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“... if we were organisms so sensitive that a single atom, or even a few atoms,

could make a perceptible impression on our senses — Heavens, what would

life be like!”

Erwin Schrödinger, What is life?, 1944.
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Chapter 1

Introduction

1.1 What is a drug?

“De theorie der homoeopaten bestaat uit een heterogeen complex van on-

houdbare, onjuiste en onwaarschijnlijke beweringen.”

“The theory of the homeopaths consists of a heterogeneous complex of unten-

able, incorrect, and improbable assertions.”

David Karel de Jongh, Critische beschouwingen over de homoeopatie:

Ontstaan, ontwikkeling en wezen van dit therapeutische stelsel, 1943.

LET US APPROACH the question what a drug is by considering an example. Aspirin is

a drug. A popular one [1], and its coming into existence illustrates how ideas were

shaped about what constitutes a drug. The generic name for aspirin, acetylsalicylic

acid, reflects the origin of this compound: the Latin name for willow is Salix. The

analgesic properties of extracts made from the willow tree were known for centuries.

The physician, pharmacologist, and botanist Pedanius Dioscorides for instance wrote

around A.D. 60-80 an influential collection of books, De materia medica. Part one

of his work as quoted from the German translation of Julius Berendes describes the

preparation and its effects as follows: “Die fein geriebenen Blätter mit etwas Pfef-

fer und Wein genommen sind bei Darmverschlingung angebracht ... der Saft aber

von Blättern und Rinde in einem Granatbecher erwärmt heilt mit Rosenöl zusammen

Ohrenleiden.” [2] One single substance in the willow extract is responsible for these

qualities. It was not until 1828 that Johann Buchner isolated the active component,

salicin, from the willow bark. Besides the long history of existing effective treatments

such as the application of willow extracts, many nonsensical treatments have been

proposed and advocated through the centuries, and still persevere today. One of the
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Figure 1.1: Excerpt from a 1543 version of Dioscorides’ Materia Medica describing
the medicinal uses of the willow tree (source: Stadsbibliotheek Antwerpen).

reasons that the art of healing people is prone to superstition is the unspecific na-

ture of the placebo effect [3, 4]: any treatment will result in some beneficial effects.

An example of such alternative medicine is the homeopathy, a therapy founded by

Samuel Hahnemann around 1800. The general idea behind his therapeutic system

is that diseases are caused by disturbances in the life force of a human. Homeopa-

thy is supposed to work through administration of that single diluted substance that

creates a disease with similar symptoms in healthy persons. It is supposed to cure a

specific constellation of complaints in a specific human individual [5]. According to

the homeopathic doctrine, it is essential for amplifying or liberating the power of this

remedy —the simillimum— that it is prepared in a series of successive dilution steps

accompanied by vigorously shaking in-between. The more diluted the remedy is, the

more powerful its effect will be. This doctrine was regarded as incongruous, even

at the time when the principle of a vaccine had just been discovered, and the fact
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that there are no drug molecules left over in the dilutions was unknown. Aspirin not

only has analgesic properties, but also thins the blood. For those who belief in home-

opathy, a homeopathic preparation of aspirin is dangerous since it thickens the blood

and thus causes blood clots [6]. The concept of disease as disturbances in the vital

force of a human continues to exist and has given rise to alternative therapies such as

anthroposophical medicine and iatrosophy. Meanwhile, alchemy [7] which was ini-

tially just another school of mystical thinking, started to flourish and developed into

what could be considered modern chemistry, as well as contributing important in-

sights to medicine. In the 17th century, empiricism gradually became more and more

the leading method for truth seeking. The Belgian physician Jan Baptist Van Helmont

improved the alchemical pathology by posing that diseases did not the result from

disturbances of some equilibrium (doctrine of humors), but that every disease has

a different identity and specific treatment depending on the nature of the disease is

most appropriate.

As medicine and chemistry were progressing at an ever increasing rate, the con-

sequences for our drug from the willow, salicin, became noticeable in the early 19th

century. By then, organic chemistry blossomed and its efforts in synthesis had man-

aged to create a derivative of salicin, salicylic acid. It soon became apparent that the

medicinal actions of salicin were also exhibited by its derivative compound. Salicylic

acid had a great advantage over salicin though: it could be produced synthetically.

Because extraction of salicin from the willow was time consuming, had a low yield,

and thus was expensive, salicylic acid became the drug of choice. Mass-produced and

cheap, salicylic acid still had a serious drawback. It tasted awful and made patients

vomit. The German chemist Felix Hoffmann tried to make the drug more palatable,

because his father suffered from rheumatoid arthritis and could not stomach salicylic

acid anymore. He came across a publication [8] how to acetylate the hydroxyl group

on the benzene ring of salicylic acid, and patented [9] a novel synthesis route to

acetylsalicylic acid. The drug was marketed by Bayer as Aspirin, and became a great

success.

salicin salicylic acid aspirin

OH

OHO

O

OHO

O

O

OH

β-D-glucose

Figure 1.2: Structural formulas of aspirin and related compounds.

Aspirin has an analgesic effect, but how is this effect brought about? The struc-

ture of the molecule that exerts a certain medicinal effect tells only half the story. The
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other half is told by the molecule the drug interacts with, and in what way this inter-

action changes a biological process. In 1971, the mechanism by which aspirin exerts

its analgesic action was unraveled [10]. The discoverer, John Vane, was awarded a

Nobel price for his findings. Inflammation, swelling, pain, and fever are caused by

endogenous compounds called prostaglandins. Aspirin binds to a molecule in the hu-

man body called cyclooxygenase. Cyclooxygenase is an enzyme, i.e. a protein that

catalyzes specific biochemical reactions. Cyclooxygenase catalyzes the synthesis of

prostaglandins. When aspirin binds to cyclooxygenase the synthesis of prostaglandins

is inhibited, which explains the analgesic action. In 1994, the structure of cyclooxy-

genase was resolved [11] with the aid of X-ray crystallography, which enabled us to

understand the interaction between aspirin and the enzyme at an atomic level.

Returning to the initial question, although many aspects about what constitutes

a drug can be gathered from the aspirin example, I find it less easy to exactly define

what a drug is. Borrowing from other sources gives definitions ranging from “a drug

is an original, simple, medicinal substance, organic or inorganic, whether used by

itself in its natural condition or prepared by art, or as an ingredient in a medicine

or medicament” [12] to “one can think about a drug in different contexts, and the

definition that matches best will depend upon the perceptual spectacles you wear.”

[13] In the context of this thesis, a drug is considered to be a molecule that has

the potential to cure or alleviate disease by its specific interaction with the collection

of molecules called an organism, either the patient’s or the causative agent’s, where

disease is meant as a condition of the body in which its function is disturbed.

1.2 Molecular space

“
���������
	����� ���
������	�����������! #" ��$%����
�&��('&)�*�* � � ��+��-,�.�� / * +��-0�1��
�2.����3� � 4 * �5�-�6�$7
1���8�/&�
�:9

”

“Some people believe, King Gelon, that the number of sand is infinite in

multitude.”

Archimedes, Arenarius, ca. 250 B.C.

A drug is a molecule, and the question ‘how many different drugs can there possi-

bly be?’ can be separated in ‘how many different molecules can there possibly be?’

and ‘what fraction of molecular space contains molecules that can cure or alleviate

disease?’. Estimates for the number of possible drug molecules vary widely. The

lower estimates [14] suggest a size of around 1040, but the notion that the number

of possible drug molecules exceeds the number of atoms in the universe is also en-

countered [15], implying it is greater than 1079 (see table 1.1). The latter estimate

leaves the question open by how many orders of magnitude the number of possible
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drug molecules exceeds 1079, it does mean however that it is actually greater than the

number of drug molecules that could simultaneously exist. Estimates of the size of

molecular space within constraints, such as the requirement that the molecules must

be synthetically accessible, still arrive at wildly varying numbers [16,17], for instance

1022 or 10100.

space size
�

compounds in chemical abstracts 107
���

neurons in human brain 1011
�����

consumed aspirin tablets 1012

ten positions, fifty substituents 1017

molecules in a sugar cube 1022
�������

possible chess positions 1042
���

atoms in the universe 1079

ways to rank seventy theses 10100
�

Ref [18].
���

Ref [19].
�����

Ref [1].
�������

Ref [20].

Table 1.1: Some examples of different spaces and their size.

Whatever the correct estimate of the size of molecular space, it is huge. But it is

not just the size of this space that renders the search for new drugs a complicated

pursuit. The properties of a molecule that determine if it qualifies to be applied as a

drug are many. Characteristic of a drug is that the drug molecule influences a process

associated with a disease, (cf. the ease of pain through inhibition of cyclooxygenase

by aspirin). Therefore, an obvious property that a candidate drug molecule should

possess is a high degree of interaction with a target molecule involved in the disease

(cf. binding strength of aspirin to cyclooxygenase). However, this is certainly not the

only property that affects the candidate’s suitability as drug. Among the properties of

interest are such diverse things as: how easy is its synthesis, how well is it absorbed

by the body, to what degree does it cross the blood brain barrier, how fast is it me-

tabolized and what metabolites are generated, how specific is its interaction with the

target molecule, and so on.

A drug can be regarded as a point in molecular space. A space is a collection of

elements, usually with some additional structure. One way to formalize a description

of molecular space is the SMILES notation, in which a molecule is represented as a

one-dimensional string of characters. For instance, the SMILES notation for aspirin

would be CC(=O)OC1=CC=CC=C1C(O)=O. In this representation, molecular space

is a discrete topological space. Topological spaces are structures that allow one to for-

malize concepts such as convergence, connectedness and continuity. Discrete means

that the points in this space are isolated from each other in a certain sense. The re-
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sponse to a drug can be considered as a point in a property space, with every property

adding one more dimension. Property space is not discrete as a property can take any

real value. Property space is therefore larger than molecular space, which also implies

that there are combinations of properties for which no matching molecule exists. An-

other aspect of molecules that determines the search through molecular space is the

relationship of one molecule to another. When every molecule behaves completely

independently compared to the others, it is impossible to get a firm grasp on how to

proceed when a candidate drug molecule needs to be changed in any of its properties.

Fortunately, this is not the case.

8.0 8.5 9.0 9.5 10.0 10.5
pIC50 against HIV IIIB

10-2

10-1

100

101

102

B
io

-a
va

ila
bi

lty
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og
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µg
 h

/m
l)

Figure 1.3: Bio-availability against activity

for a series of non-nucleoside reverse tran-

scriptase inhibitors.

Similar structures generally have

similar activity [21]. This statement

warrants some further remarks. The

word similar has no straightforward

definition [22]. The average chemist

has an intuitive comprehension about

what comprises molecular similarity de-

pending on its experience. The struc-

tural features that give rise to a particu-

lar spectrum of activities within a fam-

ily of molecules, sometimes indicated

with the word ‘chemotype’ [23], are

instrumental as a shorthand descrip-

tion. A description which takes into

account the three-dimensional form of

molecules will lead to a more profound

understanding about how the proper-

ties of different molecules relate. One

can add three-dimensional target information, or even, at a subatomic level, the elec-

tronic behavior. The electrostatic and electrodynamic interaction of the drug molecule

and the target molecule determine its binding strength. And this single aspect, the

drug’s affinity to the target, is but one dimension of the property space.

The affinity to a target can be related to another property implicitly. For instance,

when activity is determined in a cellular assay, the cell penetration properties con-

tribute to the measured activity. However, figure 1.3 shows the bio-availability of a

series of compounds against their activity. Here, the two properties are seemingly

unrelated.
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Similarity to known active
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Figure 1.4: Activity against similarity to a

known active compound for a series of non-

nucleoside reverse transcriptase inhibitors.

Similar structures generally have

similar activity. Perhaps it just is the no-

tion of similarity that affects the degree

of surprise when a molecule behaves

differently than expected. A molecule

that differs from another in one atom

is considered to be similar. However,

it can happen that a property of this

molecule is completely different, a phe-

nomenon that has been perceived as a

‘similarity paradox’ [21]. This does not

preclude that it is understandable from

some viewpoint in molecular space. A

single atom can change the geometry of

the molecule interacting with the target

resulting in a loss of activity, or a single

atom change can alter the acidity con-

stant of a molecule and create the rea-

son for a loss in bio-availability. Nevertheless, this is exceptional, as shown in figure

1.4. Here, a relation appears between the molecular similarity assessed from a set

of elementary descriptors and their affinity to a target. The relationship is not lin-

ear, but shows that molecules that are similar to an active one are mostly active. In

figure 1.3, two different dimensions of the property space are plotted against each

other, whereas in figure 1.4 a descriptor of molecular space —the overlap between

the SMILES strings of the molecules— is plotted in one of its property dimensions.

Since there are alternative ways to define molecular similarity, it is conceivable that

there exist descriptions of molecular space where a relationship with bio-availability

does emerge.

1.3 Computational drug design

“Although it is believed that the handbook is complete in itself, and even-

tually could be understood by anyone with a mathematical training, it is

recommended that the reading be supplemented by some closer contact with

the machine itself.”

Alan Turing, Programmers’ Handbook for the Manchester Electronic Com-

puter Mark II, 1951.

Drug design can be viewed as the search for points in molecular space that map to a
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certain region in property space. The property space is highly complex and has, po-

tentially, many local optima [24]. This does not imply that the design process needs

to wander about without direction. On the contrary, relations exist between chemical

structures and their qualities in property space. Drug design starts from a compound

which has some activity against the target. Such a lead compound is discovered either

serendipitously or by systematically screening large numbers of compounds, a proce-

dure called high throughput screening. Next, a medicinal chemist navigates through

molecular space. As we have seen, the activity against the target is only one of the

properties of interest. Although optimization may benefit from incorporation of other

relevant properties in as early a stage as possible, the activity against the target forms

a convenient direction of improvement to start the optimization. In computational

drug design, the computational resources can be applied to increase the number of

compounds that is examined in a way akin to high throughput screening. However,

computational approaches can benefit much from employing clever algorithms.

A famous example is the Cooley-Tukey Fast Fourier Transform algorithm [25]. The

discrete Fourier transform algorithm scales as O(n3
�
2). Despite increasing computer

speed, this scaling behavior effectively prohibits Fourier transform calculations on

systems of any substantial size. For instance, the Fourier transform computation of

an audio track with the discrete Fourier transform algorithm would take 73 billion

operations. The Fast Fourier Transform on the other hand scales as O(log n), and

Fourier transform calculations became a mainstay tool in digital signal processing.

Fast global optimization algorithms form another example. These algorithms locate

minima in spaces of considerable size and intricacy. The evolution of life from sim-

ple building blocks has inspired the development of a class of efficient optimization

strategies known as genetic algorithms, and their use has become widespread. Global

optimization algorithms are convenient when searching optima in a search space that

is too large to allow an exhaustive search, a situation encountered in many differ-

ent facets of computational drug design such as computation of the geometry of a

drug-target structure.

Computational drug design does not prevail solely by virtue of clever algorithms.

Computing power does matter. More power reduces the time it takes to perform a

computation and so can reduce the time to design new molecules or broaden the level

of computational detail attainable. One of the early computers is the 1951 Manch-

ester University Ferranti Mark I (figure 1.5). This machine could do about 800 integer

operations per second. Floating point operations such as multiplication and division

were done by subroutine, about 10 per second. An impression as to what amount

technical failures were interfering with computations on this machine can be found in

Pritchard [26]. A machine of this stature could handle the quantum-mechanical com-

putation of the energy of H �2 with an accuracy of 2
9
10 � 5 Hartree (0.01 kcal

9
mol � 1).
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This energy can also be calculated exactly by hand, which allows for an assessment

of the achieved accuracy. Within half a century, computers have become so abundant

that most readers will have access to one, and chips are present in a variety of ap-

paratus around us [27]. Computer power has grown exponentially and nowadays a

typical processor can do on the order of billions of operations per second. The com-

puter on which this thesis was written can do 500 million operations per second per

CPU (500 MHz MIPS R14000), whether integer or floating point operations. Graph-

ical capabilities of computers also have improved a lot, an evolution that has been

advantageous for molecular modeling and visualization of large molecular systems.

In the following, two examples are selected from the many that can be found in lit-

erature [24, 28–30] to illustrate what application of these modern fast computing

machines to drug design can mean.

Ferranti Mark I (1951) Silicon Graphics Origin 2000 (1998)

Figure 1.5: State of the art 1951 and 1998 computer.

The first example concerns the design of inhibitors against the enzyme aldose

reductase. Aldose reductase has been implicated to play a role in diabetic compli-

cations, and several crystal structures of the enzyme have been solved. Iwata et al.

present two computational drug design approaches targeting this enzyme. A first

experiment [31] tried to find new aldose reductase inhibitors by systematic compu-

tation of the interaction between the enzyme and a collection of compounds that

already exists. Based on the outcome of the computations, a reduced set of com-

pounds was selected to be tested for activity. Although not design in a strict sense,

the in silico screening of existing compounds is a widely adopted strategy [32] to

avoid the inherent difficulties in synthesis of novel molecules. From the chosen set,

more than a quarter was active. Compared to the expected result from a systematic
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test of an arbitrary set of compounds —on the order of one active compound per

thousand [33]— this is an impressive hit rate. The complex structure model was sub-

sequently used to design analogs and to compute their binding orientation. The most

potent among the handful that were synthesized showed a 20-fold increase in inhi-

bition constant relative to the initial screening result. In a second experiment, new

leads for this enzyme were generated via de novo design. The LEGEND program [34]

constructs three-dimensional molecular structures atom by atom. The building pro-

cess starts from an anchor atom, and sequentially grows a design guided by the Van

der Waals, electrostatic, and hydrogen bonding interactions with the protein. In this

manner, 200 chemical structures were designed that fit into the binding site of aldose

reductase [35]. Based on visual inspection of the resulting structures using com-

puter graphics, and their interaction energy values, 30 compounds were selected. A

problem with this type of de novo design is that computer-generated compounds are

often difficult to synthesize. From the 30 selected compounds, two appeared syn-

thetically tractable. Another two candidates were derivatized from one of the other

designs to make them synthetically feasible. The synthesized designs were assayed

for their inhibitory potency against aldose reductase. All four compounds proved rea-

sonably active, with activities in the micro-molar range. The fact that the designed

compounds are structurally different from known inhibitors and showed inhibitory

activity demonstrates the effectiveness of this de novo design approach.

The second example is taken from Schneider et al., who attempted to design new

thrombin inhibitors [36]. They present a case of successful design using an algorithm

that employs a template structure to breed new structures. A template is a molecule

known to be good. There is no need for a crystal structure of the target in this ap-

proach, but the design is of course restricted by the template that is being mimicked.

The building blocks used to breed new structures are created by fragmentation of

known drugs, in the assumption that re-assembly of these building blocks leads to

drug-like molecules. The fragmentation was done by reversing reaction steps to en-

hance synthetic feasibility of the designs. The process of re-assembly is driven by a

genetic algorithm optimization, where the fitness of the individuals is the similarity

to the template. Some of the designed thrombin inhibitors have been synthesized and

exhibit bio-activity [36].

Computational drug design contributes in various ways to the search for new

drugs. This thesis presents both method development and its application to human

immunodeficiency virus inhibitors. First, some background is given. Chapter 2 char-

acterizes the human immunodeficiency virus, including a description of the different

viral enzymes and their function in the viral life cycle. Chapter 3 contains an overview

of the theory behind the computation of ligand-protein interactions. The next two

chapters concentrate on the geometry of drug-target interaction. Chapter 4 presents
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the development and application of an algorithm that uses pharmacophoric points

for docking. Chapter 5 examines binding characteristics of a class of pyrimidine re-

verse transcriptase inhibitors. The following two chapters focus on the computation

of binding strength. Chapter 6 shows the derivation of a model to compute the HIV

integrase inhibition strength based on a series of analogs. Chapter 7 describes a

model to compute the pKi of HIV protease inhibitors based on a diverse set of ligands

and the protein structure. The final chapter unites the concepts of the preceding

chapters. This chapter presents the de novo design program SYNOPSIS. SYNOPSIS

designs molecules with desired properties while ensuring their synthetic feasibility.

An explanation how this is achieved, together with examples of its application to the

design of HIV reverse transcriptase inhibitors is given.

�
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Chapter 2

The human immunodeficiency

virus

2.1 Introduction

IN THE EARLY EIGHTIES, a series of incidences was reported where young, previously

healthy, homosexual males were diagnosed with rare diseases, such as Kaposi’s sar-

coma, Mycobacterium avium complex disease and opportunistic infections such as

Pneumocystis carinii pneumonia, as well as cases of unexplained, persistent lym-

phadenopathy. The number of occurrences rapidly grew so large that the syndrome

was dubbed GRID, short for Gay Related Immunodeficiency Disease. It soon became

evident that these men had an immunological deficit, an impairment in cell-mediated

immunity resulting from a significant loss of T-helper cells, which bear the CD4

marker. A common underlying cause for the disease was suspected, however at that

time it was not clear what that cause could be. The term AIDS first appeared in 1982,

in a publication [1] of the Centers for Disease Control to describe ”... a disease, at least

moderately predictive of a defect in cell-mediated immunity, occurring with no known

cause for diminished resistance to that disease”. Although the Montagnier group was

unequivocally the first to isolate [2, 3] the virus responsible for the diminished re-

sistance, a heated debate over who had isolated the virus first and related patent

issues between France and the USA dragged on for years. This virus, later called Hu-

man Immunodeficiency Virus, is the etiological agent [4–6] of the Acquired Immuno-

Deficiency Syndrome — AIDS. As of end 2002, it is estimated [7] that around 42 mil-

lion people are infected with HIV, of which 70% is living in Sub-Saharan Africa. HIV

causes about 3 million people to die per year and infects approximately another 5 mil-

lion people each year. Figure 2.1 shows the geographic distribution of the infection.
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Figure 2.1: Geographic distribution of adults and children estimated to be living with
HIV/AIDS as of end 2002 (data from UNAIDS [7]).

HIV belongs to a large group of viruses known as the Retroviridae. The genome

of retroviruses is composed of RNA, which is a characteristic feature of this virus

group. Their life cycle proceeds via a transcription of the RNA to DNA followed

by insertion of the viral genome into the genetic material of the host. Retroviruses

have the ability to adapt rapidly in response to changing environmental conditions

by reproducing fast and inaccurately. Within the Retroviridae, HIV is member of the

lentivirus subfamily. Other members of the lentivirus subfamily are the Maedi-Visna

virus in sheep, the equine infectious anemia virus in horses and the caprine arthritis-

encephalitis virus in goats. Lentiviruses derive their name from the Latin ‘lentus’

meaning ‘slow’, because these viruses typically display long periods of latent infection

prior to the onset of neurological and immunological diseases. HIV and the closely

related immunodeficiency viruses occurring in monkeys (SIV), cows (BIV), and cats

(FIV) are recent additions to this subfamily.

