
VU Research Portal

DIVA Architectural Perspectives on Information Visualization

Schonhage, S.P.C.

2001

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Schonhage, S. P. C. (2001). DIVA Architectural Perspectives on Information Visualization.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

https://research.vu.nl/en/publications/fe647741-8404-4941-ae93-326bb382032e

DIVA

ARCHITECTURAL PERSPECTIVES ON

INFORMATION VISUALIZATION

BASTIAAN SCHÖNHAGE

SIKS Dissertation Series No. 2001-7.

The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Graduate School for Information and Knowledge Systems.

Promotiecommissie:
prof.dr. J.C. van Vliet (promotor)
dr. A. Eliëns (co-promotor)
prof.dr. M. Jern (Linköping University Sweden, Advanced Visual Systems)
prof.dr. J. Bosch (Universiteit Groningen)
prof.dr.ir. H.E. Bal (Vrije Universiteit Amsterdam)
dr.ir. P.W.P.J. Grefen (Universiteit Twente)

Copyright c© 2001 by S.P.C. Schönhage.

VRIJE UNIVERSITEIT

DIVA

ARCHITECTURAL PERSPECTIVES ON

INFORMATION VISUALIZATION

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit te Amsterdam,
op gezag van de rector magnificus

prof.dr. T. Sminia,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen / Wiskunde en Informatica

op dinsdag 8 mei 2001 om 15:45 uur
in het hoofdgebouw van de universiteit,

De Boelelaan 1105

door

Sebastianus Petrus Cornelis Schönhage

geboren te Haarlem

Promotor: prof.dr. J.C. van Vliet

Copromotor: dr. A. Eliëns

Preface

It was in 1981 when it all started. My dad bought an original IBM Personal
Computer with a 4.77 MHz Intel 8088, 16 KB memory, two floppy drives and
a black/green monochrome monitor. At that time, I was an 8 year old, curious
little boy. Sunday mornings, while my parents were still asleep, I went down
to the room where the computer was, booted it, thoroughly read the original
MS DOS manual and played with the PC until I more or less understood why
it did what it did.

The Acorn BBC was my first own computer that my parents gave to me when
I was 11 years old. At that moment, most people I knew owned a Commodore
64 or an MSX computer and were playing games all the time. Since I only had a
few and mostly boring games, I used my computer differently. I taught myself
how to program the BBC in Basic and in Assembly.

My interests for computer graphics originate from about 1986 when Sinterklaas
gave me an Amiga 500. Finally, I could play my games. However, program-
ming still interested me very much. It was on the Amiga that I created my
first Visualization. It was on a beautiful Sunday when Martijn and I had created
a small Basic program that would draw a Mandelbrot fractal. I remember it
like it was yesterday. After we had tested the program and were pretty sure it
would work, we started the application. Since my Amiga was not that fast and
we did not optimize anything at all to speed up the fractal calculation algo-
rithm, the calculations took more than a couple of hours. We went to the beach
with my family and when we came back it was there, in 65.536 colors: our first
apple man.

Computer graphics, raytracing, 3D animation and so forth have always inter-
ested me. Just like computer programming has always remained an attractive
way of spending time. Therefore, I was very happy that after my studies of

vi

computer science I was given the opportunity to do research on visualization
in the software engineering department of the Vrije Universiteit. The result
of working on something that once started as my Sunday morning hobby is
in your hands right now. I hope that you like reading it as much as I liked
working on it for the past four years.

Acknowledgements

Without the help and support of many people this work would never have
been finished. In particular I am very grateful to my mother, father and sister
for their unconditional support!

Another person who I want to thank is Martijn who is probably the human
being that I have seen most in my life. For the last 14 years we have seen each
other almost each day, all day long. Thanks Martijn, I am going to miss you.

I want to thank all the people who were directly involved with the DIVA project
in one way or another, namely Anton, Hans, Peter Paul, Ard, Edwin, Alex and
Sana. Without your help, DIVA would never have been the way it is now. Ad-
ditionally, I am grateful to everybody who read (parts of) this thesis and pro-
vided me with useful comments. In particular thanks to Anton, Hans, Martijn,
Inge, Joris, Nico, Ard, and Frank.

During the last four year, I had a lot of nice colleages and good friends at both
the Vrije Universiteit and ASZ Research and Development. Although I want
to thank all of them, I want to mention explicitly Jacco, Nico, Jaap, Frank N,
Frank C, Arno, Gerco, Thiel, Irmen, Job, Ard, Joris, Arne and Frederike.

Amsterdam,
October 2000

Bastiaan Schönhage

(bastiaan@schonhage.com)

vii

More Information

More technical information and the source code of the DIVA prototypes can be
found at:

http://diva.schonhage.com

viii

Contents

Preface v

Contents ix

1 Introduction 1

1.1 Problems . 2

1.1.1 Lack of multi-user support 2

1.1.2 Tight coupling . 2

1.1.3 Limited interaction . 3

1.2 The Diva Project . 3

1.3 Perspectives on Visualization . 4

1.3.1 Visualization and architecture 4

1.3.2 Academic and business perspectives 5

1.3.3 Visualization perspectives 5

1.3.4 The software engineering perspective 5

1.4 Structure of the Thesis . 6

1.4.1 Visualization of the structure 7

1.4.2 Paths through the dissertation 8

1.5 Publications . 8

x CONTENTS

2 Information Visualization 11

2.1 Visual Information . 12

2.1.1 Information design . 13

2.2 Scientific Visualization . 17

2.2.1 Scientific visualization techniques 17

2.3 Information Visualization . 21

2.3.1 The purpose of information visualization 21

2.3.2 Expressive and effective visualization 22

2.3.3 Examples . 23

2.4 Interaction Techniques . 25

2.5 Visualization Application Areas 27

2.5.1 Information retrieval— visual queries 27

2.5.2 Business visualization— decision support 29

2.6 Summary and Conclusions . 30

3 Management through Vision: a case study 33

3.1 Business Visualization . 34

3.1.1 From data gathering to high-quality decisions 34

3.1.2 Visualizing management information 35

3.2 Managing Business Processes at Gak NL 37

3.2.1 The problem . 37

3.2.2 Current information systems 38

3.2.3 Goals . 38

3.3 Visualizing Past and Present . 39

3.3.1 Quantity visualizations 40

3.3.2 Capacity visualizations 42

3.4 Visualizing the Future . 44

3.4.1 Simulation . 44

3.4.2 Trend visualization and interaction 45

3.5 Evaluation of Concepts and Prototype 46

3.5.1 Benefits . 46

3.5.2 Shortcomings . 47

3.5.3 The simulation . 48

3.5.4 Discussion . 48

CONTENTS xi

3.6 Discussion and Issues Raised . 48

3.6.1 Organizational forces . 49

3.7 Summary and Conclusions . 50

4 Visualization Models: theory and practice 51

4.1 Visualization Models . 52

4.1.1 Visual taxonomy . 52

4.1.2 The visualization pipeline 52

4.1.3 The visualization reference model 54

4.1.4 A formal framework for visualization 57

4.2 Visualization models in practice 60

4.2.1 Embedded visualization 60

4.2.2 General-purpose visualization tools 64

4.2.3 Visualization component libraries 65

4.2.4 Research projects . 68

4.3 Summary and Conclusions . 71

5 Diva: Distributed Visualization Architecture 73

5.1 Distributed Visualization Architecture 74

5.2 Multi-user Visualization . 75

5.3 Conceptual Architecture . 76

5.3.1 Primary, derived and presentation model 77

5.3.2 Transition from model to model 78

5.3.3 Example configuration of the conceptual model 78

5.3.4 Relation to other visualization models 78

5.4 Basic Software Architecture . 79

5.4.1 Basic requirements . 80

5.4.2 Basic software architecture 81

5.5 Extending the Software Architecture 83

5.5.1 Extended requirements 83

5.5.2 Extensions to the basic software architecture 84

5.6 Information Architecture . 87

5.6.1 Hierarchical data and derived concepts 88

5.6.2 Example of the information structure 88

xii CONTENTS

5.7 Diva Architecture recapitulated 90

5.8 Software Architecture revisited 90

5.8.1 Definitions . 91

5.8.2 Use of the term architecture 92

5.8.3 Why is software architecture important? 93

5.9 Summary and Conclusions . 94

6 Experiments 95

6.1 Overview of Prototypes . 95

6.2 Modern Times . 97

6.2.1 Software architecture . 97

6.2.2 Technology . 98

6.2.3 Wrap up . 100

6.3 So Many Users – So Many Perspectives 100

6.3.1 Sessions . 101

6.3.2 Sharing perspectives . 102

6.3.3 Interference versus non-interference 102

6.3.4 Communications . 102

6.3.5 Requirements . 103

6.4 Collaborative Visualization Architecture 103

6.4.1 Software components . 103

6.4.2 User environment . 105

6.5 Application of Collaborative Visualization 106

6.6 TGD Technology . 109

6.6.1 Background on VRML . 110

6.6.2 Dynamic updates . 111

6.6.3 Mobile VRML gadgets . 113

6.6.4 Implementation of display agents 115

6.7 Summary and Conclusions . 116

CONTENTS xiii

7 3D Gadgets for Business Process Visualization 119

7.1 3D BizViz . 119

7.2 Managing Business Processes at Gak NL 120

7.3 Visualization Gadgets in Java3D 121

7.3.1 Overview of behaviors . 122

7.3.2 Visualization gadgets . 125

7.4 Case study: Visualizing Business Processes 129

7.4.1 Overview . 130

7.4.2 User interaction . 132

7.4.3 Insight in present and past 132

7.4.4 3D versus 2D . 133

7.4.5 Design issues . 135

7.5 Summary and Conclusions . 136

8 Shared Concept Space 137

8.1 Introduction . 138

8.1.1 Communication paradigms 138

8.2 The Shared Concept Space . 139

8.2.1 News feed metaphor . 140

8.2.2 Why a Shared Concept Space? 140

8.3 Patterns underlying the Shared Concept Space 141

8.3.1 Blackboard . 141

8.3.2 Model-View-Controller (MVC) 142

8.3.3 Talker-Listener . 143

8.3.4 SCS and patterns . 144

8.4 Software Architecture of the SCS 145

8.4.1 Hierarchical concepts . 145

8.4.2 Derived concepts . 146

8.4.3 Dynamic data . 147

8.4.4 Discussion . 148

8.5 Distribution aspects of the SCS 149

8.5.1 Distributed system versus single machine 149

8.5.2 Scalability . 149

8.5.3 Topology . 151

xiv CONTENTS

8.6 Example usage of the SCS . 151

8.7 Experiments with the SCS . 154

8.8 Summary and Conclusions . 155

9 Distributed Objects: from Features to Styles 157

9.1 Software Architecture and Style 158

9.2 Distributed Object Feature-space 159

9.2.1 Objects . 159

9.2.2 Connectors . 159

9.2.3 Location . 160

9.2.4 Feature matrix of distributed object technology 160

9.3 Architectural Styles . 162

9.3.1 Distributed objects architectural style 162

9.3.2 Dynamically downloaded classes architectural style . . . 162

9.3.3 Mobile objects architectural style 164

9.3.4 Event-space architectural style 165

9.4 Styles in Diva . 165

9.4.1 Distributed objects . 165

9.4.2 Downloaded classes . 166

9.4.3 Mobile objects . 166

9.5 Evaluation and Discussion . 167

9.5.1 Feature-based classification 168

9.5.2 Rules of thumb . 169

9.6 Summary and Conclusions . 170

10 Conclusions 171

10.1 Summary . 171

10.2 Contributions . 174

10.2.1 Multi-user . 174

10.2.2 Coupling . 175

10.2.3 Interaction . 175

10.3 Open Issues and Future Research 175

2011The Future of Visualization 179

CONTENTS xv

Bibliography 191

Nederlandstalige samenvatting 199

Titles in the SIKS Dissertation Series 203

Index 209

xvi CONTENTS

CHAPTER 1

Introduction

In the Beginning ...
Was the Command Line.

Neil Stephenson.

A picture says more than 1,000 words is a well-known expression. And although it
is not literally true, for then I would have drawn this thesis in about 80 pictures,
it neatly expresses the power of visual information.

However, as always, good things never come alone. A considerable part of
visual information is non-informative or even deceiving. And as such, the art
of creating good visualizations is gaining interest in multiple research areas.
In the field of computer science, the research focus is on supporting people in
creating and presenting visualizations through computer-based systems.

The work described in this thesis looks at visualization mostly from a software
engineering perspective. An approach comprising the search for requirements,
high-level design and experiments through the creation of working prototypes
forms the foundation of our research. However, creativity was not absent. De-
sign, independent of whether that concerns software architectures or visual-
izations, requires both a thorough domain knowledge and a certain portion of
inspiration.

2 1.1. PROBLEMS

1.1 Problems

If all problems concerning computer-based visualization had been solved and
we were living the future of visualization (Chapter 2011), this thesis would not
have been written. Or it would have had a different subject. However, from
where you are now still more than 200 pages are left about computer-support
for the process of visualization. And they aim at providing solutions to the
following three major problems in information visualization.

1.1.1 Lack of multi-user support

Information visualization presents data in a graphical format. As we will
discuss later, visual information is especially useful to understand informa-
tion and to communicate information. Visualization software is mainly aimed
at helping its users in understanding the data and discovering relationships
within the data. For example, management information visualization tools
support managers in understanding business processes and monitoring the
business results of their organization.

Currently, visualization software is, however, mainly targeted at single users
and most tools lack support for multiple users to work together. This is strange.
Especially when visualization informs and supports people who have to make
decisions. Collaboratively foraging the information can have a positive effect
on the common understanding and consequently improve the quality of the
decision.

Exchanging or communicating visualizations is currently not supported by
most visualization tools. And when it is supported, it is usually limited to
exchanging the resulting pictures instead of sharing the full visualization en-
vironment. Summarizing, our first problem is that although information vi-
sualization is often a multi-user activity, computer-based support is limited to
single users.

1.1.2 Tight coupling

Visualization is becoming more and more common in today’s tools. In addition
to showing data as it is, tools allow for a visualization of the data. For example,
with each new release of Microsoft Office, the visualization capabilities of Excel
and Access have been extended.

The visualization capabilities are, however, tightly coupled with the data pro-
ducing or managing application. They cannot be used independently of their
environment. For example, a new simulation tool may contain extensive
means of visualizing the (intermediate) results of a simulation. However, that

CHAPTER 1. INTRODUCTION 3

integrated visualization cannot be used to represent information from a differ-
ent data source. Comparing the simulation visualization with a visualization
of stored data is therefore cumbersome.

Separate visualization environments, on the other hand, often contain filters to
import all kinds of data. Unfortunately, the link with the information provider
is in that case a no-coupling-at-all link, as apposed to the tight-coupling in the
case of built-in visualization. A separate visualization tool can import the re-
sults of the simulation but is incapable of showing intermediate data as the
built-in visualization can. Summarizing, most present-day visualization solu-
tions are either too tightly coupled or too separate.

1.1.3 Limited interaction

Interaction is an important feature of software. For example, the success of the
direct manipulation interface is to a large extent due to its inherent support for
straight-forward and direct interaction. But also in the realm of visualization,
interaction is becoming increasingly important. The best visualizations are not
static images to be printed in books, but fluid, dynamic artifacts that respond to the
need for a different view or more detailed information (Ware 2000).

Most computer-supported visualization products claim to be interactive envi-
ronments. The amount of interactivity, however, is mostly limited to the visual
model. This means that the user can manipulate the resulting images of the
visualization process but that interaction with the information source or the
information producer is absent or very restricted. To increase the user’s under-
standing of relations within the information, we advocate full interaction with
every aspect of the visualization process.

1.2 The Diva Project

My Master’s study of Computer Science at the Vrije Universiteit in Amsterdam
resulted in an article entitled “Animating the Web” (Eliëns, van Ossenbruggen
& Schönhage 1997). The paper describes how multiple media types and inter-
active contents could be integrated on the Web through a structured markup
language (SGML). Integration, which was the keyword of that research, initi-
ated a new research project focusing on the integration of simulation, anima-
tion and visualization in a hypermedia environment.

The project, which soon received the name DIVA, was part of a larger research
project called Simulation In Normative Systems. Our contribution to this project
is a software architecture to present the results of the simulation. However,
the goal of the DIVA project has broadened from merely Web-presentation of
simulations to interactive and collaborative visualization of information.

4 1.3. PERSPECTIVES ON VISUALIZATION

The goal of the Distributed Visualization Architecture (DIVA) project is:

Development of a distributed software architecture for interactive visual-
ization of dynamic information. To support multiple users with different
information requirements, the architecture must support multiple perspec-
tives/views on the information. Additionally, simulations will be included
as dynamic sources of data and information. Furthermore, to improve the
usability of visualization, user-interaction and user-collaboration has to
be incorporated into the architecture.

To illustrate the architecture, prototype implementations will be built that
allow multiple users to visualize data coming from shared information
sources and simulations.

Information visualization has received a lot of attention in recent years. How-
ever, most solutions are still immature in the sense that they are restricted to a
limited set of information or to a limited ability of experimenting with the data
and visualization. The main contribution of the DIVA project is to investigate
the process of visualization and develop a flexible architecture that supports
that process adequately.

A non-trivial part of the project consisted of investigating technical issues. Be-
cause of the rapidly improving techniques underlying distributed computing
and 3D visualization (computer graphics), keeping up with state-of-the-art
technology is time-consuming. However, in my opinion, a research project
about distributed software architectures with only a marginal focus on techni-
cal issues is not very valuable. By studying technology and creating prototypes
a much better insight into the material can be gained.

1.3 Perspectives on Visualization

Perspectives play an important role in the DIVA project. On a coarse level,
we look at the concept of visualization from both an academic and a business
perspective. On a more fine-grained level, visualization perspectives are in-
evitable to support multiple users in a visualization environment.

1.3.1 Visualization and architecture

Information Visualization and Software Architecture are the main subjects in
this work. Although the two topics come from different disciplines, they are
merged here in the sense that we investigate software architecture to support
different aspects of information visualization.

Visualization and architecture also provide the two foundations on which this
thesis is built. Some chapters mainly concern visualization aspects such as the

CHAPTER 1. INTRODUCTION 5

added value of interactive visualization or the theory and practice of visualiza-
tion models. In contrast, other chapters focus on (software) architecture and
use visualization only as the ’accidental’ domain.

Hopefully, looking at the problem domain from multiple perspectives in-
creases the understanding of the domain. A better understanding, subse-
quently, enables the development of better solutions.

1.3.2 Academic and business perspectives

An important influence on this research is the fact that it is a combination of
research in an academic and business context. This has two major advantages.
On the one hand, we have the academic freedom to investigate new and un-
proven topics. On the other hand, we have easy access to the ‘real’ world of
users with ‘real’ problems. This has definitely contributed to the usefulness of
the project by lifting it above the academic playground.

In addition to providing two different mindsets to look at the domain, both
university and industry also have two distinct resources of people. Students
from the Vrije Universiteit were a valuable addition to the project. Most of them
were extremely productive and a large part of the prototypes is due to the effort
of those students. On the other side, business managers and business engineers
at ASZ and Gak made it possible to do case studies and to experiment with
visualizations in a business context.

1.3.3 Visualization perspectives

So many users, so many perspectives is the title of an article that we published
on the topic of collaborative visualization (Schönhage, Bakker & Eliëns 1998).
It denotes the observation that although people are using the same informa-
tion sources, they require different ways to view the information depending
on their background and information requirements. Visualization perspectives
are a means to look at information.

As we see it, perspectives play an important role in visualization. A single
visualization of data is never enough. Multiple users, having multiple goals
with the data require multiple perspectives on the data. Support for multiple
perspectives is a topic that is still underexposed by most visualization tools.

1.3.4 The software engineering perspective

Software engineering can be seen as a combination of perspectives on the de-
velopment of software comprising analytical, architectural, implementation,
and organizational perspectives. In this thesis, we try to cover most of these
perspectives. Therefore, we will discuss issues ranging from requirements to

6 1.4. STRUCTURE OF THE THESIS

implementation, and from architectural styles to organizational forces of in-
troducing 3D visualizations. This range of issues might look like a farrago at
first. However, in the end all perspectives contribute to the total picture of a
powerful architecture that enables interactive and multi-user information vi-
sualization.

1.4 Structure of the Thesis

The structure of this thesis is as follows. Chapter 2, entitled Information Visu-
alization, introduces the domain of this project. It illustrates how visual infor-
mation can induce correct or incorrect decision making. Additionally, it intro-
duces two types of visualization: scientific and information visualization.

The next chapter, Management through Vision: a case study, describes how busi-
ness visualization can help managers in their process of decision making. It
explains how effective visualizations can better inform a manager and thus im-
prove the quality of the decisions. The evaluation of the case studies resulted
in issues that are used as a source of input for the requirements of the DIVA
architecture.

Chapter 4, entitled Visualization Models: theory and practice, covers related work,
both in the theoretical and practical field. The theoretical part describes visu-
alization models which describe the process of transforming data into visual
representations. The second part of the chapter discusses practical visualiza-
tion environments. These projects and (commercial) products are discussed
according to their contribution to the process of creating visualizations.

In Chapter 5, Diva: Distributed Visualization Architecture, the core of this project
is described: the DIVA architecture. According to three perspectives (concep-
tual architecture, software architecture, and information architecture) a discus-
sion of how requirements are covered by the architecture is provided. To keep
things manageable, the architecture is described in two phases. First, the chap-
ter introduces the basic architecture covering the basic requirements. After
that, we show how extra requirements are being incorporated by extensions to
the basic architecture.

Chapter 6, Experiments with Visualization and Collaboration, provides a historical
overview of the prototypes that have been created during the DIVA project. It
illustrates how the software architecture can be instantiated in working sys-
tems and how technology has influenced the architectural choices. The pro-
totype that experiments with collaborative visualization is described in some-
what more detail.

In the next chapter, entitled 3D Gadgets for Business Process Visualization, the
case study that was already described in Chapter 3 is extended to a three-
dimensional visualization. It describes a collection of visualization primitives
that can be reused for visualizations in a business context. Additionally, it

CHAPTER 1. INTRODUCTION 7

compares the 2D and 3D prototype according to usefulness, effectiveness and
efficiency.

After a digression about experiments and extensions of DIVA in the previous
two chapters, Chapter 8 describes an essential element of the DIVA architec-
ture: the Shared Concept Space. The Shared Concept Space decouples informa-
tion provider and visualizer through shared concepts. Additionally, it sup-
ports derived concepts which provide new information based on source data
and derivation knowledge.

Chapter 9, Distributed Objects: from Features to Styles, goes back to a more ab-
stract level. After all the details of distributed software architectures, 3D vi-
sualization models and shared data systems, this chapter tries to extract more
general aspects of distributed object-oriented software. It discusses four ar-
chitectural styles that represent four different means of connecting distributed
objects and making them collaborate.

The purpose of Chapter 10 is to wrap up everything that has been said in the
thesis. It summarizes the contributions and open issues of the DIVA project in
the realms of Information Visualization and Software Engineering.

The last chapter (the odd chapter) must be seen as a gift. The chapter, en-
titled The Future of Visualization, describes a visionary scenario of what will
be possible when people in an organization are connected by a collabora-
tive, distributed visualization system through which they are able to exchange
thoughts, arguments and other types of information.

1.4.1 Visualization of the structure

Since this dissertation concerns information visualization, Figure 1.1 contains
a visualization of the structure of the thesis. It represents the relations and
important dependencies between the chapters and parts comprising the thesis.

On a coarse level, the thesis consists of six parts: introduction, visualization the-
ory & practice, DIVA architecture, distributed software architectures, conclusion and
future. The parts are represented in Figure 1.1 by the large boxes. All parts
consist of one or multiple chapters represented by the small numbered boxes.

The large block arrows between the parts represent important dependencies.
They indicate that particular topics from the previous part are necessary to
fully understand the discussion in the next part. The required knowledge is
given in the dashed box near the arrow. For example, the architectural dis-
cussion given in Chapter 5 builds upon visualization issues and requirements
described in the context of our own case studies (Chapter 3) and related work
(Chapter 4).

Dependencies between individual chapter within the blocks are illustrated by
the small arrows. For example in the DIVA architecture part, it is necessary
to read the theoretical chapter (Chapter 5) before reading any of the chapters
discussing the practical deployment of the architecture.

8 1.5. PUBLICATIONS

Diva architectureDiva architecture

Distribution &
Software Architecture

Distribution &
Software Architecture

IntroIntro Visualization
theory &
practice

Visualization
theory &
practice

Requirements
and issues of
visualization
models and
projects

1

2

3

4

all chaptersall chapters

Research
questions and
goals.

Information
Visualization:
History & goals

5

6 7

89
all prev. chaptersall prev. chapters

ConclusionConclusion

10

FutureFuture

11

theory

practice

Architecture
discussion
and practical
experience

Problems &
solutions

FIGURE 1.1: Visualization of the structure of this thesis that illustrates the de-
pendencies between the chapters

1.4.2 Paths through the dissertation

Of course everybody should read the full text of the dissertation. However, it
is possible to indicate at least two paths through the book, which skip some
chapters or entire parts of the text. The first path is useful to people who are
mainly interested in (information) visualization and do not care much about
software architecture. The second path is for people interested in software ar-
chitectures. People who want to follow the visualization path should mainly
concentrate on Chapters 1, 2, 3, 4, (5), (6), 7, 10, and 11 where the chapters be-
tween brackets are somewhat less important. For those more interested in the
software architecture path, please concentrate on Chapters 1, (3), 5, 6, (7), 8, 9
and 10.

1.5 Publications

A lot of the work presented in this thesis has been published elsewhere. The
next overview describes the publications that this dissertation is based on.

CHAPTER 1. INTRODUCTION 9

The case study described in Chapter 3 was presented at the Information Visual-
ization 2000 (IV2000) conference in London (Schönhage & Eliëns 2000b).

The DIVA architecture (Chapter 5) is present in most publications. However,
the core architecture is described in (Schönhage & Eliëns 1997) and (Schönhage
& Eliëns 1998). These papers were presented at New Paradigms in Information
Visualization and Manipulation (NPIV ’97), and at the International Conference on
Digital Convergence: the Future of the Internet and WWW, respectively. The latter
paper has also been published as a book chapter in (Earnshaw & Vince 1999).

Collaborative visualization in DIVA, as covered in Chapter 6, was previously
presented at the IFIP 13.2 Working Conference on Designing Effective and Usable
Multimedia Systems in Stuttgart, Germany (Schönhage et al. 1998).

Two publications underlying this thesis were presented at the International Con-
ference on the Virtual Reality Modeling Language and Web 3D Technologies. The first
one in 1999 (Schönhage & Eliëns 1999a) is part of Chapter 6. The second pa-
per (Schönhage, Eliëns & van Ballegooij 2000), which covers 3D gadgets for
business process visualization, forms the basis for Chapter 7.

The Shared Concept Space is discussed in Chapter 8. Previously, the mate-
rial was presented at Distributed Objects and Applications (DOA’00) in Antwerp
(Schönhage & Eliëns 2000a).

Finally, the material discussed in Chapter 9 is based on two workshop presen-
tations. The first one (Schönhage & Eliëns 1999c) was presented at Engineering
Distributed Objects (EDO99), which was part of the International Conference on
Software Engineering (ICSE1999). The second paper (Schönhage & Eliëns 1999b)
was part of the Nordic Workshop on Software Architecture (NOSA ’99).

10 1.5. PUBLICATIONS

CHAPTER 2

Information Visualization

As for a picture, if it isn’t worth a thousand words, the hell with it.
Ad Reinhardt

Computer graphics and visualization offer “intelligence amplification” (IA)
as compared to artificial intelligence (AI).

Fred Brooks

Information is an essential source for good decision making. Without a city
plan, people will get lost in an unknown city; without clocks and time sched-
ules, you never know when a train will arrive; and without marketing informa-
tion, deciding whether or not to market the new product remains a high-risk
guess. The list of examples is endless and because information is so highly in-
tegrated in our lives it does not strike us anymore that it is so essential. It is the
absence of good or enough information that is notable.

Information comes in a plentitude of appearances. It can be a table of numbers,
a list of rules, a book of laws, a collection of photos or a structured drawing
of underground connections. For our purposes, we will distinguish between
visual and non-visual information. Visual information comprises information
of which a major part consists of visual elements such as drawings, photos
and graphs. Non-visual information mainly consists of verbal elements in the
form of text and numbers.

12 2.1. VISUAL INFORMATION

Structure The subject of this chapter is Information Visualization, which is es-
sentially the process of transforming non-visual data to visual information. To
understand why this adds value to understanding information, we must first
take a look at visual information itself. When we appreciate the usage of visual
information and know the merits of good information design, we will take a
look at attempts to create visualizations in a scientific context (Section 2.2). A
consecutive development is the visualization of more abstract data. This field
of study comprises visualizations of large hierarchical and complex data struc-
tures as we find them in business information or the internet. Information vi-
sualization, as this discipline is called, is covered in Section 2.3. The usefulness
of visualizations to support users can be increased by allowing them to inter-
act with the visual information. Section 2.4, therefore, gives a quick overview
of some interaction techniques. Finally, to illustrate the usage of information
visualization, some typical application areas are discussed in Section 2.5.

2.1 Visual Information

Before investigating the concept of visual information in more detail, let us
first look at information itself. According to Merrian-Webster’s dictionary1

information is 1) the communication or reception of knowledge or intelligence and
2) knowledge obtained from investigation, study or instruction. While thinking over
the definition, two observations are quickly made. The first observation is that
information is always aimed at increasing knowledge (otherwise it would just
be factual data). In other words, information is only useful when it satisfies
some information needs. A second observation is that information like knowl-
edge is amorphous, i.e. it has no form by itself but has to be instantiated to be
communicated. Visual information is one means to present information.

With visual presentation being one means to show information, what are the
other options? Actually, a vast array of information presentation forms exist.
Text or speech is one example. A large part of information transfer between
people occurs by means of speech (conversation, radio) and prose (newspa-
pers, books). More examples of information presentations are numbers, for-
mulas and other symbol-oriented techniques.

Each type of information presentation has its unique properties and, hence,
is suitable to be applied in different kinds of communication. For example,
speech is appropriate to quickly exchange simple information between people.
However, to communicate the development of prices on the stock-market a
visual presentation is better suited. Why? Mainly because visual information
gives quick insight using the high bandwidth of human’s perceptual abilities.

An essential characteristic of visual information in contrast to, for example,
textual information is the fact that it is non-linear. A text has an intrinsic or-
der in which the information is poured whereas visual information is mostly

1www.m-w.com

CHAPTER 2. INFORMATION VISUALIZATION 13

random access. Viewers glance at a picture to get an overview and then look at
particular parts of the image in more detail according to their interests at that
moment. The choice of deciding what is relevant has shifted from information
producer to consumer.

Bertin (1977/1981) characterizes the usefulness of visual information by de-
scribing three levels of reading a diagram: read fact, read comparison and read
pattern. Read fact looks at a single number or another single data element.
Read comparison concerns two or more parts of the diagram and compares
them according to position, size, color, etcetera. Read pattern takes the com-
plete diagram into account and searches for large-scale patterns.

Visual information is ubiquitous in our daily lives. For example, the weather
report comes up with little clouds when rain is expected whereas a big sun
forecasts nice beach weather. Every day, newspapers make use of graphs to
show exchange rate fluctuations of the dollar and euro. In addition, advertise-
ments that are trying to convince you to use their brand of toothpaste, show
animations of decaying teeth that were not brushed properly. We could go on
for a while, but the illustrated point is clear: visual information has the poten-
tial to communicate information quickly independent of whether the goal is to
inform or to convince.

2.1.1 Information design

Designing visual information that is useful and effective is not straight-
forward. Tufte’s trilogy on (visual) information design (Tufte 1983, Tufte 1990,
Tufte 1997) abounds with examples of flaws. A compelling example is the fatal
decision to launch the space shuttle Challenger on January 28, 1986. The shut-
tle exploded because two rubber O-rings leaked while they lost their resiliency
due to the low temperature. The day before the launch, however, the engi-
neers who designed the rocket faxed NASA thirteen charts indicating that the
launch should be postponed. Unfortunately, the charts were unconvincing and
unclear with respect to the relation between temperature and O-ring failure.

The night before the launch, the NASA officials discussed the problem with the
rocket-designers’ managers. And although this was the engineers’ only no-
launch recommendation in 12 years, the NASA decided that the evidence was
inconclusive. Next morning, the Challenger exploded after 73 seconds.

In his discussion of the Challenger accident, Tufte (1997) states that the cause
of the wrong decision of launching the space shuttle comes down to the inabil-
ity to assess the link between low temperature and O-ring damage on earlier
flights.

One of the charts, reprinted in Figure 2.1, shows the history of eroded O-rings
on previous launches. The leftmost piece of text describes the damaged ring
while the first column contains the launch number. The other columns indicate
the measured damage of that particular ring.

14 2.1. VISUAL INFORMATION

FIGURE 2.1: The original chart only illustrates the history of O-ring damage,
without making any relation to the temperature. Courtesy of
Graphics Press.

Tufte (1997) discusses that the chart has some serious flaws. A first problem
is that O-ring damage is described by six types of damage in the right-side
columns of the chart. Thus comparing the severity of the damage between two
individual cases is cumbersome. To be able to compare the different launches,
only a single index for damage is necessary, e.g. the weighted sum of the indi-
vidual numbers. A second essential problem is the fact that the chart does not
provide data about the assumed cause of the failure, temperature. Therefore
linking the cause and effect of the damage is impossible.

To investigate the Challenger accident later, a presidential commission was
presented some more charts. Unfortunately, several of these charts still did
not get it right. Figure 2.2 is one such chart. Each rocket in the figure repre-
sents a successful launch whereas marked areas in the small rockets indicate
damages to the primary or secondary O-ring.

According to Tufte (1997), the fatal flaw in this chart is that the time-based order
of elements is completely wrong. The sequential order illustrates the issue
whether there is a time trend in O-ring damage. However, this is not what we
are looking for. To answer the question whether there exists a temperature trend
in O-ring damage imposes an ordering of the rockets by temperature instead
of by time.

Other problems with the chart as pointed out in (Tufte 1997) are:

• disappearing legend — the legend has been presented in previous charts
but is not available in this chart

CHAPTER 2. INFORMATION VISUALIZATION 15

FIGURE 2.2: This chart, presented during an investigation of the accident, ar-
ranges damage according to time and is therefore not capable of
showing the temperate trend. Courtesy of Graphics Press.

• chartjunk — the strongest visual presence in this graph is generated by
the outlines of the rockets instead of by important underlying data

• lack of clarity in depicting cause and effect — again the O-ring damage
is depicted in several places (instead of a single index) and relating it to
the temperature is cumbersome.

Tufte has created a new scatterplot (Figure 2.3) that takes all criticism into ac-
count and clearly displays the relation between temperature and failure. The
graph clearly illustrates the serious risks of a cold weather launch. Actually,
the graph shows that every launch below 66◦F had problems. Additionally,
the risky extrapolation beyond all previous experience is expressed convinc-
ingly by the huge gap between known data points and the discussed area.

The Challenger crashed, not because the engineers were unaware but, because
they were unable to adequately depict their thoughts and consequently con-
vince the NASA officials to postpone the launch. This and many other examples
suggest the following message: there are right and wrong ways to show data; there
are displays that reveal the truth and displays that do not (Tufte 1997, p.45).

16 2.1. VISUAL INFORMATION

FI
G

U
R

E
2.

3:
Tu

ft
e’

s
sc

at
te

rp
lo

tc
le

ar
ly

de
pi

ct
s

th
e

re
la

ti
on

be
tw

ee
n

te
m

pe
ra

tu
re

an
d

fa
ilu

re
.C

ou
rt

es
y

of
G

ra
ph

ic
s

Pr
es

s

CHAPTER 2. INFORMATION VISUALIZATION 17

2.2 Scientific Visualization

In the November 1987 issue of Computer Graphics, McCormick, DeFanti &
Brown (1987) introduced the concept of visualization into the scientific domain.
They presented visualization as a means to observe information. By presenting
complex data visually, scientists could benefit from a better understanding of
the data under study.

In previous years, computer technology had offered scientists in the fields of
physics, chemistry and meteorology the power to simulate complex models.
Using these simulations, researchers were able to verify theories by computing
results and comparing them with measured values. Additionally, simulation
enabled virtual experimentation. A problem with simulations of increasing com-
plexity is that resulting data also becomes harder to interpret. Presenting re-
sults of simulations and computations visually might help to better understand
the results.

Visualization is a method of computing. It transforms the symbolic
into the geometric, enabling researchers to observe their simulation
and computations (McCormick et al. 1987).

The definition given above makes clear that visualization is a method to trans-
form non-visual data to visual information. The purpose of this transformation
is to increase insight into the complex material of scientific models and their
simulations.

The criteria discussed in the previous section about visual information and in-
formation design also apply to (scientific) visualization. In short, there are vi-
sualizations that reveal the useful information and visualizations that suggest
wrong conclusions. Therefore, it is not enough to just apply some visualization
technique to a dataset. In contrast, visualizations have to be carefully designed.
Depending on the context, particular visualization techniques are better suited
to reveal relationships in data than others.

2.2.1 Scientific visualization techniques

Source data that is used in scientific visualization often has some important
characteristics. Shneiderman (1996) discriminates seven data types in his data
type by task taxonomy which characterize the task-domain information ob-
jects and lead to distinct visualizations. The data types are: 1-D linear, 2-D
map, 3-D world, temporal, multi-dimensional, tree and network.

Datasets, which are the source of scientific visualization, consist of an organiz-
ing structure and data attributes associated with the structure. In scientific
visualization, the organizing structure often represents the physical space of

18 2.2. SCIENTIFIC VISUALIZATION

the data. For example a dataset about the outside temperature of several loca-
tions in a country has a two-dimensional organizing structure that reflects the
shape of the country.

Data attributes can be assigned to components of the structure, i.e. points,
edges or faces. The data attributes themselves can be of arbitrary dimension.
Examples are scalars (single value) and vectors (magnitude and direction).

The next paragraphs will introduce a few important techniques to visualize
datasets. The set of techniques comprises color mapping, isosurfaces and
particle animation. More scientific visualization techniques can be found in,
amongst others, (Schroeder, Martin & Lorensen 1996).

Color mapping

Color mapping is a useful technique to visualize scalar data in a two dimen-
sional grid or a 2D cut through a three-dimensional space. Scalar values located
at (x, y) are mapped to a particular color independent of the value of x and y.
The mapping can take place by means of a lookup table which contains color
values for all, or ranges of, scalar data. A more general form of mapping scalar
data to a color is achieved by a transfer function. To create a useful and effec-
tive visualization the choice of the lookup table or transfer function is essential
and usually requires a certain amount of experimentation.

FIGURE 2.4: Color mapping precipitation on the map of the USA. Courtesy of
the weather channel (www.weather.com).

CHAPTER 2. INFORMATION VISUALIZATION 19

As a example of color mapping take a look at Figure 2.4, which visualizes the
precipitation on June 11, 1999 in the southeastern part of the USA. The data
which is used as the source of this color mapping is one-dimensional, scalar
data (the amount of rainfall) ordered on a two-dimensional grid (the surface of
the USA). The resulting image presents the scalar data mapped to colors, rang-
ing from green for light rain to red for heavy showers. To be able to interpret
the resulting visualization, the color map is projected on top of a map of the
corresponding part of the country.

Isosurface

Isosurfaces are the 3D version of a more general technique called contouring. In
this technique we draw the boundaries (in 2D with lines, in 3D with surfaces) of
constant scalar value to create regions in the dataset. This way, we can discover
areas which have similar values and therefore a strong relationship.

As an example, look at Figures 2.5 and 2.6, both visualizing the same MRI-
scan (Magnetic Resonance Imaging) using different isosurfaces. An MRI-scan
measures the variation in a magnetic field in response to radiowave pulses. The
dataset used has the structure of a 3D grid (actually a series of slice planes) with
scalar values assigned to datapoints. By applying an isosurface visualization
to this dataset, we can reveal the skeletal body of the scanned head (Figure 2.5)
as well as the skin (Figure 2.6). We can show both images based on the same
dataset because the magnetic resonance of bones and skins are fairly distinct.

Particle animation

The last technique discussed here visualizes vector data instead of scalar data.
The example we will use visualizes wind speeds calculated using a simula-
tion of a tornado. The topology of the dataset is a three-dimensional grid and
the associated data values consist of 3D vectors denoting speed in x, y and
z-direction.

A straight-forward way to visualize this dataset is to draw arrows representing
the vector data at each point in the three-dimensional grid. A more dynamic
visualization, however, uses particle animation to visualize the tornado. As a
metaphor, think of throwing some leafs into a whirlwind and see them swirling
around.

