.0007 ±0.0027
CP content peak. background [9.2.6] ±0.0009 ±0.0006 ±0.0006
Non-resonant B → D∓π±π0 background [9.2.7] – – ±0.0016

Uncertainty in decay-time difference
Cuts on ∆t and on σ(∆t) [9.3.1] ±0.0017 ±0.0007 ±0.0016
Beam spot [9.3.2] ±0.0029 ±0.0079 ±0.0040
SVT alignment and Boost [9.3.3] ±0.0013 ±0.0009 ±0.0011
Uncertainty on z-scale [9.3.4] ±0.0003 ±0.0003 ±0.0001
∆md and B0 lifetime [9.4] ±0.0012 ±0.0012 ±0.0001
Fit biases and Monte Carlo uncertainty [9.5] ±0.0051 ±0.0052 ±0.0075
Total systematic error ±0.0066 ±0.0097 ±0.0094
Statistical error ±0.0225 ±0.0225 ±0.0313

Table 9.20: Summary of systematic uncertainties on aDπ, aD∗π, and aDρ due to the dif-
ferent effects described in the text.
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9.6 Summary of systematic uncertainties

Source Coefficient
cDπ
lep cD

∗π
lep cDρ

lep

Signal parametrization
Common ∆t signal resolution [9.1.1] ±0.0001 ±0.0001 0
Fixed signal resolution parameters [9.1.2] ±0.0022 ±0.0041 ±0.0040
Signal resolution model [9.1.3] ±0.0017 ±0.0014 ±0.0020
Art effect [9.1.4] ±0.0011 ±0.0012 ±0.0010
Common dilutions [9.1.5] ±0.0006 ±0.0002 ±0.0005
Tagging and Reconstruction efficiency [9.1.6] ±0.0010 ±0.0007 ±0.0004

Background description
Signal probability: D(∗)π/ρ samples [9.2.1] ±0.0004 ±0.0005 ±0.0003
mES endpoint [9.2.2] 0 ±0.0002 ±0.0002
Background resolution model [9.2.3] 0 0 ±0.0001
Fraction and composition of peak. bkg. [9.2.4] ±0.0002 ±0.0004 ±0.0006
CP content comb. background [9.2.5] ±0.0002 ±0.0002 ±0.0027
CP content peak. background [9.2.6] ±0.0009 ±0.0006 ±0.0007
Non-resonant B → D∓π±π0 background [9.2.7] – – ±0.0016

Uncertainty in decay-time difference
Cuts on ∆t and on σ(∆t) [9.3.1] ±0.0023 ±0.0024 ±0.0021
Beam spot [9.3.2] ±0.0049 ±0.0097 ±0.0103
SVT alignment and Boost [9.3.3] ±0.0019 ±0.0035 ±0.0010
Uncertainty on z-scale [9.3.4] ±0.0004 ±0.0004 ±0.0005
∆md and B0 lifetime [9.4] ±0.0013 ±0.0013 ±0.0018
Fit biases and Monte Carlo uncertainty [9.5] ±0.0095 ±0.0099 ±0.0134
Total systematic error ±0.0117 ±0.0153 ±0.0186
Statistical error ±0.0424 ±0.0420 ±0.0548

Table 9.21: Summary of systematic uncertainties on cDπ
lep , cD

∗π
lep , and cDρ

lep due to the var-
ious effects described in this Chapter.
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Chapter 10

Determination of amplitude ratios

The measurement of γ using B→D(∗)∓h± decays (h = π, ρ) requires knowledge of the ratio of
decay amplitudes rD(∗)h = |A(B0→D(∗)+h−)/A(B0→D(∗)+h−)|. In this chapter these ratios,
and the errors on them, are determined using the measured branching fractions B(B0 →
D

(∗)+
s h−).

10.1 Introduction

In the ratio of decay amplitudes rD(∗)h = |A(B0→D(∗)+h−)/A(B0→D(∗)+h−)|, the B0 ampli-
tude is doubly-CKM-suppressed relative to the CKM-favored amplitude B0 decay amplitude
(b→ cud) with a factor of roughly |(V ∗

ubVcd)/(VcbV
∗
ud)| ≈ 0.02. The leading Feynman diagrams

of both amplitudes have been shown in Fig. 2.9. Given the initial and final state quark content,
there are no penguin contributions.

Unfortunately, the direct measurement of the branching fractions B(B0→D(∗)+h−) is not
possible due to overwhelming background from the favored decay B0→D(∗)+h−. Neither is
it possible to measure the isospin related decays B+→D(∗)+h0 with the currently available
statistics. As a result, each amplitude ratio rD(∗)h is required as external input in the extraction
of the CKM-angle γ. In principle, these ratios can be obtained in two other ways.

First, their sizes can be predicted from theory. As the branching fractions of the favored
decays B(B0→D(∗)−h+) are well-known [17], only the CKM-suppressed amplitudes A(B0→
D(∗)+h−) need to be estimated, such that

rD(∗)h =
√

τB0p

8πm2
B

|A(B0→D(∗)+h−)|√
B(B0→D(∗)−h+)

, (10.1)

where p is the momentum of the D(∗) in the B rest frame. Examples of predictions for rD(∗)π

exist using various form factor models [86], but most are outdated. Their values have been
summarized in Table 10.1. We do not use these for three reasons.

1. No errors are given on the ratios.

2. Each calculation needs a form factor model FB→π(q2) and values for fD(∗) and Vub. A
lot of progress has been made on these over the last few years (as will become clear). For
all estimates, their values were quite uncertain at the time.

3. The estimates do not include rescattering effects.
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Determination of amplitude ratios

Model rDπ/0.02 rD∗π/0.02

Light Front 0.72 0.81
BSW II 1.11 1.33
NS 0.72 0.88
LCSR 0.87 1.01
MS 0.82 0.92
Average 0.85 0.99

Table 10.1: The amplitude ratio rD(∗)π evaluated in various models [86], divided by 0.02.

Second, as proposed by Dunietz [11], one can utilize SU(3) flavor symmetry to relate rD(∗)h

to the branching fraction of the decay B0→D
(∗)+
s h−, using

rD(∗)h = (tan θc)
fD(∗)F (m2

D(∗))
f

D
(∗)
s
F (m2

D
(∗)
s

)

√
B(B0→D

(∗)+
s h−)

B(B0→D(∗)−h+)
, (10.2)

where θc is the Cabibbo angle, F (q2) is the B→π form factor, and fD(∗)/f
D

(∗)
s

is the ratio of

D(∗) to D(∗)
s decay constants [115, 136]. This relation is can be seen with help of the diagrams

in Fig. 10.1. Both diagrams involve b→u transitions, so the B0 decays into a W+ and a π− or
ρ−. In one case the virtual W+ hadronizes into a D(∗)+, with decay constant fD(∗) and CKM-
element Vcd, and in the other it forms a D(∗)+

s , with decay constant f
D

(∗)
s

and CKM-element
Vcs.

Both methods assume factorization. Although factorization has been demonstrated to work
successfully in b→c transitions, no such experimental evidence exists (yet) for the b→u decays.
One theoretical model of factorization, soft-collinear effective theory (SCET), sofar fails in the
b→u regime [87]. However, another, Nc-QCD, does not, as will become clear shortly.

Also, for the second method, strictly speaking, in Eq. (10.1) the decays B0 → D(∗)+h−

and B0→D
(∗)+
s h− are not related by SU(3) symmetry. Namely, the SU(3)-transformed decay

B0→D(∗)+π− is B0
s→D

(∗)+
s K−. However, the effective Hamiltonians describing B0→D(∗)+h−

and B0→D
(∗)+
s h−, provided by heavy quark effective theory (HQET), are related by SU(3),

as here the spectator d quark is not transformed between the two decays. This argument
demonstrates that decays involving the spectator quark are not related by SU(3).

Two diagrams contribute to B0 → D(∗)+h−: a) the color-allowed tree amplitude T in
Fig. 10.1a, i.e. the ‘effective’ SU(3) equivalent of Fig. 10.1b, and b) the color-suppressed W -
exchange amplitude E with the spectator quark (see Fig. 10.6b). Only a single tree amplitude
contributes to B0 → D

(∗)+
s h−, since the decay has four different quarks in the final state.

Still, as long a E is small, one can relate the two decays by SU(3) symmetry. Conversely, in
Eq. (10.2) the W -exchange contribution to B0→D(∗)+h− is assumed to be negligible.

The quality of these assumptions is discussed in the following Sections.
The concept of factorization is introduced in Section 10.2. In Section 10.2 we discuss the

applicability of factorization to B0→D
(∗)+
s h− decays, and the corresponding predictions of

Nc-QCD. SU(3) breaking corrections due to soft final state interactions, or ‘rescattering’ ef-
fects, are discussed in Section 10.3. The amplitude ratios rD(∗)h are calculated in Section 10.4.
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10.2 Predictions from factorization

d d

b̄ ū

W
+ d̄

c(a)

d d

b̄ ū

W
+ s̄

c
(b)

Figure 10.1: Color-allowed tree diagram of: (a) CKM-suppressed decay B0→D+π−, and
(b) B0→D+

s π
−.

Section 10.6 gives an estimate of the size of the W -exchange amplitude. SU(3) breaking cor-
rections from other non-factorizable corrections are treated in Section 10.7. We summarize the
merits of (i.e. the errors of) both methods for obtaining rD(∗)h in Section 10.8.

10.2 Predictions from factorization

In this Section we present a brief introduction to factorization. This is followed by branching
ratio predictions from naive factorization for the CKM-suppressed decays B0→h−D

(∗)+
(s) .

The dominant weak diagram of the two body decay B0 → h−D
(∗)+
(s) occurs through the

Cabibbo-suppressed b→u transition, as shown in Fig. 10.1. Here, the virtual W− hadronizes
into either a c̄s or c̄d pair. This pair becomes the D(∗)+

(s) meson, while the u pairs with the
spectator d̄ to form the h meson. The effective weak Hamiltonian describing the decay is

HW =
GF√

2
VubV

∗
cq

[
C1(µ)(q̄c)V−A(ūb)V−A + C2(µ)(ūc)V−A(q̄b)V−A

]
, (10.3)

where GF is the Fermi coupling constant, Vij are CKM matrix elements, and q is either a d or
an s quark. The parameters Ci(µ) are the Wilson coefficients at the mass scale µ.

The first operator in Eq. (10.3), multiplied by the coefficient C1(µ), comes from the W
exchange. The second ‘color-suppressed’ piece, multiplied by C2(µ), is induced by gluon ex-
change between the initial and final quarks. The Wilson coefficients can be calculated from
QCD: C1 =1.08 and C2 =−0.18 at LO at the mB mass scale [137], with theoretical errors of
about 0.02.

In analogy to semi-leptonic decays, Bauer, Stech, and Wirbel suggested [88] that color-
allowed two body decays B→Y X can be expressed theoretically as the product of two inde-
pendent hadronic currents. One current describes the hadronization of the quark pair to form
the X meson from the virtual W , and the other describes the formation of the Y meson from
the b decay and spectator quark. The assumption that the amplitude can be expressed as the
product of two hadronic currents is called ‘factorization’. In terms of Eq. (10.3)

〈h−D(∗)+
(s) |HW |B0〉 =

GF√
2
VubV

∗
cq

(
C1(mB) +

C2(mB)
Nc

)
〈D(∗)+

(s) |(q̄c)V−A|0〉〈h−|(ūb)V−A|B0〉 .

(10.4)
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Factorization models the B decay only up to the hadronization of the X and Y mesons.
Correspondingly, the terms in Eq. (10.3) are called ‘short-distance’ operators. (Long-distance
‘rescattering’ effects are discussed in Section 10.3.)

A non-rigorous argument to justify factorization has been made by Bjørken using color
transparency [89]. The argument requires that theX meson, formed from the (colorless) virtual
W , is ultra-relativistic. More quantitatively, its time dilation factor γX = EX/mX = (m2

B +
m2

X−m2
Y )/(2mBmX), where EX is the energy of X in the B rest frame, should be large. In

that case, the color dipole moment of the quarks that form the X, produced together as a
color singlet, grows to hadronic size only after a time-delayed hadronization time γXtX , with
cγXtX much larger than the size of the B meson. Put simply, X travels fast enough to leave
the interaction region without interfering with the formation of Y . With little chance for the
X and Y mesons to interact strongly, other short-distance ‘non-factorizable corrections’ are
expected to be small.

For the Cabibbo-favored decay B0→D−π+ one has γπ = 16.5 in the B rest frame. The
suppressed decay B0→π−D+ results in γD = 1.6. (Which corresponds to βD = 0.78, indicating
that even though the D may not be ultra-relativistic, it is still relativistic.)

So-called naive factorization, which ignores any non-factorizable corrections, has been
demonstrated to work quite successfully for b → c transitions in color-allowed tree decays.
An example is given in Fig. 10.2, showing the measured and predicted fractions of longitudinal
polarization in B→D∗X vector-vector decays, where the factorization prediction holds at the
level of a few percent.

m2
X (GeV2)

Γ L 
/ Γ

m2
X = m2

ρ

m2
X = m2

ρ m2
X = m2

m2
X = m2

*
*

D

Ds

Factorization Prediction
(1σ) Region

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

Figure 10.2: The longitudinal polarization as a function of m2
X , where X is a vector me-

son [97]. Shown (as a triangle) is the B0 → D∗−ωπ+ polarization measure-
ment for events with 1.1 < mX < 1.9 GeV (m2

X = m2
ρ′, where ρ′ ≡ ρ(1450)),

as well as measurements of B0 → D∗−ρ+ [90], B0 → D∗−D∗+ [91], and
B0 → D∗−D∗+

s [92]. The shaded region represents the prediction (± one
standard deviation) based on factorization and HQET, extrapolated from
the semi-leptonic B0 → D∗+`−ν̄ form factor results [93].

There are two limits of QCD in which factorization in B→D(∗)X, with X a light meson,
has been proven rigorously. One is the large Nc limit of QCD, where one takes the limit of
infinite colors [94]. All non-factorizable corrections can be shown to be suppressed by1 O(1/N2

c ).

1The exchange diagrams in Figs. 10.6, ignored in HQET, are in fact suppressed by 1/Nc relative to the
factorizable tree amplitude. These contributions are suppressed by additional effects and will be constrained
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This conclusion also holds when X is heavy. The other line of approach builds on the color
transparency phenomenon [89]. In the small velocity (SV) limit of the D(∗), factorization has
been proven using soft-collinear effective theory (SCET) [95]. In this case the corrections to
factorization are of the order mX/Q, where Q is a sufficiently large energy scale such as mB

or EX . For the SV approach, the agreement of naive factorization has been demonstrated to
extend well beyond its rigorously proven limits of validity.

A study of the invariant mass spectrum of the X=ωπ+ system in the decay B0→D∗−ωπ+,
with X coming from the virtual W , is in good agreement with expectations based on factor-
ization and the measured spectrum in τ+→W+ν̄τ→ωπ+ν̄τ [96, 97]. The mass mX runs from
0.8–2.7 GeV. This factorization test can only be carried out where the τ data is available,
i.e. for mX <1.7 GeV. Also, the fraction of longitudinal polarization of the D∗−, as shown in
Fig. 10.2, is in agreement with the expectation from factorization and heavy quark effective
theory, assuming that the decay proceeds as B0→D∗−ρ(1450)+, ρ(1450)+→ωπ+. If solely the
SV limit was responsible for explaining factorization in this decay, one would expect the devi-
ations from naive factorization to grow as mX/EX . However, no indication of such corrections
is observed.

Factorization has also been used to study B0→D(∗)−D̄
(∗)+
(s) decays [98], with mX = 2 GeV,

and B→D(∗)D̄(∗)K [99]. Again it has been found that branching fractions (and polarization
measurements) agree with the naive factorization predictions. Since in the latter cases the color
singlet quark-anti-quark emerging from the short distance interaction forms a heavy meson,
the proof of factorization in the SV limit is not applicable. However, in the large Nc limit
factorization is still realized. The authors of Ref. [96] therefore suggest that factorization in
B→D(∗)X (b→c), at least in the regime where X is heavy, should be explained by means of
Nc-QCD.

We now switch back to b→ u decays, such as B0 → h−D
(∗)+
(s) . Few measurements exist

yet to indicate whether factorization applies in this regime. However, also here – for the
same reason as discussed above – the proof of factorization in SV limit cannot be used. In
fact, in the b → u regime SCET sofar has not made any prediction concerning the size of
non-factorizable corrections [87]. In the large Nc limit factorization still applies, with non-
factorizable corrections appearing at O(1/N2

c ).
There are cases where the predictions from Nc-QCD are known to fail. For example, the

so-called OZI rule2 in decay channels with zero isospin. However, there are no known a-priori
reasons to indicate that Nc-QCD does not apply to B0→h−D

(∗)+
(s) decays [100].

Several tests of the factorization hypothesis of b→ u can be made by comparing semi-
leptonic B0→h−l+ν with hadronic B0→h+D

(∗)−
(s) decays, as discussed in the following Section.

10.2.1 Branching fractions

Within the framework of factorization, the decay rates of B0→h−D
(∗)+
s , where h is either a π

or ρ meson, can be related to the decays of B0→h−l+ν, just like the spectra of B0→D(∗)−l+ν

separately, as discussed in Section 10.6. Rescattering effects, discussed in Section 10.3, are long-distance effects
also of O(1/Nc), but are identical for CKM-allowed and CKM-suppressed decays.