2.2 From genes to proteins

The genome of HIV consists of about 10,000 base pairs, encompassing a total of 9

genes. Figure 2.2 shows the location of the genes on the genome of HIV-1.
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Figure 2.2: Location of the genes on the genome of the human immunodeficiency
virus and overview of the precursor proteins and proteins after translation. (HXB2
isolate, data from the HIV Sequence Compendium [8] and the National Center for
Biotechnology Information [9]).
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The genes vif, vpr, vpu, nef, tat, and rev each encode for one protein, whereas

translation of gag, gag-pol, and env results in the formation of polyproteins. Tran-

scription of gag-pol is accomplished by evasion of the termination codon of gag [10]

through a ribosomal frame shift. When the transcription process has progressed near

the end of gag, the reading frame is shifted resulting in a product that includes the pol

region. The use of different reading frames allows the HIV genome to be organized

in a compact manner, with genes encoded in overlapping regions of the genome.

Genome compression [11] is a phenomenon consistent with the observed fast and

highly error prone reproduction of HIV. Genome compression promotes efficient pro-

cessing facilitating a rapid replication rate. Genome compression also promotes a

stable propagation of information. Elimination of redundancies leading to a higher

fidelity results from an increase in competitive superiority of the wild type.

Polyprotein precursors resulting from translation of the RNA are cleaved to yield

functional proteins. Gag and Gag-Pol are cleaved by the protease enzyme of HIV,

whereas Env is cleaved by proteases of the host cell. At least 17 different proteins

are encoded in the viral genome. Proteins resulting from processing of Gag include

a matrix protein, a capsid protein and a nucleocapsid protein. These proteins form

the viral core. The enzymes protease, reverse transcriptase and integrase are created

from the pol region of the Gag-Pol polyprotein. These enzymes are essential for viral

replication. Processing of Env leads to formation of a surface and a transmembrane

glycoprotein. These proteins are embedded in the envelope of the virion, playing a

role in the recognition of host cells and the attachment and fusion process. The 5’

and 3’ end of the HIV genome consists of a sequence called the long terminal repeat

(LTR). The 5’ LTR contains binding sites for both host and viral transcription factors.

Every HIV particle contains two identical single-stranded copies of the entire genome

RNA. The reason for carrying two copies might be an enhanced stability of the RNA

strands, since these are loosely attracted to each other.

2.3 Structure of the virion

The gross morphological structure of the HIV virion is determined by proteins en-

coded in the gag gene: the matrix protein, the capsid protein and the nucleocapsid

protein. The size of an HIV virion ranges between 120 and 260 nm in diameter and

has an egg-shaped form, with a characteristic conical core particle located at the cen-

ter of the virion. Figure 2.3 shows an image of a virion made by electron microscopy.

Figure 2.4 gives a schematic representation of its components.
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Figure 2.3: Transmission electron mi-

croscopy image of an HIV virion (reprinted

with permission from Ganser [12]). The

scale bar in the lower right corner equals

100 nm.

The outer membrane of HIV is com-

posed of a lipid bilayer that is taken

from the infected cell when a new virus

buds off. The matrix, capsid and nu-

cleocapsid proteins control the assem-

bly of the virion. They constitute an au-

tonomous molecular machine for par-

ticle assembly [14]. The autonomy is

illustrated by the fact that formation

of membrane-enveloped virus-like par-

ticles results [15] when these proteins

are brought to expression in vitro. In

the mature virion, the matrix proteins

form a layer that remains associated

with the outer lipid envelope, while the

capsid and nucleocapsid proteins con-

dense around the viral genome, yield-

ing the conical core. The matrix pro-

tein, located at the N-terminus of the

Gag polyprotein, directs copies of Gag

to the outer membrane of the host cell. Up to 2000 copies bud near glycolipid en-

riched membrane domains [16] to form a new virion. The nascent virion is trans-

formed in an infectious virus particle through cleavage of the polyproteins by the

viral protease enzyme, a process called maturation. The matrix protein facilitates

incorporation of the transmembrane protein (gp41) through interaction with its C-

terminal domain. The matrix protein might also facilitate nuclear localization of the

pre-integration complex, although this function is still debated [17].

2.4 The viral life cycle

Figure 2.5 gives an overview of the viral life cycle. In the first step of an HIV infection,

the virion recognizes a host cell and fuses with this cell. From the host cell-derived

lipid membrane of the virion on average 72 knob-like structures stick out. These

knobs are formed by copies of the envelope proteins gp41 and gp120. The gp120 sur-

face protein has an affinity for CD4 receptors, directing the virus to attach to host cells

that express this receptor, primarily CD4 � T-cells, dendritic cells, and macrophages.

Gp120 can also attach to DC-SIGN molecules [19] that are exposed on the surface of

dendritic cells, which then unwittingly transport the virus to CD4 � T-cells.
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Figure 2.4: Schematic structure of an HIV virion [13].
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The gp41 transmembrane protein anchors the surface protein to the viral mem-

brane and induces fusion of the virion and the host cell membrane. The interaction

between gp120 and CD4 is sufficient for binding but not for infection. Additional

cell-surface receptors are required to trigger fusion of the viral and host membranes.

The chemokine receptors CCR5 and CXCR4 have been established to be involved in

the process that leads to the entry of HIV-1 into the cell. The majority of virus strains

found in patients utilize CCR5, which is expressed on macrophages, T-lymphocytes,

and dendritic cells. These strains are termed R5, or M-tropic. HIV strains that use

CXCR4 as co-receptor are found in patients with advanced disease and are called

X4, or T-tropic. These strains infect naive, unactivated T-lymphocytes. They have a

higher rate of replication and induce syncytium formation. By studying genotypic

differences between strains with different tropism it turned out that a 20 amino acid

domain within the gp120 protein plays an important role in determination of viral

tropism [10]. It is suggested that the progress from HIV infection to full-blown AIDS

is accompanied by a change of the virus from the M-tropic in the T-tropic form. The

M-tropic form of the virus is more readily transmitted and establishes the primary

infection in the majority of patients [20]. Nine percent of the white Caucasian pop-

ulation bears a mutant allele of the CCR5 receptor [21]. The mutant CCR5 receptor

lacks three transmembrane segments and does not support membrane fusion, result-

ing in resistance to M-tropic HIV infection.

Figure 2.6: HIV reverse transcriptase [22].

After entry of the virus into the

the host cell, the viral core particle

is released and the reverse transcrip-

tase enzyme (figure 2.6) starts tran-

scribing the viral RNA into double-

stranded DNA. Reverse transcriptase is

a hetero-dimer, composed of a 558-

residue monomer (p66) and a 427-

residue monomer (p51). The first 427

residues from the p51 subunit are iden-

tical to that of the p66 subunit, al-

though their three-dimensional struc-

tures when associated in the enzyme

are rather different. The overall form of

the enzyme resembles that of a right hand, and the corresponding parts of the struc-

ture are referred to as fingers, palm and thumb. The assembly of nucleotides takes

place between the fingers and thumb. First, complementary DNA nucleotides are as-

sembled onto single-stranded viral RNA. Viral RNA that has been copied is removed
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during the copying process by the RNaseH domain on the p66 subunit of reverse

transcriptase. In a second pass the single-stranded viral DNA copy is completed into

double-stranded DNA. The exact mechanism of the reverse transcription process is

rather complex, a detailed description can be found in Hermann and Heumann [23].

Figure 2.7: HIV inte-

grase [24].

When the viral RNA has been copied into DNA, a pre-

integration complex is formed. This complex contains

among others the viral DNA, the integrase, matrix, and Vpr

proteins, as well as the cellular host protein HMG-I(Y) [25].

The pre-integration complex is imported into the nucleus of

the host cell. This is an active process, allowing lentiviruses

to infect non-dividing cells. In contrast, DNA from other

retroviruses cannot cross the nuclear membrane and can

only be integrated in dividing cells after the nuclear mem-

brane has dissolved. Following nuclear import, HIV DNA

is covalently integrated into the genome of the host cell

through the action of integrase (figure 2.7). After integra-

tion and activation, the sequence is transcribed into RNA

and exported out of the nucleus.

Figure 2.8: HIV pro-

tease [26].

The formation of a new virion requires the action of

the viral protease enzyme (figure 2.8). In the cytoplasm,

the protease enzyme hydrolyzes some of viral polyproteins

formed. Protease is a homo-dimer consisting of two 99-

residue long strands, C2 symmetrically associated with each

other. The catalytic site of the enzyme is buried in the mid-

dle, formed by two aspartic acids that are able to hydrolyze

a peptide bond. The final step in this process is the budding

and release of new virions which infect other cells.

The gag (group-specific antigen), pol (polymerase) and env (envelope) genes form

the basic genetic structure of HIV; these genes are also found in other retroviruses.

The genomes of lentiviruses carry a number of other genes. Their function is to reg-

ulate gene expression and to assist in virus replication. The gene expression of HIV

is regulated by the Tat and Rev proteins. Cellular transcription factors are able to ini-

tiate and maintain a basal level of HIV mRNA synthesis, but transcription processes

initiated at the HIV promoter site are rather inefficient. Tat (trans-activator of viral

transcription) up-regulates viral transcription by enhancing the activity of RNA poly-

merase II. Tat achieves this stimulation indirectly. It binds to Tar, an element on the

nascent RNA transcript of the virus and this complex recruits cellular proteins that

phosphorylate the RNA polymerase. Initially, the expression of HIV mRNA in the cy-
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toplasm is restricted to short, multiple-spliced messages, because unspliced mRNAs

are retained in the nucleus. Some of these short messages result in synthesis of Rev.

Rev (regulator of viral expression) exports the full length RNA that is needed for the

formation of a new virion. Rev binds to a Rev-responsive element on nascent viral

mRNA to prevent splicing and shuttles it out of the nucleus. In this way Rev acts

as a switch to regulate the formation of singly spliced and unspliced mRNAs in the

cytoplasm. The accessory proteins Vif, Vpr, Vpu and Nef are involved in efficient

replication in vivo; they are not essential for viral replication in vitro. Vif (virion in-

fectivity factor) facilitates virion maturation. Vpr (viral protein regulatory) enhances

viral replication by interacting with cellular proteins involved in DNA repair and di-

rects the nuclear import of the HIV pre-integration complex. It does not contain a

nuclear localization signal but appears to function by connecting the pre-integration

complex to the cellular import machinery [17]. Nef (negative factor) and Vpu (viral

protein unknown) down-regulate CD4-receptors on the host cell membrane. This pre-

vents re-infection of the cell and promotes viral release from the cell surface. These

proteins also inhibit MHC class I molecules, preventing the host organism’s immune

recognition and attack by T-cells. In HIV type 2 —a genetically distinct yet related

species occurring in certain regions of West-Africa— there is no vpu gene, instead it

contains a vpx gene. Vpu and Vpx attenuate the levels of Env precursor. For all viral

enzymes (reverse transcriptase, integrase, and protease), all structural proteins (sur-

face, transmembrane, matrix, capsid, and nucleocapsid), as well as for three of the

accessory proteins (Tat, Rev, and Nef) crystallographic studies have provided three-

dimensional structural information, albeit in some cases not for the intact native pro-

tein, but rather isolated domains or fragments. A summary of structural information

has been given by Turner [17].

2.5 Inhibition of the virus

The proteins that have been described above, considering the role they play in the

life cycle of the virus, provide opportunity to combat the virus. A compound that

disrupts the action of one or more of the viral proteins can be expected to be of

therapeutic interest. Compounds that achieve inhibition of viral growth by binding

to viral proteins or to host cell proteins involved have been actively investigated [19,

27, 28]. In advanced stages of clinical development are compounds that inhibit the

integrase enzyme (S-1360 [29], L-870810 [30]) and compounds that prevent the

entry and fusion of the virus. More specifically, infection of cells is prevented by

binding to the host cell’s CCR5 co-receptor (SCH 351125 [31], UK-427857 [32]), or

by binding to the viral gp120 (SPC-3 [33], PRO-542 [34]) or gp41 (enfuvirtide [35],
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T-1249 [36]) protein.

At this moment, all formally approved anti-HIV drugs derive their action from in-

terfering with either the reverse transcriptase enzyme or the protease enzyme. The

antiviral activity of the first drug on the market, AZT, was discovered [37,38] in 1985.

AZT was originally conceived as an oncological drug [39, 40], but it had failed as an

anti-cancer agent. AZT derives its anti-viral effect from disturbing the reverse tran-

scription process. Reverse transcriptase inhibitors work by two different mechanisms

of action. AZT belongs to the nucleoside reverse transcriptase inhibitors. These in-

hibitors mimic an ordinary nucleotide, resulting in their incorporation in the viral

DNA copy being formed. Because they lack an hydroxyl group in the 3’ position of

the ribose ring, the inhibitors act as a chain terminator: no more nucleotides can be

attached to the growing chain. Examples of molecules from this class of inhibitors are

given in figure 2.9. A drawback of these inhibitors is precisely because they resemble

a normal nucleotide, they interfere with normal nucleotide-processing processes in

the human body, provoking serious side-effects [41].
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Figure 2.9: Structures of nucleoside reverse transcriptase inhibitor molecules.

The discovery of a different mechanism to inhibit reverse transcriptase started

with TIBO [42]. The TIBO compounds represent the non-nucleoside reverse transcrip-

tase inhibitors. Shortly thereafter, the nevirapine [43] series of compounds was found

to also non-competitively inhibit reverse transcriptase. The underlying mechanism for

the non-competitive inhibition observed was soon discovered [44], and for the first

time [45] the crystal structures of template-primer liganded reverse transcriptase [46]

and a reverse transcriptase inhibitor complex [47] became available. The inhibitor

was found to bind to a pocket near the site where the DNA synthesis takes place.

Upon binding of the inhibitor, the thumb part of the reverse transcriptase enzyme is

arrested in an extended state, halting the copying process. The non-nucleoside bind-

ing pocket is almost absent [48] when no inhibitor is present. Examples of this type

of inhibitors are given in figure 2.10.
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Another kind of inhibitors derive their action by competitively binding to the pro-

tease enzyme. This blocks the growth of the virus because the protease enzyme is

needed —after the virus has integrated in the host genome— to cleave translated

polyproteins in order to form mature virions. The protease enzyme is synthesized

as part of a polyprotein itself, and is able to catalyze its own cleavage. Examples of

protease inhibitors are given in figure 2.11.

The reverse transcription process is error prone and the virus has no proofreading

or correction mechanisms. Each reverse replication of the 10,000 nucleotides is es-

timated [10] to contain on average one mismatched nucleotide. Assuming an equal

probability for a mismatched nucleotide to be one of the other three bases would im-

ply that for every copy of the viral genome the encoding part for reverse transcriptase

will encode for a mutant in 17.6% of the cases. Most mutants suffer from decreased

replicative fitness [49], and some mutants are not even viable, so under normal cir-

cumstances mutants will have no advantage. However, some mutants contain mod-

ifications at sites that render the virus less susceptible to the inhibitor that is given.

Given the fast replication rate [50] of the copying process, which can be as high as

1011 copies per day in an infected individual, this then will quickly lead to an escape

of the virus from the action of the drug. Although it is possible to reduce the viral

load of a treatment-naive patient below the detection limit of the most sensitive tests,

the viral load does not stay low because the formation of mutants that are resistant

to the drug. Standard HIV therapy is the combined administration of inhibitors with
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Figure 2.11: Structures of protease inhibitor molecules.

different modes of action. This therapy, dubbed Highly Active AntiRetroviral Therapy

(HAART), diminishes the chance for the virus to escape the inhibitory action, for it has

to accumulate mutations providing resistance against all of the drugs administered.

The combination of drugs to use is determined based upon the different resistance

profiles of each drug and the genotype of the patient’s HIV. A mutation that renders a

certain drug ineffective can have the same effect (cross-resistance) on another drug,

or, inversely, enhance the susceptibility for that drug. Recent studies [51–56] suggest

that the fitness of a number of mutants is lower than that of the wild type. Adequate

suppression of the more virulent strains may prove sufficient for sustained successful

treatment of HIV infected patients.

�
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Chapter 3

Computation of drug efficacy

3.1 Introduction

THE BEHAVIOR OF A DRUG administered to a human can be understood in terms

of the interactions the drug makes with the molecules present in the host. These

interactions determine the characteristics of a drug with regard to the many aspects

that influence its suitability to be applied as a drug. The ADMET properties —short

for absorption, distribution, metabolism, elimination, and toxicology— relate to the

way a drug molecule is processed in the human body. Important as they may be, these

aspects of a drug’s behavior will not be discussed here.

Central to the action of a drug are the interactions made with molecules that

influence the condition the drug is given for. Most often these molecules are proteins.

The interaction of the drug with the protein increases or decreases the rate of the

process that the protein governs. For example, a progressive degeneration of neurons

that respond to the action of dopamine in a particular area of the central nervous

system causes a disorder known as Parkinson’s disease. An approach in treating this

disease is to increase the action of the remaining dopamine receptors (protein) by

administering bromocriptine (drug). Another approach is to decrease the action of

monoamine oxidase B (protein) that is responsible for the breakdown of dopamine by

administering selegiline (drug). In this chapter, we will discuss how the interaction

between a drug and a protein may be computed.
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3.2 Binding constants

The correlation between the binding constant of a drug [1] and its biological activity

depends on the actual mechanism of action [2–5]. Still, to design a ligand with a

high binding affinity to the target protein is a first step toward a potent drug. Chemi-

cally reactive compounds, although they may have a very high binding affinity to the

target protein, are in general less suitable as drugs because their higher probability

of having an undesirable ADMET profile. The interaction between a ligand L and a

protein P can be represented as

L � P �� LP (3.1)

The equilibrium constant K (l
9
mol � 1) associated with process (3.1) is defined as

K �
�
LP ��

L � �
P � (3.2)

This equilibrium constant relates to the change in free energy accompanying this

process as

K � e � ∆G
�
RT (3.3)

where ∆G (J
9
mol � 1), also called Gibbs energy, denotes the difference in free energy

between products and reactants, R (J
9
mol � 1 9 K � 1) the gas constant, and T (K) the

temperature. The equilibrium constant is solely determined by the difference in free

energy between final and initial states.

Figure 3.1 gives a plot of log K against � ∆G at 298 K, where ∆G is expressed in

kcal
9
mol � 1. Some example systems are included in the plot at their equilibrium point.

For a prediction of K within an order of magnitude accuracy, ∆G must be computed

to within 1 kcal
9
mol � 1 precision.

The change in free energy can be written as

∆G � ∆H � T∆S (3.4)

with ∆H (J
9
mol � 1) denoting the change in enthalpy, ∆S (J

9
mol � 1 9 K � 1) the change in

entropy and T (K) the temperature at which the reaction takes place.

A simplification in computation of this change in entropy is often made. A molecu-

lar dynamics simulation [6,7] approximates the partition function by sampling many

different states of a system. Some authors [8] estimate the change in entropy with

heuristic rules, e.g. every rotatable bond in a ligand will lead to a loss of 0.33 kcal
9
mol � 1

in entropy upon binding.
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Figure 3.1: Log K versus � ∆G at 298 K.

Some examples are positioned at their

equilibrium along the line.

When it is assumed that the change

in entropy is roughly constant among a

series of ligands, the entropic compo-

nent of the free energy change can be

neglected altogether. In the remainder

of this chapter we will only consider the

other constituent of the change in free

energy, namely the change in enthalpy.

When studying individual molecules,

there is no pressure or temperature since

these are macro-scale properties. In this

context, the change in enthalpy equals

the change in energy. Computation of

the energies at a quantum-mechanical

level of description on systems as large

as an average protein takes many orders of magnitude longer than is feasible. There-

fore resorting to a classical description is inevitable.

3.3 Molecular mechanics

Molecular mechanic methods —also known as force field methods— are founded on

the observation that molecules tend to be composed of units which behave similar

in different molecules [9]. These units can be modeled with simple energy terms.

MMFF94 [10–16], MM2 [17], CFF [18], CVFF [19], AMBER [20], and CHARMM

[21] are some well-established force fields. In a force field, the energy of a system

is computed as parametric function of the nuclear coordinates. A coherent set of

parameters is derived from experimental data and/or ab initio calculations. The total

energy is computed by summing the energy terms present in a force field over all

atoms and bonds of the molecules.

The change in energy ∆E accompanying a process is the energy content of the

products relative to that of the reactants. For reaction (3.1) this change is given by

∆E � ELP � EL � EP (3.5)

In the case of ligand-protein binding, one can regard ELP as consisting of the in-

tramolecular energy of the bound ligand, E �L, the intramolecular energy of the bound

protein, E �P, and something ‘extra’, the interaction energy between the ligand and
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protein, E inter
LP . Hence equation (3.5) can be written as

∆E � E inter
LP � �

E �L � EL � � �
E �P � EP � � E inter

LP � ∆E intra
L � ∆E intra

P (3.6)

If any changes in intramolecular energy of ligand and protein are approximated as

being negligible, i.e. E �L � EL and E �P � EP, equation (3.6) reduces to

∆E � E inter
LP (3.7)

leaving only the intermolecular energy to be computed.

Intermolecular energy

Molecular interaction is composed of attractive and repulsive forces, for instance the

attraction between positively and negatively charged atoms and the repulsion be-

tween atoms that come too close. These interactions between ligand and protein

are computed by summing the Coulomb and the Van der Waals interactions over the

atoms:

E inter
LP �

Latoms

∑
i

Patoms

∑
j

ECoulomb
i j �

Latoms

∑
i

Patoms

∑
j

EVanderWaals
i j (3.8)

Because electron density is distributed over the atoms in a molecule, each con-

stituent atom is treated as bearing a partial charge. The interaction between two

point charges in vacuum is given by Coulomb’s law

ECoulomb
i j � qiq j

4πε0ri j
(3.9)

where qi (e) denotes the magnitude of charge i, ε0 the vacuum permittivity, and ri j the

distance between the charges. Coulomb’s law can also be used to compute higher or-

der charge interactions, such as dipole-dipole interactions. In general, charge-charge

interactions dominate because of their smaller distance dependence.

The magnitude of the dielectric constant in equation (3.9) reflects the permittivity

of the medium where the interactions take place. The more polarizable the medium,

the more it will act as a capacitor, lowering the strength of charge-charge interactions.

In bulk water at room temperature, the interaction strength is lowered with a factor

78, but only when the charges are sufficiently separated. Instead of using ε0, one may

use a modified epsilon, εr, to mimic the change in environment that takes place.

In addition to charge-charge interactions, more attractive and repulsive forces

exist between the ligand and the protein, such as induced multipole (inductive and

dispersive) interactions, and exchange (repulsive) interactions. These interactions



Computation of drug efficacy 45

are commonly called Van der Waals interactions. The mean attractive force varies

as the inverse sixth power of the distance. Repulsive forces between molecules arise

from the exclusion of electrons from regions of space where the orbitals of the species

overlap: at small separation the energy will steeply increase. A Lennard-Jones 12-6

potential is widely used for describing the combination of the attractive and repulsive

forces

EVanderWaals
i j � εi j

���
Ri j

ri j � 12

� 2

�
Ri j

ri j � 6 �
(3.10)

where εi j and Ri j are parameters for the well depth and minimum energy separation.
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Figure 3.2: The Coulomb, Van der Waals,

and total interaction energy versus the dis-

tance for a formaldehyde approaching a

phenylaminopyrimidine.