We create this animation by inserting particles in the 3D space and during each
step of the animation we move each particle according to the vector at the cur-
rent position of that particle. By playing the animation frames, we can see the
particles traveling through the 3D space illustrating the streams in the dataset.
Figure 2.7 contains a single frame of an animation in which the particles also
leave a little trace behind to better show the direction in which they are mov-
ing.

20 2.2. SCIENTIFIC VISUALIZATION

FIGURE 2.5: Isosurface revealing the bones of an MRI-scan.

FIGURE 2.6: Isosurface showing the skin of the same MRI-scan using different
parameters.

CHAPTER 2. INFORMATION VISUALIZATION 21

FIGURE 2.7: A particle animation of a tornado illustrates how elements would
swirl through the air.

2.3 Information Visualization

During the last decade, a new visualization research focus has emerged, in-
tended to visualize abstract information. Robertson, Card & Mackinlay (1993)
state “Information visualization attempts to display structural relationships
and context that would otherwise be more difficult to detect by individual
requests.” In other words, information visualization transforms abstract in-
formation into visual information enabling all the advantages of quick insight
and pattern recognition that are inherent in visual information.

2.3.1 The purpose of information visualization

Scientific visualization usually borrows its representations from the physical
world as can be seen from the MRI-scan and tornado examples. Because infor-
mation visualization focusses on abstract data, mapping to the physical world
is difficult or impossible. Hence, a key research issue of information visualiza-
tion is “to discover new visual metaphors for representing information and to
understand what analysis task they support” (Gershon, Eick & Wright 1997).
Another important issue concerns the ease of use because information visual-
ization has a more diverse audience in contrast with the specialized, technical
users of scientific visualization. Table 2.1 compares information visualization
with scientific visualization on four characteristics, audience, task, input and
input quantity.

In their excellent introduction to Readings in Information Visualization: using
vision to think Card, Mackinlay & Shneiderman (1999) compare visualization

22 2.3. INFORMATION VISUALIZATION

TABLE 2.1: Information visualization compared with scientific visualization
(Gershon, Eick & Wright 1997).

 Audience Task Input Quantity
Scientific
Visualization

Specialized,
highly technical

Deep understanding
of scientific
phenomena

Physical data,
measurements,
simulation
output

Small to
massive

Information
Visualization

Diverse,
widespread, less
technical

Searching,
discovering
relationships,
including action (fast,
many times!)

Relationships,
nonphysical
data,
information

Small to
massive

with external cognition where external representations are used to amplify the
acquisition and use of knowledge. Their definition of information visualiza-
tion, stated below, explicitly contains the purpose of visualization: the purpose
of visualization is insight, not pictures (Card et al. 1999, p.6).

Information Visualization: the use of computer-supported, inter-
active, visual representations of abstract data to amplify cognition
(Card et al. 1999, p.6).

In (Schönhage et al. 1998), we have discussed that people use visual represen-
tations of information for two different purposes. First, visualization is often
used to understand information. A visualization gives quick insight into in-
formation using humans’ remarkable perceptual abilities (Shneiderman 1998).
Second, visual representations are used to communicate information to other
people. Shneiderman (1998, p.522) states that the bandwidth of information
presentation is potentially higher in the visual domain than it is for media
reaching any of the other senses. In the first case, when using visualization to
understand information, we often apply it individually (although it is surely
useful to try to understand information in a group process). In the latter case
we are communicating with other people because we try to illustrate some-
thing, or we want to convince them of our point of view.

2.3.2 Expressive and effective visualization

Now that the purpose of visualization is clear, it is useful to look at how suc-
cessful visualizations are at amplifying cognition. The success-ratio of visual-
ization is covered by two criteria: expressiveness and effectiveness (Mackinlay
1986).

A mapping from data to a visual structure is expressive if all data and only
the data is represented. So, all existing data is available and no new, unwanted
data is introduced. A visualization is effective when it adequately supports
the user in finding relationships or understanding the data. Hence, deciding

CHAPTER 2. INFORMATION VISUALIZATION 23

whether a mapping is effective can only be done by taking the information
requirements of the perceiver into account.

Although proposals exist to automatically generate expressive and effective vi-
sualizations, the lion’s share of visualizations are still made by hand. The tool
support in the manual process of creating visualizations ranges from low-level
graphics APIs leaving everything to the ‘visualization programmer’ to prefab-
ricated visualizations in which only the data has to be poured. The higher-level
the tool support is, the less complex but also the less flexible a user can create
or adapt a visualization. As a consequence, high-level support is advisable for
the occasional user whereas expert users who want to control every aspect of
the visualization need a more flexible approach.

A lot of research is currently being done in the field of designing easy to use
systems to quickly create powerful visualization tools for exploration with-
out programming every bit and piece of it. Most of those systems provide a
visual programming language to perform the mapping from the semantic do-
main to a visual presentation. For example, VANISH (Kazman & Carriere 1996a)
and (Kazman & Carriere 1996b) is such a system where users can very quickly
(within one hour) create or adapt visualizations in a visual manner.

A good example of an approach that covers both the low-level and higher lev-
els of visualization creation is Visage (Derthick, Kolojejchick & Roth 1997) and
(Kolojejchick, Roth & Lucas 1997). The system contains a number of high-level
information appliances to navigate through and explore data. Additionally, it
contains low-level tools to create new appliances. Visage combines different
interaction styles and, thus, is appropriate for both novices and experts.

2.3.3 Examples

A simple, yet powerful, information visualization mechanism, which is often
used, is the two-dimensional scatterplot. A scatterplot presents the structural
relation between two dimensions, e.g. the relation between damage and out-
side temperature at space shuttle launches. The graph consists of two axes
representing the dimensions and a collection of points representing the data
elements. As an example, look at Figure 2.8 depicting body height versus
weight for a certain population. In the picture, which is based on the Statis-
tics Glossary2, we can immediately see that a larger height usually comes with
a larger weight, thus revealing a relation between body height and weight. As
an extension to the standard scatterplot, the plots may depict additional data
dimensions by size, shape or color of the points.

Datasets having different structures (dimensions) and attributes require alter-
native forms of visualization. Whereas a scatterplot is useful to present two-
dimensional quantitative data, a conetree (Robertson, Mackinlay & Card 1991)
is more suitable to visualize large hierarchical datasets. As examples of such

2http://www.stats.gla.ac.uk/steps/glossary/presenting data.html

24 2.3. INFORMATION VISUALIZATION

H
ei

gh
t (

m
et

re
s)

Weight (kgs)

1.5

1.6

1.7

1.8

50 60 70 80

FIGURE 2.8: A scatterplot quickly relates possible relations between two di-
mensions, in this figure it shows that a larger height usually comes
with a larger weight.

datasets, think of directory structures in large filesystems, or the organization
of pages on a Web site. A conetree is the three-dimensional counterpart of a 2D
tree. The children of a specific node are organized in a circle resulting in a cone
that comprises parent node and children. Figure 2.9 contains a conetree that
visualizes the directory structure of the files that constitute this dissertation.

The conetree in Figure 2.9 is not a static two-dimensional picture but an inter-
active 3D object around which we can navigate to view the tree from a different
angle. The constellation of the tree itself can be altered by dragging the cones,
for example to roll a particular part of the tree to the front. Another useful
feature is achieved by shift-clicking a (leaf) node. The conetree automatically
rotates its branches and cones in such a way that the selected path, in this case
the full filename, is facing the user.

As a last example of information visualization, Figure 2.10 visualizes product
sales in the USA. The sales quantity is mapped onto the height of the related
state. This makes it relatively easy to compare the sales of different states with
each other. Additionally, color is used to emphasize whether sales are doing
good (green) or bad (red).

CHAPTER 2. INFORMATION VISUALIZATION 25

FIGURE 2.9: A conetree representing a directory structure

2.4 Interaction Techniques

The definition of information visualization given on page 22 includes the word
‘interactive’. Interactivity means that users cannot only observe the visualiza-
tion but moreover play with it. The visualization changes in response to the
user’s actions such as zooming in on details, navigating to other visualizations
or altering the applied visualization techniques.

Many ways of interaction with a visualization exist. Specific visualizations
often even require specific means of interaction. However, some interaction
mechanisms are generic enough to be useful for most visualizations. We will
now describe three basic interaction techniques which are intended to retrieve
more or related information. However, each of the techniques achieves this in
a somewhat different manner.

Zooming in on information is a powerful interaction technique. For example
when more detailed information is required about the sales visualization of
Figure 2.10. By clicking on a particular state we are able to drill-down to more
detailed information of that state. The map of the United States is replaced by
a map of the selected state which shows the number of items sold in important

26 2.4. INTERACTION TECHNIQUES

FIGURE 2.10: Information Visualization of sales in the USA. Courtesy of VDI
(www.vdi.com).

cities. Furthermore, we can zoom in on a particular city or even on the number
of items sold at a single location. Important here is that we use the visualization
itself to navigate through the data.

Drill-down is only one technique to navigate and interpret data, other impor-
tant techniques include brushing and hyperlinking. Brushing allows to re-
trieve more detailed information about parts of a visualization without chang-
ing the visualization itself. By moving a pointing device over a particular com-
ponent in the visualization extra information appears on top of the selected
object. An example of brushing is given in Figure 2.11. The advantage of
brushing is that more detailed information can be retrieved quickly without
replacing the current visualization. A simple mouse movement is enough to
reveal, for example, the numbers on which the visualization is based.

Hyperlinking is a technique stemming from hypertext and the World Wide
Web. By activating a hyperlink a new “document” is loaded, which can be
a different visualization, a text document or an HTML-page. This new docu-
ment can replace the current visualization but might also be displayed in a new
window or frame. By using hyperlinks, visualizations can be integrated with
other resources to provide extra context. For example, hyperlinks in a man-

CHAPTER 2. INFORMATION VISUALIZATION 27

FIGURE 2.11: Brushing reveals extra information

agement information visualization can provide background information about
the meaning of elements in the visualization or the business process currently
visualized.

2.5 Visualization Application Areas

Since information visualization is capable of visualizing any kind of data, ap-
plication areas thereof are relatively diverse. For example, in a medical set-
ting a patient’s syndromes can be visualized (Plaisant, Milash, Rose, Widoff &
Shneiderman 1996). LifeLines, which is the name of the system, helps medical
specialists to quickly see which diseases a patient has suffered from. As a com-
pletely different example, consider FilmFinder (Ahlberg & Shneiderman 1994)
which assists home users in their search for interesting movies.

However, two user tasks for which visualization is deployed recur in the major-
ity of application areas: information retrieval and decision support. Therefore,
this section will look at those tasks in somewhat more detail.

2.5.1 Information retrieval— visual queries

Information visualization is very good at presenting large amounts of data and
providing good overviews. However, users are often interested in particular
data elements or relations within a small subset of the data. Therefore, a visu-
alization has to provide means for (preferably dynamic) information retrieval.

28 2.5. VISUALIZATION APPLICATION AREAS

Comparable to what SQL (Structured Query Language) is for databases, vi-
sual queries are a means to adapt the data source of visualizations. By push-
ing (radio) buttons and adjusting sliders, users can visually filter and retrieve
information.

The visual approach of querying databases has some important advantages
and disadvantages as described in (Shneiderman 1994). Among the advan-
tages are the fact that it is a rapid, safe and even playful method (Shneiderman
1994), allowing a wider range of people to explore the correlations in the
data. Disadvantages all come down to the poor match between the dynamic
query approach with current hardware and software. For example, to access a
standard database using dynamic visual queries, application-specific program-
ming and data conversions are still necessary.

The FilmFinder example (Ahlberg & Shneiderman 1994) illustrates the use of
information visualization and visual queries. The FilmFinder system is a tool
to explore a film database visually. The system combines a starfield display to
visualize results, sliders (dynamic queries) to browse through the information
and a tight coupling of the interface components to increase the usability of the
system.

FIGURE 2.12: FilmFinder allows users to visually browse through a movie
database using dynamic visual queries. Courtesy of University
of Maryland.

CHAPTER 2. INFORMATION VISUALIZATION 29

FIGURE 2.13: This 3D business visualization summarizes a 60 page report.
Courtesy of VDI.

The query result is continuously represented in a starfield, see Figure 2.12. The
x-axis represents time whereas the y-axis represents a measure of popularity.
The color of the spots in the starfield represents the genre of the film. Using the
sliders on the right-hand side of the figure, users can look for a specific title,
actor, director, etcetera. Because of the tight coupling, a movement of the slider
immediately results in an updated starfield. By right-clicking on a specific dot,
more information about a particular movie can be obtained. In Figure 2.12 this
is done for the Witches of Eastwick.

2.5.2 Business visualization— decision support

Only recently, information visualization is starting to enter the business world
to give form to visual decision support. Benefitting from all the advantages of
visual information such as quick insight and details on demand, decision mak-
ers have better information available to manage their businesses. For example,
Wright (1995) proposes a combination of three-dimensional visualizations and
animation to inform decision makers without overloading them. In his exam-
ples, 4D-histograms3 are deployed in the securities industry because this area
is supplied with huge amounts of data, the value of which declines rapidly with time

33D space with time as a fourth dimension

30 2.6. SUMMARY AND CONCLUSIONS

(Wright 1995). Additionally, critical decisions have to be made based on this
data in very short periods of time. In the literature, the stock market has re-
mained a willing subject for business visualizations.

Business Visualization, or BizViz, is also deployed to improve quality and ac-
cessibility of risk management data. In this case, price samples are taken and
put in a large warehouse. Insight is increased by projecting them in (three-
dimensional) histograms. The big plus of such 3D histograms is the enormous
amount of data they are able to display. For example Figure 2.13 summarizes a
60 page report all in one comprehensive 3D visualization.

An application area of business visualization which will play an important
role in this dissertation is management decision support. The case study of
Chapter 3 done at Asz/Gak, for example, mainly concerns the visualization of
management information and its usage to support decision making. With the
application of an interactive system, managers can evaluate and balance multi-
dimensional factors, including risks and revenues of particular businesses. Se-
nior managers can immediately see the effect of questions like What if a business
is delayed or stopped? or What are the pros and cons of supporting, or not supporting,
a particular business? (Gershon et al. 1997).

2.6 Summary and Conclusions

The need to view and understand complex, highly technical data by means of
a visualization arose in sciences such as physics and chemistry. Scientific vi-
sualization is characterized as the transformation of symbolic data into visual
structures. Research in scientific visualization has amongst others resulted in a
collection of techniques to present information visually.

Information visualization is a relatively new research topic which has its roots
in multiple, diverse disciplines such as mathematics, statistics, engineering,
computer science and graphic design. Although most of this dissertation will
look at visualization from a software engineering perspective, other view-
points should not be neglected. Therefore, this chapter started with a dis-
cussion of the characteristics of visual information and, which is even more
important, the design of useful and effective information.

Most differences between scientific and information visualization come from
the fact that more abstract data, not having a clear connection with real life,
is used in information visualization. Additionally, the audience using scien-
tific visualization is more specialized and technically skilled than the diverse
audience doing information visualizations.

Although (information) visualization is a relatively new discipline, a lot of
lessons can be learned from visual information design. The purpose of vi-
sualization, just like the purpose of information design, is to provide users
with knowledge to achieve their goals. It is important that in visualization, we

CHAPTER 2. INFORMATION VISUALIZATION 31

choose the appropriate visual mapping that highlights specific relationships in
the data. As a consequence, it is impossible to create a ‘best visualization.’ De-
pending on the users and their tasks at hand, different visualizations are more
expressive and effective to provide the user with the right knowledge.

32 2.6. SUMMARY AND CONCLUSIONS

CHAPTER 3

Management through Vision: a case study

Vision is the art of seeing things invisible.
Jonathan Swift

BizViz (Business Visualization) is a rapidly growing phenomenon in the realm
of visualization. The main goal of BizViz is to support managers in their daily
work of understanding forces within business processes and making decisions
to control these forces. The case study presented in this chapter illustrates the
added value of visualization at a social security institution (Gak) in the Nether-
lands. The prototype built, integrates both databases and simulation as infor-
mation sources. This way managers can study the past and present as well as
experiment with possible future situations.

The intended contribution of this chapter is twofold. First, it presents how vi-
sualization can (successfully) be applied in practice. It illustrates the added
value of BizViz in the social security domain. As a second contribution, this
chapter derives and discusses requirements that play an important role in vi-
sualization application development intended for decision-making support.

Structure This chapter starts with a general description of management in-
formation systems and what role visualization can play in order to increase
the usability of such systems. After that, we focus on the current situation

34 3.1. BUSINESS VISUALIZATION

at Gak Netherlands concerning the processing of benefit applications, which is
the application domain of this case study. In the next sections, the visualization
prototype created to support managing that process is discussed.

After the prototype was finished, we evaluated the concepts and actual imple-
mentation by visiting two Gak offices in the Netherlands. The results of this
evaluation and a discussion of its outcome are given at the end of the chapter.

3.1 Business Visualization

Business Visualization is information visualization applied to the business do-
main to support decision making. By using business visualization effectively
we can accelerate perception, provide insight and control, and harness this flood of
valuable data to gain a competitive advantage in making business decisions (Gershon
et al. 1997).

3.1.1 From data gathering to high-quality decisions

A couple of decades ago data was scarce. A lot of effort was needed to gather
enough data about for example a market place or a production process. How-
ever, back then just like nowadays, decision-makers and managers had to be
informed to decide which products to market or how to manage the business
processes. Time has not stood still, especially with respect to data gathering.
Due to new information technologies, data gathering has become very cheap.

Nowadays, we can get all the data we need. However, a different problem has
entered the scene: data overload. There is so much data that the problem has
shifted from data gathering to separating significant parts from the rest.

Why is good information in business so important? One explanation is that it
is important because managers and decision-makers need the right informa-
tion to make high quality decisions. In (Platinum 1998) a decision process is
described, which is generally accepted as good business practice. It consists of
the following steps:

1. Acquire (quality) raw data.

2. Combine and integrate the data to make useful information.

3. Analyze the information and make high quality decisions.

Thus, to make good decisions we first need good data. The difficult step, how-
ever, is the combination and integration of the raw data into useful informa-
tion. The raw data must be processed in order to retrieve the right information
for making decisions.

CHAPTER 3. MANAGEMENT THROUGH VISION: A CASE STUDY 35

In the case of controlling a business process, managers monitor the business
process and intervene whenever necessary. A recurring process cycle in the
controlling process can be described as follows:

1. Do I have a problem?

2. Where does the problem manifest itself, what is its cause?

3. Think of a solution.

4. Evaluate the solution.

5. Implement the solution.

6. Check the effects of the solution.

Management processes are not linear in form. For example, when a solution
does not have the foreseen effects, managers think of a different solution which
then again will be evaluated, implemented and checked.

To support managers in selecting the right information and making good de-
cisions, management information systems are deployed. For example in steps
1 and 2 of the process described above information from the business process
under control is essential to localize problems and their causes.

Another part of the management process where information technology could
be deployed is step 4. In this step, managers are trying to predict the effect of
the new solution to the problem. By combining available data, a business pre-
diction model and a simulation tool, it is possible to evaluate a future situation
where a possible solution is implemented.

Basically two types of management information systems exist. The first type
generates overview reports on a regular basis (e.g. weekly). Based on these
reports, managers can see whether everything still conforms to the planning or
whether they should intervene. A problem with this approach is that usually
a large number of pages is generated while only a small part is useful in a
specific situation. And finding the significant parts in the pile of paper is a
time-consuming effort.

The second type of management information systems takes a different ap-
proach. Here, users can browse through the information in an interactive man-
ner. The information can be filtered and sorted according to the manager’s
information requirements. However, the question remains how to identify the
significant parts in the information space. Localizing known problems is easy,
but discovering new problem areas remains cumbersome. The interactive na-
ture of this approach only helps a little here. To further improve on the process
of searching essential information, a different approach is necessary.

3.1.2 Visualizing management information

Problems with current management information systems are twofold. First,
when producing reports it appears that we generate far too much information

36 3.1. BUSINESS VISUALIZATION

while we only need a small part. A second problem of management infor-
mation systems concerns the presentation of the information, which does not
provide the users with enough insight to discover significant areas in the data.

To tackle the problems sketched above, we propose to use a visualization ap-
proach to access business data. And not as the final step, such as creating a
pie chart from the numbers in a table, but right from the beginning. We want
to start with a top-level visualization of the data which can be used to drill
down to other visualizations or even to the bare numbers. We claim that by
first providing a graphical overview and then zooming in on the details, users
will be able to use the data more effectively and more efficiently. Shneiderman
has called this approach the Visual-information-seeking mantra:

Overview first, zoom and filter, then details on demand
(Shneiderman 1998).

Walker (1995) has defined a framework for the conversion process from data
to timely, informed decisions and increased, shared knowledge. Figure 3.1
(Walker 1995, Figure 1), which represents that framework, relates challenges
within the conversion process with visualization.

Challenge Role for Visualization
data world

appropriate data

relevant information

timely, informed decisions

increased, shared knowledge

growing volume
declining signal/noise

exploration, navigation
and browsing

increasingly complex
analysis tools and models

understanding complexity

increasing abstraction
reducing timescales

managing intangibles

wider audiences
increasingly conceptual communicating a vision

FIGURE 3.1: Conversion of data to informed decisions and shared knowledge.
Courtesy of Walker

Walker describes the challenges in information visualization as follows:

The first challenge is locating and retrieving the relevant data, from a data
world which is growing in size, but is also declining in average infor-
mation content, as the provision of data becomes ever easier and cheaper.

CHAPTER 3. MANAGEMENT THROUGH VISION: A CASE STUDY 37

Analysing and interpreting data is the second challenge, and although so-
phisticated computer-based tools and techniques are available, they can of-
ten appear as inaccessible ”black boxes” to the uninitiated. Even when the
appropriate information has been extracted, two further challenges remain;
the final conversion through to real benefits, expressed in our framework
as better informed decisions and the sharing of increased knowledge. Dif-
ficulties in these areas center around the intangible nature of many of the
issues and information under consideration, and hence the problem of es-
tablishing a common and comprehensive perspective. The four challenges
are closely inter-related, and in any specific scenario the boundaries will be
blurred if not invisible. However, the framework is nevertheless useful in
clarifying some important issues and potential solutions. (Walker 1995)

In terms of Walker’s (1995) challenges for information visualization this case
study focuses on three out of four challenges. First, it supports managers in
exploration, navigation and browsing to find the appropriate data. Second,
support to compare information helps to increase the understanding of com-
plexity in order to find relevant information. Third, the goal of the case study
is to improve the control and understanding of business processes in order to
come to timely, informed decisions. Walker’s last challenge, communicating a
vision, is not so much covered by this study. It does become important, how-
ever, when we discuss collaborative visualization in Chapter 6.

3.2 Managing Business Processes at Gak NL

In The Netherlands, if people are unable to work, there are various welfare
benefits they can apply for. The government does not handle the applications
for benefits themselves, but gave this job to the so called Social Security Institu-
tions. Gak Netherlands1is the largest social security institution in the Nether-
lands that processes applications for these welfare benefits.

3.2.1 The problem

The subject of this case study concerns the deployment of simulation and vi-
sualization to support business managers in planning and controlling the pro-
cessing of benefit applications. To strengthen their position on the market, the
Gak company wants to improve the efficiency of their production process with-
out losing quality. The delivered products (in this case products are benefit

1The situation around social security is changing rapidly and significantly at the moment. At
the time this case study was done, Gak Netherlands was still an independent institution that be-
longed to the Gak groep. Another member of the Gak group was ASZ, the ICT company that is
responsible for the vast majority of information systems at Gak Netherlands. The case study that
is described in this section is a collaboration between Gak Netherlands, ASZ and the Vrije Univer-
siteit.

38 3.2. MANAGING BUSINESS PROCESSES AT GAK NL

applications) are qualitatively good but the production process from the client
arriving at the registration desk to deliverance (approval or disapproval of the
application) takes too long. The norm production time for an application is in
most of the cases 13 weeks, but due to unknown problems this norm is often
exceeded. Obviously, the Gak company wants to find the production bottle-
necks and their causes.

3.2.2 Current information systems

The source data coming from a number of production systems is collected in
a single multi-dimensional data source as is often done in management infor-
mation and decision support systems (Turban & Aronson 1998). Currently the
Gak company uses Cognos’ PowerPlay as its primary access to the collected
information. PowerPlay is a program that can be used to filter out certain re-
gions in a multi-dimensional dataset. Selection is achieved by drilling down
on the various predefined dimensions. A dimension can, for example, be time-
based or location-based. You can think of filtering on years, months or days or
filtering on all offices, offices in a region or a specific office.

The dimensions available for drilling down are predefined, which implies that
the possibilities are restricted to the dimensions chosen by the builders of the
so-called PowerPlay cube. For example, the time that applications are already
waiting at a particular phase in the process is not part of the PowerPlay cube.
Although the information can be derived from the existing source data, man-
agers are not able to view that information and, consequently, cannot use it to
base decisions on.

The availability of time-based information, added to the visual exploration
techniques enabled by visualizing data, inspired the idea of creating an in-
formation system that uses visual representations of the data to give a quick
insight into problem areas.

3.2.3 Goals

The new visualization-based information system must support managers in
making decisions. Typical questions that need to be answered by the system
are:

Where can I expect capacity problems for the next weeks?

What kind of employee currently has too much work, which one has hardly anything
to do?

Is the number of applications increasing, decreasing or stable?

In what stage is the majority of products and for how long are those products already
in that stage?

CHAPTER 3. MANAGEMENT THROUGH VISION: A CASE STUDY 39

Does the production process contain bottlenecks where products are always behind
schedule?

Before we started the project we created a list of goals we wanted to achieve.
The success of this case study is mainly determined by whether we succeed in
accomplishing these goals:

• Solve the current problems: find the bottlenecks in the production pro-
cess.

• Create a more effective management information system: managers will
be able to get more information that answers their questions from the
data.

• Create a more efficient management information system: managers will
find what they need faster.

Although gaining insight in the current status of business processes and dis-
covering trends of the past is important, users also expressed the wish to ex-
periment with possible measures to avoid the recently detected bottlenecks. To
allow for experimentation with control measures in possible futures, simula-
tion is necessary. Simulation is a means to evaluate so called what-if situations.
To increase the effectiveness of the visualization system, we decided to present
both information sources, i.e. database and simulation, using the same visual-
izations. This allows managers to deploy the same views on past, present and
future.

3.3 Visualizing Past and Present

To illustrate and validate our ideas about visualizing business information,
we have built a prototype visualization system. The system was built in two
phases. First, we concentrated on the current problems of the managers to
indicate the bottlenecks in the business process. In this phase, we iteratively
designed the visualizations which are shown in this section. In the second
phase of the project, which is described in the next section, we created a simu-
lation of the business process and used the previously designed visualizations
to display the results.

The visualizations can be divided into quantity visualizations and capacity vi-
sualizations. Quantity visualizations provide insight into the number and sta-
tus of applications for welfare benefits (usually called products) in the process.
Capacity visualizations, on the other hand, represent to what extent the capac-
ity, i.e. people, is employed.

40 3.3. VISUALIZING PAST AND PRESENT

3.3.1 Quantity visualizations

In quantity visualizations, two features are used to characterize the visualiza-
tions. First, the data source can contain either historical data about the output
or up-to-date information about the current throughput. Second, we distin-
guish between a global product overview, i.e. all types of applications, as op-
posed to a single product type. This leaves us with four visualizations:

• Global product type overview of historical output.

• Global product type overview of the current throughput.

• Specific product type overview of historical output.

• Specific product type overview of the current throughput.

The prototype we created in this case study supports all four perspectives on
the data. As an example of a specific, the visualization of the throughput of
a specific product type (in this case the application for a disability benefit) is
given in Figure 3.2. The visualization consists of two integrated parts, the busi-
ness process structure and the throughput histograms. The connected circles
represent the structure of the process, i.e. the phases an application has to pass
through. A new application enters the process on the left and moves through
stages from left to right. Each application is being processed during the de-
picted phases, such as intake and medical examination. When applications are
dealt with, they leave the process structure again on the right-hand side. The
percentages inside the circles reflect the amount of applications currently in
that particular production phase that is ahead or on schedule. A higher per-
centage means a better timeliness of that stage in the process.

The histograms offer insight into the quantity and age of applications currently
being processed. For example, the enlarged histogram (Figure 3.3) belonging
to the middle phase (stage 158) in the process represents all products in stage
158 at that moment. The x-axis of the histogram is a timeline where each bar
represents a single week in the production process. This means that the first
bar of each histogram reflects applications in their first week of production,
the second bar represents products in their second week, etcetera. The last
bar summarizes all products that are more than 16 weeks in production and
therefore seriously exceed the norm of 13 weeks.

In addition to the overall norm of 13 weeks to deal with an application, internal
norms exist that indicate when an application should be in a particular stage
of the total process. The histograms belonging to the stages reveal the num-
ber and status of applications currently in progress. To emphasize whether
products are late or on schedule, we deploy colors for both the bars and the
background of the histograms. Blue represents applications that are ahead of
schedule. Green means on schedule, whereas purple is behind schedule. Red

CHAPTER 3. MANAGEMENT THROUGH VISION: A CASE STUDY 41

FIGURE 3.2: Throughput of a specific product type (AW008)

FIGURE 3.3: Histogram representing all products in a particular stage. Each
bar represents a week in the production process. Color indi-
cates whether applications are currently early (blue), on schedule
(green), behind schedule (purple) or too late (red).

applications are even worse, because they are not only behind schedule but
they are even late for meeting the total production norms of 13 weeks.

As an example, take a look at the enlarged histogram in Figure 3.3 again. There
we see that, according to the norms, products should arrive at this stage in
week 3 and leave again 4 weeks later (the green part). Additionally, we can
determine that the norm time for the whole process is 13 weeks (the weeks
before the background turns red).

It is interesting to notice what managers can derive from this visualization and
how they might apply it to solve their problems. First of all, the percentages
show that stages 158 and 159 are two possible bottlenecks with a timeliness of

42 3.3. VISUALIZING PAST AND PRESENT

respectively 54% and 51% while the other percentages exceed 80%. Other indi-
cations of possible problems are the red peaks at the end of the two rightmost
histograms. These show that a relatively high percentage of applications is far
too late at those stages of the process.

As a third observation, we can conclude that the pattern of the histograms
appears regular —peaks in the green and decreasing on the right-hand side.
This indicates a steady input of new applications without exceptional peaks as
they may occur during particular periods of the year. However, the decreasing
line to the right of the peak should be somewhat more steep to avoid timeliness
problems; actually all applications should be processed before the background
turns from green to purple.

The choice for traditional histograms and bar charts instead of more complex
visualization forms was made because histograms were the best choice for our
purposes. Ease of use and simplicity were important design requirements be-
cause the managers are unfamiliar with visualization and explicitly requested
us to keep things simple. In related work, we see a similar quest for straightfor-
wardness: traditional bar charts work well for comparisons and are well understood,
including by business people (Zhang 1996).

3.3.2 Capacity visualizations

Whereas quantity visualizations concern the production or processing of ap-
plications, capacity visualizations are intended to represent to what extent the
current capacity is used (or has been used). The visualizations do not contain
quantitative information but percentages. Capacity visualizations are about
people, the resources of this business process.

In line with the quantity visualization, we also distinguish between historical
output and current throughput in capacity visualizations. The other dimen-
sion concerns whether we look at a single employee type or consider all types
of employees. The two orthogonal dimensions determine the following four
visualizations:

• Historical output of all employee types.

• Historical output of a specific employee type.

• Current throughput of all employee types.

• Current throughput of a specific employee type.

An example of a capacity visualization is shown in Figure 3.4. This figure
shows a capacity usage visualization of past weeks (output of all worker types).
The visualization is used to find out how employees have spent their time, in
other words how the capacity (i.e. people) has been deployed during the last
weeks.

CHAPTER 3. MANAGEMENT THROUGH VISION: A CASE STUDY 43

FIGURE 3.4: Capacity visualization of all worker types through time

Every bar in the upper histogram represents one production week, ascending
from left to right. Every bar is divided into three parts, totaling 100 percent.
The three colors (red, green and blue) in the bars represent percentages of prod-
ucts that are, respectively, behind schedule, on schedule and before schedule.
If the red part of a bar represents 30 percent it means the employees worked
30 percent of their production time (for the week represented by the bar) on
products which were behind schedule.

Selecting one of the bars in the upper histogram results in a second histogram
at the bottom. This histogram is a decomposition of the selected bar in the
upper histogram. It shows the usage of the various employee types for the
selected week (null indicates that no employee type is known). Again the same
colors are used to indicate how much time the specific employee types spent
on processing products that are behind, on or before schedule.

In the example of Figure 3.4, the histogram suggests that the bad results are to
a large extent due to the employees represented by the second bar from the left
(AD) and the rightmost bar (VA) since their capacity is exceeded the most.

A second capacity example visualizes the load on the employees in the upcom-
ing week (Figure 3.5). Each bar of the histogram represents a different type of
employee. The red line represents the 100% capacity that is available for next
week. If bars are higher than this 100%-line, the pile of work exceeds the avail-
able capacity. In Figure 3.5, the AD and CB (and to a lesser extend the VA)
employee types are understaffed for the next week.

44 3.4. VISUALIZING THE FUTURE

FIGURE 3.5: Capacity throughput visualizations show the AD, CB and VA bot-
tlenecks

The colors of the bar represent the status of the work that is waiting to be pro-
cessed. Red (bottom of each bar) represents applications that are already late,
green (middle) is exactly on time whereas blue (top of bar) represents products
that are ahead of schedule. In an ideal situation the 100%-line runs through
the blue area, just above the green part, implying that all late and on schedule
applications are processed during next week. In the case of Figure 3.5 how-
ever, the labor experts, represented by the leftmost column (AD), can only get
rid of a small fraction of the late applications. The same problem occurs at the
third (CB) and rightmost (VA) column. Summarizing, the visualization clearly
demonstrates bottlenecks at the AD, CB and VA employee types, whereas the
other types have a large overcapacity.

3.4 Visualizing the Future

Now that we can identify bottlenecks, a means of evaluating the effects of in-
terventions is needed. To achieve this, simulation is needed.

3.4.1 Simulation

Simulation imitates the behavior of a system or process by applying probability
calculus to a model of the system. The goal of simulation is to gain insight
in the behavior of the system. Users can experiment by adapting simulation
parameters and comparing the results of simulation runs.

In our approach, we tried to shorten the loop of making a model, run the sim-
ulation and analyze the results. We achieved this by integrating simulation,

CHAPTER 3. MANAGEMENT THROUGH VISION: A CASE STUDY 45

interaction and visualization. While the simulation is running, we already vi-
sualize the results until that point. Additionally, users can interactively ma-
nipulate the settings and parameters of the simulation which are immediately
reflected in the results of the simulation and, consequently, in the presented
visualizations.

In the current software architecture, the simulation is a software component
based on the JSim (Miller, Ge & Tao 1998) visualization library. The simulation
produces information that can be visualized using the same visualizations as
the ones used for the data coming from the databases. Interaction is achieved
by a separate GUI that allows users to modify important parameters of the
running simulation, such as the number of employees per type.

3.4.2 Trend visualization and interaction

Although the visualizations inherited from the representations of the databases
are valuable to visualize the simulation, a new visualization has been added to
better display the effect of interventions. Trend visualizations give a whole
year overview of an application type or employee type.

For example, Figure 3.6 contains a capacity visualization of a specific employee
type over the past simulated year. Each bar represents the work of a particu-
lar week compared to the available capacity (again the line indicates a 100%
capacity). The colors of the different parts in the bars represent the capacity
that is used to work on late (red) products or on applications that are behind
schedule (orange), on schedule (green) and ahead of schedule (blue).

FIGURE 3.6: Trend visualization illustrates the effect of an intervention

46 3.5. EVALUATION OF CONCEPTS AND PROTOTYPE

The simulation started with an empty process in week 0. While the weeks ad-
vance, we can see that the number of applications pile up because the capacity
of the employees is far too small. In week 25, the controller of the simulation
increases the number of employees working on this stage in the process. Im-
mediately, the height of the bar has decreased, because the amount of work is
not so large any more compared to the available capacity represented by the
100%-line. However, the new number of employees is still not large enough
to handle all the work, the height of the bars still increases over time. Only at
week 33 when even more employees are added, we can notice a descending
trend in the next weeks, indicating that the capacity is large enough to work
away the backlog.

The integration of simulation into the visual information system clearly illus-
trates the power of combining simulation and visualization with user interac-
tion. Based on experience gained by visualizing the static data in the database
and knowledge of the business process, managers can experiment with all
kinds of interventions. In addition to a single action, the effects of combined in-
terventions can be evaluated and compared with complementary approaches.
The set of available visualizations allows the experimenting manager to view
the effects of interventions from different perspectives.

3.5 Evaluation of Concepts and Prototype

To evaluate the maturity of our visualizations and the usability of the devel-
oped prototype, we arranged two evaluation sessions at Gak offices in Rotter-
dam and Nijmegen. People who participated in the sessions are domain ex-
perts working at Gak Netherlands in the area of welfare benefits. The sessions
started with a presentation about business visualization and an explanation of
the prototype. After this, the participants had about 2 hours to work with the
system. During this time, they were given some exercises to search for bot-
tlenecks, compare the results of different products and investigate the capacity
usage of the employees. Additionally, they were asked to fill in a questionnaire
to provide us with feedback about the effectiveness of the visualizations and
the usefulness and usability of the tool. At the end of the session, we presented
the simulation extension.

Since the two evaluation sessions were done in small groups, with an equal
amount of domain experts and developers, we had interesting plenary discus-
sions which led to ample feedback. The combined results of the questionnaire
and these discussions will be described now.

3.5.1 Benefits

The lack of information about the time that applications are already in a cer-
tain phase of the process appears to be an important omission in the current

CHAPTER 3. MANAGEMENT THROUGH VISION: A CASE STUDY 47

information supply. However, the missing information can be derived from
the available data sources and is available in the visualizations of the current
throughput of specific product types. This extra piece of information was con-
sidered to be very useful in understanding delays in the process.

The participants of the evaluation were very positive about the usage of visu-
alization to present the information. Without exception, they considered them-
selves visually oriented and had no problems with understanding the offered
visualizations. Those present at the evaluation sessions agreed that the visu-
alizations offered a better insight in current and past data. Additionally, they
thought that it is easier to draw conclusions based on the visualizations than
based on the currently used information system.

Another benefit concerns the availability of the easy access to up-to-date in-
formation. Our approach to disseminating the data and visualizations to the
managers allows them to always inspect the latest information. This is a sig-
nificant improvement over the weekly reports they receive now.

3.5.2 Shortcomings

During the evaluations at Gak Rotterdam and Gak Nijmegen, not only benefits
were found. The shortcomings can be split in two categories: shortcomings of
the concepts and shortcomings of the current prototype.

A problem with the concept of visualizing process data is the fact that the qual-
ity of the visualizations is highly dependent on the quality of the underlying
data source. Visualization adheres to the slogan: garbage-in, garbage-out. The
visualization nicely hides the fact that it is based on wrong or incomplete data
and, subsequently, justifies wrong decisions.

Most of the shortcomings the managers came up with during the evaluation
are only small problems, such as the absence of numbers on which the per-
centages are based. These shortcomings can easily be fixed in a next release of
the system. A shortcoming with a larger impact is the request for an annota-
tion possibility. This would be useful to evaluate the effects of taken measures
at a later time. Additionally, it would help when somebody could read other
people’s opinions about certain phenomena in the data.

Another often requested feature was the ability to drill-down further on the
data. Especially operational managers appeared to be interested in the func-
tioning (in both positive and negative ways) of specific employees as compared
to the rest of the group. The current implementation stops at the functionary-
type level, but could be extended to represent data at the individual level since
the necessary data is already available in the data sources. Whether this is wise
thing to do, however, remains to be seen.

48 3.6. DISCUSSION AND ISSUES RAISED

3.5.3 The simulation

In general, the participants of the evaluation reacted very positively towards
the possibility to simulate decisions in the business process. However, the cur-
rent intervention option (changing the number of available employees of a cer-
tain type) seems to be too limited. Other options such as setting priorities or
skipping particular applications must be added to make the simulation exten-
sion useful in practice.

3.5.4 Discussion

In summary, everybody involved in the evaluation of the visualization appli-
cation was pleased with the currently available visualizations. Especially, the
current throughput of specific products and the capacity output visualizations
appeared to be very effective. The idea of visualizing past, present and future is
received with open arms. The current implementation of simulating business
interventions, however, is not yet mature enough.

At the end of Section 3.2.3, we identified three goals that we wanted to achieve
to make this case study successful. The first goal is to identify bottlenecks in
the process to help solving the actual problems. The second and third goals
are, respectively, to create a more effective (more useful information from the
data) and more efficient (find what you need faster) management information
system as compared to what is available now. Based on the evaluation, we can
conclude that the bottleneck and efficiency goals are met: managers were able
to identify bottlenecks in specific parts of the process and the visualizations
helped them to understand what is going on more quickly.