2The OZI rule is an empirical rule, which forbids meson decays where none of the quarks in the initial state
are found in the final state mesons. For example, this rule forbids decays of non-strange mesons (e.g. ω or J/ψ)

into KK̄. This rule is sometimes violated, but is not likely to be relevant in B0→h−D
(∗)+
(s) decays.
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can be used to predict the rates for B0→D(∗)−h+ [101] and B0→D(∗)−D
(∗)+
(s) decays [98]

Γ(B0→π−D+
s ) =

G2
F pπ

16πm2
B

|Vcs|2f2
Ds
|a1|2(m2

B −m2
π)2|Vub|2|f0(m2

Ds
)|2, (10.5)

Γ(B0→π−D∗+
s ) =

G2
F pπ

16πm2
B

|Vcs|2f2
D∗

s
|a1|2(2mBpπ)2|Vub|2|f+(m2

D∗
s
)|2

= 6π2|Vcs|2f2
D∗

s
|a1|2

dΓ(B0→π−l+ν)
dq2

∣∣∣∣∣
q2=m2

D∗
s

, (10.6)

Γ(B0→ρ−D+
s ) =

G2
F pρ

16πm2
B

|Vcs|2f2
Ds
|a1|2(2mBpρ)2|Vub|2|A0(m2

Ds
)|2 (10.7)

Γ(B0→ρ−D∗+
s ) = 6π2|Vcs|2f2

D∗
s
|a1|2

dΓ(B0→ρ−l+ν)
dq2

∣∣∣∣∣
q2=m2

D∗
s

, (10.8)

where f+(q2) and f0(q2) are the two form factors involved in the b→u transition of B→π. They
are related at q2 =0, where f+(0)≡f0(0). Only f+(q2) is involved in the decay B0 → π−l+ν,
so the latter can only be related directly to the decay B0 → π−D∗+

s . Similarly, B0 → ρ−l+ν
can be related directly to B0 → ρ−D∗+

s .
The form factor A0(q2) involved in the decay B0 → ρ−D+

s cannot be extracted directly from
semi-leptonic B0 → ρ−l+ν decays, since it is suppressed by the spin-flip factor (m2

l /2q
2) [102].

However, from Ref. [104, 105], Eq. (1.2), it follows that A0(q2) can be related to the zero
helicity amplitude of B0 → ρ−D∗+

s by the relation

H0(q2) ≈ 2mBpρA0(q2) . (10.9)

The relation is exact in the limit of q2 → 0. Assuming that the form factor relation between
H0 and A0 remains approximately valid away from zero, this gives for Eq. (10.7)

Γ(B0→ρ−D+
s ) ≈ fL Γ(B0→ρ−D∗+

s ) , (10.10)

where fL is the fraction of longitudinal polarization in B0→ ρ−D+
s . This corresponds to the

argument used in Ref. [106] to relate B0→D∗−π+ to B0→D∗−l+ν.
To obtain the corresponding decay rate predictions for B0 → h−D(∗)+, simply replace

Vcs → Vcd, fD
(∗)
s
→ fD(∗) , and evaluate the form factors at q2 =m2

D(∗) .
Calculation of the decay rates for B0 → h−D∗+

s in Eq. (10.5) requires knowledge of the
dΓ(B0→ h−l+ν)/dq2 spectra, which are also needed in the extraction of |Vub|. In the past,
these spectra have been calculated using B→h form factor models, leading to significant model
dependence. Examples of dΓ(B0→ h−l+ν)/dq2 for various form factor models are shown in
Fig. 10.3. However, since last year several differential B0 → h−l+ν decay rates have been
measured [107]–[110], and results from precise lattice simulations with dynamical light quarks
have become available [111, 112]. From these, we can make predictions for dΓ(B0→h−l+ν)/dq2

at q2 =m2
D∗

s
to the point where only little shape information is required from theory.

The relevant partial branching fractions of B0→h−l+ν, ∆B ≡ ∆Γ · τB0 , have been sum-
marized in Tables 10.2 and 10.3. For B0→ π−l+ν these are quite precise. The errors on the
partial branching fraction measurements are dominated by statistical errors for B0→π−l+ν,
and (mostly) by systematical errors for B0→ ρ−l+ν. For both decays the errors from form
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Figure 10.3: Examples of (outdated) predictions for dΓ(B0 → π−l+ν)/dq2 (left) and
dΓ(B0→ ρ−l+ν)/dq2 (right) for a variety of form factor calculations. The
figure has been taken from Ref. [107].

factor calculations are relatively small, at the level of 10% or smaller for B0→ρ−l+ν, and at
the level of a few % for B0→π−l+ν.

The average value of τB0 · ∆Γ/∆q2 for B0→ π−l+ν for q2 over the range [0, 8] GeV2 is
thus found to be (6.3± 0.9)× 10−4 GeV−2. For B0→ρ−l+ν, motivated by the spectra shown
in Fig. 10.3, the partial branching fraction measurement of (0.73 ± 0.28) × 10−4 of Ref. [107]
has been corrected to the q2 range of [0, 8] GeV2 by subtracting 2/5th of the adjacent bin. The
correction has been added in quadrature to the error on the first bin. The average value of
τB0 ·∆Γ/∆q2 for B0→ρ−l+ν is then found to be (4.5± 2.7)× 10−4 GeV−2.

∆B (×10−4) q2 Range (GeV)2 τB0 ·∆Γ/∆q2 (×10−6 GeV−2) Ref.

0.30± 0.08 0− 5 6.0± 1.5 [107]
0.32± 0.06 5− 10 – [107]
0.71± 0.17 0− 8 8.9± 2.1 [108]
0.43± 0.12 0− 8 5.4± 1.5 [109]
0.48± 0.18 0− 8 6.0± 2.2 [110]
Average 0− 8 6.3± 0.9

Table 10.2: Partial branching fraction measurements, ∆B, for B0 → π−l+ν decays by
various experiments.

Since all dΓ/dq2 models show linear behavior over the range q2 ∈ [0, 8] GeV2, to good
approximation one can use the averages as dΓ/dq2 values at q2 = m2

D∗
s
≈ 4 GeV2. As a cross

check, the value of (6.3± 0.9)× 10−4 GeV−2 at q2 = m2
D∗

s
is in exact agreement with that of
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∆B (×10−4) q2 Range (GeV)2 τB0 ·∆Γ/∆q2 (×10−6 GeV−2) Ref.

0.82± 0.20 10− 15 – [107]
0.73± 0.28 0− 10 5.0± 5.5 (*) [107]
0.21± 0.41 0− 8 2.6± 5.1 [108]
0.43± 0.32 0− 8 5.4± 4.0 [109]
Average 0− 8 4.5± 2.7

Table 10.3: Partial branching fraction measurements, ∆B, for B0 → ρ−l+ν decays by
various experiments. The (*) indicates that the corresponding value has been
adjusted to a q2 range of [0, 8] GeV2, as described in the text.

the form factor model fit in Ref. [113], shown in Fig. 10.4, performed to all B0→π−l+ν partial
branching fraction measurements of Refs. [107, 108, 109, 110].
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Figure 10.4: Shown are the current data for the partial ratios of B0 → π−l+ν – also
given in Table 10.2 – and fit results to the dΓ/dq2 spectrum [113]. The fit
has been performed both using an analytically constrained shape [113] and
the BK parametrization [114], with indistinguishable results.

Ref. [113] also extrapolates f+(q2) to q2 =0 and finds Vub f+(0)=(0.92±0.11±0.03)×10−3,
where the first error is experimental and the second is due to the uncertainty in the form
factor shape used. From lattice calculations [111, 112] the form factor f0(q2) is found to be
well modeled by the BK parametrization [114],

f0(q2) =
f+(0)

1− q2

m2
∗

, (10.11)
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where the effective pole mass m2
∗ is determined to be 33.4± 1.4 GeV2. We thus have

|Vub f0(m2
Ds

)|2 = (1.08± 0.26 (exp.)± 0.07 (ff.)± 0.10 (lat.))× 10−6 . (10.12)

For later use we note that

|Vub f0(m2
D)| = (1.03± 0.12 (exp.)± 0.03 (ff.)± 0.05 (lat.))× 10−3 , (10.13)

|Vub f+(m2
D∗)| = (1.13± 0.08 (exp.))× 10−3 , (10.14)

and, from Ref. [113]

f0(0) = 0.25± 0.04 (exp.)± 0.01 (ff.)± 0.03 (lat.) . (10.15)

The form factor models in Refs. [104, 121] predict f0(m2
Ds

)/f1(m2
Ds

) ≈ 0.85± 0.19. Using
Eq. (10.14) one can make the second extrapolation

|Vub f0(m2
Ds

)|2 = (0.92± 0.13 (exp.)± 0.41 (ff.))× 10−6 , (10.16)

which is lower than Eq. (10.12), but has a significantly larger error.
With these values, we predict the branching ratios B(B0→ h−D∗+

s ) listed in Table 10.4.
To calculate these we have used3: |Vcs| = 0.9735, f

D
(∗)
s

= 274± 20 MeV, and |a1| = 1.02 [137].
The errors on these predictions come mostly from the errors on dΓ/dq2 and the error on f

D
(∗)
s

.
The error on B(B0 → π−D+

s ) receives additional contributions and is larger than B(B0 →

Decay Predicted B (×10−5) Eq.

B0 → π−D+
s 3.3± 0.8 (exp.)± 0.2 (ff.)± 0.3 (lat.)± 0.5 (fDs) 10.12

2.9± 0.3 (exp.)± 1.1 (ff.)± 0.4 (fD∗
s
) 10.16

B0 → π−D∗+
s 2.8± 0.4 (exp.)± 0.4 (fD∗

s
)

B0 → ρ−D+
s 1.2± 0.8 (exp.)± 0.2 (fDs) (*)

B0 → ρ−D∗+
s 2.0± 1.2 (exp.)± 0.3 (fD∗

s
)

Table 10.4: Predicted branching ratios B for B0 → h−D
(∗)+
s , based on Nc-QCD factor-

ization, before rescattering (discussed in Section 10.3). (*) We have guessti-
mated the fraction of longitudinal polarization in B0 → ρ−D∗+

s to be 0.6.

π−D∗+
s ) because, to calculate Vub f0(m2

Ds
), f+ has to be extrapolated to zero and f0 has to be

extrapolated back to q2 =m2
Ds

.

The corresponding measured branching fractions B(B → hD
(∗)+
s ) are shown in Table 10.5.

Here we have applied the isospin relation B(B0→π−D+
s ) = 2(τ0

B/τ
+
B )B(B+→π0D+

s ). To find
the quoted average value for B(B0 → π−D+

s ), the value for B(B0 → π−D∗+
s ), and the upper

limit on B0 → ρ−D+
s , we use 4 B(D+

s → φπ+) = 0.044± 0.005
Before the estimates in Table 10.4 can be compared with data, the effects of rescattering

should be included. This is done in Section 10.3, Table 10.10.
3The PDG quotes f

D
(∗)
s

= 266±32 MeV [17], and BaBar found the new value of 279±17±6±19 MeV [115].
4Calculated as the average of the BABAR measurement 0.0481 ± 0.0064 [120] and the PDG 2004 value of

0.036± 0.009 [17].

153



“thesis” — 2006/12/8 — 11:48 — page 154 — #164

Determination of amplitude ratios

Branching fraction B Measured value 90% UL Ref.

B(B0 → π−D+
s )B(D+

s → φπ+) (0.63± 0.16)× 10−6 – [116]
B(B0 → π−D+

s )B(D+
s → φπ+) (0.86+0.39

−0.32)× 10−6 – [117]
2(τB0/τB+)B(B+ → π0D+

s )B(D+
s → φπ+) (1.34+0.56

−0.47)× 10−6 – [118]
WA B(B0 → π−D+

s )B(D+
s → φπ+) (0.73± 0.14)× 10−6 –

WA B(B0 → π−D+
s ) (1.7± 0.4)× 10−5 –

B(B0 → π−D∗+
s )B(D+

s → φπ+) (1.32± 0.31)× 10−6 – [116]
B(B0 → π−D∗+

s ) (3.0± 0.8)× 10−5 – [116]
B0 → ρ−D+

s (0.2± 0.8)× 10−5 2.1× 10−5 [119]
B0 → ρ−D∗+

s – 8× 10−4 [17]

Table 10.5: Measured branching ratios B for B0 → h−D
(∗)+
s , sorted by experiment. The

quoted errors correspond to the quadratic sum of statistical and systematic
errors.

Notice in Fig. 10.3 that, generally speaking, dΓ(B0→ ρ−l+ν)/dq2 drops off more steeply
towards lower values of q2, suggesting that B(B0 → ρ−D∗+

s ) is smaller then B(B0 → π−D∗+
s ).

In Ref. [102] this is called the ‘time-like form factor effect’ – the ρ prefers to be produced
at low momentum where q2 is largest. It implies small sensitivity to sin(2β+γ) from CP
asymmetries in B0 → D∗∓ρ± decays, making the measurement extremely challenging. This
also explains the upper limit observed for B(B0 → ρ−D+

s ). It is consistent with the predicted
value for B(B0 → ρ−D∗+

s ), multiplied with any possible fraction of longitudinal polarization.
Naive factorization then predicts that the decays B0 → ρ−D

(∗)+
s are now measurable at the

B-factories.
The measurements of ∆B(B0→ρ−l+ν) (and the upper limit on B(B0 → ρ−D+

s )) roughly
imply A0(m2

Ds
) ≈ 0.1−0.3 . This value is smaller than the predictions in Refs. [104, 121],

which are between 0.3−0.4, but is still compatible within the theoretical uncertainties on
these numbers (≈ 0.07). (This is clearly seen when comparing the predicted and measured
∆B(B0 → ρ−l+ν) for q2 ∈ [0, 8] GeV2 in Refs. [107]–[109], with predicted values that are
consistently too large.)

Another conclusion comes from Eqs. (10.5) and (10.6), where it is seen that the decays
B0 → π−D+

s and B0 → π−D∗+
s relate to different form factors. For this reason, the measured

branching fraction of B(B0→π−D+
s ) should not be used to calculate the amplitude ratio rD∗π.

10.3 Final state rescattering

In this Section we evaluate the level of SU(3) breaking due to final state rescattering effects.
First, we introduce the topic of final state rescattering. Rescattering effects are ‘long-

distance’ final state interactions, and hence independent of the initial meson formation pro-
cess of the weak B meson decay. This means, for example, that the final state rescattering
amplitudes involved after the CKM-favored decay B0 → D−π+ are the same as after the
CKM-suppressed decay B0→D+π−.

To that end, we update the analysis performed in Ref. [125] to obtain the sizes and errors
of the final state rescattering amplitudes, which appear after the CKM-favored decays B0→
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D(∗)−π+/K+ and B0→D−ρ+/K∗+. Then, for the effects of SU(3) breaking due to final state
rescattering, these amplitudes are used to correct the amplitude ratios rD(∗)h of Eq. (10.2).

10.3.1 Quasi-elastic rescattering

The branching ratios of the color-suppressed decay modes B0→D(∗)0h0 (h0 = π0, ω, η, ρ0) [141]
are considerable larger than the estimates from naive factorization. This suggests the presence
of final state interactions (FSI) by strong interactions, or ‘soft rescattering’, such as D(∗)+π−→
D(∗)0π0, happening after the color-allowed decays B0→D(∗)+π− or B0→D+ρ−.

Soft rescattering is a non-perturbative effect, and thus is very hard to calculate. Three types
of soft rescattering, shown in Fig. 10.5, can be identified. One has two ‘Regge’ amplitudes,
denoted as a) charge-exchange; b) annihilation, and in c) ‘Pomeron’ rescattering between
identical final states, also known as singlet exchange. These amplitudes are called re, ra, and
r0 respectively. Useful introductions to soft rescattering in B decays are Refs. [123, 124].

(c)

(b)

(a)

Figure 10.5: Final state rescattering effects [125]. From top to bottom: (a) charge ex-
change (re), (b) annihilation (ra), and (c) singlet exchange (r0).

Final state interactions such as D1π1→D2π2, where Di and πi remain within the isospin
doublet D = (D+, D0) and triplet π = (π+, π0, π−), are called elastic rescattering. The same
name is given to the case whereD is replaced byD∗, or π by ρ. Rescattering such asD(∗)+π−→
D(∗)0η and D+ρ−→D0ω, where η and ω are isosinglets, is known as inelastic rescattering.

As rescattering occurs at the scale mB � mq, with mq the mass of the up, down, or strange
quark, the strong rescattering amplitudes should respect SU(3) symmetry to a good degree5.
This has been demonstrated by Chua, Hou, and Yang in Ref. [125].

5SU(3) breaking in the formation of the initial mesons from the B decay is taken into account in decay
constants and Wilson coefficients at the Hamiltonian level, as in Eq. (10.3).
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Therefore, it is reasonable to extend isospin symmetry to SU(3) for final state rescatter-
ing. Like in Ref. [125], we extend elastic rescattering Dπ→Dπ to ‘quasi-elastic’ rescattering
DΠ→DΠ, with the SU(3) triplet D(∗) = (D(∗)+, D(∗)0, D

(∗)+
s ), with quantum numbers 0−+

(1−−), and the pseudo-scalar octet Π including the three pions, four kaons, and the η (≈ η8),
with quantum numbers 0−+. Rescattering to D(∗)0η′ is expected to be smaller for various
reasons [125] – the η′ (≈ η1) is quite heavy, for one thing –, so the η′ is excluded from Π.
The vector mesons are grouped into the nonet P, which includes the three ρ mesons, four K∗

mesons, and the ω and φ, with quantum numbers 1−−. We denote the pseudo-scalar mesons
in Π as P , and the vector mesons in P as V .

It turns out that for the vector nonet, one can have charge exchange or annihilation FSI,
but not both [125]. A good fit can be obtained without annihilation rescattering. (The other
solution gives branching fractions already ruled out by experiment.) Thus, in what follows, we
use the assumption that ra = 0 for the vector mesons.

Last, the subset of two-body final states that include a charm quark, reached via quasi-
elastic rescattering, can be shown to stand out compared with other, inelastic channels. Unlike
the case for quasi-elastic rescattering, inelastic channels, such as D∗P→DV , need to transfer
(or) spin, and/or parity, and/or charge parity from the D(∗) to the V meson. The standard
‘statistical’ or ‘duality’ suppression arguments tell that inelastic FSI amplitudes tend to cancel
each other, leading to small FSI phases [126, 127]. For example, an explicit calculation in
Ref. [128] of the inelastic rescattering amplitude of D∗π → Dρ is at the level of only 1%
compared with the elastic transition. We therefore ignore inelastic rescattering effects in the
next Sections.