The magnitude of the parameters

depends on the type of the interact-

ing atoms. The form of this potential

function is a trade-off between accurate

representation and computational effi-

ciency. The r � 12 term has the conve-

nient property of being the square of

the r � 6 term, but is not an optimal rep-

resentation of the repulsive potential.

Really, an exponential form should be

used for the repulsive potential, but in

practice the Lennard-Jones potential is

mostly used. Because a minimization

algorithm can go astray when the en-

ergy goes to infinity as the separation

distance decreases to zero, a buffering

term is used for the non-bonded inter-

actions in some force fields [15].

As we have seen, the Coulomb and

the Van der Waals energy depend on the

type of atoms involved in the interac-

tion. In a force field, parameters are

assigned based on potential types. The

potential type of an atom describes its

chemical character, e.g. an aromatic carbon in a six-membered ring bonded to one

hydrogen gets potential type ‘cp’ and the hydrogen gets ‘h’. These potential types

determine the well depth and minimum energy separation in equation (3.10). The

partial charges to be used in equation (3.9) are assigned from the potential types too.

In some force fields, the partial charges are modified with bond increment rules. Such
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a bond increment rule specifies for each combination of potential types how charge is

distributed between the two atoms, e.g. for ‘cp’ bonded to ‘h’, 0.13 is subtracted from

the charge of the carbon and added to the charge of the hydrogen.

In figure 3.2 the total interaction energy versus the distance is depicted for a

formaldehyde approaching a phenylaminopyrimidine. The interaction energy is com-

puted with the MMFF94 force field, and is the sum of the Van der Waals energy as

represented by a buffered 14-7 potential and the Coulomb interaction. The interac-

tion in this system involves the formation of a hydrogen bond. Hydrogen bonding is

an important aspect of molecular recognition and interaction in biological systems. In

a hydrogen bond, a hydrogen atom bonded to an electronegative atom interacts with

another electronegative atom that has a lone pair of electrons (conventionally [22]

fluorine, oxygen, or nitrogen). In the MMFF94 force field, the minimum in the Van

der Waals curve for this type of interaction is shifted to shorter distance. Because

of the more favorable Coulomb interaction at smaller separation for the hydrogen

bond donor and acceptor pair, the net result is a minimum that is deeper and closer.

For a more accurate description of hydrogen bonding, the geometric aspects of this

interaction have to be accounted for. The formation of a hydrogen bond is not a spher-

ical symmetric phenomenon, but is quite sensitive to the geometric arrangement. A

description of the angle-dependencies of the hydrogen bond interactions for differ-

ent species can be achieved using modified potential functions that contain angular

terms.

Intramolecular energy

The functional form of a force field to compute the intramolecular energy corresponds

to a description of a molecule as composed of balls (the atoms) connected through

springs (the bonds). The intramolecular energy is computed as a sum of terms which

account for the energy required to distort the geometry of a molecule in a particular

fashion:

E intra �
bonds

∑
i

Ebond
i �

angles

∑
i

Eangle
i �

torsions

∑
i

Etorsion
i �

atoms

∑
i

atoms

∑
j

Enon � bond
i j (3.11)

The non-bond energy is computed as the sum of the Coulomb and Van der Waals

energy using the same expressions as for the intermolecular interaction. The interac-

tions are computed between atoms that are separated by three or more bonds along

the shortest path. Below we will explain the other terms of the intramolecular en-

ergy. The constants in these equations are again determined by the combination of

potential types of the atoms involved.
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The energy cost of deforming a bond i from its ideal value r0
i is computed as

Ebond
i � k0

i

�
ri � r0

i � 2
(3.12)

with k0
i the force constant for that particular bond type. The bond deformation in

some force fields [19] is described by a Morse potential, i.e. an expression of expo-

nential form. Analogous to equation (3.12), the energy cost of deforming an angle i
is given by

Eangle
i � k0

i

�
θi � θ0

i � 2
(3.13)

The energy for a torsion change can be written as

Etorsion
i � k0

i

�
1 � cos

�
η0

i

�
φi � φ0

i � � � (3.14)

where k0
i determines the maximum torsion strain, η0

i the periodicity of the function

and φ0
i the angular offset.
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Figure 3.3: The intramolecular energy as

function of the rotation around the pheny-

lamino torsion for a phenylaminopyrimi-

dine.

For the energetics of an sp2-hybridi-

zed atom that is bonded to three other

atoms with respect to its position in the

plane formed by the other three atoms,

an ‘improper’ torsional angle may be

used. Some force fields employ a spe-

cial out-of-plane energy term for these

cases, i.e. a function of the form kid2,

where ki is the force constant associated

with bending the atom out of the plane,

and d the distance between the atom

and the plane.

Molecular mechanics has demon-

strated to reproduce molecular geome-

tries and the relative energy of one con-

former to another [23] reasonably. We

will discuss an actual example, where

the intramolecular energy of a pheny-

laminopyrimidine is computed as func-

tion of its phenylamino torsion an-

gle. The energy is computed with the

MMFF94 force field. In figure 3.3 the

energy is plotted against the angle of
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that torsion. The curve is obtained starting from a geometry optimized structure.

After every rotation step, the intramolecular energy is computed. It is understandable

that the minimum at 180 � does not have exactly the same energy as the one at 0 � . The

initial minimization has shortened the phenyl carbon-hydrogen bond pointing toward

the pyrimidine nitrogen and widened the pyrimidine-aminophenyl angle. This causes

the energy of the symmetry-related phenyl hydrogen in the plane of the pyrimidine

ring to be higher.

3.4 Docking

Docking is a procedure in which the geometry of a ligand-protein complex is com-

puted. The interaction that a ligand makes with a protein depends on its position and

orientation relative to the protein. In docking, the interaction energy between ligand

and protein is sampled as function of the ligand’s placement. The placement of the

ligand that has the most favorable interaction energy determines the geometry of the

complex, which in turn determines the binding constant.

In a simple case, the geometry of the ligand and the geometry of the protein in

bound state is known. Six degrees of freedom remain to be solved: three translational

and three rotational. For every orientation of the ligand, the interaction energy with

the protein can be computed. Unfortunately, examining each possible orientation

of the ligand would take far too much time. To give an idea about the size of the

search space: in a protein cavity measuring 3375 Å3 the number of interaction energy

evaluations that needs to be carried out to exhaustively determine the best orientation

of a ligand within 0.1 Å and 1 � precision is about 1017.

In figure 3.4 a part of the search space for a selected example is shown. This part

forms a tiny fraction of the total search space, since only one rotation angle of the

ligand is varied. The figure illustrates how large the fluctuations in intermolecular

energy typically are, in this example spanning six orders of magnitude.

An interaction energy evaluation is expensive, since it involves the summation of

E inter
LP � qiq j

4πε0ri j
� εi j

�
Ri j

r12
i j

� Ri j

r6
i j

�
(3.15)

over all protein and ligand atoms.

When computing many different positions of a given ligand or many different

ligands for a given protein, the following method can be used which speeds up the

computation. The interaction energy expression is separated in a protein dependent

part and a ligand dependent part. Next, the protein dependent part is precalculated
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on the points of a grid encompassing the region of interest. Each point of this grid

contains the information of the contribution of all protein atoms to the interaction at

that point. In a docking computation, the values of the grid points are interpolated to

regain a continuum. Repeatedly computing contributions of the protein are avoided

by doing it once beforehand. The time saved increases with the number of ligands or

ligand positions considered.
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Figure 3.4: The intermolecular energy be-

tween a phenylaminopyrimidine fragment

and the reverse transcriptase protein. The

phenylaminopyrimidine is placed inside the

NNRTI binding site of the protein and ro-

tated about its N-H bond.

Even with the use of grids, the eval-

uation is not so fast as to enable ex-

haustive searching. In order to de-

termine the geometry of the complex

with the most favorable interaction en-

ergy, an appropriate search algorithm

has to be employed. Two algorithms

which can efficiently locate the global

minimum are simulated annealing [24,

25] and evolutionary algorithms [26].

Of course, they cannot guarantee suc-

cess in locating the true global min-

imum. Simulated annealing works

by randomly walking through function

space. A step is accepted if it returns a

value lower than the current one. If it is

higher, an criterion of the form e � ∆E
�
T

determines the probability that the step

will nevertheless be accepted. This way

uphill steps can be taken. By a stepwise

lowering of the temperature and con-

tinuing with the minimum found in the

previous cycle of simulation, the walk

is gradually constrained to a less broad

region, up to convergence to a single

point.

The evolutionary algorithms work as follows. In an iterative manner, a generation

of offspring is produced by parents, the values for the independent variables forming

their genes. The formation of offspring is subjected to point-mutation and cross-over

operators. The fitnesses of the members of the population are evaluated and this

determines their chance of surviving into the next generation. The application of

evolutionary algorithms has become widespread in computer-aided molecular design
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[27]. With the use of these search strategies, docking programs [28, 29] are able to

to compute the geometry of an average ligand-protein complex in less than one hour.

Attempts to reproduce a known ligand-protein complex can serve as test for a

docking program. In practical applications of a docking program, the geometry of the

ligand and that of the protein in bound state is unknown. The ligand may be subjected

to a conformation analysis, followed by a docking of the resulting conformers. Some

docking programs attempt to simultaneously optimize the geometry of the ligand and

its orientation with respect to the protein. The intramolecular energy of the ligand

can be included in the search, which in turn optimizes both the intermolecular as

the intramolecular energy. Another approach is one where the ligand is broken up

in fragments, one fragment is initially placed at a favorable interaction site on the

protein and the other fragments constituting the ligand are added sequentially from

the starting fragment guided by the favorableness of their intramolecular interaction

as well as their interaction with the protein.

In this chapter, the theoretical framework has been outlined how to compute some

of the elements determining drug efficacy, namely the intra- and intermolecular en-

ergies and the geometry of ligand-protein interaction.

�
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Chapter 4

A pharmacophore docking

algorithm

Abstract

The docking of small molecules into the binding site of a target protein is an impor-

tant but difficult step in structure-based drug design. The performance of a docking

algorithm is usually evaluated by re-docking ligands into their native binding sites.

We have explored the cross-docking of 18 HIV-NNRTIs (non-nucleoside inhibitors of

HIV reverse transcriptase) of which the ligand-protein structure has been determined:

each of the 18 ligands was docked into each of the 18 binding sites. The docking

algorithms studied are an energy-based simulated annealing algorithm and a novel

pharmacophore docking algorithm. It turns out that the energy-based docking of the

ligands into non-native pockets is far less successful than the docking into their native

pockets. The results can be improved by using explicit pharmacophore information,

and by docking a ligand into a panel of protein structures and selecting the ligand-

protein combination with the lowest interaction energy as the final result.

4.1 Introduction

ADVANCES IN MOLECULAR BIOLOGY, protein structure determination and computer

hardware have led to the emergence of structure-based drug design as an important

This chapter has been published as: F.F.D. Daeyaert, M.R. de Jonge, J. Heeres, L.M.H. Koymans, P.J.
Lewi, H.M. Vinkers, and P.A.J. Janssen, A pharmacophore docking algorithm and its application to the
cross-docking of 18 HIV-NNRTI’s in their binding pockets. Proteins 54 (2004) 526.



54 Chapter 4

tool for drug discovery. Depending on the availability of structural information on the

drug target, two main strategies can be distinguished. When no structural informa-

tion on the target enzyme is available, but a number of ligands is known, pharma-

cophore models can be built and used to set up a QSAR or to search for new ligand

classes. When the structure of the target enzyme and the binding site is known from

X-ray diffraction or NMR spectroscopy, docking studies can be undertaken. Hereby,

the energetically most favorable orientation of a putative ligand with respect to the

enzyme is determined. Docking a small molecule into its binding site, however, is a

computationally hard optimization problem. In its simplest form, both the ligand and

the enzyme are kept rigid. Even then, the search space has six dimensions, corre-

sponding to the three translational and three rotational degrees of freedom, and an

optimization algorithm is easily trapped in a local minimum. More often than not, the

ligand contains rotatable bonds, giving rise to several possible low energy conforma-

tions, each of which should be considered for docking. Alternatively, these additional

degrees of freedom can be considered as additional dimensions in the search space,

making it harder for the optimization algorithm to locate the global energy minimum.

Recent reviews of docking algorithms can be found in Abagyan and Totrov [1] and

Taylor et al. [2]. By the time the structure of a drug target becomes available, a

considerable number of active ligands may already be known. Fradera et al. [3] and

Hindle et al. [4] describe docking algorithms that exploit knowledge from existing

ligands to aid the docking process. The first group uses the similarity of a putative

ligand to a known ligand positioned in the protein active site to guide the docking of

the putative ligand. Hindle et al. use pharmacophore type constraints for the same

purpose. Both algorithms are adaptations of established docking methods, namely

DOCK [5] and FlexX [6], and in both cases it is found that inclusion of ligand infor-

mation improves the quality of the results and the speed of the original algorithms.

We describe here a pharmacophore docking algorithm that consists of directly map-

ping at least three pharmacophore points of a putative ligand onto the corresponding

pharmacophore points of a reference ligand bound at the target enzyme. While the

algorithm is generally applicable, it will be described by its application to the docking

of a number of non-nucleoside inhibitors of HIV reverse transcriptase (NNRTIs). The

performance of a docking algorithm is often judged by its ability to reproduce the

experimentally observed orientation of a ligand in its binding site [7]. To be of use in

a drug discovery environment, however, it should predict the orientation of new pu-

tative ligands that differ from the ligand that is present in the available X-ray or NMR

structure. These may either be close analogs or new leads belonging to a different

chemical class. We shall mimic this situation by cross-docking a number of NNRTIs

into one another’s binding pockets. This is possible because the crystal structures

of several of NNRTIs bound to HIV1 reverse transcriptase (HIV1-RT) are available,
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both in public domain and proprietary databases. Figure 4.1 shows a selection of

18 NNRTIs belonging to a number of different structural classes that have been co-

crystallized with HIV1-RT and of which the X-ray structures have been determined.

Information on the structures is summarized in table 4.1.

Name Origin Reference pIC50

atu proprietary – 8.5
1bqm PDB [8] 8.2
1c1b PDB [9] 9.0
1c1c PDB [9] 8.5
dap proprietary – 9.0
dat proprietary – 8.5
1dtq PDB [10] 8.2
1dtt PDB [10] 8.3
1fk9 PDB [11] 9.0
1hnv PDB [12] 8.3
1rev PDB [13] 7.5
1rt1 PDB [14] 8.4
1rt2 PDB [14] 8.2
1rt4 PDB [15] 8.0
1rt5 PDB [15] 6.8
1rt6 PDB [15] 7.5
1rt7 PDB [15] 7.4
1rti PDB [16] 5.8

Table 4.1: Overview of crystal structures. The activities of the proprietary compounds
were determined at Tibotec-Virco (Mechelen, Belgium) [17].

Cross-docking experiments have previously been carried out by Kramer et al. on

a number of ligand-protein complexes for which a limited set 3-9 of different crystal

structures were available [18]. We concentrate here on a larger set of complexes (18)

of a single ligand-protein system. Also, because we want to evaluate the combination

of the docking algorithm and the scoring function used as a whole, we shall consider

only the top ranking solutions of the docking algorithms evaluated.

4.2 Construction of a pharmacophore model

The public-domain crystal structures of the NNRTI complexes were downloaded from

the PDB [19], and a region of 93 residues forming the NNRTI binding pocket was

selected. The selected residues are: A91-A109, A168-A205, A220-A242, A316-A321,

B134-B140. Structural water molecules were left in place.
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Figure 4.1: Eighteen HIV-NNRTIs with a common 3-point pharmacophore of which
the crystal structures have been determined.
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Hydrogen atoms were added and the structures were subjected to molecular me-

chanics energy minimization using an in-house adapted version of the MMFF94 force

field [20], extended with a directional hydrogen bond term. During the minimization,

the Cα atoms were tethered to their crystal structure coordinates using a harmonic

potential with a force constant of 10 kcal
9
mol � 1 9 Å � 2.

As illustrated in figure 4.1, the 18 NNRTIs share a 3-point pharmacophore: a

hydrophobic center, a hydrogen bond acceptor and a hydrogen bond donor. The hy-

drophobic center fills the hydrophobic pocket formed by the Tyr 181A, Tyr 188A, Phe

227A, and Trp 229A residues (figure 4.2). The hydrogen bond donors and acceptors

form a hydrogen bond with the Lys 101A backbone NH and carbonyl atoms, or, in the

1c1b, 1c1c, 1rt1, and 1rt2 crystals, with a structural water molecule [9,14].

Lys 101A

Tyr 188A

Trp 229A

Tyr 181A

Figure 4.2: The NNRTI binding site of HIV reverse transcriptase complexed with the
inhibitor 9-Cl TIBO.
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The coordinates of the pharmacophore points common to the NNRTIs shown in

figure 4.1 were recorded for each of the 18 crystal structures. The definitions of hy-

drophobic centers, hydrogen bond donors and hydrogen bond acceptors are adapted

from Iwase and Hirono [21], and are summarized in table 4.2. The NNRTIs were

then removed, leaving 18 binding pockets for docking.

Hydrogen bond donors
– NH, OH, SH

Hydrogen bond acceptors
– Carbonyl, thiocarbonyl, sulfone
– O in ether, ester
– Pyridine N
– N, O in aromatic 5-membered rings

Hydrophobic centers
– Centers of aliphatic or aromatic rings
– Centers of double and triple CC bonds
– CF3

– Aliphatic chains

Table 4.2: Definition of pharmacophore points. See Iwase and Hirono [21] for details.

4.3 Pharmacophore docking algorithm

The steps of the pharmacophore algorithm are listed in table 4.3. First, a confor-

mational analysis of the ligand is carried out using an in-house developed genetic

algorithm. The output of the genetic algorithm is a list of conformers with fully mini-

mized structure. All conformers having an energy within 5 kcal
9
mol � 1 from the lowest

energy conformer are retained. The force field used is the one mentioned above. For

ligands containing saturated rings, a ring conformation search is first carried out by

exhaustively flipping all ring corners until no new conformers are generated [22]. For

ligands containing asymmetric centers, all stereo-isomers are generated. The number

of conformers found in the NNRTI dataset was between 6 for the 1fk9 ligand and

150 for the 1rti ligand. The hydrophobic centers, hydrogen bond donors and hydro-

gen bond acceptors are then assigned. For each conformer, all possible combinations

of a hydrophobic center, a hydrogen bond donor, and a hydrogen band acceptor are

listed. For each combination, the coordinates of the hydrophobic center, hydrogen

bond donor, and hydrogen bond acceptor are mapped upon the coordinates of the

corresponding pharmacophore points of the original ligand in the crystal structure,

as illustrated in figure 4.3. This mapping is carried out using an implementation
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of Kabsch’ algorithm [23] and Heisterberg [24]. The root mean square deviation

(RMSD) between the coordinates of the mapped and target pharmacophore points

is used as a first filter to remove unfit matches. If the value of the RMSD is below

a threshold, the ligand is positioned in the binding pocket using the rotation matrix

obtained from Kabsch’ algorithm.

� Generate list of low energy conformers.�
For each conformer�

For each combination of donor, acceptor, and hydrophobic center
1. Match coordinates of pharmacophore to target pharmacophore.
2. If RMSD is above threshold: skip.
3. Calculate non-bond interaction energy using grid potential.
4. If this energy is above threshold: skip.
5. Minimize non-bond interaction energy in rotation-translation space.�
Go to next combination of donor, acceptor, and hydrophobic center�

Go to next conformer� Rank the solutions found and keep at most five.� Apply full molecular mechanics minimization in Cartesian space.� Select the solution with the lowest non-bond interaction energy.

Table 4.3: Flow chart of the pharmacophore docking algorithm.

Next, the molecular mechanics non-bond interaction energy between the ligand

and the binding pocket is calculated. It is composed of three terms: a Coulomb term,

a Van der Waals term, and a hydrogen bond term. The functional form of the Van der

Waals interaction energy of the MMFF94 force field [20] is replaced by

Ei j
�
ri j � � Ai j

r8
i j

� Bi j

r4
i j

with Ai j ��� Ai
9
A j and Bi j � � Bi

9
B j (4.1)

where Ei j is the Van der Waals interaction energy between atoms i and j, ri j is their

inter-atomic distance and A and B are the atomic repulsion and dispersion param-

eters. The values of the latter were obtained using a least squares fit to reproduce

the equilibrium distances and well depths of the MMFF94 force field. This functional

form enables the use of precalculated grids to considerably speed up the energy eval-

uation [25]. Furthermore, the 4-8 combination of the exponents smoothens the po-

tential surface with respect to the MMFF94 7-14 functional form. It has been found

that smooth energy functions facilitate docking [26]. To relax the non-bond interac-

tion energy, a limited exhaustive search is carried out. The ligand is translated over

� 0.25 Å and � 0.25 Å in each direction, and rotated over � 10 and � 10 degrees over

each Euler angle. For each orientation generated, the non-bond interaction energy is
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Figure 4.3: Positioning of the dap ligand into the 1hnv binding pocket by mapping of
the pharmacophore points.

evaluated using precalculated grids for the Van der Waals and Coulomb interaction

terms. From the 36 � 729 orientations, the one with the lowest non-bond interaction

energy is retained. If this non-bond interaction energy is below a threshold, the so-

lution is subjected to energy minimization in the 6-dimensional translation-rotation

space, using a quasi-Newton minimizer and using the full atom-by-atom evaluation of

the potential function. During a second local minimization run, the 4-8 Van der Waals

potential function is replaced by the original 7-14 form of the MMFF94 force field. At

this point, the list of solutions, containing different conformations and orientations

of the ligand in the binding pocket, is ranked according to the minimized non-bond

interaction energy. The top five solutions (or less when the number of solutions re-

tained is less) are then subjected to a full molecular mechanics energy minimization

of the ligand-binding site complex in Cartesian coordinates, until the RMS gradient

of the system is less than 0.1 kcal
9
Å � 1.

In a number of test runs, it was found that at this point the ranking of the so-

lutions did not change upon further minimization. During the minimization, the Cα
atoms of the binding site are tethered using a harmonic potential with a force con-
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stant of 10 kcal
9
mol � 1 9 Å � 2. The complex with the lowest non-bond energy between

the binding site and the ligand is retained as the final solution of the docking. The

pharmacophore docking algorithm is compared to a classical energy-based docking

algorithm using simulated annealing (SA). The SA algorithm is adapted from the im-

plementation of Vanderbilt and Louie [27]. During a docking run, the ligand and

binding pocket are kept rigid. However, to account for ligand flexibility, all low en-

ergy conformers of the ligand, found by the above-mentioned genetic algorithm, are

docked, and the best docking conformer is retained. Again, the potential energy is

evaluated using precalculated grids. Each ligand conformer is docked four times.

A tabu mechanism is incorporated in the SA algorithm: at the end of each series of

moves, the position of the ligand is compared to the solutions found by previous runs.