The goal of creating a more effective management information system in which
managers are able to get more information that answers their questions is only
partly achieved. On the negative side, the managers are not able to retrieve
all the information that they could get from the current information system.
Especially, detailed numeric data is unavailable in the current system. On the
positive side, however, participants indicate that new and very useful informa-
tion is made available that was not accessible before. For example, insight in
the age of applications at particular stages in the process is a new and impor-
tant piece of information that is useful to control the allocation of the available
capacity of employees.

3.6 Discussion and Issues Raised

The motivation to perform a series of case studies at Gak Netherlands was
to illustrate and prove the added value of business visualization to support
decision making. In addition, performing a BizViz case-study in a real-world

CHAPTER 3. MANAGEMENT THROUGH VISION: A CASE STUDY 49

situation will lead to a better understanding of requirements and features that
play a role in visualization application development.

Below the most relevant issues raised during the case studies are given.

• Multiple visualizations
The case study described here clearly demonstrates that a single visu-
alization is not sufficient to meet all information needs required by its
users. For a visualization to be useful, it has to be related to the tasks
and goals of the people using it. In other words, visualizations only help
when they provide useful information to support people in their tasks
such as decision making.

• Derivation of new information
Information that appears to be crucial for good decision making is not
always directly available from the data sources. Relations within the raw
data are often more valuable than the data itself. For example, informa-
tion about how long applications are already stuck at a particular stage is
not directly saved in the source databases. The information can, however,
easily be derived and presented to the user.

• Iterative approach to create effective visualization
Although not covered in the discussion of the case study given here, we
experienced that creating straight-forward, effective visualizations can-
not be done out of nothing. We discovered a close resemblance to en-
gineering software for a client who does not really know what he or she
wants. An approach taken to tackle that problem in software engineering
is an iterative approach with a lot of end user interaction, e.g. in Rapid Ap-
plication Development (Martin 1991). In the case studies performed at Gak
Netherlands this turned out to be a good choice for visualization devel-
opment too. We collaborated closely with the people actually using the
information and iteratively created the questions we wanted to solve as
well as the visualizations that are intended to answer to those questions.

3.6.1 Organizational forces

During the project we encountered some unexpected delay due to problems
with the available data and the organizational process of gathering informa-
tion. It appeared that each manager is allowed to adapt the process according
to his or her wishes. Additionally, employees do not like to write down how
long they have been working on a specific application. These and other prob-
lems are the main cause of the high noise ratio in the data which, consequently,
influences the reliability of visualization and simulation.

We reported these problems back to the management of the company and to
the project team responsible for re-engineering business processes and the IT

50 3.7. SUMMARY AND CONCLUSIONS

support thereof. In the near future, they will decrease the freedom of each man-
ager by making procedures more rigid. Additionally, a workflow system will
keep track of the status and phase of each application, alleviating the employ-
ees of these boring tasks. We expect that the proposed measures will improve
the quality of visualization and simulation. At the same time the practicability
of our prototype as a means to control processes increases.

3.7 Summary and Conclusions

This chapter presented a case study done at Gak Netherlands to illustrate the
usage of simulation and visualization to control business processes in the do-
main of social security. The project was done in two phases. First, we itera-
tively designed visualizations to understand recorded historic data about the
past and present. After that, we created a simulation component to experiment
with possible futures to solve problems in the current production process.

Evaluation showed that visualization could indeed aid in better understand-
ing of the available information. Consequently, visualization leads to more in-
formed decisions. The usefulness of the current prototype could be increased
further by allowing quick access to up-to-date data, extending the intervention
evaluation possibilities and by adding support for collaboration. Issues raised
during the case studies are used as the basis for requirements of a software
architecture for information visualization.

As a conclusion, we state that interactive simulations and visualizations are a
powerful means to control business processes. Especially, an integrated solu-
tion combining the advantages of retrospection and experimentation, allows
decision makers to discover trends in the past, monitor the current situation
and predict possible futures.

CHAPTER 4

Visualization Models: theory and practice

Form is the external expression of internal content
Wassily Kandinsky.

Progress in science is often based on knowledge transfer from related work.
This way, one can build on previous experiences and make progress. In the
case of information visualization two important sources of knowledge exist:
theoretical models on the one hand and practical projects on the other hand.

The goal of this chapter is to provide an overview of the most influential visu-
alization models, both in theory and in practice. Theoretical models describe
the process of visualization as the transition from raw data to visual represen-
tations. These models are necessary to better understand the visualization pro-
cess. Additionally, they provide a framework for developing software support
for visualization.

The second part of the chapter discusses visualization tools, ranging from built-
in visualization functions, via visualization component libraries to research
projects. There, we will provide a broad overview of the spectrum of computer-
based visualization support and discuss the strong and weak points of state-
of-the-art visualization tools.

52 4.1. VISUALIZATION MODELS

4.1 Visualization Models

This section discusses four theoretical models designed to describe the process
of visualization. The visual taxonomy and visualization pipeline come from the
realm of scientific visualization whereas the visualization reference model orig-
inates in the study of information visualization. The last approach given in
this section is a formal approach describing the mappings from abstract data
to visual information structures.

4.1.1 Visual taxonomy

The first and probably most general model discussed here is based on the pro-
cess of scientific visualization as described by McCormick et al. (1987). The
rationale of the visual taxonomy is the distinction between symbolic structures
or structural data on one side and visual structures on the other side. Visual-
ization itself is then considered as the mapping from symbolic to visual struc-
tures.

In scientific visualization structural data is the result of computational meth-
ods, such as finite element analysis or numerical analysis. Another possible
data source is measured data, for example coming from CT and MRI scans, or
from the financial system at a stock market. Before data is visualized, it can be
transformed to other non-visual data. This is useful when computed data is
not in the appropriate format or whenever statistically derived information is
necessary.

The process of visualization, called mapping in this model, transforms the
symbolic structures to visual structures which are, accordingly, presented to
the user. When the visualization is effective, a user might gain enough insight
to influence the process of data computation or measurement. This is often
referred to as analysis or computational steering.

Figure 4.1 visualizes the two types of structures and the transitions in the visual
taxonomy. The figure shows that, while mapping and analysis go from sym-
bolic to visual structures and vice versa, transformations manipulate structures
in their own domain. The model discussed next, the visualization pipeline, ap-
proaches visualization by taking a closer look at the mapping transition repre-
sented by the rightmost arrow in Figure 4.1.

4.1.2 The visualization pipeline

The model underlying the visualization pipeline (Schroeder et al. 1996) focuses
on the (one-way) transformation from source data to a visual representation.
The visualization pipeline model is inspired by the UNIX pipe and filter archi-
tecture used by shell and command line tools. The processing is accomplished
by filters which perform transformations on the data. Filters communicate by

CHAPTER 4. VISUALIZATION MODELS: THEORY AND PRACTICE 53

Symbolic
Structures

Visual
Structures

Transformation
(visual manipulation)

Transformation
(Computation)

Analysis /
Computational
Steering Mapping

FIGURE 4.1: Visual Taxonomy

means of pipes which store the output coming from filters until it is processed
by the next filter in the pipeline.

Filters with no input are called sources and filters with no output sinks. Fig-
ure 4.2 contains a schematic overview of the visualization pipeline consisting
of a data source, two filters to transform the output to visual data capable of
being displayed by the display sink.

Source Filter 1 Filter 2 Display

Pipe Pipe Pipe

FIGURE 4.2: Visualization pipeline

To let filters communicate with each other, the input and output of two linked
filters have to be type compatible. Usually, visualization systems define a lim-
ited number of data types to cover most forms of data but, at the same time,
make filters as inter-operable as possible.

A nice example of a pipeline-based visualization application is AVS Express.
The product consists of a visual programming environment and a large library
of processing components (sources, filters and sinks). Users can create visu-
alizations by linking components as illustrated in Figure 4.3. The pipes are

54 4.1. VISUALIZATION MODELS

FIGURE 4.3: AVS Express embodies the visualization pipeline in a visual pro-
gramming environment. Courtesy of Advanced Visual Systems
Inc.

represented by fat lines, where the color of the line represents the type of data
flowing over the connection. In line with the pipeline approach only compo-
nents which are type compatible (recognizable by the color of the input and
output ports) can be connected.

4.1.3 The visualization reference model

Both previous models, the visual taxonomy and the visualization pipeline, de-
scribe visualization as mappings from symbolic data to a visual form. Card
et al.’s (1999) visualization reference model combines these transformations
with the notion of human interaction, as shown in Figure 4.4 (Card et al. 1999,
Figure 1.23).

Just like the other models, the reference model starts with raw data that is,

CHAPTER 4. VISUALIZATION MODELS: THEORY AND PRACTICE 55

subsequently, transformed into a graphical presentation. First, using the ter-
minolgy from (Card et al. 1999, p.17) data transformations map raw data in
some idiosyncratic format into data tables. Data tables have a relational struc-
ture and include metadata describing the rows and columns. At the core of the
reference model, visual mappings transform data tables into visual structures
describing the graphical properties of the visualization. As a final step, Card
et al. (1999) mention view transformations that generate views of the visual
structures by specifying position, scaling, clipping, etcetera.

Raw
Data

Views
Visual

Structures
Data

Tables
Data

Transformations
Visual

Mappings
View

Transformations

Human Interaction

Data Visual Form

Raw Data: idiosyncratic formats
Data Tables: relations (cases by variables) + metadata
Visual Structures: spatial substrates + marks + graphical properties
Views: graphical parameters (position, scaling, clipping, …)

FIGURE 4.4: The visualization reference model adds human interaction as a
means to manipulate transformations and mappings. Courtesy of
Card et al.

In the reference model, human interaction takes place at three different stages
in the transformation process. For example, by modifying the data transfor-
mations, data can be ordered or classified differently. By changing the visual
mappings users select different visual forms to view the same data of the data
tables. Finally, altering view transformations include simple interactions like
scrolling or modifying the viewpoint in a 3D world. However, location probes,
such as brushing and distortion control (e.g. a bifocal lens) also belong to the
view transformation.

Example

Since the visualization reference model plays an important role in the remain-
der of this thesis, we now give a small example to illustrate how raw data
transforms into tables, visual structures and, finally, into a representation. The
example concerns the visualization of how students spend their time at the uni-
versity. Without claiming that this is a useful or effective visualization, the ex-
ample illustrates the transformation of data (both content and structure) from a
raw data source into a visualization. The intended visualization presents what
percentage of their total time students invest in studying particular topics.

56 4.1. VISUALIZATION MODELS

TABLE 4.1: Data transformations
Student number Topic Time spent
1234 SE 16 hrs
1234 UID 12 hrs
1234 OOP 24 hrs
… … …
1444 AI 100 hrs
1444 SE 10 hrs
… … …

(a) All data about how students spend their time is gathered into a single table

Student number Topic Time spent
1234 Total 52 hrs
1444 Total 110 hrs
… … …

(b) New rows are added that sum up all information about a single student

Student number SE UID OOP AI Total
1234 16 hrs 12 hrs 24 hrs 0 hrs 52 hrs
1444 10 hrs 0 hrs 0 hrs 100 hrs 110 hrs
… … … … … …

(c) The transformed table structure contains a single row for each student

Student number SE UID OOP AI Total
All 26 hrs 12 hrs 24 hrs 100 hrs 162 hrs

(d) A row containing the sum of all students' data is added

Student number SE UID OOP AI Total
1234 31 % 23 % 46 % 0 % 52 hrs
1444 9 % 0 % 0 % 91 % 110 hrs
… … … … … …
All 16 % 7 % 15 % 62 % 162 hrs

(e) The data is transformed from quantity to percentages

CHAPTER 4. VISUALIZATION MODELS: THEORY AND PRACTICE 57

The first step in the process gathers all information into a single table of which
the columns describe the student number, the topic and the time spent on that
topic measured in hours. The rows in the table contain all the measured facts.
Table 4.1(a) contains an example of the resulting table.

To calculate what percentage of their time students have spent on particular
topics, we have to know their total time invested. Therefore, we have to add
derived information about the total time spent by each student. Table 4.1(b)
contains the rows that have to be added to our table.

The next step in the data transformation process, modifies the structure of the
table. The topics are promoted to properties and, therefore, appear as columns
in the table. The new table contains only a single row for each student. This
row describes how much time has been spent on the different topics. Ta-
ble 4.1(c) illustrates the transformed table of our example data.

After this, a single row containing the sum of all data is added as illustrated in
Table 4.1(d). This row can later on be used to say something general about the
average student.

The final data transformation step in this example converts the contents of the
table. The unit of the rows describing particular topics, such as SE or UID, are
converted into percentages of the total time spent. The results of this modifica-
tion are given in Table 4.1(e)

Finally, the information available in Table 4.1(e) is applied to a visual mapping
and view transformation resulting in the pie charts of Figure 4.5. The number
of pie charts equals the number of students plus one for the average of all
students. Using the pie charts we can quickly see how the average, or a specific,
student splits up his or her time over the offered courses.

all SE
16%

UID
7%

OOP
15%

AI
62%

SE

UID

OOP

AI

1444

AI
91%

OOP
0%

UID
0%

SE
9%

1234

SE
31%

UID
23%

OOP
46%

AI
0%

FIGURE 4.5: Pie charts visually represent the information of Table 4.1(e)

4.1.4 A formal framework for visualization

The fourth and last description of the visualization process given here is a for-
mal approach. The discussed formal framework for data visualization is based
on (Dastani 1998). It considers visualization as a (structure-preserving) map-
ping between two relational systems. The first relational system describes the

58 4.1. VISUALIZATION MODELS

structure of the data and the second system describes the perceptual structure
of visual patterns. Any mapping between those systems will provide a visu-
alization. However, only a limited subset of all possible mappings represents
effective visualizations.

The purpose of describing the source and destination relational systems and
the mapping between them formally is to prove characteristics of visualiza-
tions with respect to effectiveness1. A visualization is considered to be effective
if the intended data relations are visualized by structurally identical perceivable
relations. In other words, all available and useful information (and nothing
more) is visible in the graphical representation.

The formal framework comprises a data relational system, a visual relational
system and the mapping between those systems. Both relational systems con-
sist of a set of entries and a set of relations defined on that set of entries.
One can think of a relational system as a table without order but with meta-
information describing relationships between the rows of the table. More for-
mally, Dastani (1998) defines the data and visual relational systems as follows:

Definition 4.1.1 Let DE be a set of data entries (n-tuples of data-
attribute values), and let DR1, . . . , DRm be partial relations that are de-
fined on DE by means of the data attributes involved. Then, an annotated
data table is defined as a relational system < DE;DR1, . . . , DRm >.
Such a relational system will be called data system.

Similarly, let VE be a set of visual entries (n-tuples of visual attribute
values), and let V R1, . . . , V Rm be partial relations that are defined on
VE by means of the visual attributes involved. Then, an annotated visual
table is defined as a relational system < V E;V R1, . . . , V Rm >. Such a
relational system will be called visual system. (Dastani 1998, p.166).

Visualization itself can now be defined as the combination of a mapping be-
tween the domain elements of the relational systems and a one-to-one mapping
between their relations. For a visualization to be effective, an isomorphism
(structure-preserving mapping) is required between the relational systems.

Definition 4.1.2 An isomorphism between two relational systems <
∆1;R1, . . . , Rn > and < ∆2;S1, . . . , Sn > is a one-to-one and onto
mapping between ∆1 and ∆2 and a one-to-one mapping between relations
Ri and Si (for i = 1, .., n) which satisfies the following condition:

If a relation Ri holds between two elements of ∆1, the corresponding rela-
tion Sj holds between the corresponding elements of ∆2 and if Ri does not
hold between two elements of ∆1, the corresponding relation Sj does not
hold between the corresponding elements of ∆2. (Dastani 1998, p.171).

1What Dastani (1998) calls effectiveness is more or less what Mackinlay (1986) calls expressive-
ness (see also Section 2.3.2 on page 22). Despite the fact that this may cause confusion, I decided
to keep the original terminology.

CHAPTER 4. VISUALIZATION MODELS: THEORY AND PRACTICE 59

By requiring the visualization to be isomorphic, it is guaranteed that each data
entry is represented by a visual entry. Additionally, whenever there exists a
relation between two data entries, their corresponding visual entries are related
to each other by a structurally identical relation.

Example

To clarify the usage of the formal framework, consider the following dataset
describing the annual sales of a company. The set consists of (year, value) tuples.
Since a set does not have an intrinsic order, we define the order of the elements
after the natural ordering of the year attribute. Thus, the data system consists
of the dataset D and the ED relation as follows:

D = {(1997, 2000), (1998, 4000), (1999, 8000), (2000, 16000)}
ED : D ×D is defined by

∀(a, b), (c, d) ∈ D : ((a, b), (c, d)) ∈ ED ⇐⇒ a < c

The dataset D describes 4 data tuples in the form of (year, value). The earlier
relation ED defines that a tuple (year1, value1) is earlier than (year2, value2)
whenever year1 < year2.

Annual Sales

0

20

40

60

80

100

120

140

160

180

years

sa
le

s

Annual Sales

0

20

40

60

80

100

120

140

160

180

years

sa
le

s

FIGURE 4.6: Left: Since the structure of the data source has been maintained,
this bar graph is an effective visualization. Right: A non-isomorph
mapping mangles important relations between the individual el-
ements.

Two possible visualizations of dataset D are give in Figure 4.6. The left his-
togram is an effective visualization of the data system < D;ED > because the
elements and ordering are preserved. The histogram on the right of the figure,
however, is not isomorph with the original data system. The year-ordering re-
lation ED is not preserved and, therefore, the visualization is not effective. The
definition of the visual system describing the left histogram is as follows.

60 4.2. VISUALIZATION MODELS IN PRACTICE

V = {(1, 20), (2, 40), (3, 80), (4, 160)}
LV : V × V is defined by

∀(a, b), (c, d) ∈ V : ((a, b), (c, d)) ∈ LV ⇐⇒ a < c

The visual system consists of data tuples representing the bars in the histogram
and a relation describing the left-to-right order of the histogram. The visual
entries describe the position and height of the bar: (x, height). The LD relation
defines that a bar is to the left of another bar whenever its x-position is smaller.
Defining the isomorphism between the data system < D;DE > and the visual
system < V ;VE > is now trivial.

4.2 Visualization models in practice: tools and re-
search

Visualization models do not only occur in descriptive theories of how the pro-
cess of visualization takes places. On the contrary, visualization models are an
important ingredient of tools and applications that perform visualizations. The
choice for a particular visualization model even determines the richness of the
visualization environment. For example, building a tool that supports interac-
tive visualization around a visualization model that does not take interaction
into account is a difficult job.

To structure the discussion of the practical side of visualization models, we
have grouped the tools, environments, etcetera in four distinct sets. The first
group, that we call embedded visualization, consists of products that are not
specifically built for visualization but contain visualization functionality as a
feature. The second group, comprises general visualization creation and pre-
sentation tools intended for end users. The third group consists of software
libraries and component repositories which can be deployed to build new
visualization applications. And finally, the fourth group comprises research
projects that focus on a particular aspect of visualization systems.

Table 4.2 contains a list of all visualization environments that are discussed in
the remainder of this section. We believe that this set of tools and research
projects covers a broad area of practical visualization in practice. The choice
for this particular set of environments instead of a different one is based upon
the author’s experience with most of these tools.

4.2.1 Embedded visualization

Visualization is increasingly found in existing data management or generation
tools. For example, databases, spreadsheets, statistical packages, simulation

CHAPTER 4. VISUALIZATION MODELS: THEORY AND PRACTICE 61

TABLE 4.2: Overview of the visualization environments
Visualization
environment

Description Application
Domain

User group URL

Microsoft Excel Built-in visualization
capabilities (charts)
to present
spreadsheet data.

All domains for
which a spread
sheet is
applicable.

End users. www.microsoft.com/
office/excel/

Systems
Modeling’s
Arena

Simulation tool with
built-in visualization
and animation
capabilities.

Special editions
available for
specific
domains, such
as business
and call-center
edition.

Simulation
developers
and end
users.

www.sm.com

AVS Express General-purpose
visualization product.

Scientific and
technical
visualizations.

Developers
and end
users
including
scientists and
researchers.

www.avs.com

IBM Open
Visualization
Data Explorer
(OpenDX)

Open source
visualization
framework (GUI tool
and API).

Scientific and
data
visualization.

Visualization
developers
and end
users.

www.research.ibm.com/
dx/

Visualization
Toolkit (VTK)

Open source C++
library with Tcl, Java
and Python bindings.
Optional commercial
support.

3D graphics,
image
processing,
scientific
visualization.

Programmers
and
visualization
developers.

www.kitware.com/
vtk.html

AVS OpenViz Commercial
component suite.

Business
Visualization.

Visualization
developers.

www.avs.com

muSE (multi-
dimensional
user-oriented
synthetic
environment

High-end
visualization
environment that
enables multi-user,
multi-platform, and
multi-sensory
applications.

Multiple, for
example
aerospace,
database, and
oil & gas.

Visualization
developers.

www.musetech.com

Computational
Steering
Environment
(CSE)

Research project,
software architecture
and implementation.

Interactive data
visualization of
integrated
simulations.

Software
developers.

www.cwi.nl

CMU’s Visage Research project,
prototype software
environment.

Information
visualization,
information-
centric
paradigm.

End users. www.cs.cmu.edu/
~sage/visage.html

www.maya.com/
visage/

Nasa’s Visual
Analysis
Graphical
Environment
(Visage 3.0)

Visualization
development
environment,
framework of APIs
(free binaries).

Information
visualization.

Visualization
developers.

tidalwave.gsfc.nasa.gov/
avatar/projects/visage/

62 4.2. VISUALIZATION MODELS IN PRACTICE

tools and so forth contain more and more visualization capabilities. To guide
our discussion of embedded visualization, we will use two well known exam-
ples: Microsoft Excel and Systems Modeling’s Arena.

Excel Excel (Microsoft 1999) is a spreadsheet program that has some basic vi-
sualization capabilities: data available in the rows and columns of the spread-
sheet can be shown in a graph. To facilitate the visualization process, Excel con-
tains a wizard (Figure 4.7) that helps the user to create the graph that represents
the spreadsheet. The underlying visualization model in Excel is extremely sim-
ple. The source data is converted into a visualization representation in a one-
way mapping. The model is therefore comparable with a simplified version of
the visual taxonomy. The difference is that going back from the graph to the
data is not supported. The visual mapping, however, can be adapted easily.

FIGURE 4.7: Microsoft Excel contains a wizard that helps the user to create a
graph visualization of spreadsheet data. Courtesy of Microsoft
Inc.

Arena With Arena (Bapat, Drake & Sadowski 1998), Systems Modeling Cor-
poration provides an extensive suite of modeling, simulation and animation

CHAPTER 4. VISUALIZATION MODELS: THEORY AND PRACTICE 63

tools. The collection consists of a core simulation engine and a number of ex-
tensions to cover a broad range of application domains. Figure 4.8 shows an
example of the business edition of Arena. The figure shows how Arena inte-
grates modeling, simulation, visualization and animation. To create such an
animated visualization, the user first models the business process by specify-
ing and connecting the steps within the process. The result of this modeling
step is shown in the top of the figure. After that, visualization or animation
elements can be added such as a bitmap representing the activity of the recep-
tionist or a graph showing the current number of applications in progress. By
pressing the run button, Arena starts the underlying simulation and animates
the visual elements (including the business model) to provide feedback on the
simulation.

FIGURE 4.8: Arena combines modeling, simulation, visualization and anima-
tion. Courtesy of Systems Modeling Corp.

The visualization model deployed by Arena is hidden within the Arena pack-
age itself. Modeling, simulation and visualization are all tightly integrated
into the application. The choice for a tight coupling has the advantage that
creating a visualization is relatively easy. For example, when you use Arena
to model your business process you get an animated version of your model
for free. However, decoupling the simulation data from the built-in visualiza-
tion is cumbersome. Using more sophisticated visualization tools on the basic
simulation engine is not directly supported.

64 4.2. VISUALIZATION MODELS IN PRACTICE

Discussion: tight versus loose coupling The issue of tight versus loose cou-
pling is important in visualization. Moreover, we see tight coupling as one of
the problems that we want to solve in this research project (see also Section 1.1
on page 2). Embedded visualizations are usually tightly coupled. This is fine
for basic visualization tasks. However, for more elaborate and powerful visu-
alizations a looser coupling allows for more flexibility regarding the deployed
visualization mechanisms.

4.2.2 General-purpose visualization tools

The second group discussed in this chapter comprises visualization creation
and presentation tools intended for end users. In this category, users, such
as scientists and business managers, can visually examine data sets which are
imported into the visualization tool. In addition to this, developers can often
write their own components that can be plugged into the tool. Members of this
group are AVS Express and IBM Open Visualization Data Explorer (OpenDX).

AVS Express AVS Express (Westmacott 1997) is a general-purpose visualiza-
tion environment. The visualization model underlying AVS Express is the vi-
sualization pipeline. AVS Express contains a collection of filters (called mod-
ules) that can be deployed to manipulate, filter and present data. The modules
are connected via communication links. As already shown in Figure 4.3, AVS
Express has a visual programming environment to wire a visualization by con-
necting data sources, filters and views. Developers can extend the capabilities
of AVS Express by creating their own modules and deploying them as filters in
the visual programming environment.

OpenDX A similar approach is taken by the IBM Open Visualization Data
Explorer (OpenDX). OpenDX provides the user with a range of analysis, ma-
nipulation, rendering and animation modules within a graphical development
environment. Figure 4.9 contains a screenshot of OpenDX in action. The fig-
ure shows the deployed components and connections in a visualization of the
ozone layer. Users can adapt the visualization process by modifying the vi-
sualization pipeline shown on the right-hand side of the figure. Settings of
specific visualization components can be controlled through separate GUI con-
trols. Modifications in the visualization pipeline or one of its components are
immediately reflected in the image shown on the left side.

Discussion: extensibility of visualization environments Since the visual-
ization process often requires specific analysis, manipulation, or visualization
primitives, extensibility is an important requirement for visualization devel-
opment environments. Therefore, most tools include the possibility to plug-in
your own components. As an example of how powerful the addition of new

CHAPTER 4. VISUALIZATION MODELS: THEORY AND PRACTICE 65

FIGURE 4.9: IBM Open Visualization Data Explorer contains a visual program
editor to develop visualizations. Courtesy of IBM Research.

component can be, we will show how AVS Express can be extended to support
collaborative visualization.

Although AVS Express itself does not include support for collaboration, the San
Diego Supercomputer Center (SDSC) developed modules to support collabo-
rative behavior (Elvins & Johnson 1998). By connecting the visualization com-
ponents forming the visualization pipeline by means of a collaboration server,
as illustrated in Figure 4.10 (Elvins & Johnson 1998, Figure 3), a fully shared
control visualization can be achieved.

4.2.3 Visualization component libraries

The third group we discriminate comprises software libraries or component
repositories which can be deployed to build visualization applications. Usu-
ally, a development tool or language is provided to simplify this job. The re-
lation with the previous group is strong. However, in the visualization tools
group, the visualization development tools are considered the most important
element of the products, whereas in the component libraries group, the indi-

66 4.2. VISUALIZATION MODELS IN PRACTICE

FIGURE 4.10: Collaborative AVS extends AVS Express with collaboration com-
ponents. The collaboration server ensures that changes in a mod-
ule at one machine are reflected in the corresponding modules on
the other machines within the collaboration session. Courtesy of
Elvins and Johnson.

vidual components are the main ingredient. Members of the software library
group are the Visualization Toolkit (VTK), OpenViz and MUSE.

VTK The Visualization Toolkit (Schroeder et al. 1996, Schroeder, Avilla &
Hoffman 2000) is a software system for 3D computer graphics, image process-
ing, and visualization. VTK is based on a C++ class library, but has bindings to
other languages including Tcl/Tk, Java, and Python. The underlying visualiza-
tion model is based upon the visualization pipeline. Visualization developers
build the filters and connect them using VTK’s connection mechanisms.

OpenViz OpenViz (Advanced Visual Systems 1999) is a collection of Java and
COM components especially aimed at business visualization. Developers can
deploy the OpenViz components to build custom visualization applications.
OpenViz components range from data manipulation to interactive viewer com-
ponents.

CHAPTER 4. VISUALIZATION MODELS: THEORY AND PRACTICE 67

FIGURE 4.11: Visualization of racing car information. Courtesy of Muse tech-
nologies.

The model underlying each OpenViz application is the OpenViz Application
Pipeline. This means that an OpenViz application can be represented as a vi-
sualization pipeline consisting of the following steps: 1) access the data, 2)
prepare the data and 3) visualize the data. Finally, a user can interact with
the visualization through the viewer component. These transformation steps
are exactly the same as the steps defined in the visualization reference model.
However, interaction that is immediately supported by OpenViz is limited to
the viewer component. Therefore, OpenViz is more constrained with respect
to interaction than the visualization reference model.

MUSE The Multi-dimensional User-oriented Synthetic Environment (MUSE) is
a high-end visualization platform that enables the development of multi-user,
multi-platform, multi-sensory software applications. It consists of an extensive
C/C++ library and a collection of tools to develop custom applications. Muse
has been deployed in high-end visualization projects within a broad spectrum
of domains including aerospace, automotive, manufacturing, medical, and oil
& gas.

Moltenbrey (1999) describes the usage of Muse to visualize data to analyze the
performance of tires on racing cars. Figure 4.11 contains two visualizations that
help analyzing the tires’ behavior. The following quote from that article briefly
illustrates the usage of a Muse-based visualization to improve the analysis.

Using a multi-sensory interface from MUSE Technologies (Albuquerque,
NM) that gathers and displays visual, tactical, and audio data, Goodyear
race-tire engineers at the company‘s Akron, Ohio, Technical Center are
able to simultaneously view in 4D (3D images along with a time el-
ement) graphical format up to 20 types of data describing the state of
the car, such as its acceleration, collected from test runs at actual race

68 4.2. VISUALIZATION MODELS IN PRACTICE

tracks. The group experiences a lap-by-lap replay of the data, with in-
formation about the car‘s state mapped onto the tires, dials, and vehicle‘s
body, providing a real-time visual representation of performance variables
and their effects on the car and tires. By easily visualizing so much data,
the engineers have been able to expand their analysis capability, which
will lead to improved performance of tires and vehicles in an array of race
conditions–and, ultimately, an improved tire design for the consumer mar-
ket. (Moltenbrey 1999)

4.2.4 Research projects

The fourth and last group comprises research projects instead of (commercial)
products. In a research project the main focus is on a particular aspect of vi-
sualization systems, such as the distributed software architecture or the user-
interface aspects concerning interaction with data sources. To illustrate those
aspects, all projects discussed here have associated prototype implementations.
The surveyed research projects are the Computational Steering Environment
(CSE), Carnegie Mellon University’s Visage and Nasa’s Visage 3.02.

CSE The goal of the Computational Steering Environment (van Liere, Harkes
& de Leeuw 1998) was to integrate simulation and visualization in the domain
of scientific visualization. Traditional visualization approaches do not visual-
ize any results until the complete simulation has finished. This implies that if
users want to experiment with the settings of the simulation, they have to run
the complete simulation a couple of times. Especially for complex scientific
processes, this may be a time-consuming task.

The goal of the CSE project was to integrate the simulation and visualization
loop in such a way that intermediate results are immediately visualized. This
enables the scientist to interact with the simulation during visualization (com-
putational steering).

To offer software developers the means to build applications supporting com-
putational steering, the software architecture of CSE comprises a distributed
blackboard. Conceptually, information producing and consuming components
(called satellites in CSE) are all connected to a single blackboard. Using this
blackboard, the satellites can exchange all information that needs to be shared.

To increase the performance and scalability of the system, the blackboard has
been split up over several distributed blackboards which reside at different ma-
chines. Updates at one distributed blackboard are then propagated towards the
other local blackboards which have satellites using the same piece of informa-
tion.

2Please note that two projects called Visage exist. One project runs at Carnegie Mellon Uni-
versity, whereas the other one is performed by Nasa. To avoid confusion we will call the Visage
projects CMU’s Visage and Nasa’s Visage 3.0 respectively.

CHAPTER 4. VISUALIZATION MODELS: THEORY AND PRACTICE 69

CMU’s Visage An elegant implementation of direct manipulation as a means
of interaction and visual exploration is achieved by CMU’s Visage, which is
described in (Derthick et al. 1997) and (Kolojejchick et al. 1997). Visage is infor-
mation centric which means that the information itself is the interface and can,
therefore, be manipulated or dropped onto different visualization primitives.

FIGURE 4.12: Data elements in CMU’s Visage can be dragged onto different vi-
sualization primitives. Courtesy of Carnegie Mellon University.

As an example, Figure 4.12 shows how a user has selected certain elements in
the outliner on the left hand side of the figure which she has dropped onto the
bar chart (plot). The result of this interaction is that the plot now only visualizes
the selected elements instead of the complete dataset. Interesting elements, for
example the longest bar, can subsequently be dropped onto the map for further
inspection, e.g. to reveal its geographical position.

Nasa’s Visage 3.0 Nasa’s Visual Analysis Graphical Environment (Visage 3.0)
(Nasa Goddard Space Flight Center 2000) is a distributed visualization devel-
opment environment written in Java. Visage offers a rich set of Application
Programming Interfaces (APIs) to facilitate everything in the visualization pro-
cess, ranging from dataset manipulation to 2D and 3D viewers.

The visualization architecture of Nasa’s Visage consists of three distinct layers:
the DataSet, the VisModel and the Visualization. The DataSet is the large set of
indexed data that a visualization has access to (the datasource). The DataSet
contains all the information that is available. The mediate-model, the VisModel
(visualization model), is a window into the DataSet. The VisModel contains
all information necessary to create a visualization. Usually, this is a subset of
the DataSet. Finally, the Visualization represents all information available in
the VisModel. Additionally, the Visualization layer includes a Manipulator that
contains controls for the user to alter the VisModel’s bounds.

70 4.2. VISUALIZATION MODELS IN PRACTICE

FIGURE 4.13: Nasa’s Visage supports dynamic data feeds to visualize dynamic
data. Visualizing a time fragment is supported through time-
sliders (in the bottom of the window).

A unique property of Visage 3.0 is its support to visualize dynamic data in a
distributed environment. To achieve this, a Visage session consists of a server
and a couple of clients. The server offers the concept of a DataFeed to which a
client can subscribe. Consequently, changes in the data are notified to the in-
terested clients which can then update their visualizations. Figure 4.13 shows
a screenshot of a Visage client which visualizes dynamic data using a 3D bar
chart. Whenever a single value at the server changes, the client is notified,
retrieves the changed data and accordingly updates the height of the corre-
sponding bar.

Discussion: data sources – past, present or future The fact that the data com-
ing from the server changes over time implies that the data source is dynamic
data (in contrast to static data sources such as databases). In addition to being
static or dynamic data sources can concern past, present or future. These data
sources have rather distinct characteristics. As a consequence, they require dif-
ferent treatments in visualization applications. Data about the past is static
and usually covers a long time period. It is often used for overviews of the
complete time period or fragments thereof. Data about the present, e.g. com-
ing from measuring devices, consists of up-to-date information which might

CHAPTER 4. VISUALIZATION MODELS: THEORY AND PRACTICE 71

change at any moment in time. Therefore, data about the present only reflects
a certain point in time instead of a time span such as is the case with data about
the past.

Data about the future is an extrapolation of data from past and present accord-
ing to some prediction model. Like data about the past, it spans a certain time
period. It differs, however, from the past due to the possibility of multiple fu-
tures. Namely, future data depends on the deployed prediction model and its
current parameter settings which might be changed (interactively) by the user.

Nasa’s Visage provides support to visualize (parts of) the past by introduc-
ing time sliders (the slider at the bottom of Figure 4.13). As time progresses,
the currently selected time frame represented by the time sliders moves to the
right. However, users can interact with the progress of time by dragging the
bar to another point in time. Additionally, the selected time frame can be
adapted by grabbing the left or right end of the time slider and change the
size of the slider. As a result of this interaction, the VisModel window into the
DataSet is modified and consequently a different time frame is visualized.

4.3 Summary and Conclusions

To gain a better understanding of the process of visualization, this chapter dis-
cussed visualization models from a theoretical as well as a practical perspec-
tive. A common denominator of the theoretical models is their description of
the process of visualization as a series of transformation steps. They differ,
however, in the interpretation of these steps and whether there is support for
interaction during the transformation processes.

The visual taxonomy determines two structures, symbolic and visual. Visu-
alization itself is defined as the transition from the symbolic domain into the
visual domain. The visualization pipeline focusses on the transformation from
source data to the displayed visual representation. It defines filters as the pro-
cessors which are connected by means of pipes. Support for human interaction
is introduced by the visualization reference model. It defines interaction pos-
sibilities during data transformations, visual mappings and view transforma-
tions. Finally, a formal approach to visualizations makes it possible to prove
characteristics of the visualization, and in particular its effectiveness.

To cover visualization models in practice, this chapter distinguished between
four types of visualization environments. First, we discussed embedded vi-
sualization as employed by Microsoft Excel and Arena. We saw that the tight
coupling of data and visualization can lead to a powerful tool, but does not
allow us to combine it with other data or visualization tools. Second, we
discussed the general-purpose visualization environments AVS Express and
OpenDX. Both environments contain a visual programming tool that is based
upon the visualization pipeline.

72 4.3. SUMMARY AND CONCLUSIONS

Visualization component libraries such as VTK, OpenViz and Muse provide
developers with a rich set of analysis, data manipulation and visualization
components. The prescribed visualization model of such libraries is usually
based on a variant of the visualization pipeline. However, visualization ap-
plication developers can just as well deploy the components independently in
their own architecture. As a last group, this chapter discussed visualization re-
search projects, each with its own research focus. CSE’s goal is to integrate sim-
ulation and visualization into a computational steering environment. CMU’s
Visage illustrates how direct manipulation can be achieved in an information
centric visualization. Finally, Nasa’s Visage elaborates dynamic data sources
in a distributed environment. Additionally, it enables users to conveniently
browse through time by means of time sliders.

As a conclusion, we see that theoretical and practical visualization models are
closely related. Moreover, most visualization tools are directly based upon a
theoretical visualization model. The consequence of this close relation is that
whenever the theoretical model has a limit, e.g. a single view on the data,
this limit is inherited by the visualization product. Thus, before developing a
software architecture for multi-user visualization we first have to take a closer
look at a visualization model that supports the multi-user, multi-perspective
requirements. The next chapter, therefore, discusses the DIVA architecture on
a conceptual level first.

CHAPTER 5

Diva: Distributed Visualization Architecture

Abe said something interesting. He said that because
everyone’s so poor these days, the ’90s will be a decade with no

architectural legacy or style – everyone’s too poor to put up
new buildings. He said that code is the architecture of the ’90s.

Douglas Coupland (Microserfs)

Taking existing applications, built and designed for single user purposes, into
the multi-user realm is a complicated matter. The underlying architecture of
the system is (probably) not designed with multi-user consequences in mind.
Adapting the application, therefore, involves changes in the structure of the sys-
tem and requires new forms of communication. Unfortunately, these kinds of
modifications are more radical and expensive than source code changes which
do not alter the software architecture.

In the field of information visualization, the same argument is valid. Extending
a computer program that visualizes a local database with multi-user functions
significantly changes the architectural structure of the program. Moreover, it is
doubtful whether we should consider it as an extended version of the same ap-
plication. It is probably more correct to state that we created a new application
(a new structure) by reusing parts (functional units) of the original application.

74 5.1. DISTRIBUTED VISUALIZATION ARCHITECTURE

Structure After Section 5.1 briefly describes the context of the Distributed Vi-
sualization Architecture, Section 5.2 discusses some issues of multi-user visual-
ization. The DIVA architecture is subsequently discussed according to three
perspectives: the conceptual architecture (in Section 5.3), the software architec-
ture (Sections 5.4, and 5.5) and, as a last perspective, we look at the information
architecture of DIVA in Section 5.6. After a brief recapitulation of the architec-
ture in Section 5.7, a more theoretical discussion of software architecture and
its usage is discussed in Section 5.8. Finally, Section 5.9 summarizes and con-
cludes this chapter.

5.1 Distributed Visualization Architecture

This chapter discusses our architecture for visualization in a distributed multi-
user environment. The architecture builds upon two important observations.
First, multiple users with different backgrounds have individual information
needs and thus require multiple views on the information. Second, to allow
users to experiment with the information and the visualization, the visualiza-
tion must be adaptable. To meet these requirements, our approach decouples
the generation and presentation of information by means of an intermediate
model, allowing users to adapt the visualization to their information needs.