10.3.2 Rescattering in D(∗)P→D(∗)P and DV →DV

In this Section we improve upon an analysis first performed in Ref. [125] to obtain the various
final state rescattering amplitudes following the CKM-favored decays B0→D(∗)+π−/K− and
B0→D+ρ−/K∗−. Compared with Ref. [125], we use updated and new branching fractions of
the B decays involved. Our fit returns the errors on the rescattering amplitudes, which are
utilized to constrain the size of SU(3) breaking in rescattering. Also new is that the results are
applied to CKM-suppressed decays, such as B0→D(∗)−π+/K+ and B0→D−ρ+/K∗+, done
in the following Section.

Let us briefly review the scattering formalism. LetOk denote a T -even weak decay operator,
such as present in the the weak Hamiltonian HW in Eq. (10.3). The weak phases corresponding
to Ok have been factored out into separate CKM-matrix elements λk. From time-reversal
invariance one obtains

〈j; out|Ok|B〉∗ =
∑

i

S∗ji〈i; out|Ok|B〉 , (10.17)

where Sji ≡ 〈j; out|i; in〉 is the strong interaction S-matrix element, and one applies 〈j; out| =
T |j; in〉. Time reversal invariance of the strong interactions requires that S is a symmetric
matrix.

Using Watson’s theorem [129], Eq. (10.17) can be formally solved as

〈j; out|Ok|B〉∗ =
∑

i

S
1/2
ji Af

i , (10.18)

with Af
i being a real amplitude. Ignoring the constants λk, we may consider the amplitudes

Af to represent ‘bare’ decay amplitudes, in the absence of a final state phases from strong

156



“thesis” — 2006/12/8 — 11:48 — page 157 — #167

10.3 Final state rescattering

interactions. In our analysis, these decay amplitudes are taken to be those predicted by naive
factorization. Since S1/2 is unitary, it holds that∑

i

|〈i; out|Ok|B〉|2 =
∑

i

|Af
i |

2 , (10.19)

so the probability of B decay through the operator Ok is invariant under rescattering – as
expected. In the following, we decompose the scattering matrix as S = 1 + iT .

It is useful to show the SU(3) structures of the non-trivial neutral mesons used in this
analysis. We have the pseudo-scalar mesons

π0 =
uū− dd̄√

2
, (10.20)

η8 =
uū+ dd̄− 2ss̄√

6
.

The physical η, η′ mesons are defined through(
η
η′

)
=

(
cosϑ − sinϑ
sinϑ cosϑ

)(
η8

η1

)
, (10.21)

with the mixing angle ϑ ≈ −15◦ [17]. Since the mixing angle is small, we approximate η by
η8. As argued in Section 10.3.1, the η′ (≈ η1) is not used in the rescattering analysis.

The corresponding vector mesons are

ρ0 =
uū− dd̄√

2
, (10.22)

ω =
uū+ dd̄√

2
,

φ = ss̄ .

For the neutral and charged decays B→DP , one has the factorization amplitudes

Af
D0π−

= T + C , (10.23)

Af
D+π− = T + E ,

Af
D0π0 = (E − C)/

√
2 ,

Af
D0η

= (E + C)/
√

6 ,

Af

D+
s K− = E ,

where T , C, and E are the color-allowed tree diagram, the color-suppressed internal W -
emission, and the W -exchange amplitudes, such as discussed in Eqs. (10.36–10.38). They are
decay dependent. We use naive factorization predictions for the unscattered, color-suppressed
decay amplitudes. More about this below6. The kaon modes are fit simultaneously, for which

Af
D0K− = T ′ + C ′ , (10.24)

Af
D+K− = T ′ ,

Af
D0K̄0 = C ′ .

6Using SCET, factorization relations for the color-suppressed, unscattered decay amplitudes of B→D(∗)P
have been derived in Ref. [130]. These results could be very different from the corresponding expectations of naive
factorization. Unfortunately, however, it is very hard to make quantitative predictions from these factorization
relations. Its most useful applications are to ratios of decay amplitudes.
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For the B→D∗P system, simply replace T→T∗, etc. For B→DV the difference with respect
to the D0η mode is given by

Af
D0ω

= (EV + CV )/
√

2 , (10.25)

Af
D0φ

= 0 ,

with the replacement T→TV , etc.
As it turns out, the rescattering fit works very well when the assumption is made that the

same rescattering amplitudes apply to both DP and D∗P . The rescattering matrix T for the
D(∗)P modes is

T = r01 +


re 0 0 0 0
0 ra

ra−re√
2

ra+re√
6

ra

0 ra−re√
2

ra+re
2

ra+re

2
√

3
ra√
2

0 ra+re√
6

ra+re

2
√

3
ra+re

6
ra−2re√

6

0 ra
ra√
2

ra−2re√
6

ra

 (10.26)

where the basis [D(∗)0π−, D(∗)+π−, D(∗)0π0, D(∗)0η,D
(∗)+
s K−] is used. For D(∗)K one has

T =

 r0 + re 0 0
0 r0 re
0 re r0

 (10.27)

with the basis [D(∗)0K−, D(∗)+K−, D(∗)0K̄0].
The matrix elements can be interpreted as follows. The charged modes D(∗)0π− and

D(∗)0K− only rescatter amongst themselves. That means (1+ir0+ire) has amplitude 1 and only
gives a phase change. Using Fig. 10.5, this can happen through singlet exchange and by charge
exchanging the ū quarks between the mesons. The mode D(∗)+π− can rescatter to D(∗)0π0 by
annihilating the d and d̄ quarks into uū, or charge exchanging the ū and d̄. The minus sign
and factor of 1/

√
2 account for the creation a π0 through a (+) uū or (−) dd̄ quark pair, as in

Eq. (10.20).
To obtain the S1/2 matrix the following substitutions are performed

1 + ir0 =
1
2
(1 + ei2δ′) (10.28)

ire =
1
2
(1− ei2δ′)

ira =
1
8
(−1− 2ei2δ′ + 3ei2θ) .

The angles δ′ and θ are the two rescattering phases in the D(∗)P system that we fit for. The
matrix S1/2 is obtained by dividing the phases in S by two; we do not show it here.

The scattering matrix of the DV system is taken to be of the form [125]

TV = r01 +



re 0 0 0 0 0
0 ra

ra−re√
2

ra+re√
2

ra 0
0 ra−re√

2
ra+re

2
ra+re

2
ra√
2

0
0 ra+re√

2
ra+re

2
ra+re

2
ra√
2

0
0 ra

ra√
2

ra√
2

ra re

0 0 0 0 re 0


, (10.29)
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using the basis [D0ρ−, D+ρ−, D0ρ0, D0ω,D+
s K

∗−, D0φ]. The TV matrix for DK∗ is the same
as in Eq. (10.27). As already mentioned in Section 10.3.1, for the DV modes the annihilation
amplitude is zero. As a result, one obtains

1 + ir0 =
1
2
(1 + ei2δ′V ) (10.30)

ire =
1
2
(1− ei2δ′V )

ira = 0 ,

with the sole free fit parameter δ′V .
In our study all branching fractions, masses, lifetimes, CKM-matrix elements, and decay

constants are taken from the PDG [17], except where indicated below. The (average) form fac-
tor estimates are copied from Table 1 in Ref. [125], except that, inspired by our observations at
the end of Section 10.2.1, we lower AB→ρ

0 (m2
D) from 0.33 to 0.26. From the CLEO measurement

of B0→D−l+ν [131] we derive (and fix) VcbF
B→D
0,1 (m2

π,K,ρ) = 0.0250± 0.0035. Similarly, from
the BABAR measurement of B0→D∗−l+ν we find VcbA

B→D∗
0 (m2

π,K) = 0.0258 ± 0.0008 [132].
The decay constants are set to fB = 185 MeV [122], fη = 182 MeV [121], fω = 195 MeV [104],
fK∗ = 217 MeV [104]. f

D
(∗)
s

= 274 MeV as in Eq. (10.2.1), and finally fD(∗) = 223 MeV [135].

The branching fractions of B0→D(∗)0K̄(∗)0 are taken from Refs. [133, 134]. The branching
fractions of B0→D

(∗)−
s K+ are averaged in Table 10.15 [116, 117]. As in Section 10.2, we take

1.02 for the Wilson coefficient a1 .
The rescattering fit involves 25 CKM-favored decays of B→D(∗)P (2 × 8) and B→DV

(9). The decay B(B0 → D0φ) has not been measured, which leaves 24 branching fractions
measurements. Some of the measurements have been carried out on larger datasets than others.
One of these, B(B0→D−

s K
∗+), measured by CLEO, is only a (loose) limit, and contributes

little weight to fit.
The three rescattering phases δ′, θ, and δ′V are determined in the fit. We also float the ex-

change amplitudes E, E∗, and EV . Last, we fit for the Wilson coefficient a2, effectively floating
the size of all color-suppressed decay amplitudes C. This gives a total of 7 fit parameters, and
17 d.o.f.

The results of our study are shown in Tables 10.6 and 10.7. The rescattering phases found
are consistent with those in Ref. [125], with χ2/d.o.f. = 15.0/17. The correlation of δ′ to
θ is +68%. As seen in Table 10.6, the rescattering model describes all branching fractions
remarkably well. All color-suppressed modes are dominated by rescattering effects from the
color-allowed decays. Retroactively, this justifies the use of naive factorization predictions
for unscattered, color-suppressed decay amplitudes. (For example, setting a2 = 0 still gives
reasonable branching fractions for the color-suppressed B-decays.)

Interestingly, at the time of writing of Ref. [125], B(B0→D
(∗)−
s K+) and B(B0→D̄(∗)0K(∗)0)

had not yet been measured. By now, these have been found to agree well with the predictions
from the rescattering model.

We find a2 = 0.20 ± 0.03, consistent with the value of 0.18 in Section 10.2 from naive
factorization. The fit prefers W -exchange amplitudes consistent with zero, where for all three
modes B0 → D−π+, B0 → D∗−π+, and B0 → D−ρ+ one has |Ei/Ti| < 2.9% at 68% C.L.,
consistent with (and smaller than) the error estimate in Section 10.6.
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Decay mode Factorized B Rescattered B Measured B

B+→D̄0π+ 48.2 48.2 49.8± 2.9
B0→D−π+ 32.3 28.3 27.6± 2.5
B0→D̄0π0 0.46 2.71 2.91± 0.28
B0→D̄0η 0.0 1.6 2.2± 0.5
B0→D−

s K
+ 0.00 0.25 0.27± 0.05

B+→D̄0K+ 3.7 3.7 3.7± 0.6
B0→D−K+ 2.5 2.0 2.0± 0.6
B0→D̄0K0 0.06 0.57 0.52± 0.07
B+→D̄∗0π+ 49.7 49.7 46± 4
B0→D∗−π+ 31.4 27.4 27.6± 2.1
B0→D̄∗0π0 0.7 2.9 2.7± 0.5
B0→D̄∗0η 0.0 1.5 2.6± 0.6
B0→D∗−

s K+ 0.02 0.21 0.18± 0.06
B+→D̄∗0K+ 3.6 3.6 3.6± 1.0
B0→D∗−K+ 2.4 1.9 2.0± 0.5
B0→D̄∗0K0 0.07 0.56 0.36± 0.12
B+→D̄0ρ+ 101 101 134± 18
B0→D−ρ+ 75.9 70.4 77± 13
B0→D̄0ρ0 0.4 3.3 2.9± 1.1
B0→D̄0ω 0.1 2.7 2.5± 0.6
B0→D−

s K
∗+ 0.00 0.00 0.0± 6.6

B0→D̄0φ 0.00 0.00 –
B+→D̄0K∗+ 5.6 5.6 6.1± 2.3
B0→D−K∗+ 4.0 3.8 3.7± 1.8
B0→D̄0K∗0 0.06 0.35 0.40± 0.08

Table 10.6: Fit results from the SU(3) rescattering fit to the neutral and charged decays
B→D(∗)P and B→DV . Shown are the factorized, rescattered, and measured
branching fractions B. All quoted branching fractions are to be multiplied with
10−4.

Parameter Fit value

χ2/d.o.f. 15.0/17
δ′ 0.95± 0.04
θ 0.34± 0.06
δ′V 0.54± 0.05
a2 0.20± 0.03
|E| (1.0± 3.0)× 10−3 GeV
|E∗| (1.9± 2.2)× 10−3 GeV
|EV | (1.5± 5.0)× 10−3 GeV

Table 10.7: Fit results from the SU(3) rescattering fit to the decays B → D(∗)P and
B→DV .
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10.3.3 Rescattering after B0→D
(∗)+
(s) π− and B0→D+

(s)ρ
−

Rescattering is independent of the formation process of the initial mesons produced by the B
decay. Therefore, one can take rescattering results from CKM-favored decays, obtained in the
previous Section, and apply these to the corresponding CKM-suppressed decay modes, such
as B0→D

(∗)+
(s) π− and B0→D+

(s)ρ
−. In this Section we determine the SU(3) breaking from

final state rescattering to be applied to the amplitude ratios of Eq. (10.2).
As the final state D(∗)+

s π− has four flavors of quarks, whereas D(∗)+π− has only three,
one can expect different rescattering effects to happen between both combinations of mesons.
Indeed, from Fig. 10.5 it is seen that for D(∗)+

s π− annihilation rescattering is not possible.
By exchanging the u and s quark, it can only rescatter into D(∗)0K0, and vice versa7. In
comparison, D(∗)+π− can rescatter into the modes D(∗)0π0, D(∗)0η, D(∗)+

s K−, and vice versa.
The same holds for D+

s ρ
− versus D+ρ−. For averaging purposes, we also study D+

s π
0, which

scatters quasi-elastically with D0K+, D+K0, and D+
s η.

The rescattering matrix ofD(∗)+π− is given in Eq. (10.26), with the rescattering parameters
δ′ and θ. For D(∗)+

s π− (D+
s ρ

−) copy Eq. (10.27), with rescattering parameters δ′ and θ (δ′V ),
using the basis [D(∗)+

s π−, D(∗)0K0] ([D+
s ρ

−, D0K∗0]). And similarly, for D+ρ− use Eq. (10.29),
with parameter δ′V , only selecting the neutral block matrices. The rescattering matrix of D+

s π
0

is given by

T = r01 +


0 re√

2
− re√

2
0

re√
2

ra ra
re−2ra√

6

− re√
2

ra ra
re−2ra√

6

0 re−2ra√
6

re−2ra√
6

2re+2ra
3

 , (10.31)

with the basis [D+
s π

0, D0K+, D+K0, D+
s η]. Note that the elastic rescattering amplitude for

D+
s π

0 is the same as for D+
s π

−, and this means that taking the average of B(B+→D+
s π

0) and
B(B0→D+

s π
−) in Table 10.5 is justified.

An important point in Table 10.6 is that the CKM-favored, color-allowed modes B0 →
D(∗)−π+ andB0→D−ρ+ hardly receive any rescattering contributions from the color-suppressed
decays. In other words, for all intents and purposes, rescattering occurs in one direction only.
The same holds for the CKM-suppressed decays. So, for example, to estimate the effect of
rescattering on B0→D+π− relative to the factorized amplitude, to first order one only needs
the elastic matrix element S(D+π−; D+π−), and not the (factorized) CKM-suppressed, color-
suppressed decay amplitudes.

Using the same technique and constants as in the previous Section, i.e. Eqs. (10.14)
and (10.16), combined with Vub = (3.67 ± 0.47) × 10−3 [17], we calculate the branching
fractions of Table 10.8. Here we have used the corresponding SU(3) amplitude relations of
Eqs. (10.23–10.25) in Table 14. (For completeness it includes Bs decays.) In Table 14 A is the
‘annihilation amplitude’ in charged B decays, where the b and ū quarks annihilate into a W
(not related to rescattering). Like the W -exchange amplitude, it is expected to be negligible.
In our computations we have set it to zero.

Rescattering reduces the factorized branching fractions of B0 → D
(∗)+
s π− by 20%. The

7One might wonder if the state D0K̄0, obtained from the CKM-favored decay of B0, can oscillate into D0K0

and from thereon rescatter into D+
s π

−. This however implies that, before it can possibly rescatter, the D0 and
K0 will be tens of centimeters apart in the B rest frame, at which point we assume strong rescattering effects
to be negligible.
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Decay mode Factorized B Rescattered B Measured B

B0→D+
s π

− 2.87 [Eq. 10.16] 2.29 1.7± 0.4
B0→D0K0 0.10 0.68 –
B0→D∗+

s π− 2.75 2.19 3.0± 0.8
B0→D∗0K0 0.12 0.67 –
B0→D+

s ρ
− 1.91 1.78 0.2± 0.8

B0→D0K∗0 0.10 0.23 0.0± 0.6 [134]
B+→D+

s π
0 1.56 1.25 0.9± 0.2

B+→D0K+ 0.11 0.37 –
B+→D+K0 0 0.07 –
B+→D+

s η 0.18 0.18 –

Table 10.8: Factorized, rescattered, and measured branching fractions B predicted for B→
D

(∗)+
s π/ρ. All branching fractions are to be multiplied with 10−5.

Decay Amplitude Decay Amplitude

B̄− → D−K̄0 −A B̄− → D−π0 − 1√
2
(T +A)

D̄0K− C +A D̄0π− C +A
D̄−

s π
0 − 1√

2
T D̄−

s K
0 −A

D̄−
s η − 1√

6
T D−π0 − 1√

6
(T +A)

B̄0 → D̄0K̄0 C B̄0 → D̄−π+ T + E
D̄−

s π
+ T D̄0π0 1√

2
(C − E)

D̄−
s K

+ E
D̄0η 1√

6
(C + E)

B̄s → D−π+ E B̄s → D−K+ T
D̄0π0 − 1√

2
E D̄0K0 C

D̄−
s K

+ T + E

Table 10.9: SU(3) predictions for a) ∆S = 1 and b) ∆S = 0 non-leptonic wrong-charm
B → Dπ decays, expressed in terms of quark diagram topological amplitudes.

reduction is only 6.8% for B0→D+
s ρ

−. Table 10.10 shows the corresponding branching ratios
including errors. The uncertainties from rescattering are either small or negligible.

