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Chapter 1

Introduction

What happens to matter when you squeeze it further and further? And what if it will
be heated more and more? Liquid water for example will turn atsome point into
a different phase called steam when it is heated. If instead the density is increased
at room temperature by applying an external pressure, waterwill subsequently turn
into different types of ice, called ice VI, ice VII, etc. Such phase transitions are not
specific for water, but they can take place in any interactingsubstance, like for example
hadronic matter.

Hadronic matter is matter built out of quarks and gluons. Theneutron for instance
is a form of hadronic matter, it is a bound state of two down-quarks, one up-quark
and gluons which keep the quarks together. Imagine a hypothetical situation in which
one has lots of these neutrons in a box. Then increase the temperature. What will
happen? At some point the kinetic energy of the quarks which build up the neutron
will become larger than the energy that is gained by confiningthe quarks inside the
neutron. At this point the neutrons will cease to exist. The matter in the box is now in
a new phase, which is called the quark gluon plasma. An order of magnitude estimate
of this transition temperature can easily be made. Classically the kinetic energy of
a quark at temperatureT is about 3T/21. Since the masses of the quarks are much
smaller than the neutron mass, the mass of the neutron is almost completely due to
confining energy. So the confining energy per quark is aboutmN/3 ≈ 300 MeV. This
implies that the transition temperatureTc to the quark gluon plasma should be around
Tc = 200 MeV, which is very hot (actually it is about 105 times the temperature of the
solar core). In nature these temperatures were achieved in the early universe and are
possible in relativistic heavy ion collisions for extremely short periods of time.

Now start again from scratch at low temperatures and squeezethe box further
and further. At some point the neutrons will start to overlapand at even higher den-
sities they will cease to exist as separate entities. Aroundthis point it is expected
that quarks will form Cooper pairs. The matter will transform into a so-called color-

1In this thesis natural units are used, soc = 1, ~ = 1 andkB = 1.
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superconducting state. An order of magnitude estimate shows that this will occur
around densities of aboutmN/VN ≈ 160 MeV· fm−3 ≈ 3× 1017 kg ·m−3. This density
is quite large, and takes only place in extremely dense objects like for example neutron
stars.

The theory which describes the interactions between the quarks mediated by glu-
ons is called quantum chromodynamics (QCD) and is treated inmore detail in the fol-
lowing section. Using QCD one could in principle predict thebehavior of matter under
these extreme circumstances by calculating itsequation of state(that is the relation be-
tween its pressure and energy density) and itsphase diagram, which are discussed in
Secs. 1.2 and 1.3 respectively. The situations in which these extreme circumstances
are realized in nature are reviewed in Sec. 1.4. Since it turns out that QCD is very
complicated at the energy scales around the phase transition, this thesis will deal with
models inspired by QCD to describe matter at high temperatures and densities, as will
be discussed in more detail in Secs. 1.5 and 1.6. A more extensive review on QCD at
high temperatures and densities can be found in for example Meyer-Ortmanns (1996),
Rajagopal and Wilczek (2000) and Rischke (2004).

1.1 Quantum chromodynamics

Quantum chromodynamics (QCD) is a non-Abelian SU(3) gauge field theory which
describes the interactions between the quarks. It is a generalization of Maxwells theory
of electromagnetism. Like the electrons, quarks carry a charge, called color. Unlike
the photons in electromagnetism, the gluons, which are the force carriers of QCD carry
a color charge as well. As a result the gluons interact with themselves and with quarks.
Due to the SU(3) gauge symmetry QCD has three different color charges, named red,
blue and green. Together with the electroweak theory, QCD isone of the building
blocks of the Standard Model of elementary particle physics. QCD is defined by the
following Lagrangian density

L = ψ̄
(

iγµDµ −m0 + µγ0

)

ψ − 1
4

Fµν
a Fa

µν ,

Dµ = ∂µ − igAa
µTa , Fa

µν = ∂µA
a
ν − ∂νAa

µ + g fa
bcA

b
µAc

ν ,
(1.1)

whereg is the QCD coupling constant,Ta is a hermitian generator of SU(3) andf a
bc

denotes its corresponding structure constant. The matrices m0 and µ are diagonal
and contain the current quark masses and the quark chemical potentials respectively.
There are six different quark flavors. The up, down and strange quark are relatively
light, while the charm, bottom and top quark are heavy. Sincethe masses of the heavy
quarks are so much larger than the estimated transition temperature of about 200 MeV,
these quarks will play a minor role at these energies and willtherefore be neglected
in this thesis. The discussion in this thesis will mainly deal with two (Nf = 2) and
three-flavor (Nf = 3) situations.
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The chemical potentials are necessary to describe a system at finite density. The
baryon chemical potentialµB = µu+µd+µs for example, is basically the energy it takes
to add one additional baryon to the system. Temperature is introduced by considering a
Euclidean space in which thex0 direction is made periodic (for bosons) or antiperiodic
(for fermions) with periodicity 1/T. Field theory at finite temperature and densities is
discussed in more detail in Chapter 2.

QCD has different symmetries which are reflected in the hadron spectrum as a con-
sequence. First of all it is invariant under local SU(3) transformations. This implies
for example that red up quarks are as heavy as blue up ones. In addition, in absence of
quark masses and chemical potentials, QCD has a global chiral SU(Nf )L × SU(Nf )R

symmetry. Moreover it has a global U(1)B symmetry related to baryon number conser-
vation and a global U(1)A (axial) symmetry. At low temperatures and chemical poten-
tials it turns out that the chiral symmetry is spontaneouslybroken down to SU(Nf )V

giving rise toN2
f − 1 massless pseudoscalar Goldstone modes. ForNf = 2 these

are the three pions, forNf = 3 also the four kaons and theη particle are among the
pseudoscalar Goldstone modes. If chiral symmetry is brokenthe 〈ūu〉, 〈d̄d〉, and〈s̄s〉
condensates obtain a vacuum expectation value.

However, in reality the quarks have a small mass. Therefore chiral symmetry is
only an approximate symmetry, as a result the pions, the kaons and theη particle be-
come massive. This remaining (approximate) SU(Nf )V symmetry is the reason why
the constituent quark model of Gell-Mann works as well as it does. Particles are eigen-
states of the QCD Hamiltonian which due to the symmetry commutes with SU(Nf )V.
Hence the particles can be classified by the representationsof SU(Nf )V. At high tem-
peratures and/or densities the chiral symmetry is approximately restored, giving rise
to a phase transition. Although the U(1)A symmetry is broken due to nonzero quark
masses as well, it also has another reason of breakdown. The non-trivial topological
vacuum structure of QCD due to instantons is causing U(1) axial symmetry breaking
too, which explains the relatively high mass of theη meson (’t Hooft, 1976).

One of the mysteries in QCD is confinement. It turns out experimentally that
hadrons, which are bound states of quarks, carry no color. Colored objects, like freely
moving quarks, do not occur in nature at low energies. In numerical computations
(lattice QCD) it is confirmed that QCD has this confinement property. But a detailed
understanding of the confinement mechanism is still lacking. At high temperatures
and/or chemical potentials it is expected that matter will be in adeconfined phase,
which means that in that situation quarks are liberated fromthe hadrons. Whether the
deconfinement phase transition for light quarks coincides with the chiral symmetry
restoration transition is an important issue which has not yet been resolved.

QCD is asymptotically free, this implies that the effective coupling of quarks to
gluons becomes smaller at high energies. So at high energy scales, larger than about
1 GeV, QCD is a theory of weakly interacting quarks and gluons. Due to the small
coupling constant it is possible to perform calculations inthis regime using perturba-
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tion theory. But, at lower energies QCD becomes strongly coupled and perturbation
theory breaks down. The order of magnitude estimate of the transition temperature
Tc ≈ 200 MeV from the first paragraph tell us that QCD is likely to bestrongly cou-
pled around the phase transition. Hence it is expected that perturbation theory will fail
to describe QCD nearTc. This will be illustrated next by comparing perturbative and
lattice calculations of the QCD pressure.

1.2 QCD equation of state

Two important macroscopic thermodynamical quantities arethe pressureP and the
energy densityE of QCD. The relation betweenE andP is called the equation of
state and determines for example the behavior of matter created in a relativistic heavy
ion collision, the properties of a (neutron) star and the evolution of the early stage
of the universe shortly after the big bang, see Sec. 1.4. Due to asymptotic freedom,
QCD describes a gas of weakly interacting quarks and gluons in the limit of very high
temperature. In that case the coupling constant is small, and hence perturbation theory
should be applicable. However as will be shown next perturbation theory does not
work for the temperatures of in the neighborhood ofTc.

Perturbative calculations

The results of the perturbative calculation of the pure glue(which means no quarks)
QCD pressure compared to numerical calculations (lattice QCD) are displayed in
Fig. 1.1 up to orderα5/2 = (g2/4π)5/2. It can be seen in the figure that for temper-
atures in the neighborhood of the transition temperatureTc, the results are varying a
lot upon inclusion of higher order corrections. This implies that the perturbative ex-
pansion breaks down, even for very high temperatures of around 1000Tc. However,
by reorganizing the perturbative series using resummationmethods (Andersenet al.,
1999, 2002) and self-consistent approaches (Blaizotet al., 1999) based on hard thermal
loops (Braaten and Pisarski, 1990) it is possible to obtain reliable results forT ' 3Tc.
In perturbation theory it is impossible to calculate the orderg6 contribution because an
infinite number of diagrams are contributing in this order and cannot be resummed as
was argued by Linde (1980).

It is possible to perform perturbation theory for finite chemical potentials as well,
but it again fails for densities where the phase transition occurs. Also this perturbation
series can be improved by applying the so-called hard dense loop resummation method
(Andersen and Strickland, 2002).

Lattice calculations

The best known method to obtain the QCD thermodynamical quantities from first
principles near the phase transition temperature is by lattice calculations. In these
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Figure 1.1: Perturbative results (indicated by their orders) and lattice results of (Boyd
et al., 1996) (indicated with black diamonds) of the pure glue QCD pressure normal-
ized to the ideal gas value, as a function ofT/Tc. The shaded regions arise due to
varying theMS renormalization scale betweenπT and 4πT and are hence an indi-
cation of the error that is inherent to truncating the perturbative series. The orderα
calculation was performed by Shuryak (1978),α3/2 by Kapusta (1979),α3/2 logα by
Toimela (1983),α2 by Arnold and Zhai (1995),α5/2 by Zhai and Kastening (1995) and
Braaten and Nieto (1996) and orderα3 logα (not shown in figure) by Kajantieet al.
(2003). This figure is adapted from Andersenet al. (2002).

calculations, space-time is discretized and replaced by a lattice of a finite size. The
fermion fields live on the vertices of this lattice, the gaugefields are replaced by links
connecting the different vertices. All thermodynamical quantities can be obtained by
numerically calculating the partition function (discussed in Chapter 2). This requires
integration over the fermion fields and links. Since this results in a huge number of
integrations, typical lattice sizes are taken to be rather small, in the order of ten points
for each dimension. Due to this modest lattice sizes, the particles with low mass (like
the pion), which can propagate over longer distances are notvery well described. The
integrations in lattice calculations are performed statistically, using importance sam-
pling Monte-Carlo methods. This works fine for QCD at zero chemical potential.
But at finite baryon chemical potential, the contribution from the fermions, the so-
called fermionic determinant, becomes imaginary (see alsoChapter 7). As a result,
the integrand of the partition function becomes oscillatory, which hampers the impor-
tance sampling methods. This complication is called the fermion sign problem. Small
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Figure 1.2: Lattice calculation by Karschet al. (2000) of the pure glue and full QCD
pressure (for 2 light quark flavors, 2 light & 1 heavy flavor and3 light flavors), nor-
malized toT4, as a function ofT. The arrows indicate the limit of the pressures when
T → ∞ and are calculated in Sec. 2.4. This figure is adapted from Karsch (2002).

baryon chemical potentials are, however, accessible by making a Taylor expansion
aroundµB = 0 (Allton et al., 2002; Fodor and Katz, 2002; de Forcrand and Philipsen,
2002; D’Elia and Lombardo, 2003).

In Fig. 1.2 the lattice results of the pressure of QCD for different numbers of quark
flavors are displayed as a function ofT for µ = 0. HereTc ≈ 170 MeV. From the
figure it can be seen that the QCD pressure rises quickly afterpassing the transition
point. This may be an indication that many new degrees of freedom are formed, just
what one would expect if the quarks become deconfined from thehadrons. The figure
shows that even around 4Tc the pressure is still far away from that of a freely inter-
acting gas of quarks and gluonsP = PSB. While the lattice gives reliable results for
T > Tc, the data atT < Tc can not be trusted. This is because the pion, the lightest par-
ticle of QCD, which is expected to dominate the pressure of QCD at low temperatures
is still far too heavy on the lattice.

For T > Tc the lattice data for the QCD pressure can be fitted to quasiparticle
models (Peshieret al., 1996; Levai and Heinz, 1998; Schneider and Weise, 2001).
The results of these fits can be extended to finite chemical potential (Rebhan and Ro-
matschke, 2003; Thaleret al., 2004). In this way the equation of state of QCD at finite
chemical potential forT > Tc can be predicted.

It is generally believed that the lattice calculations of the pressure are reliable for
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temperatures aroundTc and higher. The results at high temperatures can be predicted
by hard-thermal-loop resummation methods. At low temperatures lattice QCD is still
unreliable due to the unrealistically large pion mass. In order to predict the pressure of
QCD at low temperatures one can use a low-energy effective theory in order to describe
the hadron gas phase as is done in this thesis in Chapter 6 and will be discussed in more
detail in Sec 1.5.

1.3 QCD phase diagram

By considering the behavior of order parameters (parameters which vanish in one
phase and are non-vanishing in another) one can determine a phase diagram. One
typically distinguishes between two different types of phase transitions, a first order
phase transition in which the order parameter changes discontinuously and a second
order phase transition in which the derivative of the order parameter changes discon-
tinuously. Higher order phase transitions are also possible, but are often called second
order transitions as well. In addition, cross-over transitions in which the order param-
eter changes smoothly can occur. The different possibilities are displayed in Fig. 7.1.

In the limit of zero quark masses the chiral condensates,〈ūu〉, 〈d̄d〉 and〈s̄s〉 are
order parameters for the breaking of chiral symmetry. In Sec. 1.1 it was mentioned that
the chiral symmetry is already explicitly broken in the QCD Lagrangian density due
to the non-zero quark masses. In that case the chiral condensates are only approximate
order parameters. The order parameter for the confinement/deconfinement transition
in the limit of infinitely heavy quarks is the trace of the so-called Polyakov loop. For
finite quark masses no order parameter for this transition isknown, see for example
Weiss (1993).

In Fig. 1.3 the current understanding of the QCD phase diagram is displayed
schematically. As was discussed in the previous section, only results for zero and
small baryon chemical potential can be obtained from lattice QCD. Lattice calcula-
tions find a cross-over transition atTc = 170 MeV. The rest of the phase diagram is
not yet obtained from first principles QCD but can be estimated by means of effective
models like the NJL model studied in Chapter 7. However, the phases with tempera-
tures and densities much higher than the densities and temperatures where the phase
transition takes place are accessible by hard-thermal loopand hard-dense loop resum-
mation techniques as was discussed in the previous section.The NJL phase diagram
as a function ofµB andT is displayed in Fig. 7.4.

As mentioned before, finite chemical potentials are needed to describe a system
at finite density. However, it is important to keep in mind that the relation between
chemical potential and number density is not linear. Especially at a first order phase
transition, a single value of a chemical potential can correspond to a whole range of
densities, as is illustrated for the NJL model in Fig 7.2. In this case one also speaks of
a mixed phase, two phases can occur together. The world we live in is an example of
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vacuum
922 MeV µB

T

170 MeV

early universe

heavy ion collision

our world

neutron stars

confined, brokenχ sym.

deconfined, restoredχ sym.

quark-gluon plasma

color superconductor

hadron gas

matter
nuclear

Figure 1.3: Schematic structure of the current understanding of the phase diagram of
QCD. First order phase transitions are indicated with a solid line, second order with a
dashed line and a cross-over with a dotted line. In the diagram the cooling trajectory
of the early universe and of matter produced in heavy ion collisions is sketched. It is
also roughly indicated in which phase the matter inside neutron stars can be.

a mixed phase of nuclear matter and vacuum. One should be aware that the real phase
diagram of matter is not just the QCD phase diagram. To obtainthe complete phase
diagram of matter, one should also take into account the electromagnetic and weak
interactions.

The best known point in the QCD phase diagram, is the transition from the vacuum
to the nuclear matter phase, there is a first order phase transition at µB = 922 MeV,
see also Halaszet al. (1998).

It is illustrated in Fig. 1.3 that matter at low chemical potentials and temperatures
matter is in a confined phase in which chiral symmetry is broken as well. If the temper-
ature is increased, matter goes according to the current understanding via a cross-over
transition to the deconfined and chirally symmetric phase atlow chemical potentials,
and via a first-order transition at higher chemical potentials. This deconfined phase is
called the quark-gluon plasma. The point in which the first-order transition goes over
to a cross-over is called the critical endpoint. It still is uncertain where this critical
endpoint lies exactly in the phase diagram. At low temperatures and high chemical
potentials due to an attractive interaction, quarks can form Cooper pairs just like elec-
trons in ordinary superconductivity. This phenomenon willbe discussed in more detail
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in Chapter 7.
The phase diagram in Fig. 1.3 is displayed as a function of baryon chemical po-

tential and temperature. Of course it is interesting to investigate other phase diagrams
as well, for example as a function of the quark masses, as is discussed in Laermann
and Philipsen (2003). In Chapter 7 phase diagrams of the NJL model will be investi-
gated for unequal chemical potentials and temperature. In that case a new possibility
appears which is not present in Fig. 1.3, namely quarks can form pseudoscalar con-
densates, like the pion condensate〈ūiγ5d〉.

In Fig. 1.3 it is also indicated which part of the phase diagram can be investigated
using relativistic heavy ion collisions, which kind of matter neutrons stars are presum-
ably made of, and through which phases the early universe went shortly after the big
bang. In the following section these three situations will be examined in somewhat
more detail.

1.4 Matter under extreme conditions

Typical situations in which temperatures and densities could be high enough for de-
confinement to occur, are the universe just after the big bang, during heavy ion col-
lisions and inside very compact neutron stars. In this section a short overview of
these situations is given. More extensive discussions can be found in for example El-
lis (2005) (the big bang in relation to heavy ion collisions), Gyulassy and McLerran
(2005) (heavy ion collisions) and Weber (2005) (neutron stars).

The big bang

In one of the earliest stages of the universe, about 10−6 seconds after the big bang, the
universe was still so hot that the matter inside was in the deconfined phase, i.e. the
quark gluon plasma. Since at that time the particles and antiparticles had not annihi-
lated yet, the baryon chemical potential was very small. As is indicated in Fig. 1.3
when the universe cooled, it probably went through a cross-over transition to the con-
fined phase. Since a cross-over transition is smooth, it is unlikely that the expansion
of the universe was modified substantially during this transition.

To describe the evolution of the universe one has to use an equation of state. Most
often a simple equation of state is used,P = E/3 for the radiation dominated era
at early times, andP = 0 for the matter dominated era which occured later. The
description can be made more realistic by using the QCD equation of state.

Relativistic heavy ion collisions

The behavior of matter under extreme circumstances can be studied experimentally us-
ing heavy ion collisions. Such experiments have been performed at the Super-Proton-
Synchrotron (SPS) at CERN and are being performed at the Relativistic Heavy Ion
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Collider (RHIC) at BNL. Currently new accelerators which, among other things, will
be used for relativistic heavy ion collision studies are being build at CERN (the Large
Hadron Collider (LHC)), and at GSI (Schwerionen-Synchrotron (SIS 200)).

In a typical relativistic heavy ion collision two incoming heavy nuclei (for example
gold with 197 nucleons) collide at relativistic energies. At RHIC these energies are up
to 200 GeV per nucleon. During the collision a large fractionof the kinetic energy
is converted into particles. Therefore statistical methods can be used to describe the
system. High temperatures and energy densities are achieved during these collisions.
The baryon chemical potential remains low in a heavy ion collision. The reason for this
is that due to the large production of particle antiparticlepairs, the initial dominance of
particles over antiparticles is washed out. Since SIS 200 will operate at a lower energy
than RHIC and LHC, a higher baryon chemical potential can be achieved. However
as a result the final temperature will be lower, which could make it more difficult to
probe the phase transition.

At RHIC it seems that the produced matter quickly achieves thermal equilibrium.
After that moment, relativistic hydrodynamics can describe the evolution using the
QCD equation of state. This indicates that the matter created during the collisions at
RHIC has a very low viscosity, possibly the most perfect fluidever made.

That a statistical description to model heavy ion collisions works, is illustrated
in Fig. 1.4. In that figure, a prediction of the ratio of particle yields is compared to
the experimental data of the four different experiments at RHIC (Braun-Munzinger
et al., 2001). The statistical model only has two fit parameters,T ≈ 174 MeV and
µB ≈ 46 MeV. It can also be seen from the figure that the baryon chemical potential
is not that big compared to the temperature, because the ratio between particles and
antiparticles of the same hadronic species are close to unity.

The main objective of these heavy ion collision experimentsis to produce the quark
gluon plasma and measure its properties. One of the clearestsignals for the creation
of a very dense and hot state of matter comes from the suppression of back-to-back
correlations between two high transverse-momentum jets. In a collision at low energy
densities, such a jet should be correlated with a jet produced in the opposite direction
due to momentum conservation. This is indeed observed in heavy ion collision experi-
ments. However, at energies of 200 GeV per nucleon in centralgold-gold collisions at
RHIC, this correlation has suddenly disappeared. This indicates that the momentum of
the opposite jet is absorbed in a very hot and dense medium, probably the quark-gluon
plasma.

Using heavy ion collisions it is difficult to reach high chemical potentials, so in
order to investigate that situation one has to look to extremely compact objects like
neutron stars.
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Figure 1.4: Prediction of ratios of produced particles for gold-gold collisions at
√

s=
130 GeV by a statistical model compared to results of the fourdifferent experiments
at RHIC. This figure is adapted from Braun-Munzingeret al. (2001).

Neutron stars

If the mass of a star is larger than about ten times the solar mass, the fusion process can
continue until an iron-nickel core is formed. Then fusion will stop since iron is the nu-
cleus which has the lowest binding energy per nucleon. As a result the temperature of
the core will drop, hence the pressure will go down. Then the gravitational interactions
cause the core to collapse until nuclear densities are reached. At this point the collapse
stops because it takes a lot of energy to squeeze the core further. This creates a shock
wave which as a result emits all of the matter from the shells surrounding the collapsed
core. This event is called a supernova explosion. The remaining core cools down and
becomes a neutron star or at even higher densities a black hole. Typical densities could
be so high that the core of a neutron star is a color superconductor. Using the QCD
equation of state at high-densities, the so-called Tolman-Oppenheimer-Volkov relation
can be applied to calculate the mass as a function of the radius of a neutron star, see for
example Fragaet al. (2001) and Andersen and Strickland (2002). These mass-radius
relationships can be compared to observations. However, until now there has not yet
been discovered a neutron star from which one is certain thatthe inner core is so dense
that it must be in a color superconducting phase.
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1.5 QCD inspired theories

As was argued in the previous sections, due to the nonperturbative nature of QCD near
the phase transition, it is not known how to obtain for example the order of the phase
transition, the equation of state and the phase diagram using analytical methods from
first principles QCD for all temperatures and chemical potentials. Also the confine-
ment/deconfinement mechanism is not understood analytically. However, toy models
(models which share features with QCD) and low-energy effective theories (theories
which describe QCD in the non-perturbative regime) can be studied to learn about
certain aspects to be addressed below.

Toy models

Toy models for QCD are models which have features in common with QCD. One can
study these models in order to learn about nonperturbative methods and phenomena
like for example the behavior of thermodynamical quantities, the generation of a mass
gap, confinement and the importance of topological configurations like instantons. In
this thesis two of these toy models are studied, the O(N) nonlinear sigma model in
1+ 1 dimensions in Chapter 3 and theCPN−1 model in 1+ 1 dimensions in Chapter 4.
The nonlinear sigma model is a real scalar field theory which like QCD is asymptot-
ically free and has a dynamically generated mass gap. TheCPN−1 model contains
complex scalar fields and U(1) gauge fields. This model is alsoasymptotically free,
has a dynamically generated mass gap, contains instanton configurations and has the
confinement property. In these two models it is possible to expand in the number of
fields N. This expansion is called the large-N approximation and is a method which
can give insight in the nonperturbative behavior of these theories. This method will be
used throughout this thesis and is discussed in more detail in Chapter 3. In this thesis
the pressure for both models is calculated to next-to-leading order in 1/N. In this way
it is possible to check the validity of the 1/N expansion and to investigate the effects
of instantons on the thermodynamical quantities in theCPN−1 model.

Low-energy effective theories

Low-energy effective theories describe QCD in the non-perturbative regime where
perturbation theory is no longer applicable. The simplest examples of such an effective
theory are the O(4) linear and nonlinear sigma model in 3+ 1 dimensions. The O(4)
symmetry (which is locally isomorphic to the chiral SU(2)L ×SU(2)R symmetry of the
two-flavor QCD Lagrangian) of these models is spontaneouslybroken to O(3) (which
is isomorphic to the remaining chiral SU(2)V symmetry of the QCD vacuum state).
Since these models have the same symmetry breaking pattern as two-flavor QCD, they
serve as a low-energy effective theory for 2-flavor QCD in which only the pion and
the sigma meson can occur. Moreover for the same reason, the phase transition of the
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O(4) (non)linear sigma model falls in the same universalityclass as the 2-flavor QCD
chiral phase transition. This allows one to study the order of the phase transition and
critical exponents of QCD using the O(4) (non)linear sigma model. In this thesis the
pressure of these models is calculated to next-to-leading order in 1/N in Chapter 6. In
this way a prediction for the pressure of QCD at temperaturesbelowTc is made, where
the lattice calculations are not reliable.

Another effective theory studied in Chapter 7 of this thesis, is the Nambu–Jona-
Lasinio (NJL) model. In this model the gluon exchange between the quarks is replaced
by a 4-point quark interaction. As a result some features of QCD like confinement and
asymptotic freedom are lost. However, low-energy properties like the meson masses
are described very well using this model. Furthermore this model has the same pattern
of chiral symmetry breaking as QCD. Therefore, it is expected that the NJL model
gives a realistic qualitative description of the QCD phase diagram for low temperatures
and chemical potentials. In Chapter 7 phase diagrams with different up, down and
strange quark chemical potentials are calculated, in orderto study the competition
between phases in which color superconductivity is possible and in phases where the
pions or kaons condense.

1.6 Overview of this thesis

To summarize, the thermodynamics of QCD inspired theories is studied in this the-
sis. In Chapter 2 a short introduction to finite density and temperature field theory is
given. Particular emphasis is put on the analytic and numerical calculation of a com-
bination of a sum and an integral, which will be required frequently throughout this
thesis. In Chapter 3 the effective potential is derived from which by minimization one
can derive the thermodynamical quantities like the pressure and determine the phase
diagram. Almost all calculations in this thesis are based onevaluating this effective po-
tential. Moreover, Chapter 3 discusses the 1/N approximation which can give insight
into non-perturbative physics. This is also a basic ingredient for all the calculations
performed in this thesis. The thermodynamics of the O(N) nonlinear sigma model in
1 + 1 dimensions is studied in Chapter 4. In Chapter 5, the effect of quantum instan-
tons on the thermodynamical quantities is investigated using theCPN−1 model in 1+1
dimensions. Chapter 6 is devoted to the study of the thermodynamics of the O(N)
linear and nonlinear sigma model in 3+ 1 dimensions, which can be used to predict
the pressure of QCD at low temperatures. The NJL model and itsphase diagrams are
discussed in Chapter 7.
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1.7 Notations

Several notations are used throughout this thesis. These will be summarized here.

• Euclidean momentum vectors are denoted by a capital letter,that isP = (p0, ~p ).
The length of a momentum vector~p is denoted asp = |~p |.

• The integral over Euclidean momenta, the bosonic sum-integral and the fermio-
nic sum-integral are respectively defined as

∫

P
≡

∫

dd+1P

(2π)d+1
,

∑

∫

P
≡ T

∑

p0=2πnT

∫

ddp

(2π)d
,

∑

∫

{P}
≡ T

∑

p0=2π(n+1/2)T+iµ

∫

ddp

(2π)d
.

(1.2)

• The difference of a sum-integral and an integral are for bosonic fields and fermi-
onic fields respectively defined as

∆

∫

P
f (P) ≡ ∑

∫

P
−

∫

P
, ∆

∫

{P}
≡ ∑

∫

{P}
−

∫

P
. (1.3)

• Integration over space(-time) will be depending on the context written as

∫

x
≡

∫

dx0

∫

ddx or
∫

x
≡

∫ β

0
dx0

∫

ddx . (1.4)



Chapter 2

Finite temperature and density field theory

In a system with a large number of particles like for example agas, it is very cum-
bersome, if not impossible, to calculate the trajectories of individual particles. On the
other hand collective properties, like the pressure and number densities, characterize
the system of particles as a whole and are therefore in many cases much more inter-
esting than the behavior of individual particles. These collective properties can really
be calculated using statistical methods.

In this chapter first the basics of classical statistical physics will be summarized.
Then, by using path-integrals in Euclidean space-time, classical statistical physics will
be cast in a form suitable for quantum field theories, called finite temperature and den-
sity field theory. As an illustration the pressure of a free scalar and of a free fermion
field theory are obtained. Both expressions for the pressureare explicitly evaluated
after a general explanation of how frequency sums, that naturally arise in finite tem-
perature calculations, can be computed. At the end of this chapter further techniques
for the evaluation of frequency sums are developed, which are useful for the numerical
computation of more complicated sums that arise in interacting field theories.

A more extensive introduction to finite temperature and density field theory can be
found in the books by Kapusta (1989) and Le Bellac (2000) and the review article of
Landsman and Van Weert (1987).

2.1 Classical statistical physics

Consider a box of volumeV, having total energyE and filled withN particles. This
box can be divided into regions 1 and 2. Clearly, it holds thatV = V1+V2, E = E1+E2

andN = N1 + N2. LetΩ(E,V,N) be the number of ways in which the total energyE
can be distributed overN particles in a volumeV. This quantityΩ is called the number
of micro-states. Now the two postulates of statistical physics are,

1. All micro-states are equally likely to occur.

2. In equilibrium the system will choose the state that is themost likely to occur.
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Combining postulate 1 and 2 gives that the equilibrium stateis the one with the highest
number of micro-states. The number of micro-states of the complete box can be writ-
ten as the product of the micro-states of the two different regions,Ω = Ω1Ω2, where
Ωi = Ωi(Ei ,Vi ,Ni). It is convenient to turn this equality into an additive relation by
introducing a quantity called the entropyS which is defined asS = logΩ. Then the
total entropy of the boxS is equal to the sum of the entropies of the different regions,
S = S1 + S2. The two postulates can be translated into the condition that the total
entropy is maximal in equilibrium. If the entropy is maximalit holds that

0 =

(

∂S
∂E1

)

V,N
=

(

∂S1

∂E1

)

V1,N1

+

(

∂S2

∂E1

)

V2,N2

=

(

∂S1

∂E1

)

V1,N1

−
(

∂S2

∂E2

)

V2,N2

, (2.1)

where it was used that the total energyE = E1 + E2 is constant. It follows that in
equilibrium

(

∂S1

∂E1

)

V1,N1

=

(

∂S2

∂E2

)

V2,N2

. (2.2)

In equilibrium the temperaturesTi of the two regions 1 and 2 should be equal, that
is T1 = T2. Hence∂S1/∂E1 should be some function of temperature. The correct
definition of temperature turns out to be

1
T1
≡

(

∂S1

∂E1

)

V1,N1

, (2.3)

because in that way it is possible to derive the experimentally verified ideal gas law,
PV = NT. Similarly sinceN = N1 + N2 is constant it holds that in equilibrium

(

∂S1

∂N1

)

E1,V1

=

(

∂S2

∂N2

)

E2,V2

. (2.4)

In equilibrium it take as much energy to transfer one particle from region 1 to region
2 as to do the opposite. This energy is called chemical potential, so in equilibrium the
chemical potentials should be equal, that isµ1 = µ2. As a result∂S1/∂N1 should be
some function of chemical potential. It turns out that the correct definition is

µ1 = −T1

(

∂S1

∂N1

)

E1,V1

. (2.5)

because it gives rise to the correct distribution function for fermions, Eq. (2.22).
Now consider a box of fixed volumeV placed in a very large heat bath of constant

temperatureT and constant chemical potentialµ. The box is allowed to exchange
energy and particles with the heat bath. The total system of heat bath and box together
has energyE0 and containsN0 particles. The probabilitypr that the box has energy
Er and containsNr particles is equal to the probability that the heat bath has energy
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E0 − Er and containsN0− Nr particles. So it follows thatpr is proportional toΩ(E0 −
Er ,N0 − Nr), the number of micro-states of the heat bath. In terms of entropy one has
that

pr = C−1 exp [S(E0 − Er ,N0 − Nr )] , (2.6)

whereC is a normalization factor. Assuming the heat bath is large implies thatE0 ≫
Er andN0 ≫ Nr . Hence it is possible to expand the entropy of the heat bath around
E0 andN0,

S(E0−Er ,N0−Nr) = S(E0,N0)−Er
∂S(E,N)

∂E

∣

∣

∣

∣

∣

E0,N0

−Nr
∂S(E,N)
∂N

∣

∣

∣

∣

∣

E0,N0

+ . . . . (2.7)

In higher orders of the expansion one gets terms like∂2S/∂E2|E0,N0 ≈ ∂(1/T)/∂E,
which reflects the change of the heat bath temperature when energy is transferred into
the box. Because it is assumed that the heat bath has constanttemperature∂(1/T)/∂E =
0, so this higher order term can be neglected. Another higherorder term of the expan-
sion is∂2S/∂N2|E0,N0 ≈ −∂(µ/T)/∂N which reflects the change of chemical poten-
tial divided by temperature when particles are transferredinto the box. Again be-
cause it is assumed the heat bath has constant temperature and chemical potential, this
higher order term can be neglected too. For the same reason one can assume that
∂2S/∂E ∂N|E0,N0 vanishes as well.

As a result, the probabilitypr that the box has energyEr and containsNr particles
is equal to

pr = Z−1 exp
[−β(Er − µNr)

]

, (2.8)

whereZ is a normalization factor different fromC andβ = 1/T.
The normalization factorZ which is also called the partition function, is equal to

the sum of all probabilities,

Z =
∑

r

exp
[−β(Er − µNr)

]

. (2.9)

The partition function contains all information of the collective or macroscopic behav-
ior of the thermodynamic system. Strictly speaking this is already a quantum mechan-
ical equation, since the energies are assumed to be discrete. In the classical case, one
has to replace the sum over states by an integral. Using the partition function one can
calculate thermodynamical quantities, like the energy density of the box,

E = 1
V

∑

r

pr Er = −
1
V
∂ logZ
∂β

, (2.10)

the number density of particles in the box,

n =
1
V

∑

r

pr Nr =
1
βV

∂ logZ
∂µ

, (2.11)



26 Finite temperature and density field theory

and the entropy density,

S = 1
V

∑

r

pr log pr = −
β

V
∂ logZ
∂β

. (2.12)

Using the definition of the pressure, dEr = −PrdV which is valid at constant tempera-
ture and number density, it follows that the pressure is given by

P = −
∑

r

pr
∂Er

∂V
=

1
β

∂ logZ
∂V

. (2.13)

Typically, the widthL of a system is much larger than the inverse temperature, (i.e.
L ≫ 2πβ), such that one can use the infinite volume limit to describe the thermo-
dynamics of a finite volume to good approximation. The advantage of the infinite
volume limit is that field theoretic calculations simplify.In all calculations performed
in this thesis, this infinite volume limit is taken. Then it turns out that logZ becomes
proportional toV, such that the pressure becomes

P = 1
βV

logZ . (2.14)

Instead of calculating logZ/βV directly, in this thesis the pressure will be calculated
via the effective potential (see Chapter 3) which in its minimum equalslogZ/βV.

2.2 Quantum statistical physics

Of many physical systems one does not know the energiesEr and the number densities
Nr exactly. Most often only the Hamiltonian̂H and a corresponding number operator
Q̂ which commutes withĤ is known. Denoting the eigenstates ofĤ andQ̂ by |r〉 , the
partition function expressed in terms of the Hamiltonian and number operator becomes

Z =
∑

r

〈

r
∣

∣

∣e−β(Ĥ−µN̂)∣∣
∣r
〉

= tr e−β(Ĥ−µN̂) . (2.15)

The thermal expectation value of an operatorÂ can also be expressed in terms of a
trace,

〈

Â
〉

=
1
Z

tr
[

Âe−β(Ĥ−µN̂)
]

, (2.16)

An expectation value is independent of the choice of basis due to the cyclic property
of the trace.