The Distributed Visualization Architecture (DIVA) is described by means of
three architectural perspectives. The first view comprises a conceptual archi-
tecture. It provides a high-level overview of the organization of data and func-
tionality of the system. The conceptual architecture is comparable with the
(theoretical) visualization models of the previous chapter. A second view is the
DIVA software architecture. It describes the structure of the system in terms
of software components, interfaces and communication. A last perspective is
the information architecture. This view describes the structure and transfor-
mations of the data from source to visual representation.

Together with the two following chapters, this chapter forms a cluster describ-
ing information and business visualization from an architectural perspective.
The focus of this chapter is on the requirements and the high-level overview
of the DIVA architecture. The next chapters illustrate the DIVA architecture
from a more practical perspective. Chapter 6 contains a description of several
prototype implementations we have created to realize the architecture. Addi-
tionally, it discusses the consequences of deploying visualization in computer-
supported cooperative work. Chapter 7 describes the usage of the DIVA ar-
chitecture in combination with a reusable collection of 3D gadgets to visualize
business process simulations.

CHAPTER 5. DIVA: DISTRIBUTED VISUALIZATION ARCHITECTURE 75

5.2 Multi-user Visualization

Before discussing our architecture for multi-user visualization, we first de-
scribe an example application of distributed multi-user visualization. Since
the management information case study in Chapter 3 already provides an ex-
ample of business visualization, this application focuses on the multi-user and
collaborative aspects of visualization.

Imagine an international company with offices in countries all over the world.
The CEOs of the company have decided that the offices in different countries
have to standardize the work process to improve the service level of the whole
company. A business process re-engineering (BPR) project is started which
must result in standardized business processes based on the different existing
ones. The managers in the different countries will make the final decisions
about the new work processes at a conference. However, they want to prepare
and discuss some alternatives before the actual decisions are made.

We want to deploy information technology to support the managers in study-
ing the alternatives and making the decisions. In addition to Web-pages and
email to exchange information, we create business process simulations to exe-
cute the redesign alternatives (Eliëns, Niessink, Schönhage, van Ossenbruggen
& Nash 1996). To fully exploit the potential of the business simulations we
want to allow the managers to discuss both the results of the simulation, e.g.
the costs and profits, and the running simulation itself, e.g. to illustrate the
activities in the redesigned alternative.

This example requires two forms of collaboration: synchronous distributed
and face to face (Ellis, Gibbs & Rein 1991) and (Shneiderman 1998). First,
to help the managers prepare for the conference, we require support for syn-
chronous distributed collaboration where the users cooperate at the same time
but at different places. Second, at the conference, where the decisions are made,
the managers discuss the selected alternatives face to face, i.e. same time, same
place.

By taking a closer look at the example, we can discriminate some roles that the
participants of the distributed visualization play. First, there is the role of the
talker who demonstrates a redesign alternative to a number of listeners. The
listeners follow the explanation and can browse through the resulting infor-
mation. They are not allowed to interact with the business simulation itself.
However, to increase the interactivity of the session, a number of people may
be allowed to interact with the simulation. We will call them the interactors.

76 5.3. CONCEPTUAL ARCHITECTURE

Amsterdam

London

Berlin

Talker Interactor

Listeners

Listener

FIGURE 5.1: Example configuration of a multi-user visualization system

Figure 5.1 illustrates an example configuration consisting of one talker, one in-
teractor and three listeners. The talker in Amsterdam presents the results of
the running simulation to the interactor in London and the three listeners (two
in Berlin and one in London). In the remainder of this chapter, we will show
how the information coming from the talker can be distributed to the interac-
tors and listeners. Additionally, we will discuss what software architecture is
needed to support this process.

5.3 Conceptual Architecture

As we have seen before, the process of visualization transforms raw data into
visual representations. In a single user/single machine environment, a visual-
ization program can read and process the data on the harddisk and display the
visualization on the monitor. When we extend this to a distributed multi-user
environment, things get more complicated and we have to rethink the archi-
tecture.

As an introduction to the DIVA architecture, this section discusses the concep-
tual architecture. It gives an overview of the process of visualization compara-
ble with the visualization models discussed in Chapter 4. However, our con-
ceptual architecture extends those models with multi-user and collaborative
aspects.

CHAPTER 5. DIVA: DISTRIBUTED VISUALIZATION ARCHITECTURE 77

5.3.1 Primary, derived and presentation model

We regard the process of visualization as a transition of data through a se-
quence of models, starting with the generation of data and ending with the
presentation of a visualization. To allow for multiple, possibly shared, perspec-
tives on the data, we introduce an intermediate model between the generation
and presentation of information. This intermediate model contains informa-
tion based on the originally generated data, adapted to the information needs
of its users.

Figure 5.2 depicts our architecture on a conceptual level. It contains three mod-
els going from symbolic data in the primary model to a visual representation
in the presentation model.

Presentation
model

Conceptual
mapping

Presentational
mapping

FIGURE 5.2: Conceptual architecture

The primary model is the source of the visualization. It contains explicitly
or implicitly all information that is available. When the source data is static,
the primary model may, for example, be a database. In this case, the primary
model contains explicitly all data the system is using to make a visualization.

In contrast, when simulation is used to generate dynamic data, the primary
model is the simulation model executed by the simulation application. The
raw data generated by the simulation usually is only of minor interest. De-
rived results, such as average waiting times and standard deviations, are better
suitable as source data for visualization. These derived values are stored in the
next model.

The intermediate model between the generation and presentation of informa-
tion is the derived model. Since the derived model has adapted the data from
the primary model to the information requirements of its users, it is used as
the information source for the presentation model. Multiple derived models,
based on a single primary model, can be created to serve multiple users.

The rightmost box in Figure 5.2 is the presentation model, which is used to dis-
play the visualization. The contents of the presentation model depend on the
presentation technique used, e.g. for 3D visualizations the presentation model
is the 3D scene graph. Because the derived and presentation model are decou-
pled, users can share the derived model while their presentation is different.
The information contents of the visualization is the same although the style can
differ depending on the available platform and the user’s preferences.

78 5.3. CONCEPTUAL ARCHITECTURE

5.3.2 Transition from model to model

In addition to the three models described above, Figure 5.2 contains two tran-
sitions or mappings between the models. The conceptual mapping from the
primary to the derived model gives us the flexibility to adapt the data space
to our information needs. This is useful because we are only interested in in-
formation with some value for our current interest; data only becomes infor-
mation when it is of use to answer the questions we have. As a consequence,
data in the derived model differs from data in the primary model in two ways.
First, only data that is useful for the current perspective is selected for the de-
rived model. Second, information derived from primary data is added to the
derived model.

The mapping from the derived to the presentation model, the presentational
mapping, specifies how information in the derived model is presented. Data
elements in the derived model are mapped onto visualization primitives. What
information is selected and how it is represented is up to the users of the sys-
tem, their information requirements and their personal taste. For example, two
different presentational mappings can be deployed to present the same infor-
mation in a 2D or 3D visualization.

5.3.3 Example configuration of the conceptual model

To illustrate the conceptual architecture, Figure 5.3 contains an example of the
Amsterdam-London-Berlin architecture consisting of one primary model (the
business simulation), two derived models and the five persons (views) in the
three different cities. The arrows illustrate the flow of data and information
through the system. For simplicity, the flow of control is not drawn in the
figure.

As can be seen from the figure, four out of five users share the same derived
model. They share the same information that is used for the visualization.
However, although the information content is the same, the four listeners can
display the information according to their preferred style. The listener in Lon-
don may use moving objects to illustrate activity whereas the talker in Amster-
dam employs color to visualize the same information.

One person in Berlin focuses on a different aspect of the simulation and, there-
fore, has her own derived model. She might, for example, be interested in the
resource allocation aspects of the business process simulation. She requires
distinct information which is gathered in Derived model II.

5.3.4 Relation to other visualization models

The DIVA conceptual architecture is closely related to the theoretical models
described in Chapter 4. Most models are based on a process of transforming

CHAPTER 5. DIVA: DISTRIBUTED VISUALIZATION ARCHITECTURE 79

Master

Inter-
actor

Viewer

Viewer Viewer

Prim.
model

Derived
model II

Derived
model I

London

Amsterdam

Berlin

FIGURE 5.3: Example of the conceptual architecture

data through intermediate models. The main difference, however, between our
approach and the visualization pipeline or visualization reference model is the
possibility of multiple derived models. Our conceptual architecture supports
multiple visualization perspectives by means of multiple derived models (as
shown in Figure 5.3). Summarizing, our approach can be seen as a multi-user,
multi-perspective extension of previously discussed visualization models.

5.4 Basic Software Architecture

A software architecture can be thought of as an artefact that shows how func-
tional and quality requirements of a system can be met. Thus, before we
present the DIVA software architecture, we first briefly discuss the underlying
requirements.

To structure the discussion, we will introduce the DIVA software architecture in
two phases: the basic software architecture and, in the next section, extensions
to this basic architecture. This way, we show how extra requirements influence
the basic architecture. Moreover, since the addition of expected extensions to
the software architecture is evaluated, we, consequently, probe the flexibility
of the basic architecture.

80 5.4. BASIC SOFTWARE ARCHITECTURE

5.4.1 Basic requirements

Below, the three main requirements for the DIVA software architecture are
given. The requirements are based upon the research problems that we have
described in Chapter 1, which are 1) the lack of multi-user support, 2) tight-
coupling between data and visualization and 3) limited interaction with the
process of visualization.

Additionally, the requirements are influenced by the results of case studies
with distributed information visualization. Especially, the evaluation of the
Gak management information project as described in Chapter 3 played an im-
portant role in giving shape to the requirements and their reflection in the basic
architecture.

Basic Requirements

1. Support for multiple users.

2. Support for multiple perspectives.

3. Decoupling of data source and visualization.

The first requirement, the support for multiple users, directly reflects the idea
we had at the beginning of the DIVA project. Current software support is too
much aimed at the single user whereas visualization is often used in a multi-
user context, e.g. decision-making. The DIVA project must provide a means
for multiple users to share their visualizations in order to achieve better results
from their cooperation.

A direct consequence of our wish to support multiple users is the requirement
of supporting multiple perspectives. As becomes clear in the application of
visualization in practice, people use information differently. For example in a
business setting, financial and operational managers are interested in the same
data, but at a different level. The financial manager needs a financial overview,
whereas the operational manager requires insight in abnormal financial trans-
actions. Hence, multiple perspectives on a shared information source are re-
quired.

The third basic requirement is also directly related to one of the problems we
try to solve in this research, namely tight coupling. Instead of tightly inte-
grating specific information sources with specific visualization facilities, we
propose a model that decouples source from visualization. This way, informa-
tion resources can be reused by multiple visualizations while at the same time,
visualizations can be reused to present different information sources.

CHAPTER 5. DIVA: DISTRIBUTED VISUALIZATION ARCHITECTURE 81

5.4.2 Basic software architecture

This section presents the basic software architecture of DIVA (see Section 5.8
for a more theoretical background on software architecture). The DIVA soft-
ware architecture reflects the three requirements specified above. Additional
requirements demand extensions of this basic architecture. What consequences
these extended requirements have on the basic architecture is the topic of the
next section.

To describe the DIVA software architecture, we both use simple charts and the
Unified Modeling Language (UML). A specification in UML consists of a col-
lection of diagrams, including use-case diagrams, class diagrams and collabo-
ration diagrams. A short introduction into UML can be found in (Fowler 1997).
More detailed information about UML is available in (Rumbaugh, Jacobson &
Booch 1999) and (D’Souza & Wills 1999).

The choice to use UML instead of an Architectural Description Language
(ADL) is twofold. First, UML is becoming the de facto standard for model-
ing systems at different levels, including the architectural level. Second, ADLs
are currently still in the phase of research and do not offer much advantage for
the purpose of clarifying the DIVA software architecture. By sticking to a well
known modeling language, it will hopefully be easier to grasp what is really
important: the contents of the architectural description.

The keyword of the Distributed Visualization Architecture is decoupling. Data
generation, storage and presentation are not combined into in a single entity
(component) but are considered as separate parts contributing to the overal
process of visualization. We therefore distinguish between the role of data
provider and the role of data visualizer. The exchange of information from
a data provider to a data visualizer takes place via a communication mecha-
nism that we will call the communication space.

Data Provider

Communication Space

* 1* 1

exchange information
Data Visualizer

*1 *1

FIGURE 5.4: The basic architecture decouples data provider and data visual-
izer. Information exchange from the provider to the visualizer
takes place via a communication space.

Figure 5.4 gives a high-level overview of the DIVA software architecture. The
basic architecture consist of a (logically) single communication space, a number

82 5.4. BASIC SOFTWARE ARCHITECTURE

of data providers and a number data visualizers. The figure shows that multi-
ple data providers, such as databases and simulations can be used as a source
for multiple visualizations. However, all information exchange goes through
a single communication space. In the remainder of this section, we will show
how this basic architecture satisfies the three basic requirements.

Multi-user support (1)

DIVA is a distributed architecture: data sources and visualizers can be running
on different machines. Furthermore, multiple visualizers can be using the same
information source as input for their visualizations. As such, multiple users
can visualize a shared information provider, for example they can look at a
common database or use the same simulation.

In the DIVA architecture, the mediating communication space is responsible
for distributing the information to the visualization components. As a conse-
quence, the information provider is released from the task of maintaining to
whom it should distribute its data. At the same time, the visualizer does not
have to keep up with multiple information sources. The information provider
publishes all it knows to the communication space whereas the visualizer can
find all the available information at the same location.

Multi-perspective support (2)

Closely related to the requirement of multi-user support is the requirement for
multiple perspectives. Different users have different backgrounds, different
tasks to accomplish and hence different information needs. Consequently, the
DIVA software architecture must support multiple perspectives.

To achieve this, the software architecture must enable us to build a system
like the one specified in Figure 5.1 consisting of a single data source, multiple
derived models and multiple views on the derived models. To show how such
a visualization session can be realized using DIVA we need to take a closer look
at the communication space.

In DIVA the mediating communication space is the Shared Concept Space
(SCS). The Shared Concept Space, which will be discussed in detail in Chap-
ter 8, is a model for (distributed) data exchange and is based on the talker-
listener pattern. The SCS consists of hierarchical concepts that represent the
actual data as well as a meta-level description.

The role of the Shared Concept Space in the software architecture of DIVA is
illustrated in Figure 5.5. The Shared Concept Space, shown in the middle of
the figure, contains two trees of concepts both representing a different derived
model based on the source data coming from the data provider. Listeners can
present different perspectives on the original data by visualizing (a part of) one
of the offered derived models.

CHAPTER 5. DIVA: DISTRIBUTED VISUALIZATION ARCHITECTURE 83

Information
Provider

Information
Provider

Shared Concept Space

derived
model 1 derived

model 2

Provide data

ViewerViewer

ViewerViewer

ViewerViewer

ViewerViewer

Distribute data

FIGURE 5.5: The Shared Concept Space allows for multiple derived models
and hence multiple perspectives on a single information source.

Decoupling (3)

After all that has been said about the basic software architecture, the last re-
quirement, decoupling information provider from visualization, is almost triv-
ial. Moreover, the decoupling of information provider and visualizer is ex-
ploited to satisfy the multi-user, multi-perspective requirements.

5.5 Extending the Software Architecture

This section shows how the basic software architecture of DIVA can be ex-
tended to support additional requirements. We use the same structure as em-
ployed in the previous section. Hence, we first briefly give and motivate the
additional requirements. After that, we show how to adapt or extend the basic
architecture to satisfy those additional requirements.

5.5.1 Extended requirements

The basic software architecture is capable of providing multiple users with
multiple perspectives in a decoupled architecture. The requirements presented
below are not necessary for this basic visualization functionality. Nevertheless,
they are desirable in information and business visualization applications as we
have demonstrated in case studies such as described in Chapter 3.

84 5.5. EXTENDING THE SOFTWARE ARCHITECTURE

Extended Requirements

4. Decoupled data manipulation.

5. Interaction with data source.

6. Collaboration support.

The first additional requirement directly comes from our experiences with the
case studies at Gak Netherlands. In those studies we found that data available
in data sources does not necessarily have the right level of abstraction to be
used for visualization. Data manipulation is used to derive ‘new’ information
from data available in the data source. By introducing data manipulation in
one of the components of the architecture instead of relying on manipulation
facilities in the data source or visualization primitives, transformation rules
can be reused for multiple sources and visualizations. For example in the case
study at Gak, we specified a derived property that calculated the number of
benefit applications at each stage in the business process based on information
from the database. This piece of knowledge could later on be reused to derive
the same information in the case we used simulation as the data generator.

The second extra requirement concerns the support for better interaction with
the visualization process. Presenting information visually improves the in-
sight, however, interacting with the source data and getting feedback increases
understanding. The usefulness of interaction is very well expressed by the fol-
lowing Chinese proverb:

What I hear, I forget;
what I see, I remember;
what I do, I understand.

A final additional requirement is support for collaborative visualization. Usu-
ally, visualization is a single user activity. However, visualizations are an ex-
cellent means of communicating a vision. Visualizations are therefore often
deployed to explain statements or convince colleagues. In an interactive visu-
alization system, only sharing the resulting image of the visualization is not
enough. More than that, a collaborative visualization system must explicitly
support cooperation in the form of perspective sharing and direct communica-
tion between interested parties.

5.5.2 Extensions to the basic software architecture

The DIVA software architecture as it has been discussed up to now meets the
basic requirements. To satisfy the additional requirements of decoupled data
manipulation, interaction and collaboration, the basic software architecture has
to be extended. This section discusses how each of these additional require-
ments influences the basic architecture.

CHAPTER 5. DIVA: DISTRIBUTED VISUALIZATION ARCHITECTURE 85

Decoupled data manipulation (4)

To reuse derivation knowledge independently of information provider and vi-
sualizer, it has to be decoupled from them. In DIVA, the Shared Concept Space
(SCS) is the connection between the data provider and visualizer components.
It is the means of decoupling data provider and consumer. The SCS is therefore
the right place to enrich the available data with derived information.

In order to be able to derive new information, the Shared Concept Space con-
tains, in addition to the data concepts, derived concepts. Derived concepts
are produced by separate processor objects that listen to available information,
process it and produce new derived information.

The usage of derived concepts and processor objects is illustrated in Figure 5.6.
Data coming from a data provider is distributed by the SCS to all interested
visualizers (this is part of the basic architecture). To support decoupled data
manipulation, the available information is also distributed to the processor ob-
jects. Based on the received data, the processor objects now publish derived data
that, subsequently, is distributed by the shared concept space.

ProviderProvider

represents data flow

SCSSCS VisualizationVisualization

ProcessorProcessor

data
data

data
derived

data

derived
data

FIGURE 5.6: The flow of data from data provider to simulation is enriched with
derived information that is produced by separate processor ob-
jects.

As a simple example, imagine a business process simulation that produces
‘waiting times’ at a particular queue. Whenever the simulation publishes a
new waiting time, the processor object adds that time to its internal sum, di-
vides that by the number of produced times and publishes the average waiting
time as derived information.

Interaction (5)

The second extension to the basic DIVA software architecture concerns support
for interaction. Our goal of creating a fully interactive visualization architec-
ture means that we must be able to interact with every aspect of the visualiza-

86 5.5. EXTENDING THE SOFTWARE ARCHITECTURE

tion process. Therefore, we now show how to extend the architecture with a
means to interact with the complete visualization process.

First, we discuss how to interact with the data visualizer component. Until
now, we described the data visualizer as a single component. For the purpose
of interaction and collaboration, however, the component must be split into
two parts.

The first element of the visualizer component listens to information in the
Shared Concept Space and transforms that into visual structures. For reasons
that will be explained later, this element is called a display agent. For exam-
ple, when a vector of integer numbers must be visualized as a bar graph, the
display agent maps the integer values to a structure describing the contents of
the bar chart, including width, height, color and shape of the bars.

These visual structures are input for the viewer component which combines
multiple visual structures into a single image, animation or 3D scene. Addi-
tionally, the viewer can apply visual transformations, such as zooming, color
effects and multiple viewpoints.

Figure 5.7 shows the DIVA software architecture that is enhanced with four
levels of interaction support. Every component containing behavior that can
be interacted with exposes an interface that can be used for interaction with
that component.

The view control interface allows for view transformations such as changing
viewpoint or modifying the deployed display methods. The offered methods
and interaction possibilities depend on the deployed viewer. Figure 5.7 con-
tains an example interface for a 3D viewer.

The mapping from information to a visual structure in the display agents can
be influenced via the display agent control interface. Since each type of agent
performs a specific mapping, the contents of the control interface is dependent
on the deployed display agent.

While controlling existing display agents is a means to adapt existing visual-
izations, new visualizations can be generated by adding display agents to the
system. Together, these options form DIVA’s possibilities to interact with the
visual mapping.

The third level of interaction comprises the manipulation of the data processor
objects. In the DIVA software architecture, data manipulation is comparable
with the visual mapping. Users can modify the deployed data manipulation
by means of adding/removing processor objects or by modifying the settings
of the running processor via its control interface.

Finally, interaction with the data generation is achieved via a separate control
interface. For example to control a running simulation, a user can start, stop
and reset the simulation. Additionally, to experiment with different settings of
the simulation, the interface can contain methods to change important param-
eters of the simulation model.

CHAPTER 5. DIVA: DISTRIBUTED VISUALIZATION ARCHITECTURE 87

SimControl
start()
stop()
setParameter()

<<Interface>>

Simulation

Processor

SCS

1* 1*

*

1

*

1

ViewerDisplay Agent

*1 *1 1* 1*

ProcessorControl
setFormula()
setUpdateRate()

<<Interface>>

BarChartControl
setBarType()
setBrushing()
setLegenda()

<<Interface>>

ViewControl
moveCamera()
setRendertype()
setViewDirection()

<<Interface>>

FIGURE 5.7: The Diva software architecture is enhanced with four levels of
user interaction.

Collaborative visualization (6)

The sharing of data sources by multiple users is a first step towards collabora-
tive visualization. However, issues such as collaborative sessions, perspective
sharing and direct user-to-user communication also play an important role in
collaborative visualization. Incorporating them into the DIVA software archi-
tecture is not straight-forward and requires further study. The results of such a
study are discussed in Chapter 6.

5.6 Information Architecture

After the conceptual and software view on DIVA, the third perspective on DIVA
is a view on the underlying information architecture. In a visualization system,
at least something about the structure of information has to be known since
data providers and visualizer have to ‘understand’ each other.

Data sources can contain data in every possible format, from completely un-
structured to structured tables including meta-descriptions. Additionally, data
visualizers can require information in different input formats. It is impossible

88 5.6. INFORMATION ARCHITECTURE

for the mediating concept space to understand all those data structures. There-
fore, the Shared Concept Space must provide a standard way of describing
data and structure, the information architecture. The prescribed format of the
SCS is a hierarchy of typed concepts.

5.6.1 Hierarchical data and derived concepts

In DIVA, the Shared Concept Space consists of hierarchically organized data
elements (the concepts) of a particular type and structure. Each data concept
contains elements of a basic type, such as integer, real value, string, in a de-
termined cardinality. Thus, a single concept can contain a single integer, or an
array of strings, or a 2-dimensional matrix of real values, etcetera.

The combination of basic data type and cardinality allows data provider and
visualizer to exchange any type of data. By organizing those data elements in a
hierarchy, both provider and visualizer can structure their information. For ex-
ample, each concept can consist of two subconcepts, one containing the actual
data, and a second one containing a description of the data. Another possibil-
ity is the ability to group coherent data in a single concept hereby making it
easier for the visualizer to find interesting data.

From the visualizer’s point of view, derived concepts are similar to data con-
cepts. However, they are not provided by the data source, but produced by
processor objects. Derived concepts are integrated into the hierarchy of con-
cepts just like the data concepts.

5.6.2 Example of the information structure

Probably the best way to explain the information structure of DIVA is through
an example. Therefore, we show a fragment of the Shared Concept Space as
it was defined in the case study of Chapter 3. A schematic overview of the
example information architecture is given in Figure 5.8.

Three main concepts split the data elements in three different groups, one
for general information about the simulation, one for information about the
running simulation and one group containing derived statistical information.
The sim concept contains general information about the simulation such as
whether the simulation is running or not and what the current simulation time
(sim.time) is.

The event concept contains all information about the simulation events as
they occur in the discrete event simulation of the business process. They are
structured according to office, product and product phase. For example when
a new entity with ID 15 is being served at stage 3 of product AW008 in office
12, the concept event.of12.aw008.phase3.service is set to the integer
value of 15.

CHAPTER 5. DIVA: DISTRIBUTED VISUALIZATION ARCHITECTURE 89

sim
- time (int) simulation time
- run (boolean) is sim running
- pause (boolean) is simulation paused

event
- <of> office

- <product> product type
- <phase> phase within business process

- enqueue (int) new entity arrived at waiting queue of phase
- dequeue (int) entity left waiting queue of phase
- service (int) entity is served at specified phase, product, office

histograms
- <of> office

- <product> product type
-<phase>

- <type> type of histogram
- description description of histogram
- <week> (double[]) data containing the histogram for specified week

sim

run time pause

event

of1 of15

prod1 prod200

phase1 phase5

enqueue dequeue service

histograms

of1 of15

prod1 prod200

phase1 phase5

waittimeservicetime

description week1 week52

FIGURE 5.8: A fragment of the information structure of the Asz/Gak case
study incorporating simulation and derived statistical data.

Whereas sim and event are data concepts supplied by the simulation, the
histograms concepts are derived properties provided by separate processor
objects. They contain statistical information based on data coming from the
simulation. Like the event concepts, they are organized according to office,
product and phase. Since multiple histograms are available for each phase a
<type> subconcept discriminates the available histograms.

The heights of the bars in the histograms are represented by a sequence of
numbers where each number represents the height of a single bar. The re-
sponsible processor object creates a new histogram at the end of each week in
histograms.<of>.<product>.<phase>.<type>.<weeknr> . More in-
formation about the histogram, such as a description of the contents, is pro-
vided in a separate description concept (histograms.<of>.<product>.
<phase>.<type>.description).

Depending on the task the visualization has to support, the visualizer can use
a subset of all information in the shared concept space as input. For example,
an up-to-date visualization of the running simulation will listen to all sim and
event concepts, whereas a visualization that gives a historical overview is

90 5.7. DIVA ARCHITECTURE RECAPITULATED

probably more interested in the histograms part of the concept space.

5.7 Diva Architecture recapitulated

Multi-user visualization allows a group of people to visualize shared infor-
mation sources in common or individual manners. The distributed visualiza-
tion architecture DIVA aims at supporting the processes of multi-user visual-
ization by providing an extensible architecture to connect static and dynamic
data sources, data manipulation components and a collection of presentation
modules.

The key to understanding the DIVA architecture is decoupling. Information
sources and data generators are separated from information presentation. This
allows for multiple, possibly shared, views or perspectives on the information
sources. Additionally, multiple information sources can be combined into one
coherent visualization.

This chapter presented DIVA by means of three perspectives on the architec-
ture: the conceptual, software and information architecture. The conceptual ar-
chitecture describes the process of visualization as a transition of data through
a sequence of models. Through a conceptual mapping, it allows for multiple
derived models which reflect different information perspectives. Each derived
model is transformed into a presentation model which contains the informa-
tion necessary to display the visualization.

The DIVA conceptual model of visualization is realized by the software archi-
tecture. The software architecture is discussed in two parts. The basic archi-
tecture meets the requirements of multiple users, multiple perspectives and
decoupled data source and visualization. The additional requirements show
how the software architecture should be enhanced to become an adaptable,
interactive, collaborative visualization architecture.

A critical element of the DIVA architecture is the Shared Concept Space (SCS),
a model for (distributed) data exchange. The information architecture defines
the structure of the SCS as a hierarchy of concepts. Data concepts are linked
to data entries directly coming from the data provider. Derived concepts, on
the other hand, add new information based on other data elements. Decoupled
derived concepts allow for the reuse of derivation knowledge for multiple data
sources and multiple visualization sessions.

5.8 Software Architecture revisited

This chapter shows the distributed visualization architecture according to three
points of view. One of these perspectives concerns the software architecture.
The software architecture is considered as a high-level design description. And

CHAPTER 5. DIVA: DISTRIBUTED VISUALIZATION ARCHITECTURE 91

although the structure of software systems has long been an issue of concern,
e.g. (Dijkstra 1968) and (Parnas, Clements & Weiss 1985), software architecture
has only recently emerged as an explicit field of study.

5.8.1 Definitions

The idea behind software architecture is the same among most architects and
comes down to something like the gross structure represented as a high-level or-
ganization of computational elements and interactions between those elements. How-
ever, every architect seems to have his or her own definition of the term soft-
ware architecture which includes extra aspects, considered relevant by that
particular architect. To illustrate the commonalities and differences between
the definitions we will give some of the more well-known definitions below.

The structure of the components of a program/system, their interrelation-
ships, and principles and guidelines governing their design and evolution
over time (Garlan & Perry 1995).

The first definition given here was developed at a software architecture discus-
sion at the Software Engineering Institute in 1995. It adheres to the basic idea
of structure of the components and the relationships between them. An extra
feature added by this definition is the fact that a software architecture includes
guidelines governing the current and future design.

As a second perspective Shaw & Garlan (1996) explain that the architecture
of a software system first of all defines a system in terms of computational
components and interactions between those components. In addition to this,
the architecture shows the correspondence between the system requirements
and elements of the constructed system. This allows architects to specify and
verify important quality requirements such as capacity, scalability, consistency,
etcetera.

Third, Buschmann, Meunier, Rohnert, Sommerlad & Stal (1996) define the ar-
chitecture as the constellation of subsystems and components and the relation-
ships between them. Additionally, they define terms used in the definition
such as component, relationship, view, functional and non-functional proper-
ties and software design.

A software architecture is a description of the subsystems and components
of a software system and the relationships between them. Subsystems and
components are typically specified in different views to show the relevant
functional and non-functional properties of a software system. The soft-
ware architecture of a system is an artifact. It is the result of the software
design activity (Buschmann et al. 1996).

92 5.8. SOFTWARE ARCHITECTURE REVISITED

The definition which is sometimes being referred to as the current standard
definition of software architecture is given by Bass, Clements & Kazman (1998).
This definition defines an architecture in terms of components, the properties
thereof and the relationships among them.

The software architecture of a program or computing system is the struc-
ture or structures of the system, which comprise software components,
the externally visible properties of those components and the relationships
among them. (Bass et al. 1998).

Bass et al.’s (1998) definition contains some important implications. The fol-
lowing issues come from (Bass et al. 1998). First, architecture defines compo-
nents. Since a software architecture only comprises the externally visible prop-
erties of components, it abstracts from the internal working of components but
provides a high-level overview of elements and interactions. Second, a system
can comprise more than one structure, where each structure describes the con-
ception of the architecture from a different perspective. Finally, the behavior
of each component is part of the architecture as long as the behavior can be
observed. This means that graphs depicting components and contains and uses
relations are not sufficient to be called architecture. At least some notion of the
behavior is obligatory according to this definition.

The last important definition of the term software architecture comes from the
draft recommended practice for architectural description (P1471/D5.2) pre-
pared by the Architecture Working Group of the Software Engineering Stan-
dards Committee.

Architecture: the fundamental organization of a system embodied in its
components, their relationships to each other and to the environment and
the principles guiding its design and evolution (Architecture Working
Group 1999).

This definition differs from other definitions in two ways. First, it avoids the
use of the term structure because that is often being related to physical struc-
ture while a software architecture focusses on concepts, hence organization. The
second dissimilarity concerns the inclusion of the environment into the defini-
tion. An architecture cannot be viewed in isolation but only in the context of
its environment.

5.8.2 Use of the term architecture

As can be concluded from the multitude of definitions of software architecture
available, the term architecture in software is used in different ways. Garlan &
Perry (1995) give three common uses of the term.

CHAPTER 5. DIVA: DISTRIBUTED VISUALIZATION ARCHITECTURE 93

• The architecture of a particular system, as in ”the architecture of this sys-
tem consists of the following components.”

• An architectural style, as in ”the system adopts a client-server architec-
ture.”

• The general study of architecture, as in ”the papers in this journal are
about architecture.”

The term architecture as used in the acronym DIVA (distributed visualization
architecture) is mainly referring to the architecture of a particular system (or
group of systems). The DIVA architecture describes a software system that
can support multiple users in visualizing information in a distributed environ-
ment.

A second perspective on the DIVA software architecture is more in the tradition
of architectural styles. The architecture describes an architectural pattern that
might be used in domains other than visualization. The architecture described
in this chapter may, amongst others, be deployed for multi-user chat systems,
or for virtual environments with a focus on information and knowledge.

Instead of reusing the complete architecture, one might also abstract from par-
ticular elements of the architecture and reuse them as architectural patterns
or styles. Chapter 9 describes architectural styles for information exchange in
distributed object-oriented systems, which are based on experiences with de-
signing DIVA and its implementations.

5.8.3 Why is software architecture important?

A relevant question covered by some authors in their introductions to software
architecture is why architectures are important? What do we gain by investing
time on specifying an architecture before building a software system?

In their introduction to the special issue on software architecture in the IEEE
transactions on software engineering, Garlan & Perry (1995) state that a prin-
cipled use of software architecture can have a positive impact on at least five aspects
of software development: understanding, reuse, evolution, analysis and manage-
ment.

As a first contribution discussed by Garlan & Perry (1995), a software architec-
ture can abstract from a large and complex design and can focus on the high-
level constraints to improve the understanding of the system as a whole. Sec-
ond, architectural designs increase the possibility of reuse of both individual
components and the architectural framework. For example, Gamma, Helm,
Johnson & Vlissides (1994) and Buschmann et al. (1996) describe an array of
reusable patterns. Since an architecture makes the dimensions along which a
system is expected to evolve explicit, we can better understand the costs and
implications of certain changes. Fourth, architectural descriptions provide new

94 5.9. SUMMARY AND CONCLUSIONS

opportunities for analysis, such as conformance to an architectural style and
conformance to quality attributes. Finally, Garlan & Perry (1995) state that soft-
ware architecture can have a positive impact on management when a software
architecture is seen as a key milestone in the software development process.
Since an architecture makes development issues, such as functional and non-
functional requirements, and expected changes explicit, the risk of creating an
inadequate or inflexible system is decreased.

In the light of these reasons why software architectures are important, we will
briefly reconsider the expected contribution of the DIVA software architecture.
Contribution number one is understanding. By analysis and experimentation,
we try to understand the issues that are important in systems supporting mul-
tiple users in visualizing shared information. The DIVA software architecture
makes these issues explicit. A second purpose is a clarification of the effects
of evolution on the architecture: what impact do additional requirements have
on the software architecture? To illustrate this, the description starts with a ba-
sic architecture and shows how it can be refined or extended to facilitate new
requirements.

The architecture discussed in this thesis can be reused in other projects or
systems. DIVA constitutes a high-level transferable abstraction which can be
reused as a whole or in parts. Candidate systems include other visualization
applications or systems which concentrate on the information dissemination
among multiple users. Finally, the DIVA architecture and the prototypes based
on it have lead to patterns for distributed object-oriented systems which can be
deployed in other, possibly related, projects.

5.9 Summary and Conclusions

This chapter discusses the Distributed Visualization Architecture. The DIVA ar-
chitecture is aimed at providing a flexible architecture for multi-user, multi-
perspective visualization in a distributed environment. A key aspect of the ar-
chitecture is the decoupling of information provider and visualizer by means
of an intermediate data model (the Shared Concept Space).

In its current form, DIVA is an architecture supporting multiple (possibly dy-
namic) data sources, and multiple perspectives and users. It allows for decou-
pled data manipulation and enables multiple levels of interaction with data
source and visualization mappings. The next two chapters illustrate the usage
of DIVA as a basis for experiments with multi-user and collaborative visualiza-
tion.

CHAPTER 6

Experiments with Visualization and Collaboration

The fundamental principle of science, the definition almost, is this:
the sole test of the validity of any idea is experiment.

Richard P. Feynman

During the DIVA project, a series of case studies and experiments in the form of
prototype implementations has been performed. The experiments turned out
to be useful to test and improve the DIVA software and information architec-
ture. Additionally, they provided a means to evaluate extensions of the basic
architecture in practice. One of those extensions, collaborative visualization,
will be discussed more extensively and is the topic of the latter part of this
chapter.

6.1 Overview of Prototypes

Before describing the DIVA experiments in more details, a brief overview of
the more important case studies and experiments is given. During the project,
four experiments have been performed, each with a different goal, context and
technology (Figure 6.1).

96 6.1. OVERVIEW OF PROTOTYPES

Prototype Description Architectural aspects Technology
Modern Times
(1997)

Visualize (simple)
business process
simulations by means
of a factory metaphor.

The simulation
distributes updates to
visualize dynamically
changing data.
This prototype does
not contain a SCS

C++, Corba and The
Visualization Toolkit
(VTK)

The Great Dictator
(1998)

Focuses on
collaborative
visualization (so many
users so many
perspectives)

Visualization
perspectives are
contained in a
repository and can be
exchanged among the
visualization
participants

C++, Java, Corba,
Voyager and VRML

Gak Management
Information
(1999)

2D visualization of
management
information. The data
sources comprise both
databases and
business simulations.

Combination of static
and dynamic data.
Support for decoupled
data manipulation and
derived concepts.

Java and Voyager

3D BizViz
(1999)

A reusable collection of
3D gadgets is
deployed to visualize
business process
simulations.

Support for decoupled
data manipulation and
derived concepts.

Java, Voyager and
Java3D

FIGURE 6.1: Overview of the prototypes which have been done during the
Diva project.

Before the DIVA project started, the idea of, and a technical infrastructure
for, integrating (business) simulations with Web-based representations was de-
scribed by Eliëns et al. (1996). Although this study was not explicitly part of
the DIVA project, it provided a starting point for the distributed visualization
architecture. Based on some of the notions developed there, we created the
first DIVA prototype.

The first DIVA prototype visualizes (simple) business process simulations us-
ing a factory metaphor; hence its name Modern Times after Charlie Chaplin’s
movie. The prototype shows how we can visualize dynamically changing in-
formation by sending updates to the remote visualizations. Section 6.2 de-
scribes the Modern Times prototype in somewhat more detail.

The second prototype, The Great Dictator (TGD), mainly focuses on collabora-
tive visualization. Perspectives are modeled as independent entities that can
be exchanged between a group of users. Additionally, a repository contains
perspectives that can be downloaded to a local machine to visualize informa-
tion. The data in the Shared Concept Space, of which a light-weight version is
available in TGD, is provided by a running simulation. To control the simula-
tion a remote control is shared by the participants of the visualization process.
More information about collaborative visualization and the TGD prototype is
given in Section 6.3.

After two rather technical explorations, we felt a necessity to do a more ex-

CHAPTER 6. EXPERIMENTS 97

tensive case study in a real world situation. The results of the Gak manage-
ment information visualization project have already been presented in Chapter 3.
Since data manipulation plays an important role in presenting information
from multiple data sources, support for decoupled data manipulation and de-
rived concepts was the main focus of this project.

The last case study takes the visualizations of the Gak management information
case study as a starting point and, subsequently, provides a 3D visualization.
To achieve this, we introduce a small set of 3D visualization gadgets and asso-
ciated behaviors that proved to be relatively complete for our case. Chapter 7
describes the 3D case study in more detail and, additionally, illustrates the us-
ability of the gadgets and associated behaviors.

6.2 Modern Times

In Modern Times, decision makers deploy business process simulation, the Web
and visualization to improve their information supply and, consequently, im-
prove the quality of their decisions. For example, in a business process re-
engineering project, people involved can study and compare redesign alterna-
tives before deciding on the best option. In the Modern Times prototype the
improved information supply consists of a combination of Web-pages and vi-
sualizations of business simulations.

Figure 6.2 contains a screenshot of Modern Times showing the EYE Web-
browser (Eliëns et al. 1997) with integrated visualization. The visualization
uses a factory metaphor to present the simulation. It uses rotating objects and
conveyer belts to visualize activity and flow within the simulation.

The visualization shows a counter-based business process in which clients go
to a desk where they are served by a clerk. This clerk does some work for the
client during which the clerk requires access to an information archive. The
visualization shows the following concepts: boxes representing the clients, a
sphere representing the clerk, a cylinder representing the information archive,
and two conveyor belts representing the stream of clients and information
through the simulation.

6.2.1 Software architecture

The software architecture of Modern Times consists of four major components:
a Web-server, the simulation, the browser and the visualization plug-in, as il-
lustrated in Figure 6.3. The simulation acts as the primary data generator and
transmits its internal simulation data directly to the Web-browser’s visualiza-
tion component.