All measured branching ratios in Table 10.5 are consistent with the predictions from fac-
torization and rescattering within the errors. We will discuss the implications in Section 10.5.

By the same procedure, the factorizable and rescattered branching fractions of the CKM-
suppressed decays B0→D(∗)+P− and B0→D(∗)+V − are given in Table 10.11.

As a small side-step, the branching fraction of B+→D0K+ in Table 10.8 is fully dominated
by rescattering effects from the color-allowed decay B+→D+

s π
0. For this reason, it is about

twice as small as B(B0→D0(∗)K0). The branching ratio B(B0→D0K∗0) is even smaller, as it
cannot be reached through annihilation rescattering. Using B(B+→D̄0K+) = (3.7±0.6)×10−4

from Table 10.6, we find |A(B+ → D0K+)/A(B+ → D̄0K+)| ≈ 0.09. (Similarly, |A(B+ →
D0π+)/A(B+→D̄0π+)| ≈ 0.003.)
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Decay Predicted B (×10−5) Eq.

B0 → π−D+
s 2.6± 0.6 (exp.)± 0.2 (ff.)± 0.2 (lat.)± 0.4 (fDs)± 0.1 (rsc.) 10.12

2.3± 0.3 (exp.)± 1.0 (ff.)± 0.3 (fD∗
s
) 10.16

B0 → π−D∗+
s 2.2± 0.3 (exp.)± 0.3 (fD∗

s
)

B0 → ρ−D+
s 1.1± 0.7 (exp.)± 0.2 (fDs) (*)

B0 → ρ−D∗+
s 1.9± 1.1 (exp.)± 0.3 (fD∗

s
)

Table 10.10: Predicted branching ratios B for B0 → h−D
(∗)+
s , based on Nc-QCD factor-

ization, after rescattering. See Table 10.4 for the corresponding branching
ratios with errors without rescattering. (*) We have guesstimated the frac-
tion of longitudinal polarization in B0 → ρ−D∗+

s to be 0.6.

Decay mode Factorized B (×10−7) Rescattered B (×10−7)

B0→D+π− 10.10 8.88
B0→D0π0 0.12 0.78
B0→D0η 0.02 0.47
B0→D+

s K
− 0.00 0.10

B0→D∗+π− 10.13 8.92
B0→D∗0π0 0.15 0.81
B0→D∗0η 0.03 0.47
B0→D∗+

s K− 0.00 0.10
B0→D+ρ− 6.88 6.40
B0→D0ρ0 0.12 0.37
B0→D0ω 0.08 0.31
B0→D+

s K
∗− 0.00 0.00

Table 10.11: Predictions (without errors) for the factorized and rescattered branching
fractions B of the neutral decays B0→D(∗)+P− and B0→D+V −.

From the substitutions in Eqs. (10.28) and (10.30) let us define the rescattering amplitudes
with phases divided by two as r̄i. In that case, e.g. |S1/2

(D+π−; D+π−)
| ≈ |1+ir̄0+ir̄a|. Recall that

r̄a = 0 for D+ρ−. As argued, the modes D(∗)+
s π− cannot rescatter through annihilation. The

rescattering effects on B(B0→D(∗)+π−), 12%, are smaller than on B(B0→D
(∗)+
s π−), as the

annihilation amplitude tends to cancel the singlet exchange amplitude.
For mode i, the SU(3) correction factor due to final state rescattering, needed for Eq. (10.2),

is written as

Ri =
(
pD(∗)

p
D

(∗)
s

)2L+1
2

∣∣∣∣Af ; CS

D(∗)+π−
(1+ir̄0+ir̄a) +Af ; CS

D(∗)0π0(ir̄a−ir̄e)/
√

2 +Af ; CS

D(∗)0η
(ir̄a+ir̄e)/

√
6

Af ; CS

D
(∗)+
s π−

(1+ir̄0) +Af ; CS

D(∗)0K0(ir̄e)

∣∣∣∣
≈

(
pD(∗)

p
D

(∗)
s

)2L+1
2

∣∣∣∣1 + ir̄0 + ir̄a
1 + ir̄0

∣∣∣∣ . (10.32)

where, in the factorized, CKM-suppressed decay amplitudes Af ; CS , we ignore all CKM-matrix
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elements and decay constants, as these are already accounted for in Eq. (10.2), and Af ; CS

D
(∗)+
s K−

=

0. In step two we neglect all (other) color-suppressed decay amplitudes. We have included the
(small) SU(3)-breaking momentum factor seen in Eq. (10.5), with L the angular momentum
of the B decay. The various correction factors Ri have been summarized in Table 10.12. They
are larger than one, because of the effect indicated in the previous paragraph, and because the
D(∗) is lighter than the D(∗)

s .

Final state Ri

D+π− 1.0750± 0.0046
D∗+π− 1.1014± 0.0047
D+ρ− 1.0356

Table 10.12: SU(3) correction factor for Eq. (10.2) due to rescattering effects and mo-
mentum factors. The error comes from soft rescattering.

10.4 Amplitude ratios

Following the techniques in Section 10.2.1, Eq. (10.1) allows us to make the predictions for the
amplitude ratio rD(∗)π in Table 10.13, based on the combination of naive factorization followed
by rescattering. We use fD(∗) = 223 ± 17 MeV [135], Vcd = 0.224 ± 0.012, B(B0 → D−π+) =
(2.76± 0.25)× 10−3, and B(B0 → D∗−π+) = (2.76± 0.21)× 10−3 [17].

Decay Predicted rD(∗)π (×10−2) Eq.

B0 → D∓π± 1.92± 0.22 (exp.)± 0.14 (fD)± 0.12 (Vcdff.)± 0.01 (rsc.)± 0.09 (lat.) 10.12
1.79± 0.15 (exp.)± 0.13 (fD)± 0.41 (Vcdff.)± 0.01 (rsc.) 10.16

B0 → D∗∓π± 1.80± 0.13 (exp.)± 0.13 (fD)± 0.09 (Vcd)± 0.01 (rsc.)

Table 10.13: Predicted amplitude ratios rD(∗)π for B0 → D(∗)∓π±, based on Nc-QCD
factorization, after rescattering.

These ratios can be compared with the corresponding predictions from Eq. (10.2), assuming
SU(3) flavor symmetry, as obtained from the measured branching fractions for B0 → h−D

(∗)+
s

in Table 10.5, and using the SU(3) corrections in Table 10.12. The estimates are listed in
Table 10.14. We use B(B0 → D−ρ+) = (7.7 ± 1.3) × 10−3 [17], F (m2

D(∗))/F (m2

D
(∗)
s

) = 1 (see

Fig. 10.3), tan θc =0.225±0.018 [17], and from lattice QCD f
D

(∗)
s
/fD(∗) =1.24±0.07 [136, 115].

Notice that the ratio of fD(∗)/f
D

(∗)
s

is far better known than the measured value of fD(∗) ,

and that the errors from rescattering are negligible. The ratio rDπ using SU(3) symmetry is
more precise, and both estimates of rDπ are consistent within 1 sigma.

Also compare the numbers in Table 10.13 with those in Table 10.1. Notice that, in Ta-
ble 10.1, one has rD∗π > rDπ, whereas here that equality is reversed. It is not clear from
Ref. [86] which exact numbers have been used to calculate the amplitude ratios, but the dif-
ference with Table 10.13 can be attributed to several factors.

164



“thesis” — 2006/12/8 — 11:48 — page 165 — #175
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s

Decay Predicted rD(∗)h (×10−2)

B0 → D∓π± 1.526± 0.183 (B)± 0.086 (r.fD)± 0.118 (Vcq)± 0.006 (rsc.)
B0 → D∗∓π± 2.102± 0.286 (B)± 0.121 (r.fD)± 0.165 (Vcq)± 0.008 (rsc.)
B0 → D∓ρ± 0.313± 0.590 (B)± 0.021 (r.fD)± 0.021 (Vcq)

Table 10.14: Predicted amplitude ratios rD(∗)π for B0 → D(∗)∓π±, based on SU(3) flavor
symmetry and rescattering. The errors are from the branching ratios and
the error on fD(∗)/f

D
(∗)
s

respectively.

1. The difference f+(m2
D∗)−f0(m2

D) was probably bigger, since the uncertainties on the
form factors were bigger at the time. This difference is model-dependent, clearly, since
rD∗π/rDπ is not stable in Table 10.1.

2. In 2001 the measured branching ratio was B(B0 → D−π+) = (3.0 ± 0.4) × 10−3, larger
than the current value.

3. Possibly, Ref. [86] uses a value for fD∗ larger than fD.

As already made clear in Section 10.1, we will not use the amplitudes ratios in Table 10.1 for
the extraction of the CP -angle γ.

It should be stressed that the amplitude ratios in Tables 10.13 and 10.14 (and Table 10.1)
do not take into account the additional errors from neglected W -exchange diagrams, non-
factorizable corrections, and/or higher-order SU(3) breaking effects. These errors are discussed
in Sections 10.6 and 10.7 respectively.

10.5 Non-factorizable corrections in B0→π−D∗+s

The measured and predicted branching fractions of B0 → π−D
(∗)+
s and B0 → ρ−D

(∗)+
s in

Tables 10.5 and 10.10 allow us to scale the size of possible non-factorizable contributions in
b→u transitions.

The measured predicted branching fractions agree well with those predicted using the
factorization hypothesis. The measured B(B0 → π−D+

s ) comes out a little low, whereas
B(B0 → π−D∗+

s ) is somewhat high. The most precise prediction from factorization can be
made for B(B0→π−D∗+

s ), as it relates directly to B0→π−l+ν. The other predicted branching
fractions are less precise, as they have large(r) theoretical and/or systematic uncertainties.

Given the additional uncertainties, the most powerful constraint on the size of non-factorizable
contributions – now and in the future – is derived using B0→π−D∗+

s , for which the branching
fraction prediction is most precise. The change in the decay amplitude by non-factorizable
contributions, relative to a1, is defined as ãcorr

s . Using ãcorr
s , the ratio of the measured over

predicted amplitude ratio for B(B0→π−D∗+
s ) can be written as

Bmeas(B0→π−D∗+
s )

Bresc(B0→π−D∗+
s )

= |1 + ãcorr
s |2 = 1.370± 0.376 (exp.)± 0.200 (fD∗

s
)± 0.028 (rsc.) ,

which results in
|1 + ãcorr

s | = 1.170± 0.181 . (10.33)
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In the factorization scenario, non-factorizable terms are expected to be less than leading
order, i.e. |ãcorr

s | < 1 , instead of, for example, the solution ãcorr
s ≈−2. As a result, to first order

|1 + ãcorr
s | ≈ 1 +Re(ãcorr

s ) + 1
2
|ãcorr

s |2 , (10.34)

so ∣∣∣∣Re(ãcorr
s ) + 1

2
|ãcorr

s |2

|1 + ãcorr
s |2

∣∣∣∣ ≈ ∣∣∣∣ 1
|1 + ãcorr

s |
− 1
|1 + ãcorr

s |2

∣∣∣∣
< 0.211 (0.317) @ 68% (90%) CL . (10.35)

The limit should improve with improved measurements of B0→π−D∗+
s and B0→π−l+ν. We

use this limit on the relative size of non-factorizable contributions in Section 10.7.

10.6 The W -exchange amplitude

The W -exchange amplitude (E) in Fig. 10.6 involves an interaction of the b quark with the
spectator quark. As argued in Refs. [138, 139], for a decay like this to happen, the two quarks
in the meson must ‘find’ each other, and hence the decay amplitude contains a factor of
fB/mB≈0.036, where fB≈0.19 GeV is the B decay constant [122]. Also, the diagram is color-
suppressed. Color suppression happens because a dd̄ quark pair is produced from the vacuum,
and only 1/Nc = 1/3rd of the possibilities of producing this pair will be aligned in color with
the ū and c quarks. A naive estimate then gives the ratio of the exchange over color-allowed
tree diagram in Fig. 10.6 to be at the level of 1% [138].

B0

b

d

d

d

W

V

V*

+

−u

c

π

D

ub

cd

(a)

B0

b

d

c
d

u
d

D

π

W

Vud

cbV*

+

−

(b)

Figure 10.6: Color-suppressed W -exchange diagram of: (a) CKM-allowed decay B0 →
D−π+, and (b) doubly-CKM-suppressed decay B0→D+π−.

In the following Sections we discuss two methods to constrain the ratio of the W -exchange
diagram E over the color-allowed tree diagram T .

10.6.1 B0 → D
(∗)−
s K+

In the literature it is sometimes argued [140] that the Cabibbo-favored decays B0 → D
(∗)−
s K+

can be used to constrain E, since, naively speaking, these decays are only possible through a
pureW -exchange8. The measured branching ratios B(B0 → D

(∗)−
s K+) are given in Table 10.15.

For an example of the corresponding decay, see Fig. 10.6a, and replace the dd̄ quark pair by

8In Ref. [140] W -exchange is implicitly defined as the combination of pure W -exchange and rescattering.
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Decay Measured B (×10−5) Ref.

B0 → D−
s K

+ 2.5± 0.4± 0.4 [116]
B0 → D−

s K
+ 4.6+1.2

−1.1 ± 1.3 [117]
B0 → D−

s K
+ 2.71± 0.54 WA

B0 → D∗−
s K+ 1.8± 0.5± 0.3 [116]

Table 10.15: Measured branching ratios B for B0 → D
(∗)−
s K+.

ss̄. As a result, supposedly

|E/T |2 = B(B0→D(∗)−
s K+)/B(B0→D(∗)−π+) ' 10−2

for b→ c transitions, or |E/T | . 0.1. A similar suppression is then assumed to hold for the
Cabibbo-suppressed b→u decays.

However, as shown in Section 10.3, the higher-than-predicted rates for B0→D̄(∗)0h0 (h0 =
π0, ω, η, ρ0) [141] proof that final state interactions from B0→D(∗)−π+ contribute appreciably
to this mode. A qualitative estimate of the pure W -exchange amplitude in Ref. [145] gives the
prediction of B(B0 → D

(∗)−
s K+) = 6.5×10−8, which is about 400 times smaller than observed.

Hence, interpreting B(B0 → D
(∗)−
s K+) solely in terms of the W -exchange amplitude does not

give a reliable estimate of E – any such estimate is far too conservative.
The rescattering fit to the CKM-favored decays in Section 10.3, which decouples rescatter-

ing effects from W -exchange, gives estimates of the amplitudes E consistent with zero. For all
three modes B0→D−π+, B0→D∗−π+, and B0→D−ρ+ one has |E/T | < 2.9% at 68% C.L.

As discussed in Ref. [87], due to the unknown non-factorizable contributions, it is not clear
that a correct estimate for E/T from b→ c transitions can be related to the corresponding
b→ u ratio. For this reason, we shall not use B0 → D

(∗)−
s K+ decays to constrain the pure

W -exchange diagram E for the CKM-suppressed decays B0 → π−D(∗)+.

10.6.2 Other experimental modes

Other decay modes mediated by a W -exchange between the b and spectator quark are B0→
D0D

0 or B0 → D+
s D

−
s [144]. However, for the same reason as for B0 → D

(∗)−
s K+, the cor-

responding branching fractions should be considerably enhanced by rescattering effects from
color-allowed B0→D(∗)D(∗) tree decays.

A recent idea from Pirjol [100] has been to study the wrong-charm decay B0→K−D
(∗)+
s ,

through a W -exchange and b→u transition (similar to the W -exchange wrong-charm decay of
B0→π−D(∗)+ in Fig. 10.6b), using a time-dependent analysis of B0→D

(∗)∓
s K±. However, this

decay is dominated by rescattering from the color-allowed tree amplitude of the wrong-charm
decay B0→π−D(∗)+ in Fig. 10.6b.

Again, any ‘limit’ on E – from both of the latter two methods – is actually be a limit on
the size of rescattering. A qualitative estimate of the pure W -exchange contribution of |E/T |
is calculated in the next Section.
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10.6.3 Factorization prediction

A better estimate of the W -exchange amplitude involved in the CKM-suppressed decay B0 →
π−D+ can be obtained using naive factorization. We apply the effective Hamiltonian in
Eq. (10.3). Assuming factorization, the CKM-suppressed, color-allowed tree amplitude of
〈π−D+|HW |B0〉 is

T =
GF√

2
VubV

∗
cd

(
C1(mB) +

C2(mB)
Nc

)
〈D+|(d̄c)V−A|0〉〈π−|(ūb)V−A|B0〉

=
GF√

2
VubV

∗
cd a1 fD (m2

B −m2
π)FB→π

0 [m2
D] , (10.36)

and similarly for the color-suppressed exchange diagram

E =
GF√

2
VubV

∗
cd

(
C2(mB) +

C1(mB)
Nc

)
〈π−D+|(ūc)V−A|0〉〈0|(d̄b)V−A|B0〉

=
GF√

2
VubV

∗
cd a2 (m2

D −m2
π)F 0→Dπ

0 [m2
B] fB , (10.37)

where a1 = [C1+C2/Nc] and a2 = [C2+C1/Nc]. For later use we also give the amplitude (×
√

2)
of the color-suppressed decay B0→π0D0

C =
GF√

2
VubV

∗
cd

(
C2(mB) +

C1(mB)
Nc

)
〈D0|(ūc)V−A|0〉〈π0|(d̄b)V−A|B0〉

=
GF√

2
VubV

∗
cd a2 fD (m2

B −m2
π)FB→π

0 [m2
D] , (10.38)

For the amplitude ratio we then have

E

T
=
a2

a1

fB

fD

(
m2

D −m2
π

m2
B −m2

π

)
F 0→Dπ

0 [m2
B]

FB→π
0 [m2

D]
. (10.39)

The value for FB→π
0 [m2

D] is obtained using Eqs. (10.13) and (10.15), derived from B0 →
π+l−ν and lattice QCD calculations. We have FB→π

0 [m2
D] ' 0.28. We estimate F 0→Dπ

0 [m2
B]

using the PCAC Callan-Treiman relation [103, 146], F 0→Dπ
0 [m2

D] ' fD/fπ. Employing p-QCD
scaling [148], F 0→Dπ

0 = C/q2, results in

F 0→Dπ
0 [m2

B] '
m2

D

m2
B

fD

fπ
' 0.21 ,

with fπ+ = 130.7± 0.4 MeV [17] and fD+ = 223± 17 MeV [135].
The value of |E/T |, obtained from Eq. (10.39), is ≈ 1.3%, in agreement with the naive

estimate of 1%, and also in good agreement with the limit |E/T | < 2.9% @ 68 % C.L. of
Section 10.3.