If it is too close to a previously found solution, the temperature is reset to the initial

temperature and the position of the ligand is randomized. The ligand is confined in a

box of 10 Å at the center of the binding pocket. The SA is stopped when the conver-

gence criterion is met [27], or when the number of function evaluations has reached

50,000. At this point, the same gradient-based local minimization procedure as for

the pharmacophore docking algorithm is applied. When, after this minimization, the

final position of the ligand is outside the 10 Å confinement box, the solution is re-

jected. The final list of solutions is ranked, and the top five solutions are minimized

in Cartesian space. Again, the complex with the lowest non-bond energy between

the binding site and the ligand is retained as the final solution of the docking. We

found that this protocol was very robust, reproducibly generating the same solution

for different initial conditions. The initial temperature and step size for the simulated

annealing algorithm were obtained as in Vanderbilt and Louie [27]. The number of

steps at each temperature was 100, in correspondence with the 15
9
n value suggested,

where n is the dimension of the search space. The cooling scheme was exponential

and the geometrical cooling factor of 0.9 was obtained by trial and error. The simu-

lated annealing algorithm was stopped when the relative difference between the av-

erage and minimal energy solutions was below 1.0 kcal
9
mol � 1 in order to let the more

efficient quasi-Newton local optimizer take over close to the energy minimum. The

selection of the final solution of both docking algorithms is based upon the non-bond

interaction energies between the ligand and the binding pocket after minimization of

the complex. These energies can therefore be directly compared with one another. It

was found that the minimization step was essential for ranking the final solutions, as

the value of the non-bond interaction is an indicator of the quality of the docking.



6
2

C
h

a
p
ter

4

�

ligands

�

atu 1bqm 1c1b 1c1c dap dat 1dtq 1dtt 1fk9 1hnv 1rev 1rt1 1rt2 1rt4 1rt5 1rt6 1rt7 1rti

atu 1.74 0.76 4.75 5.56 6.57 0.31 8.32 1.96 0.74 1.01 4.81 1.45 6.25 8.99 8.73 2.87 6.03 6.10
1bqm 0.95 0.88 4.65 1.62 6.50 6.25 8.31 7.62 0.71 1.07 4.81 1.38 8.85 8.19 8.93 8.80 8.63 4.87
1c1b 4.63 4.10 0.50 0.79 2.29 5.66 5.63 4.33 3.84 3.65 4.58 0.25 9.45 6.57 4.66 0.86 9.06 0.83
1c1c 5.47 1.89 0.69 0.42 5.75 5.64 1.42 5.44 1.20 2.62 5.70 0.32 3.67 5.54 6.80 4.25 7.50 0.85
dap 0.51 1.05 4.70 5.46 5.92 0.18 7.18 7.38 0.53 1.01 4.55 5.15 6.00 2.33 8.39 4.70 5.40 5.60
dat 0.49 0.77 1.77 5.38 4.93 0.05 8.41 8.44 0.63 0.97 5.38 1.31 9.12 6.01 6.78 4.62 4.90 1.70

1dtq 1.41 0.99 1.54 5.22 6.27 5.56 0.68 4.95 0.47 0.62 1.03 3.18 4.88 4.37 9.48 0.60 8.95 0.99
1dtt 5.21 1.06 4.59 4.71 5.14 5.52 0.82 5.45 0.61 0.63 0.80 4.38 4.70 4.35 5.60 8.75 3.85 5.36
1fk9 8.89 0.84 4.68 3.76 6.59 7.94 8.01 7.64 0.40 10.55 5.60 3.54 9.35 9.35 8.08 9.23 9.54 4.96
1hnv 0.44 1.01 4.74 5.57 5.26 6.76 8.10 9.07 0.60 0.66 4.83 3.49 3.03 4.82 0.79 4.90 9.98 2.96
1rev 5.04 4.55 1.48 5.53 6.34 7.25 5.82 4.20 0.84 0.88 0.56 5.10 9.19 9.01 5.77 0.53 4.36 4.33
1rt1 4.48 2.08 0.67 0.79 2.35 2.73 4.68 2.47 4.06 3.56 4.02 0.11 3.98 5.77 4.63 4.19 6.81 0.90
1rt2 7.51 4.85 1.06 1.15 5.09 4.18 5.21 6.20 1.03 5.64 5.88 0.80 4.20 5.60 9.78 5.19 6.64 0.84
1rt4 0.86 1.01 4.53 1.08 6.41 5.98 0.84 8.71 0.59 0.75 4.55 4.31 8.57 9.27 5.61 0.37 9.47 1.28
1rt5 3.90 0.93 0.77 0.92 5.83 5.16 0.77 4.60 0.58 0.83 0.60 0.71 8.92 1.32 5.53 0.29 8.63 1.16
1rt6 0.78 1.35 4.67 0.83 6.44 5.89 8.95 8.69 0.65 1.23 0.85 0.46 3.68 1.48 8.74 0.10 5.75 1.10
1rt7 4.05 1.53 1.02 4.47 6.37 5.82 9.05 8.54 0.49 3.56 0.82 5.00 8.48 9.01 8.38 0.39 8.82 5.01
1rti 5.50 1.74 0.70 0.71 5.32 -1.00 5.42 6.26 1.26 3.70 3.87 1.43 0.94 6.37 4.72 4.39 6.78 0.65

Table 4.4: RMSDs obtained by cross-docking 18 NNRTIs into 18 HIV-RT binding pockets using the energy-based
docking algorithm. The RMSD for the non-native binding pocket into which each ligand is docked with the lowest
non-bond interaction energy is typeset in boldface.
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4.4 Cross-docking of NNRTIs

Each of the 18 NNRTIs listed above was docked in each of the 18 NNRTI binding

sites. The RMSD between the coordinates of the docked ligands and the coordinates

in their native crystal structure was calculated. For this purpose, the Cα atoms of

each generated complex were superimposed onto the corresponding atoms of the

native crystal structure. The RMSD was calculated for the ligand atoms only, taking

into account possible local symmetries of the ligands. The average RMSD between the

binding pocket structures is 1.04 Å for the Cα atoms, and 1.71 Å for all heavy atoms.

The average RMSD between the binding pocket atoms in the minimized complexes

and the original binding pockets is 0.14 Å for both docking algorithms. This indicates

that the influence of the docking algorithm on the protein structure is small, at least

for the RMSDs. Also, no correlation was found between the RMSDs of the ligands

and the RMSDs of the Cα atoms of the binding pockets, that is, docking of a ligand

into a pocket with relatively high RMSD with respect to the native pocket does not

necessarily lead to a poor result. This motivates the choice to consider the RMSD

values for the ligand atoms only. The results are presented in matrix-form in tables 4.4

and 4.5. Each entry gives the result of the docking of the ligand figuring in the column

header, into the binding site figuring in the row header. Using the energy-based

docking, only 1 out of the 324 NNRTI-binding site combinations did not generate a

solution, due to the 10 Å confinement criterion.

The number of solutions generated by the pharmacophore docking algorithm is

strongly dependent on the thresholds applied to the pharmacophore matching and

the non-bond interaction energy of the initial orientation of the ligand in the binding

pocket. The combination of a 1 Å RMSD threshold for the pharmacophore match-

ing and a 500 kcal
9
mol � 1 threshold for the non-bond interaction energy generated

solutions for all but five ligand-pocket complexes. The latter threshold allows se-

vere clashes between ligand and protein atoms at the initial positioning of the ligand.

These were however successfully removed by the subsequent minimization steps. Af-

ter molecular mechanics minimization of the ligand-enzyme complexes all non-bond

interaction energies were reduced to � 20 to � 50 kcal
9
mol � 1. The -1.00 entries in ta-

bles 4.4 and 4.5 correspond to the ligand-pocket combinations for which no docking

solution was generated. The diagonal entries in tables 4.4 and 4.5 are the RMSDs

found when the ligands are docked into their native binding sites. With the energy-

based docking algorithm, 12 out of the 18 ligands, that is 67%, are docked with a

RMSD less than 2 Å. This performance is comparable to that of other reported dock-

ing algorithms [1, 28]. With the pharmacophore docking algorithm 17 out of the 18

ligands are docked with a RMSD less than 2 Å.
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atu 1bqm 1c1b 1c1c dap dat 1dtq 1dtt 1fk9 1hnv 1rev 1rt1 1rt2 1rt4 1rt5 1rt6 1rt7 1rti

atu 1.74 0.76 3.70 2.30 0.53 0.31 1.90 2.11 0.74 0.97 0.91 1.61 3.53 1.07 0.91 2.87 3.52 4.12
1bqm 0.95 0.88 3.24 2.04 0.69 0.72 2.07 2.03 0.71 1.08 1.07 1.38 6.50 1.62 0.75 1.04 2.95 3.81
1c1b 2.25 1.88 0.07 0.51 2.29 6.65 0.82 0.79 1.57 0.78 0.64 0.25 4.75 1.01 1.02 0.74 2.68 0.83

1c1c 5.79 1.95 0.41 0.42 2.32 2.66 3.36 3.40 1.21 2.55 1.27 0.58 1.17 1.29 1.24 1.08 5.31 0.85
dap 0.51 0.69 3.74 2.83 0.05 0.18 0.70 1.49 0.53 1.01 1.03 3.44 5.45 0.95 0.67 2.21 2.71 3.71
dat 1.93 0.77 4.37 4.92 0.33 0.05 1.57 1.51 0.63 1.22 1.27 4.60 6.12 1.11 0.68 2.79 3.20 3.85
1dtq 1.14 0.99 3.36 1.60 1.11 0.57 0.37 0.39 0.47 0.62 1.03 3.18 1.60 1.03 2.55 0.59 3.98 2.36
1dtt 1.52 1.05 1.33 1.55 0.53 0.70 0.82 0.65 0.61 1.52 0.65 2.13 1.83 1.01 2.69 1.73 3.27 2.77
1fk9 0.54 1.13 2.73 3.32 0.90 6.29 1.27 1.77 0.40 0.33 0.44 3.54 4.99 0.78 0.58 0.72 2.16 3.52
1hnv 0.98 0.95 1.75 1.61 0.67 0.55 2.49 2.41 0.60 0.66 0.57 1.14 5.13 1.49 0.79 1.98 3.09 2.82
1rev 0.77 1.33 0.97 1.97 0.44 0.46 0.68 0.58 0.84 0.88 0.38 0.41 5.13 0.94 0.56 0.53 2.87 4.32
1rt1 2.71 1.82 0.35 0.58 1.92 2.73 2.62 2.26 1.13 2.44 1.06 0.48 1.72 1.22 1.04 0.89 5.21 0.83
1rt2 6.00 1.97 0.99 0.82 2.07 2.51 5.65 6.18 1.05 2.35 2.10 0.80 0.41 1.34 1.33 1.15 5.48 0.84
1rt4 0.78 1.17 0.85 1.74 1.18 0.63 0.55 0.28 0.59 1.15 0.74 0.93 2.59 0.68 0.46 0.37 2.31 2.35
1rt5 0.88 1.13 0.74 1.68 1.53 0.63 0.61 0.66 0.58 0.69 0.59 0.68 2.45 0.84 0.39 0.42 2.30 2.37
1rt6 0.78 1.40 0.89 1.06 1.82 -1.00 0.99 0.21 0.65 0.84 0.85 0.46 1.68 1.48 1.16 0.36 2.30 3.93
1rt7 -1.00 1.40 1.71 1.20 -1.00 -1.00 6.01 7.08 0.49 0.78 0.82 1.84 1.93 0.62 0.59 0.27 2.32 3.97
1rti 6.12 1.97 0.72 0.71 -1.00 3.64 5.77 6.26 1.26 2.46 1.14 1.43 3.43 3.72 1.84 1.40 3.16 0.65

Table 4.5: RMSDs obtained by cross-docking 18 NNRTIs into 18 HIV-RT binding pockets using the pharmacophore
docking algorithm. The RMSD for the non-native binding pocket into which each ligand is docked with the lowest
non-bond interaction energy is typeset in boldface.
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Only the 1rt7 ligand is docked with a RMSD of 2.2 Å. This is because the cis-amide

conformation that this ligand adapts in the crystal structure is calculated to be more

than 5 kcal
9
mol � 1 above the lowest energy conformation found, and therefore the

ligand is docked with a trans-amide conformation. The high RMSDs on the diagonal

of table 4.4 can be attributed to the flexibility of the ligands to adapt their conforma-

tion to the binding pocket. When they are not at a local energy minimum on their

conformational energy surface they will not occur in the list of conformations gener-

ated by the conformational search. As a result, the docking algorithm finds a different

binding mode with a large RMSD with respect to the crystal structure [29]. In the

pharmacophore docking algorithm the molecules are forced to match the binding site

using the pharmacophore points. Subsequently the large energies are relaxed during

the molecular mechanics minimization step where the ligands can adapt to the shape

of the binding pocket. The off-diagonal entries in tables 4.4 and 4.5 mimic the pre-

dictive docking of newly designed ligands into the binding pocket of a ligand with

known crystal structure.
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Figure 4.4a: Histograms of the RMSDs obtained by cross-docking 18 NNRTIs into 18
HIV-RT binding pockets using the energy-based docking algorithm.

Figure 4.4a shows the histograms of the RMSD values obtained with the energy-

based docking algorithm. With this algorithm, only 35% of all docking solutions has

a RMSD below 2 Å, and only 38% has an RMSD below 3 Å. In a structure-based

drug design environment this performance is unacceptable, and strategies have to
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be sought to make more reliable predictions of the binding mode of newly designed

ligands. One approach is to construct an enlarged universal binding pocket in which

a number of known ligands can be reliably docked using the energy-based docking

algorithm (our group, unpublished results). Another approach is to dock a ligand into

a number of available binding pockets with known coordinates and to keep as final

solution the docking with the lowest non-bond interaction energy between the ligand

and the corresponding binding site. We mimic this situation by looking at the docking

result of each of the 18 NNRTIs into 17 binding pockets (we exclude the docking of

a ligand in its native pocket) and selecting the docking result with the lowest non-

bond interaction energy. The resulting RMSDs are the highlighted entries in table

4.4. They are below 2 Å for 14 out of the 18 ligands (78%), and below 3 Å for 15 out

of the 18 ligands (83%). Figure 4.4b gives the histogram of RMSD values obtained
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Figure 4.4b: Histograms of the RMSDs obtained by cross-docking 18 NNRTIs into 18
HIV-RT binding pockets using the pharmacophore docking algorithm.

by pharmacophore docking the 18 NNRTIs into the 18 binding pockets. The RMSD

is below 2 Å in 69% of the docking solutions, and below 3 Å in 83% of the docking

solutions. When, for each ligand, we select the docking into the binding pocket (but

not its native binding pocket) for which the interaction energy is lowest, the RMSD is

below 2 Å for 16 out of the 18 ligands (89%), and below 2.5 Å for all ligands.

Figure 4.5 shows the scatter plots of RMSD versus non-bond interaction energy

obtained with respectively the energy-based and pharmacophore docking algorithm.
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Figure 4.5: Scatter-plot of the RMSDs versus the non-bond interaction energy be-
tween the ligands and the NNRTI binding pocket. The results obtained with the
energy-based docking algorithm are depicted on the left-hand side, the pharma-
cophore docking algorithm results on the right-hand side.

From these plots, it can be seen that the lower energy results have better RMSDs.

Thus, the non-bond energy obtained in the docking of a ligand can be used to assess

the reliability of the docking. If a threshold of 30 kcal
9
mol � 1 is applied to the final

ligand-binding pocket interaction, 70 energy-based docking solutions of NNRTIs with

RMSD greater than 2 Å can be rejected. The same threshold results in only three

‘false negatives’, i.e., docking solutions that have high energy but nevertheless lead to

an acceptable RMSD. Applying this threshold to the pharmacophore docking leads to

the rejection of 24 docking solutions with RMSD above 2 Å, and results into four false

negatives. The non-bond ligand-binding pocket interactions we obtain using either

method do not correlate with the activities of the NNRTIs against wild type HIV1-RT

(table 4.1). This is not surprising, given that activity is determined by the binding

free energy, of which the non-bond interaction is only a component. To determine the

binding free energy, correct determination of the ligand-binding pocket geometry is a

first step, and this motivates our search for a robust and reliable docking algorithm.

Docking a ligand into a battery of binding pocket instances is a way of introducing

target flexibility into the docking problem. It accounts for flexibility of both side

chain and backbone atoms. The average RMSD between the 18 binding pockets used

in this study is 1.04 Å for the Cα atoms only, and 1.71 Å for all heavy atoms. The

procedure scales linearly with the number of binding site structures used. In contrast,
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introduction of torsional flexibility of the side chains of the binding pocket leads to

an exponential increase of the search space.

Conformational analysis 3 minutes
Pharmacophore docking 15 seconds
Rigid minimization 2 minutes
Full minimization 15 minutes

Table 4.6: Average timings for docking 1 ligand into 1 binding site using the pharma-
cophore algorithm on an R14000 CPU of an SGI Origin 3000 computer.

The average computing times on a single R14000 CPU of an SGI Origin 3000 com-

puter of the different steps in the pharmacophore docking procedure, as applied to

the set of 18 NNRTIs, are shown in table 4.6. The conformational analysis can be

sped up by using less conservative settings of the genetic algorithm used, at the cost

of some of its reproducibility (unpublished results). Alternatively, the conformational

analysis could be skipped and replaced by a fast three-dimensional coordinate gener-

ator [30]. As many putative ligands will not pass the fast pharmacophore matching

step, the algorithm is suited for the screening of large numbers of compounds, or

as part of the scoring function of a de novo drug design program. A drawback of

the pharmacophore-based docking algorithm is that ligands with a different binding

pattern toward the enzyme will not be recognized. Examples of NNRTIs are α-APA

and nevirapine, which do not form a double hydrogen bond toward the Lys 101A

backbone [16]. Another example is S-1153, which does not donate a hydrogen bond

toward the Lys 101A carbonyl, but instead accepts a hydrogen bond from the Lys

103A amide [31]. However the algorithm can be easily adapted to dock ligands by

mapping a hydrophobic center and two hydrogen bond acceptors into the binding

pocket of S-1153.

4.5 Conclusion

We have mimicked predictive docking of newly designed ligands into the binding site

of a known ligand-protein complex by cross-docking. The obtained RMSDs illustrate

that this is a far more stringent test of a docking algorithm than re-docking of a ligand

into its native binding site. We have explored two approaches to improve the initial

results. The first is to dock the ligand into several available binding site structures and

to select the result with the lowest ligand-protein interaction energy. The observation

that the lower energy solutions have better RMSDs is encouraging and indicates that

the force field used is appropriate for the study of protein-small molecule interactions.
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We have also described a pharmacophore-based docking algorithm and shown that

explicit use of pharmacophore information greatly improves the docking results.

�
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Chapter 5

Multiple binding modes

Abstract

There are several indications that a given compound or a set of related compounds

can bind in different modes to a specific binding site of a protein. This is especially

evident from X-ray crystallographic structures of ligand-protein complexes. The avail-

ability of multiple binding modes of a ligand in a binding site may present an advan-

tage in drug design when simultaneously optimizing several criteria. In the case of

the design of anti-HIV compounds we observed that the more active compounds that

are also resilient against mutation of the non-nucleoside binding site of HIV-1 reverse

transcriptase make use of more binding modes than the less active and resilient com-

pounds.

5.1 Introduction

MULTIPLE BINDING MODES of ligands to proteins have a dual nature. First, flexible

ligands with rotatable fragments may adapt their conformation to a given binding

site, at a relatively low cost in energy. Second, both the positions of the backbone and

amino acid side chains of proteins can be induced to change their orientation and

position in response to ligand binding; both phenomena may appear simultaneously

because neither the ligand nor the protein is rigid. The metaphor of a flexible hand

This chapter has been published as: P.J. Lewi, M.R. de Jonge, F.F.D. Daeyaert, L.M.H. Koymans, H.M.
Vinkers, J. Heeres, P.A.J. Janssen, E. Arnold, K. Das, A.D. Clark Jr., S.H. Hughes, P.L. Boyer, M.-P. de Béthune,
R. Pauwels, K. Andries, M. Kukla, D. Ludovici, B. de Corte, R. Kavash, and C. Ho, On the detection of
multiple-binding modes of ligands to proteins, from biological, structural, and modelling data. J. Comp.-
Aid. Mol. Des. 17 (2003) 129.
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fitting into a flexible glove (or, alternatively, a ‘handshake’) is more applicable here

than the rigid lock and key paradigm of Emil Fischer [1]. The dual aspect of multi-

ple binding modes is reflected in many computational protocols for structure-based

drug design. For example, some 10 to 20 representative low-energy conformational

structures of the ligand may be defined at the start of the computation, each of which

deviates from the minimal energy conformation by a relatively small amount (e.g. no

more than 5 kcal
9
mol � 1). Only those structures are retained that can be docked into

the rigid binding site without significant steric clashes with the binding site. For each

docked conformation the ligand and adjacent amino acid side chains and backbone

are relaxed and the overall energy of the complex is minimized. The final result can

be a weighted average binding energy over the several conformers that have been

docked and optimized. The average may extend over several different binding con-

figurations of the ligand and the protein, depending upon the degree of flexibility that

is allowed. A shortcoming of this approach is that it does not permit relatively large

displacements of the backbone and the side chains of the binding site, which can be

induced by the ligand.

5.2 Manifestations of multiple binding

Ligands that have multiple binding modes have been reported [2–6]. Overall, the

reports fall into two main categories. In the first one, the same ligand binds in dis-

tinct orientations or conformations in the binding site. This has been reported most

frequently in separate co-crystallizations of protein and ligand. For example, in one

structure the ligand may be in the forward orientation in the binding site, while in

another structure the same ligand will bind in the opposite orientation. There are

instances, however, where the two binding modes appear together in the same co-

crystal [6]. In the second (and more frequent) category, chemically related com-

pounds bind in different orientations. For example, one group of analogs may crystal-

lize in the forward orientation, while the others are oriented backward. This second

category may be a particular instance of the first, in which the different ligand-protein

orientations and conformations co-exist in solution, but of which only one crystallizes.

It is more likely, however, that apparently small changes in the chemical structure of a

ligand, such as the addition of a methyl substituent, can induce considerable changes

in the binding, thus offering additional binding modes to the ligand.
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β12 β13

β14

Figure 5.1: X-ray crystal structures of HIV-1 reverse transcriptase complexed with the
prototype DAPY compound TMC120-R147681 (dapivirine), obtained by E. Arnold
and co-workers.
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5.3 Multiple binding modes and drug design

The concept of multiple binding modes may be of importance in drug design. It offers

opportunities for optimizing secondary properties such as bio-availability, onset and

duration of action, metabolic stability, etc. A case in point is the design of synthetic

neuraminidase inhibitors, which are now available as anti-influenza drugs [7]. Be-

cause the binding site is highly polar, the prototype drug zanamivir is also highly polar

and is rapidly excreted by the kidney. This requires a special formulation of the drug

for powder inhalation. Addition of a lipophilic function to the original compound led

to the highly potent and more bio-available drug oseltamavir; the lipophilic portion

induced a change at the binding site, which provided for non-polar interactions. A

growing concern in the design of drugs for infectious diseases is the emergence of

drug resistance. In the case of tuberculosis, resistance to multiple drugs is developing

rapidly, most probably as a result of incomplete and/or inadequate treatment with

existing drugs in countries where the resources for proper treatment are lacking. In

the case of HIV, resistant strains of the virus may already become detectable after a

few weeks of treatment with present-day combination therapy. It seems therefore

important to design drugs that are not only highly potent against the prevailing or

wild type virus, but that also retain their effectiveness against the common resistance

mutations. Here we describe a case where multiple binding modes has been impor-

tant for the design of potent and resilient drugs, i.e. compounds that are highly active

against the wild type and several known drug-resistant strains.