When compared with the general DIVA software architecture discussed in
Chapter 5, the Modern Times prototype is only a limited implementation of the

98 6.2. MODERN TIMES

FIGURE 6.2: A screenshot of the Web-browser with embedded business pro-
cess visualization in the Modern Times prototype.

architecture. The Shared Concept Space has been left out and support for mul-
tiple users and multiple perspectives is absent. However, the prototype does
illustrate how generation and presentation of data can be decoupled and how
dynamic information can be distributed in a networked environment.

6.2.2 Technology

Modern Times is based on standard Web-technology and distributed object tech-
nology. To distribute text-based information to the Web-browser, it uses a com-
bination of HTML and HTTP. The visualization part deploys CORBA and the
Visualization Toolkit to represent the data coming from the simulation server.

(Business process) simulation To generate data for visualization we used the
discrete-event simulation library Sim (Bolier & Eliëns 1994). Sim has been writ-
ten in C++ and thus can easily be wrapped into a CORBA component. An
arbitrary simulation model can be programmed in C++ using the Sim library.

CHAPTER 6. EXPERIMENTS 99

Web-serverWeb-server

SimulationSimulation

Web-browserWeb-browser

Visualization
plug-in

Visualization
plug-in

HTML pages (HTTP)

Simulation events (Corba)

contains

FIGURE 6.3: The software architecture of Modern Times comprises four major
components.

However, event-graph simulations can easily be specified using a text-based
specification.

In addition to Sim, we are using BPSim (Eliëns et al. 1996) which is a business
process simulation library built on top of Sim. BPSim is based on the logistics-
based modeling method (Gerrits 1995), offering high-level primitive entities such
as operation, waitqueue and employee.

Visualization The visualization of the simulation is created by a presentation
plug-in in the Web-browser (Eliëns et al. 1997). The plug-in maps simulation
events to animation in the visualization, such as rotating objects and working
conveyer belts. The visualization component uses the Visualization Toolkit
(VTK) (Schroeder et al. 1996) to represent the simulation in 3D using OpenGL.

CORBA Modern Times is designed as a distributed object oriented system.
This implies that it is based on software components which are distributed
over a network. The components provide an interface offering services to other
objects.

The Object Management Group’s (OMG) Common Object Request Broker Archi-
tecture (CORBA) is an architecture to create applications using distributed ob-
jects. The distributed objects can be used like local objects and are accessed
through a well defined interface, the interface definition language (IDL). The com-
munication between the components of the distributed application takes place
via an object request broker (ORB).

CORBA abstracts from hardware, operating system and programming lan-
guage. It enables, for example, the connection of C++ components on Unix
machines with Java components on Windows machines.

100 6.3. SO MANY USERS – SO MANY PERSPECTIVES

The Modern Times prototype deploys CORBA to connect the simulation to the
visualization component. This enabled us to decouple visualization from sim-
ulation and to run the software on a multitude of platforms.

6.2.3 Wrap up

Modern Times is the first DIVA prototype. It deploys the Web and distributed
object technology (CORBA) to implement a system comprising a Web-server,
simulation server, Web-browser and a visualization plug-in. To present the
simulation a factory metaphor is used, which closely resembles the original
simulation model. And, although Modern Times has a simpler software archi-
tecture than the architecture finally developed for DIVA, it proves how simula-
tion and visualization can be separated while the visualization still represents
the current status of the simulation.

6.3 So Many Users – So Many Perspectives

Collaborative visualization systems are a subset of computer-supported coop-
erative work (CSCW) applications in which control over the visualization is
shared. Elvins & Johnson (1998) categorize collaborative visualization appli-
cations by the level of shared control. The following discussion is based on,
and contains terminology from, (Elvins & Johnson 1998). As the simplest form
they determine local control in which a collaborative visualization broadcasts
the visual structures (images) to the other participants. Since the users are re-
duced to passive viewers, external means, such as telephone or teleconference,
must be used to exchange feedback.

A more complex variation is local control with shared data. Participants can
share data from any step in the visualization process while interaction still oc-
curs locally. A third category, called limited shared control refers to applica-
tions in which participants have a shared view. Cooperative control is limited
to annotation of the resulting visual elements as well as control and sharing of
the viewpoints. Finally, the most advanced category is characterized by fully
shared control. Here, any aspect in the process of visualization, from raw data
to views, can be controlled as a shared activity.

In the basic software architecture of DIVA, multiple users can have their own
presentation model (perspective) while sharing a common resource (local con-
trol with shared data). However, in this approach the different users have the
feeling that they are the only user of the shared resource. There is not yet sup-
port that allows a user to be aware of other users or to interact with them. The
goal of The Great Dictator experiment is to expand the architecture to support
users to collaborate with each other. Here, ‘to collaborate’ means that the users
are able to discuss and interact with visualized information in order to reach a
decision (fully shared control).

CHAPTER 6. EXPERIMENTS 101

This section addresses the issues that are involved in this notion of collabora-
tive visualization. In Section 6.4 an extended software architecture is discussed
which incorporates most of those issues. Section 6.5 briefly shows an appli-
cation of collaborative visualization as made possible by an extended DIVA.
Finally, Section 6.6 will discuss the technology underlying the great dictator pro-
totype.

DIVA focuses on visualizing information from different perspectives. We can
distinguish between two distinct phases of activities within this approach. The
first phase is to define and experiment with the perspectives. This activity is
done mostly in solitude, although multiple users can share a primary model
or a derived model. The purpose is to determine the information need and
the relevant data for that need. The second phase is that of multiple users
collaborating by reviewing and discussing the different defined perspectives.
The Great Dictator focuses on the latter, the collaboration phase.

When a group of people collaborates, the group members must share a com-
mon workspace (Ellis et al. 1991). The task of a group of users is to interact with
each other and present different views on shared information. Let us assume
that the goal is to reach a decision, for instance, concerning which strategy to
follow in the upcoming year to improve a particular business process.

6.3.1 Sessions

Collaboration normally takes place in some kind of meeting, which can differ
in interaction protocol, group size, formality, etcetera. Each participant of the
collaboration can have one or more roles depending on the sort of meeting. A
role is a set of rights and obligations (Ellis et al. 1991). We distinguish the fol-
lowing roles: chair, listener, talker and interactor. The chair sets up the session,
a listener is a passive participant, a talker is actively explaining his arguments
and, finally, an interactor is able to interact with shared resources. The rights
and obligations of the different roles are determined by the interaction proto-
col. The possibility to switch roles dynamically is important, since a listener
can change into a talker from one moment to the other.

Collaborative visualization in DIVA is a virtual meeting, where the participants
are at different places and their desktops are connected by a network. We will
call the event of such a virtual meeting a session. Session management should
support several kinds of sessions and thus be able to handle changing numbers
of participants, their roles and interaction protocols.

The notion of subgroups makes it feasible to split the total group of partici-
pants in (non disjoint) groups. These subgroups can communicate separately
or perform subtasks. Subgroups can come into existence dynamically.

102 6.3. SO MANY USERS – SO MANY PERSPECTIVES

6.3.2 Sharing perspectives

It is important that the cooperators can show their personal perspective or
view to other participants, in order to support their arguments in a discus-
sion. One way to share views is for one participant to enforce his perspective
onto another user or group. Views can also be shared by means of a perspec-
tive repository, where participants can select a perspective they would like to
consider. The perspectives they can choose from, must be deposited by other
participants. This implies that not every participant should have to create her
own perspective before joining a session. Obviously, there is a need to maintain
meta-information, explaining what the perspectives are about.

6.3.3 Interference versus non-interference

The common basis for the collaborators is the primary model, for instance, em-
bodied by a simulation. Several derived models can depend on the primary
model, and each derived model could be related to a number of presentation
models. When collaborating, the common basis should be the same for all the
cooperators at every moment in time. To assure consistency, it is best to have
the simulation act autonomously without the slightest interference. We will
refer to this as non-interference. Non-interference does not restrict the possi-
bility for each user to create his own perspective in any way. It does prevent
somebody from rewinding, changing parameters or restarting the simulation
while others do not want or expect this.

However, the need to stop, rewind or change parameters in a simulation is ob-
vious. Considering multiple what-if situations, for example, is necessary when
looking at different re-design alternatives, each with its own set of parame-
ters. One way to meet this requirement, while upholding non-interference, is
to store all past events in a database or to allow copies with different parame-
ters of the simulation to be started.

While interaction with the primary model should be avoided as much as pos-
sible, derived models can be used in a more flexible manner. Several derived
models can be created, all depending on one primary model. While the pri-
mary model can be considered a common basis that should not be interfered
with, the derived model can be seen as a common workspace that permits in-
terference. All participants of a session could use the same derived model
or multiple derived models could be created, depending on the need to share
information concepts or to be independent of the other users.

6.3.4 Communications

Some form of user-to-user communication is necessary to enable collaboration.
These communications can range from a simple chat tool or whiteboard to so-
phisticated audio/video conferencing tools. Tools of interest for use with DIVA

CHAPTER 6. EXPERIMENTS 103

include telepointers, to point out things of interest, raising hands, to indicate
someone wants to speak, and voting tools, to support decision making (Ellis
et al. 1991). The Great Dictator, however, focuses on the visualization part of
collaboration (sharing perspectives) and leaves direct user-to-user communi-
cation open to other or further research activities.

6.3.5 Requirements

Taking into account the issues for collaborative visualization mentioned above,
we can summarize the following requirements.

1. Session management is needed to control the virtual
meetings, including the participants, their roles and in-
teraction protocols.

2. The participants must be able to share their perspectives
by enforcement and via perspective repositories.

3. The primary model should be interfered with as little as
possible.

4. Additional communication support is necessary, but falls
outside the scope of this experiment.

6.4 Collaborative Visualization Architecture

The DIVA architecture is intended as an open software architecture and should
be flexible enough to incorporate new components. In The Great Dictator experi-
ment, we had to extend the basic DIVA software architecture with collaboration
capabilities. How we adapted the basic software architecture to allow for col-
laborative visualization sessions and sharable perspectives is the topic of this
section. Related collaborative architectures are described in Bentley, Rodden,
Sawyer & Sommerville (1994) and Reinhard, Schweizer & Völksen (1994).

6.4.1 Software components

Figure 6.4 shows the main components of the software architecture of The Great
Dictator. In the following list, the three components that were already present
in the basic DIVA architecture are listed first. The last four components in the
list extend DIVA. After the list, a short description is given for each of the new
components.

• Data Provider — the simulation providing data.

104 6.4. COLLABORATIVE VISUALIZATION ARCHITECTURE

Collaborative
Session
Manager

DIVA Services Directory
(DSD)

Presentation
Component

Local
Collaboration
Component

End User

Shared Concept
Space (SCS)

Data Provider

Perspective
Repository

Main data flow

Uses

FIGURE 6.4: The main components of the collaboration prototype.

• Shared Concept Space — communication infrastructure to exchange the
information.

• Presentation Component — the actual information visualization.

• Diva Services Directory — central registering of components.

• Collaborative Session Manager — overall coordination of virtual meet-
ings.

• Local Collaboration Component — local collaboration support.

• Perspective Repository — shared repository for visualization perspec-
tives.

The Diva Services Directory (DSD) is the central directory component. DIVA
components (or services) can register here, identifying themselves and giving
their location. Once they are registered, the DSD can inform other objects about
the availability and whereabouts of these services.

The Collaboration Session Manager is responsible for the overall coordination
of the virtual meetings (sessions). It deals with interaction protocols, which

CHAPTER 6. EXPERIMENTS 105

means it knows about the participants and their roles, sharing perspectives,
user to user communication and consistency.

The Local Collaboration Component is directly connected to the session man-
ager. It is present at each participant’s desktop and handles interactions and
information related to a collaborative session. It may, for example, display a
list of participants and offer communication facilities.

The Perspective Repository is a container for visualization perspectives. Users
can deposit their means to visualize data in the perspective repository. This
allows them to reuse visualization perspectives or to make them available to
other users.

6.4.2 User environment

Figure 6.5 shows a typical user environment. Outside of the user environment,
two components are shown. A data provider, which is a simulation in this
figure, feeds data into the Shared Concept Space. This is depicted by the fat
arrow. These two components can be situated anywhere on the network.

The user environment, which is located at the user’s local machine, consists
of non-visual components (the sim control, display agents, local collaboration
component) and components that do use the display of the user. For example,
the local collaboration component makes use of two separate user-interface
components. One component is intended to display information about the col-
laboration sessions and the other is used for user to user communication.

Controllers

Every DIVA component can have a separate mobile controller. It can be moved
from one user environment to another, so it can be shared by several partici-
pants. The ability to use a controller depends on the role of the user. Partici-
pants can request a controller or the chair could appoint it to one of them.

Controllers can have several functions. For example, a simulation can be con-
trolled by starting and stopping the simulation and changing certain parame-
ters. A controller for a Shared Concept Space can be used to create new derived
concepts or to decide which data from the generator is selected.

Display agents and gadgets

From the Shared Concept Space, information is being sent to display agents.
These agents are present at the user environment and each of them maintains
one gadget. A gadget is a software component capable of displaying a visu-
alization primitive. As an example, consider the visualization in Figure 6.6 on

106 6.5. APPLICATION OF COLLABORATIVE VISUALIZATION

Shared Concept
Space

Shared Concept
SpaceSimulationSimulation

Session
User

Interface

Collaboration
User

Interface

Collaboration
User

Interface

Display
Agent

Controller
User

Interface

User Environment

Presentation Component
User Display

Local
Collaboration
Component

Gadget

SIM
controller

FIGURE 6.5: The user environment shows how information in the Shared Con-
cept Space is visualized using display agents and gadgets. Ad-
ditionally, it shows how users can interact with the simulation
(control interface) and cooperate with the other participants in the
collaboration session.

page 107. The line of puppets in front of the desk is a visualization gadget de-
picting a queue. When the display agent senses that the length of the queue
increases by one, it accordingly places an additional puppet on the screen.

In addition to being located within the Presentation Component, display
agents also reside in the Perspective Repository. When a user requests a cer-
tain view from the repository, the agents that represent that view are cloned
and moved to the user environment to show the perspective in the visualiza-
tion. Enforcing a perspective onto another user is accomplished by cloning and
moving the display agents directly from one user’s environment to the other’s.

6.5 Application of Collaborative Visualization

Figure 6.6 contains a screenshot of the desktop of a decision maker participat-
ing in a collaborative session. We describe a scenario of how the user gets to
this display.

CHAPTER 6. EXPERIMENTS 107

FIGURE 6.6: Screenshot of The Great Dictator prototype.

The decision maker starts a Java and VRML enabled Web-browser and follows
a link pointing to a DIVA server. The resulting HTML file will setup the user
environment. First, the user has to log in, making available her name and
network address, and after that she can choose from one or more sessions to
join. Once the user enters a session, she will be assigned a role and then gets

108 6.5. APPLICATION OF COLLABORATIVE VISUALIZATION

a default or enforced perspective. The VRML world showing her view is em-
bedded in the Web page.

Figure 6.6 shows how the VRML browser Intervista’s Worldview is integrated
into the Internet Explorer Web browser. The VRML world consists of two vi-
sualization primitives (gadgets): a queue depicting the number of clients and
clerks currently involved. The other gadget is a histogram agent, which gives
an indication of how long people have to wait before being served.

The bottom of the browser contains the Java applet that connects with the Diva
servers, and takes care of hosting the deployed display agents. When infor-
mation in the Shared Concept Space is modified, e.g. because a client arrives
in the simulation, or because the number of clerks is changed manually, the
display agents will get updated about the change and will accordingly update
the VRML world.

FIGURE 6.7: Users can control the simulation by means of a single shared re-
mote control

To interact with the business process simulation, the decision maker can re-
quest a remote control, which will arrive at her environment (assuming that
she is allowed to do so). Once the remote control arrives in the form of a mo-
bile object, this object pops up a remote control user interface on the display.

CHAPTER 6. EXPERIMENTS 109

The user is then able to control the simulation that is associated with the re-
mote control. Using the remote control shown in Figure 6.7, people are able
to control the simulation (start, stop, reset) and modify the parameters of the
simulation (in this case the number of clerks behind the desk). Additionally,
users can type in messages in a collaboration panel. Other users of the remote
control can then see, what previous users have done. The remote control can
be transferred to other users by selecting a person from the participant list on
the right and pressing the ’Throw’ button.

FIGURE 6.8: Two perspectives are used in the TGD prototype. Left: the queue
gadget shows the number of people currently waiting in the
queue. Right: a histogram gives an overview of how long peo-
ple had to wait in the queue.

Figure 6.8 shows the two deployed perspectives of TGD. The waiting queue
represents the number of people currently waiting to be served in the simu-
lation. The right-hand side of Figure 6.8 contains an alternative visualization
of the same simulation. This perspective shows how long people had to wait
over time instead of depicting the length of the current queue. The first column
of Figure 6.8 depicts the percentage of people waiting shorter than 5 minutes,
the second one the percentage waiting between 5 and 10 minutes, then 10 to 15
minutes, etcetera.

6.6 TGD Technology: dynamic and mobile VRML
gadgets

To share and present visualizations in The Great Dictator prototype, a combi-
nation of distributed object technology and the Virtual Reality Modeling Lan-
guage (VRML) (ISO 1997) has been deployed. VRML is a language to describe
3D virtual worlds for use on the Web. However, VRML still falls short when
it comes to support dynamic, interactive multi-user worlds and shared visu-
alizations. In this section, we will therefore discuss the use of CORBA and
mobile object technology for the realization of VRML gadgets and VRML dis-

110 6.6. TGD TECHNOLOGY

play agents that allow for updates in response to server-push events as it has
been used in the TGD experiment.

6.6.1 Background on VRML

In June, 1994, VRML was born. It started as a specification to open the road
towards platform independent three-dimensional graphics on the Internet.
However, in one of the first VRML books around, Mark Pesce states that VRML
was by no means finished (Pesce 1995). New features would be included in fu-
ture specifications.

The most intriguing features promised were support for dynamic and interac-
tive worlds. Dynamic worlds should be updated whenever new information
is available by means of server-side push. Interactivity is necessary to create
a real cyberspace. According to Pesce, this will probably be achieved using a
separate controlling application which updates the VRML world using an ap-
plication programming interface (API).

As we know by now, two years later VRML 2.0 – the moving worlds came into
existence (later this became the ISO VRML97 standard (ISO 1997)). The most
appealing addition to VRML 2.0 is the support for motion and interactivity in
the up till then static realm of VRML. Objects can be modified, rotated, and
moved by means of Interpolator nodes. In addition to this, VRML nodes
respond to user-interaction such as clicking and dragging by means of Sensor
nodes. More complex actions and interactivity are covered by Script nodes
which inline pieces of code, e.g. Java classes or JavaScript, into a VRML world.
The connection mechanism between all mentioned nodes are ROUTEs which
guide events from node to node passing triggers and information through the
scene.

So, is the specification complete now? Or do we still require additional fea-
tures? Well, we still don’t have dynamic worlds in the sense that a world is
updated whenever data on the server changes. Additionally, multi-user sup-
port is still lacking: you are the only inhabitant of a VRML world; unless you
use proprietary extensions such as blaxxun (Blaxxun Interactive 1997).

And what about the promised API to control the VRML world externally?
The external authoring interface (eai) —which is not part of the standard, but
nevertheless almost always implemented by VRML browsers— is exactly this.
Java applets can control downloaded VRML scenes by means of a Java API on
the VRML browser.

Luckily, the external authoring interface is powerful enough to allow us to im-
plement the lacking features of VRML 2.0. How? That is the topic of the re-
mainder of this section.

CHAPTER 6. EXPERIMENTS 111

6.6.2 Dynamic updates

A VRML gadget is a combination of a VRML prototype, possibly including
Script nodes, and a Java object controlling the prototype by means of the exter-
nal authoring interface. Gadgets are separated but coherent pieces of a visual-
ization. For example, the perspectives in Figure 6.8 are implemented using a
QueueGadget and a HistogramGadget .

Because VRML gadgets contain external Java code controlling the VRML
world, gadgets can easily be extended to listen to events broadcast by
servers. For example, the Common Object Request Broker Architecture
(CORBA) (Siegel 1996) allows remote calls between objects written in differ-
ent programming languages. Special services, such as the event service, allow
a server to broadcast events to multiple receivers. In the DIVA architecture, we
can rely on the Shared Concept Space as our model of communication between
information provider and visualizer.

All gadgets, possibly running on multiple machines, update the VRML scene
according to the received events. Whenever, when the simulation of our ex-
ample broadcasts that a new client has arrived, all QueueGadgets increase the
number of puppets in the VRML scene by one.

Simulation
Server

Simulation
Server

Event:
client arrived

Shared Concept Space

Java
object

Java
object

External
authoring
interface

VRML
world

incQueue
decQueue

VRML
world

incQueue
decQueue

Java applet VRML plugin

User’s Web browser

FIGURE 6.9: A client arrived event is sent to Java objects which update the
VRML worlds

Figure 6.9 illustrates how dynamic updates work in our system. On the left is
the simulation server which produces the information published via the Shared
Concept Space. On the right, is the user’s Web browser comprising the Java
controlling applet and the displayed VRML world. After the simulation server
has published the event, a Java object running in the Web browser receives

112 6.6. TGD TECHNOLOGY

the event. It responds by activating the incQueue event on the VRML code
which adds a puppet in the VRML world. A VRML snippet sketching the
QueueGadget prototype is given below:

#VRML V2.0 utf8
PROTO QueueGadget [

eventIn SFInt32 incQueue
eventIn SFInt32 decQueue
eventIn SFInt32 assignQueue

] {
Group {

additional VRML scenery goes here
the waiting people
DEF CLIENT Group {

children [
filled by script defined below

]
}
DEF DYNAMICS Script {

directOutput TRUE
eventIn SFInt32 incQueue IS incQueue
eventIn SFInt32 decQueue IS decQueue
eventIn SFInt32

assignQueue IS assignQueue
field SFNode clients USE CLIENTS
url "Dynamics.class"

}
} # end group

}

As we can see from the code above, the number of people displayed in the wait-
ing queue is controlled by sending events to the instance of PROTO Queue-
gadget . An incQueue event increases the queue by the supplied number,
a decQueue decreases whereas assignQueue gives the queue a specified
length. The incoming events are handled by a piece of Java code which is in-
lined by means of the Script node. The Java script node takes care of adding
the puppets as children to the CLIENT group.

To be able to identify to which information fragment an update-message be-
longs, the information from the simulation has been structured hierarchically.
For example, in the waiting queue example, the queue concept contains all
events concerning the current length of the queue, whereas the clerk concept
contains information about the number and performance of clerks serving be-
hind the desk. A schematic overview of a part of the used Shared Concept
Space is given below:

CHAPTER 6. EXPERIMENTS 113

• queue

– length: length of the waiting queue

– waitTime: waiting time of last client

• clerk

– available: total number of clerks available

– working: number of clerks serving

Whenever information is updated at the server side, an update-event must be
distributed via the Shared Concept Space. For example, when a client arrives in
the simulation, increasing the current queue length by one, the server publishes
“queue.length increases by 1 .”

The listeners (VRML gadgets) listen to one or more subchannels of the hier-
archical concept space. For example, the discussed queue gadget listens to
the queue concepts only. Whenever it sees a new update-event concerning
the length of the queue it invokes an event on the VRML world via the exter-
nal authoring interface. For example, on receiving the “queue.length in-
creases by 1 ” event it invokes incQueue(1) on the queueGadget . Con-
sequently, the Java Script node (which is part of the VRML prototype) adds
a new puppet to the visible queue of waiting people. Thus, updated informa-
tion at the server is propagated by means of events to reflect the change in the
VRML visualization.

6.6.3 Mobile VRML gadgets

An emerging trend in distributed object oriented programming is the notion
of mobile objects (see for example (ObjectSpace 1998) and (Baumann, Hohl,
Rothermel, Schwehm & Strasser 1998)). A mobile object can migrate from
machine to machine taking functionality, data and status as it moves. Mo-
bile objects are especially useful in providing adequate support for developing
and deploying collaborative applications. For example, the exchange of VRML
gadgets allows users to discuss different visualization perspectives. Addition-
ally, mobile objects enable the creation of repositories of VRML gadgets. We
call VRML gadgets that are based on mobile object technology VRML display
agents .

Whenever users want to employ display agents to visualize the simulation,
they connect to a repository (display agent server) and request a clone of a dis-
play agent. As soon as the display agent arrives, it docks in the Java virtual
machine of the Web browser. Additionally, it downloads the PROTO gadget
and inserts an instance of the gadget into the VRML world. After that, it mod-
ifies the VRML object to match the current status of the visualization (a mobile
object maintains status while migrating). Finally, it starts listening again to
events coming from the server to keep up to date.

114 6.6. TGD TECHNOLOGY

Sim serverSim server Web serverWeb server

webpage.html
Java applet.class
proto.vrmlevents

Repository

Display
agent

Display
agent

Display
agent

Display
agent

Web browser

Empty
VRML
world

Empty
VRML
world

Java
hosting
applet

Java
hosting
applet

FIGURE 6.10: The user has downloaded the applet but still has an empty
VRML world

Figures 6.10 and 6.11 illustrate the architecture comprising the display agent
repository, the simulation server, the Web server and a client machine with a
Web and VRML browser. When a user decides to start a visualization he or she
downloads an HTML page containing the VRML plugin and the Java hosting
applet. At that stage, the VRML world is still completely empty (Figure 6.10).

After all necessary components have been downloaded, the hosting applet con-
nects to the agent repository and shows a list of available gadgets (step 1 in Fig-
ure 6.11). By selecting a gadget and pressing the Get Gadget button a clone
of the selected agent is created and moved to the client machine (step 2). Here,
the display agent uses the external authoring interface to download the gad-
get PROTO by means of adding an EXTERNPROTO (step 3). As a result, an
instance of the gadget has been created in the VRML browser. Update-events
broadcast by the simulation server are now received by both the original agent
in the repository and the cloned agent in the user’s browser. On each broad-
cast event, the Java agent calls the appropriate event on the VRML prototype
instance to reflect the change in the data at the server (step 4).

This approach is flexible. New VRML gadgets can be added dynamically to the
repository and Web-server and users can immediately employ them without
reloading or restarting existing applets or VRML worlds.

CHAPTER 6. EXPERIMENTS 115

Sim serverSim server Web serverWeb server

webpage.html
Java applet.class
proto.vrml

events

Repository

Display
agent

Display
agent

Display
agent

Display
agent

Web browser

Queue
Gadget
instance

of
PROTO

Queue
Gadget
instance

of
PROTO

Java
hosting
applet

Java
hosting
applet

Display
agent

Display
agent

2. Cloned
display agent

eai

1. Request display agent

3. Download PROTO

4. Listen to events and
update gadget using
external authoring interface

FIGURE 6.11: The applet connects to the repository and downloads a display
agent containing the knowledge to visualize the events

6.6.4 Implementation of display agents

Voyager (ObjectSpace 1998) is an agent ORB written in Java, which supports
CORBA. Voyager allows us to use mobile objects, a feature which CORBA does
not have. For example, we use Voyager’s agent construct to realize the mobile
controller components. These components are able to dock at a user environ-
ment and can subsequently show their user interface on the screen to let the
user interact with remote information providers such as simulation servers.

Additionally, we deploy Voyager to implement the display agents. The Dis-
playAgent class extends the Agent class provided by Voyager. This automat-
ically makes display agents clonable and movable. An outline of the interface
of the display agent class is given below:

interface DisplayAgent extends Agent
{

public void launch(DAServer server);
public void gotoApplet(DAApplet applet);
public void setSpace(String spaceName);

};

116 6.7. SUMMARY AND CONCLUSIONS

The launch() method is called once, just after the display agent is created.
It moves the display agent to the indicated agent server (repository), where it
will reside for the time it is alive. The gotoApplet() method is called by the
server when the display agent server receives a request from an applet to send
a clone of that display agent to a user’s machine. The setSpace() method is
invoked by the launcher or the agent to tell the agent to which space it has to
listen to receive the appropriate update-events.

Our experiences with Voyager and the mobile object technology are mixed. On
the one hand, the concept of moving objects (including both code and data)
around a system is great. It allows for a direct reflection of the design onto
the implementation. On the other hand, debugging is horrible. Sometimes
mobile objects get lost and it is very difficult to see whether that is the fault of
the server, the client or the network in between. Summarizing, mobile object
technology has great potential but probably needs to become somewhat more
mature before it can be used in critical systems.

6.7 Summary and Conclusions

An important element of DIVA is its software architecture. This software ar-
chitecture was not designed in a single attempt, but merely evolved through
a series of experiments and case studies. This chapter provided an overview
of all experiments and, subsequently, described two prototypes in more detail:
Modern Times and The Great Dictator.

Modern Times deploys the Web and distributed object technology to implement
a system comprising a Web-server, simulation server, Web-browser and a visu-
alization plug-in. By means of Modern Times we have shown how information
generation and presentation can be separated in a distributed environment.

In The Great Dictator, we have shown an implementation of most of the basic
DIVA software architecture. However, The Great Dictator extends DIVA with
collaboration features. By means of collaborative visualization, decision mak-
ers are able to discuss a shared information source, such as a business process
simulation, to convince other people of their point of view. To achieve this in
The Great Dictator, we require the possibility of sharing perspectives through
enforcement and repositories.

The software architecture of The Great Dictator achieves the exchange of per-
spectives by means of cloning and transporting display agents, which in turn
define how and what information is presented to the user. To manage the coop-
erative sessions, we have two collaboration components that handle the rights
and obligations belonging to the roles of the participants.

In the prototype implementation of The Great Dictator, we have deployed
VRML as the basis tool for visualization. To be able to implement all the

CHAPTER 6. EXPERIMENTS 117

features needed for collaborative visualization, we have combined mobile ob-
ject technology and VRML prototypes into VRML gadgets and VRML display
agents.

A design requirement for the DIVA software architecture was that it must be
open to extensions such as interaction and collaboration. In The Great Dictator
case study we have shown that this is indeed possible. The basic architecture
(information provider, Shared Concept Space and information visualizer) is
still present in the software architecture of TGD. Extensions are structured in
the form of additional software components. Collaboration components enable
participants to cooperate in a visualization session. The perspective repository
allows for a central store of display agents that enables the exchange of visual-
ization perspectives amongst participants.

118 6.7. SUMMARY AND CONCLUSIONS

CHAPTER 7

3D Gadgets for Business Process Visualization

Wait till the Quaketm generation has reached the management level.
Anton Eliëns.

Chapter 3 introduced BizViz (Business Visualization) as a means to monitor
and control business processes at Gak Netherlands. The visualizations de-
signed for that project are uncomplicated and easily accessible. As a final ex-
periment in the range of case studies as described in Chapter 6, this chapter
discusses a 3D-remake of the Gak business process visualizations. Based on
our experiences with both 2D and 3D visualizations within the same domain,
the chapter also provides a discussion of 2D versus 3D visualizations to sup-
port decision makers in a business context.

7.1 3D BizViz

BizViz is becoming increasingly important, since managers recognize the
power of human visual intuition in information-rich decision tasks. Never-
theless, despite its promises, 3D visualizations are far less common than one
would expect.

120 7.2. MANAGING BUSINESS PROCESSES AT GAK NL

This chapter describes an exploration where we took the 2D visualizations of
Chapter 3 as a starting point, for which we subsequently provided a 3D vi-
sualization. We introduce a small collection of 3D visualization gadgets and
associated behaviors, implemented in Java3D, which proved to be relatively
complete for this case.

For each of these gadgets and behaviors, we discuss requirements and design
trade-offs. The experiment illustrates the usability of our gadgets and their
associated behaviors in an actual business process in the domain of social se-
curity.

Structure Section 7.2 refreshes the reader’s memory of the 2D visualization
experiment as described in Chapter 3. Section 7.3 presents the reusable collec-
tion of Java3D gadgets we deployed to create the 3D prototype. The collection
consists of both behavior and visualization components. The application to vi-
sualize business information is described using the case study at Asz/Gak in
Section 7.4. Finally, in Section 7.5 we end with conclusions.

7.2 Managing Business Processes at Gak NL

Gak is the largest social security provider of the Netherlands. One of the core
businesses of Gak NL is processing applications for benefits. For example,
when people are unable to work due to illness, they can go to the Gak and
apply for a benefit. Their applications are processed in a number of stages, in-
cluding medical inspection and ability assessment. This process is the business
process that we will use as the topic of our information visualization later.

Chapter 3 discussed a 2D visualization system to support managers who con-
trol the benefit application processes. The system was built in two phases.
First, we concentrated on increasing insight by creating visualizations to in-
dicate the bottlenecks in the business process. The data sources consisted of
databases containing measurements of the time that applications needed at the
stages of the process. In the second phase of the project, we created a business
process simulation and used the previously designed visualizations to display
the results of that simulation.

Figure 7.1 contains a screenshot of one of the visualizations created to increase
insight in the current production status. The combination of process structure
and associated histograms helps managers to quickly find bottlenecks. The
histograms indicate the status of applications, that is whether they are early,
in time or too late. In addition to this, visualizations are available to give an
overview of the past in order to search for trends. As a third option, managers
are able to asses the results of possible interventions such as adding people
to the workforce by means of simulation. In summary, the prototype uses the
same visualizations to view past, present and future but requires multiple win-
dows to present them.

CHAPTER 7. 3D GADGETS FOR BUSINESS PROCESS VISUALIZATION121

FIGURE 7.1: 2D visualization of the throughput of the business process.
(reprint of Figure 3.2)

Based on our experiences with the two-dimensional visualizations, the experi-
ment described in this chapter produces 3D version of business visualization.
Since the future users have little experience with 3D, the handling and navi-
gation of the three-dimensional information space will almost certainly be less
effective than its 2D counterpart. However, 3D has the potential of high infor-
mation density. This gives us the opportunity to catch more information, e.g.
concerning past, present and future, in a single environment.

7.3 Visualization Gadgets in Java3D

Java3D (Sowizral, Rushforth & Deering 1997) is the 3D application program
interface (API) of the Java language. It is used to create platform-independent
3D applications that can be used over the internet. Additionally, Java3D can
read and display VRML files and combine VRML scenes with Java3D contents.

Although Java3D offers some high-level building blocks, such as built-in prim-
itives (sphere, cone, etcetera) and behaviors for interaction, it still requires a
lot of programming effort to create a simple visualization. To fill in this gap,
we have created a collection of reusable visualization gadgets implemented in
Java3D.

The set consists of two types of primitives. First, we have the behaviors which
usually do not present themselves graphically, but merely exist to add inter-
action to a scene graph. The second class of components we have created, the

122 7.3. VISUALIZATION GADGETS IN JAVA3D

gadgets or visualization primitives, represents information by means of 3D vi-
sualization. The gadgets we describe here are the cone tree, the histogram and
the graph.

7.3.1 Overview of behaviors

The DIVA 3D gadgets collection currently contains five different types of be-
haviors. Two of them (brushing and modify behavior) are discussed in some-
what more detail below. The current behaviors are:

• BrushingBehavior reveals extra information about the object that the in-
put device is currently pointing at.

• KeyBehavior is a generic behavior class to move objects through the
scene according to key presses. It is often used to move the camera view-
point.

• MenuBehavior displays a context-sensitive 3D menu when the user se-
lects an object.

• ModifyBehavior assigns multiple manipulation facilities to a single
mouse button. Supported examples include rotation, translation, scaling
and iconification of groups.

• TranslateBehavior translates 3D objects in such a way that they move
along the screen’s x-axis and y-axis (instead of the default behavior of
translation along the object’s local coordinate system).

BrushingBehavior

The retrieval of more detailed information about parts of a visualization with-
out changing the visualization itself is called brushing. When a pointing device
is moved over a particular component in the visualization, extra information
appears on top of the selected object. The advantage of brushing is that in-
formation can be retrieved quickly without replacing the current visualization.
A simple mouse movement is enough to reveal, for example, the numbers on
which the visualization is based.

The goal of the brushing behavior is to allow a program to easily add infor-
mation in the form of brushing to an existing scene graph. For the brushing
behavior we have three requirements:

• It must be possible to add brushing information to an existing scene
graph.

• It must be possible to dynamically change the information that is associ-
ated with brushable objects.

CHAPTER 7. 3D GADGETS FOR BUSINESS PROCESS VISUALIZATION123

• The brushing behavior must be relatively efficient, because it is expected
to be used often and should therefore not pose too much of a burden on
the system.

The brushing behavior we developed satisfies the defined requirements. One
can add it to an existing scene graph and dynamically change which 3D objects
are brushable and what information is to be associated with them. Figure 7.2
illustrates the effect of brushing a VRML scene that has been extended with
brushing capabilities.

FIGURE 7.2: Brushing the red box.

ModifyBehavior

An important way of interacting with a visualization is the ability to manipu-
late the objects present in the 3D scene. The standard Java3D behaviors sup-
port this by means of a combination of mouse and key presses. A problem
with these standard behaviors is that the controls are not intuitive and use all
three mouse buttons (many users only have one or two mouse buttons). As an
example of a counter-intuitive standard manipulation behavior, the translation
behavior moves objects according to their local coordinate system. Depending
on the viewpoint and the object’s orientation this can be a completely different
direction than the user moved the mouse.

The requirements for the modify behavior are:

124 7.3. VISUALIZATION GADGETS IN JAVA3D

• The behavior must be selectively applicable. In other words, the program
must be able to indicate what objects the user can and cannot manipulate.

• The behavior must be extensible; it should be possible to add additional
manipulation methods.

• The object or group of objects under manipulation should be clearly
marked.

• The basic rotation, translation and scaling manipulations should work
intuitively. For instance, moving an object to the left must result in the
object moving to the left along the x-axis of the screen, regardless of the
orientation of the object and the current viewpoint.

FIGURE 7.3: The red box’ modify behavior has been activated.

The modify behavior allows users to pick an object. A transparent box to indi-
cate selection surrounds the selected object. Users can manipulate the selection
by pressing one of the icons and dragging the mouse.

Figure 7.3 shows a scene containing a box and a pyramid. The box object has
been selected and rotated a little. The selection of the red box is visible through
the transparant white box drawn around it. The three little icons indicate three
possible actions. From left to right the icons can be used for respectively rota-
tion, scaling and translation. In addition to these actions, new icons can easily
be defined and added to modify objects in different manners.

CHAPTER 7. 3D GADGETS FOR BUSINESS PROCESS VISUALIZATION125

7.3.2 Visualization gadgets

Currently, the collection of visualization primitives in the DIVA package com-
prises three gadgets: the cone tree, the histogram and the graph gadget. This
set proved to be relatively complete for the purposes of visualizing business
process simulation. Each of these gadgets are discussed in somewhat more
detail below.

The cone tree

The cone tree was developed at Xerox Parc and has since then become one
of the best known examples of 3D visualization (Robertson et al. 1991). The
idea behind the conetree is that the 3D representation of a tree structure makes
optimal use of the screen space and thus enables the visualization of much
larger structures than the traditional 2D approach (Koike & Yoshihara 1993).

The requirements for our implementation of the cone tree are as follows:

• As the cone tree is meant to visualize large data sets, an important re-
quirement is that the implementation must be efficient. It must be able to
display several thousands of nodes without a problem.

• The implementation must be able to display dynamic trees. Changes in
the underlying data-structure must be visible in the cone tree.

• The user must be able to navigate through the data set by manipulat-
ing the layout of the tree. In the case of the cone tree this is realized by
allowing the user to rotate each of the cones.

• Users must be able to select nodes in the tree. Additionally, the gadget
must be able to change the constellation of the branches in such a way
that the selected path is rotated to the front.

Figure 7.4 shows the visualization of a directory structure of a file system. The
visualization continuously monitors modifications of the underlying file struc-
ture and adapts the tree when necessary.

Performance was the major design requirement for this gadget. Therefore,
we have implemented critical elements of the tree using our own customized
graphical objects. For example, instead of using a standard scenegraph con-
sisting of group and transform nodes to create a single cone with associated
text planes, we created a special purpose TreeTextPlane object that patches
translations into its defining vertices. Additionally, all TreeTextPlane ob-
jects share an alphabet of textures to decrease memory allocation. A drawback
of this approach is that adapting the tree to new requirements has become more
complex.

126 7.3. VISUALIZATION GADGETS IN JAVA3D

FIGURE 7.4: A cone tree visualizing a directory structure.

The 3D histogram

The histogram is a visualization primitive that is used to give insight into the
distribution of data over a specific quantity, such as time. The advantage of a
3D histogram over a 2D histogram is the fact that the third dimension can be
used to show additional information. This way, multiple data sets can be com-
pared. For example, the monthly sales results of three competing companies
can effectively be compared using 3D histograms.

As requirements for our 3D histogram we state:

• The dimensions of the histogram must be customizable.

• The histogram must be able to handle an arbitrary number of bars of
arbitrary size and shape.

• The text displayed at the axis must be customizable.

• The histogram must be able to change dynamically whenever the input
values for the visualization change.