However, there are a few points missed in this approach.
Most importantly, naive factorization does not work reliably for color-suppressed decays.

It is common practice to describe non-factorizable contributions as corrections to the a1 and
a2 coefficients. In the large Nc limit, where one takes the limit of infinite number of colors,
the Wilson coefficients satisfy a1 ∼O(1) and a2 ∼O(1/Nc), and one can show that all non-
factorizable corrections are at the level of O(1/N2

c ). So, while non-factorizable contributions
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are suppressed with 1/N2
c relative to color-allowed decays (a1), they are O(1/Nc) relative to

color-suppressed decays (a2). Coming back to the color-suppressed amplitude E, the leading
order terms neglected in a2 (of order O(1/Nc)) might well be of the same size as those kept.

Second, the 1/q2 scaling in the time-like region for the form factor F 0→Dπ
0 is not very well

established [100]. In this region the form factor is in fact complex due to Dπ rescattering. Not
much is known about this, or about form factors in the time-like region. On the other hand,
if the charm quark is treated as light, which is clearly justified at q2 =m2

B, the scaling of the
form factor is the same as that of the pion form factor, which is indeed 1/q2 [148].

Given these issues, it does not make much sense to improve further on this estimate of E/T .
We assign large systematic errors to both effects, and assume conservatively that |E/T |<5.0%.
This value will be used as systematic error9 for all modes B0→h−D(∗)+ in the extraction of
the CKM-angle γ in Section 11.7.

10.7 SU(3) breaking from non-factorizable contributions

SU(3) breaking relates to the perturbation parameter 2ms/Λχ [149], where ms is the mass
of the strange quark and Λχ is the chiral symmetry breaking scale (1 GeV), and is between
16–26%. If SU(3) would be an exact symmetry, in the amplitude ratio of Eq. (10.2) and
Eq. (10.32) one would have

∆ =
F (m2

D(∗))fD(∗)

F (m2

D
(∗)
s

)f
D

(∗)
s

Ri = 1 . (10.40)

A natural definition of SU(3) breaking is then ∆−1 .
Remember that Eq. (10.2) has been derived using factorization. Within factorization and

rescattering, the main contribution to SU(3) breaking originates from

∆0≡
fD(∗)F (m2

D(∗))
f

D
(∗)
s
F (m2

D
(∗)
s

)
Ri .

As the form factor F (q2) is smooth with no sudden changes, one can set F (m2
D(∗))=F (m2

D
(∗)
s

)

with negligible error. For example, in Eq. (10.11) this holds at 1% for D+ and D+
s . Then SU(3)

breaking is due to the difference between the D and Ds decay constants. This ratio has been
calculated quite precisely using lattice QCD, fDs/fD = 1.24 ± 0.07 [136]. A consistent value
of 1.25 ± 0.14 has recently been measured on data [115]. Note that fDs/fD−1 agrees with
2ms/Λχ.

Other SU(3) corrections to Eq. (10.40) may appear from (possibly complex) non-factorizable
corrections. The error on the scale of SU(3) breaking is therefore directly related to the un-
certainty in the factorization assumption. If, using the notation of Eq. (10.4), we denote the
non-factorizable corrections as

〈h−D(∗)+
(s) |HW |B0〉corr =

GF√
2
VubV

∗
cq a

corr
q 〈D(∗)+

(s) |(q̄c)V−A|0〉〈h−|(ūb)V−A|B0〉 , (10.41)

9In Ref. [147] – discussing a similar technique where γ is obtained from B0 → D(∗)−D
(∗)+
(s) – the W -exchange

diagrams are entirely neglected.
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then |∆| becomes

|∆| = ∆0

∣∣∣∣a1 + acorr
d

a1 + acorr
s

∣∣∣∣ (10.42)

= ∆0

∣∣∣∣a1 + acorr
s + ac · 2ms/Λχ

a1 + acorr
s

∣∣∣∣ (10.43)

= ∆0

∣∣∣∣1 + ãcorr
s + ãc · 2ms/Λχ

1 + ãcorr
s

∣∣∣∣ (10.44)

= ∆0

∣∣∣∣1 + āc 2ms

Λχ

∣∣∣∣ . (10.45)

Note that in Eq. (10.42) the SU(3) ratio expected from factorization, fD/fDs , has already
been stripped from the non-factorizable terms fDqa

corr
q into ∆0. However, SU(3) breaking may

be larger (or smaller) in the non-factorizable contributions, i.e. acorr
d 6=acorr

s . In Eq. (10.43) we
relate the residual SU(3) breaking to the perturbation scale 2ms/Λχ, [acorr

d −acorr
s ] = ac·2ms/Λχ,

since in the SU(3) limit all corrections to ∆−1 should vanish. Recall that a1 is real and equals
1.02± 0.01. In Eq. (10.44) ã=a/a1. In Eq. (10.45) we have substituted

āc =
ac

a1 + acorr
s

=
ãc

1 + ãcorr
s

. (10.46)

In Eq. (10.45) the residual SU(3) breaking contribution to ∆0 therefore is (smaller than)
|āc| · 2ms/Λχ. If we assume SU(3) breaking in non-factorizable terms to be about the same as
within factorization, so [acorr

d −acorr
s ] ≈ 0, then, obviously, |āc|≈0. If we relate the residual SU(3)

breaking to 2ms/Λχ, for example |ac
c|≈|acorr

d | (in this scenario the non-factorizable terms have
twice the ‘typical’ SU(3) breaking), then |āc| . 1. Obviously, this constraint becomes stronger
as the non-factorizable terms become smaller.

Residual SU(3) breaking then depends on the size of the non-factorizable corrections in
āc. As discussed in Section 10.2, theoretical predictions for non-factorizable contributions vary.
SCET does not apply here, and so cannot make any prediction for the non-factorizable terms
in B0→ h−D

(∗)+
(s) . In Nc-QCD, these are suppressed by O(1/N2

c ). In the BABAR sin(2β+γ)
publications [14, 150], a 30% estimate has been assigned to non-factorizable and higher-order
SU(3) breaking effects (including the uncertainty on |E/T |), or |āc|≈1. This is equivalent to

Refs. [14, 150] : |āc| = 1 ↔ |āc|2ms

Λχ
≈ 25% . (10.47)

Nc-QCD : |āc| = O

(
1
N2

c

)
→ |āc|2ms

Λχ
≈ 3% . (10.48)

One obtains Eq. (10.48) with the prediction from Nc-QCD.
Clearly, compared with Nc-QCD, the BABAR error is conservative. As an example, the

BABAR assumption is equivalent to

1. acorr
d ' a1 – the non-factorizable contributions are as large as the factorizable ones,

2. ac ' 2acorr
d (

√
2acorr

d ) – SU(3) breaking in the non-factorizable terms is 3 (
√

2 + 1) times
the typical size, when acorr

d is real (imaginary).
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Indications that factorization works therefore have a large impact on the size of this theoretical
error.

We now make an estimate of the residual SU(3) breaking from the measured and predicted
branching fraction of B0→π−D∗+

s – the one decay mode where a precise prediction of B can be
made using factorization. In Eq. (10.33) it was found that the factorization hypothesis works
well. In the assumption that non-factorizable corrections are therefore small (|ãcorr

q |< 1), e.g.
such as predicted by Nc-QCD, we find the limit in Eq. (10.35).

From Eq. (10.42) we have∣∣∣∣1 + āc 2ms

Λχ

∣∣∣∣ =
∣∣∣∣1 + ãcorr

d

1 + ãcorr
s

∣∣∣∣ (10.49)

=

√
1 + 2Re(ãcorr

d ) + |ãcorr
d |2

1 + 2Re(ãcorr
s ) + |ãcorr

s |2
(10.50)

=

√
1 +

[2Re(ãcorr
d )+|ãcorr

d |2]− [2Re(ãcorr
s )+|ãcorr

s |2]
|1 + ãcorr

s |2
(10.51)

≈ 1 +
[Re(ãcorr

d )+1
2
|ãcorr

d |2]− [Re(ãcorr
s )+1

2
|ãcorr

s |2]
|1 + ãcorr

s |2
(10.52)

where, in Eq. (10.52), the approximation is to first order. So, for any given estimate of the
SU(3) breaking in the non-factorizable terms, one can now take the limit from Eq. (10.35) to
constrain |āc|. If we take the residual SU(3) breaking to be within [−2 · 2ms/Λχ, 2 · 2ms/Λχ],
i.e. SU(3) breaking in the non-factorizable piece can be up to three times the typical SU(3)
breaking scale (around 75%), like in the BABAR estimate above, then10

|āc|2ms

Λχ
< 2

2ms

Λχ

∣∣∣∣Re(ãcorr
s ) + 1

2
|ãcorr

s |2

|1 + ãcorr
s |2

∣∣∣∣
< 0.105 @ 68% CL . (10.53)

One of the key ingredient in the SU(3) flavor method is the claim that, within factorization,
the leading order SU(3) breaking scale is given by 2ms/Λχ ' fDs/fD−1, and is about 25%. As
argued, this has been demonstrated to hold in B→D(∗)D

(∗)
(s) decays [98]. Table 10.16 demon-

strates the measured branching fractions and also the square root of the ratio of branching
fractions, which should equal tan θc · fD/fDs = 0.181± 0.018, as in Eq. (10.2). The measured
ratios agree well, indicating that the SU(3) breaking scale is consistent with 2ms/Λχ.

One might still worry that the estimate of SU(3) breaking is too small based on what hap-
pens in D decays. For example, using the above arguments, one would expect sin2 θc B(D0→
K−π+)/B(D0 → K−K+) ' (fπ/fK)2 = 0.67. Experimentally, this ratio is found to be
0.50± 0.02 [17], meaning 16% additional SU(3) breaking at the amplitude level.

But, as argued by Datta and Londen [147], there are significant differences betweenD andB
decays. (We copy their arguments here.) Factorization is badly broken in D0→K−π+/K−K+,
where, at lower energies, large rescattering effects are present from nearby resonances [153].
In addition, large exchange contributions are significant in many D decays [154]. At the B
mass scale – above ‘the resonance region’ – there is less rescattering and no evidence of large
exchange diagrams [101, 98]. Consequently, these effects are more sizable in D decays, which,

10The limit also holds using second order approximations in Eqs. (10.34) and (10.49).
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Decay B(B→D(∗)D(∗)) (×10−4) B(B→D(∗)D
(∗)
s ) (×10−2)

√
ratio

B0→D∗−
(s)D

∗+ 8.2± 0.9 1.9± 0.2 0.21± 0.02
B0→D−

(s)D
+ 2.3± 0.4 0.8± 0.3 0.17± 0.04

B0→D∗±
(s)D

∓
(s) 6.1± 1.0 2.1± 0.6 (*) 0.17± 0.03

B+→D
∗0
D∗+ 8.1± 1.7 2.7± 1.0 0.17± 0.04

B+→D
0
D∗+ 3.9± 0.5 0.9± 0.4 0.21± 0.05

B+→D
∗0
D+ 6.3± 1.7 1.2± 0.5 0.23± 0.06

B+→D
0
D+ 4.2± 0.6 1.3± 0.4 0.18± 0.03

Average – – 0.194± 0.011

Table 10.16: Measured branching ratios B for B→D(∗)D
(∗)
s , taken from Refs. [17, 151,

152]. The (*) indicates the sum of B(B0→D∗−
s D+) and B(B0→D−

s D
∗+).

in general, will lead to larger SU(3) breaking. For these reasons, it is argued, D decays do not
provide a reliable estimate of SU(3) breaking in B decays.

From Eq. (10.45) another important conclusion can be drawn. In determining the amplitude
ratio using SU(3) flavor symmetry in Eq. (10.2), the error from non-factorizable corrections is
suppressed by the SU(3) breaking scale (and should vanishes in the SU(3) limit). Conversely,
the higher-order SU(3) breaking is suppressed by the size of the non-factorizable corrections.
Compare this with the amplitude ratio in Eq. (10.1) from naive factorization. Here, the non-
factorizable corrections are not suppressed, making the uncertainty larger by a factor of roughly
Λχ/2ms.

In Tables 10.13 and 10.14, both methods have similar experimental errors on the predicted
amplitude ratios. Including the theoretical uncertainty from corrections to factorization, the
amplitude ratios from SU(3) flavor symmetry are clearly favored in the extraction of γ.

10.8 Discussion and summary

Within the framework of factorization, the decay rates of B0 → h−l+ν can be related to
the decay rates of B0→ h−D

(∗)+
s , where h is a π or ρ meson. The branching fractions thus

found need to be corrected for soft rescattering effects, which have a significant impact on
the factorization predictions. Soft rescattering amplitudes can be determined precisely from
the CKM-favored decays B → Dπ and B → Dρ using a quasi-elastic rescattering model.
As rescattering is independent of the formation process of the initial mesons from the B
decay, one can take the rescattering results from CKM-favored decays, and apply these to the
corresponding CKM-suppressed decay modes, such as B0→D

(∗)+
(s) π− and B0→D+

(s)ρ
−.

All rescattering-corrected predictions are found to be consistent with the measured branch-
ing fractions. Except for B(B0→ π−D∗+

s ), the predicted branching fractions have large the-
oretical and/or systematic uncertainties. The most powerful constraint on the size of non-
factorizable contributions – now and in the future – is therefore derived using B0→π−D∗+

s . A
tremendous help there is that, for B0→π−l+ν, the partial branching fraction ∆B is measured
symmetrically around 4 GeV2 .

The measured and predicted branching fractions for B0→ π−D∗+
s agree well, consistent
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with the hypothesis that factorization applies to this decay. In the factorization scenario,
where non-factorizable terms are expected to be less than leading order (|ãcorr

q | < 1), we find
the (Gaussian) upper limit in Eq. (10.35)∣∣∣∣Re(ãcorr

s ) + 1
2
|ãcorr

s |2

|1 + ãcorr
s |2

∣∣∣∣ < 0.211 (0.317) @ 68% (90%) CL . (10.54)

If we assume that SU(3) breaking in non-factorizable contributions can be up to three times
the typical SU(3) breaking scale (up to 75%), we find in Eq. (10.53)

|āc|2ms

Λχ
< 0.105 (0.154) @ 68% (90%) CL . (10.55)

Note that āc = 0 if SU(3) breaking in non-factorizable corrections is the same as in factorizable
terms.

In determining the amplitude ratio using SU(3) flavor symmetry in Eq. (10.2), the theo-
retical error from non-factorizable corrections is suppressed by the SU(3) breaking scale (and
vice versa). For any prediction of the amplitude ratio from naive factorization, such as in
Eq. (10.1), the non-factorizable corrections are not suppressed, however, making the theoret-
ical uncertainty larger by a factor of roughly around four to seven (Λχ/2ms). The amplitude
ratios obtained from SU(3) flavor symmetry are therefore clearly favored in the extraction of
γ.

A qualitative estimate of theW -exchange amplitude involved in the CKM-suppressed decay
B0 → D+π− can be obtained from naive factorization. It is found to be severely suppressed,
due to color-suppression and fB/mB, compared with the color-allowed tree amplitude, at the
level of 1.3%. However, relatively large systematic errors from factorization and p-QCD scaling
should be accounted for this estimate. Therefore, we assign

|E/T | < 5.0% . (10.56)

This is consistent with results from the rescattering fit to the CKM-favored decays in Sec-
tion 10.3. For all three modes B0→D−π+, B0→D∗−π+, and B0→D−ρ+, the fit estimates
of the W -exchange amplitude are consistent with zero. One has |E/T | < 2.9% @ 68% C.L.

For all modes B0→h−D(∗)+, in the extraction of the CKM-angle γ one can therefore take
the Gaussian error of 10.5% as systematic uncertainty from residual SU(3) breaking in non-
factorizable corrections, and a flat error of 5.0% from neglecting W -exchange diagrams when
using the SU(3) flavor symmetry method to obtain the suppressed over favored amplitude
ratios.
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Chapter 11

Extraction of γ

This chapter deals with the extraction of γ from the results of the time-dependent fit to the
B→D(∗)∓h± data samples. It describes the construction and validation of a χ2 minimization
procedure. We use a frequentist method loosely based on the Feldman-Cousins approach to
set a confidence limit on γ based on the latest world average values of aj and cjlep.

In obtaining the CP angle γ from the time-dependent decays of B → D(∗)∓h±, a two
step analysis has been adopted. First, the CP -related observables a and clep are measured, as
summarized in the previous chapters. Next we extract γ from these measurements.

The analysis has been split up for various reasons.

1. It has become clear in the validation process that the measurements of a and clep obey
Gaussian statistics. Therefore, observables from different experiments can be averaged
easily. As the mapping to γ is non-trivial, this is not the case for the CP angle itself.

2. A change in interpretation of the CP parameters can be easily accommodated, without
having to redo the time-dependent analysis. An example is an update of the amplitude
ratios rj in Eq. (10.2).

3. The simulation of just the Gaussian parameters a and clep is straight-forward. However,
the combined validation of a time-dependent analysis that includes the extraction process
of γ would be extremely time-consuming.

11.1 Frequentist versus Bayesian inference

The field of probability and statistics is divided into two camps: the frequentists and Bayesians1.
Here we do not discuss the fundamental, philosophical differences between each method of
inference – see for example Ref. [17].

This Chapter follows a frequentist approach in setting a confidence region on the CKM-
angle γ from the measured CP parameters in Table 8.5. We have tried both methods to
constrain γ, and our experience with Bayesian inference is that, with the current statistical
errors, the dependence on the choice of prior distribution for γ is not negligible. Others have
found the same in the extraction of the CKM phase α [156]. The frequentist technique laid

1 Put simply: ‘A frequentist is a person whose long-run ambition is to be wrong 5% of the time.’ And: ‘A
Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a donkey, strongly believes he has
seen a mule.’ [155]
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out here to constrain γ from a and clep has been adopted by the CKMFitter group [21]. A
Bayesian limit, set by the UTFit group, can be found in Ref. [122].