As an example of the formalism, it will be shown how to derive the Bose-Einstein
distribution function. This distribution function gives the number of states as a function
of energy and temperature for a non-interacting bosonic system. The Bose-Einstein
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distribution function is the expectation value of the number operator. Non-interacting
bosons obey the following harmonic oscillator Hamiltonian

Ĥ = 1
2

∑

k

ωk

(

âkâ†k + â†kâk

)

, (2.17)

whereωk is the energy of the state with momentumk andâk andâ†k are respectively
annihilation and creation operators which satisfy the usual commutation relation for
bosonic operators, [ˆak, â†l ] = δkl and [âk, âl ] = [â†k, â†l ] = 0. The bosonic number

operator is given bŷNk = â†kâk. The expectation value of the number operator is

〈

N̂k
〉

=
1
Z

tr
(

e−β(Ĥ−µN̂)â†kâk

)

=
1
Z

tr
(

âke−β(Ĥ−µN̂)â†keβ(Ĥ−µN̂)e−β(Ĥ−µN̂)
)

, (2.18)

With use of the following equality

eBA e−B = A+
[

B, A
]

+ 1
2

[

B,
[

B, A
]]

+ . . . , (2.19)

and the fact that
[

Ĥ − µN̂, â†k
]

= (ωk − µ) â†k it can be shown that

〈

N̂k
〉

=
1
Z

tr
(

âkâ†ke−β(ωk−µ)e−β(Ĥ−µN̂)
)

=
〈

1− N̂k
〉

e−β(ωk−µ) . (2.20)

The Bose-Einstein distribution functionn(ωk) =
〈

N̂k
〉

follows from the last equation,

n(ωk) =
1

eβ(ωk−µ) − 1
. (2.21)

In a similar way it is possible to derive the Fermi-Dirac distribution, which is the
expectation value of the fermionic number density. The fermion creation and annihila-
tion operators satisfy anti-commutation relations. As a result one picks up a minus sign
in Eq. (2.20) when swapping the annihilation and creation operators. The Fermi-Dirac
distribution is given by

ñ(ωk) =
1

eβ(ωk−µ) + 1
. (2.22)

2.3 Statistical field theory

Using the path integral formalism it is possible to obtain the partition function of a field
theory. Consider a bosonic field̂φ(t, ~x ). The thermal expectation value of a product of
two bosonic fields in equilibrium with a heat bath of temperatureT is given by

〈

φ̂(t1, ~x1)φ̂(t2, ~x2)
〉

=
1
Z

tr
[

φ̂(t2, ~x2)e−βĤ φ̂(t1, ~x1)eβĤe−βĤ]

. (2.23)
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The dynamics of a field̂φ(t, ~x) is entirely described by its Hamiltonian̂H, which can
be used to determine the time evolution of the fields,

φ̂(t, ~x ) = eit Ĥ φ̂(0, ~x )e−it Ĥ . (2.24)

By identifying t = iβ a connection between inverse temperature and imaginary time is
found. As a result

〈

φ̂(t1, ~x1)φ̂(t2, ~x2)
〉

=
〈

φ̂(t2, ~x2)φ̂(t1 + iβ, ~x1)
〉

. (2.25)

Using the relation between inverse temperature and imaginary time the partition func-
tion can be written in terms of a path integral. For this, consider a transition matrix
element between an initial bosonic stateφi and a final stateφ f in ordinary field the-
ory. Such a transition element in terms of a path integral is given by the following
expression

〈

φ f

∣

∣

∣exp[−i(t f − ti)Ĥ]
∣

∣

∣φi

〉

=

∫

D′φ exp

[

i
∫ t f

ti
dt

∫

ddxL[φ]

]

, (2.26)

where the prime (’) on the measure indicates that the path integral is taken over fields
which satisfy the following boundary conditionφ(ti , x) = 〈φi |φ̂(ti , x)|φi〉 andφ(t f , x) =
〈φ f |φ̂(t f , x)|φ f 〉. If one makes the identificationt = −iτ and if one choosesti = 0 and
t f = −iβ one finds

〈

φ f

∣

∣

∣exp[−βĤ]
∣

∣

∣ φi

〉

=

∫

D′φ exp

[

−
∫ β

0
dτ

∫

ddxL[φ]

]

. (2.27)

The last equation enables one to write the partition function in terms of a path integral,

Z =
∑

φn

〈

φn

∣

∣

∣exp[−βĤ]
∣

∣

∣ φn

〉

=

∫

Dφ exp

[

−
∫ β

0
dτ

∫

ddxL[φ]

]

, (2.28)

where the integration is implicitly over all fields which obey the conditionφ(τ =
0, ~x ) = ±φ(τ = β, ~x ). Since|φ〉 and−|φ〉 describe the same physical state the sign
of the boundary conditions on the bosonic fields cannot be determined in this way.
However, this can be done by considering a two-point function.

For bosonic fields the two-point function evaluated atτ = 0 andτ, whereτ is
between 0 andβ, is given by

〈

Tτφ̂(0)φ̂(τ)
〉

=
〈

φ̂(τ)φ̂(0)
〉

=
〈

φ̂(β)φ̂(τ)
〉

=
〈

Tτφ̂(τ)φ̂(β)
〉

, (2.29)

where Eq. (2.25) was used. HereTτ indicates time ordering in imaginary time. By
choosingτ = β it follows from Eq. (2.29) that the boundary condition on bosonic
fields has a+ sign,

φ(τ = 0, ~x ) = φ(τ = β, ~x ) . (2.30)



2.3. Statistical field theory 29

For fermions similar arguments can be used, but since time ordering for fermions
requires an additional minus sign, one finds an anti-periodicity condition for fermionic
fields

ψ(τ = 0, ~x ) = −ψ(τ = β, ~x ) . (2.31)

So thermal field theory is in essence a Euclidean field theory where one dimension
(τ) is compactified to a circle. As a consequence of this, the Fourier transform of a
bosonic field becomes a sum over so-called Matsubara frequencies,

φ(τ, ~x ) =
1
β

∑

n

∫

ddk

(2π)d
eiωnτ+i~k·~xφ̃(K) ≡ ∑

∫

K
eiωnτ+i~k·~xφ̃(K) , (2.32)

where the Matsubara frequencies areωn = 2πnT. The capitalK is a momentum
vector in Euclidean space,K = (ωn,~k ). The symbolΣ

∫

K
denotes a so-called sum-

integral, where the sum is over bosonic modes, and will ariseoften in finite temperature
calculations. The momentum representation for fermions isgiven by

ψ(t, ~x ) =
1
β

∑

n

∫

ddk

(2π)d
eiω̃n+i~k·~xψ̃(K) ≡ ∑

∫

{K}
eiω̃nτ+i~k·~xψ̃(K) , (2.33)

where the Matsubara frequencies for fermions are ˜ωn = (2n + 1)πT. The symbolΣ
∫

{K}
denotes a sum-integral, where the sum is over fermionic Matsubara modes.

Two different integration contours are often used in equilibrium finite temperature
field theory. In the derivation above, the Matsubara contourwas used. This is a contour
starting att = 0 straight down the imaginary axis tot = −iβ, which gives rise to the
so-called imaginary-time formulation of thermal field theory. Another possibility is
the Keldysh contour which starts atti = −∞, goes along the real axis tot1 = ∞, down
to t2 = t1 − iǫ, back under the real axis tot3 = ti − iǫ and finally to t f = ti − iβ.
This Keldysh contour gives rise to the so-called real-time formalism. The real-time
formalism is favored over the imaginary-time formalism when quantities have to be
obtained in Minkowskian space-time at finite temperature asis for example the case for
spectral densities. To calculate such a spectral density inthe imaginary-time formalism
one has to make an analytic continuation, which can be avoided by using the real-time
formalism. All calculations in this thesis will be performed using the imaginary-time
formalism.

As an example of finite temperature field theory, the pressureof a free scalar theory
will be calculated. The Lagrangian density of this theory inEuclidean space is given
by

L = 1
2
∂µφ∂µφ +

1
2

m2φ2 , (2.34)

wherem is the mass of the scalar field. The action of a free field theoryis quadratic in
the fields, hence the Gaussian path integral can be computed exactly (see for example
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Weinberg (1995), Chapter 9). One finds using the fact that logDetA = Tr logA

logZ = = −1
2

Tr log
(

−∂2 +m2
)

, (2.35)

where the single closed loop denotes the corresponding Feynman diagram of this con-
tribution to logZ. In contrast to for example a two-point function, logZ contains no
external vertices, so all its diagrams are necessarily closed. In an interacting field
theory more complicated closed loop diagrams contribute tothe pressure next to the
single closed loop, for examples see Figs. 3.1 and 3.2. The Feynman rules needed to
evaluate these kind of loop diagrams at finite temperature can be found in for example
Kapusta (1989). The functional trace in Eq. (2.35) is over a complete set of functions
that satisfy the periodic boundary conditions in imaginarytime for scalar fields. The
trace can be evaluated by going to momentum space. As a result

logZ = −βV
2

∑

∫

P
log(P2 +m2) , (2.36)

were the sum-integral is defined in Eq. (2.32). The pressure can now be calculated
by applying Eq. (2.14). Since it is only possible to measure pressure differences, it is
convenient to normalize the pressure at zero temperature tozero. In order to do this
the contribution at zero temperature which is

−1
2

∫

P
log(P2 +m2) , (2.37)

will be subtracted from the contribution at finite temperature which is

−1
2
∑

∫

P
log(P2 +m2) . (2.38)

The zero temperature contribution, Eq. (2.37) is clearly ultraviolet divergent. It can be
evaluated by applying an ultraviolet momentum cut-off or using dimensional regular-
ization. The finite temperature contribution, Eq. (2.38) isultraviolet divergent as well.
Because high-momentum modes at finite temperature are exponentially suppressed by
a Bose-Einstein distribution function (as will be shown in the next section) and since
Eq. (2.38) becomes equal to Eq. (2.37) in the limit of zero temperature, the divergences
of Eq. (2.37) and Eq. (2.38) are the same. Hence the difference between those equa-
tions, which is the normalized pressure is ultraviolet finite. One then finds that the
pressure of a free scalar field ind + 1 dimensions is given by

P = −1
2

[

∑

∫

P
log(P2 +m2) −

∫

P
log(P2 +m2)

]

≡ −1
2
∆

∫

P
log(P2 +m2) . (2.39)

In the following section it will be explained how this expression can be computed.
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To obtain the pressure of a free fermion field theory considerits Lagrangian density
in Minkowskian space

L = ψ̄
(

iγµ∂µ −m+ µγ0

)

ψ , (2.40)

whereµ is a chemical potential for the fermion particle minus antiparticle number
∫

ψ†ψ. In Euclidean space this Lagrangian density becomes

L = ψ̄ (−γ0∂0 + iγi∂i −m+ µγ0)ψ . (2.41)

Performing the Gaussian path integral gives that

logZ = = log Det
(

−γ0∂0 + iγi∂i −m+ µγ0

)

, (2.42)

where the determinant is over the Dirac indices and a complete set of functions that
satisfy anti-periodic boundary conditions in imaginary time. After going to momentum
space it follows that

logZ = βV
∑

∫

{P}
log det (iγ0ω̃n + γi pi −m+ µγ0) . (2.43)

Evaluating the determinant over the Dirac indices and subtracting the divergent zero
temperature contribution one finds that the pressure of a free fermion field in 4 dimen-
sions is given by

P = 2∆
∫

{P}
log

(

P2 +m2
)

, (2.44)

wherep0 = ω̃n+ iµ. Like in the bosonic case discussed in the previous paragraph, this
pressure is finite. In the following section it will be explained how this pressure can
be calculated.

2.4 Analytic calculation of sum-integrals

As was discussed in the previous section one often has to evaluate sum-integrals in
finite temperature field theory. In this section a method to perform these sum-integrals
analytically will be discussed. The following section is devoted to the numerical eval-
uation of sum-integrals.

In order to calculate a sum-integral, one has to perform an infinite sum over Mat-
subara modes, after which the integration over momenta has to be done. Such a sum
over Matsubara modes can be obtained by using contour integration. Consider a par-
ticular sum

1
β

∞
∑

n=−∞
f (z= iωn) , (2.45)

whereωn = 2πnT as for bosonic fields. This expression can viewed as a sum over
residues of some function which has simple poles located atz = iωn. A sum over
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z

C

Figure 2.1: Contour for summation formula. The black dots onthe imaginary axis
denote the poles of coth(βz/2), while the other dots are possible poles off (z) (in the
left figure) and off (z) + f (−z) (in the right figure).

residues is equivalent to an integration around all the poles, which is sketched in the
left-hand part of Fig. 2.1. Consider the function coth(βz/2). It has only simple poles at
z = iωn, which all have residue 2/β. So assumingf (z) has no poles on the imaginary
axis,g(z) = coth(βz/2) f (z) has simple poles atz = iωn with residue 2f (iωn)/β. This
allows one to write the sum as the following integral

1
β

∞
∑

n=−∞
f (z= iωn) =

1
2

1
2πi

∫

C
dz f(z) coth

(

βz
2

)

, (2.46)

where the contourC is depicted in the left part of Fig. 2.1.
Now one can use that coth(βz/2) = 1 + 2n(z) = −1 − 2n(−z), wheren(z) =

1/[exp(βz) − 1] is the Bose-Einstein distribution function. If limz→∞ zg(z) = 0, one
can splitC in two pieces along the imaginary axis and bring them together

∫

C
dz g(z) =

∫ i∞+ǫ

−i∞+ǫ
dz

[

g(z) − g(−z)
]

. (2.47)

The last equation can be used to write the sum as

1
β

∞
∑

n=−∞
f (z= iωn) =

1
2

1
2πi

∫ i∞+ǫ

−i∞+ǫ
dz

[

f (z) + f (−z)
]

[1 + 2n(z)] . (2.48)

If f (z) falls off rapidly enough atz→ ±∞ it is possible to close the contour as is done
in the right-hand part of Fig. 2.1. The integral can now be calculated straightforwardly
by summing over the residues. One should be aware that the contour in the right part
Fig. 2.1 goes clockwise, so one picks up an additional minus sign when applying the
residue theorem to calculate the integral.
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A frequently arising sum (see for example the gap equations calculated in Chapters
4, 5 and 6) is the one over the propagator which usingf (z) = 1/(−z2 + ω2

p) with
ω2

p = p2 +m2 results in,

1
β

∑

n

1

P2 +m2
=

1
2ωp

[

1+ 2n(ωp)
]

, (2.49)

whereP = (p0, ~p ) with p0 = ωn. After integrating over spatial momenta one finds the
following important result

∑

∫

P

1

P2 +m2
=

∫

ddp

(2π)d

1
2ωp

[

1+ 2n(ωp)
]

. (2.50)

By integrating Eq. (2.49) overωp the sum-integral of a logarithmic function can be
obtained. This sum-integral arises in the calculation of the pressure of a bosonic field
theory (see for example Eq. (2.38) of the previous section and Chapters 4, 5 and 6).
One finds

∑

∫

P
log

(

P2 +m2
)

=

∫

ddp

(2π)d

[

ωp + 2T log
(

1− e−βωp
)]

+C , (2.51)

whereC is an infinite constant which is independent ofωp and temperature. Equa-
tion (2.51) is ultraviolet divergent; all divergences arise from the integral overωp and
the constantC. The high-momentum modes which depend on temperature are ex-
ponentially suppressed so they do not give rise to divergences. In the limit of zero
temperature a sum over Matsubara modes changes into an integration overp0, hence
Eq. (2.51) becomes in the limit of zero temperature

∫

P
log

(

P2 +m2
)

=

∫

ddp

(2π)d
ωp +C , (2.52)

which shows that all ultraviolet divergences of Eq. (2.51) are contained in the zero-
temperature contribution. The pressure of a free bosonic field as is defined in Eq. (2.39)
is hence ultraviolet finite and given by

P = −1
2
∆

∫

P
log(P2 +m2) = −T

∫

ddp

(2π)d
log

(

1− e−βωp
)

. (2.53)

In Chapter 7 a theory with fermions in the presence of a chemical potential will be
discussed. In that casep0 = 2π(n+ 1/2)T + iµ = ωn + πT + iµ. Using the formalism
presented above it can be shown that

1
β

∑

n

1

P2 +m2
=

1
2ωp

[

1+ ñ+(ωp) + ñ−(ωp)
]

, (2.54)
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where ñ±(ωp) = 1/(expβ(ωp ± µ) + 1). After integrating Eq. (2.54) overωp the
fermionic sum-integral of a logarithmic function can be obtained. This sum-integral
arises in the calculation of the pressure of a fermionic fieldtheory (see for example
Eq. (2.44) in the previous section and Chapter 7). One finds

∑

∫

{P}
log

(

P2 +m2
)

=

∫

ddp

(2π)d















ωp + T
∑

±
log

(

1+ e−β(ωp±µ)
)















+C , (2.55)

whereC is a divergent constant which is independent of temperatureandωp. Like in
the bosonic case, the high-momentum modes of the term which depends on temper-
ature is exponentially suppressed an hence does not give rise to an ultraviolet diver-
gence. All divergences are contained in the zero-temperature contribution, as a result
the pressure of a free fermionic field in 3+1 dimensions (defined in Eq. (2.44)) is finite
and given by

P = 2T
∑

±

∫

d3p

(2π)3
log

(

1+ e−β(ωp±µ)
)

. (2.56)

If m= 0 andµ = 0 the temperature-dependent parts of the sum-integrals canbe ob-
tained exactly. The integrals which appear after summing over Matsubara frequencies
can be evaluated with use of the following identities withη = ±1 andn > 1

∫ ∞

0
dx

xn−1

ex − η =
∫ ∞

0
dxxn−1e−x

∞
∑

s=0

ηse−sx = ηΓ(n)
∞
∑

s=1

ηn

sn

=

{

Γ(n)ζ(n) if η = +1
(1− 21−n)Γ(n)ζ(n) if η = −1

, (2.57)

whereΓ(n) is the gamma function which obeys:Γ(n + 1) = nΓ(n) and ζ(n) is the
Riemann zeta function. Some useful values of the Riemann zeta function are:ζ(2) =
π2/6, ζ(3) ≈ 1.202 andζ(4) = π4/90. Combining Eqs. (2.39), (2.51) and (2.57) gives
the following result for the pressure of a massless bosonic spin-0 degree of freedom in
3+1 dimensions

Pb = −
1
2
∆

∫

P
logP2 =

π2

90
T4 . (2.58)

By combining Eqs. (2.44), (2.55) and (2.57) the pressure of amassless spin-1/2 fermionic
field in the absence of a chemical potential in 3+1 dimensions is obtained, which reads

P f = 2∆
∫

{P}
log P2 =

7π2

180
T4 . (2.59)

The last two equations can be used to obtain the pressure of QCD in the limit of
infinite temperature. Due to asymptotic freedom the quarks and the gluons are effec-
tively non-interacting in this limit. Moreover since the temperature is then much larger
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than the quark masses, the quarks are effectively massless. So in the limit of infinite
temperature the pressure of QCD is the sum of the pressure of eight massless gluons
andNf massless quarks. Since all eight gluons have two transversepolarizations their
contribution to the QCD pressure in the infinite temperaturelimit is 16Pb. The Nf

quarks all carry three colors, hence their contribution to the QCD pressure in the infi-
nite temperature limit is 3NfP f . Adding the gluonic and quark contribution gives the
QCD pressure in the infinite temperature limit which isP = 37π2T4/90 for Nf = 2
andP = 19π2T4/36 for Nf = 3. In the confined phase at low temperatures one ex-
pects the QCD pressure to be dominated by a gas of particles with lowest mass, which
are the pions. Since there are three pions which are spin-0 particles, the pressure of
QCD at low temperatures is something in the order ofP = π2T4/30 (if one takes into
account that the pions have a mass this pressure even becomessmaller, see Chapter 6).
Hence the pressure divided byT4 at low temperatures is much smaller than in the in-
finite temperature limit as also can be seen from Fig. 1.2, which display the results
of lattice calculations of the pressure of QCD. In this figure, the infinite temperature
limits calculated in this paragraph are drawn as well.

2.5 Numerical computation of sum-integrals

As was discussed in the previous sections, partition functions can be obtained by cal-
culating sum-integrals. It was shown that these sum-integrals are typically ultravio-
let divergent, however the difference between a sum-integral and an integral is finite
because of the exponential suppression of high momentum modes. In the examples
discussed in the previous section, the sum-integrals were obtained relatively straight-
forwardly because the sum over Matsubara modes could be performed analytically.
However in more complicated cases, which for example arise in Chapters 4, 5 and 6,
an analytic result for this sum can no longer be obtained. In this section a method will
be developed, which can be used to calculate the sum-integrals numerically.

The sum-integrals which arise in calculating partition functions are typically of the
following form (see for example Eq. (2.35))

∑

∫

P
f (P2) . (2.60)

As was argued in the previous section, such sum-integrals are most often ultraviolet
divergent. Hence, an immediate problem which arises when calculating a sum-integral
numerically in the brute-force way (that is to perform the sum over Matsubara modes
numerically and then to do the integration over spatial momenta numerically as well)
are the ultraviolet divergences. To treat these ultraviolet divergences in a consistent
way it is useful to split a sum-integral into a finite part containing the difference be-
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tween a sum and an integral and a divergent part in the following way

∑

∫

P
f (P) = ∆

∫

P
f (P) +

∫

P
f (P)

=

∫

ddp

(2π)d



















1
β

∑

p0=2πnT

f (P) −
∫

dp0

2π
f (P)



















+

∫

dd+1P

(2π)d+1
f (P) . (2.61)

In the following two subsection it is subsequently discussed how the integral and the
difference between the sum-integral and the integral can be computed numerically.

Computation of the integral

The term
∫

P
f (P) contains all possible ultraviolet divergences ofΣ

∫

P
f (P) and can be

calculated for example by applying a cut-off or dimensional regularization. Numeri-
cally a cut-off regularization is the easiest, however dimensional regularization is also
possible numerically as was shown by Caravaglios (2000). Inthe cases considered in
this thesis, the ultraviolet divergencesD of the term proportional to

∫

P
f (P) can al-

ways be extracted analytically by considering the high-momentum behaviorg(P) of
f (P), i.e. D =

∫

P
g(P) (see also Blaizotet al. (2003)). The term which contains the

divergences can now be written as
∫

P
f (P) = D +

∫

P

[

f (P) − g(P)
]

, (2.62)

where the last integral is finite and can easily be evaluated numerically using standard
techniques like Gauss-Legendre integration. The rewriting of the divergences in terms
of an integral prevents subtraction of two large quantitieswhich, due to the finite ma-
chine precision, can give rise to huge numerical errors. Iff (P) depends explicitly on
temperature (see Chapter 4, 5 and 6 for an example)D can have a temperature de-
pendence as well, giving rise to temperature-dependent ultraviolet divergences. Such
a divergence gives rise to renormalization problems, therefore a careful analysis is
required.

Computation of the difference between a sum-integral and an integral

The difference between a sum-integral and an integral is most often finite because it
turns out that its high momentum modes are exponentially suppressed (as was shown
explicitly for two examples in the previous section). Sinceboth terms in the differ-
ence are divergent, it is not easy to obtain this difference numerically by using the
expression in the second line of Eq. (2.61). However, using contour integration it is
possible to derive an expression which does not contain divergent parts and hence will
be suitable for numerical evaluation. After that, this expression has to be integrated
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z

C3

C2

r

C1

C4

φ
a 2πN 2πM

Figure 2.2: ContourC for summation formula. The black dots on the real axis denote
the poles of cot(z/2), while the other dots indicate possible poles and cuts off (z).

over the spatial momenta which can be done using standard numerical techniques like
Gauss-Legendre integration.

For simplicity T = 1 is taken in this section. Results can however be easily
generalized to anyT by rescaling. Consider a functionf (z) which is analytic for
2π(N − 1/2) ≤ Rez ≤ 2π(M + 1/2), whereN andM are integers. Using that cot(z/2)
has poles atz= 2πn with residue 2, it holds that

M
∑

n=N

f (z= 2πn) =
1

2πi
1
2

∮

C
dz f(z) cot(z/2) . (2.63)

Because of the analyticity requirement onf (z) one is free to choose the contourC as
long as it is closed, the pointsz= 2πn with N ≤ n ≤ M are included and other possible
cuts and poles off (z) are excluded. The contourC used in this section is displayed
in Fig. 2.2, whereC1 goes froma+ r to a+ reiφ, C2 from a+ reiφ to a, C3 from a to
a+ re−iφ andC4 from a+ re−iφ to a+ r. Herea = 2π(N− 1/2) andr = 2π(M −N+ 1).
Now it can be used that

cot(z/2) = −i

(

1+
2

e−iz − 1

)

= i

(

1+
2

eiz − 1

)

, (2.64)

to obtain

M
∑

n=N

f (z= 2πn) = − 1
4π

∫

C1∪C2

dz f(z) +
1
4π

∫

C3∪C4

dz f(z)

− 1
2π

∫

C1∪C2

dz f(z)
1

e−iz − 1
+

1
2π

∫

C3∪C4

dz f(z)
1

eiz − 1
. (2.65)
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Since it is assumed thatf (z) has no poles or cuts within the integration contour,

∫

C1∪C2

dz f(z) +
∫ a+r

a
dz f(z) = 0 , (2.66)

∫

C3∪C4

dz f(z) −
∫ a+r

a
dz f(z) = 0 . (2.67)

Combining the three equations above gives for the difference∆N,M of a sum and an
integral

∆N,M ≡
M
∑

n=N

f (z= 2πn) − 1
2π

∫ 2π(M+1/2)

2π(N−1/2)
dz f(z) =

1
2π

[∫

C3∪C4

dz f(z)
1

eiz − 1
−

∫

C1∪C2

dz f(z)
1

e−iz − 1

]

. (2.68)

Now consider the limitM → ∞. For functionsf (z) which grow slower than an expo-
nential in the limit|z| → ∞, the contribution coming from integration alongC1 andC4

can be neglected. In that case

∆N,∞ = −
1
2π

[∫ ∞

0
dρe−iφ f (a+ ρe−iφ)

1
exp(iρe−iφ) + 1

+

∫ ∞

0
dρeiφ f (a+ ρeiφ)

1
exp(−iρeiφ) + 1

]

. (2.69)

A convenient choice isφ = π/2, which gives

∆N,∞ =
i

2π

∫ ∞

0
dρ

[

f (a− iρ) − f (a+ iρ)
] 1

eρ + 1
, (2.70)

wherea = 2π(N − 1/2) and f (z) should be analytic for Rez > a. This formula is
similar to the Abel-Plana formula (wherea is taken to be 2πN, see for example Barton
(1981)). Eq. (2.70) is, however, more convenient for numerical purposes due to the
larger suppression factor of 1/[exp(ρ)+1] as compared to 1/[exp(ρ)−1] in the original
Abel-Plana formula. Iff (z) ∈ R for z ∈ R, Eq. (2.70) can be simplified to

∆N,∞ =
1
π

∫ ∞

0
dρ Im f (a+ iρ)

1
eρ + 1

, (2.71)

The difference between a sum-integral and an integral can now be calculated using
the following expression

∆

∫

P
f (P) =

∫

ddp

(2π)d
∆−∞,∞ . (2.72)
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The term∆−∞,∞ can be computed using Eq. (2.70) although not necessarily with
N = −∞, since to apply that equationf (P) should satisfy the analyticity requirements
discussed below Eq. (2.70). To illustrate the computation of Eq. (2.72) two examples
will be given below.

In order to obtain the pressure of a free scalar field theory (see Eqs. (2.39) and
(2.51)) the term∆

∫

P
log(P2 + m2) has to be computed. To evaluate this expression nu-

merically one takesf (z) = log(z2 + ω2
p). Clearly the sum over all Matsubara modes

(z = 2πn) diverges as does the integral overz. However, the difference between the
sum and integral is finite. To calculate this difference it is not allowed to use Eq. (2.70)
with N = −∞, becausef (z) has a cut at Rez = 0. One therefore has to split the
difference into parts, for example in the following way

∆−∞,∞ = ∆−∞,−1 + ∆−1,1 + ∆1,∞ . (2.73)

Becausef (z) is even inz, ∆−∞,−1 = ∆1,∞. The term∆1,∞ can be calculated numeri-
cally using Eq. (2.71). The term∆−1,1 can be obtained numerically using the explicit
expression for the difference between a sum and integral. As a result

∆−∞,∞ = 2∆1,∞ + log(ω2
p) − 1

2π

∫ π

−π
dz log(z2 + ω2

p) . (2.74)

Now ∆

∫

P
log(P2 + m2) can be obtained by integrating Eq. (2.74) over momenta using

Eq. (2.72).
In Chapters 4, 5, and 6 of this thesis, next-to-leading 1/N corrections to the pres-

sure are investigated. To obtain these corrections one has to calculate a sum-integral
of the following form

F = ∆
∫

P
f (P) , (2.75)

where f (P) = log [c+ I (P,m)], c is some constant and

I (P,m) =
∑

∫

Q

1

Q2 +m2

1

(P+ Q)2 +m2
. (2.76)

The function f (P) is even inp0, has a cut for Re(p0) = 0 and depends explicitly on
temperature. In order to use Eq. (2.71) to calculate the difference between a sum and
an integral one has to split∆−∞,∞ as follows

∆−∞,∞ = 2∆N,∞ +
N−1
∑

n=−N+1

f (p0 = 2πn) − 1
2π

∫ 2π(N−1/2)

−2π(N−1/2)
dp0 f (p0) , (2.77)

whereN ≥ 1 because of the cut inf (P). The term∆N,∞ can be obtained numerically
using Eq. (2.71). It was checked numerically for several examples that changingN has
no effects on∆−∞,∞ as expected. After calculating∆−∞,∞ the integration overp can
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be done straightforwardly to obtainF using Eq. (2.72). It was observed numerically
that the difference of a sum and an integral is dominated by the low-momentum modes
which can be understood as being due to the exponential suppression of the high-
momentum modes at finite temperature. Hence after integration over momentap one
obtains a finite result forF as expected. This conclusion applies to difference of sum-
integrals and integrals of more generalf (P) as well.



Chapter 3

The effective potential and the 1/N expansion

As was discussed in the previous chapter, thermodynamical quantities can be derived
by calculating the partition function. In this chapter, it will be made clear how such
a partition function can be obtained by locating the extremum of a so-called effective
potential. The derivation of this effective potential will be reviewed in the first section
of this chapter. Then the large-N approximation, which can be used to investigate non-
perturbative phenomena, will be discussed. Thereafter, the auxiliary field method will
be studied. Using the auxiliary field method the large-N approximation of the models
examined in this thesis can be obtained systematically. Finally it will be explained why
some effective potentials expressed in terms of auxiliary fields canhave temperature-
dependent ultraviolet divergences outside the minimum.

3.1 The 1PI effective action and the effective potential

The one particle irreducible (1PI) effective action is a useful tool for calculating par-
tition functions. It is especially preferred if a certain field can obtain a vacuum ex-
pectation value. This happens for example in a theory with spontaneous symmetry
breaking. In ordinary perturbation theory one expands around the trivial vacuum, for
which the vacuum expectation values of fields vanish, say〈φ〉 = 0. In the 1PI effective
action approach however, one expands around the true vacuum. This means that the
1PI method allows for a nonzero vacuum expectation value ofφ, 〈φ〉 = φ̄. This vac-
uum expectation value can be found by minimizing the 1PI effective action. Because
in the 1PI method one perturbs around the true vacuum it is more advantageous to
use this method over ordinary perturbation theory. Moreover it allows one to resum
whole classes of Feynman diagrams and to investigate non-perturbative physics. More
details concerning the derivation of the effective action given below can be found in
quantum field theory textbooks, for example Weinberg (1995), Peskin and Schroeder
(1995) and Zinn-Justin (1996).
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Formal definition of the effective action

Consider a general scalar field theory with Lagrangian density L[φ] in Euclidean
space-time. The partition function of this theory in the presence of a source termJ
is given by

Z [J] =
∫

Dφ exp

[

−S
[

φ
] −

∫

ddx J(x)φ(x)

]

, (3.1)

hereS[φ] =
∫

ddxL[φ] denotes the classical action. From this partition function one
can compute the generating functional for connected Green’s functions which is

W [J] = − logZ [J] . (3.2)

These Green’s functions are obtained by functional differentiatingW[J] with respect
to J. For example the vacuum expectation value ofφ of the theory in the presence of a
source term is given by

δW[J]
δJ(x)

=
〈

φ(x)
〉

J ≡ φ̄(x) . (3.3)

Similarly, the connected two-point correlation function can be found as follows

δ2W[J]
δJ(x)δJ(y)

=
〈

Tφ(x)φ(y)
〉

J −
〈

φ(x)
〉

J
〈

φ(y)
〉

J ≡ D(x, y) . (3.4)

The 1PI effective actionΓ[φ̄] is the generating functional of 1PI diagrams. An 1PI
diagram is a diagram that is still connected after cutting one internal line. The 1PI
effective action is the Legendre transform ofW[J],

Γ[φ̄] =W[J] −
∫

ddx J(x)φ̄(x) . (3.5)

The effective action is a function of̄φ only and not ofJ. The source termJ in Eq. (3.5)
is to be chosen in such a way that the vacuum expectation valueof φ in the theory with
a source term will become equal tōφ. The 1PI effective action is, unlike the classical
action, an action which contains all contributions arisingfrom quantum fluctuations.
Extremizing the effective action with respect tōφ gives

δΓ[φ̄]

δφ̄(x)
=

∫

ddy
δW[J]
δJ(y)

δJ(y)

δφ̄(x)
−

∫

ddy
δJ(y)

δφ̄(x)
φ̄(y) − J(x) = −J(x) . (3.6)

Hence at an extremum of the effective action the source term has to vanish, in other
wordsJ = 0. The extremum will be denoted byϕ(x),

δΓ[φ̄]

δφ̄(x)

∣

∣

∣

∣

∣

∣

φ̄=ϕ

= 0 . (3.7)



3.1. The 1PI effective action and the effective potential 43

From the definition of the effective action, Eq. (3.5), it follows that the effective action
at the extremal value is equal to

Γ[ϕ] = − logZ[0] . (3.8)

This important equation shows that the partition function can be obtained by calculat-
ing the minimal value of the effective action.

It often happens that the vacuum solution of Eq. (3.7) is translational invariant,
which implies thatϕ(x) is space(-time) independent. However, translational non-
invariant solutions forϕ(x) are sometimes possible. Instantons which for example
arise in theCPN−1 model discussed in Chapter 5, are translational non-invariant solu-
tions. But due to their dependence on space(-time), these translational non-invariant
solutions often have a larger action than the translationalinvariant solution. Ifϕ(x) is
translational invariant it is useful to define the effective potentialV which is minus the
effective action divided by the volumeV of the space

V (

φ̄
)

= − 1
V
Γ
[

φ̄
]

, (3.9)

where the sign of the effective potential is chosen in such a way that the extremal
value of the finite temperature effective potential becomes equal to the pressure. The
extremal value of the effective potential is given by

V (ϕ) =
1
V

logZ[0] . (3.10)

At finite temperature the volume of the spaceS × Rd is βV. Therefore at finite tem-
perature the extremal value of the effective potential is given by logZ[0]/βV which is
equal to the pressure. In the rest of the thesis this equationwill be used to calculate the
thermodynamical quantities.

Next to the 1PI effective action, a 2PI effective action (Cornwallet al., 1974) and
even more general nPI effective actions exist as well. The 2PI effective action is the
Legendre transform of the generating functional for connected Green’s functions in
the presence of a source termJ for the fieldφ and a source termK for the two-point
function. The 2PI formalism is very useful for out-of-equilibrium quantum field theory
calculations (see for example Berges (2005)). This is because unlike the 1PI method,
the 2PI formalism lacks the so-called secularity problem, which causes the pertur-
bation series of a time-dependent quantity to diverge at late times (see for example
Arrizabalaga (2004)). Moreover, it is very natural to introduce Gaussian initial density
matrices in the 2PI formalism. Since in this thesis all results are obtained for equi-
librium situations, the 2PI formalism will not be discussedfurther. Although it is of
course also possible to perform equilibrium calculations using the 2PI formalism.
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Perturbative calculation of the effective action

In practice, the effective action has to be calculated in perturbation theory. Following
the method of Jackiw (1974), the fieldφ(x) is replaced by the sum of its vacuum
expectation valuēφ(x) and a quantum fluctuating fieldχ(x). In this way it is possible
to perturb around the true vacuum̄φ(x). Taylor expanding the action and the source
term around̄φ(x) gives,

S[φ̄ + χ] +
∫

ddx J(x)
[

χ(x) + φ̄(x)
]

= S[φ̄] +
∫

ddx J(x)φ̄(x)

+

∫

ddx

[

δS[φ]
δφ(x)

∣

∣

∣

∣

∣

φ=φ̄

+ J(x)

]

χ(x) +
1
2!

∫

ddxddyχ(x)G(x, y)−1χ(y)

+
1
3!

∫

ddwddxddy
δ3S[φ]

δφ(w)δφ(x)δφ(y)

∣

∣

∣

∣

∣

∣

φ=φ̄

χ(w)χ(x)χ(y) + . . . .

(3.11)

where the bare inverse propagator is given by

G(x, y)−1 =
δ2S[φ]

δφ(x)δφ(y)

∣

∣

∣

∣

∣

∣

φ=φ̄

. (3.12)

Using the expansion of the action, Eq. (3.11), and the definition of the effective action,
Eq. (3.5), it follows that the effective action obeys

Γ[φ̄] = S[φ̄] + Γ2[φ̄] . (3.13)

So the effective actionΓ[φ̄] is equal to the sum of the classical actionS[φ̄] and the
quantum correctionsΓ2[φ̄] which are given by

Γ2[φ̄] = − log
∫

Dχ exp

[

−S′
[

χ
] −

∫

ddx J′(x)χ(x)

]

. (3.14)

In the expression forΓ2 the actionS′[χ] is equal to

S′[χ] =
1
2!

∫

ddxddyχ(x)G(x, y)−1χ(y)

+
1
3!

∫

ddwddxddy
δ3S[φ]

δφ(w)δφ(x)δφ(y)

∣

∣

∣

∣

∣

∣

φ=φ̄

χ(w)χ(x)χ(y) + . . . ,
(3.15)

and the currentJ′ is equal to

J′(x) =
δS[φ]
δφ(x)

∣

∣

∣

∣

∣

φ=φ̄

− δΓ[φ̄]

δφ̄(x)
= −δΓ2[φ̄]

δφ̄(x)
. (3.16)
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The quantum corrections to the effective action can be obtained by calculating
Γ2[φ̄] in perturbation theory by summing Feynman diagrams. In order to find out
which kind of diagrams contribute toΓ2[φ̄], considerZ[0]. In perturbation theory,Z[0]
is equal to 1 plus the sum of all closed loop Feynman diagrams times the contribution
of the single loop (see also Sec. 2.3). The quantityW[0] = − logZ[0] is equal to the
sum all connected closed loop Feynman diagrams. AndΓ[φ̄ = 0] = −W[J′] is equal to
the sum of all one particle irreducible Feynman diagrams, for a proof see for example
Zinn-Justin (1996). HereJ′ is a source term that is chosen in such a way that the
corresponding vacuum expectation valueφ̄ vanishes. As one might expect the source
termJ′ of Eq. (3.16) is tuned automatically in such a way that the vacuum expectation
valueχ̄ of the fluctuatingχ field vanishes, for a proof see Jackiw (1974). HenceΓ2 is
equal to the sum of all closed loop 1PI diagrams with bare propagatorG and vertices
as given by the shifted actionS′. It is important to realize that although a tadpole term
arises in the shifted action, tadpole diagrams do not contribute toΓ2. The tadpoles
form part of the currentJ′, see Eq. (3.16), which forces the vacuum expectation value
of theχ field to vanish.