Figure 7.5 shows a screenshot of the 3D histogram in action. Because 2D his-
tograms are often used in (business) visualizations, we have designed the gad-
get to resemble ‘normal’ 2D histograms. The 3D implementation, however,

CHAPTER 7. 3D GADGETS FOR BUSINESS PROCESS VISUALIZATION127

FIGURE 7.5: The histogram gadget.

adds the possibility to show multiple rows of bars at the same time. In addi-
tion to this, the gadget has a so-called water-level, which can be used to indi-
cate to the user what level is to be considered normal. The water-level can be
seen in Figure 7.5 as the transparent blue box filling the lower 25 percent of the
histogram gadget.

An important feature is that the histogram works with generic bars. All that
a bar class must do for the histogram gadget to be able to use it is implement

128 7.3. VISUALIZATION GADGETS IN JAVA3D

the Bar interface. This makes it possible to implement specific bars for spe-
cific purposes. There are two standard implementations of the Bar interface in-
cluded in the DIVA package. The first option is a simple bar, which is nothing
more than a red cylinder that can grow and shrink. A second implementation
is the multi-level or stacked bar. This class allows for sub bars with customiz-
able colors that can all grow and shrink independently of each other. The his-
togram gadget uses the brushing behavior to allow users to retrieve additional
information about each of the bars.

The graph

The purpose of the Graph gadget is to visualize the structure of and transitions
in dynamic (business) processes. It is capable of representing both the static
model (a graph) and the dynamic behavior in the form of elements flowing
through the model. Requirements for the graph gadget include:

• The gadget must be able to visualize activities within the graph by means
of tokens flowing over the edges of the graph.

• The user must be able to change the layout of the graph.

• The user must be able to collapse subgraphs in order to focus on what is
important.

• It must be possible to select nodes and interact with the underlying infor-
mation source (e.g. a simulation).

The graph gadget consists of nodes which are connected by edges. To visual-
ize a flow in the model, tokens move from node to node over the edges of the
graph. The BrushingBehavior provides the user with information about nodes
and tokens. Manipulation of graph elements is achieved by means of the Mod-
ifyBehavior. To allow users to select and (de)iconify groups, two new icons
are added to the default modify behavior. One icon allows users to select the
parent group that the currently selected item is part of. The other icon allows
users to collapse (iconify) or expand (de-iconify) the currently selected group.

Figure 7.6 illustrates usage of the graph gadget to visualize a simulation of
a counter-based business process, such as can be found at banks or fast food
restaurants. From left to right, the graph structure depicts arrival, a single
waiting queue, two counters and departure. People, represented by the small
tokens, enter the process on the left and wait in the queue until one of the
counters is empty. After being served, tokens leave the process graph again on
the right-hand side.

CHAPTER 7. 3D GADGETS FOR BUSINESS PROCESS VISUALIZATION129

FIGURE 7.6: The graph gadget.

Additional gadgets

The set of gadgets can be extended; more visualization primitives can be de-
veloped that would be useful. The results of our work and the experiences
gathered indicate that Java3D is well suited for this kind of work. However,
our current purposes are not to create an exhaustive set of 3D visualization
primitives. Rather, we want to rebuild a 2D visualization application using 3D
techniques to evaluate the advantages and disadvantages of the 3D approach
to business visualization. The collection of gadgets we have built allows us to
experiment with 3D visualization in an actual business process.

7.4 Case study: Visualizing Business Processes

The DIVA gadgets are deployed in a 3D business visualization study at Gak
Netherlands. We used the two-dimensional visualization as a starting point
since it proved to be successful in the organization during previous evaluation
sessions. However, with respect to its 2D counterpart, we extended the 3D
visualization with animation and interaction facilities.

As the data source for visualization, our system uses a business process sim-
ulation. While the simulation is running, both status and preliminary results
of the simulation are visualized by a 3D graph and histograms. This enables

130 7.4. CASE STUDY: VISUALIZING BUSINESS PROCESSES

users to inspect the ins and outs of the business process and, when necessary,
modify the parameters of the simulation.

7.4.1 Overview

Figure 7.7 is the initial screen of the visualization prototype. It consists of a
3D view, a few control buttons and a chat box. The chat box enables users
visualizing the same business process simulation to chat with each other in
order to support the process of collaboration.

FIGURE 7.7: The initial visualization screen.

Initially, the 3D view depicted in Figure 7.7 only contains a cone tree. The cone
tree presents the set of available visualizations: a process graph and a collection
of histograms.

Below the 3D view, there are three controls that allow the addition of new vi-
sualizations as well as viewpoint navigation. Pressing the Start Visualization
button results in the creation of the visualization that is currently selected in

CHAPTER 7. 3D GADGETS FOR BUSINESS PROCESS VISUALIZATION131

the conetree. This allows the user to start any of the available visualizations.
The Add View button allows users to dynamically add viewpoints to the list of
available viewpoints. The control on the right allows users to select a view-
point from the list of available viewpoints. Once the user selects such a view-
point the camera moves smoothly to this new location. For each visualization
gadget in the 3D view a predefined viewpoint is available. In addition to this,
users can add custom viewpoints by the Add View button.

The most important visualization in the prototype is the process graph of the
simulation. It can be created by selecting processgraph in the cone tree and press-
ing the Start Visualization button. The graph gadget visualizes the static struc-
ture of the business process, i.e. the stages it consists of. Additionally, the flow
of benefit applications through the simulated business process is visualized by
means of animated tokens. Figure 7.8 shows the process graph of a business
process consisting of 5 processing stages (the large spheres) and 5 queues for
applications waiting to be processed (the boxes). The business process visu-
alized in Figure 7.8 is the same as the process used in the 2D version as was
shown in Figure 7.1.

FIGURE 7.8: The process graph of which a single node is selected.

Benefit applications are visualized as small colored spheres. When a benefit
application progresses through the simulated process, the sphere depicting the
application travels a corresponding trajectory in the process graph.

132 7.4. CASE STUDY: VISUALIZING BUSINESS PROCESSES

7.4.2 User interaction

The process graph makes use of the brushing behavior. When the mouse
pointer is over one of the nodes (either a queue node or a processing node)
or over one of the application tokens, the brushing behavior displays the name
of that specific element.

Another means of interaction is provided through the modify behavior. The
graph uses the modify behavior to allow users to move, rotate and scale any of
the nodes in the graph structure.

As was mentioned in the discussion of the graph gadget, the graph gadget con-
sists of groups of objects. For example, in the prototype the queue and process
nodes constituting a single phase are grouped together. In order to manipu-
late these groups, the graph gadget adds a fourth and fifth icon to the modify
behavior. These two additional icons respectively select the parent group of a
selected node and collapse or expand a selected group. This allows, for exam-
ple, a simplification of the graph to five objects representing the stages of the
process.

7.4.3 Insight in present and past

The combination of presenting the process structure, the length of waiting
queues and the flow of applications through the process gives managers in-
sight into what is going on in a process at a particular moment in time. How-
ever, only information about the current situation is not enough to control a
business process. Therefore, an important aspect of the prototype is the ability
to present summary information of past weeks by means of histograms associ-
ated to the queues and process nodes of the graph.

Drilling-down to reveal historical information can be achieved by another icon
that is added to the modify behavior. When the drill-down icon is clicked, the
histogram associated with the currently selected processing or queue element
is displayed. These histograms can also be accessed by use of the cone tree
index, but drilling-down on the graph provides a more natural interface to
reach these histograms.

As mentioned, both queue and processing nodes of the process graph have
histograms associated with them. Figure 7.9 illustrates the histograms that are
associated with the processing nodes. These histograms visualize the percent-
ages of applications that are either too early, on time or too late. The x-axis
of the histogram is a timeline where each bar represents a single week in the
production process. The histogram is intended to give immediate insight into
the progress of applications in the admission process.

The histograms associated with the queue nodes visualize the waiting times of
applications at a particular stage before they were processed during a (simu-
lated) week. Each bar of the histogram represents a certain time-interval; the

CHAPTER 7. 3D GADGETS FOR BUSINESS PROCESS VISUALIZATION133

FIGURE 7.9: The drill-down button is pressed and a histogram is created.

height of the bar reflects the number of applications falling within that time-
interval. To compare the results of the past week with the weeks before, the
histogram contains a ’history’ of four weeks of simulated time. The histograms
of Figure 7.10 visualize waiting times of applications at all five stages.

7.4.4 3D versus 2D

3D graphics and its application in information visualization applications is a
matter of dispute. On the one hand, its advocates promote the usage of 3D be-
cause of its close relation with human’s three-dimensional intuition. Addition-
ally, 3D visualizations can contain more information at once and are therefore
better suitable of presenting multi-dimensional data sets.

Opponents of 3D, on the other hand, state that current input devices fall short
in controlling the 3D space and therefore distract users from their primary task
(Nielsen 1998). Additionally, 3D applications are often considered as toy appli-
cations because they look nice without adding relevant new features.

Experiments with two and three-dimensional visualizations indicate that it is
very difficult to compare 2D and 3D directly. A striking phenomenon is the
fact that people with more computer experience significantly gain better scores

134 7.4. CASE STUDY: VISUALIZING BUSINESS PROCESSES

FIGURE 7.10: The process graph and associated queue histograms.

with 3D interfaces than novices. Sebrechts et al therefore rightly conclude
that 3D visualization cannot be adequately evaluated using only short-term studies
of novice users (Sebrechts, Vasilakis, Miller, Cugini & Laskowski 1999). People
will probably have to get acquainted to 3D like they had to get acquainted to
graphical interfaces.

At present, we have no empirical data supporting the usefulness of 3D busi-
ness visualization. The Gak managers, who are the possible future users of
the presented visualization system, do not have any experience with 3D busi-
ness visualization and only limited experience with 2D visualization. How-
ever, some qualitative judgements of the strength and weaknesses of the 3D
prototype as opposed to the 2D version are presented in Table 7.1.

A disadvantage of the 3D version of the business visualization is the exhibited
speed. While the 2D prototype runs smoothly on every desktop PC, the 3D
visualizations require a 3D-accelerated high-range PC to reach an acceptable
level. A second disadvantage is ease of use with respect to interacting with the
visualizations and the underlying data sources. Controlling the 2D prototype
is simple and straight-forward. In contrast, in spite of utilities such as prede-
fined viewpoints and manipulation aids, controlling the 3D visualizations is
much harder. Another problem to be noted here concerns the acceptance of 3D
graphics in business visualizations. Although 2D visualizations are generally
accepted as tools to increase the insight in information, the attitude at the Gak

CHAPTER 7. 3D GADGETS FOR BUSINESS PROCESS VISUALIZATION135

 2D prototype 3D prototype
Speed Good Acceptable
Control Easy Cumbersome
Acceptance Good Tentative
Animation Limited Rich
Manipulation Limited Flexible
Multiple
perspectives

Replacement or
multiple windows

Virtual environment,
Expand/collapse

Time frame Single Multiple

TABLE 7.1: Comparison of the 3D and the 2D prototypes.

company towards 3D visualizations is at best tentative.

On the positive side, the 3D prototype has some interesting aspects not avail-
able in its 2D counterpart. For example, the presence of rich animation possi-
bilities in the graph gadget clarifies the dynamics of the business process under
inspection. Furthermore, the 3D visualizations exhibit rich manipulation capa-
bilities in the form of the (extended) modify behavior. This allows users to
customize the visualization to their personal interests.

Multiple perspectives, i.e. visualizations, on the information space are sup-
ported differently by both approaches. The 2D prototype replaces an existing
visualization with a new one when a user drills down into the data. Multiple
windows are necessary to combine multiple perspectives. The 3D prototype,
on the other hand, contains a virtual environment that can contain multiple
presentations of the data. Additionally, detailed information can be hidden or
shown by means of the expand and collapse capabilities of the graph gadget.

As to the question whether 3D visualizations allow for presenting a richer in-
formation space, the answer is positive. In particular, whereas the 2D visu-
alization can only represent either historic or present data, the 3D prototype
simultaneously visualizes the state of the simulation, the current as well as the
historic status of the queues.

7.4.5 Design issues

Although the collection of gadgets is small, it suffices for the purpose of visual-
izing business process simulation. Since the gadgets are not explicitly tailored
to the current situation, they can also be deployed in other business visual-
ization applications. The behavior components are even more generic because
they do not depend on the type of information they have to represent. There-
fore, the behavior components are reusable in other 3D graphics applications
as well.

136 7.5. SUMMARY AND CONCLUSIONS

During the connection of the graph gadget to the simulation we discovered a
mismatch between simulations and animated visualizations. Namely, in the
simulation events occur when an application has moved from one stage to the
next. The transitions are considered as actions that take no time. The graph
gadget, however, visualizes transitions of the tokens by animating them as
moving spheres between nodes. This movement, of course, takes time. The
resulting conceptual clash can only be solved by introducing a visualization
that is slightly lagging behind.

7.5 Summary and Conclusions

In the experiment described in this chapter, we have shown the possibility of
deploying 3D visualizations in a business context. Based on our (limited) ex-
perience with this exploration we have drawn some tentative conclusions re-
garding 2D versus 3D visualization. In comparison with the 2D predecessor
of the prototype we can conclude that the 2D version is more easily accessible.
The well-organized 2D visualizations in combination with the intuitive use of
colors provide an uncomplicated visualization that is easily accepted by busi-
ness people. The 3D visualizations on the other hand allow us to combine more
information into a single scene. In particular, the process graph may visualize
the current status of the simulation while the histograms reveal information
about the last couple of simulated weeks. In this case, the 3D visualization
offers the possibilities to visualize past, present and simulated data in a sin-
gle image. We observe, however, that simulation and visualization are not yet
generally accepted as instruments for decision making. Moreover, most man-
agers are not familiar with 3D. Yet, what solution is to be preferred is up to the
managers who in the end have to make the decisions.

CHAPTER 8

Shared Concept Space

The programmer builds from pure thought-stuff:
concepts and very flexible representations thereof.

The mythical man-month - Fred Brooks.

Chapter 5 introduced the Distributed Visualization Architecture. This chapter
focuses on an essential element of the DIVA architecture: the Shared Concept
Space (SCS), the deployed model for information exchange. The Shared Con-
cept Space decouples the information provider and visualizer by means of a
shared data model. Characteristics of the Shared Concept Space are a hierar-
chical concept structure, support for derived data and dynamic updates.

Structure Section 8.1 introduces the concept of communication mechanisms
in distributed applications. Additionally, it describes two communication
paradigms. Section 8.2 then introduces the general idea and motivation of
the Shared Concept Space. Section 8.3 shows that the Shared Concept Space
has its foundations in a couple of design patterns which are described in this
section. After that, Section 8.4 discusses the software architecture underlying
the Shared Concept Space. Section 8.5 describes some distribution aspects of
the concept space. Next, Section 8.6 illustrates the practical application of the
SCS in a DIVA prototype. Section 8.7 discusses two experiments we have per-
formed that show the possibilities of a more extended SCS. Finally, Section 8.8
summarizes and concludes this chapter.

138 8.1. INTRODUCTION

8.1 Introduction

Interactive, collaborative visualization applications as targeted by the DIVA
software architecture are distributed. Distributed in this context means that
the application consists of multiple elements spread over a number of ma-
chines. Instead of being isolated elements, the components of a distributed
application work together in order to achieve a common goal. So, three sepa-
rate copies of a text editor running at different computers do not make a dis-
tributed application. However, when the editors contain the same document,
allowing for collaborative writing, the whole can be considered as a distributed
application.

Distributed applications consist of components and a communication mecha-
nism. The components are the functional elements whereas the communica-
tion mechanism exchanges information and control between the components.
The Shared Concept Space, which is the topic of this chapter, facilities the com-
munication in DIVA. Moreover, the Shared Concept Space is a model for data
exchange in distributed systems. It discriminates itself from other communica-
tion mechanisms by exhibiting some specific characteristics, including derived
properties and hierarchical concepts.

8.1.1 Communication paradigms

Distributed systems and applications come in all flavors. Each with different
purposes, types of users, and security, scalability and performance require-
ments. Bank transactions, for example, should be secure and fail-safe, whereas
internet shoot-em-up games should be as fast as possible at all costs, even at
the expense of correctness.

Since quality requirements, such as performance and scalability, depend on the
deployed communication mechanisms between the distributed components, a
large quantity of communication technologies exists, each with its own char-
acteristics. To produce some order out of the chaos, we will distinguish be-
tween two paradigms: direct communication through message passing as il-
lustrated in Figure 8.1(a) and decoupled communication through shared data
as shown in Figure 8.1(b).

Typically, message passing is being used when a limited number of compo-
nents (usually two) are requesting services of each other. Information is passed
in the form of parameters; instructions are usually communicated by (remote)
method invocations. Message passing in a distributed application can there-
fore best be compared with inter-module procedure calls of single-machine
applications.

While message passing supports direct peer-to-peer communication between
distributed components, applications based on a shared data architecture have
to include an additional tier that contains the data. Each component can have

CHAPTER 8. SHARED CONCEPT SPACE 139

Component AComponent A

Component AComponent A

Component AComponent A

Shared
Data

Shared
Data

Direct communication
through message passing

a) b) Decoupled communication
through shared data

Component AComponent A

FIGURE 8.1: Two paradigms for communication between components in a dis-
tributed application.

access to the shared data independently of other components. Thus, as the
name of the paradigm already suggests, the shared data architecture is appro-
priate to exchange information among a multitude (usually more than two) of
components.

8.2 The Shared Concept Space

The communication mechanism of DIVA-based visualization systems is the
Shared Concept Space. The main purpose of the Shared Concept Space is to
exchange data through a structured data model. The SCS decouples informa-
tion provider and visualizer components through shared data. It achieves this
by providing means to both provider and visualizer to share information about
particular data elements: the shared concepts.

Whenever an information provider component has new or additional informa-
tion available, it performs the creation, respectively modification, of a concept.
Other components within the application will subsequently become aware of
the new piece of information. Thus, the shared concepts allow for sharing data
among distributed components. Hence, the SCS conforms to the shared data
communication paradigm.

140 8.2. THE SHARED CONCEPT SPACE

8.2.1 News feed metaphor

The general idea of the Shared Concept Space can easily be clarified by looking
at the metaphor of the news feed. In a news feed, news facts are transported
from the news source to interested clients. To allow clients to easily identify
news facts, the elements are tagged with a descriptive label. For example, the
fact that the Nasdaq index dropped 15 points on the 25th of May 2000 could be
tagged with the general “Nasdaq index ” label. This label can consequently
be used for all Nasdaq index facts. People who are not interested in stock
indexes or Nasdaq at all can thus easily ignore such news facts.

In the Shared Concept Space, news in the form of new data elements and data
updates is fed from source to clients. All data elements in the data space are
tagged with a label that describes which concept this news fact refers to. This
way, information providers have a means to express the topic of the data. In
addition, visualizers have a means to decide whether that update might be
interesting for their purposes.

8.2.2 Why a Shared Concept Space?

The SCS is not intended as a completely new distributed communication tech-
nology. On the contrary, it is built upon existing technology. The Shared Con-
cept Space rather is a new model for distributed information exchange. It is
explicitly designed for interactive collaborative visualization, but it is certainly
also suitable for other types of distributed applications.

Despite the fact that the architecture and implementation of the Shared Con-
cept Space have evolved significantly during the project, the original motiva-
tion to introduce a communication model based on shared concepts has not
changed. As already discussed in Chapter 5, decoupling plays a very impor-
tant role in the DIVA architecture. The purpose of the Shared Concept Space is
to facilitate this decoupling in DIVA.

The scope of the Shared Concept Space, however, reaches beyond distributed
visualization only. Other information applications in which components have
to share information can also benefit from the SCS. For example, we have cre-
ated a chat application that deployed the SCS as the communication mecha-
nism between the chatters.

In short, the Shared Concept Space is intended to decouple parts of applica-
tions by providing them with a shared data communication model. The added
value comes from the possibility to structure the information according to a
concept hierarchy. Additionally, the model contains derivation rules to com-
pute derived data.

CHAPTER 8. SHARED CONCEPT SPACE 141

8.3 Patterns underlying the Shared Concept Space

The architecture of the concept space is built upon, or has a close relation to,
a number of patterns. The idea of a pattern to describe a common problem
within a certain context stems from Alexander, Ishikawa, Silverstein, Jacobson,
Fiksdahl-King & Angel (1977). By means of writing down the problem, con-
straints and a solution to often occurring practical problems, knowledge which
would otherwise remain hidden, can be transferred to less experienced people.
Additionally, experts have access to a new vocabulary, the pattern language,
to express high-level solutions.

Although Alexander’s patterns are within the domain of architecture of build-
ings, the idea of a pattern appeared to be valid in the domain of designing
software too. Gamma et al. (1994) define design patterns as “descriptions of
communicating objects and classes that are customized to solve a general de-
sign problem in a particular context.” Thus, design patterns are best-practice
solutions to common problems in the design of (object-oriented) applications.

Architectural patterns are design patterns for software architectures.
Buschmann et al. (1996) specify that “an architectural pattern expresses a fun-
damental structural organization schema for software systems. It provides a
set of predefined subsystems, specifies their responsibilities, and includes rules
and guidelines for organizing the relationships between them.” The purpose
of architectural patterns is comparable with the goal of design patterns. They
differ, however, with respect to whether they are deployed to architect (high-
level) a system or design (parts of) an application.

Below three patterns are given that have significantly influenced the de-
sign of the Shared Concept Space. The discussed patterns are Blackboard,
Model-View-Controller (MVC), and Talker-Listener. The terminology we use
in the discussion below is based on Pattern-oriented software architecture by
Buschmann et al. (1996).

8.3.1 Blackboard

The idea behind the Blackboard pattern is that a collection of independent spe-
cialized components assemble their knowledge by working collaboratively on
a common data structure. The Blackboard, named after the real blackboard
that human experts use to work together to solve a problem, is the conceptual-
ization of the shared data in the shared data communication paradigm.

Buschmann et al. (1996) define the problem the Blackboard pattern addresses
as follows:

“The Blackboard pattern tackles problems that do not have a feasi-
ble deterministic solution for the transformation of raw data into
high-level data structures, such as diagrams, tables or English

142 8.3. PATTERNS UNDERLYING THE SHARED CONCEPT SPACE

phrases. Vision, image recognition, speech recognition and surveil-
lance are examples of domains in which such problems occur. They
are characterized by a problem that, when decomposed into sub-
problems, spans several fields of expertise. The solutions to the
partial problems require different representations and paradigms.”
(Buschmann et al. 1996, p.72)

The Blackboard pattern specifies that the software architecture should com-
prise several specialized subsystems, each performing its own particular task
contributing to the overall process. The blackboard component provides the
central data store. The structure of the Blackboard pattern defines a blackboard
component, a collection of knowledge sources (the specialized subsystems) and
control components which monitor the blackboard and schedule knowledge
source activations.

To a certain extent the DIVA architecture can be characterized as conforming to
the Blackboard pattern. The specialized subsystems are simulation, databases
and visualizers that together create interactive, dynamic visualizations. A com-
monality of the Blackboard pattern and the concept space is the fact that the
components are independent, in the sense that they do not directly call each
other. In DIVA-terminology, this independence is called decoupling.

8.3.2 Model-View-Controller (MVC)

The Model-View-Controller (MVC) pattern is targeted at interactive applica-
tions. It divides applications into three components: the model encapsulating
core data and functionality, the views that display the information contained
in the model and the control components which handle user input by invoking
methods on the model.

As part of their problem definition of the Model-View-Controller pattern,
Buschmann et al. (1996) state:

“Different users place conflicting requirements on the user inter-
face. A typist enters information into forms via the keyboard. A
manager wants to use the same system mainly by clicking icons
and buttons. Consequently, support for several user interface
paradigms should be easily incorporated.” (Buschmann et al. 1996,
p.126)

Whenever the contents of the model have been modified, for example through
a control component, all views representing the model are notified. The views
can now retrieve the new data from the model and accordingly update the
information presented to the user. This is one of the strengths of the MVC
pattern: it allows for multiple views of the same model, even when the data
model is dynamic.

CHAPTER 8. SHARED CONCEPT SPACE 143

The purpose of the SCS within DIVA is comparable with the intended use of
the MVC pattern. The context of the solution is the same: the data source is
dynamic, multiple views or perspectives are required, and both need a means
to control the model. A conceptual difference, however, is that the model of
MVC represents the functional core of the application including procedures
that perform application specific processing. In DIVA, most functionality is
located in the processing components, except for the derivation rules, and the
Shared Concept Space is more a data communication model than a functional
core.

8.3.3 Talker-Listener

The talker-listener pattern, sometimes called publisher-subscriber, is based
upon an intermediate communication channel between the talker (subject) and
the listeners (observers). The talker publishes its data and information on a
channel which takes care of the distribution to the different listeners, as illus-
trated in Figure 8.2. The advantage for the talker is clear: it does not have to
maintain a list of observers. Instead, it can talk to a single interface without
having to worry about joining and leaving listeners.

The problem the Talker-Listener pattern addresses is described by Buschmann
et al. (1996) (although the pattern is called publisher-subscriber there) as fol-
lows:

“A situation often arises in which data changes in one place, but
many other components depend on this data. The classical exam-
ple is user-interface elements: when some internal data element
changes all views that depend on this data have to be updated.
We could solve the problem by introducing direct calling depen-
dencies along which to propagate the changes, but this solution
is inflexible and not reusable. We are looking for a more general
change-propagation mechanism that is applicable in many con-
texts.” (Buschmann et al. 1996, p.339)

Instead of informing viewers that the model has been changed as is the case in
the MVC pattern, the talker publishes the changed data immediately. Listen-
ers are able to specify which updates they want to receive through the use of
‘tags’ like in the news feed. Therefore, listeners do not get disturbed by update
messages about information they are not interested in.

In this pattern, the talker is completely independent of the interested listeners.
Whether the number of listeners is large or small, and whether it increases or
decreases is irrelevant to the involved talker. The bottleneck at the model-side,
which might form a scalability problem in MVC pattern, is hereby solved for
the talker.

144 8.3. PATTERNS UNDERLYING THE SHARED CONCEPT SPACE

Talker Channel Listeners

The channel maintains
the collection of listeners
and their interests

1: update(data) 2: update(data)

FIGURE 8.2: Talker-Listener pattern

The channel component can deploy a range of strategies to avoid being the
single, centralized component as might appear from Figure 8.2. For example,
IONA’s OrbixTalk1distributes information from talker to listener transparently
using IP multicast. The channel broadcasts the incoming data to a multitude of
listeners by sending it only once to an IP multicast group. The listeners who are
part of that IP multicast group pick up the needed data and continue working
with the updated information. For the distributed objects, it seems as if they
are talking, respectively listening, to single, local objects.

The DIVA architecture decouples information provider and visualizer. The
Shared Concept Space, which enables this decoupling, is modeled after the
talker-listener pattern. It acts as a collection of channels which are hierarchi-
cally ordered. In terms of the SCS, each concept can be seen as a communica-
tion channel between an arbitrary number of data providers and visualizers.

8.3.4 SCS and patterns

As a summary of the relation between the Shared Concept Space and the Black-
board, MVC, and Talker-Listener pattern we can conclude that the SCS has
picked pieces from all three patterns. The idea of independent but collabora-
tive components that share their information on a central store comes from the
Blackboard pattern. The structuring of a system in model and viewer that al-
lows for multiple views comes from the Model-View-Controller pattern. And
finally, the distribution aspects via a communication channel come from the
Talker-Listener pattern.

1OrbixTalk is an implementation of the Corba event service that adds support for scalable and
reliable communication. (see: www.iona.com).

CHAPTER 8. SHARED CONCEPT SPACE 145

8.4 Software Architecture of the SCS

The need for the Shared Concept Space arose from the fact that we needed a
powerful information communication model at the heart of the DIVA architec-
ture as shown in Figure 8.3 (reprint of Fig. 5.5). This communication model
should support the development of distributed visualizations that enable mul-
tiple perspectives on information sources.

Information
Provider

Information
Provider

Shared Concept Space

derived
model 1 derived

model 2

Provide data

ViewerViewer

ViewerViewer

ViewerViewer

ViewerViewer

Distribute data

FIGURE 8.3: The Shared Concept Space forms the communication core of the
DIVA architecture (reprint of Fig. 5.5).

The most important design considerations for the Shared Concept Space con-
cern hierarchical concepts, derived concepts and dynamic data. This section
will discuss each of these issues by going into somewhat more detail of how
the SCS works.

8.4.1 Hierarchical concepts

When distributed components deploy shared data, a mechanism to identify
and address pieces of the information is necessary. In the Shared Concept
Space, we have chosen for a hierarchical collection of concepts since this en-
ables the grouping of concepts even when the information structure is dynamic
(see also Section 5.6).

Hierarchical concepts are specified by identifiers separated by dots (’.’),
for example desk1.queue.length . The last identifier is the name of
the concept, the prefix defines its place in the concept hierarchy. Thus,
desk1.queue.length denotes the length concept which is a child of
queue which again is a child of the desk1 concept.

To specify what information components are interested in, the ConceptSpace
interface contains a register and unregister method. For example, the
visualizer of waiting queues has to register its interest by invoking reg-
ister("desk1.queue.length") . The concept space now knows exactly

146 8.4. SOFTWARE ARCHITECTURE OF THE SCS

which listeners are interested in which concepts and can, henceforth, only up-
date interested parties about newly published update events.

In the current SCS, we implemented a number of concrete data storage classes.
These classes comprise multiple types, e.g. boolean, integers, strings and
floats, as well as multiple dimensions including single objects, sequences and
2-dimensional arrays. An overview of the Data object hierarchy is given in
Figure 8.4.

FIGURE 8.4: The object hierarchy of the Data update event.

Since the structure of the concept space is not static, new shared concepts can
be added. Therefore, we have extended the means of registration to the concept
space by wildcards. Instead of explicitly specifying which update events one
wishes to receive, classes of updates can be denoted with a single registration.

Currently, two wildcards2 are specified: ’*’ and ’<’ . A ’*’ can be replaced
by a single identifier. A ’<’ matches any number of identifiers separated
by dots. For example both desk1.*.length and desk1.< will match to
desk1.queue.length .

The structure of the concept space, including the concept hierarchy, is open.
The Shared Concept Space enables all components to create and update new
concepts. The communication is thus based on common understanding: the
distributed components have to agree on the concept hierarchy.

8.4.2 Derived concepts

To serve decoupled data manipulation in DIVA, the Shared Concept Space con-
tains Processor objects. The processor objects complement the data in the con-

2We follow the same convention as Objectspace’s Voyager.

CHAPTER 8. SHARED CONCEPT SPACE 147

cept space with derived information. A processor plays the role of data con-
sumer and information provider at the same time. It listens to source data,
processes it, and subsequently publishes new information as derived concepts.

As an example, think of a processor that computes the average length of all
waiting queues. To achieve this, the processor registers to receive information
about "*.queue.length" . By summing the individual lengths and dividing
the result by the number of queues, the average can be derived. The average
length is then published by the processor as the derived concept
"overview.queue.avglength" .

Processors can be realized in an imperative language, such as Java. However,
data manipulation is sometimes a knowledge-intensive task and a declarative
language is in those cases a better choice. Therefore, we have included the
option to specify derived components using Prolog.

Prolog can be deployed to derive new information based on known facts using
rules. This is a similar approach to the derived concepts in the Shared Con-
cept Space. By integrating Prolog into the SCS, we can now use Prolog rules
to compute the derived concepts. This enables the combination of Prolog and
Java-based derivation processors to cover both symbolic and numeric compu-
tation.

8.4.3 Dynamic data

To show how the SCS can serve both static and dynamic data, the necessary in-
terfaces of the software architecture are shown in Figure 8.5. The data provider
employs the ConceptSpace interface to make data or updates available. Vi-
sualizers implement the UpdateEventListener interface and retrieve
the UpdateEvents containing new data entries or data updates.

An UpdateEvent , independent of whether it is a complete or partial update,
contains the Concept as its topic. This specifies to which concept in the Shared
Concept Space the update refers to. Or in terms of the news feed metaphor, this
is the tag to identify the news fact. To publish a new value, the data provider
uses the Data class. When only relative changes should be published, for ex-
ample whenever the modification only considers a fraction of the data element,
the Delta class can be used.

As an example, consider a business process simulation that needs to share the
fact that the current waiting queue at desk 1 is 35 people long. To achieve
this, the simulation creates an UpdateEvent object. In a concept space that
is organized according to the physical location of business objects, the topic of
the update is something like desk1.queue.length . Accordingly, the value
35 denoting the length of the queue is assigned to the newly created Data
update event.

To share the new information with other interested parties, the simulation calls
the publish method of the Conceptspace. One of the parties that registered

148 8.4. SOFTWARE ARCHITECTURE OF THE SCS

UpdateEventConcept
1

+topic
1

Data Delta

Data Provider

UpdateEventListener
update(UpdateEvent) : void

<<Interface>>ConceptSpace
publish(UpdateEvent) : void
status(UpdateEventListener, Concept) : void

<<Interface>>
publish update

Data Visualizer

request status

FIGURE 8.5: UpdateEvents are generated by data providers and distributed to
visualizers to communicate data and updates.

interest in the waiting queue concept is, for example, a visualization of the
variation in the length of wait queues. To receive the update, the visualizer
implements the UpdateEventListener . As soon as the UpdateEvent is
distributed over the network, the visualizer receives an update method call
containing the information as provided by the simulation about the new length
of the waiting queue at desk 1. The visualizer can, consequently, update the
presented visualization.

8.4.4 Discussion

The most distinguishing aspect of the Shared Concept Space with respect to
other communication models and middleware is the possibility to derive in-
formation. We will now briefly touch upon the value and possible drawback
of positioning this functionality inside the concept space.

An advantage of this approach is the possibility to share knowledge (deriva-
tion knowledge) among multiple persons. Derived information, produced by
a single processor, can be deployed by multiple users. Additionally, by decou-
pling data manipulation knowledge from information provider or visualizer,
it is possible to reuse this knowledge for multiple purposes. The practical ad-
vantage of this form of reuse has already been shown in the 2D and 3D visual-
ization of business processes as discussed in Chapters 3 and 7.

A possible drawback of positioning the derivation knowledge inside the SCS
is the additional overhead of creating separate derivation processors. For
example, most simulation tools already contain functionality to monitor cer-
tain events and present statistical overviews of the occurrence of those events.
Moving the functionality out of the simulation into the middleware is difficult
and sometimes even impossible. However, when the migration of derivation

CHAPTER 8. SHARED CONCEPT SPACE 149

knowledge has been accomplished, users can benefit from the knowledge shar-
ing and reuse advantage.

8.5 Distribution aspects of the SCS

When architecting a distributed application, many relevant concerns have to be
taken into account. In this section we will briefly touch upon some distribution
aspects of our implementation of the SCS.

8.5.1 Distributed system versus single machine

A first performance aspect concerns the distribution overhead. When a user
wants to use a DIVA-based system on a stand-alone machine, the distributed
nature of the architecture can have a negative influence on performance.

Figure 8.6 shows the approach we have taken in the current implementation
of the SCS. Two different implementations of the same ConceptSpace inter-
face are defined, each of which can be optimized for its specific environment.
This has the advantage that applications deploying the concept space can eas-
ily switch from local to distributed concept space or vice versa, as long as they
stick to the ConceptSpace interface.

ConceptSpace
<<Interface>>

LocalConceptSpace DistributedConceptSpace

Optimized for
use on single
machine

Optimized for use
in a distributed
environment

FIGURE 8.6: Two implementations of the ConceptSpace optimize for their local
or distributed environment.

8.5.2 Scalability

A second distribution aspect applies mainly to the distributed implementation
of the Shared Concept Space. The architecture must be able to scale up to a

150 8.5. DISTRIBUTION ASPECTS OF THE SCS

larger number of data providers and visualizers. This is definitely in conflict
with a single Shared Concept Space as it has been drawn in Figure 8.3 since cen-
tralized components do not scale very well. For example, Tanenbaum (1995)
says about large distributed systems: ... one design principle is clear: avoid cen-
tralized components, tables and algorithms (p.30).

Therefore, the DIVA software architecture specifies that the distributed imple-
mentation of the SCS consists of multiple connected objects that together form
a single logical concept space. Each application involved in a visualization ses-
sion has its own concept space object which is connected to at least one other
DistributedConceptSpace (DCS) object. The objects, to which a concept
space object is connected, are called its neighbors. Whenever a data provider
calls update on its DCS object, the object transfers the UpdateEvent to all its
neighbors, which again pass the event on to their neighbors. As a consequence,
all DCS objects that are directly or indirectly connected to the DCS object of the
data provider receive the update event.

DCS1 : Distributed
ConceptSpace

DCS2 : Distributed
ConceptSpace

DCS3 : Distributed
ConceptSpace

DCS4 : Distributed
ConceptSpace

Source : Data
Provider

VisA : Data
Visualizer

VisB : Data
Visualizer

VisC : Data
Visualizer

neighbor

2: publish

neighbor

3: publish

neighbor 4: publish

1: publish

FIGURE 8.7: The distributed concept space consists of multiple connected sub-
spaces that together form a single logical concept space.

Figure 8.7 illustrates the usage of the distributed concept space by means of
a UML collaboration diagram. Each data provider and visualizer component
is connected to a local DCS object (DCS1 through DCS4). The example given
in Figure 8.7 runs on 4 separate machines, each having its own DCS object.
The source of the visualization specifies the value of a data element by call-
ing update on its local distributed concept space object DCS1. To distribute

CHAPTER 8. SHARED CONCEPT SPACE 151

the newly available data concept, DCS1forwards the event to all its neighbors
asynchronously. In this case, DCS2and DCS3receive the data update. Subse-
quently, DCS3forwards the update again, asynchronously, to DCS4.

The specification of the DistributedConceptSpace avoids centralized
components or data tables. New distributed concept space objects can be
added to the already existing network of DCS connections without overload-
ing a single component. However, it must be remarked that the architectural
solution given here enables a scalable system; it is not guaranteed. How well
the resulting systems scale in practice is, amongst others, dependent on the
topology of connected DCS objects.

8.5.3 Topology

The topology of the distributed system can influence the network load, and
hence the performance, of the distributed system considerably. For example,
consider a simulation that produces a large quantity of raw data. The infor-
mation that a summarizing visualization needs is based on this raw data, but
much smaller in size. Exactly for this kind of situations, the SCS contains the
possibility to introduce derived concepts. However, the location of the proces-
sor component that produces the smaller derived information influences the
amount of data that has to be sent over the network. As shown in Figure 8.8,
locating the processor object near the simulation decreases the amount of traf-
fic.

More generally, the topology of the Shared Concept Space allows for a good
performance of distributed applications. As a rule of thumb for achieving opti-
mal use of network resources, derived concepts producing smaller summaries
of large quantities of data should be located near the data provider. Derived
concepts that produce more data than they receive as input, however, should
be close to their consumers.

8.6 Example usage of the SCS

The Gak business process visualization prototype (Chapter 3) comprises both
databases and simulation as data providers. The information visualizers, how-
ever, require other, derived data to present the histograms with management
information. To produce the derived information, the prototype deploys the
Shared Concept Space with a number of Processor objects as illustrated in Fig-
ure 8.9.

The contents of the Shared Concept Space are defined by the individual compo-
nents. The communication is based upon common understanding. A structure
enforced by the Shared Concept Space would standardize this communication.
However, before the current structure can be formalized into an ontology and

152 8.6. EXAMPLE USAGE OF THE SCS

Sim VisProc
All simulation events

are transported over the network

Sim Proc Vis
Only derived concepts

containing summary information
are communicated

Sim
The simulation
producing the
raw data

Proc
The processor
which derives the
summary information

Vis
The visual
presentation
of the derived
information

FIGURE 8.8: The topology of the derived information processors in the Shared
Concept Space can have a large impact on the network traffic and
hence performance of distributed visualization.

SimulationSimulation SCSSCS

AvgWaitTime
Processor

AvgWaitTime
Processor

Capacity
Processor

Capacity
Processor

VisualizerVisualizerSimulation data

derived data

Simulation and

Sim. data Derived data

Sim. data Derived data

FIGURE 8.9: Processors derive high-level information based on the raw simu-
lation data.

deployed as a general model for business visualization, more research is nec-
essary.

CHAPTER 8. SHARED CONCEPT SPACE 153

The derived concepts summarize information from database and simulation
into sequences which are used as the data source for presenting the histograms.
As an example, let us take a look at the AvgWaitTimeProc which computes
the average waiting time of elements in a particular stage of the business pro-
cess. To be able to derive this information, the processor monitors the enqueue
and dequeue events of the simulation in association with the current simula-
tion time . Based on these facts, the processor can derive individual waiting
times of elements in the simulation process.

The AvgWaitTime processor produces overviews of waiting times for each
week of simulated time. Therefore, it summarizes individual waiting times
into a small list of numbers. The first number represents the quantity of ele-
ments that have been waiting between 0 and x minutes. The second number
represents waiting times between x and 2x minutes, etcetera.