11.2 Construction of χ2

Not all of the a, b, c observables related to CP violation carry significant information about
the angle (2β+γ). In particular, all parameters related to tag-side interference are insensitive
due to large theoretical uncertainties in the size of this effect, as demonstrated in Section 5.8.
This implies that all b and c parameters associated with non-leptonic tagging categories can
be ignored in the extraction process of (2β+γ), leaving aDπ, aD∗π, cDπ

lep , and cD
∗π

lep for further
consideration.

In the previous sections, the coefficients most sensitive to (2β+γ) have been measured to
be

aDπ = 2rDπ sin(2β+γ) cos δDπ = −0.010± 0.023 (stat.)± 0.007 (syst.) , (11.1)
aD∗π = 2rD∗π sin(2β+γ) cos δD∗π = −0.040± 0.023 (stat.)± 0.010 (syst.) , (11.2)
aDρ = 2rDρ sin(2β+γ) cos δDρ = −0.024± 0.031 (stat.)± 0.009 (syst.) , (11.3)
cDπ
lep = 2rDπ cos(2β+γ) sin δDπ = −0.033± 0.042 (stat.)± 0.012 (syst.) , (11.4)

cD
∗π

lep = 2rD∗π cos(2β+γ) sin δD∗π = 0.049± 0.042 (stat.)± 0.015 (syst.) , (11.5)

cDρ
lep = 2rDρ cos(2β+γ) sin δDρ = −0.098± 0.055 (stat.)± 0.018 (syst.) . (11.6)

The latest world averages are given in Table 11.1 [31]. (The significance of the individual
measurements is discussed in Section 12.2.) In Section 10.4 the amplitude ratios rj have been
determined to be

rDπ = (1.53± 0.33 (exp.)± 0.08 (theo.))× 10−2 ,

rD∗π = (2.10± 0.47 (exp.)± 0.11 (theo.))× 10−2 ,

rDρ = (0.31± 0.59 (exp.)± 0.02 (theo.))× 10−2 . (11.7)

As explained in Section 2.6.1, there is a four-fold ambiguity in the extraction of (2β+γ)
from these parameters. Given the true solutions (2β+γ)0 and δ(3)0 = (δDπ

0, δ
D∗π

0, δ
Dρ

0), the
observables are invariant under the two transformations

[2β+γ, δ(3)] → [−(2β+γ)0, π − δ(3)0] ; and
→ [π − (2β+γ)0,−δ(3)0] .

Note that the presentation in terms of |sin(2β+γ)| is the same for all of these solutions.
Note that – physically – both aj and cjlep ∈ [−2rj , 2rj ], with rj . 0.02. Considering the

uncertainties in the parameters it is clear that: with current statistics the sensitivity to γ is
limited, and the chance for fit coefficients to end up in the unphysical region not negligible.

One can determine the sensitivity to γ by minimizing a χ2 function built from aj and cjlep,
with j = Dπ, D∗π, and Dρ, and their corresponding relations

χ2 = vTM−1v +
(
β − βmeas

σ[βmeas]

)2

+
∑

j

∆2(rj) , (11.8)
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where v is the vector

v =



aDπ − 2rDπ sin(2β+γ) cos δDπ

aD∗π − 2rD∗π sin(2β+γ) cos δD∗π

aDρ − 2rDρ sin(2β+γ) cos δDρ

cDπ
lep − 2rDπ cos(2β+γ) sin δDπ

cD
∗π

lep − 2rD∗π cos(2β+γ) sin δD∗π

cDρ
lep − 2rDρ cos(2β+γ) sin δDρ


, (11.9)

and M is the measured covariance matrix, taken to be diagonal for the world average values
of aj and cjlep. The off-diagonal terms one gets from the time-dependent fit, see Table 8.1,
are sufficiently small to be safely neglected. The systematic uncertainties – see Tables. 9.20
and 9.21 – have been added in quadrature to the elements. We choose the world average value
of βmeas = 0.377 ± 0.022 [122] consistent with the Standard Model solution. The last terms
in the χ2 function, ∆2(rj), take into account the Gaussian experimental errors and the 5%
theoretical uncertainties on rj of Eq. (11.7) according to the description of Ref. [21]

∆2(rj) =



(
rj−1.05 rj

meas.

σ[rj
exp.]

)2

, ξrj > 0.05

0 , |ξrj | ≤ 0.05(
rj−0.95 rj

meas.

σ[rj
exp.]

)2

, ξrj < −0.05

(11.10)

where ξrj ≡ (rj − rj
meas)/rj . The result (i.e. the minimum observed χ2) is determined by

scanning over the free parameters (2β+γ), δDπ, δD∗π, δDρ, and rDπ, rD∗π, and rDρ.
The extraction of γ with the χ2 technique has been performed on the world average results

in Table 11.1. Fig. 11.1 shows the value of χ2 as function of (2β+γ) and as a function of
sin(2β+γ). The minima of the χ2 distribution lie (ambiguously) at γ = 1.37 (sin(2β+γ) =
0.85). Also shown in Fig. 11.1 is the χ2 as a function of δDπ, δD∗π, and δDρ. The minima for the
strong phases lie (ambiguously) at 2.54, 2.91, and 2.35, respectively. There is little sensitivity
to the strong phase difference δDρ. The best fit values for the ratios rDπ, rD∗π, rDρ are found
to be 0.0162, 0.0216, and 0.0047 respectively.

Notice that the measured value of |sin(2β+γ)| is close to the edge of the physical region (1),
resulting in asymmetric left-hand and right-hand side errors on γ. For example, for the value of
γ closest to the Standard Model solution, the interval χ2−χ2

min = 1 can only be considered on
the right-hand side. When setting a confidence region for the value of γ, we ask ourselves the
following questions. Where lies the 68.3% confidence limit, and does is correspond to the usual
Gaussian interpretation of χ2 − χ2

min = 1? Second, what maximum confidence limit interval
on the value of γ can we derive from the data?

The next Sections determine the sensitivity to γ and validate the coverage of the confidence
limit interval.

11.3 Coverage of ∆χ2

The question raised by Fig. 11.1 – χ2 plotted as a function of γ using the a and clep coefficients
from the nominal data fit – is whether the interval spanned by ∆χ2 ≡ χ2 − χ2

min ≤ 1 covers
the true value of (2β+γ) with the usual Gaussian interpretation of a 68.3% confidence level.
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11.3 Coverage of ∆χ2
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Figure 11.1: χ2 as a function of 2β+γ (top left), δDπ (top right), δD∗π (middle left),
δDρ (top right), and as a function of γ (bottom) for 210 fb−1 of data.
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The idea behind this Section is, for world average statistics, to: a) determine the frequentist
coverage of the constraint ∆χ2 = 1 for the whole spectrum of γ, and b) to find the ∆χ2 cut
that is guaranteed to cover a specific confidence level (for example 68.3%), independent of the
true value of |sin(2β+γ)|.

To do so, we generate the following ensemble of pseudo-experiments.

1. Pick γtrue in steps of π/20 between 0 and π, and generate δj at zero. As it turns out,
there is some dependency on what strong phases are generated, as shown later in this
Chapter. The ratios rDπ, rD∗π, and rDρ are generated from flat Gaussian distributions,
with the means from Eq. (11.7), generated uniformly in the theoretical error range, and
with experimental (Gaussian) widths outside this range. All amplitude ratios are required
to be positive. Next, aDπ, aD∗π, aDρ, cDπ

lep , cD
∗π

lep , and cDρ
lep are calculated using Eq. (11.1).

2. Smear the coefficients with the world average errors, and insert these into the χ2 func-
tion. The pseudo-experiments use the statistical and systematic uncertainties added in
quadrature. On can simply generate aj and cjlep, as demonstrated in Chapter 7, since
these coefficients obey Gaussian distributions with unit pulls.

3. Find the minimum χ2, χ2
min (leaving γ, rj , δj free), and also minimize it at γtrue (fixing

γ), called χ2
pnt. Define ∆χ2 ≡ χ2

pnt − χ2
min .

4. Repeat the last two steps.

5. Find the fraction of pseudo-experiments for which ∆χ2 < 1. In other words: the fraction
of pseudo-experiments that cover |γtrue| in the interval mapped out by the constraint χ2−
χ2

min ≤ 1 . This includes all measurements with little sensitivity to γ, i.e. the experiments
that never reach ∆χ2 = 1, and that naturally cover the full range |sin(2β+γ)true| ∈ [0, 1].

We discuss some observations before showing the results from this study. Fig. 11.2 shows
fit values of |sin(2β+γ)| obtained from pseudo-experiments generated at sin(2β+γ)true = 0.5 .
The distribution is similar shaped for all values of sin(2β+γ)true. One can always map between
sin(2β+γ) and γ to get the corresponding scattering distribution for γtrue = 1.86. The events
at |sin(2β+γ)| = 1 and at |sin(2β+γ)| = 0 (|cos(2β+γ)| = 1) come from unphysical aj and
cjlep coefficients, as illustrated in Fig. 11.2. The former contribute to |sin(2β+γ)| = 1, and the
latter end up at zero. Notice how the ‘a-space’ mapped by the formulas, aj ∈ [−0.04,+0.04],
is missing in the right-hand plot.

In Fig. 11.3 one can see ∆χ2 versus the fit value of |sin(2β+γ)|, all for pseudo-experiments
generated at sin(2β+γ)true =0.5. Generally speaking, ∆χ2 gets larger for fit values of |sin(2β+γ)|
farther away from the true value. For example, for small values of sin(2β+γ)true experiments
with ∆χ2 > 1 lie predominantly at |sin(2β+γ)| = 1. Likewise, for large sin(2β+γ)true experi-
ments with ∆χ2 > 1 mostly lie at zero.

The coverage for ∆χ2 = 1 versus the generated value of γ is shown in Fig. 11.4. Every
point corresponds to 5k of generated pseudo-experiments. Note the non-Gaussian coverage; in
a Gaussian regime the coverage would be flat at 68.3%. The minimum confidence limit lies at
γtrue≈1, and equals about 63%. For this point ∆χ2 = 1.20 provides a coverage of 68.3%, so,
irrespective of the true value of γ, this cut value is guaranteed to set at least the corresponding
confidendence level. Clearly, however, for a larger part of the γ spectrum, interpreting ∆χ2 = 1
as the ‘normal’ 68.3% CL interval is too conservative, let alone applying a cut of ∆χ2 = 1.20.
As a result, we will not use this method to set a lower limit on the value of γ in data.
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Figure 11.2: Fit values of |sin(2β+γ)| obtained for sin(2β+γ)true = 0.5 .

The next Section considers instead a ranking method for setting a confidence limit on γ
that takes into account the sensitivity and the χ2 curve obtained from our data.

11.4 Ranking approach

From the discussion in the previous Section – concerning coverage versus true value of γ –
it has become clear that, for the χ2 curve obtained from data, the interval spanned by the
constraint ∆χ2 ≡ χ2 − χ2

min ≤ 1.2 covers the true value of γ with at least 68.3% confidence
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Figure 11.3: ∆χ2 vs fit value of |sin(2β+γ)|, obtained for sin(2β+γ)true = 0.5.
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11.5 High-statistics validation

level. Also, it is evident that that ∆χ2 cut is too conservative for most of the γ spectrum. The
non-linearity in coverage induced by unphysical aj and cjlep coefficients indicates we are not in
a Gaussian regime, and suggests one should rank the ∆χ2 cut at each point of the γ spectrum
differently.

For each value of γ we determine the coverage for pseudo-experiments generated at this
value, using as ∆χ2 cut the corresponding point on the ∆χ2 curve from data – a ranking
method inspired by the Feldman-Cousins technique [157]. The results are shown in Fig. 11.5.
Every point in Fig. 11.5 has been calculated with generated pseudo-experiments. This puts the
90.0% CL of γ at γ ∈ [−0.28, 1.91], or |sin(2β+γ)| > 0.46. The confidence region is dominated
by the experimental errors on aj , cjlep, and B(B0→π−D

(∗)+
s ).

 (rad)γ
0 1 2 3

1 
- C

L

0

0.5

1

 (rad)γ
0 1 2 3

1 
- C

L

0

0.5

1

68% CL

90% CL

/r = 0.05f+0.11grσ

Figure 11.5: World average confidence region for the CP angle γ, obtained from B0→
D(∗)∓h±, for various uncertainties on rj. The black point is the indirect
measurement of γ. The vertical black line indicates 2β+γ = π/2. We use a
flat error of 5.0% from neglecting W -exchange diagrams on the amplitude
ratios rD(∗)h (‘0.05f’), and a Gaussian systematic error of 10.5% for residual
SU(3) breaking in non-factorizable corrections (‘0.11g’).

11.5 High-statistics validation

The correctness of the χ2 minimization and ranking approach has been validated using a set
of a and clep pseudo parameters, with

1. The parameters rj and β are the current world average values.

2. The other input parameters are: γ = 1.37, δDπ = 2.04, δD∗π = 2.91, and δDρ = 2.35.

3. The errors on a, clep, and β are 10 times smaller than the world average errors.
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Figure 11.6: High-statistics validation of χ2 minimization. χ2 as a function of 2β+γ
(top left), δDπ (top right), δD∗π (middle left), δDρ (middle right), and as a
function of γ (bottom), for the pseudo-experiment described in the text.

The χ2 minimization yields (modulo the noted discrete ambiguities): γ = 1.369+0.058
−0.068, δ

Dπ =
2.042+0.080

−0.075, δ
D∗π = 2.910+0.070

−0.082, and δDρ = 2.55+1.44
−0.71.

Fig. 11.6 shows the corresponding χ2 as a function of γ, (2β+γ), δDπ, δD∗π, δDρ. Fig. 11.7
displays the χ2 as a function of 2β+γ for χ2 < 17, which is close to parabolic.

The minima found with the χ2 method agree well with the generated input values. The
high-statistics χ2 is still slightly asymmetric around the minimum in γ, explaining the difference
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Figure 11.7: χ2 as a function of 2β+γ, for the high-statistics pseudo-experiment de-
scribed in the text.

in left-hand and right-hand side errors.
For this set of input parameters, a test of the coverage corresponding with ∆χ2 = 1 still

results in a plot similar to Fig. 11.4, i.e. we do not have Gaussian coverage over the entire
range of γ. Again, the ranking technique of Section 11.4 can be used to set a confidence limit
on γ.

It should be noted that the ranking technique makes a relative comparison between the χ2

curve in data and those obtained from the pseudo-experiments. Thus, for the same measured
coefficients, it is not immediately clear whether an increase or decrease in statistics automati-
cally leads to a different confidence limit. Fig. 11.8 shows the ranking technique of Section 11.4
applied to the coefficients measured in data, but under the hypotheses of 0.25, 0.5, 2.0, and
4.0 times the observed errors. Every point consists of about 2k pseudo-experiments, generated
according to the recipe in Section 11.3. Clearly, for each case the obtained limit on γ moves in
the desired direction, and the ranking technique behaves as desired.

11.6 Choice of generated phases δj

Here we return to the issue of why, for the pseudo-experiments in Fig. 11.4, the phases δj

are set to zero. For γ=1.665, the variation in confidence limit versus generated strong phase
differences is shown in Fig. 11.9. Every point consists of 600 pseudo-experiments. We scan the
confidence limit stepping uniformly through δDπ, δD∗π, and δDρ. The confidence limit appears
to behave as

[1−CL] (γ≡1.665) = a+ b cos2 δDπ cos2 δD∗π cos2 δDρ . (11.11)
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Figure 11.8: Ranking technique applied to the world averaged a and clep coefficients, as-
suming 0.25 (dotted), 0.5 (dashed), 1.0 (solid), 2 (dashed-dotted), and 4
(long dashed-dotted) times the statistical plus systematical errors (added in
quadrature) observed in data.

We conclude that δj should be set to a multiple of π to obtain the most conservative confidence
limit2.

The confidence limit on data with δj generated randomly and at zero is also shown in
Fig. 11.10. For randomly generated phases δj the 90% CL is γ ∈ [−0.21, 1.84]. Likewise,
γ ∈ [−0.28, 1.91] at 90% CL when δj is kept at zero.

11.7 Uncertainties on amplitude ratios rj

Following the frequentist coverage technique described in Refs. [14, 150], we extract the CKM-
angle γ using the WA values for the CP -related parameters a and clep, given in Table 11.1,
and obtain the confidence limit shown in Fig. 11.11. We use: a) a Gaussian systematic error
of 10.5% for residual SU(3) breaking in non-factorizable corrections, and a flat error of 5.0%
from neglecting W -exchange diagrams on the amplitude ratios rD(∗)h. The confidence limit is
also obtained with: b) the flat theoretical error of 30%, as in the BABAR measurements, and
c) with no additional error – all given in Fig. 11.11. In these plots, 2β+γ = π/2 lies at the dip
at γ = 0.817 .

In comparing the three figures, notice that the central values of γ slightly shift. These
changes can be easily understood. Because of the smaller uncertainties on rD(∗)h, in the ex-
traction of γ the fit to data prefers smaller values of the amplitude ratios, closer to the central
values in Table 10.14 (as obtained using the SU(3) flavor symmetry method). Making the

2Coincidentally, as discussed in Chapter 10, δj = nπ is the prediction from factorization theory.
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11.7 Uncertainties on amplitude ratios rj

amplitude ratios smaller is compensated by making sin(2β+γ) larger, i.e. by making 2β+γ
closer to π/2.