If the contribution of higher order 1PI diagrams toΓ2 is suppressed, for instance
due to some small coupling constant, the main contribution to Γ2 will arise from the
single closed loop. In such a case the effective action can be approximated by

Γ[φ̄] ≈ S[φ̄] +
1
2

log DetG , (3.17)

where the log Det term arises from the Gaussian integration over the quantum fluctua-
tionsχ. As will be argued in the following sections, Eq. (3.17) can be used to obtain
thermodynamical quantities to next-to-leading order in 1/N, whereN is the number of
fields in the theory.

An explicit calculation of the effective potential in a scalarλφ4 field theory has
been performed by Colemanet al. (1974) in an expansion in smallλ. This work was
generalized to finite temperature by Dolan and Jackiw (1974). Although the discussion
of the effective potential in this section was limited to scalar fieldsonly, the effective
potential for a theory with gauge fields and fermions is obtained analogously. In this
thesis finite temperature effective potentials will be calculated not in a perturbative
expansion in the coupling constant, but rather in an expansion in 1/N. This 1/N ex-
pansion will be explained next.

3.2 The1/N expansion

To calculate a quantity in an interacting field theory it is often necessary to make some
kind of approximation. Expanding in the coupling constantλ is a widely used method.
This however has the drawback that it only works for small couplings. Moreover,
contributions which are non-analytic inλ, like exp(−1/λ), will not be found in an
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expansion aroundλ = 0. If the coupling constant is large, which happens for example
to be the case in QCD at low energies, perturbation theory is not reliable. Hence in
this non-perturbative regime one has to use other approaches like for example the 1/N
expansion, lattice discretization, Dyson-Schwinger or renormalization group methods.

In the large-N method the expansion parameter is the number of fieldsN. In order
to perform this expansion one has to change the symmetry group of the theory under
consideration. To illustrate this point, consider the O(4)linear sigma model (which
is discussed in more detail in Chapter 6). This model has the following Lagrangian
density

L = 1
2

(

∂µφi

)2
+
λb

32

(

φiφi−4 f 2
π,b

)2
, i = 1 . . . 4 , (3.18)

whereλb is a bare 4-point coupling constant andfπ,b is the bare “pion decay” constant.
To apply the 1/N expansion in the O(4) linear sigma model it has to be generalized to
the O(N) linear sigma model. The Lagrangian density of the O(N) linear sigma model
is given by

L = 1
2

(

∂µφi

)2
+
λb

8N

(

φiφi−N f2
π,b

)2
, i = 1 . . .N . (3.19)

As one can see from Eq. (3.19), the coupling constantsλb and fπ,b have been rescaled
by factors ofN. This redefinition of the coupling constants is important when applying
a 1/N approximation, since it assures that the relative strengthof the interactions is not
changed when varyingN. The coupling constants are rescaled in such a way that the
action naturally scales withN. In the O(N) linear sigma model the diagrams which are
contributing to the pressure at leading order are the bubblediagrams and all possible
insertions of bubbles, see for example Jackiw (1974). Thesediagrams are called daisy
and superdaisy diagrams as well and are displayed in Fig. 3.1. The chain diagrams
which are displayed in Fig. 3.2 contribute to next-to-leading order in 1/N. All these
diagrams can be resummed using the auxiliary field method which will be discussed
in the next section. In this way it is possible to obtain an expansion which is really in
1/N and not for example inλ/N. This allows one to investigate the non-perturbative
largeλ behavior of the model.

Unfortunately the situation in QCD is not that simple. The obvious generaliza-
tion is to consider an SU(Nc) gauge theory and to take the number of colors,Nc, as
an expansion parameter. The coupling constantg2 has then to be rescaled tog2/Nc.
As was shown by ’t Hooft (1974), only planar diagrams contribute to leading order in
the 1/Nc expansion. Non-planar diagrams with only one handle contribute at next-to-
leading order. Just like in the O(N) linear sigma model an infinite number of diagrams
contribute to the QCD pressure at leading and next-to-leading order inNc. But unfor-
tunately until now no one has found a way to resum all these diagrams, the auxiliary
field method discussed in the next section for example does not work for QCD.

Another possibility is to give all quark flavors the same massand expand in the
number of flavorsNf . Using this method Moore (2002) calculated for zero quark
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Figure 3.1: Some examples of bubble diagrams in the O(N) linear sigma model. An
infinite number of these types of diagrams with all possible insertions of bubbles con-
tribute at leading order in 1/N. The lines in these diagrams denote the bare propaga-
tors, which can be read off directly from the Lagrangian density of the O(N) linear
sigma model, Eq. (3.19).

Figure 3.2: Some examples of chain diagrams in the O(N) linear sigma model. An
infinite number of these types of diagrams with all possible insertions of bubbles con-
tribute at next-to-leading order in 1/N.

mass the full non-perturbative largeNf contribution to the QCD pressure up to next-
to-leading order. Ipp and Rebhan (2003) extended this studyto non-zero chemical
potential. Unfortunately this approach gives only limitedinsight in QCD, since large
Nf QCD is not asymptotically free and hence behaves completelydifferently from real
QCD.

A hint that in the future methods may become available which can be used to
perform analytic calculations in the non-perturbative regime of QCD comes from the
anti-de-Sitter conformal field theory (AdS/CFT) correspondence. Maldacena (1998)
conjectured thatN = 4 supersymmetric U(N) Yang-Mills theory in 4 dimensions
(which is a conformal gauge field theory) is equivalent to a 10-dimensional type IIB
string theory on AdS5×S5. It turns out that if the supersymmetric Yang-Mills theory is
strongly coupled, the corresponding string theory is weakly interacting. So by apply-
ing perturbation theory to this 10-dimensional string theory one can obtain insight in
the non-perturbative behavior of the corresponding 4-dimensional gauge theory. One
is of course eager to find an analogous result for real QCD in 4 dimensions.
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3.3 The auxiliary field method

The 1/N expansion can in some theories be systematically performedby introduction
of auxiliary fields. These auxiliary fields will have no dynamics so they will not influ-
ence the physical content of the theory. They will be shiftedby a constant in order to
obtain a Lagrangian density which is quadratic in theN original fields. This allows for
Gaussian integration, after which the 1/N expansion follows naturally.

As an example consider the O(N) model defined in Eq. (3.19). Its partition function
is given by Eq. (3.1). An auxiliary fieldα can be added to this model by changing the
Lagrangian density as follows

L → L + N
2λb

α2 . (3.20)

The original partition function times an infinite constant (which drops out when calcu-
lating physical quantities) is recovered after integration over theα field. Since a field
is nothing else than an integration variable of the path-integral, it is always possible to
shift this field by a constant. If theα field is shifted according to

α→ α − iλb

2N

(

φiφi − N f2
π,b

)

, (3.21)

the Lagrangian density becomes quadratic in theφ fields,

L = 1
2

(

∂µφi

)2 − i
2
α
(

φiφi − N f2
π,b

)

+
N

2λb
α2 . (3.22)

It is now possible to perform the integration over the scalarfields, resulting in the
following effective action (not to be confused with the 1PI effective action, hereα is
still a field which should be integrated over)

Seff [α] =
N
2

Tr log
(

−∂2 − iα
)

+
N
2

∫ β

0
dτ

∫

d3x

(

i f 2
π,bα +

α2

λb

)

. (3.23)

The auxiliary field can obtain a vacuum expectation value ¯α which is assumed to be
translational invariant. Hence to obtain for example the pressure, it is necessary to
calculate the effective potential and minimize it with respect to ¯α. The leading order
term of this effective potential is just the classical effective action,Seff(ᾱ) and is pro-
portional toN. By expandingSeff around its vacuum expectation value the quantum
corrections to the effective potential can be obtained. As will be shown in detail in
Chapters 4, 5 and 6, the leading term of these corrections is the logarithm of a deter-
minant of the propagator of the quantum fluctuations which isproportional toN0, see
also Eq. (3.17). The contributions which arise from the 1PI diagrams of the quantum
fluctuations are of order 1/N and higher because the vertices of these diagrams turn
out to have 1/

√
N suppressing factors.
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3.4 Temperature-dependent ultraviolet divergences1

The finite temperature effective potential expressed in terms of the vacuum expecta-
tion value of the auxiliary field discussed in the previous section is calculated explicitly
for different models in Chapters 4, 5 and 6. In all these models it turns out that the
effective potential contains temperature-dependent ultraviolet divergences. However,
as follows from the calculations, these divergences becometemperature-independent
at the minimum. These temperature-dependent divergences make renormalization of
the effective potential outside the minimum impossible because itwill require a renor-
malization prescription which is different for every temperature. Such a prescription
would lead to arbitrary temperature dependence and hence ismeaningless.

At first sight it might seem surprising that these temperature-dependent ultraviolet
divergences arise at all, since one expects that temperature cannot influence the ul-
traviolet behavior of a theory due to the exponential suppression of high-momentum
modes of finite temperature contributions. To see why it is nevertheless possible that
an effective potential can have temperature-dependent divergences outside its mini-
mum, consider as an example the O(N) linear sigma model defined in Eq. (3.19). For
other models the argument is similar. The effective action of the O(N) linear sigma
model expressed in terms of the auxiliary field,Seff [α] is given in Eq. (3.23). The
effective action in the presence of a space-time independent sourceiJ for α is defined
by

Seff [J, α] = Seff [α] + iJ
∫ β

0
dτ

∫

d3xα(x) . (3.24)

The quantityZ[J]T is defined here as the partition function of the theory with action
Seff [J, α] at temperatureT. Now logZ[J = 0]T/βV is equal to the pressure of the
linear sigma model. One therefore expects that this quantity should be well-defined
and that it contains no temperature-dependent divergences. So one can assume that
logZ[0]T does not contain temperature-dependent divergences. As a result, logZ[J]T ,
contains also no temperature-dependent divergences as long as J is independent of
temperature. The reason for this is that since bothJ and f 2

π,b are proportional toα in

the Lagrangian density, any sourceJ can be incorporated inf 2
π,b by the redefinition

N f2
π,b/2+ J→ N f2

π,b/2.
The effective potential in the minimum is equal to logZ[0]T . On dimensional

grounds, the divergences of the minimum of the effective potential should depend on
fπ,b. For example in Chapter 6 it is found that the effective potential contains terms
proportional to the divergent factorΛ2 f 2

π,b, whereΛ is an ultraviolet momentum cut-

off. Since anyJ can be incorporated inf 2
π,b, varying J will change the divergences of

logZ[J]T . Hence the divergences of logZ[J]T will depend onJ.

1This section is based on:Thermodynamics of the O(N) non-linear sigma model through next-to-
leading order in1/N, H.J. Warringa, proceedings of the SEWM 2004 meeting, WorldScientific (2005).
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The effective potential is given byV(m2) = logZ[J]T/βV − Jm2, whereᾱ =
im2 is the vacuum expectation value of theα field. That this vacuum expectation
value is purely imaginary is proved in Chapter 4. In the expression for the effective
potential, J is defined implicitly, sinceJ is the source term which gives theα field
the vacuum expectation valueim2. If the temperature is varied, the implicitly defined
J has to change in order to keep the vacuum expectation value oftheα field fixed to
im2. Therefore the implicitly definedJ has to depend on temperature. In the previous
paragraph it was argued that the divergences of logZ[J]T depend onJ. Since logZ[J]T

is part of the effective potential, the divergences of the effective potential will depend
on temperature for any non-zeroJ.

As is shown in Eq. (3.10), the source termJ vanishes at an extremum of the effec-
tive potential. This holds for any temperature. So using thearguments in the previous
paragraphs temperature-dependent divergences do not arise at the minimum of the ef-
fective potential, but only outside the minimum. Since physical quantities like the
pressure, entropy density and energy density are to be calculated at the minimum of
the effective potential they do not suffer from the renormalization problems caused by
temperature-dependent divergences.



Chapter 4

Thermodynamics of the nonlinear sigma model in
d=1+1

The thermodynamics of the O(N) nonlinear sigma model is studied in this chapter in
the 1/N approximation. The effective potential, from which one can derive thermo-
dynamical quantities, will be calculated to next-to-leading order in 1/N. It is found
that the effective potential contains temperature-dependent divergences which become
independent of temperature at the minimum. As a result it turns out that the effective
potential can only be renormalized meaningfully at the minimum, hence thermody-
namical quantities which are obtained at the minimum, can berendered finite consis-
tently. The renormalized pressure will be calculated to next-to-leading order in 1/N.
Furthermore in intermediate steps of the calculation, thermal infrared renormalons
are encountered which potentially can give rise to ambiguities in the end result. It
will be shown that the correctly renormalized pressure is free from these ambigui-
ties. This chapter is based on:Thermodynamics of the O(N) nonlinear sigma model in
(1+1)-dimensions,J.O. Andersen, D. Boer and H.J. Warringa, Phys. Rev.D69076006,
(2004).

4.1 Introduction

The O(N) nonlinear sigma model in 1+ 1 dimensions has been studied extensively
at zero temperature as a toy model for QCD. It is a scalar field theory which classi-
cally is scale invariant. Due to renormalization of the quantum corrections a scale is
introduced. As was shown by Polyakov (1975) the nonlinear sigma model is asymptot-
ically free like QCD. It is renormalizable both perturbatively and in the 1/N expansion.
Moreover, as is discussed in more detail in Chapter 5, it contains instanton solutions
for N = 3 only. In that chapter it is also shown that the O(3) nonlinear sigma model is
equivalent to theCP1 model.

Unlike the nonlinear sigma model in more than two dimensions, where the theory
is no longer renormalizable, there is no spontaneous symmetry breaking of the global
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O(N) symmetry for any value of the coupling constant. This reflects the theorem of
Mermin and Wagner (1966) and Coleman (1973), which forbids spontaneous break-
down of a continuous symmetry in a homogeneous system in one spatial dimension at
any temperature. The nonlinear sigma model suffers from infrared divergences in per-
turbation theory, because the scalar fields remain masslessin that case. It was conjec-
tured by Elitzur (1983)1 and shown by David (1981) that the infrared divergences can-
cel in O(N)-invariant correlation functions. However, like in QCD, anon-perturbative
mass-gap is generated dynamically due to the interactions.In contrast to QCD where
the spontaneous breakdown of chiral symmetry breakdown is responsible for non-zero
masses, the non-vanishing mass of the scalar fields in the nonlinear sigma model is not
related to symmetry breaking. In the large-N limit, which is equivalent to summing
all so-called daisy and super-daisy graphs (see Chapter 3),it turns out that the mass
at zero temperature is given bym = µ exp (−2π/g2), whereg is the coupling constant
andµ is the renormalization scale. The mass is non-analytic ing which explains that
it vanishes in perturbation theory.

Dine and Fischler (1981) have investigated the nonlinear sigma model in 1+ 1 di-
mensions at finite temperature. They calculated the free energy in perturbation theory
and to leading order in the large-N limit. In the weak-coupling expansion, they showed
that the two-loop contribution to the ideal gas vanishes andthat the three-loop contri-
bution is infrared finite. In this chapter the analysis of Dine and Fischler (1981) will
be extended to next-to-leading-order (NLO) in the 1/N expansion. To obtain the ther-
modynamical quantities the effective potential will be calculated. At zero temperature,
the effective potential (or equivalently the Gibbs free energy) has been investigated at
this order by Root (1974) and Biscariet al. (1990).

There are several reasons to calculate the 1/N corrections to the thermodynam-
ics. Since the nonlinear sigma model is one of the few field theories in which non-
perturbative calculations can be done (partly) analytically, it is very useful to check
whether the 1/N expansion is converging. Furthermore renormalization at finite tem-
perature is non-trivial, since next to the renormalizationscale an additional scale is
introduced. Normally one expects that the ultraviolet behavior of a theory will not de-
pend on temperature because the high-momentum modes of thermal contributions are
exponentially suppressed due to the Bose-Einstein distribution factor. However, it is
found that the next-to-leading order effective potential contains temperature dependent
divergences. Fortunately it turns out that the effective potential can still be renormal-
ized at the minimum, but it then contains an ambiguity which is related to a so-called
infrared renormalon (David, 1982). It will be shown that this ambiguity vanishes when
calculating the pressure.

It was shown by David (1982) that the 1+ 1 dimensional nonlinear sigma model
contains infrared renormalons. Renormalons (see Beneke (1999) for a review) give
rise to ambiguities in resummming a perturbative series in the coupling constantg.

1This article was submitted in 1978.
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The size of these ambiguities may give insight in the importance of non-perturbative
corrections. In QCD these infrared renormalons appear as well, which in principle
might teach us about the size of non-perturbative physics inQCD. Because the O(N)
nonlinear sigma model can be accessed both non-perturbatively (via the 1/N expan-
sion) and perturbatively (in an expansion ing) the nonlinear sigma model is widely
used (David, 1984, 1986; Benekeet al., 1998) to study these infrared renormalons. In
this chapter such ambiguities are encountered when calculating the effective potential.
However it turns out that they vanish when calculating the pressure. Furthermore it is
investigated how these renormalons depend on temperature.It is found that thermal
infrared renormalons in the nonlinear sigma model are independent of temperature at
the minimum of the effective potential, however outside the minimum the renormalon
residue become temperature-dependent while the position of the renormalon pole is
not affected by temperature. Thermal renormalons have been studied before by Loewe
and Valenzuela (2000) inφ4 theory in 3+1 dimensions. In this theory, one deals with
ultraviolet renormalons only and thus it resembles QED rather than QCD. They found
that the residues of the ultraviolet renormalon poles in theBorel plane are temperature-
dependent while the position of the poles are not.

The Gross-Neveu model, which is a 1+1 dimensional toy model which includes
also fermions was recently studied by Blaizotet al.(2003) at finite temperature to next-
to-leading order in the 1/N expansion as well. While there are similarities between
this model and the nonlinear sigma model, such as dynamical mass generation and
asymptotic freedom, no problems related to renormalization of the effective potential
was encountered by Blaizotet al. (2003).

This chapter is organized as follows. In Sec. 4.2 the Lagrangian density of the
nonlinear sigma model will be given. Thereafter, in Sec. 4.3it will be discussed how
the pressure could in principle be obtained by a weak-coupling constant expansion.
Sec. 4.4 is devoted to the calculation of the effective potential to next-to-leading order
in 1/N. The zero-temperature case will be discussed first, after which the derivation
of the finite temperature effective potential will follow. In Sec. 4.5 the pressure for the
O(N) nonlinear sigma model will be presented. Some approximations for the pressure
at high temperatures will be discussed in Sec. 4.6. Thermal infrared renormalons are
investigated in Sec. 4.7. A summary and conclusions are given in Sec. 4.8.

4.2 The nonlinear sigma model

The nonlinear sigma model is a scalar field theory with an O(N) symmetry. It is de-
scribed by a Lagrangian density which only consists of a kinetic term and a constraint

L = 1
2
∂µφi∂

µφi , φi(x)φi (x) = N/g2
b , i = 1 . . .N , (4.1)

wheregb is the bare coupling constant. The constraint forces the fields to live on
a N − 1-dimensional hypersphere, which causes the interactionsbetween the fields.
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Sincegb has no dimension ind = 1+ 1, the nonlinear sigma model is renormalizable.
As one can see from Eq. (4.1), the classical O(N) nonlinear sigma model is scale
invariant. Due to renormalization of the quantum corrections a scaleµ is introduced in
the theory. As will be shown explicitly in Sec. 4.4, the O(N) nonlinear sigma model is
asymptotically free. ForN = 2 the nonlinear sigma model is a free field theory. This
can be seen by choosingφ1 =

√
2 cos(ϑ)/gb andφ2 =

√
2 sin(ϑ)/gb. The constraint is

satisfied automatically by this choice, and the Lagrangian density turns into

L = 1

g2
b

(∂µϑ)2 , (4.2)

which is the Lagrangian density of a free field theory.
Thermodynamical quantities of the nonlinear sigma model can be derived from the

partition function which is given by

Z =
∫ N

∏

i=1

Dφi

∏

x

δ
(

N/g2
b − φiφi

)

exp

[

−
∫ β

0
dτ

∫

dxL
]

, (4.3)

In the following section thermodynamics in the weak-coupling expansion will be dis-
cussed. The remaining sections of this chapter will deal with the non-perturbative 1/N
approach.

4.3 Thermodynamics in the weak-coupling expansion

The weak-coupling expansion can be performed by writing thescalar fields asφ =
(π1, π2, . . . , πN−1, σ). Due to the constraint it holds thatσ2 = N/g2

b − πiπi with i =
1 . . .N − 1. Integrating over theσ field results in the following partition function

Z =
∫ N−1

∏

i=1

Dπi

∏

x

ϑ
(

N/g2
b − πiπi

)

exp

[

−
∫ β

0
dτ

∫

dxLeff(π)

]

, (4.4)

whereϑ(x) is the step function. This step function reflects the fact that due the original
constraint on theφ fields,πiπi never can be larger thanN/g2

b. The effective Lagrangian
densityLeff can be found by inserting the expression forσ in terms ofπ in the original
Lagrangian density. As a result one finds

Leff(π) =
1
2
∂µπi∂

µπi +
g2

b

2

(πi∂µπi)2

N − g2
bπiπi

− 1
2
δ2(0) log

(

N/g2
b − πiπi

)

, (4.5)

where the term proportional toδ2(0) arises from integration over the delta function
δ(N/g2

b − φiφi).
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For small values ofg2
b theϑ(x) function is only vanishing whenπ(x) is large. Since

large values ofπ give a small contribution to the partition function one can approximate
ϑ(N/g2

b − πiπi) ≈ 1 which gives

Z ≈
∫ N−1

∏

i=1

Dπi exp

[

−
∫ β

0
dτ

∫

dxLeff(π)

]

. (4.6)

If g2
b = 0 it can be seen fromLeff that the nonlinear sigma model containsN − 1 non-

interactingπ fields. Hence the leading contribution to the pressure of thenonlinear
sigma model is that of a gas ofN − 1 non-interacting scalar fields which is

P = −N − 1
2
∆

∫

K
log(K2) = (N − 1)

π

6
T2 . (4.7)

Using the effective Lagrangian density Eq. (4.5), Dine and Fischler (1981) showed
that the orderg2

b correction to the pressure vanishes. In their calculation,effects of the
step-function were not taken into account. However, using the the 1/N expansion, one
does find corrections to the free pressure as will be discussed in detail in the following
sections.

4.4 The effective potential

By introducing an auxiliary scalar fieldα, the constraint on theφ fields can be ex-
pressed in terms of a path integral over theα fields in the following way

∏

x

δ
(

φiφi − N/g2
b

)

= C
∫

Dαexp

[∫

x

i
2
α
(

φiφi − N/g2
b

)

]

, (4.8)

whereC is a temperature andgb independent normalization constant. As a result one
finds the following Lagrangian density which is equivalent to the original nonlinear
sigma model Lagrangian density

L = 1
2
∂µφi∂

µφi −
i
2
α(φiφi − N/g2

b) + Jiφi , (4.9)

where Ji is a source term for the scalar field. It is useful to keep this source term
for a moment in order to determine the scalar field propagator. By calculating this
propagator to next-to-leading order in 1/N one can determine the physical mass of the
scalar field to next-to-leading order. Any renormalizationprescription should give rise
to a finite physical mass. The expression for the physical mass will be used later in
order to renormalize the so-called gap equation to next-to-leading order in 1/N.

Using the auxiliary field method the Lagrangian density becomes quadratic in the
scalar fields. Therefore one can perform the integral over these fields. This yields the
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following exact expression for the partition function of the nonlinear sigma model

Z =
∫

Dαexp(−Seff) , (4.10)

where the effective action is given by (Novikovet al., 1984)

Seff =
N
2

Tr log
(

−∂2 − iα
)

+ i
N

2g2
b

∫

x
α +

1
2

∫

x

∫

y
Ji(x)〈x| 1

−∂2 − iα
|y〉Ji(y) . (4.11)

In the last expression the trace is over a complete set of functions that satisfy the
boundary conditions for scalar fields at finite temperature.

The vacuum expectation value of theα field, 〈α〉 is purely imaginary since from
Seff(α)∗ = Seff(−α) and changing the integration overα to −α it follows that

〈α〉∗ =
∫

Dααexp [−Seff(−α)] = −
∫

Dααexp [−Seff(α)] = − 〈α〉 . (4.12)

It is very likely that (in absence of a source term) the vacuumexpectation value ofα is
space-time independent because the Euclidean space is homogeneous. The auxiliary
field α can be written as the sum of its complex vacuum expectation value im2 and a
quantum fluctuating field ˜α

α = im2 + α̃/
√

N . (4.13)

PuttingJ = 0 and expanding the effective action around the vacuum expectation value
of α gives

Seff =
N
2

Tr log(−∂2 +m2) − Nm2

2g2
b

βV − i
√

N
2

Tr

(

1
−∂2 +m2

α̃

)

+
1
4

Tr

(

1

−∂2 +m2
α̃

)2

+ O(1/
√

N) . (4.14)

The last equation shows that ˜α n-point vertices are suppressed by powers of 1/
√

N.
This is of course due to the definition of ˜α in Eq. (4.13). This definition is convenient
since now one immediately sees from the vertices that higherloop diagrams are sup-
pressed. One could of course choose another definition, for example,α = im2 + α̃.
Then the same conclusions would follow, since in that case the α̃ propagator has an
additional suppressing factor of 1/N. Inserting a plane wave basis in Eq. (4.14) results
in

Seff

βV
=

N
2
∑

∫

P
log

(

P2 +m2
)

− Nm2

2g2
b

+
√

N × terms linear in ˜α

+
1
2
∑

∫

P
α̃(P)Π(P,m)α̃(P)∗ + O(1/

√
N) , (4.15)
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where the terms linear inα were not written down since these terms (tadpoles) do not
contribute to the effective potential as explained in Chapter 3. The inverse ˜α propagator
is equal to

Π(P,m) =
1
2
∑

∫

Q

1

Q2 +m2

1

(P+ Q)2 +m2
. (4.16)

As discussed in more detail in Chapter 3, the effective potentialV(m2) can be obtained
by integrating over the quantum fluctuations ˜α. The leading term of this effective
potential proportional toN stems from the classical action. The next-to-leading order
term is originating from the Gaussian integral over the quantum fluctuations ˜α. The
remaining contributions are of order 1/N, since one needs at least two three-point
vertices (which are proportional to 1/

√
N) to form a closed diagram. Choosing the

sign of the effective potential in such a way that the pressure is equal to the minimum
of the effective potential one obtains

V = Nm2

2g2
b

− N
2
∑

∫

P
log

(

P2 +m2
)

− 1
2
∑

∫

P
logΠ(P,m) + O(1/N) . (4.17)

The φ field propagator can be found by differentiating Eq. (4.11) twice with re-
spect to the sourcesJ and expandingα around its vacuum expectation value. If one
then keeps terms to next-to-leading order in 1/N and inserts the wave function renor-
malization factorZφ one finds that the scalar propagator in momentum space equals

Dφ(P,m) =
Zφ

P2 +m2 − 1
NΣ(P,m)

, (4.18)

where the self-energy is equal to

Σ(P,m) =
∑

∫

Q

1

(P+ Q)2 +m2

1
Π(Q,m)

. (4.19)

It is important to keep in mind thatm2 is the vacuum expectation value of the
α field. This vacuum expectation value can be found by minimizing the effective
potential with respect tom2. Since the effective potential is ultraviolet divergent and
the renormalization of the nonlinear sigma model is non-trivial, the zero temperature
case will be discussed separately in the following subsection. Thereafter, the finite
temperature effective potential will be investigated.

The effective potential at zero temperature

At zero temperature one can obtain analytic results for the effective potential. The
sum over Matsubara modes changes into an integration over momentum. The effective
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potentialV to next-to-leading order in the 1/N expansion is at zero temperature given
by

V = Nm2

2g2
b

− N
2

∫

d2P

(2π)2
log

(

P2 +m2
)

− 1
2

∫

d2P

(2π)2
logΠ(P,m) . (4.20)

It follows after integration over momenta thatΠ(P,m), which is the inverse ˜α propa-
gator, at zero temperature equals (see for example Novikovet al. (1984))

Π(P,m) =
1

4π
√

P2
√

P2 + 4m2
log















√
P2 + 4m2 +

√
P2

√
P2 + 4m2 −

√
P2















. (4.21)

The integrals integrals in Eq. (4.20) will be evaluated using an ultraviolet momentum
cutoff Λ. For that one needs the following integral

∫

d2P

(2π)2
log log















√
P2 + 4m2 +

√
P2

√
P2 + 4m2 −

√
P2















=
m2

4π

∫ X

1
dt

(

1− 1

t2

)

log log(t)

=
m2

4π

(

[

t log log(t) − li ( t)
]

∣

∣

∣

X

1 +
[

t log log(1/t) − li ( t)
]

∣

∣

∣

1/X
1

)

, (4.22)

where

X =

√
Λ2 + 4m2 +

√
Λ2

√
Λ2 + 4m2 −

√
Λ2

, (4.23)

and li(x) is the logarithmic integral

li( x) = P
∫ x

0
dt

1
log(t)

. (4.24)

HereP indicates a principal-value prescription for the integral. Since the integrand of
the logarithmic integral has a pole att = 1, a prescription to evaluate the integral is
necessary. This prescription is the source of the renormalon ambiguity discussed in
Sec. 4.7. For example the logarithmic integral in the±iǫ prescription

li ±(x) =
∫ x

0
dt

1
log(t) ± iǫ

, (4.25)

differs from the logarithmic integral using the principal valueprescription, that is
li ( x) = li ±(x) ± iπ.

Using that limx→1[ li ( x) − x log log(x)] = γE, whereγE is the Euler-Mascheroni
constant, and after dropping divergences that arem-independent in the limitΛ2→ ∞,
one obtains

V = Nm2

2g2
b

− Nm2

8π

(

1+ log
Λ2

m2

)

− 1
8π

[

(

Λ2 + 2m2
)

log log

(

Λ2

m2

)

−m2li

(

Λ2

m2

)

+ 2m2
(

γE − 1− log

(

Λ2

4m2

))]

. (4.26)
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As one can see from Eq. (4.26), the effective potential is highly ultraviolet divergent.
Its divergences can be removed by renormalization. One way to do this is by adding
or subtracting infinite,m-independent constants. This merely shifts the whole effec-
tive potential, but since relative energy differences will not change this does not have
physical effects. This subtraction is already performed in Eq. (4.26) but does not
remove all divergences. Another possibility to remove divergences is to absorbm-
independent infinite constants in a redefinition of the coupling constantgb. However,
this still leaves two divergences in Eq. (4.26). The only possibility to renormalize the
termΛ2 log log(Λ2/m2) would be to subtract anm-dependent infinite constant since
limΛ→∞Λ2 log log(Λ2/m2) − Λ2 log log(Λ2/µ2) is still divergent if µ2

, m2. The
m2li(Λ2/m2) term has the same problem. This divergence should be absorbed into
the coupling constant since it is proportional tom2. But there does not exist a single
m-independent function which can be subtracted from li(Λ2/m2) to obtain a finite re-
sult in the limitΛ → ∞. So it seems that the effective potential is not renormalizable,
unlessm-dependent and potentiallyT-dependent counter terms are introduced.

Moreover, subtracting theΛ2 log log(Λ2/m2) −m2 li (Λ2/m2) term as is done for
instance by Biscariet al. (1990) forT = 0, gives rise to another problem. This term is
called the perturbative tail and does not arise in dimensional regularization suggesting
that this subtraction is the correct thing to do. But if one would calculate the effec-
tive potential using dimensional regularization one wouldfind a±iπ ambiguity instead
(David, 1984) depending on whether the limitǫ ↓ 0 or ǫ ↑ 0 is taken. This ambi-
guity is the same as the renormalon ambiguity mentioned above due to the choice of
prescription in the logarithmic integral. In Sec. 4.5 it is shown that the perturbative
tail and its accompanying ambiguity cancel when calculating the pressure which is the
minimum of the effective potential at finite temperature minus the minimum of the
effective potential at zero temperature.

To obtain physical quantities like the mass of the scalar fields and the pressure, one
has to evaluate the effective potential at its minimum. The condition for the minimum
is given by the equation

∂V
∂m2

= 0 . (4.27)

Equation (4.27) is often referred to as a gap equation, sincesolving this equation de-
termines in leading order the gap in the excitation spectrumat zero spatial momentum
or equivalently the mass of the scalar particles. Differentiating the effective potential
with respect tom2, Eq. (4.26), one obtains the gap equation which reads

4π

g2
b

=

(

1− 2
N

)

log

(

Λ2

m2

)

+
1
N

[

2 log log

(

Λ2

m2

)

− li

(

Λ2

m2

)

+ 2γE + 4 log 2

]

. (4.28)

This gap equation still contains the problematic divergence proportional to li(Λ2/m2).
But unlike the effective potential, the gap equationcanbe renormalized. For that the
gap equation has to be expressed in terms of the finite physical massmφ.
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The physical massmφ of the scalar fields follows from the pole of theφ propagator,
Eq. (4.18), at zero spatial momentum in Minkowski space. To calculate this propaga-
tor to next-to-leading order the self-energy, Eq. (4.19), has to be evaluated. At zero
temperature this self-energy can be simplified by integrating over angles, resulting in

Σ(P,m) =
1
2π

∫ Λ

0
dQ

1

[(P2 + Q2 +m2)2 − 4P2Q2]1/2

1
Π(Q,m)

. (4.29)

Since the expression for the propagator, Eq. (4.18), is in Euclidean space-time, one
has to analytically continue the propagator to Minkowski space to obtain the physical
mass. Because the self-energy only depends onP2 as one can see from Eq. (4.29),
continuation to Minkowski space boils down to replacing theEuclidean two-vectorP2

by the Minkowskian two-vector−p2. Neglecting terms of order 1/N2, the physical
massmφ yields (Flyvbjerg, 1990),

m2
φ = m2 − 1

N
Σ(P,m)|P2=−m2

φ
= m2 +

m2

N
li

(

Λ2

m2

)

. (4.30)

Solving Eq. (4.30) form2 results in

m2 = m2
φ −

m2
φ

N
li















Λ2

m2
φ















. (4.31)

Since the physical massmφ should be finite, it follows from Eq. (4.31) thatm2, which
is the vacuum expectation value of theα field, receives divergent contributions due to
the quantum fluctuations at next-to-leading order in 1/N.

Expressing the gap equation (4.28) in terms of the finite physical massm2
φ, using

Eq. (4.31) gives

4π

g2
b

=

(

1− 2
N

)

log















Λ2

m2
φ















+
2
N















log log















Λ2

m2
φ















+ γE + log 4















. (4.32)

Because limΛ→∞[log log(Λ2/m2
φ) − log log(Λ2/µ2)] = 0, the gap equation can now be

renormalized. Making the substitutiong2
b→ Zg2g2 with g2 = g2(µ) and

Z−1
g2 = 1+

g2

4π

(

1− 2
N

)

log
Λ2

µ2
+

1
N

g2

2π
log log

Λ2

µ2
, (4.33)

one obtains the renormalized gap equation which reads

4π

g2(µ)
=

(

1− 2
N

)

log
µ2

m2
φ

+
2
N

(

γE + log 4
)

. (4.34)
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The expression Eq. (4.33) forZ−1
g2 is exact ing2(µ) up to order 1/N2 corrections and

results in the known next-to-leading orderβ-functions as calculated by Rim and Weis-
berger (1984), Orloff and Brout (1986) and Biscariet al. (1990)

β(g2
b) = Λ

dg2
b

dΛ
= −

(

1− 2
N

)

g4
b

2π















1+
1
N

g2
b

2π















, (4.35)

β(g2) = µ
dg2

dµ
= − g4

2π

(

1− 2
N

)

. (4.36)

The negative sign in front of theβ-functions shows that the nonlinear sigma model is
indeed asymptotically free. The next-to-leading order beta function gives already the
correct result forN = 2 because for a free theory the beta function vanishes. This is an
indication that the 1/N expansion in the nonlinear sigma model might work well down
to low values ofN. Solving the renormalized gap equation (4.34) for the physical mass
mφ gives

m2
φ = µ

2 exp

{

−
[

4π

g2
− 2

N
(

γE + log 4
)

]

/

(

1− 2
N

)}

. (4.37)

This equation illustrates the need for the non-perturbative approach, since the physical
mass turns out to be non-analytic in the coupling constant. For N = 2 this gives a zero
physical mass, reflecting the fact that the O(2) nonlinear sigma model is a free field
theory.

Using the gap equation, one can obtain the value of the effective potentialV(m2) at
the minimum which will be denoted byVT=0(m2

0), wherem0 = mφ given by Eq. (4.37).
In terms of bare quantities, one finds

VT=0(m2
0) = − (N − 2)

m2
0

8π
− 1

8π
Λ2 log

4π

g2
b

. (4.38)

In contrast to the effective potential as a function ofm2, this equation shows that the
effective potential at the minimum can be renormalized. It is expressed in terms of
a finite mass which can be found by solving the renormalized gap equations. The
quadratic divergence that is left in the minimum of the effective potential can be re-
moved by a subtraction. However, as explained before this term is ambiguous, it
would differ by a constantiπ if a different prescription is used. The expression for
the minimum of the effective potential at zero temperature will be subtracted from the
minimum of the effective potential at finite temperature in order to obtain a finite pres-
sure which is moreover unambiguous. As is shown in Sec. 4.5 this ambiguity can be
removed without renormalizing the effective potential as well.

For completeness, the wave-function renormalization factor of the scalar fields will
be derived in this paragraph. The wave-function renormalization constantZφ follows
from requiring that the pole of the propagator has a residue equal to unity. This implies
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that

Zφ = 1− 1
N

dΣ(P,m)

dP2

∣

∣

∣

∣

∣

P2=−m2
φ

= 1+
1
N

log log

(

Λ2

µ2

)

. (4.39)

The wave-function renormalization Eq. (4.39) is in accordance with that obtained
by Flyvbjerg (1990). Rim and Weisberger (1984) have calculated the wave-function
renormalization constant in dimensional regularization.Their result also agrees with
Eq. (4.39) upon identifying log(Λ2/µ2)→ 2/ǫ whered = 2− ǫ.

The effective potential at finite temperature

The results at zero temperature are obtained analytically,but at finite temperature this
is in general not possible. Therefore, numerical methods will be applied to calculate
thermodynamical quantities. However, it is still possibleto isolate the ultraviolet di-
vergences analytically and discuss the renormalization atfinite temperature without
the need for numerical evaluation.