The derived information is published as an IntSequence which can easily
be presented with a histogram by mapping the individual numbers of the se-
quence to the height of the bars. Figure 8.10 shows this process by zooming in
on the central part of Figure 8.9.

sim

run time pause

event

of1 of15

prod1 prod200

phase1 phase5

enqueue dequeue service

histograms

of1 of15

prod1 prod200

phase1 phase5

waittimeservicetime

description week1 week52

AvgWaitTimeProc

waittime(e) = time@dequeue(e) - time@enqueue(e)
week[n] = count of waittime(e) where

n*x ≤ waittime(e) < (n+1)*x

AvgWaitTimeProc

waittime(e) = time@dequeue(e) - time@enqueue(e)
week[n] = count of waittime(e) where

n*x ≤ waittime(e) < (n+1)*x

uses as input
produces

can be represented as:

FIGURE 8.10: The AvgWaitTimeProc derives information to produce his-
tograms in the ASZ/Gak business process visualization proto-
type.

Summarizing, the SCS played an important role in the BizViz prototype, for

154 8.7. EXPERIMENTS WITH THE SCS

a number of reasons. First, the hierarchical concepts enabled the structuring
of information from simulation, database and processors in such a way that
visualizers could easily access it. Second, the possibility of decoupled data
manipulation through derived data allowed us to reuse particular mappings
from raw data to high-level overviews for different presentations, e.g. the 2D
and 3D visualizations.

Third, the fact that the Shared Concept Space allows dynamic data made it pos-
sible to display the intermediate results of simulation. Consequently, the pro-
cess of simulation, reviewing the results and adapting the parameters has been
made more flexible. Finally, the current implementations of the SCS enabled us
to create both single-machine and distributed versions of the Gak application.

8.7 Experiments with the SCS

The primary goal of the Shared Concept Space is information exchange. How-
ever, through the usage of derived properties and processor objects the SCS can
be extended with interesting functionalities. During the DIVA project, we have
done a couple of experiments that extend information exchange with history
and dynamic query facilities.

In the history experiment, we have created a Shared Concept Space using Pro-
log that maintained a history of all changes to the data. The processor ob-
jects save every update and the time at which it occurred. This extension
enables some interesting features for visualization purposes. First, it allows
for the recording and playback of simulations, allowing multiple users more
freedom to step forward and backward through simulation sessions. Second,
the recording of historic facts enables users to search through historical data
dynamically by doing queries on the concept space. This approach is more
flexible than the approach we have taken in the Gak management information
prototype. There, we only recorded historical facts that were needed for our
immediate visualization purposes. However, when a new insight would need
different historical data, it is already too late and the simulation session has
to be restarted since all irrelevant update events are already lost. In case the
concept space contains history, no update event is lost and the new view could
immediately be created and displayed.

In a different experiment, we have deployed Prolog to dynamically query in-
formation in the SCS. In this case, every processing step from raw data, which
is inserted into the concept space, to the visual model is performed by Prolog
processor components in the SCS. Every visual element in the visualization is,
therefore, directly connected to a derived concept in the SCS. For example, each
bar in a histogram is the visualization of a number that is the result of some
derivation performed in the SCS. In a visual manipulation tool, this histogram
bar can be dragged onto another visual perspective. The result of this interac-
tion is that the query that resulted in the dragged bar is now the source for the

CHAPTER 8. SHARED CONCEPT SPACE 155

other visual perspective: we have dynamically created a new query that is the
combination of the selection query for the bar in the histogram and the visual-
ization derivation knowledge of the other visual perspective. The selected bar
is used as the source for the new visualization. When the capabilities offered
by this SCS would be combined with a good and intuitive visual manipulation
interface, it would result in a very powerful tool to dynamically visualize and
query (dynamic) data sets.

8.8 Summary and Conclusions

The Shared Concept Space is a model for information communication in dis-
tributed environments. It is comparable with a news feed that publishes news
facts to multiple clients. As a means to organize the information, data elements
in the SCS are structured as hierarchical concepts.

The Shared Concept Space is based on the Blackboard, MVC and Talker-
Listener pattern, eclectically using elements from all three patterns. The added
value of the SCS, however, comes from the possibility to derive new informa-
tion. This way, derivation and processing knowledge can be shared and reused
among multiple components and people.

The Shared Concept Space’s original motivation stems from interactive, dis-
tributed visualization. It has successfully been applied as the communication
model for multiple visualization prototypes. Especially the support for a hier-
archical data structure, derived data and dynamic updates appeared to be the
strengths of the concept space. Before it can be deployed in business-critical
situations, however, more research on restricting the access to concepts and
imposing a particular structure on the space is necessary.

156 8.8. SUMMARY AND CONCLUSIONS

CHAPTER 9

Distributed Objects: from Features to Styles

Software development continues to be, as always, a difficult and
fascinating mixture of art, science, black magic, and hype.

D’Souza & Wills (1999)

During the last decade, distributed applications have received increasing in-
terest from both users and application developers. There are a number of rea-
sons for this. First, distributed applications have the capability of dynamically
sharing data and functionality, allowing users to communicate and collaborate
with each other. Second, distributed applications can combine the computing
power of multiple computers resulting in very powerful systems.

However, distributed applications are far more difficult to design, implement,
test and debug than non-distributed applications. In particular, architects of
distributed applications have to make the difficult decision of how to split up
the system in order to achieve quality requirements, such as security, perfor-
mance and maintainability.

In this chapter, we will discuss four architectural patterns or styles1 to char-
acterize distributed object-oriented software. Additionally, we will discuss

1Architectural styles is an often used term for high-level patterns describing specific character-
istics of the software architecture of a system. In this chapter we will use the terms architectural
pattern and architectural style interchangeably.

158 9.1. SOFTWARE ARCHITECTURE AND STYLE

guidelines for their usage, and indicate which technologies can be deployed
to implement the styles. Thus, by classifying and cataloging distributed OO
software in architectural styles and providing guidelines for their usage, we
are trying to give some guidance for the development of distributed software.

Structure Section 9.1 briefly introduces the idea of architectural styles of soft-
ware. After that, Section 9.2 discusses an object-feature-space to classify objects
in distributed OO software. However, since software architects are not so much
interested in object features per se but more in the behavior of the system as a
collection of collaborating objects, Section 9.3 presents four architectural styles.

The distributed objects, dynamically downloaded classes, mobile objects
and event-space architectural styles are all based on distributed OO technol-
ogy but differ in supported object features, connector types and location issues.
To illustrate the practical usage of styles, Section 9.4 shows how the styles are
deployed in DIVA to allow for the addition of new visualization perspectives.
As a conclusion, we will evaluate the architectural styles and provide some
rules-of-thumb for deploying them in Section 9.5.

9.1 Software Architecture and Style

Software engineers, both academic and in industry, are increasingly interested
in Software Architectures. An important aspect of software architecture is the
fact that it forces us to think about the quality requirements of a system in
addition to the functionality. Moreover, software architecture allows for an
evaluation of software systems early in the development cycle.

Architecture-based development promises, amongst others, high-level reuse
and separation of concerns. But what we are mainly interested in here is that,
while traditional development approaches are primarily concerned with func-
tionality, software architectures are concerned with the interaction and com-
munication of components (Clements 1996).

Whereas software architectures describe or prescribe one particular system,
Shaw & Clements (1997) and Shaw & Garlan (1996) classify groups of soft-
ware architectures in architectural styles. Architectural styles are descriptions
of component types and a pattern of their runtime control and/or data transfer (Bass
et al. 1998). Architectural styles are often, as in our case, based on practical ex-
perience. By making design decisions and considerations explicit by means of
styles and guidelines, we are able to transfer this important knowledge to other
similar software development projects. Books such as (Buschmann et al. 1996)
and (Schmidt, Stal, Rohnert & Buschmann 2000) are therefore a valuable source
of best-practice information that can help the software architect.

CHAPTER 9. DISTRIBUTED OBJECTS: FROM FEATURES TO STYLES 159

9.2 Distributed Object Feature-space

Before we discuss the architectural styles, we look at the elements constituting
a distributed OO system first: the objects. In the following classification we will
examine properties of single objects and the connectors between them. Fur-
thermore, the location of functionality and data and the possibility of changing
that location is included in the overview. Since the field of distributed objects is
very broad, the issues described here are far from being exhaustive. However,
we do think that this set of issues consists of some high-level topics that are
relevant for distributed OO software.

9.2.1 Objects

The first category or dimension of the object-feature-space concerns properties
of the components comprising the system. In a distributed OO system, these
components are objects. Objects consist of an interface, the externally visible
data and methods, and an implementation of that interface. Remote objects
call each others methods via a well defined interface. When an object exposes
meta-information, remote objects can dynamically determine the object’s in-
terface. Consequently, this allows for new objects to be inserted into a running
system and deployed by other objects which use the meta-information to de-
rive the object’s interface. Usually, the meta-information description is syntac-
tical only and does not have any semantical meaning.

Additionally, the interface or even the functionality of the objects might be dy-
namically changeable—of course, meta-information is necessary to discover
such changes. In this case, an existing object is extended with a new feature re-
sulting in an adapted or additional interface and extended behavior. One form
of dynamically changeable objects is dynamic aggregation (ObjectSpace 1998)
which aggregates two objects with a resulting interface that is the union of the
original ones.

9.2.2 Connectors

The second feature category concerns the connectors between the components.
Roughly speaking, the connector can be of two different types: method-based
or event-based. A method-based connector enables objects to call methods of
a public interface. When the call is done on the same machine (or process)
the call is local. In case the caller and callee of the methods are on different
machines we speak of remote method calls.

An event-based connector passes events. Events range from signals contain-
ing no information to full blown event-objects consisting of functions and data.
Whereas method-based calls are usually synchronous, event-based mecha-
nisms are mostly asynchronous.

160 9.2. DISTRIBUTED OBJECT FEATURE-SPACE

The main task of the connector is to let objects communicate. However, a sec-
ondary task can be the translation of that communication to make objects in
different technical contexts work together. A connector is inter-operable if it
can be employed by other objects written in different languages, or running on
different platforms.

9.2.3 Location

Location issues concern the location of both data and functionality in the sys-
tem. Additionally, it encompasses the fact whether objects are mobile or repli-
cated. By downloadable we mean that object-code (classes) can be dynami-
cally downloaded to clients where the objects are instantiated. When compo-
nents are mobile, objects migrate taking functionality, data and status along.
Thus, mobility implies that the object (instance) is moved as-is whereas down-
loadable objects are newly created objects based on classes available at a server.

Replication means that multiple identical copies of an object exist to improve
performance or reliability of the system. Replication is still a research issue and
as such not supported by (commercial) middleware solutions.

9.2.4 Feature matrix of distributed object technology

Table 9.1 shows the classification of a number of distributed object technologies
according to the above mentioned features. The illustrated technologies are:
OMG’s CORBA, Objectspace’s Voyager, Microsoft’s DCOM, and Java with RMI
(Remote Method Invocation) by Sun. A technology representing event-based
mechanisms is present in the form of the CORBA event-service. Unfortunately,
there does not exist technology supporting replication which is mature enough
to be included in the table.

TABLE 9.1: A classification of distributed OO technology

 Object Connectors Location

 Meta Dynamic
changes

Type Interop. Downloadable Mobile

Corba + - remote methods + - -
Voyager + + local methods - + +
DCOM + - remote methods + - -
Java RMI + - remote methods - + -
Event-service - - events + - -

The Common Object Request Broker Architecture (CORBA) (Siegel 1996)
as defined by the Object Management Group (OMG) allows objects to inter-
operate by means of a softwarebus: the Object Request Broker (ORB). Be-
cause CORBA has been designed to connect distributed applications written

CHAPTER 9. DISTRIBUTED OBJECTS: FROM FEATURES TO STYLES 161

in different languages running on multiple platforms its components are re-
motely callable and inter-operable. The Dynamic Skeleton Interface (DSI) al-
lows clients to request which methods are available on remote objects. There-
fore through DSI, objects can expose information about their interface (meta-
information).

An agent-system such as Voyager2(ObjectSpace 1998) provides means for
agents (autonomous ‘intelligent’ mobile objects) to travel around the dis-
tributed environment. Hence, mobility is an important feature of agent ORBs.
Since agents move to the same machine to communicate, they employ local
method calls to exchange information. In addition to mobile objects, Voyager
supports dynamic changes of an object. By means of dynamic aggregation
objects can be extended with new functionality. This feature is very useful in
combination with mobility. Namely, developers can now build agents without
bothering about the specific mobility issues. When the object is finished it can
then be aggregated with a mobile object hereby incorporating all mobility into
the new object.

Microsoft has defined a set of technologies to allow for distributed component-
based development of applications in the Windows environment (Microsoft
1998) that is comparable to Corba. The Distributed Component Object Model
(DCOM) is an extended version of COM, which is used to make applications
inter-operable. DCOM components are remotely callable and inter-operable
(ports of DCOM to other platforms such as Linux or Unix do exist).

Java with Remote Method Invocation (RMI) (Sunsoft 1998) is based on Sun’s
platform-independent language Java. Java is capable of dynamically down-
loading classes to clients where new objects can be instantiated. Additionally,
Java contains the reflection API which allows remote objects to retrieve meta-
information about other objects. RMI extends Java with a means to remotely
call objects on different hosts. Although Java is platform independent, RMI is
not inter-operable since it can only communicate with components written in
Java and not with components written in other languages.

Finally, an event-service such as the DCOM or Corba event-services deploy
events instead of methods to exchange information between distributed ob-
jects. Different implementations of the event-service specifications allow for
different quality attributes with respect to multiple recipients of events, relia-
bility of the arrival of the event, and the possibility to retrieve old stored events.

Although Table 9.1 is sufficiently illustrative to make commonalities between
object technologies clear, it does not have the right abstraction to classify archi-
tectures of distributed object oriented systems. The main reason for this is that
it is aimed at features of single objects (the components of the architecture) in-
stead of being aimed at the overall architecture. However, the table illustrates

2Note that Voyager also supports remote methods and distributed objects in a CORBA fashion.
However to illustrate the differences between an ORB and an agent system we will leave that
functionality out of the discussion.

162 9.3. ARCHITECTURAL STYLES

which technologies might be useful to support the implementation of systems
based on one of the styles discussed next.

9.3 Architectural Styles

One can find a lot of styles and/or patterns in distributed object-oriented sys-
tems. For example, Mowbray & Malveau (1997) contains almost 40 patterns
concerning CORBA. These patterns address multiple problems and together
form a pattern language that covers both higher and lower-level problems.
In contrast, we will only present four architectural styles. These styles are
very high-level patterns which address the same problem. The main problem
solved by our architectural styles is to communicate and exchange information
between multiple objects in a distributed environment.

9.3.1 Distributed objects architectural style

The first style, the distributed objects architectural style comprises software ar-
chitectures which consist of software components providing services to client
applications or other service components. Figure 9.1(a) schematically shows
the distributed objects style. Each object is located at a single, fixed place. Ob-
jects on different machines are being connected by proxy objects and an Object
Request Broker (ORB) that abstracts from the used network and programming
language.

The constituent objects are remotely callable. Because distributed objects only
expose their interface via an ORB they are inter-operable. Example technolo-
gies supporting this architectural style are CORBA and DCOM.

Example One of the standard examples to illustrate distributed objects ar-
chitectures is a banking application. Such a system typically exists of a single
object representing the bank and a number of objects representing the clients
of the bank. To withdraw money from the bank, a client component (which is
hosted on the clients’ machine) calls the withdraw function on the local proxy
that represents the bank object. The proxy object, consequently, communicates
with a remote proxy to invoke the same method on the bank object and to
return the result of the transaction to the client object. From a more abstract
point of view, the client component has now called the withdraw method on
the remote bank component.

9.3.2 Dynamically downloaded classes architectural style

The second architectural style is the dynamically downloaded classes style.
Here classes are downloaded to and run on client machines, as illustrated in

CHAPTER 9. DISTRIBUTED OBJECTS: FROM FEATURES TO STYLES 163

ServerServer

NetworkObjectObject ObjectObjectProxyProxy ProxyProxy

Virtual remote procedure call

Proxies transfer
local method calls
over the network

(a) distributed objects architectural style

Static classes (code only)
migrate from server to client

NetworkClassClass
ClassClass

ClassClass

ClientClient

ObjectObject

ObjectObject

Client applications are
built of locally instantiated
objects

Client objects only use
local procedure calls

(b) dynamically downloaded classes architectural style

NetworkAgentAgent

AgentAgent

AgentAgent

Agents move to a
single machine to
communicate locally

Agent moves to other machine taking
functionality and data along

(c) mobile objects architectural style

ObjectObject Network

ObjectObject

ObjectObject

Publish event

(d) event-space architectural style

Receive event

Subscribers to the event-space
receive all published events

FIGURE 9.1: Architectural styles for distributed OO software

164 9.3. ARCHITECTURAL STYLES

Figure 9.1(b). The dissimilarity between distributed objects and downloaded
classes architectures is that while functionality is fixed at one place in the for-
mer, it is transported when needed in the latter. Objects, which are running on
client-machines, are instantiated from classes which are dynamically down-
loaded from a server. This implies that client applications are always using the
latest version of the available classes, alleviating the job of maintaining a large
number of client applications.

In terms of the object-feature space of Section 9.2, the objects in this style are
downloadable. Additionally, they have to contain meta-information because
the client application has to know how to use the newly downloaded object.
Example technologies supporting this style are Java applets, JavaBeans and
ActiveX.

Example A lot of examples illustrating the downloaded classes architectural
style can be found on the World Wide Web. Small applications (applets) writ-
ten in Java are downloaded to clients’ browsers where they are executed. Thus,
the functionality of the Web browser is extended with the functionality of
the downloaded applet. Data needed to run the applet is retrieved using the
browser’s Internet access or Java’s specific networking capabilities.

9.3.3 Mobile objects architectural style

A third style is the mobile objects architectural style. Mobile objects migrate
from host to host, taking both functionality and data while they move, as illus-
trated in Figure 9.1(c). Consequently, mobile objects communicate with local
objects at the host they currently reside on. This means that mobile objects are
a perfect means to implement agents, which wander through a network while
collecting information, negotiating with other agents and reporting back to the
user who launched the agent.

Mobile objects are, obviously, mobile and often remotely callable, e.g. to invite
an agent to your machine. Technologies supporting the mobile objects archi-
tectural style are agent ORBs such as Voyager (ObjectSpace 1998) and Mole
(Baumann et al. 1998).

Example As an example of the mobile objects architectural style, consider a
shopping agent which strolls over a network looking for bargains. The agent
moves from host to host communicating with a number of selling agents. After
the agent has found something, it returns to the user who sent away the agent
reporting the result of the search. The user now decides whether she buys
the product based on the information gathered by the agent. This example
illustrates that the agent has to keep status to report back to its user. Addition-
ally, network overhead is kept minimal because all negotiations between client
agent and selling agent take place locally on the server’s machine.

CHAPTER 9. DISTRIBUTED OBJECTS: FROM FEATURES TO STYLES 165

9.3.4 Event-space architectural style

The fourth and last style discussed here is the event-space architectural style,
which is illustrated in Figure 9.1(d). In this style an event-space plays the cen-
tral role of communication channel. Objects communicate with each other by
causing events on one or more recipients. Because all objects are connected to
the same event-space, broadcasting events to all other members is relatively
easy and well scalable.

In terms of the features, event-spaces only require an event-based connector.
Technologies supporting event spaces are amongst others the Corba event-
service and Voyager’s Space.

Example A typical example for the event-space architectural style is a system
that distributes stock-exchange information in real-time. As soon as new in-
formation is available, the clients of the service receive an event containing the
new value. The distribution of the events to all clients is achieved through the
event-space.

9.4 Styles in Diva

To illustrate the architectural styles described above, we will now show how
the styles are deployed in DIVA. Therefore, we will focus on one particular
aspect of the architecture to illustrate the styles, namely, extending the func-
tionality of the system.

The system’s goal is to support multiple users in visualizing shared informa-
tion. During a visualization session, users can come up with new visualization
primitives which show the information from a different perspective. For exam-
ple, one of the users discovers an elegant way to display relevant information
that otherwise remains hidden. This new perspective must then be shared with
other users to support collaboration between the participants. The remainder
of this section shows how the first three styles solve the problem of adding
functionality (a new visualization) to the system.

The event-space architectural style on its own is not appropriate to extend a
system with new functionality. Therefore, the new perspective example cannot
be used to illustrate the event-space. However, an example usage of the event-
space architectural style is the Shared Concept Space that was discussed in
Chapters 5 and 8.

9.4.1 Distributed objects

If our system would be based on the distributed objects architectural style, the
only way we can extend the functionality is by adding a new distributed ob-

166 9.4. STYLES IN DIVA

ject to the runtime system. Figure 9.2(a) illustrates the process of adding a new
visualization perspective. On the left we see a user who has created a new vi-
sualization which is made available by means of a distributed object; on the
right hand side is one of the users who wants to take a look at the new visual-
ization perspective. At the bottom of the image we see the shared information
which is updated periodically.

Once somebody announces that a new visualization primitive is available,
other users can connect to the distributed object and request that visualiza-
tion of information (1). Consequently, the object retrieves the information from
the shared information server and creates a new visualization (2). Finally, the
resulting visualization is sent to the requesting client (3). Whenever the infor-
mation is updated, visualizations will be updated by the distributed object and
transmitted to all users (update).

9.4.2 Downloaded classes

When we base the visualization application on an architecture that conforms
to the dynamically downloaded classes architectural style, users who have cre-
ated the new visualization perspective provide a class that can be downloaded
to other users’ machines. As Figure 9.2(b) illustrates, a user connects to the
server that contains the class of the new perspective (1). This server can be
the user’s machine, or a shared server to which the class has been uploaded.
After that, the class is downloaded to the client’s machine and instantiated as
a new visualization object in the local visualization application (2). Finally, the
information is retrieved from the shared information server and accordingly
visualized (3). Because each user contains the functionality to present informa-
tion at her own machine, updates have to be sent to all client machines.

9.4.3 Mobile objects

The third architectural style, based on mobile objects, is in some respect sim-
ilar to the dynamically downloaded classes architectural style. In both cases
functionality —how we visualize information— is downloaded from a server
onto the client machine. However, a mobile object keeps its current status.
In Figure 9.2(c), we see that a user requests an agent from the user with the
new perspective (1). Consequently, the display agent clones itself and moves
the clone to the requesting user’s machine (2). The clone, which contains all
the knowledge the originating agent has, does not have to contact the shared
information server to show the visualization on the user’s display. Updates
of the shared information have to be sent directly to all clones of the original
display agent.

CHAPTER 9. DISTRIBUTED OBJECTS: FROM FEATURES TO STYLES 167

User with
new perspective

User with
new perspective

Distributed
object

Distributed
object UserUser

Shared InformationShared Information

1

2

3

update

a) Distributed objects

User with
new perspective

User with
new perspective

ClassClass

UserUser

Shared InformationShared Information

1

2

3

update

b) Downloaded classes

User with
new perspective

User with
new perspective

AgentAgent

UserUser

Shared InformationShared Information

1

2

c) Mobile objects

ObjectObject

AgentAgent

update

FIGURE 9.2: Architectural styles in Diva

9.5 Evaluation and Discussion

The goal of describing and classifying the four architectural styles in the pre-
vious section is to provide a basis for deciding on the right type of architecture
when creating a distributed object oriented system. In this section we will ex-

168 9.5. EVALUATION AND DISCUSSION

amine features of the discussed styles and, additionally, give some rules of
thumb for choosing which style to deploy in particular cases.

9.5.1 Feature-based classification

Table 9.2 contains a feature-based classification of the architectural styles dis-
cussed. The constituent parts describe the primary building blocks of architec-
tures: components and connectors. The communication issues tell us some-
thing about the characteristics of the communication that takes place between
the components in a style. The functionality issues determine whether the
functionality of the overall system or parts of the system is fixed or extensible.

TABLE 9.2: Feature classification
 Constituent parts Communication Functionality issues

Style Components Connectors Model Topology System Client Server
Distributed
objects

object ORB pull 1-1 extensible fixed extensible

Dynamically
downloaded
classes

classes/objects various pull 1-1 extensible extensible fixed

Mobile
objects

objects/agents procedure
call

push /
pull

1-1 extensible extensible extensible

Event-
space

objects events push 1-n fixed fixed fixed

In Table 9.2, the communication in a style is characterized by two features:
communication model and topology. The model specifies whether the objects
use a pull or a push model of information exchange. In case of the pull model,
the client asks a server object for information and thus pulls the information
from the server to itself. In contrast, when the server sends the information to
clients without a previous request from the client, the communication is based
on a push model.

The topology specifies the number of objects involved in a single communica-
tion event. Thus when two objects are directly communicating, the topology is
1-1. When one server talks with multiple clients at the same time, we speak of
1-n. As shown in the table, only the event-space style exhibits a multiple client
(1-n) communication topology.

The functionality issues state that software based on one of the first three styles
is extensible at run-time: new functionality can be added without recompiling
or restarting the system. The distinction between the styles, however, is the
location of this extensibility. Systems based on distributed objects architec-
tures extend the functionality of systems at the server side, while dynamically
downloaded architectures achieve this by extending the client components. In
the mobile objects architectural style, objects can migrate to other hosts which
implies that both client and server parts are extensible.

CHAPTER 9. DISTRIBUTED OBJECTS: FROM FEATURES TO STYLES 169

9.5.2 Rules of thumb

Table 9.3 contains some rules of thumb about when to use a particular style.
We state that a thorough understanding of the interplay between the deployed
object technology, architectural styles and the software architecture of a par-
ticular system can aid the architect in designing a system that will meet the
quality requirements such as performance and scalability.

Distributed objects are often regarded as the object oriented variant of client–
server. However, distributed objects are more than that: distributed objects are
namely both client and server at once. Rules 1 and 2 illustrate when it is useful
to deploy the distributed objects architectural style. Because inter-operability is
a key feature of distributed objects, this style allows the wrapping of dedicated
hardware and legacy software into a heterogeneous distributed system (1). Ad-
ditionally, distributed objects only expose the interface and do not give away
the implementation. This allows for its usage in systems where software is not
allowed to ‘leave’ a server because of strategic or security reasons (2).

TABLE 9.3: Rules of thumb
Nr When to use Style

1 Dedicated hardware or legacy code Distributed objects
2 Strategic or secret code (you do not trust to give away) Distributed objects

3 Lots of users expected, resulting in overloaded servers Dyn. downloaded classes
4 Often new versions of software are released (maintainability) Dyn. downloaded classes

5 A lot of communication and.or negotiation between the

components
Mobile objects

6 A single source that contains relevant information for a lot of

other objects (information-push)
Event-space

When a large amount of clients is expected to be running applications on a
single server, the server can easily become overloaded —imagine what would
happen when all Java applets would be running on the server instead of on
the client’s machine. In this case moving the processing to the client, by de-
ploying dynamically downloaded classes, is the natural solution (3). Addi-
tionally, when (parts of) applications are updated often, for example because of
changing legislation, architectures based on dynamically downloaded classes
are much easier to keep up to date. Clients are automatically using the latest
version of the available software (4).

Rules 3 and 4 for dynamically downloaded classes also hold for the mobile
objects architectural style, because in this style functionality is downloaded to
the client’s machine too. However, when multiple objects have to negotiate, for
example to vote on something, the amount of communication between objects
can be very high whereas the result is only a small answer: ‘yes’ or ‘no.’ When
the communication can be done locally by moving all mobile objects to the
same host, the performance of the system can be improved dramatically (5).

170 9.6. SUMMARY AND CONCLUSIONS

A system such as a stock-exchange information system which constantly has
to publish its information to a huge number of listeners is a good example to
deploy the event-space architectural style (6). Whenever new information is
available, the server broadcasts an update event to all interested parties. The
central event-space handles the distribution of the events.

9.6 Summary and Conclusions

This chapter started with the presentation of an object-feature-space to clas-
sify object technologies. The features, such as connector-type and location, ap-
peared to be useful to characterize properties of single objects. Additionally,
we observed that they determine to a large extent the architectural styles as
presented in this chapter.

Based on our experiences in developing (distributed) OO architectures we
have discussed four architectural styles for distributed object oriented systems:
the distributed objects, dynamically downloaded classes, mobile objects and
event-space architectural style. Not surprisingly, we discovered that no best
style exists. However, particular styles are more suitable to meet specific re-
quirements than others. The discussed rules of thumb are a first direction into
deciding which style to deploy in particular situations.

CHAPTER 10

Conclusions

A research project is never finished ...
... it just runs out of money and time.

Although it is not the last chapter of the dissertation, this chapter concludes the
research described in my PhD-thesis. This is because the next, and last, chapter
describes a possible future scenario of how visualization might be used in the
not-too-far-away future. It illustrates how business managers may control their
business processes in the form of a short story. The last chapter is not based
upon scientific research but merely inspired by novels written by science fiction
authors such as Neil Stephenson and Eric L. Harry.

However, before the odd chapter starts, we first conclude the work described
in the preceding chapters. After a short summary of all material, this chapter
discusses how DIVA contributed to solving the problems discussed in the in-
troduction (Chapter 1). After that, we conclude the thesis by discussing open
issues and possible future research directions.

10.1 Summary

Information visualization is the presentation of information through images.
But visualization is more than the mere visual display of data. Information

172 10.1. SUMMARY

visualization is deployed for a purpose. One goal of using visualization is to
understand data, or as Card et al. (1999) state it: to amplify cognition. A second
purpose of visualization is to communicate information using human’s visual,
high-bandwidth, capabilities.

Computer-support for visualization used to be directed towards scientific visu-
alization. However, during the last couple of years, information visualization
has gained increasing interest. This has resulted in new tools specifically aimed
at information visualization as well as built-in visualization support in existing
data management tools.

Problems with the current generation of information visualization support
tools are threefold. First, most of the tools are aimed at a single user whereas
visualization, especially when aimed at problem solving or decision making, is
a multi-user activity. Second, many tools have a built-in facility for visualizing
native data. However, they do not allow the incorporation of data from other
sources. Finally, interaction in visualization environments is still in its infancy.
Usually it is possible to interact with the generated visual model, however,
interactively modifying the data source or visual mapping is absent.

A specific domain in the realm of information visualization is business visu-
alization or in short BizViz. The goal of BizViz is to support decision-makers
with high quality, easily accessible information. In a case study at Asz / Gak
Netherlands we have shown that BizViz can help managers in understanding
complex information and, subsequently, making better decisions.

Visualization models depict visualization as a process which converts data into
images. The visualization process consists of a series of transformation steps,
which differ within each different theoretical model. For example, the visual-
ization reference model splits the visualization process in four types of data:
raw data, data tables, visual structures, and views. The transitions between
those four data types together constitute the mapping from raw data to visual
entity. Human interaction, which is explicitly present in the reference model,
is allowed during any of the three transitions between the data types.

The Distributed Visualization Architecture (DIVA) describes a visualization ar-
chitecture which aims at interactive, multi-user visualization in a distributed
environment. Hence, it addresses the problems of present-day visualization
tools. Additionally, it extends the visualization reference model to the realm of
multiple users and multiple perspectives.

The Distributed Visualization Architecture is described according to three ar-
chitectural perspectives: conceptual architecture, software architecture and in-
formation architecture. The most prominent view, the software architecture
of DIVA, describes the main components constituting the architecture. Addi-
tionally, the software architecture describes the relationships and interactions
between the components.

Basically, the DIVA architecture consists of an information provider, a decou-
pled data model and presentation components. The decoupling of generating

CHAPTER 10. CONCLUSIONS 173

the information, processing it and, finally, presenting it gives the DIVA archi-
tecture the flexibility it needs to meet the multi-user requirements.

In the DIVA project, the practical side of software engineering played an im-
portant role. Therefore, four case studies have been performed, each focusing
on a particular set of problems. For example, The Great Dictator was a study
towards a collaborative visualization environment. The resulting prototype is
based on the basic DIVA software architecture but also comprises collabora-
tion components to facilitate the cooperation of participants. The technology
deployed to create the prototype builds upon distributed and mobile objects.
Visualizations are presented in the 3D modeling language VRML.

A different technology for presenting 3D visualizations is Java3D. Java3D has
been used in the 3D-remake of the 2D visualization of Gak business process
information. A small, reusable collection of 3D gadgets was developed that
could easily be ‘plugged’ into the already existing system to experiment with
a 3D visualization of management information. An extensive evaluation of the
3D visualizations was impossible. However, it appeared that the most impor-
tant distinction between the 2D and 3D version is that the 2D visualization is
more easily accessible whereas the 3D visualization could contain more infor-
mation at the price of increased complexity.

DIVA is a distributed architecture. The last part of the thesis is therefore de-
voted to distributed software architectures. More precisely, the last part focuses
on information exchange in distributed environments. In DIVA, the Shared
Concept Space (SCS) is the deployed model for information exchange between
information sources and visualization components. The SCS is based upon
three well-known design patterns: Blackboard, Model-View-Controller and
Talker-Listener, eclectically taking parts from all three patterns. The Shared
Concept Space, however, has the possibility of deriving new information inde-
pendent of information provider or information viewers. This way, knowledge
for derivation can be shared and reused among multiple components and peo-
ple.

Architectural styles are patterns describing component types, runtime control
and data transfer on the software architecture level. Based on our experience
with DIVA we have introduced four architectural styles to classify distributed
object-oriented software: distributed objects, dynamically downloaded classes,
mobile objects and event-space architectural styles. The styles differ in object
features, connector types and location issues. Consequently, they can appro-
priately be deployed in different contexts depending on the requirements of
the architecture. The discussed rules of thumb are a first step towards deciding
which style to deploy in particular situations.

174 10.2. CONTRIBUTIONS

10.2 Contributions

In Chapter 1 of this thesis we started with problems of computer-support in
the realm of information visualization. These problems formed the point of
departure for our trip through architectural perspectives on information visu-
alization. In short, we described three problems with present-day visualization
tools:

• Lack of multi-user support — Visualization software is mainly targeted
at single users while visualization is often deployed in a multi-user activ-
ity.

• Tight coupling — Existing tools are adding support for visualization.
However, most tools integrate the visualization capabilities hard into the
existing application leaving no room to include data from other informa-
tion sources. Combining these built-in visualizations with other built-in
visualizations is therefore impossible or at least cumbersome.

• Limited interaction — Interaction is mostly limited to the resulting im-
age. Full interaction, however, would certainly improve the user’s un-
derstanding of the information.

The DIVA project intended to at least partially solve these problems. Now the
time has come to take a look at how the DIVA architecture may provide a solu-
tion to those problems.

10.2.1 Multi-user

Visualization itself can effectively be used to support collaborative processes
such as decision making. This is due to the characteristic of visual information
that it is easily transferable. Visualization software, however, is mostly aimed
at single users.

The DIVA architecture was designed with the requirement of multi-users in
mind from the beginning. It decouples information source, a shared workspace
and information presentation, in order to create an effective environment
where users can work together. As discovered in case studies and experiments
with collaborative visualization, multiple, exchangeable perspectives as sup-
ported by DIVA are important in multi-user visualization.

The claim of calling DIVA a full collaborative visualization architecture, how-
ever, is too much. Important elements of collaborative environments, such as
asynchronously working together or direct communication mechanisms, are
not incorporated in the architecture. Summarizing, DIVA directly supports
multi-user visualization and provides a flexible foundation which can be ex-
tended to support collaborative visualizations.

CHAPTER 10. CONCLUSIONS 175

10.2.2 Coupling

The second issue of computer support for visualization concerns the tight cou-
pling of visualization in information management tools such as databases,
spreadsheets and simulation tools. Those tools are built upon an architecture
that tightly couples the information source to the data manipulation and visu-
alization functionality. The concept of DIVA is to decouple these functionalities
through a shared data model.

The information exchange component of DIVA, the shared concept space, de-
couples data source and visualization. Different information sources can sup-
ply the shared data space with information which can be used by different
information processors or visualizers. A successful combination of historic
database information and dynamically generated simulation data has been
shown in the Asz / Gak management information case study.

10.2.3 Interaction

One of the most difficult problems of computer-based visualization support
is the ability to interact with every aspect of the visualization process. In the
DIVA project we have shown that it is possible to interact with the information
generator (e.g. a simulation), the visual mapping (e.g. by adding new ways of
visualizing data) and the final view (e.g. by navigating through the 3D virtual
world).

In Chapter 1 we compared interaction in visualization with interaction in the
direct-manipulation user-interface paradigm. A strong point of the direct ma-
nipulation paradigm is that interaction is so tightly integrated into the visual
presentation. Unfortunately, we did not achieve this level of integration in
DIVA. Although we can interact with the different components constituting the
architecture, each component provides its own means of interaction. A consis-
tent and integrated manner of interacting with the full visualization process
has not been achieved.

10.3 Open Issues and Future Research

Near the end of this thesis, it is time to see to what extent the DIVA project is fin-
ished. The DIVA architecture has contributed to solving issues in the domain
of software support for information visualization. Additionally, it has con-
tributed in the field of distributed software architectures and patterns. How-
ever, there remain some open spots which are certainly interesting enough for
further research. In short these issues are:

• Collaboration
DIVA is a multi-user architecture with a collaborative flavor. However,

176 10.3. OPEN ISSUES AND FUTURE RESEARCH

even our collaborative experiments still miss a lot of the features nec-
essary to create an effective environment to work cooperatively. This is
mainly due to the fact that it is not yet clear how people should effectively
use visualization as a collaborative activity. More (empirical) research on
the usefulness of communication artifacts in collaborative visualization
is therefore necessary.

• Integrated interaction
Although DIVA supports interaction at each phase of the visualization
process, the interaction is not yet completely integrated into the visual-
izations. For example, to control a simulation a separate GUI component
is deployed. In a completely integrated environment, the user may in-
teract with the simulation through manipulating elements in the visual-
ization itself. How and whether operational control should be transpar-
ently incorporated into the information visualization is open to further
research.

• 2D or 3D?
The 2D versus 3D debate will not diminish easily. However, in the mean
time, good empirical research is necessary to study the learnability, ef-
fectiveness and efficiency of 2D and 3D interfaces for both novice and
experienced users.

• Tool support
The DIVA project resulted in an architecture, several prototypes and a
collection of Java packages. To build a new visualization application,
the Java packages provide the building blocks for simulation, the Shared
Concept Space and 2D or 3D visualizations. However, a certain amount
of coding to glue together the application is still necessary. When a DIVA-
based system would be used in a practical setting, a tool to generate vi-
sualizations (instead of coding them) would be an inevitable addition.

As a different approach to providing tool support, the DIVA concepts
could also be incorporated into an existing visualization environment
such as AVS Express. DIVA components could take care of the multi-
user and collaboration aspects while the commercial environment could
be deployed to generate the visualizations. When such integration could
be achieved, we still have all the advantages of the DIVA architecture, but
combine that with the powerful tool support offered by the commercial
environment.

• Information spaces
The core of the DIVA architecture is the Shared Concept Space (SCS).
Although the possibilities of the SCS are sufficient for our current pur-
poses, it is a rewarding subject for further research. Possible research
directions include: access control and authentication, forced structure or
topology on the concepts, scalability and robustness. Furthermore, since
the Shared Concept Space may be seen as a form of middleware, the

CHAPTER 10. CONCLUSIONS 177

whole range of middleware research topics applies to the concept space
as well.

178 10.3. OPEN ISSUES AND FUTURE RESEARCH

CHAPTER 2011

The Future of Visualization

The presented ideas have absolutely no scientific foundation,
they are merely based on the author’s own imagination.

6.30 --- @home

It is early, too early; or probably more correct it was late, too late
yesterday night. TC’s head is hurting. A reminiscent pain goes from
his neck, in a straight line all the way through his head and pounds
in his forehead. He feels terrible and regrets the amount of drugs-
experimentation he had gone through. Nevertheless he had a great time
yesterday and some anti-poison will certainly make him feel better.

Yesterday, TC organized a party. Just a small party at his apartment
with a couple of good friends and colleagues. He hadn’t been to a
party for over a year. This is mainly because he was so occupied with
work. But two and a half years of working night and day have finally
brought him the position he wanted so badly. Finally, he has reached
the upper-management level, and he looks forward to his first day in
the eye.

180

The party was a resounding success due to the large quantities of
excellent drugs. Nowadays a good party abounds with all kinds of drugs,
and a good host should attempt to surprise his guests with a few new
inventions. Fortunately, TC has a good friend who works at the R&D-
department of a large drugs producer. She had supplied TC with a
couple of experimental and very strong drugs which almost take over
your mental system completely. They were a big hit but now TC has to
pay toll to the chemical experiments.