Compared with no error from SU(3) breaking, the difference with the updated error for
SU(3) breaking is small. The change in central value(s) of γ is only 3◦. The 90% confidence
region of γ is [−0.28, 1.91] rad, compared with [−0.27, 1.90] rad for no SU(3) breaking errors.
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Figure 11.9: Confidence limit versus generated strong phase difference of δDπ (top), δD∗π

(middle), and δDρ (bottom). The solid horizontal line indicates the confi-
dence limit when δj are generated randomly.
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Figure 11.10: Confidence region for the CP angle γ, obtained from B0→D(∗)∓h±. The
solid line indicates the confidence limit with the strong phase differences
δj =0, and the dashed curve indicates the confidence limit with randomly
generated phases. (The black point represents the result of the indirect
measurement of γ. The vertical black line indicates 2β+γ = π/2.)
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Figure 11.11: World average confidence region for the CP angle γ, obtained from B0→
D(∗)∓h±. The black point is the indirect measurement of γ. The vertical
black line indicates 2β+γ = π/2.
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Chapter 12

Conclusions

The CKM-angle γ is the most difficult of the Unitarity Triangle angles to measure with B
mesons. A precise, direct measurement of γ is essential for a critical test of the Standard
Model flavor sector.

Here, we summarize our measurement, compare its significance, and end with a perspective
for γ in the near future.

12.1 Summary of results

The coefficients most sensitive to the angle (2β+γ), as obtained from the nominal fit to the
∆t spectra of B → D(∗)h data samples have been measured to be

aDπ = 2rDπ sin(2β+γ) cos δDπ = −0.010± 0.023 (stat.)± 0.007 (syst.) ,
aD∗π = 2rD∗π sin(2β+γ) cos δD∗π = −0.040± 0.023 (stat.)± 0.010 (syst.) ,
aDρ = 2rDρ sin(2β+γ) cos δDρ = −0.024± 0.031 (stat.)± 0.009 (syst.) ,
cDπ
lep = 2rDπ cos(2β+γ) sin δDπ = −0.033± 0.042 (stat.)± 0.012 (syst.) ,

cD
∗π

lep = 2rD∗π cos(2β+γ) sin δD∗π = 0.049± 0.042 (stat.)± 0.015 (syst.) ,

cDρ
lep = 2rDρ cos(2β+γ) sin δDρ = −0.098± 0.055 (stat.)± 0.018 (syst.) .

The resulting world averages are

aDπ = −0.030± 0.017 ,
aD∗π = −0.037± 0.011 ,
aDρ = −0.024± 0.033 ,
cDπ
lep = −0.022± 0.021 ,

cD
∗π

lep = −0.006± 0.014 ,

cDρ
lep = −0.098± 0.058 .

The amplitude ratios rj have been determined to be

rDπ = (1.53± 0.33 (exp.)± 0.08 (theo.))× 10−2 ,

rD∗π = (2.10± 0.47 (exp.)± 0.11 (theo.))× 10−2 ,

rDρ = (0.31± 0.59 (exp.)± 0.02 (theo.))× 10−2 .
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These numbers result in the following values

γ = 1.37 (|sin(2β+γ)| = 0.85) ,
δDπ = 2.54 ,
δD∗π = 2.91 ,
δDρ = 2.35 .

where the invariance under the discrete ambiguities noted in Eq. (2.69) should be noted. The
choice for this particular ambiguity is based on the Standard Model expectation. The ranking
approach described in the previous Chapter obtains the confidence limit shown in Fig. 11.5, and
sets the constraint of γ ∈ [−0.28, 1.91], or |sin(2β+γ)| > 0.46, at a 90% confidence level using
the current world average results. The confidence region is dominated by the experimental
errors on aj , cjlep, and B(B0→π−D

(∗)+
s ).

12.2 Significance of the result

Here, we compare our results with other B→D(∗)∓h± (h = π, ρ) analyses, and with a class of
B±→D(∗)K± decays employed to measure γ.

Comparison with B→D(∗)∓h± (h = π, ρ) measurements

The measured CP asymmetries of the various time-dependent analyses of B→D(∗)∓h± (h =
π, ρ) have been summarized in Table 11.1. Though not shown in Table 11.1, the errors on all
a and clep observables are statistics limited. The relative weights of this measurement in the
current world averages are given in the right-most column, and vary between 10% and 100%.

The ‘partially reconstructed’ analyses by BABAR and Belle can only reconstruct the decay
mode B→D∗∓π±. The D∗ decay is recognized through its soft, charged pion, and the D0 is
reconstructed inclusively by combining all particles within a cone of its estimated direction.
These measurements have high background levels, with signal purities between 30% and 50%,
but enjoy high statistics (≈ 90k signal events [150], compared with about 37k in this measure-
ment). Hence, the small error on aD∗π by the partial reconstruction measurement of BABAR.
The corresponding Belle measurement uses lepton tags only to reduce background levels and
to avoid tag-side interference effects, resulting in a significantly larger error.

The ‘full reconstruction’ analyses have comparatively low efficiencies, O(10−3), but much
smaller background levels (signal purities between 80% and 90%). The Belle full reconstruction
analysis employs in addition a data sample of inclusively reconstructed B0→D∗−l+ν decays.
These final states can only be reached through a Cabibbo-favored transition, and, by them-
selves, do not induce time-dependent sine mixing terms. As such, these B decays provide an
excellent handle on the sine mixing terms from tag-side interference effects of the other B in
the event. Where BABAR only uses c observables of the Lepton tagging category – not affected
by tag-side interference – Belle uses the c observables of all its tagging categories, resulting in
smaller errors in its quoted ‘clep’ observables. Smaller errors on clep are useful, since, in the
extraction of γ, the a and clep observables are equally important.

The Belle full reconstruction analysis does not reconstruct B→D∓ρ± decays. Interestingly
enough, though this analysis has about 66% more BB events available, and find roughly the
same percentage of B→D∗∓π± signal events, the total errors on the measured aDπ and aD∗π

observables are almost identical.
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12.2 Significance of the result

Together, the four measurements of aD∗π indicate CP violation in the B→D∗∓π± system
with 3.4σ significance.

The conversion of the measured a and clep observables into γ is non-trivial. For example,
one set of measurements of a and clep does not necessarily contribute the same weight in the
confidence limit on γ as in the corresponding world averages. The limit itself depends, among
others, on the measured values of a and clep observables, their errors, the values and errors on
the input amplitude ratios, and on the possible unphysicality of the measured observables (see
for example cDρ

lep). As described in Chapter 11, the three B decay modes result in a four-fold
ambiguity in γ, whereas the a and clep observables from just one decay mode result in an eight-
fold ambiguity. That said, even though the partially reconstructed decay mode B→D∗∓π±

gives the most precise observables, for the extraction of γ it helps to add the decays B→D∓π±

and (to a lesser extend) B→D∓ρ±. Along the same line of reasoning, the extend to which γ
can be resolved further through the addition of B→D∓h± depends also on how much δDπ,
δD∗π, and δDρ differ.

Comparison with B+→D(∗)K+ measurements

Next, we discuss the class of measurements that uses B+→D(∗)K+ decays, which determine
γ with measurements of direct CP violation. The neutral D(∗) meson can be both a D(∗)0

and a D(∗)0. The final state D(∗)0
K+ corresponds to the color-allowed, Cabibbo-favored b̄→ c̄

transition, whereas D(∗)0K+ corresponds to the color-suppressed, doubly Cabibbo-suppressed
b̄ → ū transition. The CKM-angle γ is the relative weak phase between the two B decay
amplitudes. IfD(∗)0 andD(∗)0 decay to the same final state, the two decay amplitudes interfere.
The resulting decay rates are sensitive to γ.

Three types of measurements are typically mentioned.

1. The GLW method [159], where the neutral D(∗) is reconstructed in a CP eigenstate such
as K+K− or π+π−;

2. The ADS method [160], with the D(∗) reconstructed in another common final state, such
as K±π∓ for D0 and D0; and

3. The GGSZ method, also known as the D Dalitz method [161], using the self-conjugate
three-body final state K0

Sπ
+π−.

All variations are sensitive to the same B decay parameters, and we have

ACP ≡ Γ(B−→D(∗)K−)− Γ(B−→D(∗)K+)
Γ(B−→D(∗)K−) + Γ(B−→D(∗)K+)

∝ 2r(∗)B sin δ(∗)B sin γ , (12.1)

where δ
(∗)
B is the CP -even, relative strong phase between the interfering amplitudes, and

r
(∗)
B = |A(B+→D(∗)0K+)/A(B+→D

(∗)0
K+)| is the ratio of decay amplitudes. For the ADS

analysis the D(∗) mesons do not decay to CP eigenstates, and two more parameters appear
(another unknown amplitude ratio and phase). Eq. (12.1) shows that the sensitivity of these
measurements to γ is inversely proportional the size of r(∗)B (expected to be about 0.1, see
Section 10.3.3). The advantage of the B+→D(∗)K+ channels is that r(∗)B can be extracted
from the measurements themselves, and do not need to be obtained through other means.
Compared with B→D(∗)∓h± (h = π, ρ) decays, no theoretical uncertainty is assigned to the
amplitude ratios.
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The GLW and ADS analyses combined result in a four-fold ambiguity in γ. The GGSZ
analysis exploits the three-body Dalitz plot of the D decay, which enhances the sensitivity to
γ and r(∗)B compared with the former methods. It has a two-fold ambiguity in γ.

An up-to-date summary of all available GLW, ADS, and GGSZ measurements can by
found at Ref. [31]. Their confidence levels for γ, including the combined constraint, are shown
in the left-hand side of Fig. 12.1, and are determined with a frequentist approach [21]. Their
combined average is γ=(62+35

−25)
◦ [21], and is dominated by the D Dalitz approach. The errors

are statistics limited. The systematic uncertainty (about ±14◦) is dominated by the D Dalitz
model used (about ±10◦).

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180

CKM fit
no γ meas. in fit

Full frequentist treatment on MC basis

D(*)K(*) GLW + ADS
D(*)K(*) GGSZ Combined

γ    (deg)

1 
– 

C
L

WAC K M
f i t t e r

FPCP 06

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180

D(*)K(*) GLW + ADS
D(*)K(*) GGSZ
| sin(2β+γ) |

Combined
CKM fit

γ    (deg)

1 
– 

C
L

WA

C K M
f i t t e r

FPCP 06

Figure 12.1: Left: confidence level for γ from the direct CP violation measurements
in B± → D(∗)K(∗)± decays. Right: including the measurement of γ from
B→D(∗)∓h± decays. A theoretical error of 15% has been added to account
for SU(3) breaking in the determination of the amplitude ratios rj. The
frequentist approach uses to set the confidence level assumes uniform prior
distributions for the strong phase differences δj [21].

Combined results

The combined confidence level for γ from the CP violation measurements in B±→D(∗)K(∗)±

and B→D(∗)∓h± decays is shown on the right-hand side of Fig. 12.1. The frequentist approach
of Ref. [21] uses a theoretical error of 15% to account for SU(3) breaking in the determination
of the amplitude ratios rj , and assumes uniform prior distributions for δj to set the confidence
level for γ. The current, overall γ average is found to be γ=(71+22

−30)
◦ [21]. Effectively, the direct

measurements of γ prefer a value in the first quadrant of the (ρ̄, η̄) plane. The value found is
fully consistent with the γ estimate from all indirect measurements γ=(60+5

−4)
◦.

The world average of the direct measurements of γ is not dominated by any individual
measurement, although the GLW and ADS analyses contribute the least. A large weight in
the γ average comes from the GGSZ analysis, which has a single solution to γ ∈ [0, π]. The γ
measurement of B→D(∗)∓h± decays excludes large values of γ. The left-hand side error on γ is
dominated by the GGSZ analyses. The right-hand side error is dominated by the B→D(∗)∓h±
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decays.

12.3 Retrospective and prospects for γ

Over the last few years, the hunt for the CKM-angle γ at the B factories has been like searching
for a needle in a haystack. Many B decay channels have been pursued to measure γ, and
many, unfortunately, turned out to be irrelevant. To name a few: B → Kπ in combination
with B→ ππ, B→D(∗)0K0

S , the ADS method, B0→DKπ, and B→D
(∗)
(s)D

(∗) [16]. On the

other hand, the D Dalitz analysis of B+→D(∗)K+, currently an important decay channel,
was only introduced in late 2003, and was completely overlooked when the BABAR and Belle
experiments started.

No single measurement has (yet) been found to dominate the direct measurements of γ.
The lessons learned have been that, at least presently, the combination of many methods and
decay modes is crucial to break ambiguities and constrain γ. Second, and most importantly,
the measurement of γ requires large amounts of statistics.

The BABAR and Belle experiments intend to record 1 ab−1 of data each 2008, meaning a
quintupling of the available dataset compared with this analysis.

For that dataset, the combined GLW, ADS, and Dalitz analyses of BABAR predict a total
error on γ of 15◦ [162]. In this estimate, the systematic error is dominated by uncertainty on
D Dalitz model assumptions. The prediction assumes a value of r(∗)B =0.1.

Initial expectations of r(∗)B varied between 0.1 and as much as 0.3, using naive factorization
and color suppression. The Belle experiment published a value of rB = 0.21±0.08±0.03±0.04
in 2004 [163], but this has dropped with the latest ADS measurement to rB < 0.18 at 90%
C.L. [164]. The current world averages are rB =0.077±0.028 and r∗B =0.085±0.046 [122]. This
drop in the value of rB has increased the uncertainty on the world average of the latest direct γ
measurements from 2005 to 2006, and – until the doubly CKM-suppressed decay B+→D0K+

has been actually observed – this may happen again in the future.
For the time-dependent analysis of B→D(∗)∓h± (h = π, ρ) described in this thesis, it is

expected that the uncertainties on CP -related observables will remain statistics dominated,
and scale with the inverse square-root of the integrated luminosity, or better with possible
improvements in analysis, vertexing, and B tagging algorithms. Simultaneous updates of the
branching fractions B(B0→h−l+ν) and B(B0→h−D(∗)+) are required to reduce the experi-
mental and theoretical uncertainties in the amplitude ratios rj . A most useful addition to this
particular analysis would be the measurement of tag-side interference effects with inclusively
reconstructed B0→D∗−l+ν decays, thereby reducing the uncertainties in the cjlep observables
with a factor of two, and doubling their sensitivity to γ. Another recommendation, easier to
implement, is to split the measured cji observables (18 in total) into B-mode dependent parts,
cjlep (3), and tag-side interference related observables (5, one per tagging category). This also

reduces the errors on the cjlep observables.

Combining the BABAR analyses of B → D(∗)∓h±, it may be possible at the end of the
BABAR era to set individual 90% confidence levels for the ambiguous solutions of γ (as in
Fig. 11.8), corresponding to an error on γ of about 15◦. What will certainly happen, perhaps
already in the next round of analyses updates, is the (combined) observation of CP violation
in B→D∗∓π±, i.e. aD∗π inconsistent with zero, which is currently at the level of 3.4σ.

In conclusion, the enlarged BABAR data sample available in the near future and the im-
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proved measurements of γ-related observables will lead to a more accurate determination of
γ, up to 12–15◦ by the year 2008. Similar results are expected for the Belle experiment.

With physics data-taking of the LHCb experiment expected to start in 2008, the availability
of Bs mesons allows a new set of possible measurements of γ. An example is SU(3) equivalent
of this measurement, namely the time-dependent measurement of the decays Bs→D

(∗)∓
s K±.

The first results for γ using Bs mesons are likely produced by 2010. The most promising decay
channel is Bs→K+K−, combined with Bd→ π+π−. With an estimated error as small as 5◦

after one year of data taking [165], we may finally balance out the error-scale between the
direct and indirect measurements of γ and make a powerful comparison.
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Summary

This thesis reports measurements of the time-dependent CP asymmetries in fully reconstructed
B0 → D(∗)∓π± and B0 → D∓ρ± decays in approximately 232 million Υ (4S)→BB events,
collected with the BABAR detector at the PEP-II asymmetric-energy B factory at the Stanford
Linear Accelerator Center in California, as published in Ref. [14].

The phenomenon of CP violation allows one to distinguish between matter and antimat-
ter, and, as such, is one of the essential ingredients needed to explain the apparent abundance
of matter over antimatter in the universe. The Standard Model describes the observed ele-
mentary particles in terms of three generations of quarks and leptons, as well as the weak,
electromagnetic, and strong interactions between them. In the Standard Model, CP violation
is incorporated in the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which describes the weak
interactions between the quarks. The weak interactions between quarks are described by cou-
pling constants that are functions of three real parameters and one irreducible complex phase.
The magnitude of all CP violating effects in the Standard Model is related to this complex
phase.

The measurement of the CP violating phase of the CKM matrix is an important part of the
present scientific program in particle physics. Violation of the CP symmetry manifests itself as
a non-zero area of the Unitarity Triangle. The Unitarity Triangle needs to be overconstrained
by experimental measurements in order to demonstrate that the CKM mechanism is the cor-
rect explanation of this phenomenon. No stringent measurement of the CKM-angle γ is yet
available.

The B meson is an excellent probe of the Unitarity Triangle. The time evolution of B→
D(∗)∓h± decays, where h is a pion or ρ meson, is sensitive to the CKM-angle γ, because
the CKM-favored decay amplitude B0 → D(∗)+h− and the doubly-CKM-suppressed decay
amplitude B0 → D(∗)+h− interfere due to B0B0 mixing. The relative weak phase between
these two amplitudes is γ. With B0B0 mixing, the total weak phase difference between the
interfering amplitudes is 2β+γ.

The BABAR experiment consists of the PEP-II asymmetric-energy e+e− collider and the
BABAR detector. The design of the BABAR experiment has been optimized for the study of
CP violation in the decays of neutral B mesons. The PEP-II collider operates at the Υ (4S)
resonance, which is a clean source of B mesons and decays to a B0B0 pair half of the time.
PEP-II provides abundant samples of B mesons, and makes it possible to perform a direct test
of Kobayashi-Maskawa model of CP violation.

One of the B0 mesons produced by the Υ (4S) resonance is fully reconstructed in the desired
final state D(∗)∓h±. The measurement of time-dependent CP violation requires knowledge of
∆t, the time difference between the decays of the two B mesons. This is computed from the
distance between their decay vertices. Another requirement for time-dependent measurements
is the determination of the flavor of one of the two decaying B mesons. This is done by
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using the B decay products like leptons, kaons and other flavor-sensitive features such as low
momentum pions from D∗ decays. Since the efficiency for full reconstruction of B mesons is
small, an inclusive method is used to infer the flavor and decay vertex from the decay products
of the other B meson.