The effective potential through next-to-leading order in 1/N can be written as
V(m2) = NVLO(m2) +VNLO(m2) where

VLO =
m2

2g2
b

− 1
2
∑

∫

P
log

(

P2 +m2
)

, VNLO = −
1
2
∑

∫

P
logΠ(P,m) . (4.40)

After summing over Matsubara modes and subtracting divergent m- andT-independent
terms one obtains in the limitΛ→ ∞ for the leading order effective potential

VLO =
m2

2g2
b

− m2

8π

(

1+ log
Λ2

m2

)

+
1
8π

T2J0(βm) , (4.41)

where

J0(βm) =
8

T2

∫ ∞

0

dq q2

ωq
n(ωq) . (4.42)

Hereωq =
√

q2 +m2 and n(x) = [exp(βx) − 1]−1 is the Bose-Einstein distribution
function.

To calculate the next-to-leading order contribution to theeffective potential one
needs to know the inverse ˜α propagatorΠ(P,m) at finite temperature which is de-
fined in Eq. (4.16). Summing over Matsubara frequencies and averaging over angles,
Π(P,m) reduces to

Π(P,m) =
1

4π
√

P2
√

P2 + 4m2
log















√
P2 + 4m2 +

√
P2

√
P2 + 4m2 −

√
P2















+ ΠT(P,m) . (4.43)

where

ΠT(P,m) =
1
2π

∫ ∞

−∞

dq
ωq

P2 + 2pq

(P2 + 2pq)2 + 4p2
0ω

2
q
n(ωq) . (4.44)
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Figure 4.1: The functionF1/T2 as a function ofβm. This function contributes to the
next-to-leading order finite temperature effective potential.

This expression cannot be simplified further. It shows that the inverse ˜α propaga-
tor Π(P,m) is temperature-dependent and ultraviolet finite. The next-to-leading order
contribution to the effective potential is not finite though.

The next-to-leading order contribution to the effective potential can be written as

VNLO = −
1
2

(D1 + D2 + F1 + F2) , (4.45)

whereD1 andD2 contain divergences andF1 andF2 are finite terms. As explained in
Sec. 2.5 and as verified numerically, the quantity

F1 ≡ ∆
∫

P
logΠ(P,m), (4.46)

is finite since its integrand is suppressed by a Bose-Einstein like distribution factor.
To calculateF1 a modified Abel-Plana formula (see Sec. 2.5) was used. The function
F1/T2 depends onβmonly and is displayed in Fig. 4.1. As is discussed in more detail
in Sec. 4.6 limm→0 F1(m) = π/3T2 which can also be seen from Fig. 4.1. The limit of
βm→ ∞ is equivalent to fixingm and takingT → 0. In this limit F1 should vanish
because it is the difference of a finite temperature and zero temperature contribution.

BecauseF1 is finite all divergences of the next-to-leading order effective potential
arise from

∫

d2P

(2π)2
logΠ(P,m) . (4.47)
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The nonlinear sigma model only contains ultraviolet divergences. It is infrared finite
since the massm is non-vanishing. Therefore, in order to isolate the divergences in
Eq. (4.47) one has to consider the limit of momenta large compared toT. Due to
the suppression by the Bose-Einstein distribution function of high momentum modes,
only internal momentaq’s up to orderT contribute toΠT(P,m). Hence, if the external
momentaP are much larger thanT one can neglect factors ofq compared to factors
of P in the high-momentum limit. In this way one can approximate the inverse ˜α
propagator as follows

ΠT(P,m) ≈ 1
4π

P2

P4 + 4m2p2
0

J1 , (4.48)

where

J1(βm) = 4
∫ ∞

0

dq
ωq

n(ωq) . (4.49)

In order to split off the prefactor in front of the logarithm of the zero temperature part
of Π(P,m), it is useful to writeΠ(P,m) as

Π(P,m) ≡ 1
4π

1
√

P2 (

P2 + 4m2)
Π̃(P,m) . (4.50)

The factor
√

P2(P2 + 4m2) gives the following divergent contribution to the free en-
ergy

D1 = −
1
2

∫

d2P

(2π)2
log

(

P2 + 4m2
)

= −m2

2π

[

1+ log

(

Λ2

4m2

)]

. (4.51)

The divergent termD1 is temperature independent. Hence it is also contained in the
effective potential at zero temperature as can be verified from Eq. (4.26). The other
divergent termD2 and the finite termF2 can be found by calculating

∫

d2P

(2π)2
log Π̃(P,m) = D2 + F2 . (4.52)

In order to isolate the divergent termD2, one needs the large-P behavior ofΠ̃(P,m)
which by using Eq. (4.48) is found to be

Π̃(P,m) ≈ Π̃HM(P,m) = log

(

P2

m2

)

+
2m2

P2
(1+ J1) −

4m2p2
0

P4
J1 + O

(

m4

P4

)

, (4.53)

where HM stands for high-momentum approximation. By integrating logΠ̃HM(P,m)
over momentum it is found that the divergent termD2 is given by

D2 =
1
4π

[

Λ2 log log

(

Λ2

m̄2

)

− m̄2 li

(

Λ2

m̄2

)]

+
m2

2π
log log

(

Λ2

m̄2

)

, (4.54)
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herem̄2 ≡ m2 exp[−J1(βm)]. In the limit of zero temperature it can be seen that the
divergenceD2 coincides with the divergences found in the effective potential at zero
temperature, Eq. (4.26). Since ¯m2 depends explicitly on temperature, Eq. (4.54) shows
that the next-to-leading order effective potential contains temperature dependent diver-
gences. This seems surprising since one expects that scalesat which finite temperature
are important are much smaller than the ultraviolet cutoff. As a result, ultraviolet diver-
gences should be independent of temperature. In Sec. 3.4 a general argument is given
why theseT-dependent divergences arise. Hence apart from problems atzero temper-
ature discussed in the previous subsection, it even becomesimpossible to renormalize
the effective potential in a temperature independent way. But, as will be discussed in
the next section, these problems disappear at the minimum ofthe effective potential.

The finite functionF2 defined in Eq. (4.52) is the difference of two divergent quan-
tities. Due to the finite machine precision the maximal reachable accuracy of the dif-
ference would be rather small if the divergent quantities are calculated separately. It is
therefore better to writeD2 partly in terms of an integral in the following way

D2 = P
∫

d2P

(2π)2
log log

(

P2

m̄2

)

+
m2

2π
log log

(

Λ2

m̄2

)

. (4.55)

The last equation can be used to writeF2 in terms of an integral and a very slowly
diverging term.

F2 = P
∫

d2P

(2π)2
log

[

Π̃(P,m)
log

(

P2/m̄2)

]

− m2

2π
log log

(

Λ2

m̄2

)

. (4.56)

To calculateF2 numerically, the integral in Eq. (4.56) was evaluated up to acutoff
Λ. Then for increasing values ofΛ, F2 was calculated until convergence to a finite
number was found. This convergence indicates that by the method discussed above
indeed all divergences were isolated. In the limit of zero temperature it can be seen
from Eq. (4.26) thatF2 = m2γE/2π. It is convenient to subtract this zero temperature
contribution fromF2 in order to defineF̃2 as

F̃2 = F2 −
m2

2π
γE . (4.57)

The functionF̃2/T2 is a function ofβm and is displayed in Fig. 4.2. In Sec. 4.6 it is
shown that for smallβm, F2 → 0. Consequently,̃F2 → 0 in agreement with Fig. 4.2.
For large values ofβm, which implies low temperatures,̃F2 → 0. This is because in
the definition ofF̃2 the zero temperature contribution is subtracted.

Putting everything together, the finite temperature effective potential becomes

V = Nm2

2g2
b

− Nm2

8π

[

1+ log

(

Λ2

m2

)]

+
N
8π

T2J0 −
1
2

(F1 + D1 + F2 + D2) . (4.58)



66 Thermodynamics of the nonlinear sigma model in d=1+1

βm

F̃2

T2

20151050

0.3

0.2

0.1

0

-0.1

Figure 4.2: The functioñF2/T2 as a function ofβm. This function contributes to the
next-to-leading order finite temperature effective potential.

The gap equation (4.27) at nonzero temperature is

4π

g2
b

= log

(

Λ2

m̄2

)

+
1
N

[

2 log log

(

Λ2

m̄2

)

− dm̄2

dm2
li

(

Λ2

m̄2

)

−2 log

(

Λ2

4m2

)

+ 4π
d(F1 + F2)

dm2

]

. (4.59)

From the fact thatg2
b is temperature independent, one can conclude that ¯m2 is also tem-

perature independentat leading orderin the 1/N expansion, when it is a solution to
the gap equation. This will be used later on to conclude that the pressure can be renor-
malized in a temperature-independent way. The renormalization of the gap-equation at
finite temperature proceeds analogously to the zero-temperature case discussed in the
previous subsection. To remove the problematic li divergence the gap equation will,
like was done in the zero temperature case, be expressed in terms of the physical mass
mφ at finite temperature. This mass can be obtained by finding thepole of the finite
temperatureφ field propagator, Eq. (4.18), analytically continued to Minkowski space.
Here the finite temperature physical mass will be defined as the pole of the propagator
at p0 = 0 andp2 = −m2

φ. It is found that

m2 = m2
φ −

m̄2
φ

N
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, (4.60)
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Figure 4.3: The function10 log(βmφ) as a function ofT, for different values ofN.

wherem̄φ = mφ exp[−J1(βmφ)] andF3 is a finite function that depends on the temper-
ature as well asmφ. Sincemφ is merely used as a way to express the renormalized gap
equation in terms of finite quantities, any choice ofF3 will do and we chooseF3 = 0.
It was checked numerically that other choices indeed do not alter the final result for the
pressure. Using Eq. (4.60), the gap equation expressed in the physical mass becomes

4π

g2
b

= log
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m̄2
φ















+
1
N
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m̄2
φ















− 2 log
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4m2
φ















+ 4π
d(F1 + F2)

dm2
φ















. (4.61)

The gap equation can be rendered finite by the substitutiong2
b → Zg2g2(µ), whereZ−1

g2

is the zero temperature renormalization constant given by Eq. (4.33). Hence unlike
the effective potential, the gap equation can be renormalizedT-independently without
problems. The renormalized gap equation becomes

4π

g2(µ)
=

(

1− 2
N

)

log
µ2

m̄2
φ

+
2
N















J1(βmφ) + log 4+ 2π
d(F1 + F2)

dm2
φ















. (4.62)

In Fig. 4.3 the solution to this renormalized gap equation for the arbitrary choice
g2(µ = 500)= 10 is displayed as a function of temperature and for different values of
N.
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Figure 4.4: Pressure of the O(N) nonlinear sigma model to next-to-leading order in
1/N, normalized toNT2, as a function of temperature, for different values ofN.

4.5 Pressure

By solving the renormalized gap equation (4.62) one can find the minimum value of the
effective potential which is equal to the pressure. The physical mass at this minimum
will be denoted asm2

φ = m2
φ(T) andm2

φ(0) = m2
φ(T = 0). By expressing the effective

potential in terms of the physical mass using Eq. (4.60) the pressure can be calculated.
For this one has to expand theJ0 and J1 functions in 1/N. Furthermore, one should
also take into account the zero temperature results since the pressure is the difference
of the minimum of the effective potential at finite temperature and at zero temperature
(given in Eq. (4.38)). As a result due to this difference the problematic divergences
drop out and one obtains

P ≡ PT − PT=0 =
N − 2

8π

[

m2
φ(0)−m2

φ

]

+
N
8π

[

T2J0(βmφ) +m2
φJ1(βmφ)

]

+
1
2















m2
φ

d(F1 + F2)

dm2
φ

− F1 − F2















. (4.63)

This finite pressure was evaluated numerically, after solving Eq. (4.62) formφ(T).
The result for different values ofN is shown in Fig. 4.4, for the arbitrary choice
g2(µ = 500) = 10, henceT is given in the same units asµ. As can be seen in the
figure,P/NT2 approaches anN-dependent constant (to be evaluated in the next sec-
tion) at large temperatures. This constant is exactly the pressure of a non-interacting
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Figure 4.5: Pressure of the O(N) nonlinear sigma model normalized its value atT →
∞, as a function of temperature for different values ofN.

gas ofN−1 bosons divided byN, which isPSB/N = (N−1)πT2/6N. This is an imme-
diate consequence of the asymptotic freedom and the fact that one degree of freedom
is effectively removed due to the constraint. This expression coincides with the per-
turbative result, Eq. (4.7), as expected. In the limit of zero temperature the pressure
divided byT2 approaches zero exponentially as it effectively becomes a gas of heavy
quasi-particles, see Fig. 4.3. The figure shows that corrections are really of order 1/N,
which indicates that the 1/N is a good expansion for the nonlinear sigma model.

If the pressure, for a given value ofN, is normalized to its value atT = ∞, the
normalized pressure has a very small dependence onN as is displayed in Fig. 4.5.
Similar behavior is found in lattice calculations of the normalized pressure of the pure
SU(Nc) gauge theory in 4-dimensions (Bringoltz and Teper, 2005),see Fig. 4.6. Also
lattice calculations performed by Karschet al. (2000) show that for full QCD the
normalized pressure turns out to be rather insensitive to the number of flavors.

To obtain the pressure, the next-to-leading order gap equation was used. But as
was argued by Root (1974) one in principle only needs the leading order gap equation
in order to obtain the value of the effective potential at the minimum. Writing the
solution to the gap equations as

m2 = m2
LO +m2

NLO/N . (4.64)
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Figure 4.6: Results of lattice calculations by Bringoltz and Teper (2005) of the pressure
of pure SU(N) Yang-Mills theory normalized to the pressure of a free gas for N = 3
(triangles),N = 4 (circles) andN = 8 (squares). The solid line is theN = 3 result of
Boyd et al. (1996).

and Taylor expanding the effective potential, one obtains (up toO(1/N) corrections)

V(m2) = NVLO(m2
LO) +VNLO(m2

LO) +m2
NLO

∂VLO(m2)

∂m2

∣

∣

∣

∣

∣

∣

m2=m2
LO

(4.65)

The last term of Eq. (4.65) vanishes by using the leading-order gap equation. The
pressureP can now be written as

P ≡ NPLO + PNLO (4.66)

From the discussion above it follows that

PLO = VT
LO(m2

T) −VT=0
LO (m2

0) , PNLO = VT
NLO(m2

T) −VT=0
NLO(m2

0) , (4.67)

wherem2
T is the solution of the leading-order gap equation, at temperatureT. By

using the leading order gap equation it can be shown that at the minimum, part ofD2

becomes

1
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SinceD2 contains the logarithmic integral it is dependent on the prescription and has
an ambiguity. From Eq. (4.68) it follows that the problematic T-dependent divergences
becomeT-independent at the minimum of the effective potential, and vanish in the
calculation of the pressure due to the subtraction of the zero temperature contribution.
As a result the pressure is unambiguous, i.e. independent ofthe choice of prescription.

4.6 High-temperature approximations

Bochkarev and Kapusta (1996) consider the nonlinear sigma model in 3+1 dimen-
sions, at next-to-leading order in the 1/N expansion. Since their result for the pressure
cannot be obtained analytically, they resort to a “high-energy approximation”. In this
section the same approximation for the 1+1-dimensional case will be made to compare
it with the exact numerical results obtained in Sec. 4.5.

The essence of the high-energy approximation of Bochkarev and Kapusta (1996)
is that one neglects the zero temperature part ofΠ(P,m) and approximates it by its
temperature-dependent partΠT(P,m). According to Bochkarev and Kapusta (1996)
one can then approximateΠT(P,m) by its high-energy behavior. In the present case of
the nonlinear sigma model in 1+ 1 dimensions, these approximations amount to

Π(P,m) ≈ ΠT(P,m) ≈ 1
4π

P2

(p2
0 + ω

2
+)(p

2
0 + ω

2
−)

J1 , (4.69)

whereω± =
√

p2 +m2 ± m. This expression is identical to the high-momentum ap-
proximation toΠT(P,m), Eq. (4.48). In the high-energy approximation the effective
potential is given by

VHEA =
Nm2

2g2
b

− N
2
∑

∫

P
log

(

P2 +m2
)

− 1
2
∑

∫

P
logP2

+
1
2
∑

∫

P
log

(

p2
0 + ω

2
+

)

+
1
2
∑

∫

P
log

(

p2
0 + ω

2
−
)

+ O(1/N) . (4.70)

The resulting expression for the gap equation is

N

g2
b

= N
∑

∫

P

1
P2 +m2

−∑

∫

P

ω2
+

mEp

1

p2
0 + ω

2
+

+
∑

∫

P

ω2
−

mEp

1

p2
0 + ω

2
−
. (4.71)

Again, the gap equation requires coupling constant renormalization. In this approxi-
mation, it is found that the renormalization constant is

Z−1
g2 = 1+

g2

4π

(

1− 2
N

)

log

(

Λ2

µ2

)

, (4.72)
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which differs slightly from the exact renormalization constant to next-to-leading order
in 1/N, Eq. (4.33). It is in fact equal to the perturbative one as forinstance is discussed
in Peskin and Schroeder (1995). Making the substitutiong2

b→ Zg2g2, one obtains

1 =
g2

4πN

[

NJ1 − K+1 − K−1 + 2(N − 2) log
µ

m

]

. (4.73)

where the functionsK±1 are defined as

K±1 = ±4
∫ ∞

0

dp ω±
mEp

n(ω±) . (4.74)

By substituting the gap equation (4.71) into the expressionfor the effective potential
in the high-energy approximation, Eq. (4.70), the pressurebecomes

PHEA =
N
8π

[

J0T2 + (J1 − 1)m2
]

+
π

6
T2

− 1
8π

[

(K+0 + K−0 )T2 + (K+1 + K−1 − 2)m2
]

, (4.75)

where the functionsK±0 are given by

K±0 =
8

T2

∫ ∞

0

dp p2

Ep
n(ω±) . (4.76)

From Fig. 4.7, one can see that the high-energy approximation underestimates
the pressure compared to the exact result. The advantage of an approximation like
the high-energy approximation is that the analytic calculations are simpler and that it
is easier to implement numerically. However, it is not a satisfactory approximation
because one cannot really justify that the temperature-independent part ofΠ(P,m) can
be left out. It may even be considered surprising that this approximation works. In
Chapter 6 it will be shown that the high-energy approximation in the nonlinear sigma
model in 3+ 1 dimensions actually leads to wrong results.

It is possible to derive a different approximation, which is better than the high-
energy approximation. The inverse ˜α-propagatorΠ at finite temperature can be ob-
tained by first integrating over the momentum which gives

ΠT(P,m) =
1
2β

∑

q0=2nπT

1
√

m2 + q2
0

P2 + 2q0p0

P4 + 4q0(q0 + p0)P2 + 4m2p2
. (4.77)

Since it follows from the leading order gap equation that forhigh temperatures and for
all values of the coupling constant,m≪ T see Fig. 4.3,Π(P,m) can at high tempera-
tures (HT) be approximated by keeping only theq0 = 0 mode in the sum Eq. (4.77) as
follows

Π(P,m) ≈ ΠHT(P,m) =
1
2

1
βm

P2

P4 + 4m2p2
. (4.78)
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Figure 4.7: Exact pressure as a function of temperature at next-to-leading order for
N = 8 compared with the high-energy and high-temperature approximations.

By using thatP4+ 4m2p2 can be written as [p2
0+ (p+ im)2+m2][ p2

0 + (p− im)2+m2]
and shiftingp→ p± im after taking the logarithm, it is found that

∆

∫

P
log(P4 + 4m2p2) = 2∆

∫

P
log(P2 +m2) . (4.79)

Hence the functionF1 can be approximated by

F1 ≈ ∆
∫

P
logΠHT(P,m) =

1
2π

T2J0(βm) − π
3

T2 ≈ π

3
T2 , (4.80)

The functionF2 ≈ 0 in the high-temperature approximation because
∫

P
logΠHT does

not contain a finite term that depends on temperature. The part proportional to logβm
gives rise to a divergence which by definition is not part ofF2. These high temperature
limits agree with the numerical calculations displayed in Figs. 4.1 and 4.2.

The numerical calculation ofF1+ F2 shows that form/T <∼ 0.1 this approximation
has an error smaller than 10 percent. To obtain the pressure in the high-temperature
approximation, Eq. (4.63) was applied using the approximations toF1 andF2. The
result for the pressure in the high-temperature approximation is shown for comparison
in Fig. 4.7 (again forg2(µ = 500) = 10). It can be seen that the high-temperature
approximation is much better than the high-energy approximation.

One can approximate the pressure even further by expanding the functionsJ0 and
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J1 in the limit βm→ 0:

J0 =
4π2

3
− 4πβm− 2

(

log
βm
4π
+ γE −

1
2

)

(βm)2 + O
(

(βm)4
)

, (4.81)

J1 =
2π
βm
+ 2

(

log
βm
4π
+ γE

)

+ O
(

(βm)2
)

. (4.82)

Inserting the approximations given in Eqs. (4.80), (4.81) and (4.82) into the gap equa-
tion (4.62), one obtains

βm≈ π
[(

2π

g2(µ)
− log 4

N

) (

1+
2
N

)

− γE − log
µβ

4π

]−1

, (4.83)

which indicates thatβm ∼ 1/ logT for large T. In the limit m/T → 0, the high-
temperature approximation of the pressure is

P
NT2

≈ π

6

(

1− 1
N

)

−
(

1− 2
N

)

m
4T

, (4.84)

where the first term is the pressure of a gas of free massless particles withN−1 degrees
of freedom.

4.7 Thermal infrared renormalons

An observableO in a quantum field theory like QCD is often only known in terms of
an expansion in the coupling constantα. Because negativeα gives rise to unphysical
behavior as was argued by Dyson (1952) for QED, it is expectedthat this series expan-
sion has zero radius of convergence. Hence one should view itat best as an asymptotic
series. One might wonder whether it is possible by resummingthe series expansion to
learn about the non-perturbative physics. In specific casesthis is possible, but more
often one finds so-called renormalons, which give rise to ambiguities in the relation
betweenO and its resummed version. These ambiguities may give an insight in the
size of the non-perturbative corrections.

Since one can apply the 1/N expansion to the nonlinear sigma model, observables
can be calculated exactly in terms of the coupling constant.These exact expressions
can be used to study the renormalons in the nonlinear sigma model as was done at zero
temperature by David (1982, 1984, 1986) and Benekeet al.(1998). In this section this
analysis is extended to finite temperature.

This section consists of two parts. In the first part a short introduction into renor-
malons will be given. In the second part the nonlinear sigma model will be used to
investigate the temperature dependence of the renormalonsand how they affect the
possible definitions of the renormalized effective potential, pressure and gap equation.
For a more extensive review on renormalons see Altarelli (1995) and Beneke (1999).
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Renormalons

An observableO can in general be expressed in terms of a perturbation seriesin α = g2

in the following way

O(α) ∼
∞
∑

n=0

anα
n . (4.85)

It often happens that this series is an asymptotic series which is not convergent. Such
an asymptotic series can sometimes be resummed by the Borel transform method,
although in general this resummation is not unique. The Borel transform ofO(α) is
defined as

B(t) =
∞
∑

n=0

an

n!
tn . (4.86)

The observableO can now be expressed in terms of an integral over its Borel transform

O(α) =
1
α

∫ ∞

0
dt e−t/αB(t) , (4.87)

which has the series expansion of Eq. (4.85). For example if one takesan = (−1)nn!,
the series expansion forO is clearly divergent. The Borel transform however is con-
vergent for|t| < 1 and equal toB(t) = 1/(1 + t). To resumO(α) it is assumed that
B(t) = 1/(1+ t) for any value oft. The resummed expression forO now yields

O(α) =
1
α

∫ ∞

0
dt e−t/α 1

1+ t
. (4.88)

The integral in Eq. (4.88) is convergent and, moreover, well-defined since there are no
singularities along the integration contour. So in this example the asymptotic series
has been resummed unambiguously. However, sometimes this method gives rise to
ambiguities. Take for examplean = n! in which caseB(t) = 1/(1− t) and

O(α) =
1
α

∫ ∞

0
dt e−t/α 1

1− t
. (4.89)

In this case the integral is not well defined since there is a singularity att = 1 on the
integration contour. This singularity is called the renormalon pole. One can still give a
meaning to this resummed series by introducing a prescription how to integrate around
the pole

O(α)± =
1
α

∫ ∞

0
dt e−t/α 1

1− t ± iǫ
. (4.90)

This resummation gives rise to ambiguities, since one does not know whether to take
the +, − or a combination like the principal value prescription. Butas long as the
differences between the prescriptions are not that big, it does not really matter. The
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difference is equal to the residue att = 1, which is called the renormalon residue. In
this case it is equal to

O(α)+ −O(α)− =
2πi
α

exp(−1/α) . (4.91)

So in this example the series can be resummed up to ambiguities of order exp(−1/α)/α.
These ambiguities are tiny whenα is small. However for larger values ofα they can
become important. These ambiguities indicate that the non-perturbative corrections to
Eq. (4.85) could be in this case of order exp(−1/α)/α.

Renormalons in the nonlinear sigma model

Renormalons appear in the vacuum expectation value of theα field. A calculation
shows that at zero temperature one can write (David, 1986)

〈α〉 = m2
LO +

4πm2
LO

N

∫

d2P

(2π)2

1
Π

∂Π

∂m2
LO

+ O
(

1
N2

)

, (4.92)

wherem2
LO ≡ Λ2 exp(−4π/g2

b). This equation is in agreement with the gap equa-
tion (4.28) if m2 is split as followsm2 = m2

LO + m2
NLO/N. The part of the integral

in Eq. (4.92) that has the infrared renormalon pole in the Borel plane is in fact the
contribution from the integrand in the limitP2/m2→ ∞ (its “perturbative tail”)

∫ Λ d2P

(2π)2

1
Π∞

∂Π∞
∂m2

= − 1
4π

li

(

Λ2

m2

)

= − 1
4π
Λ2

m2
e−xEi(x) , (4.93)

wherex = log(Λ2/m2) and Ei(x) the exponential integral which is defined below. In
the limit x→ ∞, the logarithmic integral has the asymptotic expansion

e−xEi(x) =
∞
∑

n=0

n!

xn+1
∓ iπe−x =

∫ ∞

0
db

e−bx

1− b
∓ iπe−x , (4.94)

where arg(b) = ±ε. From Eq. (4.94), it is clear that there is a renormalon pole at
b = 1. This shows that whenΛ → ∞ the value of〈α〉 is inherently ambiguous at
next-to-leading order, due to the freedom in the choice of prescription. David (1984)
has shown that this ambiguity also arises in dimensional regularization.

The same problem appears in the calculation of the effective potential even at its
minimum, butnot in the gap equation. The latter can be seen from the last term of Eq.
(4.20) which contributes to the gap equation as follows

1
2

∂

∂m2

∫

d2P

(2π)2
logΠ =

1
2

∫

d2P

(2π)2

1
Π

∂Π

∂m2
. (4.95)
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The ambiguity that would arise from this term when removing its perturbative tail (cf.
Eq. (4.93)) cancels in the gap equation (4.28) against the one arising inm2 (cf. Eq.
(4.92)).

The perturbative tail of the effective potential, i.e. the first two terms ofD2 de-
fined in Eq. (4.54), corresponds to poles in the Borel plane atb = 0 andb = 1,
respectively. Since ¯m2 is only temperature independent at the minimum (at LO only,
but that is sufficient because one is working at NLO), the subtraction of the perturba-
tive tail will become temperature dependent,exceptat the minimum. Since subtract-
ing temperature-dependent divergences renders the remaining temperature-dependent
terms meaningless, it is impossible to define a finite effective potential at finite temper-
ature. In order to avoid any renormalon ambiguity, it also not possible to obtain a finite
effective potential or even an unambiguous minimum at zero temperature. However,
as was shown in Sec. 4.5 the quantityPT − PT=0 is free from renormalon ambiguities
and is finite after temperature-independent coupling constant renormalization.

Finally, using Eq. (4.92) one can investigate the finite temperature dependence
of renormalon contributions to〈α〉 and the effective potential. One can show that
Eq. (4.92) at finite temperature has exactly the same renormalon contribution, i.e.
neither the pole nor the residue become temperature dependent. Secondly, the per-
turbative tail of the effective potential which is given by the first two terms ofD2,
corresponds to poles in the Borel plane atb = 0 andb = 1. The positions of the renor-
malon poles are not affected by temperature. Only the residues become temperature
dependent, except at the minimum of the potential, as we concluded earlier. The fact
that renormalon pole positions are not affected by temperature, but residues are, is also
the case for the thermal ultraviolet renormalons inφ4 in 3 + 1 dimensions studied by
Loewe and Valenzuela (2000).

4.8 Summary and Conclusions

To summarize, the pressure in the nonlinear sigma model was calculated at finite
temperature to next-to-leading order in the 1/N expansion. The main result is that
one can obtain an unambiguous, finite pressure, by subtracting the zero-temperature
value of the pressure and renormalization of the coupling constant in a temperature-
independent way. This procedure cannot be carried out away from the minimum of
the effective potential and it was argued that defining a finite, effective potential by
the subtraction of the so-called perturbative tail, leads to ambiguities associated with
infrared renormalons. In general, these become temperature dependent, and this casts
doubt on the usefulness of defining a finite effective potential outside the minimum.
Since it turns out that, as it should, physical quantities are independent of the choice
of prescription, one can apply any prescription for the logarithmic integral without
worrying about the possible ambiguities. This is what will be done in the remaining
chapters of this thesis.
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The expression for the pressure was calculated numericallyat finite temperature.
This calculation shows that the 1/N expansion is a meaningful expansion for all tem-
peratures. The high-energy approximation that was originally applied to the nonlinear
sigma model in 3+1 dimensions by Bochkarev and Kapusta (1996) was also studied.
In 1+1 dimensions, where one can compare with exact numerical results, it was found
that it underestimates the pressure for all temperatures. An improved approximation
was suggested, the so-called high-temperature approximation. This approximation has
the advantage that it is quite easy to produce numerical results and agrees better with
the exact results. At asymptotically high temperatures thepressure approaches that of
a gas ofN − 1 free massless particles. It was found that the pressure divided by the
pressure at infinite temperatures has a very weak dependenceonN. Similarly behavior
is found in lattice calculations as a function ofNf andNc.



Chapter 5

Thermodynamics of theCPN−1 model

Using the 1/N expansion, the influence of quantum instantons to the thermodynamics
of theCPN−1 model in 1+1 dimensions is studied. The auxiliary field effective po-
tential is calculated to next-to-leading order in 1/N and turns out to have temperature-
dependent ultraviolet divergences. These divergences canonly be renormalized at its
minimum just like in the nonlinear sigma model discussed in Chapter 4. By using that
theCP1 model is equivalent to the O(3) nonlinear sigma model it is argued that the
pressure for intermediate temperatures is dominated by theeffect of quantum instan-
tons. This chapter is based on:The effect of quantum instantons on the thermodynam-
ics of theCPN−1 model, J.O. Andersen, D. Boer and H.J. Warringa, hep-th/0602082.

5.1 Introduction

It was discovered by Belavinet al. (1975) that the classical equations of motion of
Euclidean QCD have finite action solutions with nontrivial topology. These solutions
are called instantons. They are stationary points of the classical action. In perturbation
theory one most often only takes into account the trivial vacuum and small fluctuations
around it. However, in the non-perturbative regime the instanton solutions and the
fluctuations around it can really contribute to physical quantities as was first observed
by ’t Hooft (1976). He showed that instantons are giving riseto an additional source of
U(1)A symmetry breaking in QCD, which is necessary to explain the relatively large
mass of theη meson.

In this chapter it is investigated whether instantons can have an influence on the
thermodynamical quantities. To answer this question, theCPN−1 model in 1+1 dimen-
sions will be studied since it admits instanton solutions for all N. TheCPN−1 model
was introduced by Eichenherr (1978). It is possible to investigate its non-perturbative
regime using the 1/N expansion (D’Addaet al., 1978). An attractive feature of the
CPN−1 model in 1+1 dimensions are its similarities with QCD in 3+1 dimensions.
Like QCD it is an asymptotically free theory. Moreover, classically theCPN−1 model
is scale-invariant. Due to renormalization of the quantum corrections a mass scale is
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introduced in the model. Furthermore, a mass gap for the scalar fields is generated
dynamically by the interactions. The local U(1) symmetry oftheCPN−1 model gener-
ates a long range interaction between the scalar fields. Since the Coulomb potential in
1+ 1 dimensions is proportional to the distance between the charges, this model has
confinement (D’Addaet al., 1978). Finally as alluded to above, the classical equations
of motion of theCPN−1 model admit instanton solutions (Golo and Perelomov, 1978).
Lazarides (1979) investigated theCPN−1 model at finite temperature for the first time
and showed that at non-zero temperature the model is no longer confining. For a re-
view on theCPN−1 model at finite temperature, see Actor (1985). Instantons inQCD
at finite temperature are discussed by Grosset al. (1981) and in the largeNc limit by
Schäfer (2004).

As is explained in Chapter 3, thermodynamical quantities like the pressure can be
obtained by minimizing the finite temperature effective potential. In this chapter the
finite temperature effective potential will be calculated to next-to-leading order in 1/N.
Its zero-temperature counterpart was calculated by Campostrini and Rossi (1992). It
turns out that the effective potential contains temperature-dependent ultraviolet diver-
gences. These divergences become temperature-independent at the minimum. Ther-
modynamic quantities like the pressure are defined at the minimum of the effective
potential and hence can be calculated without such renormalization problems. The
same phenomenon is also found in the O(N) nonlinear sigma model in 1+1 dimen-
sions (Chapter 4) and the O(N) linear sigma model in 3+1 dimensions (Chapter 6). A
general explanation of how these temperature divergences arise is given in Sec. 3.4.

Instantons are characterized by a quantized winding numberQ, which is a topo-
logical invariant. The instantons give a contribution proportional to exp(−πNQ/g2

b) to
the partition function, where the non-analyticity ing2

b shows that the contribution is
non-perturbative. This contribution also indicates that instantons effects disappear in
the limit N → ∞ as was argued by Witten (1979). As a result one has to perform
calculations to next-to-leading order in 1/N to investigate the effects of instantons
in the 1/N expansion. It was argued by Witten (1979) using the 1/N expansion at
zero temperature that quantum corrections let the instanton configurations to disap-
pear. However, Jevicki (1979) showed that classical instantons still are present in the
quantum effective action, not longer as stationary solutions but as poles. However, at
finite temperature, Affleck (1980a,b,c) found that the large-N quantum effective action
does contain stationary solutions with quantized topological charge, called quantum
instantons. Hence, at finite temperature configurations with non-trivial topology can
contribute to physical quantities. In this chapter the sameconclusion will be drawn.
The pressure is calculated for topological configurations with zero winding number.
The contribution from other configurations will be ignored since they are difficult to
calculate. It is found that for intermediate temperatures,where the leading order con-
tribution to the pressure divided byT2 displays a sharp increase, the next-to-leading
1/N contributions gives rise to a negative pressure. This is unphysical because it re-
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sults in a negative entropy. Therefore, the negative pressure indicates that an important
contribution, most probably from the configurations with non-zero winding number, is
left out. This conclusion is further strengthened by using acorrespondence discovered
by Eichenherr (1978) between theCP1 model and the O(3) nonlinear sigma model.
In the 1/N approximation of the O(3) nonlinear sigma model one implicitly includes
all instanton configurations. Hence the difference between the pressure of theQ = 0
sector of theCP1 model and the pressure of the O(3) nonlinear sigma model gives
the contribution of the topological configurations withQ , 0 to the pressure of the
CP1 model. In this way a strong hint is found that the topologicalconfigurations with
Q , 0 give a large contribution to the pressure for intermediatetemperatures.

This introduction will be ended by mentioning some related studies of theCPN−1

model. Schwab (1982), Münster (1982) and Münster (1983) have investigated the
CPN−1 model on the sphereS2. Münster (1983) remarked that it is naive to expand
only around the saddle pointAµ = 0 because it leads to an improper treatment of zero
modes. Furthermore, theCPN−1 model has been studied on the lattice as well, see
for example Campostriniet al. (1992a,b) and Vicari (1993). A way to investigate the
relevance of the topological solutions is by adding a termϑQ to the action. Olejnik
and Schierholz (1994) and Schierholz (1995) calculated forN = 4 the free energy as a
function ofϑ. They found that depending on the size of the coupling constant there is
a phase transition from the confined to the deconfined phase for ϑ ≤ π. Azcoiti et al.
(2004) found that forN = 10 the CP symmetry is spontaneously broken forϑ = π.
TheCPN−1 model also has applications in condensed matter physics. Pruiskenet al.
(2003) and Pruisken and Burmistrov (2005) have applied thismodel to investigate the
quantum Hall effect. Ichinose and Yamamoto (1990) studied antiferromagnetism using
theCPN−1 model at finite temperature.

This chapter is organized as follows. In Sec. 5.2 theCPN−1 model is introduced.
The calculation of the effective action and effective potential are performed in Secs.
5.3 and 5.4. In Sec. 5.5 the results of the calculation of the pressure are discussed.
Finally a summary and conclusions are given in Sec. 5.6.

5.2 TheCPN−1 model

TheCPN−1 model is described by the following Lagrangian density

L = 1
2
∂µφ

∗
i ∂

µφi + Lint , φ∗i φi = N/g2
b , i = 1 . . .N , (5.1)

whereφ(x) is a complex scalar field andgb is the bare coupling constant. Under
an U(1) transformation which is parametrized byσ(x), φ(x) → exp[iσ(x)]φ(x). By
requiring that the Lagrangian density is invariant under local U(1) transformations, the
interaction termLint can be determined from the transformation rule of the Lagrangian
density which reads

δL = i(∂µσ)
(

∂µφ∗i
)

φi + δLint = 0 . (5.2)
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Hence the interaction term should contain derivatives. If the interaction Lagrangian
density is chosen as follows

Lint =
g2

b

2N

(

φ∗i ∂µφi

) (

φ∗j∂
µφ j

)

, (5.3)

then Eq. (5.2) is satisfied. As a result the model becomes invariant under global SU(N)
transformations as well.

The Lagrangian density can also be written in terms of gauge fields Aµ which
transform under a U(1) gauge transformation as

Aµ(x)→ A′µ(x) = Aµ(x) − ∂µσ(x) . (5.4)

The Lagrangian density expressed in gauge fields is given by

L = 1
2

∣

∣

∣Dµφi

∣

∣

∣

2
, φ∗i φi = N/g2

b . (5.5)

where the covariant derivativeDµ = ∂µ + iAµ. By solving the equations of motions of
theAµ fields one finds

Aµ = i
g2

b

N
φ∗i ∂µφi . (5.6)

If this expression is inserted into Eq. (5.5) the original Lagrangian density Eq. (5.1)
and Eq. (5.3) is recovered.