5.4 Design of anti-HIV compounds

For the past 15 years the Janssen laboratories, in collaboration with other institutions,

have engaged in the search for anti-HIV compounds. TIBO, the first non-nucleoside

inhibitor of HIV-1 reverse transcriptase (RT), was discovered in 1987 by screening

the Janssen compound library in collaboration with the Rega Institute in Leuven [8].

In 1992, Steitz and coworkers published a structure of RT co-crystallized with nevi-

rapine in the non-nucleoside binding site [9]. Arnold and collaborators reported the

structure of RT complexed with TIBO in 1995 [10, 11]. The non-nucleoside binding

site of RT is highly flexible and adaptive. In the absence of a ligand, the site forms a

compact lipophilic structure, which opens to accommodate a suitable compound [12].

This opening involves a displacement of strands 12–13–14 causing repositioning of

tryptophan 229 (W229), an essential binding site residue, and the reorientation of the

side chains of tyrosines 181 and 188 (Y181 and Y188). This distortion of RT blocks

polymerase activity. Important binding determinants for effective NNRTIs include the
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formation of hydrogen bonds with the peptide backbone atoms of lysine 101 (K101)

and lipophilic interactions with the aromatic side chains of Y181, Y188, and W229;

a bound NNRTI creates a steric barrier that prevents movement of the indole ring

of W229 (and consequently strands 12–13–14) back to its location in active HIV-1

RT (figure 5.1). In the search for better inhibitors, over 4000 compounds have been

synthesized at Janssen during this 15-year period. All of these have been tested for

activity against the wild type virus and the more promising of these have been as-

sayed against a panel of frequently observed mutant strains (including L100I, K103N,

Y181C, Y188C). During this period several crystal structures of RT complexed with

various non-nucleoside inhibitors have been produced of which some 25 are publicly

accessible. In addition, Arnold and co-workers have produced a series of RT struc-

tures co-crystallized with Janssen compounds, which are not yet submitted to the

public library.

DATA
R106168

DAPY
R147681, TMC120, dapivirine

N N

N NH

Cl Cl

N

NH2

N

N NHHN

N

Figure 5.2: Prototype anti-HIV compounds of the classes of di-aryl triazine analogs
(DATA) and di-anilino pyrimidine analogs (DAPY).

As a result, we have gathered an important collection of biological, chemical

and structural data about this particular protein-ligand interaction. In 1994 Janssen

chemists discovered serendipitously the class of di-aryl triazine analogs (DATA) with

improved anti-HIV activity when compared to the original TIBO analogs. Subse-

quently, in 1996 development of the class of di-anilino pyrimidine analogs (DAPY)

has been the result of collaboration between medicinal chemistry, crystallography and

structural modeling departments (figure 5.2) [13–15]. The DAPY class of compounds

yielded anti-HIV compounds that are more effective against the wild type virus and

the common drug-resistant mutants than could be obtained within the DATA class.

Presently, three members of the DAPY class of compounds are in clinical investiga-

tion.
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5.5 Biological, structural, and modeling data

We identified 140 active DATA and 167 active DAPY compounds that could be docked

and complex-minimized with 10 to 15 different RT structures. This involved 174

interaction energies with about 90 amino acid residues of the binding site of each

complex. The interactions are differentiated according to side chain and backbone

of the amino acids, Van der Waals or Coulomb potentials and hydrogen binding. We

also obtained virological data for each of these 307 compounds in the form of 50

percent effective concentrations (EC50) for inhibiting the wild type virus and the four

mutant strains mentioned above. (For reasons of analysis, virological activities are

expressed as negative logarithms of EC50 or pEC50). This yielded a table, called EN-

ERGIES, of 307 anti-HIV compounds described by 174 interactions, together with a

corresponding table, called ACTIVITIES, of the same 307 compounds against the five

viral strains.
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Figure 5.3: Prediction Error Sum of Squares (PRESS) obtained by means of cross-
validated PLS regression as a function of the number of components extracted. PLS
regression has been applied to a table of ENERGIES describing anti-HIV compounds in
terms of their interaction with the non-nucleoside binding site of HIV1-reverse tran-
scriptase and a corresponding table of ACTIVITIES describing the same compounds
in terms of their virological activities against a panel of wild type and mutant strains.
In the case of 140 DATA compounds we find the same 2 binding components for both
low and high activity compounds. In the case of 167 DAPY compounds we detect
3 additional binding components in the high activity compounds in excess of the 2
modes in the low activity compounds.
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5.6 Detection of multiple binding modes

We wanted to ascertain whether multiple binding is important for obtaining high po-

tency of the compounds against both the wild type and mutant viruses. First, we

selected the 140 DATA compounds and divided them into two equal parts, one with

average virological activity against the 5 strains at or above the median, and the other

with average activity below the median. We applied Partial Least Squares regression

(PLS) with cross-validation (using the leave-one-out method) to the selected ENER-

GIES and ACTIVITIES [16]. In both cases (above and below median activity, respec-

tively) we obtained two significant components, which appeared to be similar with

respect to their associated interactions. This suggested, for the DATA compounds,

that multiple binding modes are not related to higher or lower activity. When we

applied the same analysis to the 167 more potent and resilient DAPY compounds, we

obtained 2 significant binding modes for the less active and resilient half of the data

set and 5 for the other half at or above the median activity (figure 5.3). The 2 modes

in the first group are also represented in the 5 modes for the second set. We conclude

from this that, at least for the DAPY family, the more active and resilient compounds

may take advantage of three additional binding modes, when compared to the less

active and less resilient representatives in the DAPY family.

5.7 Conclusion

We have analyzed data suggesting that multiple binding of ligands to a protein may

be useful in the design of compounds that have to satisfy multiple design criteria,

being active against a panel of wild type and mutant targets, for example the non-

nucleoside drug binding pocket of wild type and mutant HIV-1 RT. Multiple binding,

when it occurs, may explain why non-nucleoside inhibitors of reverse transcriptase

that are highly potent and resilient to mutation are sometimes difficult to crystallize

in complex with the target protein. If they crystallize at all, they may also produce

only low-resolution X-ray diffraction patterns that do not allow accurate structure de-

termination. A statistical approach, using Partial Least Squares regression and cross-

validation can be used for the detection of the number of significant binding modes

from virological, structural and modeling data.

�
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Chapter 6

HIV integrase inhibition

Abstract

A continuous demand exists for novel bio-active molecules. When a lead structure

has been discovered and looks promising for further development, series of analogs

will be made. Normally, the synthesis of many compounds is required to improve on

the activity, or to keep good activity while optimizing other properties of relevance. A

computational model that accurately predicts the activity of derivatives before their

synthesis is beneficial to the speed and cost of lead optimization. It can be advan-

tageous when such a model does not require geometrical information on the target

protein structure.

To this end, a conformational analysis was performed on 201 ketoamide ester

derivatives that inhibit HIV integrase. The derivatives were aligned to the lowest

energy conformer of the most potent inhibitor with the SEAL method. Five CoMSIA

fields were computed for each compound taking into account steric, polarizability,

charge, hydrogen bond acceptor, and hydrogen bond donor properties. A model for

integrase-inhibitor interaction was derived by PLS regression. The predictivity of the

model was tested by scrambling the data, leave-n-out experiments and applying the

model to a ketoamide acid series of integrase inhibitors. In order to elucidate the

binding mode of the inhibitors, the model was mapped on a crystal structure of the

integrase enzyme.

The resulting CoMSIA model derived from the 201 ketoamide ester derivatives has

an R2 of 0.75. The fields of the molecular properties required for strong inhibition

This chapter will be published as: F.F.D. Daeyaert, H.M. Vinkers, M.R. de Jonge, J. Heeres, L.M.H.
Koymans, P.J. Lewi, and P.A.J. Janssen, Ligand-based computation of HIV-1 integrase inhibition strength
within a series of β-ketoamide derivatives. Int. El. J. Mol. Des. 3 (2004)
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can be qualitatively understood. Scrambling the data prohibited the derivation of

a predictive model. The models derived from 100 derivatives when applied to the

remaining 101 compounds, resulted in a prediction with an absolute deviation of

0.28 log unit/compound. The accuracy of prediction when the model was applied

to 74 ketoamide acids was 0.42 log unit/compound. Mapping the model onto the

integrase enzyme did not lead to an obvious binding mode.

Concluding, the predictivity of our model allows for guiding the synthesis of novel

analogs. Our approach holds its predictive value when applied to a different series of

inhibitors. The geometry of integrase-inhibitor binding is not very well understood

at the present time, which emphasizes the advantages of an approach that does not

require this knowledge for the design of novel active compounds.

6.1 Introduction

INTEGRASE IS AN ESSENTIAL ENZYME in the life cycle of HIV, the causative agent

of AIDS. It is regarded as a promising target for anti-HIV compounds [1–3], but

structure-based drug design efforts on HIV integrase have been hampered by lack

of structural information on the exact binding mode of the available inhibitors. One

structure of an inhibitor co-crystallized with the core domain of HIV integrase has

been published [4]. We, and others [5,6], however, believe that the observed binding

position of the inhibitor in this crystal structure is a result of crystal packing effects,

and does not reflect the binding mode in an inhibited biological system. To enable re-

liable computation of inhibition strength anyhow, we have applied a QSAR approach

that does not require structural information about the target enzyme: comparative

molecular similarity indices analysis (CoMSIA) [7]. In this approach, similarity in-

dices are calculated on a regular grid encompassing the space occupied by a set of

aligned inhibitors. These similarity indices are the descriptors that are correlated to

the observed activities. Due to the large number of similarity indices in compari-

son to the number of molecules, partial least squares regression is used to find the

correlation between the similarity indices and the observed activities.

The first, and very critical, step in CoMSIA is the alignment of the molecules. We

have used an approach based on the SEAL method, first described by Kearsley and

Smith [8]. Aligning two molecules with the SEAL method is a computationally hard

problem as it involves an optimization in a high dimensional space formed by the

torsional flexibility of the molecules plus the six rotation and translation degrees of

freedom. We have alleviated this problem by predefining a pharmacophore model for

HIV integrase inhibition from minimal knowledge about the enzyme, to constrain the

search space. It has been demonstrated that the HIV integrase requires the presence
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of a divalent metal ion (Mg2 � or Mn2 � ) to be functional [9]. Crystal structures of

the core domain of HIV integrase with Mg2 � bound at the active site have been pub-

lished [10, 11]. Also, the activities of a number of classes of integrase inhibitors are

dependent on the metal ion concentration. Therefore we hypothesize that the mech-

anism of action of these integrase inhibitors involves sequestration of the divalent

ion. We started from this metal binding hypothesis to construct a simple alignment

protocol, which consist of generating all possible bidentate metal complexes of an

inhibitor, and then use the coordinates of the bound metal and the two coordinating

inhibitor atoms to generate the alignments. An important issue in deriving a QSAR

using a large number of descriptors with respect to the number of activities is the

risk of overfitting the data. We validate our model by 1– attempting to fit the scram-

bled data, 2– applying internal leave-one-out and leave-n-out cross validation, and 3–

predicting the activities of an external data set.

Various other groups have reported QSAR studies on HIV integrase inhibitors,

employing CoMSIA, CoMFA, and other approaches [12–15]. The picture that has

emerged from these studies is that different classes of inhibitors have different mech-

anisms of action [16]. It is therefore difficult to compare these QSAR studies [15].

We have used the CoMSIA method on a series of β-ketoamide integrase inhibitors

whose activities against recombinant HIV integrase have been experimentally deter-

mined. These data have recently been published by Katoh et al [17]. A ligand-based

model that accurately predicts the activities within a series of inhibitors would be

perfectly suited as input to a molecular design program [18] that accounts for the

synthesizability of the generated compounds.

6.2 Derivation of the model

The data set used to develop our model consists of 201 β-ketoamide ester derivatives

with a pIC50 range between 5.05 and 8.39 (figure 6.1). As a first step, the inhibitors

are subjected to a conformational analysis using a genetic algorithm search strategy.

The force field used is a modified version of the MMFF94 force field [19], extended

with a directional hydrogen bond term and parameters for Mg. All conformers within

5 kcal/mol of the lowest energy conformer are retained. Next, for each conformer, all

possible bidentate Mg2 � complexes are generated. This is accomplished by consider-

ing all combinations of possible coordinating atoms, and then rejecting the combina-

tions that give rise to configurations where the distance between Mg and X —when

Mg is placed at the center position between the coordinating atoms X— is too high

or too low. Molecular mechanics energy minimization is applied to the remaining

configurations and only the low energy configurations are retained.
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b-ketoamide esters

201 derivatives

most active analog (1-215)
pIC = 8.3950
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Figure 6.1: Structure of the β-ketoamide ester derivatives.

As the basis for the alignment used in this study, the lowest energy conformation

of the most potent compound was used. Note that this need not to be the biologically

active conformation. The superposition of another molecule (‘source’) on the ‘target’

molecule is carried out by mapping the magnesium and two coordinating atoms of

all conformers of the generated Mg complexes of the source onto the coordinates

of the corresponding atoms of the target. Superposition without using the many

other structural features that the derivatives in this study have in common, allows

for application of the procedure to inhibitors of arbitrary structure, as long as they

have a Mg2 � bidentate coordinating binding mode. The mapping is carried out by

an implementation of Kabsch’s algorithm for the superposition of two 3-dimensional

vectors [20,21]. As the two coordinating atoms are equivalent, this superposition can

be carried out in two ways for each Mg complex. For each superposition, the SEAL [8]

similarity score S given in equation (6.1) with the target molecule is computed and

the configuration with the highest score is retained.

S �
np

∑
p

ns

∑
i

nt

∑
j

wp f p
i f p

j e � αr2
i j (6.1)

In equation (6.1), np is the number of properties taken into consideration, ns and

nt are the number of atoms in respectively the source and target molecule, f p
i is the

value of property p for atom i, wp is a weight factor for property p, ri j is the Euclidean

distance between atom i and atom j, and α is an attenuation factor. We have used
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five properties for both the SEAL alignment and the CoMSIA analysis: the third power

of the atomic radii as a steric property, the atomic polarizability used in the Van

der Waals term of the MMFF94 force field, the atomic partial charge derived from

MMFF94, and the hydrogen bond acceptor and hydrogen bond donor strengths of the

directional hydrogen bond term. The weights wp are chosen such that the orders of

magnitude of the maximal attainable values for the five properties are approximately

equal (1, 5, 30, 5, and 5 respectively for the steric, polarizability, charge, hydrogen

bond acceptor, and hydrogen bond donor properties). The attenuation factor was set

to 0.3.

CoMSIA similarity fields were calculated on a three dimensional grid with a spac-

ing of 1 Å encompassing the aligned molecules. On each grid point, five similarity

indices Sp
g were calculated using equation (6.2).

Sp
g �

ns

∑
i

wp f p
i e � αr2

ig (6.2)

In equation (6.2), ns is the number of atoms in the source molecule, f p
i is the value

of property p for atom i, wp is the corresponding weight factor, rig is the Euclidean

distance between atom i and grid point g, and α is an attenuation factor. The prop-

erties and their weight factors are identical to the one used for the SEAL alignment.

The attenuation factor was set to 1.0, and only properties having a standard deviation

over the 201 molecules on a grid point higher than a threshold value were retained.

The IC50 concentrations as reported [17] were converted to pIC50 values. To re-

late the activity of the molecules with the five property fields, partial least squares

regression [22] was used. The predictivity of the derived model was assessed by

leave-one-out and leave-n-out cross validation. For the different applications, both

the explanatory R2 and the correlation coefficient r2 between observed and predicted

activities are given. The explanatory R2 is computed as

R2 � 1 � ∑n
i
�
yi � ŷi � 2

∑n
i

�
yi � ȳ � 2 (6.3)

In equation (6.3), n is the number of data points, yi is the observed value for

data point i, ŷi is the predicted value for data point i, and ȳ denotes the mean of the

observed values

To examine the model’s behavior on a different series of integrase inhibitors we

used 74 β-ketoamide acid derivatives with a pIC50 range between 5.11 and 7.59 (fig-

ure 6.2).

All calculations were carried out with in-house developed software using a Silicon

Graphics R14000 CPU.
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b-ketoamide acids

74 derivatives

most active analog (2-44)
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Figure 6.2: Structure of the β-ketoamide acid derivatives.

6.3 Resultant CoMSIA model

A conformational search on the 201 β-ketoamide ester derivatives from the data set

was carried out. The number of conformations generated varied from 16 to 366, with

an average of 82 and a median of 70. The normalized SEAL scores of the alignment

varied from 0.60 to 0.99, with an average and median of 0.81. The contributions of

the five descriptors to the SEAL scores are listed in table 6.1.

Property Contribution
steric 0.656
polarizability 0.317
charge 0.010
hydrogen bond acceptor 0.012
hydrogen bond donor 0.005

Table 6.1: Normalized contributions of the five properties to the SEAL alignment.

As can be seen from table 6.1, the alignment is based almost exclusively on the

steric and polarizability fields. This is attributable to the fact that the molecules con-

sidered are mostly apolar, with the exception of the metal chelating carbonyl groups.

Now that the molecules are aligned, a grid is defined encompassing the aligned set

of molecules. This grid measures 31x27x25 Å, containing as many points. On each

point the five properties are evaluated. The number of grid point/property combina-
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tions was reduced by applying a threshold onto the variance over the 201 inhibitors

of each combination.

CoMSIA PLS fit β-ketoamide esters
n = 201, R2 = 0.75, r2 = 0.76, abs. dev. = 0.27

5.0 6.0 7.0 8.0
Computed pIC50
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Figure 6.3: Observed against computed

pIC50 for the 201 β-ketoamide esters.

In a series of test calculations, sev-

eral values of this threshold (0.1, 0.01,

and 0.001) were combined with sev-

eral values of the attenuation factor

α (0.1, 0.3, 1.0, and 2.0). Opti-

mal values for fitted and predicted R2

were obtained with a threshold value

of 0.01 and an attenuation factor of

1.0. With this combination, 3968 grid

point/property combinations were re-

tained, which amounts to 3.8% of the

total (1188 steric, 1298 polarizability,

1113 charge, 220 hydrogen bond ac-

ceptor, and 149 hydrogen bond donor

points). Lower values of the threshold

did not deteriorate the results, but only

led to an increase of data points. The

predictivity of the PLS models derived was assessed using leave-one-out and leave-n-

out cross validation. In the leave-n-out validation, half of the inhibitors was randomly

selected as the training set. The other half of the inhibitors was then predicted with

the model derived for this training set. The explanatory R2 and predictive Q2 values

were calculated for one to five PLS components. This procedure was repeated 50

times and the explanatory R2 and predictive Q2 values were averaged. The results are

summarized in table 6.2.

The best Q2 was obtained with two PLS components. In figure 6.3 the observed

pIC50 is plotted against the computed pIC50 for all 201 β-ketoamide esters. The R2 for

this fit is 0.75, the average absolute error is 0.27 log unit/compound and the error

is less than one log unit for 98% of the inhibitors. When the activities of the 201 in-

hibitors are scrambled, the same analysis results in an average Q2 of � 0.04, indicating

that the observed fits and predictions are not the result of chance correlations.

Table 6.3 shows the normalized contribution of each of the five properties to the

total predicted activities in this two component model. These contributions are cal-

culated as sums over the 201 inhibitors and the five properties. On all grid points,

the absolute value of the CoMSIA score for each property is multiplied with the corre-

sponding PLS coefficient. Note that the contributions are different from the resulting

ones in the alignment procedure.
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Figure 6.4a: CoMSIA fields around the most active analog. The size of a cube is
proportional to the magnitude of the coefficient on the grid point in the model.
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Figure 6.4b: CoMSIA fields around the least active analog. The size of a cube is
proportional to the magnitude of the coefficient on the grid point in the model.
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Components R2 Q2 (loo) R2 (lno) Q2 (lno)
1 0.67 0.64 0.68 0.62
2 0.75 0.68 0.78 0.65
3 0.79 0.62 0.81 0.64
4 0.81 0.62 0.85 0.60
5 0.84 0.64 0.87 0.58

Table 6.2: Results of the internal validation of the CoMSIA/PLS models for the 201
β-ketoamide esters. The figures for leave-n-out are averages over 50 trials.

Figures 6.4a and 6.4b depict the magnitude of the PLS coefficients for the different

properties. The steric and polarizability properties contribute to a high degree to the

inhibition strength of a derivative. This can be seen from the number of contributions

for these properties. The individual contributions of the charge are most pronounced.

This implies that placement of a charged atom strongly influences the computed ac-

tivity. The orientation of the least active analog (figure 6.4b, compound 1-5) in the

CoMSIA fields shows the absence of the right charge, acceptor, and donor properties,

and shows the phenyl moiety of the phenylbutane substituent to be in the region of

unfavorable steric and polarizability properties.

Property Contribution
steric 0.15
polarizability 0.36
charge 0.44
hydrogen bond acceptor 0.03
hydrogen bond donor 0.02

Table 6.3: Normalized contributions of the five properties to the activities of the 201
β-ketoamide esters.

6.4 Binding strength predictions

Another way of illustrating the predictive power of the method is shown in figure 6.5,

which gives predicted versus observed activities for 4 leave-n-out cross validation ex-

periments. The prediction is remarkably robust for the choice of internal and external

compounds. The high predictivity attained for the external sets demonstrates the

merits of the CoMSIA model. We presume that the model benefits from the fact that

all experimentally observed inhibition strengths are determined in one assay and are

derived from an enzyme instead of a whole cell assay.
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fit (n = 100, R2 = 0.80, r2 = 0.82, abs. dev. = 0.25)
pred (n = 101, R2 = 0.73, r2 = 0.74, abs. dev. = 0.27)
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fit (n = 100, R2 = 0.78, r2 = 0.79, abs. dev. = 0.26)
pred (n = 101, R2 = 0.72, r2 = 0.74, abs. dev. = 0.30)
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fit (n = 100, R2 = 0.78, r2 = 0.80, abs. dev. = 0.27)
pred (n = 101, R2 = 0.72, r2 = 0.73, abs. dev. = 0.28)
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fit (n = 100, R2 = 0.75, r2 = 0.77, abs. dev. = 0.27)
pred (n = 101, R2 = 0.69, r2 = 0.71, abs. dev. = 0.29)
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Figure 6.5: Observed against computed pIC50 for a fit of 100 β-ketoamide esters
followed by prediction of the remaining 101 derivatives. The 101 analogs that are to
be predicted were randomly chosen in a number of trials, the results of four different
trials are depicted.