Interference between CKM-favored b → cud and doubly-CKM-suppressed b → ucd ampli-
tudes in final states used for B flavor tagging gives deviations from the standard time evolution
assumed in CP -violation measurements at B factories producing coherent B0B0 pairs. The
time-dependent analysis of B→D(∗)∓h± decays incorporates this possible effect of tag-side
interference, which could produce asymmetries as large as the expected signal asymmetry.

From a time-dependent maximum likelihood fit we obtain for the parameters related to
the CP violation angle γ:

aDπ = −0.010± 0.023 ± 0.007 , cDπ
lep = −0.033± 0.042 ± 0.012 ,

aD∗π = −0.040± 0.023 ± 0.010 , cD
∗π

lep = 0.049± 0.042 ± 0.015 ,

aDρ = −0.024± 0.031 ± 0.009 , cDρ
lep = −0.098± 0.055 ± 0.018 ,

where the first error is statistical and the second is systematic. To extract γ from the CP -
violating observables, some theoretical input parameters are needed. These parameters are
obtained from the decay rates of B0→ π−D

(∗)+
s and B0→ ρ−D+

s . By using data from other
measurements and some theoretical assumptions, we interpret the results in terms of the angles
of the Unitarity Triangle. We use a frequentistic method to set a constraint on γ, and find
γ ∈ [−0.28, 1.91], or |sin(2β+γ)| > 0.46, at 90% confidence level.
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Populaire samenvatting

Speurtocht naar een verstoorde natuursymmetrie

Al zeven jaar zoeken honderden deeltjesfysici van over de hele wereld met het
BABAR experiment bij Stanford in Californië naar iets ogenschijnlijk onbenulligs:
subtiele variaties in de vervaltijd van een deeltje, het zogenaamde B-meson. Toch
is dit wellicht de sleutel tot één van de grootste mysteries van de natuur ...

De aanwezigheid van materie in het heelal vormt één van de belangrijkste problemen uit
de kosmologie. Sterren, planeten en het leven op aarde, ze bestaan er allemaal uit. En dat is
merkwaardig, want uit experimenten met deeltjesversnellers volgt dat het universum helemaal
geen materie zou moeten bevatten. We verwachten dat bij de oerknal gelijke hoeveelheden
materie en antimaterie zijn ontstaan. De twee zijn toen gerecombineerd en zouden allemaal
moeten zijn omgezet in licht. Een klein beetje materie, zo’n één op de miljard deeltjes, heeft
deze slachting vreemd genoeg wél overleefd. De vraag is: waarom?

Niemand kent de precieze verklaring voor dit overschot, maar natuurkundigen hebben wel
een vermoeden. In 1967 wees de Russische theoreticus Andrei Sakharov op de voorwaarden
die nodig zijn om in het jonge universum een voorkeur voor materie te doen ontstaan. De
belangrijkste is dat deeltjes en antideeltjes zich niet hetzelfde gedragen. Het verschijnsel dat
ze zich verschillend gedragen heet ‘CP -schending’. Materie en antimaterie lijken volkomen
gelijkwaardig, alleen zijn hun eigenschappen zoals lading precies tegenovergesteld. Maar door
een klein verschil in gedrag hebben ze soms een verschillende vervaltijd, zodat een overschot
aan materie kan ontstaan. Hoe groter de CP -schending, hoe meer materie uiteindelijk kan zijn
overgebleven.

Gebroken symmetrieën

Het concept CP -schending heeft alles te maken met symmetrieën. Symmetrie is een van de
meest krachtige begrippen in de moderne natuurkunde. Niet alleen zorgt het voor een elegante
wiskundige beschrijving van het gedrag van materie, nog nuttiger is dat een symmetrie altijd
leidt tot een behoudswet. Zo volgt bijvoorbeeld uit de symmetrie in tijd, ofwel het feit dat de
natuurwetten niet in de tijd veranderen, de wet van behoud van energie.

Er bestaan ook meer abstracte symmetrieën. Stel dat in het hele universum alle deeltjes
worden omgewisseld met antideeltjes, een zogenaamde C-transformatie (C van het Engelse
‘lading’). Zou je het verschil merken? Of wat als we alle ruimte-coördinaten zouden spiegelen.
Zou deze P -transformatie (naar ‘pariteit’) waarneembaar zijn? Vroeger dacht men van niet,
en dat C en P dus echte symmetrieën waren.

Eind jaren vijftig toonden experimenten aan dat in één van de vier fundamentele natu-
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urkrachten, de zwakke wisselwerking, verantwoordelijk voor radioactief verval, beide symme-
trieën geschonden zijn. Zo vinden we in de natuur linksom draaiende neutrino’s, deeltjes die
in grote hoeveelheden door de zon worden geproduceerd. Als je een C-transformatie toe zou
passen op een neutrino, zou je een linksom draaiend anti-neutrino moeten krijgen. Maar deze
deeltjes komen in de natuur niet voor. Hetzelfde geldt voor pariteitomkeer, waarbij het neutrino
rechtsom zou gaan draaien. Ook deze deeltjes worden nergens teruggevonden. Het neutrino is
net een vampier, het heeft geen reflectie in de C- of P -spiegel.

Bij toepassing van beide spiegelingen op een neutrino, een ‘CP -transformatie’, ontstaat er
een deeltje dat wél wordt waargenomen: het rechtsom draaiende anti-neutrino. De gecombi-
neerde CP -symmetrie is hier dus niet geschonden.

Natuurkundigen waren behoorlijk verbaasd toen in 1964 CP -schending werd waargenomen
bij zogenaamde kaon deeltjes. Men vond dat een type kaon genaamd K0

L – een langlevend
neutraal ‘meson’ deeltje, bestaand uit een quantummechanisch mengsel van een strange en
anti-down quark en hun antideeltjes – af en toe vervalt naar twee pionen. Als de natuurwetten
aan de CP -symmetrie zouden voldoen, dan zou dit verval niet mogelijk zijn.

De waargenomen CP -schending in kaonen is heel klein, slechts 0.3%, en duidt op een kleine
voorkeur voor materie boven antimaterie. Maar kan deze ook de waargenomen asymmetrie
tussen materie en antimaterie verklaren in het universum?

Barsten in het Standaard Model

Al onze kennis over de elementaire eigenschappen van deeltjes is samengevat in het zogenaamde
‘Standaard Model’ (zie Fig. 12.2). Het beschrijft alle waargenomen subatomaire deeltjes en hun
interacties in termen van slechts enkele fundamentele bouwstenen. In de afgelopen dertig jaar
is het Standaard Model nauwelijks gewijzigd, maar om het overwicht aan materie in het heelal
te verklaren moet het waarschijnlijk worden uitgebreid.

Het Standaard Model staat een beetje CP -schending toe, in het gedeelte dat de zwakke
wisselwerking tussen de quarks beschrijft. De wisselwerking tussen quarks worden beschreven
met ‘koppelings-constanten’. Hoe groter een koppelings-constante, hoe sterker de kracht tussen
twee deeltjes. CP -schending blijkt alleen mogelijk als de koppelingsconstante van een interactie
geen reëel getal is, maar imaginair. (Een imaginair getal bevat de wortel uit −1.)

De ‘Unitariteitsdriehoek’ (zie Fig. 12.3) verbeeldt de imaginaire getallen die de zwakke
wisselwerking beschrijven tussen de quarks. De zwakke koppelingen tussen de lichte (up en
down) en zware quarks (bottom en top) zijn evenredig met de lengtes van de zijden van
de Unitariteitsdriehoek. De driehoek zou niet bestaan als de CP -symmetrie in de zwakke
wisselwerking behouden was. In het Standaard Model zijn alle waarneembare CP -schendende
asymmetrieën in de natuur functies van de hoeken van deze driehoek.

Het Standaard Model kan grofweg voorspellen hoeveel materie bij het ontstaan van het
heelal is overgebleven als gevolg van CP -schending, maar dit blijkt niet genoeg om de samen-
stelling van het huidige universum te verklaren. En dat verschilt niet een factor twee of drie,
het model voorspelt 1015 maal minder protonen dan we zien. Dit gebrek suggereert dat het
Standaard Model incompleet is, en er andere manieren zijn waarop de CP -symmetrie wordt
geschonden.

CP -schending in B-mesonen

Een ideale plaats om te zoeken naar CP -schending is bij het verval van B-mesonen. Het in
1980 ontdekte B-meson, B0, is de grote broer van het kaon en gedraagt zich in veel opzichten
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Figure 12.2: Het Standaard Model beschrijft alle bekende elementaire deeltjes en de
krachten daartussen. Er zijn zes leptonen (elektron, muon, tau en drie bi-
jbehorende neutrino’s) en zes quarks (up, down, charm, strange, top, bot-
tom). Elk van deze deeltjes heeft een antideeltje. Ook beschrijft het Standaard
Model drie krachten tussen deze deeltjes. De elektromagnetische kracht wordt
uitgewisseld door het foton (γ). De zwakke wisselwerking heeft drie kracht-
dragers (twee W bosonen en het Z boson). De sterke kernkracht wordt uit-
gewisseld door acht gluonen (g). Verder voorspelt de theorie nog een zeer
zwaar deeltje, het Higgs boson (H), die zorgt voor massa.

hetzelfde. In plaats van een strange quark bevat deze het veel zwaardere bottom quark. Hi-
erdoor kan het B-meson op veel meer manieren vervallen dan een kaon. Men vindt er een
significant grotere CP -asymmetrie, soms wel in de orde van 70%, die het mogelijk maakt de
Unitariteitsdriehoek precies vast te leggen. Ook hopen natuurkundigen dat de vele soorten
B-vervallen op andere plaatsen dan alleen in de zwakke wisselwerking CP -schending aan het
licht zullen brengen.

In vervalskanalen waarbij het B0 meson en zijn antideeltje, het B0 meson, naar dezelfde
deeltjes vervallen, zorgen CP -schending en quantummechanische processen die B0 en B0 meso-
nen in elkaar om kunnen zetten ervoor dat de gemiddelde levensduur van de twee mesonen
verschillend is. Een B-meson leeft gemiddeld ongeveer een picoseconde lang (10−12s). De CP -
asymmetrie tussen B0 en B0 vervallen is een functie van de levensduur van het B-meson.

Met B-meson vervallen zijn twee hoeken van de Unitariteitsdriehoek, α en β, de afgelopen
jaren vrij nauwkeurig gemeten. Maar het meten van twee van de drie hoeken is niet genoeg
om CP -schending in het Standaard Model echt te testen. Daarvoor moeten alledrie de hoeken
worden bepaald, om vast te leggen of ze optellen tot 180◦, zoals verwacht bij een driehoek.
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Figure 12.3: Het Standaard Model beschrijft alle waarneembare CP -schending met slechts
één parameter η. Dit is het imaginaire gedeelte van het complexe getal ρ+
iη, dat de zwakke wisselwerking beschrijft tussen de lichte (up en down)
en zware quarks (bottom en top). In het complexe vlak wordt dit afgebeeld
met het punt (ρ, η). Samen met de oorsprong en het punt (1, 0) legt het de
Unitariteitsdriehoek vast. De hoeken van de driehoek, α, β en γ, bepalen de
grootten van de CP -asymmetrieën in B-vervallen.

Figure 12.4: Vooraanzicht van de BABAR deeltjesdetector bij het Stanford Linear Accel-
erator Center in Californië.

Tijdens mijn promotieonderzoek bij het BABAR experiment heb ik gewerkt aan de eerste directe
meting van de overgebleven hoek γ. Zo’n meting is belangrijk om uit te wijzen of we wel of
niet te maken hebben met een ingewikkelder model van CP -schending.

Het BABAR experiment

Om te kunnen experimenteren heb je natuurlijk wel B-mesonen nodig. En veel ook, want CP -
schendende B-vervallen zijn zeldzaam. Natuurkundigen bij het BABAR experiment in Californië
schieten met deeltjesversnellers elektronen en positronen (antideeltjes van elektronen) op elkaar
met een totale energie van ongeveer 12 GeV. Dat is de optimale energie voor het produceren
van B0-B0 meson paren. Deze ‘B-fabriek’ produceert zo miljoenen B-mesonen per jaar. Die
worden waargenomen met de BABAR deeltjesdetector (zie Fig. 12.4) door het meten van de
posities, impulsen en ladingen van hun vervalsdeeltjes. De laatste twee worden bijvoorbeeld
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Figure 12.5: Bij de botsing tussen het elektron en positron ontstaan twee B-mesonen.
In het voorbeeld vervalt Brec naar een pion en een aangeslagen D-meson.
De vervalsproducten van het andere B-meson, Btag, wordt gebruikt om zijn
begintoestand te bepalen. De tijdsduur tussen de twee vervallen, ∆t = trec−
ttag, is evenredig met het verschil in vervalafstand.

bepaald uit de kromming van het spoor van een deeltje in het magnetisch veld binnen de
detector.

Drie stappen zijn nodig om CP -asymmetrieën te meten met met B0 vervallen (zie Fig. 12.5).

1. De elektronen en positronen worden tot verschillende energieën versneld voordat ze met
elkaar botsen. De mesonen uit een geproduceerd B-meson paar vliegen in bijna dezelfde
richting met ongeveer de halve lichtsnelheid. Dit maakt het mogelijk de twee B-mesonen
te onderscheiden. Ze vervallen onafhankelijk, en met behulp van hun vervalsdeeltjes kun-
nen de vervalsposities worden gereconstrueerd. De afstand daartussen is gemiddeld maar
260 micrometer, en is evenredig met de tijdsduur tussen de twee vervallen.

2. Een van de mesonen in een paar wordt gereconstrueerd in het verval naar een geladen pion
of rho meson plus de grondtoestand of eerste aangeslagen toestand van het tegengesteld-
geladen D(∗)-meson, bestaand uit een charm en anti-down quark. (De ster geeft de
aangeslagen toestand aan.) Deze vervallen komen minder dan één in de honderd keer
voor. De CP -asymmetrieën in de B-vervallen zijn evenredig met sin(2β+γ). De meting
is uitdagend, want de voorspelde asymmetrieën zijn maar 4% groot.

3. Vervolgens wordt achterhaald of het pion (of ρ meson) en D(∗)-meson paar komt van een
B0 of B0 meson. Dit gebeurt met een techniek genaamd ‘flavor tagging’. Als een van de
B-mesonen is vervallen, vervalt de ander naar een tweede groep deeltjes. Door de typen
van deze deeltjes te bestuderen is het mogelijk te bepalen of het eerste verval van een
B0 of B0 meson kwam.
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Figure 12.6: Verdeling voor de hoek γ van de Unitariteitsdriehoek zoals volgend uit de
meting. Eén oplossing ligt bij γ = 78◦. Een tweede oplossing is γ = 15◦.
Met 90% waarschijnlijkheid ligt γ in het gebied [−16◦, 109◦]. Het zwarte
punt toont de indirecte bepaling van γ = 60± 5◦.

Bij dit onderzoek zijn 116 miljoen B0-B0 meson paren bestudeerd. De beperkte efficiënties van
deze techniek en de BABAR detector zorgen ervoor dat slechts 37 duizend gereconstrueerde en
‘flavor-tagged’ B-mesonen overblijven om CP -schending mee te meten.

Blinde verwerking

De verwerking van de resultaten gebeurt volkomen ‘blind’. Door het optellen van geheime
getallen weet niemand de gemeten CP -asymmetrieën totdat de meeting is afgerond en goedgekeurd.
Zo is iedere kans op toewerken naar een gewenst eindresultaat, bewust of onbewust, uitgesloten.

Uit de gemeten vervaltijd distributies van het B-meson naar het pion-D∗-meson paar vindt
het BABAR experiment een totale CP -asymmetrie van 3.5 ± 1.2%. Het Belle experiment in
Japan, een bijna exacte kopie van het BABAR experiment, meet een consistente CP -asymmetrie
van 4.0± 1.8%. De kans dat de combinatie van deze metingen consistent is met de hypothese
dat er geen CP -schending is in dit verval is slechts 0.038%. De gevonden CP -asymmetrieën in
het pion-D-meson en ρ-D-meson systeem zijn minder nauwkeurig en consistent met nul.

Uit de gevonden CP -asymmetrieën kan een meting worden afgeleid voor de hoek γ. Met
90% waarschijnlijkheid bevindt deze zich tussen −16◦ en 109◦ (zie Fig. 12.6). Deze vinding
is consistent met de bestaande Standaard Model voorspelling van γ = 60 ± 5◦. De waarden
zijn niet even precies, maar vormen toch een belangrijke test van het Standaard Model. De
voorspelde waarde van γ is namelijk indirect bepaald, uit de lengtes van de zijden van de
Unitariteitsdriehoek. Als de directe hoekmeting niet overeenkomt, klopt het Standaard Model
niet.

212



“thesis” — 2006/12/8 — 11:48 — page 213 — #223

Nieuwe natuurkunde?

De hoop is dat deze en toekomstige experimenten de weg zullen wijzen naar een nieuwe,
sterkere bron van CP -schending, die van invloed is geweest in het vroege universum en tot de
bestaande verdeling van materie en antimaterie heeft geleid. In de tussentijd is een oerwoud
van aanvullingen op het Standaard Model verzonnen, die elk nieuwe vormen van CP -schending
kunnen bevatten. Een voorbeeld is CP -schending in neutrinos. Ook denkt men aan zogenaamde
‘supersymmetrieën’ waarbij alle deeltjes ‘superpartners’ hebben. Mogelijk worden die ontdekt
als de Large Hadron Collider in 2008 van start gaat op het CERN in Genève. Tot die tijd blijft
het bestaan van materie in het heelal een mysterie, en gaat de speurtocht naar CP -schending
door.
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Voor de lezer: één Sudoku puzzel. De symbolen zijn: e+, e−, B0, B0, D∗, π, ρ, β en γ.
A Sudoku puzzle for the reader. The symbols are: e+, e−, B0, B0, D∗, π, ρ, β, and γ.
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