Coset models

TheCPN−1 and the O(N) nonlinear sigma model are examples of coset models. A
coset model is a theory of fieldsφ(x) which take values in the coset spaceG/H. Here
G denotes a compact Lie group andH a closed subgroup ofG. The coset spaceG/H is
a manifold though only a Lie group ifH is an invariant subgroup ofG. The coset space
has dimension dimG/H = dimG − dim H. In 2-dimensional Euclidean space,φ is a
map fromR2→ G/H, whereas at finite temperature this map becomesS×R→ G/H.
In a coset model the fields transform asφ(x) → gφ(x) whereg ∈ G. The Lagrangian
density of a coset model is given by

L = 1
2
ηµνgi j (φ)∂µφ

∗
i ∂νφ j , (5.7)

whereηµν is the space-time metric (δµν in Euclidean space) andgi j (φ) is a metric on
the coset spaceG/H. The metricgi j is to be chosen in such a way that the Lagrangian
density is invariant under transformationsG.

Coset models have an interesting connection to the topologyof space-time. If
one identifies all points at space-time infinity, the fieldsφ(x) become a map from
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S2 → G/H. These maps can be topologically nontrivial, which impliesthat there are
mapsφ(x) which cannot be deformed continuously into each other. Such maps can be
classified according to the second homotopy group ofG/H, π2(G/H). In the case that
the second homotopy group is nontrivial, the action of the coset model has more than
one stationary solution, which in Euclidean space-time arecalled instantons. At finite
temperature all points atx1 = ±∞ can be identified, as a result space-time becomesS2

as well. Hence finite temperature instantons (also called calorons) do exist, but unlike
instantons at zero temperature they satisfy the boundary conditions for scalar fields in
imaginary time (Lazarides, 1979; Affleck, 1980a; Grosset al., 1981; Bruckmannet al.,
2005).

The O(N) nonlinear sigma model is an O(N)/O(N − 1) � SN−1 coset model with
real scalar fields. Since in a coset model, the fields take their value in the coset space,
it follows thatφiφi = N/g2

b, wherei = 1 . . .N andN/g2
b is the radius ofSN−1. If the

metric is chosen to begi j = δi j the Lagrangian density becomes invariant under G.
Furthermore the Lagrangian density discussed in Chapter 4,Eq. (4.1), is recovered
from Eq. (5.7) in this way. Sinceπ2(SN−1) , 0 only for N = 3, the O(N) nonlinear
sigma model has instanton solutions forN = 3 only.

TheCPN−1 model is an SU(N)/U(N−1) � CPN−1 coset model. The spaceCPN−1

is the so-called complex projective space, it is the space ofN-dimensional complex
vectorsz satisfying the equivalence relationz ∼ z′ if z = λz′ whereλ ∈ C and
the relationz†z = c. Hence theN scalar fieldsφi(x) of the CPN−1 model satisfy
φ∗i (x)φi(x) = N/g2

b. The equivalence relation together with the constraint directly
translates into the requirement of U(1) gauge invariance. The corresponding metric on
the coset space can be read off from Eq. (5.3),gi j = δi j + g2

bφi φ
∗
j/N. It turns out that

π2(CPN−1) = Z, hence theCPN−1 model has instanton solutions for anyN.

Instantons

Classical instantons are solutions to the classical equations of motion in Euclidean
space-time which have finite action. They can be characterized by an integer topolog-
ical chargeQ which is given by

Q =
1

2πi

g2
b

N

∫

d2xǫµν∂µ
(

φ∗i ∂νφi

)

. (5.8)

Using Eq. (5.6) the expression forQ can be written in terms of the gauge field as
follows

Q =
1
2π

∫

d2xǫµν∂µAν . (5.9)

To show thatQ is an integer, consider a configuration with finite action. Inthat case the
fieldsφ should go to a constant times a phase factor (arising from gauge invariance) at
infinity, lim x→∞ φ(x) ≡ φ∞ exp[iσ(x)]. SinceQ is the integral over a total divergence,
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it can be written as a surface integral at infinity. As a resultone finds

Q =
1
2π

∫ 2π

0
dϑ

dσ(R= ∞, ϑ)
dϑ

=
1
2π
∆σ , (5.10)

where∆σ denotes the change inσ by going along a circle at infinity. Since the fields
with finite action should be continuous functions,σ is a multiple of 2π. HenceQ can
only take integer values.

Like any vector,Ci
µ = Dµφ

i satisfies|Ci
µ ± iǫµνCi

ν|2 ≥ 0. Working out this equation
gives a lower bound on the Lagrangian density of theCPN−1 model

L ≥ ±1
2 iǫµν∂µ

(

φ∗i ∂νφi

)

= ± N

2g2
b

ǫµν∂µAν . (5.11)

Integrating this equation overx results in the classical actionS which satisfies the
following lower bound

S ≥ πN

g2
b

|Q| . (5.12)

For instantons this lower bound turns into an equality. The explicit form of the instan-
tons can be found by solving the self-duality equation

Dµφi = ±iǫµνDνφi . (5.13)

The solutions of this equation, the instantons, are of the following form (Golo and
Perelomov, 1978)

φi(x) =
(

N/g2
b

)1/2
eiσ(x) wi(x0 ± ix1)

|w(x0 ± ix1)| , (5.14)

wherew(x0± ix1) is a smoothN-dimensional complex vector function. The one instan-
ton (with Q = 1) for example can be written as (Golo and Perelomov, 1978; D’Adda
et al., 1978)

φi(x) =
λui + [(x0 − a0) − i(x1 − a1)] vi

(

λ2 + (x− a)2)1/2
, (5.15)

whereaµ is the position of the instanton in space andλ the size of the instanton. The
constantsu andv obey the following relations,|u|2 = N/g2

b, |v|2 = N/g2
b andu∗ · v = 0.

These results can be generalized to finite temperature. If all points atx1 = ±∞ are
identified the space changes fromS × R into S2. To obtain a finite action at non-zero
temperature, the fieldsφ still have to go to a constant, limx→∞ φ(x) ≡ φ∞ exp[iσ(x)].
Due to the finite temperature boundary conditionσ(x0, x1) = σ(x0+ β, x1)+2πN. The
topological charge is still quantized at finite temperature(Affleck, 1980a). The action
has the same bound as at zero temperature. The explicit form of the instanton at finite
temperature (also called calorons) follow from solving theself-duality equations using
the boundary condition onx0, see Affleck (1980b).
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A correspondence betweenCP1 and O(3)

TheCP1 model is equivalent to the O(3) nonlinear sigma model, whichwas shown
by Eichenherr (1978), see also Banerjee (1994). This means that there is a one-to-one
correspondence between those two models. Such an equivalence for example implies
that one can obtain the pressure of theCP1 model by calculating the pressure of the
O(3) nonlinear sigma model. The correspondence can be made explicit by writing the
O(3) nonlinear sigma fieldsχ(x) as follows

χa(x) =
(

g2
b/N

)1/2
φ∗i (x)(σa)i j φ j (x) , a = 1 . . . 3 , (5.16)

whereσa are the three 2×2 Pauli matrices satisfying{σa, σb} = 2δab. Using Eq. (5.16)
the O(3) nonlinear sigma Lagrangian density, Eq. (4.1), with constraint turns into the
CP1 Lagrangian density, Eq. (5.1), with the corresponding constraint.

5.3 Effective action

To obtain the effective action, the constraint from Eq. (5.1) can be implemented by
introducing an auxiliary Lagrange multiplier fieldα. This gives rise to the following
Lagrangian density which is equivalent to the original Lagrangian density Eq. (5.1)

L = 1
2

∣

∣

∣Dµφi

∣

∣

∣

2 − i
2
α
(

φ∗i φi − N/g2
b

)

(5.17)

Since the Lagrangian density is now quadratic in theφ fields, the Gaussian integration
over these fields can be performed. This results in the following effective action

Seff = NTr log
(

−DµDµ − iα
)

+ i
N

2g2
b

∫

d2xα(x) . (5.18)

The covariant derivativeDµ transforms asU†DµU. Hence, as expected this effective
action is invariant under local U(1) transformations. In order to obtain the effective
potential, Seff has to be expanded around the vacuum expectation values of the α

field. The vacuum expectation value of theα field is purely imaginary as is proved
in Eq. (4.12). Thereforeα can be expressed in terms of the sum of its vacuum ex-
pectation valueim2 and a quantum fluctuating field ˜α as follows,α = im2 + α̃/

√
N.

For convenience the gauge fields are rescaled by a factor
√

N. This rescaling with
factors of

√
N does not have any effect on the final results since the ˜α andAµ fields

are integration variables of the path integral. It is just a convenient way to organize the
1/N expansion. Working out the square of the covariant derivative and inserting the
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vacuum expectation value gives the following effective action

Seff = NTr log

(

−∂2 +m2 − i
√

N

{

∂µ,A
µ
}

+
1
N

AµAµ − i
α̃
√

N

)

− N

2g2
b

∫

d2x

[

m2 − i
√

N
α̃(x)

]

. (5.19)

Now as shown by Affleck (1980a)Seff contains stationary solutionsAµ at finite
temperature, which vanish at zero temperature according toWitten (1979). These so-
lutions have a quantized topological charge given by Eq. (5.9). Since these solutions
are stationary points of an action in which quantum effects are incorporated, they are
called ‘quantum instantons’. In the limit of high temperature, the exact form of these
quantum instantons can be found (Affleck, 1980a). Such instantons need to be consid-
ered in a full calculation of the pressure. As a first step to investigate the relevance of
the quantum instantons to the pressure, only the fluctuations around the trivial config-
urationAµ = 0 are taken into account in this chapter. The result for the pressure of the
CP1 model withQ = 0 will be compared to the pressure of the O(3) nonlinear sigma
model in which the contribution of all quantum instantons istake into account. Be-
cause theCP1 model is equivalent to the O(3) nonlinear sigma model this comparison
should therefore give the contribution to the pressure of the quantum instantons.

To obtain the pressure for theQ = 0 configuration,Seff has to be expanded around
the vacuum expectation valueim2 and the trivial configurationAµ = 0 (with Q = 0).
ExpandingSeff gives

Seff = NTr log
(

−∂2 +m2
)

+ NTr
∞
∑

k=1

(−1)k+1

k



















1
N AµAµ + 1√

N
α̃ − i√

N

{

∂µ,Aµ
}

−∂2 +m2



















k

− N

2g2
b

∫

d2x

[

m2 − i
√

N
α̃(x)

]

. (5.20)

With help of the following relations

Tr O =

∫

x
〈x |O| x〉 , (5.21)

〈x
∣

∣

∣

∣

∣

1

−∂2 +m2

∣

∣

∣

∣

∣

y〉 =
∫

P
eiP(x−y) 1

P2 +m2
, (5.22)

−i〈x
∣

∣

∣Aµ∂µ
∣

∣

∣ y〉 =
∫

P
eiP(x−y)PµA

µ(x) , (5.23)

−i〈x
∣

∣

∣∂µAµ
∣

∣

∣ y〉 =
∫

P
eiP(x−y)PµA

µ(y) , (5.24)

the traces inSeff can be evaluated. To next-to-leading order in 1/N these relations lead
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to

Tr
(

α̃

−∂2 +m2

)

=

∫

X
α̃(x)

∫

P

1
P2 +m2

, (5.25)

−iTr

( {∂µ,Aµ}
−∂2 +m2

)

= 2
∫

X
Aµ(x)

∫

P

Pµ
P2 +m2

= 0 , (5.26)

Tr

(

AµAµ

−∂2 +m2

)

=

∫

X,Y,P
eiP(x−y)Aµ(x)Aν(y)

δµν

P2 +m2
, (5.27)

Tr
(

α̃

−∂2 +m2

α̃

−∂2 +m2

)

=

∫

X,Y,P
eiP(x−y)α̃(x)α̃(y)

∫

Q

1

(P+ Q)2 +m2

1

Q2 +m2
, (5.28)

iTr

(

α̃

−∂2 +m2

{∂µ,Aµ}
−∂2 +m2

+
{∂µ,Aµ}
−∂2 +m2

α̃

−∂2 +m2

)

= 2
∫

X,Y,P
eiP(x−y)α̃(x)Aµ(y)

∫

Q

Pµ + 2Qµ
[

(P+ Q)2 +m2] [Q2 +m2]
= 0 , (5.29)

Tr

( {∂µ,Aµ}
−∂2 +m2

{∂ν,Aν}
−∂2 +m2

)

= −
∫

X,Y,P
eiP(x−y)Aµ(x)Aν(y)

∫

Q

(Pµ + 2Qµ)(Pν + 2Qν)
[

(P+ Q)2 +m2] [Q2 +m2]
. (5.30)

Using the results above one gets the following effective action up to corrections of
order 1/

√
N (D’Adda et al., 1978)

Seff = NTr log
(

−∂2 +m2
)

− Nm2

2g2
βV + i

√
N

2

∫

X
α̃(x)















1

g2
b

−
∫

P

1

P2 +m2















+
1
2

∫

X,Y
α̃(x)Γ(x− y)α̃(y) +

1
2

∫

X,Y
Aµ(x)∆µν(x− y)Aν(y) + O

(

1
√

N

)

, (5.31)

where the inverse ˜α and gauge field propagators are given by (D’Addaet al., 1978)

Γ(P) =
∫

Q

1

(P+ Q)2 +m2

1

Q2 +m2

=
1
2π

1
√

P2(P2 + 4m2)
log















√
P2 + 4m2 +

√
P2

√
P2 + 4m2 −

√
P2















, (5.32)
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∆µν(P) =
∫

Q

2δµν
Q2 +m2

−
∫

Q

(Pµ + 2Qµ)(Pν + 2Qν)
[

(P+ Q)2 +m2] [Q2 +m2]

=

(

δµν −
PµPν
P2

)

∆
µ
µ(P) , (5.33)

∆
µ
µ(P) =

∫

Q

2− 2ǫ

Q2 +m2
−

∫

Q

2

(P+ Q)2 +m2
+ (P2+ 4m2)

∫
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1
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1

Q2 +m2

=
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√
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√
P2 + 4m2 −

√
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− 2















. (5.34)

The trace of the inverse gauge field propagator was evaluatedusing dimensional reg-
ularization ind = 2 − ǫ dimensions, in that caseδµµ = 2 − ǫ. Of course using a
Pauli-Villars regulator one obtains the same result (D’Adda et al., 1978), but one has
to be careful in applying this regularization technique in this case because it explicitly
breaks gauge invariance.

Equation (5.31) shows that although a kinetic term for the gauge fields was ab-
sent from the classical action, it follows that such a term isgenerated by the quan-
tum corrections. The Lorentz structure of the inverse gaugefield propagator follows
from gauge invariance which requires the inverse propagator to be transverse, that is
Pµ∆µν = 0.

The nonzero temperature results can be obtained by changingthe integrals over
momenta into sum-integrals. Due to gauge invariance, the inverse gauge field propa-
gator is still transverse at nonzero temperature. Its tensor structure at finite temperature
is the same as at zero temperature (this is typical for 1+ 1 dimensions, in more dimen-
sions Lorentz symmetry breaking terms can appear at finite temperature). At finite
temperature one finds (Lazarides, 1979)

Γ(P) =
1
2π

1
√

P2(P2 + 4m2)
log















√
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√
P2

√
P2 + 4m2 −

√
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+ ΓT(P) , (5.35)

∆
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√
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√
P2

√
P2 + 4m2 −

√
P2















− 2















+ (P2+ 4m2)ΓT(P) , (5.36)

whereΓT(P) is up to a factor 2 equal to Eq. (4.44)

ΓT(P) =
1
π

∫ ∞

−∞

dq
ωq

P2 + 2pq

(P2 + 2pq)2 + 4p2
0ω

2
q
n(ωq) . (5.37)

In the low-momentum limit at zero temperature the inverse gauge field propagator
becomes

∆µν ≈
1

12πm2

(

P2δµν − PµPν
)

. (5.38)
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This is expression is up to a constant (which could be absorbed in the gauge fields
by a redefinition) equal to the ordinary inverse photon propagator which gives rise
to a Coulomb potential between two charges. In 1+ 1 dimensions, this potential is
proportional to the distance between the charged particles. Therefore theCPN−1 model
has confinement at zero temperature (D’Addaet al., 1978; Samuel, 1983). However,
confinement disappears at non-zero temperature as was shownby Lazarides (1979),
see also Actor (1985).

5.4 Effective potential

By integrating the effective actionSeff over the quantum fluctuations ˜α and Aµ one
obtains the effective potential. The leading term of the effective potential can be read
off directly from Eq. (5.31). In order to obtain the next-to-leading order corrections
a Gaussian integration has to be performed. For the contribution arising from the ˜α
fluctuations this is straightforward. But to calculate the gauge field contribution to
the effective potential one has to fix the gauge, because otherwise it is not possible to
invert the gauge field inverse propagator. In the generalized Lorenz gauge this boils
down to adding the gauge fixing term

1
2ξ

∫

x

(

∂µAµ
)2
, (5.39)

to the effective action. As a consequence the ghost fields give a contribution to the
effective potential which isΣ

∫

P
log P2. After subtractingT-independent constants it is

found that the gauge field and ghost contribution to the effective potential together is
given by

Vgauge(m
2) =

∑

∫

P
logP2 − 1

2
∑

∫

P
log det

(

∆µν +
1
ξ

PµPν

)

=
1
2
∑

∫

P
log P2 − 1

2
∑

∫

P
log∆µµ . (5.40)

which is independent ofξ as expected. The same result could of course also be ob-
tained in any another gauge, for example theA0 = 0 gauge. In that gauge the ghost
fields give a contribution of12Σ

∫

log(P2
0), whereas theA1 gauge field gives a contribu-

tion of −1
2Σ
∫

log[(1− P2
1/P

2)∆µµ]. Together, this leads of course to the same result as in
the generalized Lorenz gauge.

From Eq. (5.31) and the results above, one obtains the complete finite temperature
effective potential

V(m2) = NVLO(m2) +VNLO(m2) , (5.41)

where the leading order contribution is given by

VLO(m2) =
m2

2g2
b

−∑

∫

P
log(P2 +m2) , (5.42)
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and the next-to-leading order contribution by

VNLO(m2) = −1
2
∑

∫

P
logΓ(P) − 1

2
∑

∫

P
log∆µµ(P) +

1
2
∑

∫

P
logP2 . (5.43)

The effective potential is ultraviolet divergent. To regulate thedivergences an ul-
traviolet momentum cutoff Λ is introduced. This yields

VLO(m2) =
m2

2g2
b

− m2

4π

[

1+ log

(

Λ2

m2

)]

+
1
4π

T2J0(βm) . (5.44)

Here

J0(βm) =
8

T2

∫ ∞

0

dq q2

ωq
n(ωq) . (5.45)

The minimum of the leading order effective potential obeys the following gap equation

1

g2
b

=
1
2π

log

(

Λ2

m2

)

+
1
2π

J1(βm) , (5.46)

where

J1(βm) = 4
∫ ∞

0

dq
ωq

n(ωq) . (5.47)

The gap equation can be rendered finite by the substitutiong2
b→ Z2

gg2(µ), where

1

Z2
g
= 1+

g2

2π
log

(

Λ2

µ2

)

. (5.48)

From this renormalization prescription it follows that theleading order beta-function
is given by

β(g2) ≡ µdg2(µ)
dµ

= −g4

π
+ O

(

1
N

)

. (5.49)

The negative sign shows that theCPN−1 model is asymptotically free.
In order to calculate the next-to-leading order contribution to the effective poten-

tial, VNLO is written as a sum of divergent (D) and finite parts (F) in the following
way

VNLO(m2) = −1
2

(D1 + D2 + F1 + F2 + F3 + F4) − π
3

T2 . (5.50)

where the divergent and finite quantities are defined throughthe following relations

D1 + F1 =

∫

P
log Γ̃(P) , F3 = ∆

∫

P
log Γ̃(P) ,

D2 + F2 =

∫

P
log ∆̃µµ(P) , F4 = ∆

∫

P
log ∆̃µµ(P) .

(5.51)
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HereΓ̃(P) ≡ 2π
√

P2(P2 + 4m2)Γ(P) and∆̃µµ(P) ≡ 2π
√

P2/(P2 + 4m2)∆µµ(P).
The functionsD1 andD2 are functions which contain all divergences of the next-

to-leading order effective potential. In order to obtain these ultraviolet divergences,
the high-momentum limits of̃Γ(P) and ∆̃µµ(P) are needed. In the high-momentum
approximation (|~p| ≫ T) one finds using Eq. (4.48)

Γ̃(P) ≈ log

(

P2

m̄2

)

+
2m2

P2
+

2m2J1(βm)
P2















1−
2p2

0

P2















+ O
(

m4

P4

)

, (5.52)

∆̃
µ
µ(P) ≈ log

(

P2

m̄2
e

)

+
6m2

P2
+

2m2J1(βm)

P2















1−
2p2

0

P2















+ O
(

m4

P4

)

, (5.53)

wherem̄2 = m2 exp[−J1(βm)] andm̄2
e = m2 exp[2− J1(βm)].

The divergencesD1 andD2 can be obtained by integrating Eq. (5.52) and Eq. (5.53)
over momenta. It is found that

D1 =
1
4π

[

Λ2 log log

(

Λ2

m̄2

)

− m̄2li

(

Λ2

m̄2

)

+ 2m2 log log

(

Λ2

m̄2

)]

, (5.54)

D2 =
1
4π

[

Λ2 log log

(

Λ2

m̄2
e

)

− m̄2
eli

(

Λ2

m̄2
e

)

+ 6m2 log log

(

Λ2

m̄2
e

)]

. (5.55)

From these two equations it can be seen that (through ¯m2 and m̄2
e) the effective po-

tential contains temperature dependent divergences. Theycannot be renormalized in
a temperature-independent way. However, by using the leading order gap equation
(5.46) one can show that ¯m2 andm̄2

e become temperature-independent at the minimum
of the effective potential. Therefore the quadratic divergence and the divergence pro-
portional to the li function become temperature-independent at the minimum. As a
result these divergences can be renormalized at the minimum, as will be done explic-
itly in the following section.

The finite functionsF1 andF2 will be obtained numerically. In order to calculate
these functions, the divergences will be written partly in terms of an integral as is
discussed in Sec. 2.5. This prevents subtracting large quantities which can give rise
to big numerical errors. The functionsF1 andF2 are calculated using the following
expressions

F1 = P
∫

P
log

[

Γ̃(P)

log
(

P2/m̄2)

]

− 2m2 log log

(

Λ2

m̄2

)

(5.56)

F2 = P
∫

P
log

















∆̃
µ
µ(P)

log
(

P2/m̄2
e

)

















− 6m2 log log

(

Λ2

m̄2
e

)

, (5.57)

hereP denotes the principal value integral. At zero temperature it is found thatF1 ≈
m2

2π γE and F2 ≈ m2

2π c1, wherec1 ≈ 0.611671457. . .. This is in agreement with the
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Figure 5.1: The finite functions̃F1(βm)/T2 and F̃2(βm)/T2. These functions con-
tribute to the next-to-leading order effective potential.

zero temperature calculations of Campostrini and Rossi (1992). For convenience the
finite temperature parts ofF1 andF2 are defined as̃F1 = F1 − m2γE/(2π) and F̃2 =

F2 −m2c1/(2π). These functions divided byT2 depend onβm only and are displayed
in Fig. 5.1. For largeβm these functions go to zero because that is equivalent to taking
the limit of zero temperature. For smallβm they go to zero as well, for the same reason
as discussed in Sec. 4.6 for the functionF2.

The finite functionsF3/T2 andF4/T2 were calculated using the method explained
in Sec. 2.5. They are displayed in Fig. 5.2. Theβm large limit of F3 and F4 can
be obtained by noting that for largeβm the temperature dependent part of the inverse
propagator does not contribute toF3 andF4. Furthermore, the dominant contribution
to the difference of a sum-integral and an integral arises from the low momentum
modes. So the largem behavior of the zero temperature inverse propagators can be
used to obtain a largeβmapproximation forF3 andF4. It is found that

F3 ≈
1
2
∆

∫

P
logP2 = −π

6
T2 , F4 ≈

3
2
∆

∫

P
logP2 = −π

2
T2 . (5.58)

As one can see in Fig. 5.2 this is in agreement with the numerical calculations.
The smallβm limit of F3/T2 and F4/T2 can be obtained as well. For that one

needs the smallβm limit of Γ(P). That limit can be found by first performing the
momentum integration and taking the zero modes as is explained around Eq. (4.78).
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Figure 5.2: The functionsF3(βm)/T2 and F4(βm)/T2 as a function ofβm. These
functions contribute to the next-to-leading order effective potential.

In this limit

Γ(P) ≈ 1
βm

P2

P4 + 4m2p2
. (5.59)

This results in

F3 ≈ 1
2
∆

∫

P
logP2 +

1
2
∆

∫

P
log(P2 + 4m2) − ∆

∫

P
log(P2) ≈ 0 , (5.60)

F4 ≈ 1
2
∆

∫

P
logP2 − 1

2
∆

∫

P
log(P2 + 4m2) + ∆

∫

P
log

(

2π
βm
− 2

)

≈ 0 . (5.61)

These limits are also in agreement with the numerical calculations as can be seen from
Fig. 5.2.

5.5 Contribution of quantum instantons to the pressure

In the previous section the effective potential was evaluated. It was found that the ef-
fective potential contains temperature-dependent ultraviolet divergences. At the min-
imum these temperature-dependent divergences will disappear as will be discussed
now. To calculate the effective potential at the minimum one only needs to solve the
leading order gap equation (5.46) as was shown by Root (1974)and as discussed in
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Sec. 4.5. As a result the leading and next-to-leading order contributions to the pressure
are given by

PLO = VT
LO(m2

T) −VT=0
LO (m2

0) , PNLO = VT
NLO(m2

T) −VT=0
NLO(m2

0) , (5.62)

wherem2
T is the solution of the leading-order gap equation (5.46) at temperatureT.

By using the leading order gap equation (5.46) it can be shownthat at the minimum
the divergent termsD1 andD2 become
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.(5.64)

Hence the temperature-dependent quadratic divergence andthe divergence propor-
tional to the li function become temperature-independent at the minimum of the ef-
fective potential. They cancel in the calculation of the pressure due to the subtraction
of the zero temperature contribution. The divergences proportional to the log log func-
tion can be absorbed into the coupling constantg2

b. The renormalization factorZ2
g to

next-to-leading order becomes in this way

1

Z2
g
= 1+

g2

2π
log

(

Λ2

µ2

)

+
2
N

g2

π
log log

(

Λ2

µ2

)

+ O
(

1

N2

)

. (5.65)

From this renormalization prescription it follows that thebeta-function to next-to-
leading order in 1/N is given by

β(g2) ≡ µdg2(µ)
dµ

= −g4

π
+ O

(

1
N2

)

. (5.66)

Using the results above it follows that the leading and next-to-leading order con-
tributions to the pressure are given by

PLO =
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−
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T

4π
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+
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J0(βmT) +
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0
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, (5.67)

PNLO = −1
2

[

F̃1(mT) + F̃2(mT) + F3(mT) + F4(mT)
]

+
1
4π

(γE + c1)(m2
0 −m2

T) − π
3

T2 . (5.68)

The results of the calculation of the pressure are displayedin Fig. 5.3 for the ar-
bitrary choiceg2(µ = 500) = 10, for different values ofN. As one can see, for low
temperatures and all finite values ofN the pressure first decreases for increasing values
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Figure 5.3: Contribution of the zero winding number configurations to the pressureP
of theCPN−1 model normalized toNT2, as a function of temperature, and for different
values ofN.

of T. A decreasing pressure is unphysical because it implies that the entropy which is
the derivative of the pressure with respect to temperature becomes negative. But this
is in disagreement with the third law of thermodynamics thatstates that the entropy
is minimal at zero temperature. If one believes that the 1/N expansion is a good ex-
pansion (which is for example shown in the O(N) nonlinear sigma model discussed
in Chapter 3) it is likely that the reason for this negative pressure is that the effective
action, Eq. (5.20) was only expanded around the vacuumAµ = 0 solution with zero
winding number. The contribution of other vacua (quantum instantons) with nonzero
winding number was left out of the calculations. As one can see from the figure, the
problem of the negative pressure becomes less severe ifN becomes larger. This is in
agreement with the fact that the instanton contribution vanishes in theN → ∞ limit
(Witten, 1979) as is discussed in Sec. 5.1. Moreover, that this problem arises at low
temperatures is also reasonable because instantons are non-perturbative ing. They
become less important at small couplings, so they should vanish at high temperatures
due to asymptotic freedom.

Using the equivalence between the O(3) nonlinear sigma model and theCP1 model
(see Sec. 5.2) the exact contribution of the quantum instantons with nonzero winding
number to the pressure can be found. Since there are no gauge fields in the O(3)
nonlinear sigma model and because the integration over the scalar fields can be done
exactly the effects of all quantum instantons are automatically included its effective
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Figure 5.4: PressureP of the O(N) nonlinear sigma model to NLO in 1/N for N = 3
compared to the contribution to the pressure of the configuration with zero winding
numberQ of theCP1 model. The pressures are normalized toT2 and displayed as a
function of temperature, for theg2(µ = 500)= 10.

potential (see Chapter 4). Due to the equivalence, the pressure of theCP1 model
should be exactly equal to that of the O(3) nonlinear sigma model. In Fig. 5.4 the result
of the NLO calculation of the pressure of the O(N) nonlinear sigma model forN = 3
is compared to the contribution to the pressure of theCP1 model with zero winding
number. It can be seen that for very low and high temperaturesboth pressures coincide.
For intermediate temperatures these pressures differ. This difference is displayed in
Fig. 5.5. This is a strong indication that quantum instantons give a sizable contribution
to the pressure and other thermodynamical quantities at where the pressure (divided
by T2) increases considerably.

5.6 Summary and Conclusions

In this chapter the effect of quantum instantons on the thermodynamical quantities was
investigated. For that the effective potential of theCPN−1 model expanded around a
background with zero winding number was calculated to next-to-leading order in 1/N.
It was shown that the effective potential contains temperature-dependent divergences
which only can be renormalized at the minimum of the effective potential. Hence
thermodynamical quantities (which are all defined at the minimum of this effective
potential) can be rendered finite like in the (non)linear sigma models discussed in
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Figure 5.5: Contribution of the configurations with nonzerowinding numberQ to the
pressureP of theCP1 model. The pressure is normalized toT2 and displayed as a
function of temperature.

Chapters 4 and 6.
It was found that for all values ofN the contribution of the vacuum with zero

winding number gives rise to a negative pressure, which is large for intermediate tem-
peratures where the leading order pressure divided byT2 increases strongly. Since this
is unphysical, it indicates that the quantum instantons must give a considerable contri-
bution to the pressure for intermediate temperatures. In agreement with the vanishing
of the instantons in theN → ∞ limit this problem of the negative pressure becomes
less severe for large values ofN.

For N = 2 the exact contribution of the quantum instantons was foundusing an
equivalence between the O(3) nonlinear sigma model and theCP1 model. In the 1/N
approximation to the O(3) nonlinear sigma model one implicitly integrates over all
quantum instantons and one finds a finite pressure in next-to-leading order in 1/N.
Comparing this result to the pressure of theCP1 model with zero winding number
gives the exact contribution of the quantum instantons forN = 2. They give a large
contribution for intermediate temperatures where the pressure divided byT2 raises
quickly.

A possible extension of this work would be to add a termϑQ to the effective action
and investigate the dependence of the thermodynamical quantities onϑ. Moreover one
could try to take the fluctuations around the quantum instantons with nonzero winding
number into account explicitly and see whether they will reduce the problem of the
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negative pressure, but this is not attempted in this thesis.



Chapter 6

Thermodynamics of O(N) sigma models in d=3+1

The O(N) linear and nonlinear sigma model in 3+ 1 dimensions are low-energy effec-
tive theories for QCD. The pressure of these two low-energy effective models will be
computed up to next-to-leading order in 1/N by minimizing the effective potential. It
is found that the finite temperature effective potential contains temperature dependent
divergences which become temperature-independent at the minimum. The calculated
pressure can serve as a prediction for the pressure of QCD at low temperatures and will
be compared to approximations discussed previously in the literature. Finally a mass
bound on the sigma meson is presented. This chapter is based on: Thermodynamics
of O(N) sigma models:1/N corrections, J.O. Andersen, D. Boer and H.J. Warringa,
Phys. Rev.D70116007, (2004).

6.1 Introduction

Although the QCD Lagrangian possesses a chiral symmetry in the limit of zero quark
masses, the true QCD ground state does not respect this symmetry. The chiral symme-
try is spontaneously broken by quantum effects. To be specific, QCD withNf massless
quarks has a global SU(Nf )L × SU(Nf )R symmetry, which for the ground state at low
temperatures is broken down to an SU(Nf )V symmetry. According to Goldstone’s
theorem, there is a massless, spinless particle for each generator of a broken global
continuous symmetry. In this case this implies the occurrence of N2

f − 1 Goldstone
bosons. In phenomenological applicationsNf is either two or three, and one also has
to take into account the explicit symmetry breaking due to the nonzero quark masses.
Both the spontaneous and the explicit chiral symmetry breaking are apparent in the
low-energy hadronic particle spectrum, where the expectednumber of relatively light
mesons is observed (e.g. the three pions forNf = 2). At sufficiently high temperatures
one expects the chiral symmetry to be restored and lattice simulations of QCD sug-
gest that this happens at a temperature of approximately 170MeV depending on the
number of quarks and their masses.

In the case of two flavors, the situation is the simplest, since one can exploit the
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fact that the SU(2)L × SU(2)R symmetry is locally isomorphic to SO(4). If baryons
(nucleons in this case) and theρ andω meson are not included the simpler O(4) linear
sigma model can be used as a low-energy effective theory for describing the dynamics
of three pion fields and one sigma field. These four fields form afour-dimensional
vectorφ in the fundamental representation of O(4). At low temperature, the O(4) sym-
metry is spontaneously broken down to O(3), where the sigma field acquires a vacuum
expectation value and the three pions are interpreted as theGoldstone bosons. At high
temperatures the vacuum expectation value of the sigma fieldvanishes. According to
the calculations performed in this chapter, the symmetry isrestored via a second-order
phase transition in agreement with other calculations in the literature. If the symmetry
is restored, the pion and the sigma field have the same mass.

For Nf > 2 there is no connection between the SU(Nf )L × SU(Nf )R model and
the O(N) linear sigma model since the symmetries differ. The O(N) sigma models
have besides their relevance to low-energy QCD also other applications. For example
the Higgs field in the Standard Model is described by an O(4) linear sigma model.
In that case the scalar fields are also coupled to the electroweak gauge fields and the
fermions. The spontaneous symmetry breakdown of the O(4) symmetry causes the
Higgs field to acquire a vacuum expectation value. As a resultthe weak vector bosons
and the fermions (except for the neutrinos) become massive.Another application is in
cosmology. It is believed that during early times the universe went through a period
of rapid expansion, called inflation. The field which controls the inflation, called the
inflaton can be described by a linear sigma model (see for example Kolb and Turner
(1990)). In condensed matter physics the O(N) sigma models are used to model spin-
spin interactions (see for example Itzykson and Drouffe (1995)) .

In this chapter both the O(N) linear sigma model and O(N) nonlinear sigma model
in 3+1 dimensions will be studied at finite temperature and to next-to-leading order in
the 1/N expansion. At zero temperature, the 1/N expansion was applied to O(N) sigma
models a long time ago at leading order (LO) by Colemanet al. (1974) and at next-to-
leading order (NLO) by Root (1974). At finite temperature theLO 1/N contribution
has been studied by Meyers-Ortmannset al.(1993). In that case, the effective potential
is that of an ideal gas and thus straightforward to compute. The NLO 1/N corrections
are less trivial, since they involve a momentum-dependent self-energy and cannot be
evaluated analytically. A high-temperature expansion wasperformed by Jain (1993) to
obtain purely analytical results for the linear sigma model. Similarly Bochkarev and
Kapusta (1996) resorted to a “high-energy” approximation,which makes the calcula-
tions manageable. However, this approximation is uncontrolled and it is difficult to
assess how reasonable it is, unless one calculates the full NLO 1/N corrections. These
corrections will be calculated in this chapter and comparedto the “high-energy” ap-
proximation.

The O(N) sigma models have also been studied in detail at finite temperature using
various other approaches. A systematic study has been carried out by Chiku and Hat-
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suda (1998) using optimized perturbation theory. The method was used to calculate
spectral functions, properties of the effective potential, and dilepton emission rates.
The 2PI formalism (Cornwallet al., 1974) (see Sec. 3.1) has also been used to exam-
ine various properties of the O(N) linear sigma models at finite temperature (Baym
and Grinstein, 1977; Amelino-Camelia and Pi, 1993; Amelino-Camelia, 1997; Roh
and Matsui, 1998; Petropoulos, 1999; Lenaghan and Rischke,2000; Nemotoet al.,
2000; Aarts and Martinez Resco, 2004; Arrizabalagaet al., 2005; Röder, 2005), see
Petropoulos (2004) for a recent review. For example, in several papers the temperature
dependence of the pion and sigma masses, and of the vacuum expectation value of the
sigma field, have been investigated. The calculations of thescalar field effective po-
tential as a function of temperature have been carried out inthe Hartree approximation
and the large-N limit (Amelino-Camelia and Pi, 1993; Amelino-Camelia, 1997; Roh
and Matsui, 1998; Petropoulos, 1999; Lenaghan and Rischke,2000; Nemotoet al.,
2000). In these cases, the gap equations for the propagatorsare easy to solve since
the self-energy reduces to a local mass term. In the Hartree approximation (which
implies ignoring momentum-dependent self-energies), theresult has been shown to
be problematic (and a first-order phase transition occurs),which has been remedied
by including more diagrams in the truncation (Verschelde and De Pessemier, 2002;
Baacke and Michalski, 2003), resulting in a second-order phase transition. If one goes
beyond the Hartree approximation or includes the full NLO contributions in the 1/N
expansion, the gap equations become nonlocal and very difficult to solve.

The advantage of using the 1PI formalism over the 2PI formalism is that one does
not have to make a Hartree or other approximation to calculate the full 1/N corrections
to the thermodynamical quantities. However, to describe out of equilibrium phenom-
ena, the 2PI formalism is favored as is explained in Sec. 3.1.