We expect that the pharmacophore model we used for the alignment of the dike-

toamide inhibitors can be applied successfully to various classes of diketoaryl in-

hibitors, as they derive their inhibition from the same mechanism of action [23].

To test this hypothesis, we applied the ester-derived model to 74 acid analogs [17].
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CoMSIA prediction β-ketoamide acids
n = 74, R2 = 0.23, r2 = 0.52, abs. dev. = 0.42
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Figure 6.6: Observed against computed

pIC50 for the prediction of the β-ketoamide

acids.

The results are shown in figure

6.6. An absolute deviation of 0.42 log

unit/compound was obtained, which is

a fair result. If only the ten highest pre-

dicted compounds were synthesized,

the two most potent analogs would

have been found. The difference be-

tween explanatory R2 and squared cor-

relation coefficient for the data reported

in figure 6.6 is much higher than in fig-

ures 6.3 and 6.5. This suggests there

may be a systematic difference between

the two series which is not accounted

for in the model. Other properties that

do affect the potency of the compounds

are not computed, but within one series

these effects can be assumed as roughly

being constant.

6.5 Inhibitor binding mode

Given the two different binding hypotheses for integrase inhibitor binding, neither of

which we used in the derivation of the CoMSIA model, it is interesting to see with

which of these two our model matches best. To this end, we correlate the results of

our model with the two different binding hypotheses. For the first binding mode, we

construed a protein structure of the binding site complexed with Mg2 � . The structure

was built from the 1BIS/1BIU/1BIZ [10] integrase crystal structures. The magnesium

ion is coordinated by Asp 64 and Asp 116, and by two water molecules. We have

positioned the most active β-ketoamide ester (figure 6.1, compound 1-215) into the

binding site of this structure to complete the octahedral coordination of the mag-

nesium ion. First, we completed the octahedral coordination of the magnesium ion

by adding two water molecules and carrying out a molecular mechanics minimiza-

tion. Subsequently, we used the position of the two optimized water molecules and

the magnesium ion to orient the ketoamide ester pharmacophore and thus to place

the model. For the second binding mode, we used the crystal structure 1QS4 [4]

—where an inhibitor is already bound— to place the model, by superimposing the

hydroxypropenone moiety of the inhibitor on that of the crystal structure. Figure 6.7

depicts the orientation of the CoMSIA fields with respect to the two systems.
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Figure 6.7: The position of the CoMSIA model with respect to the integrase enzyme in
two binding mode hypotheses. The enzyme is shown as outline, with the side chains
of the binding site [6] in stick rendering. The template for the upper structure is
1BIS/1BIU/1BIZ [10], the template for the lower structure is 1QS4 [4].
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Neither the upper nor the lower complex looks completely plausible. In both

systems, a number of favorable property points clash with side chains of the protein.

However, this could be caused by the way the model was placed in the binding site. A

more rigorous approach to place the model would involve a docking of the inhibitor

and possibly a minimization step. In the upper structure, the favorable fields around

the cyclopentane substituent make little interaction with the protein. Because the

integrase crystal structure consists of the core only, protein atoms might be present

here in the functional enzyme. Also, the inhibitor conformation used in this study may

differ from the biologically active one. For instance, it might be a conformer that has

its cyclopentane ring turned inward. However, if the conformation used is attainable

in all inhibitors, this will not affect the CoMSIA results. As an extreme example:

should we have used the mirror image of the conformer, we would have arrived at

exactly the same results. In the lower structure, the hydroxypropenone moiety of the

inhibitor does not coordinate the magnesium ion, but it interacts with the Glu 152 and

Lys 156 residues. The favorable hydrogen bond donor and acceptor fields around the

acid moiety of the benzoic acid substituent are in the same location as the magnesium

ion, whereas the inhibitor in the original crystal structure fits without disturbing the

ion. Summarizing, from our results it is difficult to decide which of the two binding

hypotheses is more likely, or if any of the two is correct at all. It is remarkable that

despite this uncertainty, the CoMSIA approach we have used is capable of accurately

predicting the activity of the inhibitors.

6.6 Conclusion

The predictivity of our model allows for guiding the synthesis of novel analogs. Our

approach holds its predictive value when applied to a different series. The geometry

of integrase-inhibitor binding is not very well understood at the present time, which

emphasizes the advantages of an approach that does not require this knowledge for

the design of novel active compounds.
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Chapter 7

HIV protease inhibition

Abstract

We have developed a computational approach in which an inhibitor’s strength is de-

termined from its interaction energy with a limited set of amino acid residues of the

inhibited protein. We applied this method to HIV protease. The method uses a con-

sensus structure built from X-ray crystallographic data. All inhibitors are docked into

the consensus structure. Given that not every ligand-protein interaction causes inhi-

bition, we implemented a genetic algorithm to determine the relevant set of residues.

The algorithm optimizes the q2 between the sum of interaction energies and the ob-

served inhibition constants. The best possible predictive model resulting has a q2 of

0.63. External validation by examining the predictivity for compounds not used in

derivation of the model lead to a prediction accuracy between 0.9 and 1.5 log unit.

Out of 198 residues in the whole protein, the best internally predictive model defines

a subset of 20 residues and the best externally predictive model one of 9 residues.

These residues are distributed over the subsites of the enzyme. This approach pro-

vides insight in which interactions are important for inhibiting HIV protease and it

allows for quantitative prediction of inhibitor strength.

7.1 Introduction

IT IS ESTIMATED that around 40 million people worldwide [1] are infected with the

human immunodeficiency virus (HIV), the causative agent for the acquired immuno-

This chapter has been published as: H.M. Vinkers, M.R. de Jonge, F.F.D. Daeyaert, J. Heeres, L.M.H.
Koymans, J.H. van Lenthe, P.J. Lewi, H. Timmerman, and P.A.J. Janssen, Inhibition and substrate recogni-
tion — a computational approach applied to HIV protease. J. Comp.-Aid. Mol. Des. 17 (2003) 567.
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deficiency syndrome (AIDS). A crucial enzyme of this virus is a protease; this enzyme

cleaves the polyprotein products of the gag and gag-pol viral genes [2] into proteins.

The proteolytic activity of this enzyme is essential for the functioning of the virus: its

inhibition blocks viral maturation and infectivity, providing an opportunity for antivi-

ral therapy. Currently, six protease-inhibiting drugs [3] are approved for treatment of

HIV infection.

HIV protease is a comprehensively studied drug target. It belongs to a family of

enzymes known as aspartic proteases. In this type of enzyme the hydrolyzation of a

peptide bond is catalyzed by two aspartic acid residues in a hydrophobic active site.

HIV protease is quite specific in its substrate selection compared to other members of

the protease family: it only breaks bonds between a limited number of pairs of amino

acids. The enzyme consists of two identical peptide chains, each 99 amino acids long,

forming a C2-symmetrical homo-dimer. The homo-dimer has a cylindrical active site

which is 23 Å long and 6-8 Å in diameter [2]. By binding to this site an inhibitor

competes with the binding of the normal substrate.

Since HIV protease is a viable drug target and crystallizes relatively easy, there

have been extensive structure-based drug design efforts in this area. In more than

one case this has been done in an iterative fashion, in which a crystal structure of

an enzyme-inhibitor complex was used to design an analog of the inhibitor, whose

crystal structure in turn was resolved to guide the synthesis of new analogs. Partly

as a result of this process, a wealth of structural information about HIV protease is

available.

Methods to compute inhibitor strengths have also been extensively applied to HIV

protease. A range of different approaches have been used; for instance FEP [4–6],

LIEA [7, 8] and empirical methods such as QSAR [9], CoMFA [10, 11], ‘master equa-

tion’ approaches [12–14], total energy correlation [15], ‘knowledge-based’ methods

[16–19] and methods like CScore [20] and X-Score [21] which combine different ap-

proaches. The empirical methods, often called scoring functions, are directly derived

from observed inhibition strengths by correlating these strengths to components that

are thought to be important for the binding process. Empirical methods have several

appealing features [21], being both computationally inexpensive and conceptually

tractable. Among the more common factors that are used to derive a scoring func-

tion are the Van der Waals interaction energy, the Coulomb interaction energy, the

hydrogen bond interaction energy, the desolvation energy, the hydrophobic energy

change, the change in conformational energy upon binding and approximations for

the change in entropy such as the number of flexible bonds in the ligand.

The above mentioned methods are based on the total interaction of a ligand with

the protein. However, interactions with specific locations on the protein are needed

in order to establish a proper inhibiting effect. In general, a molecule binding to
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the exterior of the protease enzyme will not cause inhibition: inhibitory action is

localized. Todd et al. have found that the binding energy is not distributed uniformly

throughout the binding site [22]. The interaction occurs through specific residues

within protease and many other enzymes [23–25]. Kulkarni et al. [26] also found

that interactions with only some of the residues contribute to the difference in activity.

The majority of scoring functions is derived from many different protein systems

in order to be generally applicable. Deriving a focused scoring function —specifically

targeted to deal with one protein— obviously creates the need to derive a new one

for every other protein. Another drawback is the need for ligands with known affinity

enabling the derivation. Nevertheless, we expect that the better accuracy of a focused

scoring function compensates the drawbacks. We have recently used a similar type

of scoring function for a different target (non-competitive inhibition of HIV reverse

transcriptase) in a de novo drug design environment [27] with encouraging results,

which shows that the method described in this article is valid for more than one

system.

The computational approach in the present study derives an inhibitor’s strength

from its interaction energies with the relevant amino acids. Our method yields both

this relevant set of residues, and the strength of inhibition for a number of inhibitors.

To this end, the interaction energies of 53 HIV protease inhibitors with each of the

residues of the enzyme are computed from the complex of the inhibitor and a con-

sensus structure. The inhibitors are docked into a consensus structure to ensure that

the interaction energies used to derive a model are comparable. Using one common

pocket for all inhibitors also allows for application of the model to compounds of

which the crystal structure has not been resolved. A best internally predictive (BIP)

and best externally predictive (BEP) model are determined from the interaction en-

ergy terms employing a genetic algorithm. The residues in these models, comprising

a limited set out of the 198 residues in total, are important for ligand recognition and

inhibition of the viral enzyme.

7.2 Construction of a consensus structure

We constructed a consensus structure from 98 X-ray crystal structures of HIV-1 pro-

teases from the Protein Data Bank [28]. The crystal structures were stripped of in-

hibitor, water, solvent, and hydrogen atoms. The structures were all superimposed

on 1DIF [29] —the best resolution wild type structure— by means of the quaternion

method [30] implemented by Heisterberg [31] as obtained from the Computational

Chemistry List [32]. Only identical residues were considered. For instance 1GNM

[33] has a V82D mutation, resulting in the exclusion of that particular residue from
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the superposition. Since protease is a symmetrical homo-dimer, the two symmetry-

related superpositions were carried out for each crystal structure and the one with

the lowest root mean square deviation (RMSD) was retained. Subsequently, the av-

erage coordinates of the superimposed atoms were determined. The identifiers of

the crystal structures used and their RMSD from the consensus structure are given in

table 7.1. Hydrogens were added to the resulting average structure. The B25 aspartic

acid was deprotonated [2]. The position of the hydrogens was determined by sub-

jecting the final structure to a local geometry optimization, keeping the other atoms

fixed.

PDB ID RMSD PDB ID RMSD PDB ID RMSD PDB ID RMSD
1A30 0.92 1A8G 1.02 1A8K 0.95 1A94 0.89
1A9M 0.90 1AAQ 1.06 1AID 1.52 1AJV 0.91
1AJX 0.85 1AXA 0.96 1B6J 0.65 1B6K 0.57
1B6L 0.61 1B6M 0.60 1B6N 0.65 1B6O 0.60
1B6P 0.59 1BDL 1.21 1BDQ 1.13 1BDR 1.08
1BV7 1.11 1BV9 1.12 1BWA 1.22 1BWB 1.00
1C6X 1.07 1C6Y 1.15 1C6Z 1.08 1C70 0.96
1CPI 0.68 1D4K 0.64 1D4L 0.67 1D4S 0.93
1D4Y 0.83 1DAZ 0.85 1DIF 0.47 1DMP 1.18
1DW6 0.94 1EBK 1.49 1FQX 0.90 1GNM 0.97
1GNN 0.97 1GNO 0.93 1HBV 1.05 1HIH 0.84
1HIV 0.83 1HOS 1.07 1HPO 0.85 1HPS 1.08
1HPV 1.03 1HPX 0.89 1HSG 0.81 1HTE 0.98
1HTF 0.95 1HTG 0.83 1HVC 0.77 1HVH 1.25
1HVI 0.86 1HVJ 0.93 1HVK 0.88 1HVL 0.92
1HVR 1.13 1HVS 0.90 1HWR 1.16 1HXB 0.93
1HXW 0.88 1MER 1.14 1MES 1.17 1MET 1.14
1MEU 1.14 1MTR 0.66 1ODW 0.82 1ODX 1.02
1ODY 0.94 1OHR 0.62 1PRO 0.91 1QBR 1.06
1QBS 1.16 1QBT 1.17 1QBU 1.21 1SBG 0.98
1TCX 0.82 1VIJ 1.10 1VIK 0.89 2AID 0.83
2BPV 0.88 2BPW 0.89 2BPX 0.84 2BPY 0.86
2BPZ 0.87 2UPJ 0.86 3AID 1.00 4HVP 1.01
4PHV 0.75 5HVP 0.89 7HVP 0.93 7UPJ 0.94
8HVP 0.92 9HVP 1.08

Table 7.1: Identifiers of the protease crystals used for construction of a consensus
structure and their root mean square deviation from the resulting consensus structure.
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7.3 Docking of the inhibitors

A total of 53 protease inhibitors for which Ki values are available was removed from

their crystal structure and rigidly docked into the consensus structure. This diverse

collection of inhibitors consists of peptide analogs as well as organic ligands such as

cyclic ureas. The structures of the inhibitors are depicted in figure 7.1. A structural
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Figure 7.1: Structures of the protease inhibitors used (see table 7.2). The 2D coordi-
nates were generated using the cactus on-line SMILES translator [34].
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Figure 7.1 (continued)

water molecule, which is in some cases involved in binding to the Ile50 residues, was

included in the inhibitor structure. The docking algorithm consist of a combined



HIV protease inhibition 105

grid-based Monte Carlo and simulated annealing method. It computes the docking

energy as the sum of the Van der Waals, Coulomb and hydrogen bond interactions

between the ligand and the protein. Docking starts by randomly placing the ligand in

a few hundred thousand orientations in a soft grid: a 4-8 potential function is used

in the grid computation. The best 100 initial orientations are optimized by means

of simulated annealing on a less soft grid (6-12 potential) and finally with an atom-

to-atom energy evaluation. Up to this point in the docking, the coordinates of both

protein and ligand are kept rigid. Finally, the protein-ligand complexes obtained are

relaxed by geometry optimization. The quality of the docking was computed as the

root mean square deviation between the positions of the docked and original ligand

atoms, after superimposing the protein atoms of the relaxed consensus structure and

the original crystal structure. The smaller the RMSD, the more closely the docked

orientation matches the crystallographic orientation. The RMSD of the inhibitors

after docking in the consensus structure is given in table 7.2.

7.4 Derivation of the model

An activity model is derived by making a selection of partial interaction energies, i.e.

interactions with specific residues. The prediction of a particular selection of residues

is computed from the sum of its interaction energies and the experimentally observed

inhibition constants using a linear least squares fit. The experimentally determined

inhibition constants are listed in table 7.2. The quality of prediction is computed as

the leave-one-out correlation coefficient (q2). To compute this q2, one inhibitor is left

out, the best r2 model is computed for the remaining n � 1 inhibitors and this model is

used to predict the value for the inhibitor that has been left out. When all compounds

have been left out once, the value of q2 is given by

q2 � 1 � ∑n
i

�
yi � ŷi � 2

∑n
i
�
yi � ȳ � 2 (7.1)

where yi is the observed inhibition constant of the ith inhibitor, ŷi its predicted inhibi-

tion constant not including observation i, and ȳ the mean value for all n inhibitors.

The resulting model has the form

pKi � a1

n

∑
j

w jE j � a0 (7.2)

where pKi is the computed inhibition strength, a1 and a0 are constants determined

from the fit, E j is a contribution to the non-bonded interaction energy, and n is the
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Identifier pKi RMSD Identifier pKi RMSD
LIG 1A30 [35] 4.30 2.12 LIG 1A94 [36] 7.85 0.66
LIG 1A9M [37] 7.70 0.71 LIG 1AJV [38] 7.72 0.70
LIG 1AJX [38] 7.91 0.27 LIG 1C70 [39] 10.30 1.85
LIG 1D4K [40] 9.22 0.48 LIG 1D4L [40] 8.77 0.21
LIG 1D4Y [41] 11.10 1.14 LIG 1DIF [29] 10.66 0.80
LIG 1DMP [42] 9.47 0.47 LIG 1FQX [43] 9.82 1.00
LIG 1HBV [44] 6.37 0.39 LIG 1HEF [45] 9.00 0.59
LIG 1HEG [45] 7.74 1.01 LIG 1HOS [46] 8.55 0.85
LIG 1HPO [47] 9.22 1.71 LIG 1HPS [48] 9.22 0.57
LIG 1HPV [49] 9.22 0.81 LIG 1HSG [50] 9.42 0.43
LIG 1HVH [51] 7.96 1.05 LIG 1HVI [52] 10.08 0.56
LIG 1HVJ [52] 10.46 0.88 LIG 1HVK [52] 10.11 0.36
LIG 1HVL [52] 9.00 0.84 LIG 1HVR [53] 9.51 0.32
LIG 1HWR [54] 8.33 0.55 LIG 1HXB [55] 9.92 0.55
LIG 1HXW [56] 10.82 0.99 LIG 1ODW [57] 7.00 0.90
LIG 1ODY [58] 8.10 0.39 LIG 1OHR [59] 8.70 0.69
LIG 1PRO [60] 11.30 0.53 LIG 1QBR [42] 10.57 0.71
LIG 1QBS [61] 9.47 0.53 LIG 1QBT [42] 10.62 1.16
LIG 1QBU [42] 10.24 0.69 LIG 1SBG [62] 7.74 0.64
LIG 2AID [63] 4.82 1.39 LIG 2BPV [64] 7.67 0.34
LIG 2BPY [64] 7.40 0.79 LIG 2UPJ [65] 7.39 1.86
LIG 3AID [66] 6.86 1.47 LIG 3UPJ [65] 6.25 2.34
LIG 4HVP [67] 6.11 0.83 LIG 4PHV [68] 9.15 0.41
LIG 4UPJ [65] 6.80 0.84 LIG 5HVP [69] 7.70 0.43
LIG 5UPJ [70] 7.12 0.99 LIG 6UPJ [70] 6.32 1.76
LIG 7HVP [71] 9.62 0.36 LIG 7UPJ [47] 8.49 0.69
LIG 9HVP [72] 8.35 0.55

Table 7.2: Experimentally determined pKi values (citation indicates source) of HIV-1
protease inhibitors (expressed as the negative logarithm of the inhibition constant in
nano-molar) and root mean square deviation of the inhibitor atoms after docking in
the consensus structure.

number of protein residues. w j is either zero or one, leaving these sets to be deter-

mined. Determination of the optimal set is related to the subset sum problem [73],

which is known to be NP-complete. Given the dimensions of our search space, an

exhaustive search would take a prohibitive amount of time. Therefore the optimal

set is selected employing a genetic algorithm. In order to reduce computation time,

interaction energies contributing less than 0.1 kcal
9
mol � 1 were excluded.
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7.5 Residue selection algorithm

A genetic algorithm [74] is a simulated evolutionary process: individuals produce re-

lated offspring and survival is subjected to selective pressure according to the fitness

of an individual’s genes. Genetic algorithms have been shown to be efficient opti-

mization strategies [75] in a search space that is prohibitively large for an exhaustive

search. We have implemented a genetic algorithm to search for the set of best cor-

relating residues. The genes of an individual represent the presence or absence of

a particular interaction (vector w in equation (7.2) is the genome of an individual,

and w j one of its genes). The fitness of an individual is its ability to reproduce the

observed pKi values for the set of protease inhibitors, computed as the q2 between the

sum of the interaction energies for which the encoding gene is on and the observed

values.

Figure 7.2 gives an overview of the steps in the algorithm. The acceptance deci-

sion in step 4 was taken by comparing the fitness of the child to the fitness of the par-

ent it was created from. Doing so helps to maintain diversity in the population. If the

child is fitter, it will replace one of the existing population members by roulette-wheel

selection. The probability for each population member to be replaced is inversely

proportional to its fitness. These probabilities are computed as

Pi � ri

∑n
i ri

(7.3)

where Pi is the probability for the ith individual, ri is the rank of the individual as

determined by its fitness (individuals are ranked in descending order where the first

one is the fittest) and n is the population size.
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Figure 7.2: An overview of the steps in the genetic algorithm for feature selection.
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The algorithm’s convergence behavior can vary in two respects: the time it takes

to converge and the actual solution it converges on. Whether or not the best possible

solution has been found cannot be known for sure, we assume that the best solution

observed in multiple trials indeed is the best possible one. The algorithm turned out

to be insensitive toward the parametrization used, except for the way in which the

population is initialized. If only a small fraction of genes is turned on in the starting

population, the algorithm converges faster and more often on the optimal solution.

Apparently, the algorithm performs better when gradually including residues that in-

crease correlation than by finding which residues do not contribute. This gives two

indications about the structure of the search space: the best solution for n residues

contains the residues for the case when the n � 1 residue solution is sought. Secondly,

residues not in the solution rapidly destroy its fitness and hamper searching by intro-

ducing random noise on the fitness landscape.

A trial was ended if the population did not change over 1000 consecutive genera-

tions; continuing beyond this point proved not to lead to any further improvements in

the solution found. The algorithm is written in ANSI C. A hundred independent trials

for this problem on an SGI R14000 processor showed that convergence is achieved in

10 seconds and the optimal solution is found in 98% of the cases.

7.6 Internal predictivity
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Figure 7.3: Observed pKi values versus to-

tal interaction energy for the 53 HIV pro-

tease inhibitors.

Figure 7.3 plots the total interaction

energy versus the observed inhibition

constant. The correlation coefficient r2

is a mere 0.16 and the q2 is 0.10. We ex-

pect to improve upon this correlation by

not using all the residues.

To determine in what way the q2 de-

pends on the residue set size, we per-

formed a series of runs where the set

size is increased from zero to fifty. The

strictly spoken undefined fitness of the

zero-term model is computed by pre-

dicting each inhibitor as the average of

the other inhibitors. All interactions are

available for the algorithm to derive a

model, only the maximum number of

terms in the model is limited.
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Figure 7.4: Best q2 attainable versus the maximum number of interaction energy
terms that was used to derive the model. The q2 using the observed values are de-
picted as grey bars; the black bars give the q2 after randomization of the observed
values. Randomization was done independently five times, the displayed figures are
averages.

Figure 7.4 gives a plot of the q2 versus the maximum number of residues. Rather

quickly a high value of q2 is obtained, which does not change upon inclusion of more

residues. From figure 7.4 it can be seen that the best internally predictive model (BIP)

is reached upon inclusion of 20 terms. This model has a q2 of 0.63 and a r2 of 0.66.