The approach followed in this chapter is similar to the studyof the nonlinear sigma
model in 1+1 dimensions (see Chapter 4) and to that of theCPN−1 model in 1+1 di-
mensions (see Chapter 5). Similar conclusions about the renormalization of the effec-
tive potential in 3+1 dimensions as in 1+1 dimensions will be drawn. It turns out that
at NLO, temperature-independent renormalization is only possible at the minimum of
the auxiliary field effective potential. This aspect of the 1/N expansion was missed in
previous work by Jain (1993) and Bochkarev and Kapusta (1996), since the renormal-
ization is considerably simplified or even ignored in the various approximations.

Since explicit chiral symmetry breaking plays a very important role in the actual
hadron spectrum at low energy, the case of explicit symmetrybreaking will also be
considered in this chapter. The results change considerably and moreover, a critical
temperature cannot be determined in that case, since the second-order phase transition
turns into a smooth cross-over.

The nonlinear sigma model in 3+1 dimensions is non-renormalizable and should
be viewed as an effective theory, which is valid up to a certain energy scale where new
physics enters. Strictly speaking the linear sigma model isrenormalizable, but since it
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becomes a trivial theory in the limit where the cutoff goes to infinity (see for example
Amelino-Camelia (1997)), it will be treated as a theory witha finite cutoff. Given a
finite cutoff, terms are called divergences when they are increasing in magnitude with-
out bound as the cutoff is increased. The low-energy physics should be independentof
such terms (decoupling) and they can be subtracted in the renormalization procedure
in order to avoid increasing sensitivity to the ultravioletcutoff as it grows. On general
grounds, one expects the temperature dependence to be insensitive to an increasing
cutoff due to the exponential suppression provided by the Bose-Einstein distribution
function. Therefore one expects the renormalization to be possible in a temperature-
independent way.

This chapter is organized as follows. In Sec. 6.2, the effective action of the linear
and nonlinear sigma model in the 1/N expansion are discussed. In Sec. 6.3, the effec-
tive potential and gap equations to next-to-leading order are calculated. In Sec. 6.4,
the results for the pressure at next-to-leading order for generalN and for the special
case ofN = 4 are presented. Also, the so-called high-energy approximation is dis-
cussed and compared with exact numerical results. Sec. 6.5,is devoted to the choice
of parameters forN = 4, in order to make contact with low-energy QCD phenomenol-
ogy. A bound on the scalar sigma meson is derived too in this section. In Sec. 6.6, a
summary and conclusions are given.

6.2 Effective actions

The Euclidean Lagrangian density of the O(N)-symmetric linear sigma model with a
symmetry breaking term proportional toH is given by

L = 1
2

(

∂µφi

)2
+
λb

8N

(

φiφi−N f2
π,b

)2 −
√

NHφN , (6.1)

where i = 1 . . .N. Summation over repeated indices is implicitly understood. The
subscriptb denotes a bare quantity. The coupling constants are rescaled with factors
of N in such a way that for largeN the action naturally scales asN as is explained in
Sec. 3.2.

It is possible to eliminate the quartic interaction term from Eq. (6.1) by introducing
an auxiliary field which is denoted byα, in order to allow for Gaussian integration. To
this end one adds to the Lagrangian density Eq. (6.1) the term

Lα =
N

2λb

[

α − iλb

2N

(

φiφi − N f2
π,b

)

]2

, (6.2)

such that one has

L = 1
2

(

∂µφi

)2 − i
2
α
(

φiφi − N f2
π,b

)

+
N

2λb
α2 −

√
NHφN . (6.3)
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If one integrates over theα fields, the original Lagrangian in Eq. (6.1) is recovered.
Hence Eq. (6.3) is equivalent to the original Lagrangian density of the linear sigma
model. In the limitλb → ∞ the term quadratic inα vanishes and one obtains the
Lagrangian of the nonlinear sigma model Eq. (4.1) with a symmetry breaking term.

If explicit symmetry breaking is absent (H = 0), the fieldφ acquires a vacuum
expectation value by spontaneously breaking the symmetry.Because of the residual
O(N−1) symmetry, it is possible to writeφ = (π1, π2, . . . , πN−1, σ), such that onlyφN =

σ has a nonzero expectation value. ForH > 0 the same argument applies, because the
action is minimal when theσ field is the only one that acquires an expectation value.

Integrating over theπ’s gives the following effective action

Seff =
1
2

(N − 1)Tr log
(

−∂2 − iα
)

+

∫ β

0
dτ

∫

d3x

[

1
2

(

∂µσ
)2 − i

2
ασ2

+
i
2

N f2
π,bα +

N
2λb

α2 −
√

NHσ

]

. (6.4)

The scalar fieldsσ andα can be written as a sum of space-time independent vacuum
expectation valuesim2 andσ̄, and quantum fluctuating fields ˜α andσ̃

α = im2 +
α̃
√

N
, σ =

√
Nσ̄ + σ̃ . (6.5)

Equation (6.2) can be used to show that the vacuum expectation value ofα is purely
imaginary (for a proof, see Sec. 4.4). The vacuum expectation value ofσ is propor-
tional to

√
N, which follows from Eq. (6.1). Substituting Eqs. (6.5) intoEq. (6.4), the

effective actionSeff can be written as

Seff =
1
2

(N − 1)Tr log

(

−∂2 +m2 − iα̃
√

N

)

− βVNHσ̄

+

∫ β

0
dτ

∫

d3x
[1
2

(

∂µσ̃
)2
+

1
2

(

m2− iα̃
√

N

)

(√
Nσ̄+σ̃

)2

−N
2

f 2
π,b

(

m2− iα̃
√

N

)

− N
2λb

(

m2− iα̃
√

N

)2

−
√

NHσ̃
]

. (6.6)

Expanding Eq. (6.6) in powers of 1/
√

N up to corrections of order 1/
√

N, one finds

Seff

βV
=

1
2

(N − 1)
∑

∫

P
log

(

P2 +m2
)

− Nm2

2

(

f 2
π,b − σ̄2

)

−Nm4

2λb
− NHσ̄ +

√
N × terms linear in ˜α andσ̃

+
1
2
∑

∫

P
χT

( 1
2Π(P,m) + 1

λb
−iσ̄

−iσ̄ P2 +m2

)

χ∗ , (6.7)
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whereχT = (α̃(P), σ̃(P)) is a vector containing the Fourier transforms of ˜α andσ̃, and
the functionΠ(P,m) is given by

Π(P,m) =
∑

∫

Q

1
Q2 +m2

1
(P+ Q)2 +m2

. (6.8)

6.3 Effective potential and gap equations

One can obtain the effective potential to next-to-leading order in the 1/N expansion
from Eq. (6.7) by performing the Gaussian integral over the fluctuating fields ˜α andσ̃.
Up to corrections of order 1/N, the effective potential can be written as

V(m2, σ̄) = NVLO(m2, σ̄) +VNLO(m2, σ̄) , (6.9)

where

VLO

(

m2, σ̄
)

=
m2

2

(

f 2
π,b − σ̄

2
)

+
m4

2λb
+ Hσ̄ − 1

2
∑

∫

P
log(P2 +m2) , (6.10)

VNLO

(

m2, σ̄
)

= −1
2
∑

∫

P
log I (P,m) . (6.11)

Here,

I (P,m) = 16π2Π(P,m) +
32π2

λb
+

32π2σ̄2

P2 +m2
. (6.12)

To derive the effective potential, divergent constants which are independent of σ̄, m
and the temperature were subtracted. Equivalently, these terms can be removed by
adding a vacuum counterterm to the effective potential. In the following, such terms
are simply dropped.

In thermodynamic equilibrium, the system will be in the state that extremizes the
effective potential with respect tom2 andσ̄. This extremum can be found by differen-
tiating the effective potential with respect tom2 andσ̄, which gives

∑

∫

P

1

P2 +m2
− 2m2

λb
+

1
N

∑

∫

P

dΠ(P,m)
dm2 − 2σ̄2

(P2+m2)2

Π(P,m) + 2
λb
+ 2σ̄2

P2+m2

=
(

f 2
π,b − σ̄2

)

, (6.13)

















m2 +
2
N

∑

∫

P

1

P2 +m2

1

Π(P,m) + 2
λb
+ 2σ̄2

P2+m2

















σ̄ = H . (6.14)

These equations are often referred to as gap equations. Solving the gap equations
givesmandσ̄ as a function of the parametersfπ, H andλ, and of the temperature. The
solution of the gap equation is needed to calculate thermodynamical quantities like the
pressure.
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The inverse ˜α andσ̃ propagators can also be obtained from Eq. (6.7). For this the
2× 2 matrix in Eq. (6.7) has to be inverted. As a result one finds

D−1
α̃ (P,m) =

1
2
Π(P,m) +

1
λb
+

σ̄2

P2 +m2
, (6.15)

D−1
σ̃ (P,m) = P2 +m2 +

2σ̄2

Π(P,m) + 2/λb
. (6.16)

In these equations the values form2 andσ̄ are determined by solving the gap equations.
Theπ propagator is equal to (see Eq. (4.11))

Dπ =

〈

1

−∂2 − iα

〉

. (6.17)

Expandingα around its vacuum expectation valueim2 in the previous equation, and
using the expression for ˜α propagator, Eq. (6.15), it follows that the inverseπ propa-
gator in momentum space is given by

D−1
π (P,m) = P2 +m2 +

2
N

∑

∫

Q

1

(P+ Q)2 +m2

1

Π(Q,m) + 2
λb
+ 2σ̄2

Q2+m2

. (6.18)

Gap equation (6.14) can be used to show that in the broken phase whereσ̄ , 0 (for
H = 0) the pion propagator has a pole atP2 = 0. This implies that also to next-to-
leading order in 1/N the pions are massless, in accordance with Goldstone’s theorem.

From Eq. (6.16) it follows that in the unbroken phase, theσ mass becomes equal
to the leading order mass of theπ field, which ism2. It may appear therefore that
theσ andπ masses are not equal at next-to-leading order in the unbroken phase, but
this is not a correct conclusion. This is because theσ field only starts to propagate
at next-to-leading order, so its 1/N mass corrections require a next-to-next-to-leading
order calculation. In the calculation of the pressure to next-to-leading order one only
needs the leading order masses as will be explicitly shown below in Eq. (6.51).

The leading-order and next-to-leading order contributions to the effective potential
in 3+ 1 dimensions will be explicitly calculated in the next subsections. The integrals
over momentum are regulated using an ultraviolet momentum cutoff Λ. Furthermore
it is assumed that the cutoff is large compared to the other scales in the problem, that
isΛ ≫ m, 2πT.

Leading-order contribution

The leading-order contribution to the effective potential is

VLO =
m2

2

(

f 2
π,b −

Λ2

16π2
− σ̄2

)

+
T4

64π2
J0(βm)

+
m4

64π2

[

32π2

λb
+ log

(

Λ2

m2

)

+
1
2

]

+ Hσ̄ , (6.19)
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where the functionJ0(βm) is

J0(βm) =
32

3T4

∫ ∞

0
dp

p4

ωp
n(ωp) . (6.20)

Here,n(ωp) = [exp(βωp) − 1]−1 is the Bose-Einstein distribution function. Since a
finite effective momentum cutoff Λ was introduced in the theory, one makes an error
in the evaluation ofJ0 by summing over all Matsubara modes and integrating up to
infinite momenta instead of up toΛ. However, this error is negligible as long asΛ ≫
m, 2πT. This remark also applies to the functionsJ1, K±0 andK±1 defined below. For an
investigation of how one could apply a finite cut-off in the calculation of sum-integrals
see Amte and Rosenzweig (1993).

Equation (6.19) contains ultraviolet divergences in the sense explained in Sec. 6.1.
These divergences can be dealt with by defining the renormalized parametersf 2

π and
λ as

f 2
π = f 2

π,b − Λ
2/16π2 , (6.21)

32π2

λ
= log

(

Λ2

µ2

)

+
32π2

λb
, (6.22)

whereλ = λ(µ). The renormalization group equation for the running coupling λ that
follows from Eq. (6.22) is

β(λ) = µ
dλ
dµ
=

λ2

16π2
. (6.23)

The β-function is exact to all orders inλ2 in the large-N limit, but differs from the
perturbative one obtained at one loop, see Peskin and Schroeder (1995). However, at
next-to-leading order they agree as will be shown in the nextsubsection. After this
renormalization, the leading-order effective potential becomes

VLO =
m2

2

(

f 2
π − σ̄2

)

+
m4

64π2

[

32π2

λ
+ log

(

µ2

m2

)

+
1
2

]

+
T4

64π2
J0(βm) + Hσ̄ . (6.24)

Since the potential term in the Lagrangian should always have a minimum in order
to have a stable theory,λb must be positive (cf. Amelino-Camelia (1997) for a detailed
discussion). From Eq. (6.22) it immediately follows that there is a maximal value for
the cutoff given by

Λmax = µ exp

(

16π2

λ

)

. (6.25)

Therefore the linear sigma model should be viewed as an effective theory, which is
at most valid up to the cutoff given by Eq. (6.25). Taking the cutoff to infinity is
equivalent to takingλ to zero, which implies that the theory is trivial. One should
keep in mind that the renormalized leading-order effective potential does not depend
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Figure 6.1: Leading order sigma condensate forH = 0 (solid line) andH , 0 (dashed
line). The parameter choice is discussed in Sec. 6.5.

explicitly onΛ, but is only valid formandT much smaller thanΛmax. WhenΛ = Λmax

the linear sigma model reduces to the nonlinear sigma model,since in this caseλb = ∞.
The leading-order renormalized gap equations follow from differentiating Eq. (6.24)

with respect tom2 andσ̄ and are given by

G = 16π2 f 2
π , (6.26)

H = m2σ̄ , (6.27)

where

G = T2J1(βm) + 16π2σ̄2 −m2 log

(

µ2

m2

)

− 32π2m2

λ
. (6.28)

Here, the functionJ1(βm) is defined as

J1(βm) =
8

T2

∫ ∞

0
dp

p2

ωp
n(ωp) . (6.29)

In Figs. 6.1 and 6.2 the vacuum expectation value of the sigmafield and the pion
mass are respectively displayed as a function of temperature. The cases with (H , 0)
and without (H = 0) explicit symmetry breaking are considered. Both figures were
calculated using the parameter set discussed in Sec. 6.5.
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Figure 6.2: Leading order pion mass forH = 0 (solid line) andH , 0 (dashed line).
The parameter choice is discussed in Sec. 6.5

If H = 0, one can show by using the gap equation (6.27) that eitherm = 0 or
σ̄ = 0. From the gap equation (6.26) it follows that form= 0 the expectation value of
σ has the temperature dependence

σ̄ =

√

f 2
π −

T2

12
. (6.30)

The order parameter for symmetry breaking, ¯σ vanishes continuously. Hence atT =
Tc ≡

√
12fπ there is a second-order phase transition. BelowTc the O(N) symmetry

is broken spontaneously to O(N − 1) sinceσ̄ , 0. AboveTc the O(N) symmetry is
restored and one has ¯σ = 0 andm, 0.

Next-to-leading order contribution

In this subsection it will be shown that it is not possible to renormalize the next-to-
leading order effective potential in a temperature-independent way. It turns out that one
can only renormalize the effective potential at the minimum, since the temperature-
dependent divergences become temperature independent by using the leading order
gap equations. Hence physical quantities like the pressure, which can be obtained
from the minimum of the effective potential can be renormalized consistently. To
show this, the divergent parts of the effective potential will be extracted. This can be
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done analytically. A perhaps more familiar example in whichthe effective potential
is meaningless outside the minimum arises at zero temperature in gauge theories. In
this case, the effective potential depends on the gauge-fixing condition except at the
minimum (Jackiw, 1974; Nielsen, 1975; Kobeset al., 1991).

In order to isolate all divergences, one in principle needs to evaluateΠ(P,m) in-
cluding corrections of orderm2/Λ2, since such terms can also give rise to divergences
in the effective potential. However, since the linear sigma model is an effective theory,
Eq. (6.1) should be viewed as the part containing only the so-called relevant operators,
see Polchinski (1984). For instance, irrelevant operatorsof mass-dimension six are
not included in the Lagrangian density. Such operators alsocontribute toΠ(P,m) at
order 1/Λ2. Therefore, for consistency with Eq. (6.1), order 1/Λ2 terms inΠ(P,m) are
not considered. Although it is possible to obtain an exact analytic expression for the
zero-temperature part ofΠ(P,m), here it will only be given up to order 1/Λ2 since this
expression is much less complicated. As a result one finds

Π(P,m) =
1

16π2















log

(

Λ2

m2

)

+ 1+

√

P2 + 4m2

P2
log















√
P2 + 4m2 −

√
P2

√
P2 + 4m2 +

√
P2





























+ ΠT(P,m) , (6.31)

where the temperature-dependent part ofΠ(P,m) equals (Bochkarev and Kapusta,
1996)

ΠT(P,m) =
1

8π2p

∫ ∞

0
dq

q
ωq

log

(

q2 + pq+ A2

q2 − pq+ A2

)

n(ωq) . (6.32)

Here

A2 =
P4 + 4m2p2

0

4P2
. (6.33)

In the limit P≫ m,T, ΠT(P,m) can be approximated by

ΠT(P,m) ≈ 1

8π2

















T2

P2
J1(βm) −

4m2T2p2
0

P6
J1(βm) −

(

3P2 − 4p2
)

T4

P6
J0(βm)

















. (6.34)

The next-to-leading-order effective potential has only ultraviolet divergences. Us-
ing the leading order renormalization ofλb, it is easily seen thatI (P,m) (defined in
Eq. (6.12)) becomes finite. Also, the difference

∆

∫

P
log I (P,m) , (6.35)

is finite (cf. Sec. 2.5). Therefore, all possible divergences ofVNLO can be isolated by
calculating

−1
2

∫

P
log IHM(P,m) , (6.36)
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whereIHM(P,m) is the high-momentum (HM) approximation toI (P,m). It gives the
large-P behavior ofI (P,m). After averaging over angles, one finds

log IHM = logC1 +
1

P2

C2

C1
− 1

2P4

(

C2

C1

)2

+
1

P4

C3

C1
, (6.37)

where

C1 = log

(

µ2

P2

)

+ 1+
32π2

λ
, (6.38)

C2 = −2m2
[

1+ log

(

P2

m2

)]

+ 32π2σ̄2 + 2T2J1(βm) , (6.39)

C3 = +m4
[

2 log

(

P2

m2

)

− 1

]

−m2
[

32π2σ̄2 + 2T2J1(βm)
]

. (6.40)

By integrating the function logIHM overP, all the divergences of the NLO effective po-
tential can be found. The logarithmic and power divergencesare given by the quantity
D, which is

D =
1

16π2

{

Λ2e1+32π2/λb li

(

1

e1+32π2/λb

)

G+ 2m4 log

(

Λ2

m2

)

−m2Λ2
[

1+ 2e1+32π2/λb li

(

1

e1+32π2/λb

)]

}

, (6.41)

while the terms that have a small cutoff dependence through their dependence onλb,
are given by the quantityE, which is

E =
1

16π2

[

3m2
(

−G+ 3
2m2

)

log

(

1+
32π2

λb

)

+
(

G− 2m2
)2 1

1+ 32π2

λb

]

. (6.42)

SinceG depends explicitly on the temperature, it is impossible to renormalize the next-
to-leading-order effective potential in a temperature-independent way. However, at the
minimum, the leading-order gap equation (6.26) can be used to show thatG = 16π2 f 2

π .
Hence, the divergences become independent of the temperature at the minimum and
renormalization can be carried out in a temperature-independent manner. This will be
discussed in more detail next.

The divergence proportional toG in Eq. (6.41) is independent ofm in the minimum
even though it depends onfπ. This divergence can be removed by vacuum renormal-
ization. The divergent terms which are proportional tom2 can be removed by defining
the renormalized parameterfπ as

f 2
π = f 2

π,b −
(

1+
2
N

)

Λ2

16π2
− 1

N
Λ2

4π2

[

e1+32π2/λb li

(

1

e1+32π2/λb

)

]

. (6.43)
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The remaining divergence is proportional tom4 and is removed by renormalizingλb

as follows
32π2

λ
=

32π2

λb
+

(

1+
8
N

)

log

(

Λ2

µ2

)

. (6.44)

From Eq. (6.44), theβ-function governing the running ofλ can be obtained

β(λ) =
λ2

16π2

(

1+
8
N

)

, (6.45)

which coincides with the standard one-loopβ-function in perturbation theory, see Pe-
skin and Schroeder (1995). One could argue from this renormalization that one can
only trust the 1/N expansion forN ≫ 8. Although the 1/N correction to theβ function
indeed has a large coefficient, this is not the case for the effective potential itself as will
be shown below.

As mentioned, the terms inE have a small cutoff dependence through their depen-
dence onλb. These terms will not be renormalized, since they do not growwithout
bound with increasing cutoff and are not strictly speaking divergences. The effective
potential does not become increasingly sensitive to them with increasing cutoff. The
term in the first line of Eq. (6.42) becomes smaller ifΛ is increased and the absolute
value of the other term fromE increases as a function ofΛ, but is bounded by a fi-
nite number which is independent ofλb andΛ. Moreover, renormalizing these terms
would invalidate the 1/N expansion, because of their magnitude. This is similar to
ordinary perturbation theory, where one is only allowed to do finite renormalizations
that do not invalidate the perturbative expansion. A final reason for not renormalizing
these terms is the connection with the nonlinear sigma model(λb = ∞). In that case,
the terms fromE are not divergent andfπ will be renormalized just as in Eq. (6.43)
with λb = ∞.

The next-to-leading order correction changes the criticaltemperatureTc. Since
the next-to-leading order gap equations are complicated, it is not possible to obtain an
analytical expression for the critical temperature at next-to-leading order. However, in
the limit of smallλb andH = 0 the gap equations simplify to

∑

∫

P

1
P2 +m2

− 2m2

λb
=

(

f 2
π,b − σ̄2

)

, (6.46)
(

m2 +
λb

N
∑

∫

P

1
P2 +m2

)

σ̄ = 0 . (6.47)

From the gap equations it follows that the critical temperature at NLO is

Tc =

√

12
1+ 2/N

fπ . (6.48)

This result is the same as obtained by Jain (1993) and Bochkarev and Kapusta (1996).
It is probably only correct in the weak-coupling limit andTc may depend onλ at NLO
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in 1/N. In the next section it can be seen that the transition at NLO remains second
order.

6.4 Pressure

Like in Chapters 4 and 5, the pressureP(T) is defined as the value of the effective
potential at the minimum at temperatureT minus its value at the minimum at zero
temperature. As was shown in the previous section, it is possible to renormalize the
effective potential at the minimum. The pressure is therefore awell-defined quantity.
In order to determine the value of the next-to-leading ordereffective potential in the
minimum, only the gap equation to leading order Root (1974) is needed. Writing the
solutions to the gap equations as

m2 = m2
LO +m2

NLO/N , (6.49)

σ̄ = σ̄LO + σ̄NLO/N , (6.50)

and Taylor expanding the effective potential (6.9), one obtains (up toO(1/N) correc-
tions)

V(m2, σ̄) = NVLO(m2
LO, σ̄LO) +VNLO(m2

LO, σ̄LO)

+m2
NLO

∂VLO(m2)
∂m2

∣

∣

∣

∣

∣

∣

m2=m2
LO

+ σ̄NLO
∂VLO(σ̄)

∂σ̄

∣

∣

∣

∣

∣

σ̄=σ̄LO

.

The last two lines of Eq. (6.51) vanish by using the leading-order gap equations. In
the following, the pressureP will be written as

P ≡ NPLO + PNLO . (6.51)

From the discussion above, it follows that

PLO = VT
LO(m2

T , σ̄T) −VT=0
LO (m2

0, σ̄0) , (6.52)

PNLO = VT
NLO(m2

T , σ̄T) −VT=0
NLO(m2

0, σ̄0) , (6.53)

wherem2
T andσ̄T are the solutions of the leading-order gap equations (6.26)and (6.27),

at temperatureT.
In the following, the results for the numerical evaluation of the leading and the

next-to-leading order contributions to the pressure for general N will be presented.
Subsequently theN = 4 case which is of relevance for QCD phenomenology will be
discussed.

As will be motivated in Sec. 6.5, the following values for theparameters will be
used:λ(µ = 100 MeV) = 30, fπ = 47 MeV (note thatfπ as defined in Eq. (6.1) is
1/2 times the more conventional definition) and if there is explicit symmetry breaking
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Figure 6.3: Leading-order pressurePLO normalized toT4 as a function of temperature
without and with explicit symmetry breaking.

H = (104 MeV)3 in order to reproduce the physical value of the pion mass atT = 0.
A realistic choice of parameters would allow to compare to lattice QCD simulations
of theNf = 2 case forT <∼Tc, although this would require extrapolation of the lattice
results down to the actual pion masses.

Leading-order contribution to the pressure

The leading order pressure can be obtained from Eqs. (6.24) and (6.52). In Fig. 6.3, the
leading-order pressure normalized byT4 is shown. IfH = 0, the pions are massless
belowTc. Then it can be see from the leading-order effective potential (6.24) that the
pressure becomes equal to the pressure of an ideal gas of massless particles:PLO =

π2T4/90. If H , 0, the pions are massive. In the limit of zero temperature thePLO/T4

goes to zero because of the Boltzmann suppressing factor exp(−m/T).

Next-to-leading order contribution to the pressure

To calculate the next-to-leading order contribution to thepressure,PNLO is decom-
posed as follows

PNLO = D(mT) − D(m0) + F1 + F2 , (6.54)

whereD(m) is the term containing logarithmic and power ultraviolet divergences given
in Eq. (6.41), andF1 andF2 are finite terms defined below.
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The termF1 is defined by

F1 = −
1
2

∫

P

{

log
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+
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P2 +m2
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− log















Π(P,m0) +
2
λb
+

2σ̄2
0

P2 +m2
0















}

− D(mT) + D(m0) . (6.55)

Since the termF1 contains the finite cutoff-dependent termE (which is defined in
Eq. (6.42)) it has a small dependence on the cutoff as well. The functionF1 was
calculated numerically by rewriting the terms involvingD as an integral like it was
done in Sec. 4.4. Then it is possible to subtract the integrands, instead of the large
values of the integral. In this way, it is easier to avoid large numerical errors.

The functionF2 is defined by

F2 = −
1
2
∆

∫

P
log













Π(P,mT) +
2
λb
+

2σ̄2
T

P2 +m2
T













. (6.56)

In order to calculate the functionF2 a modified Abel-Plana formula was used, see
Sec. (2.5). It turns out that due the suppression of high momentum modes at finite
temperature, low momentum modes gives the main contribution toF2. This shows that
the “high-energy approximation” of Bochkarev and Kapusta (1996) (implicitly defined
as such a difference and directly related toF2) is invalid, since in that approximation
the high-momentum modes are assumed to give the main contribution.

After renormalization, it turns out that the next-to-leading order contribution to the
pressure is

PNLO =
m4

T

8π2
log













µ2

m2
T













−
m4

0

8π2
log















µ2

m2
0















+ F1 + F2 , (6.57)

which is shown in Fig. 6.4. AtT = 0, PNLO/T4 can be calculated exactly. This can
be used as a check of the numerical calculations. AtT = 0, clearlyF1 = 0, and hence
PNLO/T4 = F2/T4. At T = 0, for low P, I (P,m) is dominated by 32π2σ̄2/(P2 +m2).
This gives

F2 ≈
1
2
∆

∫

P
log(P2 +m2) . (6.58)

For H = 0, the massm vanishes and soPNLO/T4 = −π2/90. ForH = (104 MeV)3 it
follows thatPNLO/T4 = 0, sinceT is in that case much smaller thanm, such that the
pressure is exponentially suppressed.

The pressure forH = 0 is approaching theH , 0 pressure at high temperatures,
indicating that the effects of the explicit symmetry-breaking terms become smaller at
higher temperatures. This is becauseH is a temperature-independent constant.
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Figure 6.4: Next-to-leading order contribution to the pressure normalized toT4, as
function of temperature forH = 0 andH = (104 MeV)3, for different values of the
cutoff Λ.

Pressure of theO(4) linear sigma model

In order to make contact with two-flavor low-energy QCD the O(4) model is studied
in this subsection. In Fig. 6.5, the pressure normalized byT4 for N = 4 andH = 0
to next-to-leading order as function ofT is shown. The LO pressure belowTc equals
the pressure of a gas of four massless non-interacting scalars. This follows imme-
diately from Eqs. (6.24) and (6.20). At NLO the sigma field becomes massive. For
temperatures much lower thanmσ, the contribution to the pressure from the sigma is
Boltzmann suppressed and (to good approximation) it holds thatP = π2T4/30, which
is the pressure of a gas of three massless non-interacting scalars. From the calcula-
tions presented here it can be concluded that the transitionto next-to-leading order is
of second (or higher) order since the derivative of the pressure is not diverging.

In Fig. 6.6, the pressure normalized byT4 for N = 4 andH = (104 MeV)3 to
next-to-leading order as function ofT is shown.

In Figs. 6.5 and 6.6 the cutoff Λ = 5.0 GeV. To make contact with low-energy
QCD, a few comments on this choice are in order. For the low-energy chiral La-
grangian, the cutoff is usually taken to be 8π fπ (using our definition offπ), which is
around 1.2 GeV. However, for the present purpose this value would be at the limit
of applicability, since the critical temperature at which chiral symmetry is (approxi-
mately) restored is only about a factor of 8 smaller and the requirement that 2πT ≪ Λ
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Figure 6.5: LO and NLO pressure normalized toT4, for N = 4 as a function of
temperature, forH = 0 andΛ = 5.0 GeV.

should be satisfied. In this way one ensures that one sums oversufficient Matsubara
modes. Therefore, the cutoff is taken to be considerably larger to reduce the sensitivity
of the results to the cutoff. However, only for temperatures considerably lower thanTc

one expects that the result is of actual relevance for the QCDpressure.

Pressure of theO(4) nonlinear sigma model

In the limit λb = ∞, the Lagrangian of the nonlinear sigma model is obtained. In
the nonlinear sigma model there are no counterterms available for logarithmic diver-
gences. Therefore onlyfπ,b will be renormalized as in Eq. (6.43) withλb = ∞. This
implies thatF2 has a weak cutoff dependence.

In Fig. 6.7 the pressure of the O(4) nonlinear sigma model without explicit sym-
metry breaking (H = 0), through next-to-leading order in 1/N is shown. The pressure
has been calculated for different values of the cutoff. The LO result forΛ = 20 GeV
is included. For comparison, also the pressure resulting from the “high-energy ap-
proximation” employed by Bochkarev and Kapusta (1996) is shown. A considerable
difference between our results and those of the “high-energy approximation” is ob-
served.

In the approximations made by Bochkarev and Kapusta (1996),theT = 0 part of
sum-integrals are omitted such that everyΣ

∫

is replaced by∆
∫

. HenceΠ(P,m) is sim-
ply replaced byΠT(P,m). In the high-energy approximation the latter is furthermore
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Figure 6.6: LO and NLO pressure forN = 4 normalized toT4, as a function of
temperature forH = (104 MeV)3 andΛ = 5.0 GeV.

approximated by

ΠT(P,m) ≈ T2J1(βm)
32π2A2

, (6.59)

whereJ1 andA2 are given by Eqs. (6.29) and (6.33), respectively. The term involv-
ing σ̄2 in Eq. (6.12) is omitted because Bochkarev and Kapusta (1996) incorrectly
assumed that this term is 1/N suppressed with respect to the other contributions in
Eq. (6.12). As a result the pressure in the “high-energy approximation” reduces to

P = Nm2

2

(

f 2
π − σ̄2

)

− N
2
∆

∫

P
log(P2 +m2) − 1

2
∆

∫

P
log

P2

P4 + 4m2p2
0

. (6.60)

Defining the functions

K±0 (βm) =
32

3T4

∫ ∞

0
dp

p4

ωp
n(ω±) , (6.61)

whereω± =
√

p2 +m2 ±m, the pressure becomes

P = Nm2

2

(

f 2
π − σ̄2

)

+
NT4J0(βm)

64π2
+
π2T4

90
− T4

64π2

[

K+0 (βm) + K−0 (βm)
]

. (6.62)

Expanding Eq. (6.62) in powers ofm/T and rescaling with factors ofN, Eq. (52) of
Bochkarev and Kapusta (1996) is obtained.
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Figure 6.7: NLO pressure of the nonlinear sigma model forN = 4 normalized toT4, as
a function of temperature for different values of the cutoff Λ. For comparison the LO
pressure and a curve corresponding to the NLO pressure expression from Bochkarev
and Kapusta (1996) (see their Eq. (52)) is included.

For completeness, the gap equations in this approximation are given by

16π2 f 2
π = T2J1(βm) + 16π2σ̄2 − T2

N

[

K+1 (βm) + K−1 (βm)
]

, (6.63)

m2σ̄ = 0 , (6.64)

where the functionsK±1 are

K±1 (βm) = ± 8

T2

∫ ∞

0
dp

p2

ωp

ω±
m

n(ω±) . (6.65)

There are several problems with the approach of Bochkarev and Kapusta (1996).
Firstly, it is incorrect to ignore zero-temperature contributions to the pressure and it
also obscures renormalization issues. Then, as was argued below Eq. (6.56), the ar-
guments for applying the high-energy approximation are notvalid. Furthermore, one
cannot neglect the term proportional to ¯σ in I (P,m) for T < Tc. Fourthly, as the so-
lutions to the gap equation (6.63) indicate,m/T becomes significantly larger than one
for T > Tc, hence them/T expansion breaks down. If one were to use Eq. (6.62)
instead, one finds that the pressure even becomes negative aboveT ≈ 300 MeV. An-
other problem is that forT < Tc their pressure is equal to that of a massless gas, which
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is incorrect since the sigma meson is massive and included atNLO. Hence, one ex-
pects a deviation from the ideal-gas pressure atT < Tc. Finally, at high temperatures
the next-to-leading order pressure should become approximately equal to the leading
order pressure because chiral symmetry will be restored. This is not the case for the
pressure calculated by Bochkarev and Kapusta (1996) as can be seen from Fig. 6.7.

Jain (1993) has calculated the thermodynamic potential to NLO in the O(N) linear
sigma model using a high-temperature expansion. This approximation breaks down
at low temperatures. Therefore it is not useful to compare those results to the results
obtained in this chapter since they are strictly speaking only valid at low temperatures
(much lower than the cutoff Λ).

6.5 Choice of parameters

The plots in the preceding sections are made using particular choices of the parameters,
namely,λ(µ = 100 MeV)= 30, fπ = 47 MeV (note that thisfπ differs from the more
conventional definition by a factor of 1/2) and if there is explicit symmetry breaking,
H = (104 MeV)3. In this section these choices are motivated. For simplicity partly
leading-order calculations are used for fixing the parameters.

The values forfπ andmπ are chosen to be roughly equal to their measured values:
fπ = 47 MeV andmπ = 138 MeV (the average of the measured masses of theπ0, π+

andπ−). These values are used for determining the parameterH as follows. Given
a choice ofλ at some scaleµ the LO renormalized gap equations (6.26) and (6.27)
are solved for ¯σ and m2, such thatm2 = m2

π (which is the correct identification at
leading order, see Eq. (6.16)). For the choice ofλ(µ = 100 MeV)= 30, this results in
H = (104 MeV)3.

The choice ofλ is motivated by considerations on the maximal value of the cutoff
and the sigma mass. As explained below, the sigma mass turns out to be maximal
if λ(µ = 100 MeV) = 80. The problem with this choice ofλ is that in that case
the maximal value of the cutoff is 720 MeV. This is very low and allows us only
to do calculations up to aroundT = 50 MeV. Therefore, a lower value is chosen:
λ(µ = 100 MeV)= 30. Using that parameter choiceΛmax = 19 GeV and the sigma
mass is equal to 256 MeV and 350 MeV in the case ofH = 0 andH = (104 MeV)3

respectively.
To obtain the mass of the sigma field, one has to find the poles ofthe propagator

in Minkowski space. The physical massmph is often defined by the solution to the
equation

−m2
ph+m2 + ReΣ(p0 = imph+ ǫ, p = 0, m) = 0 , (6.66)

whereΣ is the self-energy. Using the expression for the inverseσ propagator in the
1/N expansion, Eq. (6.16), and choosingµ = mσ (because all results are independent
of µ, one can chooseµ as one likes, the choiceµ = mσ is just convenient), one finds
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that atT = 0 and forH = 0

m2
σ =

32π2 f 2
π

1+ 32π2

λ(mσ) +
π2

1+32π2/λ(mσ)

. (6.67)

Equation (6.67) can be maximized with respect toλ(mσ). This implies thatmσ ≤√
16π fπ ≈ 333 MeV, which is lower than the averaged measured value of 400 - 800

MeV. An analogous bound was found using the large-N expansion by Einhorn (1984)
on the mass of the Higgs boson. Patkoset al. (2002) show a figure in which the bound
on the sigma mass can be seen indirectly, although they do notcomment on this rather
interesting fact.

For H , 0 a similar bound applies. In that case the maximal value of the sigma
mass can be found by maximizing

m2
σ = m2

π + Re
32π2 f 2

π + 2m2
π log

(

Λ2

m2
π

)

+
64π2m2

π

λb

log
(

Λ2

m2
π

)

+ 1+

√

m2
σ−4m2

π

m2
σ

[

log

(

mσ−
√

m2
σ−4m2

π

mσ+
√

m2
σ−4m2

π

)

+ iπ

]

+ 32π2

λb

, (6.68)

with respect toλb. Finding the maximum of the previous equation requires solving the
following equation formσ

m2
σ =

[

2+
√

1+ A2(m2
σ/m2

π)

]

m2
π , (6.69)

where

A(x) =

(

16π f 2
π

m2
π

− 1
π

)

1
√

1− 4/x
− 1
π

log

(

1−
√

1− 4/x

1+
√

1− 4/x

)

. (6.70)

By solving this equation it turns out that the maximal value of mσ is equal to 433 MeV.
This is on the low side of the experimental measured values between 400 and 800 MeV.
The reason that a rather low bound (which might be unrealistic) on the sigma meson
mass is found could be because possible essential three-flavor physics was missed out
in the calculation.