Now equation (7.2) takes the following form

pKi � � 0 � 22
�
ArgA9 � AlaA22 � LeuA23 � LeuB23 � LeuA24 �

LeuB24 � AlaB28 � MetA46 � IleA50 � GlyB51 � IleB54 �
LeuA76 � LeuB76 � ProA81 � ProB81 � ValA82 � IleA84 �
GlyA86 � GlyB86 � ArgB87 � � 4 � 9

(7.4)

Note that the symmetry of the protease enzyme is broken because only one of

the catalytic aspartic acids is protonated, which results in asymmetric models. To

verify that this is not a chance correlation, we performed the same genetic algorithm

search with the inhibition constants randomly permuted. Figure 7.4 also gives the

best q2 possible for this randomized pKi data. The q2 obtained is the mean of five

independent randomizations.
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Figure 7.5: Observed versus computed pKi

values for the 53 HIV protease inhibitors.

The computed values are given by the

model with the highest q2 (0.63).

It is clear that predictive models like

the one depicted in figure 7.5 can no

longer be derived, although there is a

small tendency toward higher q2 val-

ues with increasing number of degrees

of freedom. However, what cannot

be seen from this plot is the magni-

tude of the two coefficients in the un-

derlying model. With the real data,

the model has a small intercept (a0 in

equation (7.2)) and the differences in

the data are explained from the dif-

ference in interaction energies. In the

randomized case the models have a

very small slope (a1 in equation (7.2)),

meaning that all compounds are pre-

dicted to have basically the same activ-

ity. That still a q2 of about 0.2 can be

obtained this way is due to the abundance of compounds that do have an inhibition

constant close to the mean.

7.7 External predictivity

As noticed by Golbraikh [76], a high value for q2 alone is not a sufficient condition

for a predictive model. It is important to validate a model by examining its ability to

predict the values for an external set, i.e. a set that is not used to derive the model.

To determine the external predictivity we formed ten external sets. Each set consists

of seven inhibitors out of the original set, randomly chosen from each log unit of the

total pKi range. The remaining 46 inhibitors are used to derive the model. Because

the accuracy in prediction of an external set depends on the particular set that is

predicted, the average error for the ten sets is expressed as improvement over the

zero-term prediction. Figure 7.6 gives the average error reduction versus the maxi-

mum number of residues allowed in the model. The accuracy of the 20 residue model

derived using all inhibitors in the prediction of the external sets is on average 1.2 log

unit absolute deviation per compound. There appears to be a model of 9 residues

that performs better at predicting the external sets. Some of the residues in the BIP

model are included because they improve the q2 for the whole set. The slopes of the

BIP and BEP models (equations (7.4) and (7.5)) are approximately equal, suggesting
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that some of the residues in the BIP model only have a minor effect on the magnitude

of the computed strength.
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Figure 7.6: The relative error in prediction of an external set of seven compounds
versus the maximum number of interaction energy terms that was used to derive
the model. The external set is chosen randomly ten times, with observed pKi values
covering the range of activities.

For the best externally predictive model (BEP), equation (7.2) takes the form

pKi � � 0 � 22
�
LeuB23 � AlaB28 � IleA50 � GlyB51 � ProA81 �

ProB81 � ValA82 � IleA84 � GlyA86 � � 5 � 3
(7.5)

The best and worst prediction for the external sets is shown in figure 7.7. The absolute

deviation in the prediction is 0.9 log unit per compound in the best case, while in the

worst case the inhibitors have an absolute deviation of 1.5 log unit per compound.

The residues found in the ten external models are also present in the BIP model.

As can be seen from figure 7.7 there is considerable difference in the prediction

error for different external sets. We examined the compounds from the worst exter-

nally predicted set. This set of compounds is difficult to predict correctly regardless

of the model. The pKi for the ligand from crystal structure 4HVP is computed as 8.1,

while its experimental value is 6.1. This ligand does not explicitly donate a hydrogen

bond to the catalytic aspartates. Another ligand of this type, the ligand from crystal

structure 1HBV, was present in one of the other external sets and also proved to be
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Figure 7.7: Observed versus computed pKi values. From the ten external sets, the
best predicted set is shown on the left-hand side, and the worst predicted set on the
right-hand side. The inhibitors that where used to derive the model are depicted as
squares, the predictions for the external set are depicted as triangles.

severely overestimated in strength. The interaction with the aspartates is not deter-

mining the computed figure, because the aspartates are not part of the model. Since

most ligands do make a strong interaction there, it might be implicitly assumed in

the model’s derivation that this interaction is present. Nevertheless, the 4HVP ligand

seems difficult to predict regardless of the computational method used, as it is also

incorrectly predicted in three of the four scoring functions employed in CScore [20].

The strength for the ligand from crystal structure 2AID, which has an experimental

value of 4.8, is computed at 7.7. In this crystal structure two inhibitor molecules

bind to the enzyme, one in the orientation as computed and another one next to it.

We expect that the binding of this second inhibitor molecule, not considered here,

contributes to the measured inhibition strength.

However, the prediction error for most compounds in an external set does not

significantly change when that inhibitor is included in the derivation of the model.

For example, the aforementioned ligand from 4HVP that is an outlier in the exter-

nal prediction is also an outlier in the BIP model, with a computed pKi of 8.1 (see

figure 7.5). Only the computed strength for the few least and most active inhibitors

shows a more pronounced dependency on the model.
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Figure 7.8: Observed versus computed pKi

values. The inhibition strength is computed

with the general scoring function X-Score

[21] version 1.1, applied to the complexes

that were used to derive our focused scor-

ing function. Squares depict the 12 in-

hibitors from our data set that were also

present in the X-Score data set.

For comparison, we also computed

the inhibition strength of the 53 com-

pounds from our data set with X-Score

[21]. X-Score is a general scoring func-

tion and is freely available upon re-

quest from its authors. It is derived

through multivariate regression anal-

ysis of 200 protein-ligand complexes.

We applied X-Score to the inhibitor-

consensus pocket complexes. Babel

[77] was used to assign potential types

to the ligand atoms. The results ob-

tained are depicted in figure 7.8. The

correlation coefficient is 0.43. For this

enzyme, X-Score underestimates the

inhibition strength, especially for the

most active compounds. Because the

predictions depend on the geometry of

the structures, using the original crys-

tal structures as input will give different

results. In our case these results were

slightly worse (r2 of 0.31) than the ones

presented in figure 7.8.

7.8 Residues selected

From the 198 residues of the HIV protease enzyme, 20 residues comprise the BIP

model and 9 residues the BEP model. These residues are not located in one single

region, but are distributed over the interior of the protein. Protease has a dual char-

acter [24], consisting of both a rigid region and a more flexible region formed by two

large overhanging flaps. The residues in the models are present in all regions: in the

rigid region where the catalytic activity takes place, in the interconnecting loops, and

in the overhanging flaps. The catalytic region is represented by three residues from

the A-strand and three residues from the B-strand. One group of residues is located in

the interconnecting loop composed of residues 80 through 84. This region has been

proposed as one of the important determinants in substrate selection [78,79].

Proteases are partitioned in subsites based on information about the substrate-

structures they process. The residues of the protein that are in contact with an amino
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acid of the peptide substrate define a subsite. The subsites are referred to as S3–S2–

S1–S
�

1–S
�

2–S
�

3, with the peptide bond or its non-scissile replacement between S1 and S
�

1.

The primes refer to the C-terminal side. The definition of which residues constitute

a subsite depends on the substrates used as well as the method to determine the

contacts between enzyme and substrate, resulting in some variation in the definition

between authors. The distribution of the BIP and BEP model residues using subsites as

defined by Kulkarni [26] is depicted in figure 7.9. The enzyme is colored according to

subsite, with residues from the models rendered as surfaces. As can be seen from this

picture the residues are distributed over all subsites, corroborating the biochemical

classification: as stated by Schechter and Berger [80] it is reasonable to expect that

the subsites show specific interactions with different amino acid side chains. The

selected residues are concentrated in the inner regions (S2–S1–S
�

1–S
�

2), while the outer

subsites (S3 and S3
�

) contribute little. The latter subsites are less involved in substrate

specificity: a wide variety of amino acid residues is tolerated here [2,81] as compared

to the more restrictive central subsites.

The conserved active site residues Asp25, Thr26 and Gly27 do not turn up at all in

the model. The absence of the aspartic acid residues might seem surprising, because

these are essential to the catalytic activity of the enzyme. The computed interac-

tions of the inhibitors with these residues are large, especially with the deprotonated

acid, and vary. Nevertheless, these interactions do not correlate with the inhibitory

strength. It might be implicit in the model data that the interactions are present,

but their lack of correlation can be understood from the behavior of protease toward

peptide substrates that are processed: although it is a peptide bond that interacts,

well-defined sequences are processed, not arbitrary ones. The difference between a

substrate and an inhibitor in the interaction with the active site aspartates is the re-

placement of a peptide bond by a non-hydrolyzable bond in the latter. We surmise

that an inhibitor just needs a non-scissile bond and the magnitude of interaction with

the aspartic acids does not contribute to its inhibitory strength.

7.9 Conclusion

We built a consensus structure for HIV protease from crystallographic data. A diverse

collection of 53 protease inhibitors was docked in this consensus structure, with an

average RMSD error of 0.83 for the ligand position. All inhibitors fit into the same

pocket, which illustrates the relatively low flexibility of HIV protease.

We implemented a genetic algorithm to determine which residues account for the

observed inhibition constants. The algorithm, that selects the set of residues whose
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Figure 7.9: HIV protease colored according to its subsites. The residues that define
a model are rendered as surfaces. The upper picture shows the 20 residues from the
best internally predictive model. The lower picture shows the 9 residues from the
best externally predictive model.
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sum of interaction energies is most predictive for the observed inhibition constants,

was applied to the 53 protease complexes. The model with the best predictivity has

a q2 of 0.63, a value that is significantly higher then the q2 of 0.10 from the total

interaction energy. This best internally predictive model consists of 20 residues. The

prediction of inhibition constants for external compounds lead to a model consisting

of 9 residues. These residues are contained in the best internally predictive model.

The external compounds are predicted within 0.9 log unit accurate for the best and

1.5 log unit for the worst set.

We found that the residues that determine protease inhibition are located in three

geometric groups: 1– around the catalytic site, 2– in the interconnecting loops, and

3– in the overhanging flaps. These groups cover all biochemically recognized sub-

sites [80], illustrating the consistency of independent computational and biochemical

approaches toward substrate recognition.

�
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J. Åqvist, B. Classon, U. H. Danielson, A. Karlén, I. Kvarnström, B. Samuelsson,
and A. Hallberg. Cyclic HIV-1 protease inhibitors derived from mannitol: Syn-
thesis, inhibitory potencies, and computational predictions of binding affinities.
Journal of Medicinal Chemistry, 40:885–897, 1997.

[9] D. P. Visco Jr., R. S. Pophale, M. D. Rintoul, and J.-L. Faulon. Developing a
methodology for an inverse quantitative structure-activity relationship using the
signature molecular descriptor. Journal of Molecular Graphics and Modelling,
20:429–438, 2002.

[10] C. L. Waller, T. I. Oprea, A. Giolitti, and G. R. Marshall. Three-dimensional
QSAR of human immunodeficiency virus (I) protease inhibitors. 1. A CoMFA
study employing experimentally-determined alignment rules. Journal of Medic-

inal Chemistry, 36:4152–4160, 1993.

[11] A. M. Doweyko. Three-dimensional pharmacophores from binding data. Journal

of Medicinal Chemistry, 37:1769–1778, 1994.
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Chapter 8

Synthesize and optimize

Abstract

We present a de novo design program called SYNOPSIS, that includes a synthesis

route for each generated molecule. SYNOPSIS designs novel molecules by starting

from a database of available molecules and simulating organic synthesis steps. This

way of generating molecules imposes synthetic accessibility on the molecules. In

addition to a starting database, a fitness function is needed that calculates the value

of a desired property for an arbitrary molecule. The values obtained from this function

guide the design process in optimizing the molecules toward an optimal value of the

calculated property. Two applications are described. The first uses an electric dipole

moment calculation to generate molecules possessing a strong dipole moment. The

second makes use of the three-dimensional structure of a viral enzyme in order to

generate high affinity ligands. Twenty eight compounds designed with the program

resulted in eighteen synthesized and tested compounds, ten of which showed HIV

inhibitory activity in vitro.

8.1 Introduction

IN THE CHEMICAL AND PHARMACEUTICAL INDUSTRY a continuous demand exists for

novel molecules with specific physical or biological properties. Traditionally these

molecules are found either by accidental observation of an interesting characteris-

tic or by testing many molecules, from natural sources or man made, for the desired

This chapter has been published as: H.M. Vinkers, M.R. de Jonge, F.F.D. Daeyaert, J. Heeres, L.M.H.
Koymans, J.H. van Lenthe, P.J. Lewi, H. Timmerman, K. Van Aken, and P.A.J. Janssen, SYNOPSIS: SYNthe-
size & OPtimize System In Silico. J. Med. Chem. 46 (2003) 2765.
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properties. Computational methods provide a complementary strategy in finding such

molecules. Progress in fundamental understanding of physical, chemical and biologi-

cal systems along with ever increasing computer power have brought these methods

within everyday use.

A prerequisite for in vitro drug testing is to have a test whose outcome correlates

significantly with some clinical effect (e.g. inhibition of the D2-receptor in vitro and

anti-psychotic effect in man). Most extant approaches followed in pharmaceutical

industry try to find drug candidates by subjecting a large number of molecules to

such tests. The expectation is that some of them will show up as active. This ap-

proach, called high throughput screening (HTS), generally yields only very few active

molecules. Considering the vast number of all possible molecules, one should not

be discouraged by this apparently poor success-rate in a limited sample: the ratio of

active molecules to possible molecules is substantial. But performing a high through-

put screen demands quite some resources and is only possible once, given a supply of

compounds and a test. Thus there is ample room for a directed search approach. Nev-

ertheless, high throughput screening is a convenient starting point if little is known

about the target system and an automated test for relevant properties is available.

Over the last decade computational methods have been developed and applied

to design catalysts [1, 2], polymers [3, 4], proteins [5–7] and drugs. Computational

methods are particularly abundant in the latter [8–12]. Frequently, they benefit from

knowledge about the function and three-dimensional structure of the molecular tar-

get(s) involved and are often referred to as ‘structure-based drug design’ methods.

Structure-based drug design has become an established tool to find new leads or to

optimize existing ones [13]. It is frequently used to guide the human designer who

wants to modify an existing molecule in order to improve its characteristics, and also

has been implemented in automated methods for novel drug design. The latter are

commonly referred to as ‘de novo design’ methods. The requirements and restric-

tions on the molecules that are designed depend on the purpose the molecules are

designed for. To be acceptable as a drug, a molecule should normally not contain

chemically reactive groups (except bactericides and anti-neoplastics) nor radioactive

atoms (except radiotherapeutic agents). To be apt for oral administration its molar

mass should be below 500 g
9
mol � 1 [14].

A common structure-based computational design strategy is to construct a molecule

directly in the binding site of the target protein. The quality of the designed molecules

is evaluated with an interaction energy calculation or a pharmacophore model. The

building process commences with an anchor fragment which is incrementally re-

fined [15–21]. Alternatively, fragments are put independently at favorably interacting

spots in the binding site and subsequently linked to a single molecule [22–24]. An-

other strategy [25–28] is to fill the binding site with generic atoms and to progress
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toward a molecule by specification of elements and bonds. A drawback of all these

building strategies is that the resulting conformation of a molecule will almost al-

ways be so high in energy that it does not occur in that form under natural circum-

stances. Furthermore the building procedure determines the orientation locally which

does not necessarily yield the optimal fit for the whole molecule. To overcome these

problems, we have developed a computer program called SYNOPSIS, that separates

building from evaluating. This has the added benefit that our program can easily be

adapted to all kinds of evaluation functions.

The properties of the designs are rarely experimentally verified. Generally, the

quality of the designed molecules is estimated from the filling of the binding site,

from presence of pharmacophore elements or by comparison with —or superimpo-

sition on— known compounds [15, 17, 27, 28]. Occasionally verification proceeds

by enriching the design space with known active patterns, and analyzing their re-

trieval [24]. Synthesizing a molecule is the first step toward experimental determina-

tion of its properties. We will define the ease of synthesis with ‘synthesizability’, used

in the sense that the more synthesizable a molecule is, the less effort will be required

for the actual synthesis in terms of availability and cost of starting materials, number

and yields of synthesis steps, time and apparatus required, etcetera. When experi-

mental verification of the designed molecules is a requirement, synthesizability of the

generated molecules is an important issue. Incorporating synthesizability at an early

stage in the method is however not an absolute necessity. One can consider synthe-

sizability of the designs afterward, utilizing heuristic rules [29] or a retro-synthetic

program. An example of a case where no specific measures were taken to ensure syn-

thetic viability of the ligands, but where the designs were made and tested anyway

is given in Holloway [30]. Nevertheless, ease of synthesis is a desirable property:

it is convenient for method validation, speed of screening, and ultimately for com-

mercial reasons. A recent method [31] aims at generating synthesizable designs by

employing a fragmentation and combining scheme based on cleavage and formation

of bonds according to chemical reactions. SYNOPSIS enforces synthesizability from

the onset by starting from available compounds and exclusively employing chemical

reactions to create new molecules.

8.2 In silico synthesis

SYNOPSIS requires three components: a database of existing molecules, a set of

chemical reactions and a fitness function. For each entry in the starting database

the constituent atoms and bonds are specified. In the applications described a subset

of the ACD [32] was used as initial database. The subset was obtained to meet the
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restrictions for common medicinal chemicals by excluding any molecule which met

one or more of the following criteria:

� contains any element other than carbon, nitrogen, oxygen, sulphur, fluorine,

chlorine, bromine and iodine

� contains non-natural occurring isotopes

� is a radical

Compounds with more than an arbitrarily chosen number of 13 non-hydrogen atoms

were also excluded, to prevent SYNOPSIS from putting much effort in synthesis with

already large molecules. The final subset used consists of 32,287 molecules.

The implementation of the organic synthesis steps is based on a functional group

approach. SYNOPSIS will determine the functional groups present in a molecule to

decide which reactions are possible for that molecule. Currently 70 different reaction

types have been implemented (available from the author upon request). Given the

initial database and the reaction set, we have determined the number of molecules

that can be synthesized in one step from the starting materials by exhaustively trying

each reaction on each of the molecules from the initial database. This resulted in the

generation of 373,174,909 new molecules.

The decision to allow a particular reaction is based on just a part of the molecule.

If this approach is applied without any regard to the reactivity of the groups involved

many erroneous synthesis steps will result. To prevent this an estimate of reactivity

is implemented by means of additional rules for acceptance of a reaction. Depending

on the type of potential error the following cases are distinguished:

1. More local structure than that contained in a functional group description is

necessary for a particular reaction to take place. E.g. an NH2 moiety can be oxi-

dized to an NO2 moiety, but not when it is part of an N–NH2 moiety. By defining

a functional group that includes more atoms, in this example by requiring a

C–NH2 group, the feasibility of the reaction is preserved.

2. Other functional groups hinder the intended reaction to take place. Therefore

some reactions are only performed in the absence of specific functional groups.

For instance, an H–N–C=O moiety can be reduced to an H–N–C moiety only if

there is no C=S moiety present elsewhere in the molecule.

3. A functional group is present more than once. If it is possible to determine

a difference in reactivity, the most reactive instance of the functional group

will be used. For example, in a coupling reaction between an NH2 moiety and

an halogen atom, an aliphatic halogen atom is preferred to an aromatic one.

Otherwise, the reacting group is randomly chosen.
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4. A functional group’s chemical reactivity may be too low. For instance, whether

an aromatic halogen atom is reactive enough to be used in a nucleophilic cou-

pling reaction depends on the other substituents of the aromatic system. There

is no problem in performing the reaction if the aromatic system contains elec-

tron withdrawing substituents in the appropriate places, e.g. an ortho-NO2 moi-

ety. On the other hand, when electron donating groups are present, e.g. an

ortho-NH2 moiety, the reaction will be difficult to impossible, depending on the

strength of the attacking nucleophile. It is impractical to implement all elec-

tron withdrawing and donating effects of both position and nature of functional

groups. Currently, SYNOPSIS only considers aromatic halogen atoms without

examining the other substituents of the system.

We attempted to account for substituent effects on an aromatic halogen’s reactivity

with a quantum-mechanical approach, based on the assumption that a more positive

charge on the carbon bound to the halogen implies higher reactivity in nucleophilic

coupling reactions. We tested this hypothesis by comparing partial charges from a

distributed multipole analysis [33] to observed rate constants. Hartree-Fock wave

functions for the distributed multipole analysis were computed with the GAMESS-UK

package [34] using a 6-31G basis set.
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some nucleophilic aromatic substitution reactions.

Figure 8.1 confirms that the computed partial charges on the carbon atom do

indeed follow the reactivity. The partial charge on the carbon is only one of the factors
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determining the reactivity, ignoring different reaction conditions, steric effects of the

substituents and the strength of the attacking nucleophile. However, it may be used

to estimate a threshold value for reactivity. If the computed partial charge exceeds

this threshold the aromatic halogen is deemed to be reactive enough. Alternatively,

if more aromatic halogens are present, the partial charge could be used to choose

the more reactive one. For practical purposes the quantum-mechanical calculations

proved to be too time-consuming, i.e. calculation time is increased beyond the point

where it is more economical to accept a certain percentage of suggestions that are

not feasible. Without quantum-mechanical calculations, SYNOPSIS is able to propose

synthesis routes of which 64% was carried out with success in the laboratory.

8.3 Algorithm overview

3. Calculate

product's fitness

2. Perform

reaction

4. Add to

database

1. Select a

molecule

Figure 8.2: Steps constituting one iteration.

In addition to a starting database

and a reaction set, a fitness function

is needed that calculates a property of

interest for an arbitrary molecule. Ex-

ploiting this function SYNOPSIS will

optimize novel molecules for the prop-

erty. SYNOPSIS scores the gener-

ated molecules according to the fit-

ness function provided. During the

run, SYNOPSIS is increasingly driven to

choose molecules with high computed values as reactants. The algorithm that drives

the generation of the molecules toward increasingly better ones contains elements

from simulated annealing optimization [36,37] and from genetic algorithm optimiza-

tion [38, 39]. A Metropolis [36] type of function selects the molecule that is used to

generate a new one. The algorithm resembles a genetic algorithm in that new off-

spring is produced from a set of molecules depending on the fitness of the molecules.

The algorithm is iterative: it performs the same series of steps over and over again

exploiting the results from previous steps to get successively closer to a desired result.

The steps forming one iteration are depicted in figure 8.2.

Step 1 – Select a molecule.

A molecule from the database is selected to reproduce by applying a weighted

probabilistic function:

Pi � e �
�
Qb � Qi � �

c

∑n
j e �

�
Qb � Q j � �

c
(8.1)
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where Pi is the probability that the ith molecule is selected, Qb denotes the fitness of

the current best molecule, Qi denotes the fitness of the ith molecule, c is a cooling

parameter regulating the extent of greediness in the selection and n is the current

population size. This simulated annealing step constitutes the selection pressure.