The bounds in the previous section were obtained using non-perturbative large-N
expansion. So these bounds are valid for any value ofλ. In perturbation theory in
smallλ, the mass of the sigma field ism2

σ = m2 + λbσ̄
2. This result can be found by

expanding the expression for the inverseσ propagator, Eq. (6.16). One might think
that this indicates that the sigma mass can grow to any value by increasingλ. However,
by increasingλ, the sigma field will be coupled stronger to the pions. Since the sigma
field is not stable, but can decay into two pions, the decay width is increased whenλ
becomes bigger. As a result this decay shifts the mass of the sigma meson to lower
values.
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6.6 Summary and Conclusions

In this chapter, the thermodynamics of the O(N) linear and nonlinear sigma models to
next-to-leading order in the 1/N expansion was studied.

At next-to-leading order it was shown that one can renormalize the effective poten-
tial in a temperature-independent manner only at the minimum of the effective poten-
tial. By renormalizing the next-to-leading order effective potential in the minimum the
beta function forλ to next-to-leading order was found. This beta function is consistent
with the perturbative result.

The pressure for the linear and nonlinear sigma model to next-to-leading order as
a function of temperature was calculated numerically. The results show that for the
calculation of the pressure 1/N is a good expansion, even ifN = 4. With a relatively
realistic choice of the parameters a prediction for the pressure of QCD for tempera-
tures belowTc was made. The results for the pressure disagree significantly with the
calculations of those by Bochkarev and Kapusta (1996). Thisis due to the fact that in
the calculations performed in this chapter the zero-temperature contributions are not
neglected and that the next-to-leading order contributionis treated without resorting to
a “high-energy approximation”.

It was also found that in the linear sigma model the sigma masshas an upper
bound at zero temperature. This bound depends only on the parametersfπ andmπ. For
a realistic choice of these parameters, this implies that the mass of the sigma meson
is smaller than 433 MeV. This does not necessarily have consequences for the real
sigma meson, since the full three-flavor physics was not taken into account. It would
be interesting to investigate the temperature dependence of this bound.

An interesting extension of these calculations would be thethe calculation of spec-
tral functions at finite temperature. It would be interesting to see how the bound on
the sigma meson mass depends on temperature. The methods developed in this chapter
could also be useful for the study of more complicated modelsincorporating additional
features of low-energy QCD.





Chapter 7

The phase diagram of the NJL model

In order to obtain information about the structure of the QCDphase diagram, one can
investigate the phase diagram of low-energy effective theories for QCD. In this chap-
ter phase diagrams of such an effective theory, namely the Nambu–Jona-Lasinio (NJL)
model, will be presented. These phase diagrams are obtainednumerically as a func-
tion of temperature and of the up, down and strange quark chemical potentials. Phases
with broken chiral symmetry, color superconducting phasesand phases in which the
pseudoscalar mesons condense can be found in the calculateddiagrams. It is shown
numerically that color superconducting and pseudoscalar condensed phases are sepa-
rated by a first order phase transition. This chapter is basedon: Color superconduc-
tivity versus pseudoscalar condensation in a three-flavor NJL model, H.J. Warringa,
D. Boer and J.O. Andersen, Phys. Rev.D72014015, (2005).

7.1 Introduction

The NJL model (Nambu and Jona-Lasinio, 1961), the instantonliquid model (Shuryak,
1982) and random matrix models (see for example Verbaarschot and Wettig (2000))
are examples of effective models which can be used to study the QCD phase diagram
at finite temperature and densities. Despite their shortcomings, it is expected that these
models do describe the qualitative features of the QCD phasediagram in regions not
accessible to perturbative or lattice QCD. For example, a critical point at finite baryon
chemical potential has been predicted using effective models by Halaszet al. (1998).
Furthermore, it is expected that due to the existence of an attractive interaction, quarks
can form Cooper pairs. This is just as electrons do in ordinary superconductivity due to
the attractive phonon interaction between electrons. As a result, at high baryon chem-
ical potentials and low temperatures, quark matter can for instance be in a two-flavor
color-superconducting phase (2SC) (Bailin and Love, 1984;Alford et al., 1998; Rapp
et al., 1998) in which two flavors pair, or in a color-flavor locked (CFL) phase (Alford
et al., 1999a,b) in which three flavors pair. In these color-superconducting phases gaps
in the quasi-particle excitation spectrum on the order of 100 MeV arise. These gaps
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are large compared to the mass gaps of free quarks (the up and the down current quark
masses are about 5 MeV), indicating that the physics in the color superconducting
phase is very different from that in the deconfined phase.

Many results on high density phase diagrams presented in theliterature have been
obtained for equal up, down and strange quark chemical potentials. However, this
may not be directly relevant for heavy-ion collisions or compact stars. For example
to model compact stars, one has to enforce electric and colorneutrality and weak
equilibrium. For this reason, different flavor and color chemical potentials have been
introduced in the NJL model (Alford and Rajagopal, 2002; Steiner et al., 2002). This
gives rise to a more complicated phase diagram in which one also finds new 2SC-
like (Neumannet al., 2003) and gapless superconducting phases (Alfordet al., 2000;
Shovkovy and Huang, 2003; Alfordet al., 2004; Rüsteret al., 2004; Abuki et al.,
2004; Rüsteret al., 2005; Blaschkeet al., 2005). It is still an open issue whether these
phases are really stable. Similarly, in heavy-ion collisions, a difference between the
quark chemical potentials arises if the number densities ofthe different quark flavors
are not the same. This difference can cause interesting observable effects such as two
critical endpoints (Kleinet al., 2003; Toublan and Kogut, 2003). However, instanton
induced interactions tend to suppress this effect as was shown by Franket al. (2003).

In addition to a more complicated structure of the superconducting phases, differ-
ent chemical potentials can also trigger pseudoscalar condensation (Son and Stephanov,
2001; Kogut and Toublan, 2001). This has been confirmed on thelattice at zero baryon
chemical potential (µB = µu+µd+µs) but finite isospin chemical potential (µI = µu−µd)
by Kogut and Sinclair (2002). In a pseudoscalar condensed phase, depending on the
flavors involved, the charged pion, neutral or charged kaon field acquires a vacuum
expectation value. As a result parity is broken spontaneously. Pseudoscalar condensa-
tion in the two-flavor NJL model has been studied by Toublan and Kogut (2003) and
Barducciet al. (2004), as a function of the different chemical potentials at zero and
finite temperature. An extension to three flavors was carriedout by Barducciet al.
(2005) as well.

The phase diagram of the three-flavor NJL model as a function of the different
chemical potentials includingboth pseudoscalar condensation in the quark-antiquark
channel and color superconductivity had not yet been addressed. This is the sub-
ject of this chapter. At zero temperature, pseudoscalar condensation is possible if
|µu − µd| > mπ, as was shown by Son and Stephanov (2001), or if|µu,d − µs| > mK

(Kogut and Toublan, 2001). On the other hand, color superconducting phases occur if
the chemical potentials are large and approximately equal.Therefore, one can imag-
ine scenarios where for exampleµu ≈ µd (the Fermi surfaces of theu andd quark
should be sufficiently close for Cooper pairing to occur) andµu ≈ −µs (the Fermi
surfaces of theu and s̄ should be sufficiently close for kaon condensation to occur),
with |µu,d − µs| > mK. In such a case a 2SC phase is competing against a phase in
which kaons condense. Hence the phase diagrams presented inthis chapter are not
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a superposition of the phase diagrams with only pseudoscalar condensation and with
only color superconductivity, which were calculated before in the literature. From the
calculations it follows that a coexistence phase of pseudoscalar condensation and color
superconductivity does not occur for the parameters chosenand that these phases are
separated by a first-order transition. However, it is not excluded that other choices of
parameters may lead to such a coexistence phase, just as coexistence of color super-
conductivity and chiral symmetry breaking may occur in the NJL model for specific
ranges of parameters as was found by Blaschkeet al.(2003). Here a coexistence phase
is to be understood as a phase in which two condensates are nonzero simultaneously
to be distinguished from a mixed phase in which phases coexist.

In this chapter pseudoscalar condensation in the quark-antiquark channel is stud-
ied. The pseudoscalar diquark interaction was not taken into account. This interaction
is suppressed relative to the scalar diquark interaction due to instantons (Rappet al.,
1998). However, in absence of instanton interactions, if one neutralizes the bulk matter
with respect to color and electric charges it is possible to have pseudoscalar diquark
condensation with rather large gaps as was shown by Buballa (2005b). According
to Buballa (2005b) pseudoscalar diquark condensation in the NJL model is similar
to pseudoscalar condensation in the CFL phase studied with effective chiral models
studied by Casalbuoni and Gatto (1999), Son and Stephanov (2000), Casalbuoniet al.
(2000), Schäfer (2000), Bedaque (2002), Kaplan and Reddy (2002) and Forbes (2004).

Overall charge neutrality conditions are not applied in this chapter, this allows us to
compare to the previous studies of Toublan and Kogut (2003),Barducciet al. (2004)
and Barducciet al. (2005). Imposing neutrality conditions is necessary to describe
situations in nature where the quark matter is realized at high densities such as in
the core of neutron stars. Neutrality conditions would qualitatively affect the phase
structure, leading for example to the observation that in a macroscopic volume of
electric neutral quark matter in equilibrium with the weak interactions the 2SC phase
is energetically disfavored (Alford and Rajagopal, 2002; Steineret al., 2002).

To obtain the phase diagrams an auxiliary field effective potential will be mini-
mized with respect to the vacuum expectation values. This effective potential will be
calculated in leading order in 1/Nc whereNc is the number of colors. For simplicity
next-to-leading order 1/Nc corrections are not taken into account. However, it is pos-
sible to calculate these corrections as was shown by Hüfneret al. (1994). The leading
order 1/Nc expansion amounts to the so-called mean field approximation.

This chapter is organized as follows. In Sec. 2, it will be argued how the NJL
model qualitatively arises from the QCD Lagrangian density. The NJL model itself
and the choice of parameters will be treated in Sec. 3. In Sec.4, the calculations and
some of its technical aspects are discussed. In Sec. 5, the phase diagrams are presented
and a summary and conclusions are given in Sec. 6.
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7.2 From QCD to the NJL model

The NJL model can serve as a low-energy effective theory of QCD. In this section
it will be discussed qualitatively which approximations one has to make in order to
obtain the NJL model from QCD. A related discussion about theconnection between
QCD and the NJL model can be found in Bijnenset al. (1993) and Bijnens (1996).

The QCD Lagrangian density in Minkowki space, Eq. (1.1), canbe written as
LQCD = Lf +LYM + gJa

µAµa, where the kinetic term of the fermions is given by

Lf = ψ̄
(

iγµ∂µ − M0 + µγ0

)

ψ , (7.1)

and the terms involving the gluon fields by

LYM = −
1
4

Fµν
a Fa

µν . (7.2)

The interaction between the gluons and the quarks is writtenin terms of a fermion
color current which is equal toJa

µ = ψ̄Taγµψ, whereTa is a generator of SU(3). The
partition function of QCD can be factored in the following way

Z =
∫

Dψ̄DψDAa
µ exp

(

iSQCD
)

=

∫

Dψ̄Dψexp
(

iSf + iSint[J
a
µ]

)

, (7.3)

where the quark interaction actionSint[J] is given by

Sint[J] = −i log
∫

DAa
µ exp

(

iSYM + ig
∫

x
Ja
µAµa

)

. (7.4)

By adding a gauge fixing term and the corresponding ghost fields one can perform the
integration over the gauge fields in such a way that the quark interaction action can be
written as

Sint[J] = Sint[J = 0] +
ig2

2

∫

x

∫

y
Ja
µ(x)Dµν

ab(x− y)Jb
ν (y) + . . . . (7.5)

where for simplicity the 6-point and higher fermion interaction terms will be neglected
from now on (if g is small this is certainly allowed). In a more realistic low-energy
effective theory the effect of the 6-point and higher fermion interactions should be
taken into account. In Eq. (7.5)Dµν

ab(x− y) is the exact gluon propagator of pure glue
QCD in a specific gauge

Dµν
ab(x− y) =

〈

Aµa(x)Aνb(y)
〉

. (7.6)

In the limit of high momenta the pure gluon propagator becomes (in the Feynman
(ξ = 1) gauge)

Dµν
ab(p) =

−iδabgµν

p2
. (7.7)
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At low momenta non-perturbative effects will modify this propagator. Since the exact
gluon propagator cannot be calculated analytically in the low-momentum regime, one
can try to make an ansatz for the exact gluon propagator. Suchan ansatz should reduce
to Eq. (7.7) in the high-momentum limit. One of the non-perturbative effects is that
gluons can form massive bound states called glueballs (see for example Morningstar
and Peardon (1999)). The effect of these glueballs should somehow be reflected in the
gluon propagator. As an ansatz one could take

Dµν
ab(p) =

−iδabgµν

p2 − M2
, (7.8)

whereM2 mimics the effect of a massive glue-ball. This mass should be on the order
of the scale at which non-perturbative physics starts to play a role, which is roughly
1 GeV2. Comparing this ansatz to lattice calculations of the exactpropagator for pure
gluon QCD in the Landau gauge (ξ = 0) (Bernardet al., 1994; Bonnetet al., 2000;
Silva and Oliveira, 2004) shows it to be fairly realistic.

Since the objective is to obtain a low-energy effective theory for QCD, the ansatz
can at low-momenta be crudely approximated by

Dµν
ab(p) =

{ i
M2δabgµν p2 < Λ2 ,

0 p2 > Λ2 ,
(7.9)

whereΛ is an ultraviolet momentum cutoff. This ansatz, Eq. (7.9) will eventually lead
to the NJL model. The term 1/M2 acts as a sort of coupling constant and should be in
the order of 1 GeV−2. Because one has to fix a gauge to obtain the gluon propagator,
one should realize that after a gauge transformation in principle the ansatz for the
propagator should transform as well. Since this is usually not done in the NJL model,
gauge invariance is lost, but a global SU(3)c symmetry is retained.

To obtain a more realistic low-energy effective theory for QCD one should use
a more general ansatz for the exact gluon propagator. Such a better ansatz could be
found by fitting it to lattice calculations of the gluon propagator which were performed
by Bernardet al.(1994), Bonnetet al.(2000) and Silva and Oliveira (2004). However,
in most cases this will lead to non-local interactions between the quarks which will be
more difficult to solve analytically in the end, see for example Hashimotoet al.(2005).
In a first approximation the local interaction could be sufficient.

Now at finite temperatures and densities, the termSint[J = 0] is the contribution of
the pure gluon part of QCD to the total pressure of QCD. This term does not depend on
chemical potentials but only on temperature. If one investigates phase diagrams as a
function of chemical potential at a fixed temperature this term is just a constant added
to the effective potential. Hence to first approximation the effects ofSint[J = 0] can be
neglected. At finite temperature, the exact gluon propagator depends on temperature,
this could be taken into account in a more realistic ansatz.
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As a result the QCD partition function can be approximated by

Z ≈ C
∫

Dψ̄Dψexp

(

i
∫

x
LNJL

)

, (7.10)

where the Lagrangian density of the NJL model is given by

LNJL = Lf − g̃Ja
µJµa , (7.11)

here g̃ = g2/2M2 is a coupling constant. The termC contains the gluonic energy
density and does not depend on chemical potentials but only on temperature.

The qualitative arguments to obtain the NJL model will not play a role in the fol-
lowing sections. Below the NJL model will be taken as a starting point. One must
therefore be careful to extend the conclusions obtained below to QCD without cau-
tionary remarks, especially at chemical potentials and temperatures close to the cutoff.
Nevertheless, there are certainly reasons to believe that the qualitative features of the
NJL model also extend to QCD. For instance the meson spectrumis well described by
the NJL model, see for example Klevansky (1992). In the following section the NJL
model will be discussed in more detail.

7.3 The NJL model

The NJL model (Nambu and Jona-Lasinio, 1961) was originallyintended to describe
the interactions between nucleons. Nowadays, however, it is mainly used as an effec-
tive model for QCD. In QCD the interaction between the quarksis caused by gluon
exchange. In the NJL model this gluon exchange is approximated by a four-point
color current-current interaction. This is like the four-Fermi theory of the weak inter-
actions in which the low-energy exchange of a massive vectorboson is modeled by a
four-point interaction. At energies much lower than the mass of the vector bosons, the
weak interactions are almost independent of momentum. Therefore in that case the
four-Fermi theory works well. In the previous chapter it wasargued that by making
an ansatz for the gluon propagator in the non-perturbative regime a fermion four-point
interaction arises too.

There are many NJL-like models. In this chapter a three-flavor NJL model with
three colors is discussed. The different NJL models are based on a Lagrangian density
which contains a kinetic term and a four-point color current-current interaction

L = ψ̄
(

iγµ∂µ − M0 + µγ0

)

ψ − g̃
(

ψ̄γµTaψ
)2
. (7.12)

The color, flavor and Dirac indices of the fermion fieldsψ are suppressed in this equa-
tion for notational simplicity. The diagonal mass matrixM0 contains the bare quark
massesm0u, m0d andm0s. The matrixµ is also diagonal and contains the quark chem-
ical potentialsµu, µd andµs. The matricesTa are the 8 generators of SU(3) and act in
color space. They are normalized as TrTaTb = 2δab.



7.3. The NJL model 129

By applying several Fierz transformations to the current-current interaction (see
for example Buballa (2005a)) and including only terms whichgive rise to attractiveqq
andq̄qchannels, one obtains the following Lagrangian density

L = ψ̄
(

iγµ∂µ − M0 + µγ0

)

ψ +Lq̄q+Ls
qq+L

ps
qq , (7.13)

where the quark-antiquark, the scalar diquark and the pseudoscalar diquark interaction
term are respectively given by

Lq̄q = G
[

(

ψ̄λaψ
)2
+

(

ψ̄λaiγ5ψ
)2
]

, (7.14)

Ls
qq =

3
4

G
(

ψ̄tAλBCiγ5ψ̄
T
) (

ψT tAλBCiγ5ψ
)

, (7.15)

Lps
qq =

3
4

G
(

ψ̄tAλBCψ̄T
) (

ψT tAλBCψ
)

, (7.16)

whereA, B ∈ {2, 5, 7}, since only the interaction in the antisymmetric color and flavor
triplet channel is attractive. The matricesλa are the 9 generators of U(3) and act
in flavor space. They are normalized as Trλaλb = 2δab. The matricesta are the
generators of U(3) and act in color space. Their normalization is Trtatb = 2δab. To
remind the reader, the antisymmetric flavor matricesλ2, λ5 andλ7 couple up to down,
up to strange and down to strange quarks, respectively. The charge conjugate of a
field ψ is denoted byψc = Cψ̄T whereC = iγ0γ2. The coupling strength 3G/4 of the
diquark interaction is fixed by the Fierz transformation (see Buballa (2005a)) and will
be used in this chapter. However, some authors discuss the NJL model with a different
diquark coupling constant (see for example Rüsteret al. (2005) for a comparison).

The NJL model has a symmetry structure similar to QCD, exceptfor the color
symmetry. The NJL model is only invariant under global SU(3)color transformations
since it does not contain gauge fields. In absence of quark masses and chemical poten-
tials, the Lagrangian density of the NJL model has a global SU(3)c × U(3)L × U(3)R
symmetry. Due to the non-vanishing quark masses, the symmetry is like in QCD
broken down to SU(3)c × U(3)V. Since the masses of the quark and the chemical po-
tentials will be different, the symmetry of the Lagrangian density is further reduced to
SU(3)c × U(1)B × U(1)I × U(1)Y, whereB, I , Y stand respectively for baryon, isospin
(the z-component) and hypercharge number. An additional U(1)A symmetry break-
ing term is necessary to explain the large mass of theη particle. As was shown by
’t Hooft (1976) this is due to the non-trivial topological structure of the vacuum, the
instantons. The effect of these instantons can be modeled by the following effective
six-point interaction

Linst = K
[

detψ̄(1− γ5)ψ + detψ̄(1+ γ5)ψ
]

, (7.17)

where the determinant acts only in flavor space. In the two-flavor case one can argue
by applying a Fierz transformation on this interaction, that the scalar diquark interac-
tion is more attractive than the pseudoscalar diquark interaction (Rappet al., 1998).
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Therefore condensation in the scalar diquark channel is favored over pseudoscalar di-
quark condensation. Likewise this is also expected to hold in the three-flavor case.
Therefore from now on the pseudoscalar diquark interactionwill be neglected.

Unfortunately the six-point instanton-induced interaction gives a very complicated
contribution to the effective potential when allowing for pseudoscalar quark-antiquark
condensates in the mean field approximation or beyond (Osipov et al., 2005). There-
fore in this chapter this instanton-induced interaction isleft out but it would be inter-
esting to take this term into account in a further study.

The results that will be presented in this chapter are obtained with the following
choice of parameters which were also used by Buballa (2005a)

m0u = 5.5 MeV , m0d = 5.5 MeV , m0s = 112 MeV ,
G = 2.319/Λ2 , K = 0 , Λ = 602.3 MeV .

(7.18)

These are the precise values used in the calculations, but clearly not all digits are
significant implying that a small change of parameters will not have a big influence
on the results. This choice of parameters gives rise to constituent quark massesMu =

Md = 368 MeV andMs = 550 MeV. In that case the pion and kaon have a mass of
respectively 138 MeV and 450 MeV.

7.4 Effective potential

To obtain a phase diagram one has to investigate the behaviorof order parameters. A
good order parameter vanishes in one phase and is non-vanishing in another and related
to symmetry breaking and restoration. In massless QCD good order parameters indi-
cating chiral symmetry breaking are the quark-antiquark condensates〈ūu〉, 〈d̄d〉 and
〈s̄s〉. Since quarks in reality have a mass, chiral symmetry is already explicitly broken
in the QCD and NJL Lagrangian. Even if one uses massless quarks, different quark
chemical potentials also break the chiral symmetry. Therefore the quark-antiquark
condensates will be nonzero in every phase. So the quark-antiquark condensates are
no good order parameters in a strict sense, but since their values in the broken phase are
much larger than in the approximately restored phase, one can use these condensates
to distinguish different phases. So the quark-antiquark condensates are “approximate
order parameters”. The quark-antiquark condensates are not the only possible order
parameters, others follow naturally from the discussion below in which it is explained
how to calculate the condensates.

As is discussed in Chapter 3, the quantity from which one can derive thermody-
namical quantities is the effective potential. One also can find the values of certain
condensates from this effective potential and hence determine the phase diagram. To
calculate the effective potential of the NJL model it appears to be useful to introduce 18
auxiliary real scalar fieldsαa andβa and 9 complex scalar fields∆AB in the following
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way

L → L − α
2
a + β

2
a

4G
−
∆∗AB∆AB

3G
. (7.19)

By shifting these auxiliary fields as follows

αa→ αa + 2Gψ̄λaψ , ∆AB→ ∆AB−
3
2

GψT tAλBCγ5ψ , (7.20)

βa→ βa + 2Gψ̄λaiγ5ψ , ∆∗AB→ ∆∗AB+
3
2

Gψ̄tAλBCγ5ψ̄
T , (7.21)

the Lagrangian density Eqs. (7.1), (7.14) and (7.15) becomes quadratic in the fermion
fields

L = ψ̄
(

iγµ∂µ − M0 − αaλa − iγ5βaλa + µγ0

)

ψ − α
2
a + β

2
a

4G

− 1
2∆ABψ̄tAλBCγ5ψ̄

T + 1
2∆
∗
ABψ

T tAλBCγ5ψ −
∆AB∆

∗
AB

3G
.

(7.22)

which allows integration over the quark fields. These quark fieldsψ have 3 (color)
× 3 (flavor) × 4 (Dirac) = 36 components. As is explained in appendix 7.A the in-
tegration is most easily done by introducing a two-component Nambu-Gorkov field
ΨT =

(

ψT, ψ̄
)

/
√

2 which has 72 components in this case. After integration over the
fermion fields one obtains an effective action which depends on the auxiliary fields.
To obtain the effective potential to leading order in 1/Nc, these auxiliary fields are re-
placed by their vacuum expectation values. The leading order 1/Nc approximation is
equivalent to the so-called mean field approximation. From now onαa, βa and∆AB

stand for the vacuum expectation values of the auxiliary fields. The quantum fluc-
tuations around the vacuum expectation values of the auxiliary fields are not taken
into account in the mean field approximation. The vacuum expectation values of the
auxiliary fields are directly related to the quark condensates

αa = −2G
〈

ψ̄λaψ
〉

, βa = −2G
〈

ψ̄λaiγ5ψ
〉

,

∆AB =
3
2

G
〈

ψT tAλBCγ5ψ
〉

.
(7.23)

The condensate∆AB is complex. To calculate its vacuum expectation value one should
in principle average over all its phases. Because of the U(1)B symmetry of the action,
this averaging will let the vacuum expectation vanish. However, in a real physical sit-
uation the system will just pick one direction giving rise toa nonzero vacuum expecta-
tion value of∆AB. The phase will however be undetermined unless a small asymmetry
is brought in. This is situation is similar to the magnetization below the phase transi-
tion temperature in the Ising model. In that case averaging over all possibilities will
also give rise to a zero net magnetization. However the real system should choose to
have either a finite positive or negative magnetization. It turns out that∆AB is a good
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order parameter, giving rise to a BCS gap in the quasi-particle excitation spectrum
indicating color superconductivity.

In this chapter it is assumed that all condensates are space-time independent. When
this restriction is dropped it is possible to find the crystalline Larkin-Ovchinnikov-
Fulde-Ferrell (LOFF) phase (Alfordet al., 2001). This is a phase in which quarks with
different momentum magnitudes pair. One can find this phase between the phase in
which chiral symmetry is broken and the color superconducting phases.

After going to imaginary time, the thermal effective potentialV to leading order
in 1/Nc (which is equivalent to the mean-field approximation) reads

V = α2
a + β

2
a

4G
+
|∆AB|2

3G
− T

2

∑

p0=(2n+1)πT

∫

d3p

(2π)3
log detK , (7.24)

whereK is a 72× 72 matrix

K =

(

11c ⊗D1 ∆AB tA ⊗ λB ⊗ γ5

−∆∗AB tA ⊗ λB ⊗ γ5 11c ⊗D2

)

, (7.25)

and

D1 = 11f ⊗ (iγ0p0+γi pi) − µ ⊗ γ0 − (M0+αaλa) ⊗ 11d − βaλa ⊗ iγ5 , (7.26)

D2 = 11f ⊗ (iγ0p0+γi pi) + µ ⊗ γ0 − (M0+αaλ
T
a ) ⊗ 11d − βaλ

T
a ⊗ iγ5 . (7.27)

The matrix 11 is the identity matrix in color (c), flavor (f ), or Dirac (d) space.
The values of the condensates and the phase diagram are determined by mini-

mizing the effective potentialV with respect to the condensates. To make the min-
imization procedure easier, one can take advantage of the fact that certain conden-
sates must vanish. Firstly, application of QCD inequalities derived by Weingarten
(1983) shows that in QCD at zero temperature, global SU(3)V symmetry breaking
cannot be driven by condensates of the type〈ūiγ5u〉 (Vafa and Witten, 1984b; Son
and Stephanov, 2001). Therefore,β0, β3 andβ8 are zero. Outside the phase in which
diquarks condense, it was checked numerically that this is correct at non-zero temper-
atures and chemical potentials as well. At zero chemical potential and temperatures a
theorem by Vafa and Witten (1984a) states that all parity violating condensates should
vanish in QCD, this is also in agreement with the calculations. Moreover, although
perturbative one-gluon exchange cannot distinguish betweenβk andαk condensation
with k ∈ {1, 2, 4, 5, 6, 7}, pseudoscalar condensation is favored due to the instanton
interaction (Son and Stephanov, 2001). One can therefore set all αk’s again with
k ∈ {1, 2, 4, 5, 6, 7} to zero. Numerically it was found that this is correct, even in
the absence of instanton interactions.

One can further simplify the minimization procedure by exploiting the symme-
tries of the NJL model. The free energy (which is the energy inthe minimum of the
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effective potential) is invariant under the same transformations as the Lagrangian den-
sity, so applying a U(1)-flavor transformation to all condensates leaves the free energy
invariant. Theβ condensates transform under a U(1)-flavor transformation which is
parametrized by an angleα as follows

β1,4,6→ cosα1,4,6 β1,4,6 + sinα1,4,6 β2,5,7 , (7.28)

β2,5,7→ − sinα1,4,6 β1,4,6 + cosα1,4,6 β2,5,7 . (7.29)

Therefore, using the U(1)-flavor transformations one can choose the pseudoscalars to
condense in theβ2, β5, andβ7 channels, and setβ1, β4 andβ6 to zero. The phase in
which β2, β5 and/or β7 is non-vanishing is called theπ+/π−, K0/K̄0 and/or K+/K−

condensed phase, respectively. The condensatesβ2, β5 andβ7 are good order param-
eters since they break the U(1)u × U(1)d × U(1)s symmetry which is present in the
Lagrangian density into U(1)B × U(1) if only one pseudoscalar condensate arises or
to U(1)B if there are more. Moreover, these condensates break paritysymmetry. To
summarize for all quark-antiquark condensates, only theα0, α3, α8 andβ2, β5, β7 con-
densates will be considered below.

Because of the global SU(3)c symmetry, one can also rotate away several diquark
condensates. Without loss of generality one can minimize with respect to∆22, ∆25,
∆55, ∆27, ∆57 and∆77. In principle, all six diquark condensates can have a phase.It is
always possible to remove two of them by using the two diagonal SU(3)c transforma-
tions. As long as there is no pseudoscalar condensation, onecan use the U(1)-flavor
symmetries to rotate away three other phases. As a result either∆25,∆55,∆27, or ∆57

has a phase (Buballa, 2005a). However, this reduction is notcompletely possible if
pseudoscalar condensation occurs. By choosing the pseudoscalars to condense in the
β2, β5 andβ7 channels, one breaks the U(1)-flavor symmetry. Hence if pseudoscalar
condensation arises in one channel, one can in general rotate away one phase less in
the diquark sector. If it occurs in more channels, two phasesless can be rotated away.
However, numerically it is found that allowing for such a complex phase leads to di-
quark condensation only in the∆22, ∆55 and the∆77 channels. The∆25, ∆27, and∆57

diquark condensates do not arise or can be rotated away. Moreover it is found that
pseudoscalar condensation in the quark-antiquark channeldoes not coexist with color
superconductivity, such that one can always take the diquark condensates to be real.

The different possible color-superconducting phases are named as follows (Rüster
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et al., 2005)

∆22 , 0, ∆55 , 0, ∆77 , 0 CFL ,

∆77 = 0, ∆22 , 0, ∆55 , 0 uSC,

∆55 = 0, ∆22 , 0, ∆77 , 0 dSC,

∆22 = 0, ∆55 , 0, ∆77 , 0 sSC,

∆22 , 0, ∆55 = 0, ∆77 = 0 2SC,

∆55 , 0, ∆22 = 0, ∆77 = 0 2SCus,

∆77 , 0, ∆22 = 0, ∆55 = 0 2SCds. (7.30)

The abbreviation CFL stands for color-flavor locked phase. If there is exact SU(3)V

flavor symmetry, the three diquark condensates in this phasehave equal size and the
vacuum is invariant under a combined rotation in color and flavor space (Alfordet al.,
1999a,b). In the uSC, dSC or sSC phase the up, down or strange quark always takes
part in the diquark condensate, respectively. In the 2SC phase an up and a down
quark form a diquark condensate, in the 2SCus and the 2SCds phase this condensate is
formed by an up and and strange quark and a down and a strange quark, respectively.

To calculate the effective potential one needs to evaluate a determinant of a 72×72
matrix. Only in special cases such as when all masses and chemical potentials are
equal and in absence of pseudoscalar condensation one can perform over the sum over
Matsubara frequencies analytically and hence simplify theeffective potential some-
what further. But in the more general cases which will be discussed in this chapter
this either is not possible or gives rise to very complicatedequations. One is therefore
restricted to do numerical calculations.

To calculate the determinant of the effective potential in an efficient way, one can
multiply the matrixK with diag(11c⊗11f ⊗γ0, 11c⊗11f ⊗γ0) which leaves the determinant
invariant. In this way, one obtains a new matrixK′ with ip0’s on the diagonal. By
determining the eigenvaluesλi of the matrixK′ with p0 = 0, one can reconstruct the
determinant ofK for all values ofp0 which is namely

∏72
i=1(λi + ip0). After summing

over Matsubara frequencies, one finds using Eq. (2.55)

T
∑

p0=(2n+1)πT

log detK =
72
∑

i=1

[

λi

2
+ T log

(

1+ e−λi/T
)

]

. (7.31)

All that remains in order to determine the effective potential is to integrate over three-
momentump up to an ultraviolet cutoff Λ.

The speed of the calculation of the effective potential depends heavily on how fast
one can compute the eigenvalues. There are several ways to speed up the calculation.
Firstly, the determinant ofK does not depend on the direction of~p. Therefore, one
can choose~p to lie in thez-direction. Together with the choice of the non-vanishing
condensates mentioned above, this implies thatK′(p0 = 0) becomes a real symmetric
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matrix, which simplifies the calculation of the eigenvalues. Secondly, one can inter-
change rows and columns ofK′ without changing its determinant. By doing so, one
can bringK′ in a block-diagonal form. One can then determine the eigenvalues of the
blocks separately which is significantly faster since the time needed to compute eigen-
values numerically scales cubically with the dimension of the matrix. In the most
general case with diquark condensation, one can always reduce the problem to two
36×36 matrices. Moreover, if there is no diquark condensation,but only pseudoscalar
condensation (Barducciet al., 2005), the problem can be further reduced to computing
the eigenvalues of two 6× 6 matrices

The eigenvalues were obtained using LAPACK routines (Andersonet al., 1999).
After numerical integration over three-momentump up to the cutoff, the condensates
were determined by minimizing the effective potential using MINUIT (James and
Roos, 1975). To be certain that the minimization procedure did not end up in a local
minimum the continuity of the minimized effective potential as a function of chemical
potentials and/or temperature was always checked.

7.5 Phase diagrams

In this section results for the phase diagrams of the NJL model with u, d, andsquarks
are presented. The phase diagrams are plotted as a function of the chemical potentials
and temperature. To determine the locations of the phase boundaries, the behavior of
the condensates was examined. The different possibilities are displayed in Fig. 7.1. If a
condensate jumps discontinuously the transition is first-order (a), and this is indicated
by a solid line in all phase diagrams. If its derivative has a discontinuity, the transition
is second order (b), and this is indicated by a dotted line. Ifa condensate changes
rapidly in a narrow range without vanishing, in other words no derivative has a discon-
tinuity, there is a smooth cross-over (c), and this is indicated in the phase diagrams by
a dashed-dotted line at the point were the condensate variesmaximally.

a b c

Figure 7.1: Typical behavior of condensates near a transition. Fig. (a) shows a conden-
sate undergoing a first order transition, Fig. (b) a second order transition and Fig. (c) a
cross-over.
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Figure 7.2: Baryon number density as a function of baryon chemical potential for
T = 0 andµu = µd = µs. The vertical pieces indicate the presence of a mixed phase.
Using Fig. 7.4 one can conclude that upon increasingnB, quark matter is subsequently
in a phase with broken chiral symmetry, in a mixed phase of broken chiral symmetry
and 2SC, in a 2SC phase, in a mixed phase of 2SC and CFL, and finally in a CFL
phase. For comparison, the nuclear matter density is about 0.17 fm−3.
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Figure 7.3: The chiral condensates (solid line) and pion condensate (dotted line) as a
function ofµI = µu − µd with µu = −µd.
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To calculate the phase diagrams, the effective potential was minimized on a grid of
chemical potentials and or temperatures. The numerical uncertainties in the presented
phase diagrams are in the order of the distance between the points in the grid which
was about 3 MeV, this coincides with the thickness of the lines in the phase diagrams.

One should keep in mind that the relation between chemical potential and number
density is not linear. In Fig. 7.2 the baryon number density as a function of the baryon
chemical potential is displayed. In that figure it can be seenthat at a first-order phase
boundary the number density increases discontinuously. Atthese particular densities,
quark matter for example can be in a mixed state of normal and superconducting matter
(see e.g. Bedaque (2002) and Lawleyet al. (2005)).

A typical outcome of the minimization procedure is displayed in Fig. 7.3, in which
the chiral and pion condensates are plotted as a function ofµI for µB = 0. It can be seen
from the figure that pion condensation arises via a second order transition forµI > mπ.
It can also be seen that the chiral condensates ¯uu andd̄d are small but non-vanishing
in the phase with pion condensation.

Phase diagram withµB vs. T

In Fig. 7.4 the phase diagram of the NJL model as a function of baryon chemical
potentialµB = µu + µd + µs and temperature is displayed forµu = µd = µs. This
phase diagram is similar to the qualitative QCD phase diagram displayed in Fig. 1.3.
At low temperatures and baryon chemical potential the chiral symmetry is broken
in the phases denoted by (a) and (g). By increasing the chemical potential at low
temperatures one enters the color superconducting phases,first the 2SC phase (n/q) and
thereafter again via a first order transition the CFL phase (t). Three critical endpoints
can be seen in this diagram.
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Figure 7.4: Phase diagram forµu = µd = µs as a function ofµB andT. First and
second-order transitions are indicated by solid and dottedlines, respectively. A cross-
over is indicated by a dashed line. The letters denote the different phases, where a: ¯uu
+ d̄d+ s̄s, g: s̄s, n: 2SC, q: 2SC+ s̄sand t: CFL.
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Figure 7.5: Phase diagram forµs = 0 andT = 0 as a function ofµu andµd. The letters
denote the different phases, where a: ¯uu+ d̄d + s̄s, c: ūu+ s̄s, d: d̄d + s̄s, g: s̄s, i:
π+/π− + s̄sand q: 2SC+ s̄s.
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Phase diagram withµs = 0 and T = 0

In Fig. 7.5 the phase diagram of the NJL model forµs = 0 andT = 0 as a function of
µu andµd is displayed. Outside the 2SC phase (q), the results agree qualitatively with
the two-flavor calculations by Barducciet al. (2004) (see their Fig. 1), where color-
superconducting phases were not taken into account. Moreover, Barducciet al.(2004)
use different parameters, in addition to a form factor. One can clearly see that the phase
diagram is symmetric under reflection in the origin. This is because the free energy
is invariant under the transformation (µu, µd, µs) → (−µu,−µd,−µs), that stems from
the symmetry between particles and antiparticles. Fig. 7.5is also symmetric under
interchange ofu andd, because of the choice of equal up and down quark masses.
This gives rise to the symmetry of the phase boundaries with respect to the diagonals.