Equation (8.1) shows that the probability of selecting a molecule depends on the

difference between its fitness and the fitness of the current best molecule and also

on the current value of the cooling parameter. Equation (8.1) is used to assign a

probability to each molecule whereafter one is selected accordingly. The scores of

the molecules present in the initial database are set to a minimum value instead of

subjecting the molecules to the fitness function in order to save time. Initially all

molecules are equally eligible to become selected because they all have a score equal

to Qb: in the early stages selection is essentially random. As the procedure continues

Qb increases: the chance for a less fit molecule to be selected will decrease. The

cooling parameter is initialized and decreased in such a way that increasingly more

fit molecules are selected. Since Qb increases and c decreases, it gets exceedingly

difficult for a less fit molecule to become selected: only molecules with fitness close

or equal to Qb will still be selected in the final stages.

Step 2 – Perform reaction.

A new molecule is created from the selected one by performing a reaction with it.

The reaction according to which the molecule will be transformed is randomly chosen

from those that are possible for that particular molecule. If no reaction is possible,

another molecule is selected. If the chosen reaction requires two reactants, a suitable

partner is randomly picked from the database. If the reaction product about to be

generated is already in the database, the procedure will revert to Step 1. Because

in genetic terms the decoding of the genotype to phenotype occurs at the reaction

level (in an abstract sense the gene of a molecule consists of starting materials and

reaction steps), the change in the molecule brought about can be considerable. This

is fine in early stages of the run where a broad sampling of the chemical space is

wanted. In later stages the algorithm’s behavior to optimize molecules is enhanced by

a backtracking operator that generates analogs of the fittest molecules. The operator

is applied at regular intervals after a certain number of iterations have been reached.

It picks a molecule out of the 25 highest scoring molecules that were created from two

reactants. The operator changes one of the reactants to a functionally similar one and

performs the same reaction to generate a molecule as input for the next step. At this

moment, only synthesis properties are used in the selection of another reactant. A

more restrictive selection, e.g. by requiring a certain level of similarity is currently

under consideration.
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Step 3 – Calculate product’s fitness.

The reaction product’s score is obtained by subjecting it to the function that calcu-

lates the property of interest. In genetic terms this constitutes the fitness function.

The fitness function must produce higher values for better molecules. Two examples

of fitness functions can be found in the application section.

Step 4 – Add to database.

The molecule and the information concerning its reactant(s) and its calculated fit-

ness value are added to the database.

For every generated molecule the following information is available: its structure,

its fitness and a synthesis route. The synthesis route is by nature of the program com-

posed of a series of steps starting from existing molecules. In building the synthesis

route, it is possible to have SYNOPSIS check the presence of the intermediates en-

countered against a second database of existing materials. Intermediates involved in

a synthesis route may already exist, so this check limits the number of steps in the

final synthesis route to those that are actually needed.

SYNOPSIS is written in ANSI C and has been compiled and run on SGI IRIX 6.5

and Redhat Linux 7.3. Without backtracking, it takes less than 100 milliseconds to

generate a new molecule. In a typical application the rate-limiting step is the evalu-

ation time for the fitness function. Because the inter-process communication consists

of only one number, the fitness, the speedup of a run is linear up to hundreds of

processors.

8.4 Example of a fitness function

As a first application SYNOPSIS is used in conjunction with an electric dipole moment

computation as fitness function. The computation subjects the molecule whose dipole

moment is to be computed to a conformational analysis using an in-house developed

force field [40]. This force field uses the conjugate gradient minimizer [41, 42] as

implemented in the TINKER package [43] and a truncated Newton minimizer [44]

from the netlib repository [45]. The functional form and parameter set are derived

from MMFF94s [46]. The parameter set is extended with respect to the potential

types as well as the force constants, to allow for calculation of a broader range of

molecules and to maintain compatibility with CVFF [47] parameterized molecules.

The AM1 Hamiltonian [48] of MOPAC [49] is used to calculate the dipole moments of

the low-energy conformers. The final dipole moment of the molecule is calculated as

the sum of the dipole moments of the conformers times a pseudo-Boltzmann weight.
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The weights are distributed according to the computed energy of the conformers by

applying the following function:

wi � 2Eg � Ei (8.2)

where wi is the weight of the ith conformer, Eg denotes the energy of the lowest energy

conformer and Ei denotes the energy of the ith conformer. The weights are normalized

after calculation.

These pseudo-Boltzmann weights were used to make the computation more robust

with regard to errors in the force field derived energies of the conformers. Since the

calculation time increases exponentially with the number of rotatable bonds present

in the molecule, the dipole moment computation was set to reject any molecule with

more than 6 torsions. This imposes an effective limit on the size of the generated

molecules, because the creation of larger molecules from the initial database will

generally be accompanied with an increase in the number of torsions for the created

molecule. This has the effect of limiting the achievable dipole moments.
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Figure 8.3: Averaged and best dipole moment of the top 25 in time for random selec-
tion and simulated annealing selection.

To assess the efficiency of the bias procedure over randomly searching, we ran

SYNOPSIS with the same random seed and the selection step (equation (8.1)) set to

pure random. A plot of the averaged dipole moment of the top 25 and the highest

dipole moment in time is given for both runs in figure 8.3. From this figure it is clear

that random searching is less efficient. The largest dipole moment molecule found in



134 Chapter 8

the simulated annealing run together with its synthesis route is depicted in figure 8.4.

The molecule has a computed dipole moment of 31.8 Debye.
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8.5 Design of NNRTIs

In a second application a computation of the affinity of a putative ligand to a protein

binding site is used as the fitness function. The protein binding site used in this appli-

cation is the non-nucleoside binding pocket of the protein reverse transcriptase from

the Human Immunodeficiency Virus 1 (HIV-RT). The inhibitory strength of a ligand is

expressed as an IC50 value, which is defined as that concentration of the ligand that

gives a 50% protection against HIV-induced cytopathogenicity. The CC50 value is the

50% cytotoxic concentration, which is that concentration of the ligand that causes

half the cells to die. These values are measured spectrophotometrically based upon
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the reduction of yellow colored 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide by mitochondrial dehydrogenases of metabolically active cells to a blue for-

mazan in HIV- and mock-infected MT-4 cell cultures [50].

The fitness function is an activity computation based on a benchmark set of 34

highly active ligands. The fitness function yields the pIC50 value for an arbitrary

molecule from its computed binding energy to HIV-RT. The computation involves the

docking of all conformers up to 4 kcal
9
mol � 1 from a genetic algorithm based confor-

mation analysis. The docking is done with an in-house written algorithm, that uses

a combined Monte Carlo and simulated annealing search on a grid. It computes the

docking energy as the sum of the Van der Waals, Coulomb and hydrogen bond in-

teractions between the ligand and the protein. The protein is kept rigid during the

docking of the set of low energy conformers, while the smoothness of the potential

energy function is decreased from a 4-8 to a 6-12 potential. The energetically most

favorable complex is, after minimization, used to compute the pIC50 value. This value

is computed from the sum of non-bonded interaction energies between the molecule

and a set of relevant residues. The set of relevant residues was obtained by deter-

mining the best correlating set in a linear fit to the experimentally observed pIC50

values of the 34 highly active compounds, which had an r2 of 0.96 (data not shown).

This computation takes on average 60 minutes per molecule per processor. While

this computation was used as fitness function to drive the generation of molecules in

SYNOPSIS, an alternative model for calculating an arbitrary molecule’s pIC50 value

against HIV was developed. This involved a much larger set of ligands with a much

larger spread in experimentally determined IC50 values. The steps of the computa-

tion remain essentially the same, except that not just the energetically most favorable

complex is taken into account, but a range of complexes. The extent to which the dif-

ferent complexes contribute to the activity is given by the Boltzmann weights derived

from the total interaction energy between the molecule and the target protein. Using

multiple complexes roughly quadruples the calculation time. From a benchmark of

2,021 molecules with known experimental IC50 values, 1,521 were used to determine

the set of relevant residues and 500 to validate the method. From this validation set

67% is correctly predicted, where correctly means to within plus or minus one log unit

of the experimentally observed pIC50 value. The 165 molecules from the validation

set that are not correctly predicted can be subdivided in a set of 46 false negatives, i.e.

predicted pIC50 value more than one log unit lower than the experimental value, and

a set of 119 false positives, i.e. predicted pIC50 value more than one log unit higher

than the experimental value. The more elaborate computation was not used in the

generation of the designed molecules, it was used a posteriori to compare the pre-

dicted values for the final designed molecules; these results will also be given. This

computation will be referred to as ‘Model 2’ and the former as ‘Model 1’.
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SYNOPSIS was run a number of times with different random seeds. From these

runs molecules out of the top 25 were selected to be synthesized. The candidates

were selected based on the following considerations: candidates must be chemically

diverse and different from known non-nucleoside reverse transcriptase inhibitors,

suggested synthesis route involves only a few steps (preferably just one step) and

the suggested synthesis steps are deemed feasible by an organic chemist. This ap-

plication resulted in the selection of 28 different designs and the effective synthesis

of 18 molecules. The IC50 and CC50 values of the 18 molecules whose synthesis suc-

ceeded were experimentally determined. Table 8.1 gives an overview of the results,

the structures of the molecules are shown in figure 8.5.

When the second column in table 8.1 states app, the synthesis route followed is

approximately the same as the route followed by SYNOPSIS. If the suggestion from

SYNOPSIS was substituting a chlorine atom and in practice this was done on a flu-

orine atom, that would count as approximately the same. Also when the suggested

route involved the coupling of a functional group A on reactant 1 and a functional

group B on reactant 2 and the actual synthesis route followed proceeded by coupling

functional group A on reactant 2 and functional group B on reactant 1, app is stated.

In some cases a different synthesis route was followed altogether. This might be be-

cause a starting material or an analog thereof was not available, or, more often, that

the suggested synthesis route was deemed not to be the best in terms of simplicity,

price or chance of success by the synthesis laboratory. When the third column in ta-

ble 8.1 indicates chem or comp, the synthesis did succeed, but the actual synthesized

molecule is not exactly the same as the designed one, but a closely related analog.

The label chem signifies that the decision to synthesize an analog instead of the orig-

inal molecule resulted from synthetic chemical considerations (e.g. enabling cheap

or readily available starting materials instead of expensive or rare ones). The label

comp means that the decision to synthesize an analog sprung from reasons of com-

putational origin (traditional optimization with computational chemistry leading to

improved variants). The column headed ‘Model 1’ gives the results of the pIC50 com-

putation that was used as fitness function. The result in cases where an analog was

made because of synthetic chemical considerations applies to the original designed

molecule. The column headed ‘Model 2’ gives the results of the extended computa-

tion as described earlier. The next two columns give the experimentally determined

values for the pIC50 and pCC50. The final column classifies a molecule as active if the

experimental pIC50 is higher than 4 and higher than the pCC50, toxic if the pCC50 is

higher than 4 and higher than the pIC50, and inactive if both the pIC50 and pCC50 are

less than 4.
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Mol Route Synthesis Model 1 Model 2 Observed Observed Class
no followed succeeded pIC50 pIC50 pIC50 pCC50

1 yes yes 5.6 5.0 4.9 � 4.0 act
2 app chem 6.4 7.3 � 4.4 4.4 toxic
3 yes no 8.4 4.5
4 yes yes 8.2 5.3 4.1 � 4.0 act
5 yes yes 8.4 7.5 � 4.3 4.3 toxic
6 app yes 8.2 6.2 4.6 � 4.0 act
7 yes yes 8.3 5.5 4.8 � 4.3 act
8 yes yes 8.0 7.5 � 4.0 � 4.0 inact
9 yes chem 8.0 3.4 � 4.0 � 4.0 inact
10 no yes 8.1 5.7 4.5 � 4.0 act
11 yes yes 9.6 5.3 � 4.0 � 4.0 inact
12 app no 8.2 6.9
13 yes yes 8.1 9.3 � 5.1 5.1 toxic
14 yes yes 8.4 8.0 � 4.3 4.3 toxic
15 app no 8.2 4.2
16 app yes 8.1 6.1 4.4 � 4.0 act
17 app no 8.0 7.4
18 no no 8.7 5.6
19 yes chem 9.8 5.9 � 4.0 � 4.0 inact
20 yes no 8.1 8.3
21 app no 8.0 7.2
22 app no 8.2 6.6
23 app comp 8.8 7.0 7.0 � 4.0 act
24 app no 8.2 6.8
25 yes comp 8.5 5.9 5.8 4.3 act
26 yes no 8.0 4.9
27 no chem 8.7 8.0 5.2 � 4.0 act
28 no comp 9.3 7.8 5.6 � 4.0 act

Table 8.1: Experimental results of the designed inhibitors in chronological order. The
corresponding molecular structures are depicted in figure 8.5. In the second column,
app means the actual synthesis route was slightly modified. In the third column,
chem means designed molecule was slightly modified for reasons of synthesis and
comp means designed molecule was slightly modified after additional computations.
The next two columns show the outcome of the pIC50 computation. Model 1 was
used in the design process and Model 2 serves for comparison. The observed pIC50

and pCC50 values were determined in a cellular HIV inhibition assay [50]. The final
column indicates act if the pIC50 is higher than 4 and higher than the pCC50, toxic if
the pCC50 is higher than 4 and higher than the pIC50, and inact if both the pCC50 and
the pIC50 are less than 4.
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Figure 8.5: Structures of the inhibitors from table 8.1. The structure of compound 23
is not disclosed.
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Figure 8.6: An overview of the experimental results. The numbers in the left pie
indicate the number of steps involved in the synthesis.

From table 8.1 and figure 8.6 it can be seen that 28 designed molecules resulted

in 18 synthesized molecules. The set of 10 molecules that could not be synthesized

in a reasonable timespan despite the expectations of an organic chemist otherwise

amounts to 36%. From the set of 18 synthesized and experimentally tested molecules,

10 showed inhibitory activity, 4 were cytotoxic and 4 molecules were inactive.

So 56% of the synthesized molecules proved to be active in vitro below the 100 µM

level, which compares favorably to results from a typical HTS experiment [51] and

also to results from a biased HTS experiment [52]. The activity of the 4 molecules

which caused the cells to die can be classified as unknown. If one had a computational

model predicting cellular toxicity, one could include this in the fitness function to

prevent creation of such compounds.

The fact that 22% of the molecules were inactive, illustrates that the pIC50 com-

putation is not perfect. Furthermore all tested compounds had high computed pIC50

values and showed only weak to moderate activity in the experiment. The extended

computation (‘Model 2’) performs better in calculating the experimental pIC50 value,

although even this computation is not as reliable as one would wish. A more rigorous

test of this model would be to repeat the design process with this computation as

fitness function. A number of reasons can be thought of to explain the discrepancies

between the computed and experimental values. First of all, the pIC50 computation

is set up using only measurably active molecules. The molecules in the benchmark

may have some features necessary to account for their activity in common. If that is

the case, there is no need for the model to incorporate these features to reproduce

the activities. An indication of the presence of this effect can be found in the bet-
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ter performance of the extended computation, where not only highly active but also

weakly active molecules were included in the benchmark. One could consider in-

cluding completely inactive molecules in setting up the pIC50 computation, however

this might obscure matters since the cause of the inactivity is unknown. Experimen-

tally, the IC50 value is a whole cell measurement. Some molecules possess inhibitory

activity which does not show up in the assay because the molecule never reaches

the interior of the cell. Since cell penetration is not part of the model as is, these

molecules will turn out as a false positive in the computation. For a few of the false

positives from the benchmark this phenomenon has been confirmed by comparison of

whole cell and enzyme activities. The cell penetration uncertainty can be avoided by

direct optimization of binding constants instead of IC50 values, at the cost of having to

resolve any problems with cell penetration later on. The pIC50 computation assumes

that the inhibitory activity of a molecule results from binding to the non-nucleoside

binding pocket of HIV-RT. Consequently, the activity of a molecule that binds to a dif-

ferent site of the HIV-RT protein or a different protein altogether cannot be expected

to be accurately computed. If the molecule binds to a protein without inhibiting HIV,

its activity most likely would be overestimated. Conversely, if the alternative bind-

ing of the molecule does inhibit HIV, its activity will be underestimated. Examination

of the false negatives from the benchmark molecules showed at least two ligands

that are known nucleoside inhibitors of HIV, highly active but deriving their activity

from a different mechanism. An incorrect activity computation would also result if a

molecule is broken down by any of the components in the assay, whether reagents or

cell enzymes. A last source of error in the computation of a molecule’s pIC50 relates

to chiral compounds. When confronted with a chiral compound, the computation

will assess the best binding stereo-isomer automatically and use that one to calculate

the activity. The designed molecules that are chiral, 7 in total, were synthesized as

racemic mixtures. Depending on the activity of the other stereo-isomer, the error in

the computed activity will be between 0 and 0.3.

Despite the noted limitations, a range of simple molecules is generated with an

extremely high proportion of active lead [53] compounds compared to other methods

of lead finding or generating. This demonstrates the merits of SYNOPSIS in drug

discovery.

8.6 Conclusion

We have developed a computer program SYNOPSIS. This program, provided with a

method to calculate a property of interest, generates synthetically feasible molecules

with as much of the desired property as possible while remaining within synthetic
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constraints. We have used SYNOPSIS in conjunction with a computation of pIC50

values for putative ligands binding to HIV reverse transcriptase. This has proved its

value in computational drug design: 18 of the 28 designed molecules could readily

be synthesized and 10 of the synthesized molecules showed HIV inhibitory activity in

vitro.

�
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Epilogue

“Het was waar, wat ze zei en het was toch ook weer niet helemaal waar, zoals

het meeste dat mensen zeggen.”

“It was true, what she said and then again not completely true, like most

things people say.”

Willem Frederik Hermans, Herinneringen van een engelbewaarder, 1971.

In this thesis, examples are shown in what way computational approaches can aid

drug design. The results of these approaches are encouraging, although so much

still needs to be done in order to computationally design ‘drugs’ rather than ‘drug

candidates’. The discovery of a drug is a result of team-work, with people from many

different fields of science involved. The work described in this thesis results from half

a decade of research at a pharmaceutical company. I have enjoyed the privilege of

working with dr. Paul Janssen, a medicinal chemist par excellence. For me, his true

genius was his ability to tell the unadulterated truth.

As our knowledge increases, so hopefully will the quality of drugs at the disposal

of humanity. The collaborative work in which I have been involved has resulted in

very promising compounds for the treatment and prevention of HIV infection. It is

of utmost importance that the development of these compounds proceeds post-haste.

We must not forget that we are responsible for the communities in which we live

and work and to the world community as well. Interesting as the science behind the

discovery of new drugs may be, the ultimate purpose of a drug is to save the lives of,

or improve the quality of life for, as many people as possible.





Summary

This thesis describes the development of methods that can be used in computer-aided

drug design. The development and application of the methods is done employing

molecules that bind to proteins of the AIDS virus.

In the introduction, different aspects of a drug and the implications for drug re-

search are considered, with emphasis on the computational perspective. In the next

two chapters some general aspects of the AIDS virus and the computation of ligand-

protein interactions are discussed.

In chapters four and five the geometry of the interaction between ligand and pro-

tein is more closely examined. Chapter four describes a method to compute the geom-

etry of ligand-protein interaction by employing pharmacophore points. The method

is applied to reverse transcriptase complexes with experimentally resolved geometry.

In chapter five it is shown that the mutant-resilience of a particular series of reverse

transcriptase inhibitors can be understood from the distribution of interactions over

the binding site of the protein.

Chapters six and seven describe two different approaches in which a model is de-

rived that allows for computation of the inhibition strength. In chapter six, a model is

derived based exclusively on the structure of the inhibitors by assessing the structural

similarities and differences within a series of integrase inhibitors and relating them

to the inhibition strength. Chapter seven shows how a model can be derived from

the structures of both the protein and the inhibitors. The inhibition strength for a set

of protease complexes with known three-dimensional structure is computed from the

relevant interactions between inhibitor and protein.

The final chapter unites the concepts of the preceding chapters. This chapter

presents a method to design molecules with desired properties. The way in which the

molecules are constructed ensures that the resulting molecules possess these prop-

erties, but also that their synthesizability can be controlled. The method is used to

design reverse transcriptase inhibitors, and has been tested by synthesizing the de-

signed molecules and measuring their inhibition strength.





Samenvatting

Dit proefschrift beschrijft de ontwikkeling van methoden die gebruikt kunnen wor-

den bij het ontwerpen van geneesmiddelen met behulp van de computer. Voor het

ontwikkelen en toepassen van de methoden is gebruik gemaakt van moleculen die

binden aan eiwitten van het AIDS virus.

In de inleiding wordt de werking van een geneesmiddel en de implicaties daarvan

voor het onderzoek naar geneesmiddelen, met name het computationeel onderzoek,

vanuit een aantal verschillende invalshoeken belicht. In de twee volgende hoofd-

stukken komen enkele algemene aspecten aan bod van respectievelijk het AIDS virus

en het berekenen van interacties tussen ligand en eiwit.

Hoofdstukken vier en vijf gaan nader in op de geometrie die de interactie bepaalt

tussen ligand en eiwit. Hoofdstuk vier beschrijft een methode om de geometrie van

ligand-eiwit interactie te berekenen door gebruik te maken van farmacofore punten.

De methode wordt toegepast op reverse transcriptase complexen waarvan de geo-

metrie experimenteel bepaald is. In hoofdstuk vijf wordt aangetoond dat de mutant-

gevoeligheid van reverse transcriptase remmers binnen een familie van stoffen soms

te begrijpen is vanuit de distributie van interacties over de bindingsplaats in het eiwit.

Hoofdstukken zes en zeven beschrijven twee verschillende manieren om een model

af te leiden waarmee de sterkte van een remmer berekend kan worden. In hoofdstuk

zes wordt een model afgeleid door uitsluitend gebruik te maken van kennis omtrent

de structuur van de remmers. Dit is mogelijk door de overeenkomsten en verschillen

te bepalen voor een reeks analogen die het integrase eiwit inhiberen en deze te re-

lateren aan hun remmingssterkte. Hoofdstuk zeven laat zien hoe een model kan

worden afgeleid door zowel de structuur van het eiwit als dat van de remmer te ge-

bruiken. Voor een serie protease complexen waarvan de structuur bekend is, wordt

de remmingssterkte berekend vanuit de relevante interacties die een remmer met het

eiwit maakt.

In het laatste hoofdstuk wordt voortgeborduurd op de gëıntroduceerde concepten.

Dit hoofdstuk beschrijft een methode om moleculen te ontwerpen met gewenste

eigenschappen. De manier van ontwerpen zorgt ervoor dat de resulterende moleculen
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deze eigenschappen bezitten, maar ook dat de maakbaarheid van de moleculen be-

heersbaar is. De methode wordt gebruikt om reverse transcriptase remmers te ont-

werpen, en is getest door de ontworpen moleculen te maken en hun remmingssterkte

te meten.
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