In general, horizontal and vertical lines in the phase diagrams arise if the pairing
of one type of quark is not changed after a transition. In thiscase, the location of the
phase boundary is determined by the properties of other quarks. Therefore, changing
the chemical potential of the unchanged quark species cannot have a big influence on
the location of the phase boundary. This results in the horizontal and vertical lines. For
T = 0, one always finds these lines near the values of the constituent quark masses,
i.e.µu ≈ Mu, µd ≈ Md andµs ≈ Ms (see for example Buballa (2005a)). The diagonal
lines arise because atT = 0 pion condensation can occur if|µu− µd| > mπ = 138 MeV
(Son and Stephanov, 2001).

The diagram shows that if the chemical potentials are different, the transition to
the 2SC phase (q) remains first order as was concluded by Bedaque (2002). Moreover,
one can see from Fig. 7.5 that ifµu , µd it is possible to go through two first-order
transitions before entering the 2SC phase (q) (similar to the situation discussed by
Toublan and Kogut (2003) without color superconductivity). To have such a scenario
at zero temperature, a minimum difference betweenµu and µd is required. In the
present case this is about 35 MeV. Pion condensation (i) and the 2SC phase (q) are
in this diagram separated by two phase transitions in contrast to the estimated (µB, µI )
phase diagram of Heet al. (2005) which correctness is therefore questionable.
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Phase diagram withµd = 0 and T = 0

In Fig. 7.6 the phase diagram forµd = 0 andT = 0 as a function ofµu andµs is
displayed. Since the up and down quark masses are much smaller than the strange
quark mass, this diagram is very different from Fig. 7.5. Besides the possibility of
pion condensation in (h) and (i) also phases in which the charged kaon (k) and the
neutral kaon condense (l)/(m) arise. The lines separating the charged kaon phase (k)
from the chirally broken phase (a) are diagonal because atT = 0 kaon condensation
can occur if|µs − µu,d| > mK = 450 MeV (Kogut and Toublan, 2001) (the chosen
parameter set gives rise to a somewhat low kaon mass, but thisis not relevant for
the qualitative features of the phase diagram). The 2SCus phase appears in (r). This
phase is surrounded by phases in which the pions (h)/(i) and the neutral kaons (l)
condense. One passes a first-order transition when going from the pion and neutral
kaon condensed to the 2SCus phase.
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Figure 7.6: Phase diagram forµd = 0 andT = 0 as a function ofµu andµs. First
and second-order transitions are indicated by solid and dotted lines, respectively. The
letters denote the different phases, where a: ¯uu+ d̄d+ s̄s, b: ūu+ d̄d, d: d̄d + s̄s, h:
π+/π−, i: π+/π− + s̄s, k: K+/K− + d̄d, l: K0/K̄0, m: K0/K̄0 + ūuand r: 2SCus+ d̄d.
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Phase diagrams withµu ≈ µd

In Fig. 7.7 the phase diagram forT = 0 as a function of the up and down quark
chemical potential and the strange quark chemical potential is displayed. In this phase
diagramµu = µd + ǫ whereǫ is a very small positive number. Thisǫ is necessary
because whenǫ = 0 one is just at a first-order phase boundary between the phasein
which the charged kaons condense (k) and the one in which the neutral kaons con-
dense (m), as can be seen from Fig. 7.6. This nonzero value ofǫ gives rise to a small
asymmetry in the phase diagram. Ifǫ is chosen to be negative, the phases in which the
neutral (l)/(m) and the charged (j)/(k) kaon condenses are interchanged.
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Figure 7.7: Phase diagram forT = 0 as a function ofµu = µd + ǫ andµs. The letters
denote the different phases, where a: ¯uu+ d̄d+ s̄s, b: ūu+ d̄d, j: K+/K−, k: K+/K−

+ d̄d, l: K0/K̄0, m: K0/K̄0 + ūu, n: 2SC, q: 2SC+ s̄sand t: CFL.

Apart from the additional 2SC (n)/(q) and CFL (t) phases, the results presented
here agree qualitatively with the three-flavor calculations by Barducciet al. (2005)
(see their Fig. 7). Barducciet al. (2005) have used different quark masses and a dif-
ferent coupling constant, and in addition employed a form factor to mimic asymptotic
freedom. Therefore, one may conclude that the use of such a form factor does not
affect the phase diagram qualitatively. The phase diagram Fig.7.7 cannot simply be
obtained by a superposition of phase diagrams obtained froma calculation with pseu-
doscalar condensation, but without superconductivity (such as done by Barducciet al.
(2005)), and one with superconductivity, but without pseudoscalar condensation (such
as done by Gastineauet al. (2002)). Despite the fact that the two types of phases do
not coexist, there is nevertheless competition between them. Figure 7.7 shows that the
K0/K̄0 (l)/(m) and theK+/K− (j)/(k) phase are separated from the 2SC phase (q) by
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a first-order transition. This remains the case at finite temperature as is illustrated in
Fig. 7.8. This figure displays the phase diagram as a functionof µs and temperature,
for fixedµu = µd = 550 MeV.
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Figure 7.8: Phase diagram as a function ofµs andT, for fixedµu = µd = 550 MeV.
Here a cross-overs is indicated by a dashed-dotted line. Theletters denote the different
phases, where g: ¯ss, l: K0/K̄0, n: 2SC, q: 2SC+ s̄sand t: CFL.

Returning to the discussion of Fig. 7.7; the lineµu = µd = µs goes through the
phase (a) in which chiral symmetry is spontaneously broken.At some point it enters
via a first-order transition the 2SC+ s̄sphase (q), and finally goes into the CFL phase
(t), again via a first-order transition. If there is a difference betweenµu = µd and
µs, one can see in Fig. 7.7 that as the densities increase, quarkmatter can go directly
from a phase with chiral symmetry breaking (a) to a CFL phase (t) without passing the
2SC phase (q) first. This can also occur in compact stars as wasshown by Alford and
Rajagopal (2002).

It is also interesting to note that the phases (l)/(j) of kaon condensation can also
occur outside the region of spontaneous chiral symmetry breaking. Assuming the
phase transition towards chiral symmetry restoration coincides with the deconfinement
transition (as appears to be the case in lattice studies at small baryon chemical potential
and in some models), this would imply that condensation of a state with quantum
numbers of the kaon may persist in the deconfined phase. This was first observed by
Son and Stephanov (2001), based on a perturbative calculation at very high isospin
chemical potential.
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Figure 7.9: Phase diagram forT = 0 as a function ofµu = µs andµd. The letters
denote the different phases, where a: ¯uu+ d̄d + s̄s, c: ūu+ s̄s, d: d̄d + s̄s, g: s̄s, i:
π+/π− + s̄s, l: K0/K̄0, o: 2SCus, q: 2SC+ s̄s, r: 2SCus+ d̄d and t: CFL.

Phase diagrams withµu = µs

In Fig. 7.9 the phase diagram at zero temperature as a function of µu = µs andµd is
shown. This diagram is similar to Fig. 7.5 for small strange quark chemical potentials
(below the kaon mass). At larger strange quark chemical potentials the diagrams differ,
exhibiting kaon condensation (l) and diquark condensationinvolving strange quarks
(r)/(o)/(t).

In Fig. 7.10 the phase diagram as a function ofµd andT, for fixed µu = µs =

550 MeV is displayed. In this figure one can find five critical points. Also, one can
see in this figure that theK0/K̄0 phase (l) is separated from the 2SCus phase (r) by
a first-order transition for all temperatures. Furthermore, it is interesting that at finite
temperature there is a first-order transition from the phasein which the neutral kaons
condense (l) to the pion condensed phase (h). In Fig. 7.11 thelower-right corner of
Fig. 7.10 is enlarged for clarity. In this figure one can find all possible superconducting
phases, including the more exotic uSC (u), dSC (v) and sSC (w)phases. Forµu = µd =

µs one goes from the CFL phase (t) via the 2SC phase (n) to the chirally restored phase
when raising the temperature. However, small differences betweenµu = µs andµd can
cause one to go through completely different phases.
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Figure 7.10: Phase diagram as a function ofµd andT, for fixedµu = µs = 550 MeV.
The letters denote the different phases, where f:̄dd, h: π+/π−, l: K0/K̄0, o: 2SCus, r:
2SCus+ d̄d, t: CFL and w: sSC. The upper phase is phase with chiral symmetry in
which all condensates vanish. The lower right corner of thisfigure is enlarged in Fig.
7.11.
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Figure 7.11: Same as Fig. 7.10. The phases that occur are f:d̄d, n: 2SC, o: 2SCus, p:
2SCds, r: 2SCus+ d̄d, t: CFL, u: uSC, v: dSC and w: sSC.
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7.6 Summary and Conclusions

In this chapter the phase diagram of the three-flavor NJL model including pseudoscalar
quark-antiquark condensation and color superconductivity was studied as a function
of the different quark chemical potentials and temperature. The NJL model has a rich
and interesting phase structure. The pseudoscalar condensed and color superconduct-
ing phases are competing and are separated by a first-order phase transition. As was
discussed, this need not be the case for other (less conventional) choices of the param-
eters of the model.

Furthermore, it was concluded that at zero temperature and zero strange quark
chemical potential, a minimum asymmetry of about 35 MeV between the up and the
down quark chemical potentials is required in order to have two first-order transitions,
when going from the phase with spontaneous chiral symmetry breaking to the 2SC
phase.

The results provide a qualitative check and extension of several earlier calculations
that appeared in the literature. The calculations in this chapter simultaneously allowed
for nine different nonzero condensates, ¯uu, d̄d, s̄s, π+/π−, K+/K−, K0/K̄0, ∆22, ∆55

and∆77. The new aspects of the phase diagrams are often located in regions, where
the quark chemical potentials are large and very different in magnitude for the differ-
ent flavors. Although such situations are not necessarily realized in compact stars or in
heavy-ion collisions. The study of such unusual situationsis nevertheless interesting
for a fundamental understanding of the theory. Moreover a comparison with future
lattice data may provide interesting information. This is especially relevant for pseu-
doscalar condensation in the phase where chiral symmetry isrestored and also for the
complicated superconductivity phase structure close to the cutoff of the model.

This work can be extended in several ways. For example, one can take into ac-
count the instanton-induced interaction (’t Hooft, 1976),Eq. (7.17) in the mean field
approximation or using the method of Osipovet al. (2005). If one has pseudoscalar
condensation, this is much more difficult than in the normal case though. Another
very useful extension would be the inclusion of the neutrality conditions (Alford and
Rajagopal, 2002; Steineret al., 2002), in which case the phase structure changes and
for instance gapless phases will occur. It would also be interesting to see how the
results depend on the strength of the diquark coupling and onthe quark masses. Fur-
thermore, one could add the LOFF phase (Alfordet al., 2001). In this crystalline
phase, quarks of different momentum magnitudes can pair. One could also include
vector interactions. In this case spin-1 diquark condensation (see for example Pisarski
and Rischke (2000); Buballaet al. (2003)) and an induced Lorentz-symmetry break-
ing (ISB) phase (Langfeld and Rho, 1999) are among the possibilities. It would also
be worthwhile to take pseudoscalar diquark condensation (Buballa, 2005b) into ac-
count. Finally, one could try to go beyond the mean-field approximation as was done
by Hüfneret al. (1994).
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7.A The Nambu-Gorkov formalism

In case a Lagrangian density contains terms which are proportional toψTΓψ, the inte-
gration over the quark fields is non-trivial. In that case it useful to apply the Nambu-
Gorkov formalism which is discussed for the Lagrangian density used in this chapter,
Eq. (7.22).

Taking the fermionic part of the Lagrangian Eq. (7.22) and transposing half of the
quark-antiquark term gives

Lf =
1
2ψ̄

(

iγµ∂µ − M + µγ0

)

ψ + 1
2ψ

T
(

iCγµC∂µ + MT − µγ0

)

ψ̄T

+ 1
2∆
∗
ABψ

T tAλBCγ5ψ − 1
2∆ABψ̄tAλBCγ5ψ̄

T ,
(7.32)

whereM = M0 − αaλa − iγ5βaλa. By introducing a two-component Nambu–Gorkov
field

Ψ =
1
√

2

(

ψ

ψ̄T

)

, (7.33)

one can rewrite the Lagrangian in Eq. (7.32) asLf = Ψ
TSΨ with

S =

(

∆∗ABtAλBCγ5 iCγµC∂µ + MT − µγ0

iγµ∂µ − M + µγ0 −∆ABtAλBCγ5

)

. (7.34)

In the path integral the measureDψ̄Dψ will be changed intoDΨ. Integration over the
Nambu-Gorkov fields yields thatSeff =

1
2 log Det

[(

S − ST
)

/2
]

= 1
2 log DetS since

S is antisymmetric in this case. The determinant is invariantunder interchange of an
even number of rows. Using that one can put the part containing the kinetic term on
the diagonal. The effective action is simplified further if one multiplies from the left
with diag (1,C) and from the right with diag (1,C) whereC is the charge conjugation
matrix, resulting in

Seff = log Det

(

iγµ∂µ − M + µγ0 ∆ABtAλBγ5

−∆∗ABtAλBγ5 iγµ∂µ − MT − µγ0

)

. (7.35)

This expression was evaluated further in Eq. (7.24), using abasis for a complete set of
functions which satisfy the anti-periodicity conditions for fermions in imaginary time
like in Eq. (2.43).



Summary

In this thesis, entitled “Thermodynamics of QCD-inspired theories” the behavior of
(quark) matter under extreme high temperatures and densities is investigated. Such
extreme conditions can be reached for example in the early universe shortly after the
big bang, during a heavy-ion collision and inside the core ofa neutron star. They can
be so extreme that normal nuclear matter does longer exist, such that matter is in a
different phase than usual, like for example the so-called quark-gluon plasma (at high
temperatures and/or densities) or the color-superconducting phase (at high densities).

A general introduction to this thesis is given in Chapter 1. Firstly, it will be dis-
cussed what could happen to matter under such extreme conditions. Then, the relevant
aspects of quantum chromodynamics (QCD) (the theory which describes the interac-
tions between the quarks) will be explained shortly. Thereafter, an overview of the
results and problems of previous calculations of the pressure and the phase diagram of
quark matter are given. The relevance of these kind of calculations for the understand-
ing of a compact star, heavy ion collisions, and the state of the universe shortly after the
big bang, will be examined as well. At the end of the chapter the term “QCD-inspired
theories” will be explained.

In Chapter 2 it is discussed how one can perform calculationsat finite temperature
and densities in a field theory like QCD. For that, results from statistical physics will be
applied. Firstly, a short review of classical statistical physics is given, which thereafter
will be generalized to a quantum mechanical approach. Usingpath-integrals it will be
discussed how this approach can be used in order to investigate quantum field theories
at finite temperature and densities. In calculations at finite temperature and densities
one often has to perform summations over an infinite number ofterms. A method to
perform these sums exactly will be discussed. Also it will beexplained in detail how
these summations can be computed numerically for more difficult cases.

The third chapter treats the so-called effective potential and the 1/N expansion.
The effective potential is an important quantity, since the pressure and the phase dia-
grams can be obtained by minimizing this potential. The 1/N expansion is a method
which can be used to investigate the non-perturbative (in the coupling constant) behav-
ior of some theories. It will be explained how this expansioncan be obtained by the
introduction of auxiliary fields. At the end of this chapter an important result of this
thesis, which is the occurrence of temperature-dependent divergences in the effective
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potential, will be discussed. Such divergences cannot be renormalized properly. These
divergences become independent of the temperature at the minimum of the effective
potential. That is just at the point at which one has to evaluate the effective potential in
order to obtain the physical quantities like the pressure and the phase diagram. At the
minimum, these divergences are no problem because there they can be renormalized
in a systematic way.

The subject of Chapter 4 is the thermodynamics of the nonlinear sigma model in
two dimensions. This model has some aspects with QCD in common such as asymp-
totic freedom. Using the 1/N expansion it is possible to investigate this model in the
domain where it is non-perturbative in the coupling constant. By studying this model
one can learn something about QCD at finite temperature, for example how the behav-
ior of an asymptotically free theory changes when going fromlow to high tempera-
tures. In this chapter, the effective potential will be calculated to next-to-leading order
(NLO) in 1/N. It turns out that this effective potential contains temperature-dependent
divergences which can only be renormalized properly at the minimum. By minimiz-
ing the effective potential, the pressure as a function of temperatureis obtained. It is
found that 1/N is a good expansion method. Furthermore it turns out that thepressure
divided by the pressure in the limit of infinite temperature is almost independent ofN.
Similar behavior is found in lattice calculations of SU(N) Yang-Mills theory.

Chapter 5 discusses the thermodynamics of theCPN−1 model in two dimensions.
This model is an extension of the nonlinear sigma model in which also electromag-
netism is taken into account. This model shares also some features with QCD, it
contains for example like QCD so-called topological non-trivial vacua. The influence
of these vacua on the pressure is investigated using the samemethods as in Chapter 4.
It is found that the non-trivial vacua give a large contribution in the region in which
the pressure as a function of the temperature raises quickly. This result is a possible
indication that topological non-trivial vacua are important for the thermodynamics of
QCD in the neighborhood of the phase transition.

In Chapter 6 the thermodynamics of the linear and nonlinear sigma model in four
dimensions is investigated. These models are low-energy effective theories of QCD.
The pressure of these models is calculated to NLO in 1/N. The most important re-
sult of these calculations is a prediction for the pressure of two-flavor QCD at low
temperatures. The NLO correction is compared to predictions of this correction in the
literature. These predictions turn out to be wrong. Finallya relatively low upper bound
on the mass of the sigma meson is found. The mass of the sigma meson has not yet
been determined very accurately experimentally. If this upper bound is a result of the
approximations or occurs really in QCD should be investigated further.

The phase diagram of the NJL model is examined in Chapter 7. The NJL model
is a low-energy effective theory of QCD as well. The phase diagrams are calculated
by minimizing the effective potential. The calculations have been carried out for sit-
uations in which the densities of the up, down and the strangequark are different,
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such as in a compact star or in a heavy-ion collision. Next to the phase in which one
can find ordinary matter, different color-superconducting phases and phases in which
the pseudoscalar mesons condense are found. The results of this chapter are an ex-
tension of earlier calculations in which either only the color-superconducting phases
or the phases in which the pseudoscalar mesons condense weretaken into account.
The main result is that these previous calculations are extended, such that one gets a
more complete picture of the phase diagram. Furthermore thecompetition between
the color-superconducting phase and the phase in which pseudoscalar mesons con-
dense is studied. It is found that they are separated by a first-order phase transition. A
possible extension of this work would be the inclusion of color and electric neutrality
constraints, such that obtain the phase diagram of a compactstar.





Samenvatting

Het standaardmodel isde natuurkundige theorie die de deeltjes waaruit materie is
opgebouwd en hun onderlinge wisselwerkingen (met uitzondering van de zwaarte-
kracht) beschrijft. Dit model heeft tot nu toe, op het aantonen datneutrino’seen hele
kleine massa hebben na, alle experimentele testen glansrijk doorstaan. Hoewel de
wisselwerkingen tussen de deeltjes onderling dus goed begrepen zijn, is het gedrag
in situaties waarbij een heleboel deeltjes met elkaar wisselwerken vaak beperkt be-
kend. Een voorbeeld van zo’n situatie is materie onder extreem hoge temperaturen en
dichtheden, zoals tijdens de oerknal en in hele compacte sterren. In dit proefschrift
zijn enkele berekeningen uitgevoerd die tot een beter begrip van materie onder zulke
extreme omstandigheden kunnen leiden.

Van atomen naar quarks

De materie om ons heen is opgebouwd uit atomen. Een atoom bestaat uit een posi-
tief geladenkern waarelektronen, die negatief geladen zijn, zich omheen bevinden.
De elektronen blijven in de buurt van de kern omdat positief en negatief geladen
deeltjes elkaar via deelektromagnetischewisselwerking aantrekken. De elektromag-
netische kracht tussen twee ladingen wordt veroorzaakt door de uitwisseling vanfo-
tonen(hetzelfde soort deeltjes waaruit licht bestaat). Deze kracht wordt beschreven
doorquantumelektrodynamica(QED), de quantumtheorie van het elektromagnetisme.
QED is het best geteste onderdeel van het standaardmodel.

De kern bevat bijna alle massa van het atoom en is ook weer opgebouwd uit deel-
tjes: positief geladenprotonenen neutraleneutronen. De kern van het waterstofatoom
bestaat uit één proton, terwijl bijvoorbeeld het stabiele goudatoom 79 protonen en 118
neutronen bevat.

Omdat protonen elektrisch geladen zijn, zorgt de elektromagnetische wisselwer-
king voor een afstotende kracht tussen de protonen. Desondanks zijn er veel stabiele
atoomkernen waarin de protonen en neutronen toch bij elkaarblijven. Daarom moet er
nog een aantrekkende kracht tussen de protonen en de neutronen bestaan. Deze kracht
wordt desterke wisselwerkinggenoemd. Het blijkt dat de aantrekkende kracht tussen
protonen en neutronen een gevolg is van de wisselwerkingen tussen dequarks, dat zijn
de deeltjes waaruit protonen en neutronen zijn opgebouwd.
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Een proton is opgebouwd uit drie quarks, twee zogenaamdeup quarksen eendown
quark. Een neutron bestaat uit een up quark en twee down quarks. Naast de elektrische
lading hebben de quarks nog een zogenaamdekleurlading. Quarks oefenen een kracht
op elkaar uit door uitwisseling vangluonen. Deze kracht is op hele kleine afstand
veel sterker dan de elektromagnetische kracht, waardoor een proton en ook sommige
atoomkernen stabiel zijn.

Naast het up en het down quark zijn er nog vier andere zwaardere soorten quarks
bekend, te weten hetstrange, charm, bottomentopquark. Met al deze quarks kunnen
allerlei (instabiele) deeltjes gevormd worden. Maar vanwege de onderlinge interacties
kunnen lang niet alle combinaties van quarks voorkomen. Bijvoorbeeld, een quark als
vrij deeltje is onmogelijk. Onder normale omstandigheden vormen quarks altijd met
z’n drieën een deeltje (bijvoorbeeld een proton of een neutron) of met z’n tweeën. In
het laatste geval vormt het quark tezamen met een antiquark een deeltje, een zoge-
naamd meson. Een voorbeeld hiervan is het positief geladenpion, dat een gebonden
toestand van een up quark en een anti-down quark is.

De wisselwerkingen tussen de quarks worden beschreven doorquantumchromo-
dynamica(QCD) (zie formule 1.1). QCD is net als QED een onderdeel van het stan-
daardmodel. Met behulp van deze theorie kunnen bepaalde uitkomsten van botsings-
experimenten tussen bijvoorbeeld twee protonen worden voorspeld. De resultaten van
deze experimenten stemmen overeen met de voorspellingen, wat dus betekent dat de
fundamentele wisselwerkingen tussen de quarks in principegoed begrepen zijn.

Materie onder extreme omstandigheden

In dit proefschrift is theoretisch onderzocht wat met materie opgebouwd uit quarks
gebeurt onder extreem hoge temperaturen, zoals tijdens de oerknal en bij hele grote
dichtheden, zoals in een compacte ster. In beide gevallen hebben we natuurlijk te
maken met een heleboel quarks, veel meer dan in een botsingsexperiment tussen twee
protonen. Net zoals het ondoenlijk is om te voorspellen hoe een individueel water-
molekuul zich door water beweegt, kunnen we in dat geval geenuitspraken doen over
het gedrag van ieder individueel quark. Maar het is wel mogelijk om uitspraken te
doen over het gedrag van alle quarks tezamen, net zoals waterte karakteriseren is
door collectieve grootheden, als de temperatuur, de dichtheid en de druk. De relaties
tussen deze grootheden kunnen met behulp vanthermodynamica(warmteleer) worden
uitgerekend en zijn ondere andere van belang voor het begrijpen van het gedrag van
compacte sterren en het ontstaan van het heelal.

Water kan in verschillende toestanden (ook welfasengenoemd) voorkomen, te
weten ijs, vloeibaar en damp. Al deze fasen zijn natuurlijk opgebouwd uit dezelfde
watermolekulen, alleen gedraagt de verzameling watermolekulen zich in iedere fase
compleet anders. In ijs zijn de watermolekulen relatief sterk aan elkaar gebonden.
Als de temperatuur verhoogd wordt, gaan de watermolekulen sneller trillen, op een
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gegeven moment trillen ze zo hard dat ze niet meer in een soortroostervorm bij elkaar
kunnen worden gehouden, water gaat dan over naar de vloeibare fase. Bij de overgang
naar waterdamp gebeurt ongeveer hetzelfde.

Algemeen wordt aangenomen dat iets dergelijks ook met quarks moet gebeuren.
Zoals eerder is aangegeven, vormen quarks met z’n tweeën ofmet z’n drieën een
deeltje zoals het neutron. Neem nu eens in gedachten een groot aantal neutronen in
een doos. Als de temperatuur laag is dan blijven de quarks bijelkaar, maar als de
temperatuur verhoogd wordt kan het gebeuren dat de quarks zohard gaan trillen, dat
ze niet meer bij elkaar kunnen worden gehouden in een neutron. De materie komt dan
in een nieuwe fase die hetquark-gluonplasmawordt genoemd. In deze fase hoeven
de quarks niet langer met z’n tweeën of drieën bij elkaar teblijven. De temperatuur
waarbij de faseovergang optreedt is ongeveer twee biljoen graden Celsius, dat is maar
liefst honderdduizend keer de temperatuur in het binnenstevan de zon. Vlak na de
oerknal was het heelal waarschijnlijk eventjes een quark-gluonplasma. Er zijn sterke
aanwijzingen dat het quark-gluonplasma onlangs voor een hele korte tijd in het la-
boratorium is gemaakt tijdens een experiment in het Brookhaven National Laboratory,
New York, waar goudkernen met enorme snelheden tegen elkaarwerden geschoten.

De neutronen in de doos kunnen natuurlijk ook op elkaar gedrukt worden. Op een
gegeven moment wordt de dichtheid zo groot dat alle neutronen tegen elkaar aanzit-
ten. Als er dan nog harder gedrukt wordt, dan gaan de neutronen overlappen, zodat ze
hun identiteit als individuele deeltjes verliezen. In dit geval kan er kan een faseover-
gang optreden naar een zogenaamdekleur-supergeleidendefase. Dit gebeurt bij enorm
grote dichtheden van ongeveer honderd biljoen kilogram perliter. In theorie zou die
faseovergang bereikt kunnen worden in het binnenste van eenneutronenster. Een neu-
tronenster is een uitgebrande ster met een enorm hoge dichtheid. Tot nu zijn er echter
nog geen neutronensterren gevonden die zo’n hoge dichtheidhebben dat ze zich met
zekerheid in de kleur-supergeleidende fase bevinden.

De bovenstaande beweringen over het gedrag van deeltjes onder extreme om-
standigheden kunnen in principe wat preciezer gedaan worden door berekeningen met
QCD uit te voeren. Het blijkt dat de krachten tussen de quarksminder sterk worden
naarmate de energie van de quarks groter wordt. Dit fenomeenheetasymptotische vrij-
heid. Als gevolg daarvan is het mogelijkanalytischeberekeningen (berekeningen met
pen en papier) met QCD bij hele hoge energieën uit te voeren.Maar deze energieën
zijn nog veel hoger dan de energieën die de quarks hebben rond de faseovergangen.
Een manier om QCD bij lagere energieën te bekijken is met behulp van computersimu-
laties (lattice QCD). Het probleem van deze computersimulaties is dat ze niet goed
werken bij grote dichtheden. Om toch iets te voorspellen en te begrijpen over het
gedrag van QCD bij temperaturen en dichtheden rond de faseovergangen kun je een-
voudiger theorieën bekijken die QCD tot op zekere hoogte benaderen (zoals in hoofd-
stuk 6 en 7 van dit proefschrift) of die bepaalde aspecten metQCD gemeen hebben
(zoals in hoofdstuk 4 en 5) (vandaar de uitdrukkingQCD-inspired theoriesin de titel).
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Een belangrijke uit te rekenen grootheid is de druk (aangeduid met het symbool
P) van materie die uit quarks is opgebouwd, als functie van de temperatuur (T). Het
resultaat van de exacte berekeningen is afgebeeld in figuur 1.1. De grijze banden
geven de foutmarges aan. Duidelijk is te zien dat voor lageretemperaturen (in het
bijzonder rond de faseovergang) de resultaten van de berekeningen onbetrouwbaar
zijn (omdat de krachten tussen de quarks dan te groot worden). Het resultaat van de
computerberekeningen is voor een verschillend aantal quarks afgebeeld in figuur 1.2.
De resultaten van deze computerberekeningen zijn betrouwbaar voor temperaturen in
de buurt van de faseovergang (ongeveer 170 MeV, dat correspondeert met 2 biljoen
graden Celsius) en hoger. Om de druk bij lagere temperaturente voorspellen kunnen
QCD-achtige theorieën gebruikt worden, zoals in hoofdstuk 6 van dit proefschrift is
gedaan. In figuur 6.6 is het resultaat van de berekening van dedruk afgebeeld. De
onderbroken lijn in deze figuur is een voorspelling is van de druk van QCD bij lage
temperatuur.

Een ander interessant voorbeeld is hetfasediagramvan QCD. Het fasediagram
geeft, afhankelijk van bijvoorbeeld de dichtheid en de temperatuur, aan in welke fase
materie zich bevindt. In figuur 1.3 is het fasediagram van QCDgeschetst. Op de hori-
zontale as van dit diagram staatµB afgebeeld, een grootheid die een directe relatie heeft
met de dichtheid (hoe groterµB, hoe groter de dichtheid). Op de verticale as staat de
temperatuur. Het quark-gluonplasma en de kleur-supergeleidende fase zijn in dit dia-
gram terug te vinden. Het is belangrijk te weten dat dit diagram een schets is, het is
namelijk niet precies bekend waar de lijnen die de verschillende fasen van elkaar schei-
den in het diagram liggen. Dat komt doordat dit diagram gebaseerd is op berekeningen
aan theorieën die QCD benaderen in een bepaald gebied. In het fasediagram afgebeeld
in figuur 1.3 zijn de dichtheden van de verschillende soortenquarks allemaal gelijk. In
hoofdstuk 7 van dit proefschrift zijn, met behulp van een QCD-achtige theorie, fasedia-
grammen uitgerekend waarbij de dichtheden van de quarks allemaal verschillend zijn
gekozen.

Overzicht en resultaten van dit proefschrift

Dit proefschrift getiteld, “Thermodynamics of QCD-inspired theories” (Thermody-
namica van QCD-achtige theorieën), gaat dus over het gedrag van materie onder ex-
treme omstandigheden.

In hoofdstuk 1 wordt een algemene inleiding gegeven. Eerst wordt ingegaan op
de vraag wat er zou kunnen gebeuren met materie onder extremeomstandigheden.
Daarna worden in het kort de relevante aspecten van quantumchromodynamica (QCD)
uitgelegd. Vervolgens worden eerdere berekeningen van de druk en het fasediagram
en de problemen die daar bij komen kijken behandeld. Ook wordt in hoofdstuk 1 aan-
dacht besteed aan situaties waarbij zulke extreme omstandigheden kunnen voorkomen,
te weten in het heelal vlak na de oerknal, tijdens zware-ionenbotsingen en in neutro-
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nensterren. Tot slot wordt uitgelegd wat er bedoeld wordt met QCD-achtige theorieën.
Hoofdstuk 2 gaat over hoe met een zogenaamdequantumveldentheorieals QCD

berekeningen kunnen worden uitgevoerd bij eindige temperatuur en dichtheid. Daar-
voor wordt een statistische analyse gebruikt. Eerst wordt er ingegaan op hoe dat in zijn
werk gaat voor een klassieke theorie, daarna worden de resultaten veralgemeniseerd
voor een quantummechanische aanpak. Met behulp van het zogenaamdepad-integraal
formalisme wordt uitgelegd hoe dit kan worden gebruikt vooreen quantumveldentheo-
rie. In berekeningen bij eindige temperatuur moeten vaak sommaties over een oneindig
aantal termen worden uitgerekend. Een methode om dat exact te doen wordt uitgelegd,
en er wordt ingegaan op hoe er met oneindigheden, die in deze berekeningen kunnen
optreden, moet worden omgegaan. Ook wordt ruim aandacht besteed aan hoe deze
sommen voor ingewikkelder gevallen met de computer kunnen worden berekend.

Het derde hoofdstuk behandelt de zogenaamdeeffectieve potentiaalen de 1/N
benadering. De effectieve potentiaal is een belangrijke grootheid, aangezien door
het minimaliseren van die potentiaal de druk en de fasediagrammen kunnen worden
verkregen. De 1/N benadering is een methode waarbij inzicht kan worden verkregen
in het lage energie gedrag van de theorieën die in dit proefschrift worden behandeld.
Er wordt uitgelegd hoe deze benadering kan worden afgeleid door het introduceren van
extra velden. Tot slot wordt ingegaan op het feit dat in berekeningen van de effectieve
potentiaal er oneindigheden kunnen ontstaan die van de temperatuur afhangen. Zulke
oneindigheden vormen een grote bedreiging voor de betekenis en bruikbaarheid van
de antwoorden. Een belangrijk resultaat uit dit proefschrift is dat deze oneindigheden
temperatuursonafhankelijk worden op het minimum van de effectieve potentiaal. Dat
is juist het punt waar de druk en het fasediagram worden bepaald. In het minimum
zijn deze oneindigheden geen probleem omdat ze dan door subtracties en herdefinities
van bepaalde constanten op een systematische manier kunnenworden verwijderd zon-
der de betekenis van de antwoorden te beïnvloeden. Deze procedure wordt ook wel
renormalisatiegenoemd.

Het onderwerp van hoofdstuk 4 is de thermodynamica van het niet-lineaire sigma
model in twee dimensies (een ruimte- en een tijddimensie). Dit model heeft bepaalde
aspecten met QCD gemeen, zoals asymptotische vrijheid. Maar met behulp van de
1/N benadering kan hier het lage energie gedrag wel analytisch worden berekend.
Door dit model te bestuderen kunnen we iets leren van het gedrag van QCD bij eindige
temperatuur, bijvoorbeeld hoe een asymptotische vrije theorie zich gedraagt als er van
lage naar hoge energie wordt gegaan. In dit hoofdstuk is de effectieve potentiaal uit-
gerekend met behulp van de 1/N benadering tot en met de eerste niet-triviale correctie
(ook wel next-to-leading order (NLO) genoemd). Er worden temperatuursafhanke-
lijke oneindigheden gevonden, die blijken te kunnen wordengerenormaliseerd op het
minimum. Vervolgens wordt de druk als functie van de temperatuur uitgerekend. Met
dit resultaat kunnen we ondere andere concluderen dat de 1/N benadering een goede
rekenmethode is. Verder lijkt het gedrag van de druk gedeelddoor de druk in the limiet
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van oneindige temperatuur, onafhankelijk vanN. Een soortgelijk resultaat is gevonden
in computerberekeningen aan QCD.

Hoofdstuk 5 gaat over de thermodynamica van hetCPN−1 model in twee dimen-
sies. Dit model is een uitbreiding van het niet-lineaire sigma model waarbij ook elek-
tromagnetisme wordt meegenomen. Ook dit model heeft weer een aantal aspecten
met QCD gemeen, het bevat bijvoorbeeld net als QCD zogenaamde topologisch niet-
triviale vacua. Het effect van deze vacua op de druk is onderzocht. Daarbij wordt
gebruik gemaakt van dezelfde methoden als in hoofdstuk 4. Uit de berekeningen volgt
dat de topologisch niet-triviale vacua voor temperaturen waarbij de druk relatief snel
stijgt een grote bijdrage leveren. Dit resultaat is een mogelijke aanwijzing dat deze
niet-triviale vacua rond de faseovergangen in QCD belangrijk zouden kunnen zijn.

In hoofdstuk 6 wordt de thermodynamica van het lineaire en het niet-lineaire sigma
model in een tijd- en drie ruimtedimensies onderzocht. Algemene wordt aangenomen
dat deze modellen een goede benadering van QCD bij lage energie zijn. Opnieuw
is met behulp van de 1/N benadering de druk uitgerekend tot en met de eerste niet-
triviale correctie. Het belangrijkste resultaat van deze berekening is een voorspelling
van de druk van QCD met twee soorten quarks bij lage temperaturen. Dit resultaat is
vergeleken met eerdere schattingen uit de literatuur, waarvan geconcludeerd wordt dat
ze foutief zijn. Tot slot wordt er een vrij lage bovengrens gevonden op de massa van
het zogenaamde sigma meson. Deze massa is experimenteel nogniet goed vastgesteld.
Of deze bovengrens een gevolg is van de benaderingsmethode of ook echt in QCD
voorkomt zou verder moeten worden onderzocht.

Hoofdstuk 7 gaat tenslotte over de fasediagrammen van het NJL model. Dit model
geldt ook als een theorie die QCD kan beschrijven bij lage energieën. Door het mini-
maliseren van de effectieve potentiaal worden de fasediagrammen uitgerekend.De
berekeningen zijn uitgevoerd voor situaties waarbij de dichtheden van de up, down
en strange quark verschillend kunnen zijn, zoals bijvoorbeeld in een ster of in een
zware-ionenbotsing. Naast de fase waarin materie zich bij normale omstandighe-
den bevindt, zijn verschillende kleur-supergeleidende fasen en fasen waarin pseu-
doscalaire mesonen condenseren gevonden. De resultaten uit dit hoofdstuk zijn een
uitbreiding op eerdere berekeningen uit de literatuur waarin of alleen rekening met de
kleur-supergeleidende fase of met de fase waarin pseudoscalaire mesonen condenseren
wordt gehouden. In dit hoofdstuk worden beide mogelijkheden meegenomen. Het
belangrijkste resultaat is dat de eerdere berekeningen vanfasediagrammen zijn uitge-
breid. Verder is de competitie tussen de twee typen fasen onderzocht, een belangrijk
resultaat is dat ze gescheiden zijn door een zogenaamde eerste-orde faseovergang.

Dit onderzoek heeft er toe geleid dat het begrip van het gedrag van materie onder ex-
treme omstandigheden iets is toegenomen. Toch blijven er nog een heleboel zaken
onbegrepen, zoals bijvoorbeeld de precieze vorm van het QCDfasediagram. Hopelijk
zullen verbeterde (computer)berekeningen en nieuwe experimenten (bijvoorbeeld bij
CERN in Genève) ons in de toekomst meer leren.
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