The number of people at the party was just right. Most of the invited
guests were present and the uninvited guests kept quiet. TC had read
some stories about a gang of young criminals who spoiled parties by
intruding your house and starting fights. Therefore, TC had invited his
guests only orally and not through any electronic medium. He knows
exactly how unsafe public information networks are.

To wake up, TC takes a quick shower and some strong coffee. The
excitement of a new episode at work certainly makes him feel better
now. Shortly after a frugal breakfast he leaves for work.

7.30 --- @work

TC is nervous and feels like this is his first day at work. The rooms
will open at 8 and so he has to spend another half an hour before he
is allowed to enter the eye. He walks towards a coffee machine and
selects "espresso." Any boosts, energy, anti-stress, ginseng or vitamins
added? asks the machine in a soft computer-generated voice. Uhhh, no
thanks, I had enough of those is TC’s response.

8.00 --- @the entrance

With a loud click the door to the portal of eye 9, TC’s own private eye
opens. With a feeling of victory, he walks through the door and steps
in front of the ‘body characteristics authentication device.’ He stands
there for a couple of seconds until the machine says: good morning TC,
welcome to your first day in the eye. And with that, a part of the wall
moves to the side and opens the entrance to the eye.

8.05 --- ∈ the eye

The eye appears to be a dome-shaped room with a diameter of about
10 metres. Exactly in the center of the eye stands a comfortable, black
leather armchair encircled by a round desk. TC is surprised by the

CHAPTER 2011. THE FUTURE OF VISUALIZATION 181

emptiness of the room and wonders how he must control and manage
his businesses with only a chair and a desk. He walks around the
room, looking for a computer, a screen, a keyboard maybe or perhaps a
connector. But his search attempts remain void.

A dim light enlightens the room. Suddenly, the wall through which
TC entered the eye moves back to its original position. TC expects
instructions and he does not have to wait long before a nice woman’s
voice kindly asks him to sit down:

Welcome to your first day in the eye, TC! I am Tina, your
new secretary. To get you started in the eye, I will briefly
demonstrate the capabilities of ‘eye -- the dynamic collabora-
tive management support system. Release X, Revision 1.44c.’

TC wonders whether Tina is real or a secretary simulation agent. How-
ever, he doesn’t dare to ask her that at the moment.

Before the instruction starts we will first go through your
agenda for today.

And with that, the ambient light dims slowly. A blurry, flickering light
that seems to come from the walls starts to get stronger and stronger.
After a while, TC can determine box-shaped patterns which get more
focussed every second. All of a sudden, TC realizes that the complete
dome is a large computer monitor.

Sorry for the delay in starting up the videowalls, TC. We had
some problems with the new presentation devices. The drivers
appeared to be buggy. Therefore, we had to go back to these
slow devices. Fortunately, the image quality of the old and
new devices is about the same. The old ones are only a lot
slower. Anyway, our sincere apologies for any inconveniences.

The image on the wall is completely focussed now and an extremely
crisp, high-quality image of an agenda application appears. TC looks
around the room and is surprised to see the agenda everywhere. He is
used to his small agenda-tools on his PDA but this is something entirely
different. He seems to be emerged in his agenda. Every piece of
information that might be of interest is available in one or another
corner of the dome.

Right in front of him is his day view. On the left a week, month and
even a complete year agenda are present. To the right TC discovers a
couple of still empty ‘TO DO’-lists, empty mailboxes and a huge stack

182

of messages labeled ‘management bulletin.’ TC rotates 180 degrees with
his comfortable armchair and sees 8 faces attentively observing him.

The faces seem to be organized in some order, but TC is not capable
of immediately figuring out which layout algorithm has been used. TC
glances at each of the faces and is struck by the differences. Men
and women are equally present as well as different ethnic races. TC
has never seen such a nice mixture of people before. Most faces are
mature, wise and at the same time charismatic. While TC wonders to
whom those faces belong and whether they could see him too, suddenly
one of the faces moves, blinks its eyes and starts to talk.

Hello TC! My name is Jock, and I am currently sitting in
‘eye 1,’ which is across the Atlantic. All ‘eyes’ are scat-
tered around the world but they are connected through an
extremely fast and powerful network. By means of this inter-
connection we can communicate, have virtual meetings, and
discuss important matters. We all know the power of contem-
porary computers, but we should never forget the ingenuity
of cooperating intelligent human brains!

9.06 --- ∈ the eye

Although TC has only been in eye 9 for somewhat more than one hour,
he already feels tired. It might have been yesterday’s party, but the
amount of new things he has to learn is also very large. Jock just
explained him the history of the eyes. He told him how they started
with a single management room about a decade ago. It was their first
big experiment with visualization of management information on a large
scale. Jock explained him how that old eye has evolved into the current
networks of eyes. During those years they experimented with all kinds of
new techniques and visualizations of which they are currently only using
a small fraction.

The three most important improvements over the first eye, according
to Jock, are the quality of the visualizations, the interaction possibil-
ities and the means of working together with colleagues. The current
visualizations provide exactly the right amount of detail, whereas the
integrated interaction capabilities allow for a direct connection with the
workforce. Last but not least, Jock mentioned that the communication
capabilities allowed for their current conversation as well as the meeting
they would have with all managers in eyes throughout the world, at the
end of the day.

CHAPTER 2011. THE FUTURE OF VISUALIZATION 183

10.15 --- ∈ the eye, > coffee break

Coffee break is over and TC is sitting in the black leather chair again.
While the video walls are coming back to life, TC tries to remember
the program for today. He will first get a demonstration of several
capabilities of the eye. Then there will be a demonstration of how
information is presented and how the eye can be used to control his
businesses. After that, he will meet Jock and the other faces again.
Before he can recall the last thing that he is about to experience today,
Tina starts to talk again:

Welcome back, TC! How was your coffee? We will quickly
start the program now because we have got a lot to do
before the meeting starts. As you can see, today’s view
of your agenda has been filled in while you were drinking
coffee. To clean up your working environment, I will now
move it to the side and make some space to show you the
capabilities of the eye, Release X.

And while Tina’s words intrude TC’s brain via his ears, the window
containing the day view moves to his right side. As it moves, it shrinks
from a large square to a 10 cm wide image. At the same time, a
dome-shaped object appears in front of TC. It slowly spins around its
central axis. The dome appears to be floating in space and has a dark
red color. Is this the eye? TC asks. As if she had been waiting for this
question, Tina starts explaining:

This is a 3D model of the eye. But before we continue,
please put on your stereoscopic glasses. Only then can I take
you really into every bit and piece of information about the
eyes.

TC takes his glasses out of the inside pocket of his jacket and puts them
on his nose. All of a sudden, he sees the dome spinning right in front of
him. He tries to touch it, but his hands move through the dome without
any resistance.

Haha ... funny that everybody always tries to touch something
although they are certain it does not exist at all ... haha ...

Anyway, this tour starts with the technology of a single eye.
After that we take a closer look at the network between the
eyes. Finally, we will see how the whole thing is programmed.
But let me first reassure you that this is going to be a
superficial tour. We will not dive into all details underlying
this extremely complex system.

184

Intervention!

STOP!

I think the time has come to skip a little bit of the story that I
am telling here. Not that the next part about the technical details
is not interesting, on the contrary! However, I am sure you won’t be
able to follow any of the explanation. Or do you happen to know
anything about 3rd generation nano-computing, plasma-constellation pro-
jection technology, mega-bandwidth wireless networks and solar-radiation
adoption encryption?

Anyway, I can imagine that you, poor readers, are now very disappointed
that I am withholding you from your sneak preview into the future.
Therefore, I will very briefly summarize the concepts underlying the
eye’s technology, communication facilities and programming facilities.

A single eye consists of three components, a dome-shaped room, pro-
jection devices or videowalls and the processing unit or computer. The
room is the easiest part. It is built out of high-quality enriched polymers
which have been hardened to withstand any kind of attack. The eye
that TC is using has a shell around the dome that has been tested with
United Europe’s heaviest missiles. It hardly showed any damage.

Next, we come to the presentation devices, often called videowalls after
the first producer of wall attachable presentation equipment. The devices
are made of a flexible, plastic-like fabric. The light emission comes from
a radiating plasma that internally modifies its structure. The exact
working of emitting light and absorbing energy from its environment
would be getting too far off the subject. However, the quality and
crispness of the equipment is orders of magnitude better than what was
possible at the beginning of this century.

Finally, we come to the most complex element of a single eye: the core
computer. And interesting enough, the biggest difference in technology
can also be found in the central processing unit. During the last decade
a major step in computing has been achieved. The Von Neumann
principle of a CPU, memory and a bus has been left. Instead, processing
power, storage and communication have been integrated into a single
lump of carbon. On a scale as small as atoms, the lump of carbon ---
sometimes ironically called the brain of the eye--- performs operations,
stores information, reacts to input devices and produces output through
connections to a speak synthesizer, the videowalls and possibly other
output devices.

Programming the brain is completely different from programming a Von
Neumann machine. If you want to compare it with anything that is
known in the year 2K, the neurocomputer comes closest. The brain
is not programmed by specifying an algorithm or by telling it exactly

CHAPTER 2011. THE FUTURE OF VISUALIZATION 185

step-by-step how it should respond to input. In contrast, the processing
unit of the eye is trained more like you teach children. You explain
the brain why things happen and how they happen and based on some
basic knowledge the brain derives new knowledge. Once in a while,
the new knowledge is verified with human operators or corrected by an
automated knowledge correction application.

A disadvantage of the current generation of our nano-computers is that
they get demented after a year. The friction within the lump of carbon
produces so much heat that atoms are sometimes mutated. When the
brain has been used for a year or so, the mutated carbon structures
start to produce so many errors that the performance of the processing
unit is seriously influenced. It is then time to replace the brain with a
new, freshly trained lump of carbon.

Communication between the eyes takes place via a new type of wireless
network. Explaining the concepts of the wireless connections is extremely
complex, but believe me when I say that the response time, bandwidth
and robustness are incomparable with those at the beginning of the
century. Of course, the communication between the eyes has to be
secure. And since the concept of public key encryption has been broken
about 2 years ago, we are using something completely different. The
workings of our new encryption mechanisms are highly classified but let
me tell you that it has something to do with solar radiation at specific
geographic spots on earth.

Okay, that’s about all that I can tell you about the future’s technology.
Let’s continue with the story ...

11.59 --- ∈ eye, ∈ canteen, ≤ lunch

It is almost twelve o’clock and time for lunch. Tina just finished her
explanation of the technical details of the eye, its network and the
security facilities. After lunch we will focus more on how we can
exploit all these technical artefacts for visualization are the last words
Tina speaks. The videowalls go back to deep black and the door through
which TC entered the eye opens again. TC puts away his glasses, raises
from his chair, stretches his back, neck and arms and walks out of the
room. He passes through the entrance and walks quickly to the canteen.
He is hungry.

His colleagues are already waiting for him at their lunch-meeting-point.
Together they walk towards the canteen. TC picks up a tray, two glasses
of milk, three sandwiches and a cheese soufflé. He pays for his lunch
and walks to a table. During lunch TC and his colleagues always have
interesting discussions. The subjects of their debates are diverse and
range from political scandals and horrifying wars to technical issues or

186

interesting gossip. However, some topics seem to be more popular than
others. Their favorites include complaining about the services of the
system administrators, complaining about their under-estimated position
in the company, and comparing technical competitors in the field of
brain operating systems and brain programming environments. Whatever
the subject is, however, they always try to avoid talking about their
actual work.

Today the subject of their discussion seems to drift towards the new
world-wide standard for mobile cyberspace. The new standard offers
extremely high bandwidth wherever you are at the planet. The discussion
TC and his colleagues have turns towards whether all that bandwidth is
necessary.

Martine starts the discussion by stating that it is ridiculous: Of course,
mobile connectivity is fine. And the ability to exchange video and audio
is cool too, but what is the use of exchanging complete DNA profiles,
or exhaustive body scans?

Security is the key, is Jack’s response, you can never be sure to whom
you are talking unless you can verify the sender. The only right way
to verify that is through complete information. Therefore we definitely
need so much bandwidth.

Nonsense!, Aton adds to the discussion, When I was still young we
had no mobile devices at all, let alone complete verification. When I
received an email or phone call, I just had to trust it.

Upon hearing this, Francine is triggered. Trust, trust ... what is trust?
Who can I trust? Should I trust somebody who I cannot see directly.
What if it is a faker? I use mobile communication means all the time,
but I have had problems with it so often, that I cannot wait until the
next level of mobile security has been reached.

I don’t know what you are all talking about, Nike says, who cares
about security, authentication and trust. O my god, you are all so
complicated. As long as I can watch movies on my mobile device in
higher quality, I am happy.

John J. laughs, hits with his flat hand on the table and throws his cup
of soup on his white shirt.

Some things probably never change ...

13.45 --- back ∈ the eye

TC sits in his comfortable black leather chair. He is waiting in antici-
pation for the visualization demonstration. Since he was a little kid, he
has always been extremely visually oriented. Especially at school when

CHAPTER 2011. THE FUTURE OF VISUALIZATION 187

he had to memorize facts, he often drew sketches that represented and
at the same time structured the information that he had to memorize.
So, now that he is in the crème de la crème of visualization appliances
he is very curious about what is coming next.

Tina briefly explains the situation he is about to experience:

TC, normally we would start the visualization demonstration
right now. However, as you can see on the red blinking
note appearing in the middle of the videowall, an emergency
situation has occurred that requires your attention. Maybe,
we should combine your training in using the visualization
capabilities of the eye with trying to solve the problem at
hand. I will try to help you as much as possible during
this job. You can request my support at any time by just
calling my name. However, since some tele-operation may be
required during the session, please put on the tele-operation-
suit now. It is available in the portal.

TC gets out of his chair and walks to the portal. He opens the only
door and there it is: an odd suit that looks like the internals of an
old-fashioned computer. It is a green rubber suit with small wires going
through it. TC puts it on, feels kind of stupid and walks back to the
center of the eye. When he puts on his stereoscopic goggles again, he
sees somebody standing in front of him.

Hi! My name is Thang and I am the local manager of
BrainWave China. As you probably know China owns the
largest brain programming factories in the world. We at
BrainWave are currently experiencing some heavy competition
from the NewGuys inc. Therefore, it is of highest importance
that our produced brains are of outstanding quality. However,
we have experienced a serious increment of complaints of
bad or weak brains. The problem is that a lot of brains are
programmed badly. Unfortunately, we don’t know the source
of the problems yet. However, we have to find it very soon,
otherwise we will almost certainly loose the battle against
the NewGuys.

TC does not know very much about sales and production numbers of brain
programming in China. Therefore, he asks Tina for a brief management
overview of the situation. Within a couple of seconds, the space around
TC is full of reports, charts, photographic looks into the factory and
so forth. TC is amazed with the amount of available information and
starts to structure the information. He discovers that he can easily grab
a piece of information and move it around. When TC tries to throw a

188

piece of information onto another piece of information he observes a
strange phenomenon. The two pieces of information merge into a single
piece of information, where the two information dimensions are merged
into a new perspective on the data.

After browsing through the information and trying to figure out what
the source of the problem is, TC decides that the problem must be
somewhere in the factory. Therefore he asks Tina whether it is possible
to take a look at the factory. Tina responds that that is exactly what
tele-operation is intended for. Suddenly, Mr. Thang disappears and the
lights of the videowalls turn to black. A couple of seconds of complete
darkness follow. Then TC is standing in the middle of a very large room.
He looks around and sees a lot of desks where people are working by
plugging wires in and out of things that seem to be the brains of modern
computer systems.

Sorry to interrupt you again TC, but I have to tell you
that you are currently virtually present in the factory in
China. Currently, people there cannot see you, and you
cannot interact with any of the physical objects there. This
is because you are walking in a very realistic but virtual
representation of the factory. The nice thing is, however,
that we can modify that representation. You can project all
kinds of information on any of the things available there. For
example, it is possible to change the color or size of physical
objects in your perspective according to a mapping that you
consider valuable.

In addition to the virtual presence mode in which you are
now, you can also switch to avatar-mode. In that case an
avatar robot is your presence-by-proxy that allows you to
physically interact with all of the objects and people present
in the factory.

While TC walks around the factory, he notices that different types
of brain training tables exist. Mr. Thang’s explanation is that the
programming tables in the factory are from three different companies to
avoid dependency on a particular supplier. Of course, TC is triggered by
this difference and asks Tina to colormap the errors onto the individual
tables. This way, when a problem with a particular type of tables exists,
he will easily discover it.

Suddenly, all tables in the factory turn into a primary color. This looks
very odd, and TC is surprised. It looks as if a painter has painted all
desks in the factory within a fraction of a second. Anyway, one thing
is clear: the tables in ‘‘quarter IV’’ are significantly more red than the
other tables. That is impossible! is Mr. Thang’s response, those are the
newest tables, there has to be another explanation for this!

CHAPTER 2011. THE FUTURE OF VISUALIZATION 189

In the next thirty minutes or so, TC and Mr. Thang examine all possible
sources of the problem. All significant information dimensions, such as
the raw material supplier, outside temperature, type of music being
played during work and so forth are mapped onto the physical objects
in the factory. This works in more or less the same way as the colored
tables. However, not all information dimensions represent a physical
dimension. For example, when comparing the error rate against the time
of the day, it is very unnatural to map that onto a part of the factory.
In those cases, a floating chart appears that contains the visualization
of the relation between the investigated quantities.

Anyway, half an hour later, TC and Mr. Thang’s conclusions are that the
bad brains have nothing to do with the deployed training tables, nor
with environmental influences, or the time of the day. They agree that
it has to be a human thing. Therefore they deploy a colormapping to
project the number of errors on the people available there. And there it
is: the source of the problem. All malicious brains are being trained be
a relatively small group of about 15 people, probably infiltrators from
the NewGuys. Mr. Thang is very happy that they have finally found the
source of the bad brains: Thanks a lot for your assistance, now I know
the problem, I will solve it as soon as possible. TC and Mr. Thang say
goodbye and TC is ‘back’ just in time for the meeting with Jock and his
other new eye colleagues.

16:00 --- ∈ the eye, the meeting

No matter how interesting the technological environment may become,
most meetings remain boring ;-)

17:30 --- ∈ the eye, the threat

Finally, the meeting is over. TC had a lot of trouble staying awake
during the last hour and a half. The lack of sleep in the last night
definitively made things worse. However, suddenly, TC is completely
awake again. Next to him stands a long, beautiful woman that points
a very cruel weapon at him. She looks angry and slowly walks towards
him. TC sees that the woman changes her weapon to a somewhat
smaller one. She tests her weapon, which appears to produce yellow
laser beams, by shooting on the floor just in front of him. TC is scared
and considers running away. However, he is paralysed with fear and
remains where he is.

The woman is still approaching him and is within talking distance now.
She is slightly larger than TC and she looks as if she is going to kill
him within a couple of minutes. But then, TC hears Tina’s voice while

190

the mouth of the woman is moving: Why do you look so scared, TC?
Hahaha, let’s play a game of ‘Threat,’ the eye’s version of games like
Doom, Quake and Unreal. Happy fragin’!

19:30 --- finally, @home again

TC is so exhausted, that he takes a warm bath, eats a light meal, falls
asleep and dreams about how much fun his first PacMantm game was ...

Postscriptum

In case you wondered what all those strange symbols in the titles of the
sections mean, I will now, probably already too late, explain what they
mean:

Symbol Etymology Meaning in English
@ email address on Internet at
∈ from mathematical set theory,

meaning ‘element of’
in

> from mathematics and com-
puter languages meaning
‘greater than’

with respect to time:
after

≤ from mathematics and com-
puter languages meaning ‘less
than or equal’

with respect to time:
before and including

Bibliography

Advanced Visual Systems (1999), ‘OpenViz: revolutionizing the display of
business data’.
URL: www.avs.com

Ahlberg, C. & Shneiderman, B. (1994), Visual Information Seeking: tight cou-
pling of dynamic querie filters with starfield displays, in ‘Proceeding of
CHI’94: ACM Conference on Human Factors in Computing Systems’,
pp. 313–317.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I. &
Angel, S. (1977), A Pattern Language, Oxford University Press, New York.

Architecture Working Group (1999), ‘Draft Recommended Practice for Archi-
tectural Description IEEE P1471/D5.2’.

Bapat, V., Drake, G. & Sadowski, D. (1998), The Arena Product Family: Enter-
prise Modeling Solutions, in ‘Proceedings of the 1998 Winter Simulation
Conference’.
URL: www.sm.com/overview/whitepapers/arenafamily.htm

Bass, L., Clements, P. & Kazman, R. (1998), Software Architecture in Practice, SEI
series in Software Engineering, Addison-Wesley Publishing Company.

Baumann, J., Hohl, F., Rothermel, K., Schwehm, M. & Strasser, M. (1998), Mole
3.0: A Middleware for Java-based Mobile Software Agents, in ‘Proceed-
ings of Middleware’98’, pp. 355–370.

Bentley, R., Rodden, T., Sawyer, P. & Sommerville, I. (1994), ‘Architectural sup-
port for cooperative multiuser interfaces’, IEEE Computer 27(5), 37–46.

Bertin, J. (1977/1981), Graphics and Graphic Information Processing, De Gruyter.

192 BIBLIOGRAPHY

Blaxxun Interactive (1997), ‘www.blaxxun.com’.
URL: www.blaxxun.com

Bolier, D. & Eliëns, A. (1994), Sim — a C++ library for discrete event simulation,
Technical Report IR-367, Vrije Universiteit, Amsterdam.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. & Stal, M. (1996),
Pattern-oriented software architecture: a system of patterns, John Wiley &
Sons.

Card, S. K., Mackinlay, J. D. & Shneiderman, B. (1999), Readings in Information
Visualization: using vision to think, Morgan Kaufmann.

Clements, P. C. (1996), Coming Attractions in Sofware Architectures, Technical
report, Software Engineering Institute.

Dastani, M. M. (1998), Languages of Perception, PhD thesis, Universiteit van
Amsterdam.

Derthick, M., Kolojejchick, J. & Roth, S. F. (1997), An interactive visualization
environment for data exploration, in ‘Proceedings of Knowledge Discov-
ery in Databases 1997’, AAAI Press, pp. 2–9.

Dijkstra, E. (1968), ‘The structure of the THE-multiprogramming system’, Com-
munications of the ACM 11(5), 341–346.

D’Souza, D. F. & Wills, A. C. (1999), Objects, Components, and Frameworks with
UML: The Catalysis Approach, Addison-Wesley Publishing Company.

Earnshaw, R. & Vince, J. (1999), Digital Convergence: the Information Revolution,
Springer Verlag.

Eliëns, A., Niessink, F., Schönhage, B., van Ossenbruggen, J. & Nash, P. (1996),
Support for Business Process Redesign: Simulation, Hypermedia and the
Web, in ‘Euromedia 96: Telematics in a Multimedia Environment, Lon-
don, United Kingdom’, The Society for Computer Simulation Interna-
tional, pp. 193–200.

Eliëns, A., van Ossenbruggen, J. & Schönhage, B. (1997), Animating the Web —
An SGML-based Approach, in R. Earnshaw & J. Vince, eds, ‘The Internet
in 3D — Information, Images and Interaction’, Academic Press.

Ellis, C., Gibbs, S. & Rein, G. (1991), ‘Groupware: some issues and experiences’,
Communications of the ACM 34(1), 680–689.

Elvins, T. T. & Johnson, G. (1998), ‘Introduction to Collaborative Visualization’,
Siggraph computer graphics 32(2).
URL: siggraph.org/publications/newsletter/v32n2/

Fowler, M. (1997), UML distilled: applying the standard object modeling language,
Addison-Wesley Publishing Company.

BIBLIOGRAPHY 193

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1994), Design Patterns — Ele-
ments of Reusable Object-Oriented Software, Professional Computing Series,
Addison-Wesley Publishing Company.

Garlan, D. & Perry, D. E. (1995), ‘Introduction to the Special Issue on Software
Architecture’, IEEE Transactions on Software Engineering 21(4), 269–274.

Gerrits, J. (1995), Towards Information Logistics: An Exploratory Study of Lo-
gistics in Information Production, PhD thesis, Vrije Universiteit, Amster-
dam, Faculty of Economic Sciences, Business Administration and Econo-
metrics.

Gershon, N., Eick, S. G. & Wright, W. (1997), ‘Information Visualization Ap-
plications in the Real World: business visualization applications’, IEEE
Computer Graphics & Applications 17(4), 66–70.

ISO (1997), The Virtual Reality Modeling Language. International Standard
ISO/IEC IS 14772-1:1997.

Kazman, R. & Carriere, J. (1996a), An adaptable software architecture for
rapidly creating information visualizations, in ‘Proceedings of Graphics
Interface ’96’, pp. 17–27.

Kazman, R. & Carriere, J. (1996b), Rapid prototyping of information visualiza-
tion using VANISH, in ‘Proceedings of InfoVis ’96’, pp. 21–28.

Koike, H. & Yoshihara, H. (1993), Fractal approaches for visualizing huge hier-
archies, in ‘Proceedings of the IEEE 1993 symposium in visual languages’,
pp. 55–60.
URL: www.vogue.is.uec.ac.jp/∼koike/papers/vl93/vl93.html

Kolojejchick, J., Roth, S. F. & Lucas, P. (1997), ‘Information appliances and tools
in Visage’, IEEE Computer Graphics & Applications 17(4), 32–41.

Mackinlay, J. (1986), ‘Automating the design of graphical representations of
relational information’, ACM Transactions on Graphics 5(2), 110–141.

Martin, J. (1991), Rapid Application Development, MacMillan.

McCormick, B., DeFanti, T. & Brown, M. (1987), ‘Visualization in Scientific
Computing’, ACM SIGGRAPH Computer Graphics 21(6).

Microsoft (1998), ‘DCOM Architecture - white paper’.
URL: www.microsoft.com/com/

Microsoft (1999), Microsoft Excel 2000 Step by Step, Microsoft Press.

Miller, J. A., Ge, Y. & Tao, J. (1998), Component-based Simulation Environ-
ments: JSIM as a case study using java beans, in ‘Proceedings of the 1998
Winter Simulation Conference (WSC’98), Washington, DC’, pp. 373–381.

194 BIBLIOGRAPHY

Moltenbrey, K. (1999), ‘Going the extra mile’, Computer Graphics World 22(9).

Mowbray, T. J. & Malveau, R. C. (1997), CORBA design patterns, John Wiley &
Sons.

Nasa Goddard Space Flight Center (2000), ‘Visual Analysis Graphical Environ-
ment’.
URL: tidalwave.gsfc.nasa.gov/avatar/visage

Nielsen, J. (1998), ‘2D is better than 3D’.
URL: www.zdnet.com/devhead/alertbox/981115.html

ObjectSpace (1998), Voyager Core Technology 2.0 User Guide.
URL: www.objectspace.com/products/voyager/

Parnas, D., Clements, P. & Weiss, D. (1985), ‘The modular structure of complex
systems’, IEEE Transactions on Software Engineering 11(3), 259–266.

Pesce, M. (1995), VRML: Browsing and Building Cyberspace, New Riders Publish-
ing.

Plaisant, C., Milash, B., Rose, A., Widoff, S. & Shneiderman, B. (1996), Life-
Lines:Visualizing Personal Histories, in ‘Proceedings of CHI’96, ACM
Conference on Human Factors in Computing Systems’, pp. 221–227.

Platinum (1998), ‘Putting metadata to work in the warehouse (white paper)’.
available via: www.platinum.com.

Reinhard, W., Schweizer, J. & Völksen, G. (1994), ‘CSCW Tools: concepts and
architectures’, IEEE Computer 27(5), 28–36.

Robertson, G., Card, S. & Mackinlay, J. (1993), ‘Information Visualization using
3D Interactive Animation’, Communications of the ACM 36(4), 57–71.

Robertson, G. G., Mackinlay, J. D. & Card, S. K. (1991), Cone Trees: ani-
mated 3D visualizations of hierarchical information, in ‘Proceedings of
the ACM SIGCHI 1991 Conference on Human Factors in Computing Sys-
tems’, pp. 189–194.

Rumbaugh, J., Jacobson, I. & Booch, G. (1999), The Unified Modeling Reference
Manual, Addison-Wesley Publishing Company.

Schmidt, D., Stal, M., Rohnert, H. & Buschmann, F. (2000), Pattern-oriented soft-
ware architecture, volume 2: patterns for concurrent and distributed objects,
John Wiley & Sons.

Schönhage, B., Bakker, P. & Eliëns, A. (1998), So Many Users — So Many Per-
spectives, in ‘Proceedings of "Designing effective and usable multimedia
systems", 9-10 September 1998, Fraunhofer Institute IAO, Stuttgart, Ger-
many’, IFIP.

BIBLIOGRAPHY 195

Schönhage, B. & Eliëns, A. (1997), A flexible architecture for user-adaptable
visualization, in D. S. Ebert & C. K. Nicholas, eds, ‘Workshop on New
Paradigms in Information Visualization and Manipulation ’97, Confer-
ence on Information and Knowledge Management, 10 - 14 November
1997, Las Vegas, USA’, ACM Press.

Schönhage, B. & Eliëns, A. (1998), Multi-user Visualization: a CORBA/Web-
based approach, in ‘Proceedings of "Digital Convergence: the Future of
the Internet and WWW", 20-23 April 1998, Bradford, United Kingdom’,
British Computer Society.

Schönhage, B. & Eliëns, A. (1999a), Dynamic and Mobile VRML gadgets, in
‘Proceedings of VRML99- International Conference on the Virtual Reality
Modeling Language and Web3D technologies’.

Schönhage, B. & Eliëns, A. (1999b), Four Ways to Architect your Distributed
Objects, in J. Bosch, ed., ‘Proceedings of second Nordic Workshop on Soft-
ware Architecture’.

Schönhage, B. & Eliëns, A. (1999c), From Distributed Object Features to Archi-
tectual Styles, in ‘Proceedings of Engineering Distributed Object 99, ICSE
99 workshop’, pp. 48–55.

Schönhage, B. & Eliëns, A. (2000a), Information Exchange in a Distributed Vi-
sualization Architecture: the Shared Concept Space, in ‘Proceedings of
Distributed Objects and Applications 2000’, IEEE Computer Society Press.
To be published.

Schönhage, B. & Eliëns, A. (2000b), Management through Vision: a case
study towards requirements of BizViz, in ‘Information Visualization 2000
(IV2000) - London, England’, IEEE Computer Society Press. To be pub-
lished.

Schönhage, B., Eliëns, A. & van Ballegooij, A. (2000), 3D Gadgets for Business
Process Visualization: a case study, in ‘Proceedings of Web3D/VRML2000
- International Conference on the Virtual Reality Modeling Language and
Web3D technologies’, pp. 131—138, 174.

Schroeder, W. J., Avilla, L. S. & Hoffman, W. (2000), ‘Visualizing with VTK: a
tutorial’, IEEE Computer Graphics & Applications 20(5), 20–27.

Schroeder, W., Martin, K. & Lorensen, B. (1996), The Visualization Toolkit: an
Object-Oriented Approach to 3D Graphics, Prentice Hall.

Sebrechts, M. M., Vasilakis, J., Miller, M. S., Cugini, J. V. & Laskowski, S. J.
(1999), Visualization of Search Results: A Comparative Evaluation of Text,
2D and 3D Interfaces, in ‘Proceedings of 22nd ACM SIGIR conference on
Research and development in information retrieval’, pp. 3–10.

196 BIBLIOGRAPHY

Shaw, M. & Clements, P. (1997), A Field Guide to Boxology: Preliminary clas-
sification of architectural styles for software systems, in ‘Proceedings of
COMPSAC, Washington, D.C.’.

Shaw, M. & Garlan, D. (1996), Software Architecture: perspectives on an emerging
discipline, Prentice Hall.

Shneiderman, B. (1994), ‘Dynamic Queries for Visual Information Seeking’,
IEEE Software 11(6), 70–77.

Shneiderman, B. (1996), The Eyes Have It: a task by data type taxonomy for
information visualization, in ‘Proceedings of IEEE Workshop on Visual
Languages’, pp. 336–343.

Shneiderman, B. (1998), Designing the User-Interface, Strategies for Effective
Human-Computer Interaction, 3rd edn, Addison-Wesley Publishing Com-
pany.

Siegel, J. (1996), CORBA Fundamentals and Programming, John Wiley & Sons.

Sowizral, H., Rushforth, K. & Deering, M. (1997), The Java 3D Api Specification
(Java Series), Addison-Wesley Publishing Company.

Sunsoft (1998), ‘Java Remote Method Invocation - white paper’.
URL: java.sun.com/docs/white/

Tanenbaum, A. S. (1995), Distributed Operating Systems, Prentice Hall.

Tufte, E. R. (1983), The visual display of quatitative information, Graphics Press.

Tufte, E. R. (1990), Envisioning Information, Graphics Press.

Tufte, E. R. (1997), Visual explanations: images and quantities, evidence and narra-
tive, Graphics Press.

Turban, E. & Aronson, J. E. (1998), Decision support systems and intelligent sys-
tems, Prentice Hall.

van Liere, R., Harkes, J. & de Leeuw, W. (1998), A Distributed Blackboard Ar-
chitecture for Interactive Data Visualizaiton, in D. Ebert, H. Rushmeier &
H. Hagen, eds, ‘Proceedings of IEEE Visualization’98 Conference’, IEEE
Computer Society Press.

Walker, G. (1995), ‘Challenges of Information Visualization’, British Telecommu-
nications Engineering 14(April), 17–25.

Ware, C. (2000), Information Visualization: perception for design, Morgan Kauf-
mann.

Westmacott, I. (1997), ‘Advanced Visual Systems AVS/Express 3.0’, Sun Expert
.
URL: www.avs.com/company/articles/sunexpert/

BIBLIOGRAPHY 197

Wright, W. (1995), Information Animation Applications in the Capital Markets,
in ‘Proceedings of InfoVis’95, IEEE Symposium on Information Visualiza-
tion’, pp. 29–25.

Zhang, P. (1996), ‘Visualizing Production Planning Data’, IEEE Computer Graph-
ics & Applications 16(5), 7–10.

198 BIBLIOGRAPHY

Nederlandstalige samenvatting

Diva: Architecturale Perspectieven op Informatie Visualisatie
Informatie visualisatie is de presentatie van informatie door middel van plaat-
jes. Maar visualisatie is meer dan alleen het visueel weergeven van gegevens.
Informatie visualisatie wordt altijd ingezet met een doel. Eén doel voor het
gebruik van visualisatie is om gegevens te begrijpen, of zoals (Card et al. 1999)
het noemen: om je cognitie te vergroten (to amplify cognition). Een tweede doel
van visualisatie is om informatie uit te wisselen door middel van de menselijke
visuele capaciteiten.

Computer ondersteuning voor visualisatie was altijd gericht op wetenschap-
pelijke visualisatie. Gedurende de laatste jaren heeft informatie visualisatie
echter steeds meer interesse weten te winnen. Dit heeft geresulteerd in zowel
tools die speciaal gericht zijn op informatie visualisatie als in ingebouwde vi-
sualisatie ondersteuning voor bestaande gegevens beheer tools.

Problemen met de huidige generatie van tools ter ondersteuning van informa-
tie visualisatie zijn drieledig. Ten eerste zijn de meeste tools gericht op een
enkele gebruiker terwijl visualisatie, zeker als het gebruikt wordt om proble-
men op te lossen of beslissingen te nemen, een groepsactiviteit is. Ten tweede
hebben veel tools wel een ingebouwde mogelijkheid om hun eigen data te vi-
sualiseren. Maar het importeren van gegevens uit andere bronnen is dan niet
mogelijk. Tenslotte staat interactie in visualisatie omgevingen nog in de kin-
derschoenen. Het is gewoonlijk wel mogelijk om met het gegenereerde visuele
model te interacteren, maar interactief de gegevensbron of visuele mapping te
veranderen is onmogelijk.

Een specifiek domain in het gebied van de informatie visualisatie is bedrijfsvi-
sualisatie of BizViz. Het doel van BizViz is om beslissingsmakers te ondersteu-
nen door middel van snel toegankelijk informatie van hoge kwaliteit. In een

200 Nederlandstalige samenvatting

case study bij ASZ / Gak Nederland hebben we laten zien hoe BizViz managers
kan helpen bij het begrijpen van complexe informatie wat vervolgens leidde
tot betere beslissingen.

Visualisatie modellen beschrijven visualisatie als een proces dat gegevens in
plaatjes converteert. Het visualisatie proces bestaat uit een reeks transformatie
stappen. Het visualisatie referentie model, bijvoorbeeld, deelt het visualisatie
proces op in vier types van gegevens: ruwe data, gegevenstabellen, visuele
structuren en views (kijk of blik). De overgangen tussen deze vier gegevensty-
pes vormen samen de totale afbeelding van ruwe data tot visuele entiteit. Men-
selijke interactie, die expliciet aanwezig is in het referentie model, kan plaats
vinden tijdens alle drie de overgangen tussen de verschillende gegevenstypes.

DIVA, de gedistribueerde visualisatie architectuur (Distributed Visualization Ar-
chitecture) beschrijft een visualisatie architectuur die bedoelt is voor interac-
tieve, meerdere-gebruikers visualisatie in een gedistribueerde omgeving. Of-
tewel, het pakt de problemen met de tegenwoordige visualisatie tools aan en
breidt het visualisatie referentiemodel uit naar het domein van meerdere ge-
bruikers en meerdere perspectieven.

In dit proefschrift wordt een gedistribueerde visualisatie architectuur beschre-
ven volgens drie architecturele perspectieven: de conceptuele architectuur, de
software architectuur en de informatie architectuur. De belangrijkste rol wordt
gespeeld door de software architectuur die de componenten waaruit de archi-
tectuur bestaat beschrijft. Verder beschrijft de software architectuur de relaties
en interactie tussen de componenten.

In essentie bestaat de DIVA architectuur uit een informatie voorziener, een ont-
koppeld gegevens model en presentatie componenten. De ontkoppeling van
de generatie van informatie, de verwerking en tenslotte de presentatie geeft de
DIVA architectuur de flexibiliteit die het nodig heeft om de eis om meerdere
gebruikers te ondersteunen waar te maken.

In het DIVA project heeft de praktische kant van software engineering steeds
een belangrijke rol gespeeld. Daarom zijn er ook vier case studies uitgevoerd
die zich hebben gericht op verschillende problemen. Bijvoorbeeld, The Great
Dictator was een case study met als doel een collaboratieve visualisatie omge-
ving te realiseren. Het prototype dat het resultaat was van deze exercitie is
gebaseerd op de standaard DIVA software architectuur maar bevat tevens col-
laboratie componenten om de samenwerking tussen de participanten mogelijk
te maken. De technologie die voor dit prototype gebruikt werd is gebaseerd
op gedistribueerde en mobiele objecten. De visualisaties zelf worden getoond
in de 3D modelleer taal VRML.

Een andere technologie voor het presenteren van 3D visualisaties is Java3D.
Java3D is dan ook gebruikt in een 3D versie van de Gak bedrijfsproces vi-
sualisaties. Daarvoor is een kleine, herbruikbare verzameling van 3D gadgets
ontwikkeld die gemakkelijk in het al bestaande systeem gestopt kon worden.
Hierdoor konden we experimenteren met de visualisatie van management in-
formatie in drie dimensies. Een uitputtende evaluatie van de 3D visualisaties

Nederlandstalige samenvatting 201

was niet mogelijk. Wel bleek dat het belangrijkste verschil tussen de 2D en 3D
versie was dat de 2D visualisatie veel toegankelijker was terwijl de 3D visua-
lisatie meer informatie kon bevatten, maar dit wel tegen de prijs van toegeno-
men complexiteit.

DIVA is een gedistribueerde architectuur. Het laatste deel van dit proefschrift
is daarom gewijd aan gedistribueerde software architecturen. Of iets meer
precies, het laatste deel focust op informatie uitwisseling in gedistribueerde
omgevingen. In DIVA is de gedeelde concept ruimte, de Shared Concept Space
(SCS), het gebruikte model voor de informatie uitwisseling tussen informatie
bronnen en visualisatie componenten. De SCS is gebaseerd op drie bekende
ontwerp patronen (design patterns) namelijk Blackboard, Model-View-Controller
en Talker-Listener. De SCS heeft van alle drie de patronen eclectisch bepaalde
delen overgenomen. Een verschil is echter dat de SCS nieuwe informatie on-
afhankelijk van de informatie voorziener of viewers kan afleiden. Op deze
manier kan kennis omtrent de afleiding van nieuwe informatie gedeeld en her-
gebruikt worden door verschillende componenten en mensen.

Architectuur stijlen zijn patronen die component types, executie controle en
gegevens uitwisseling op software architectuur niveau beschrijven. Gebaseerd
op onze ervaring met DIVA hebben we vier architectuur stijlen geïntroduceerd
om gedistribueerde, object-georienteerde software te beschrijven: de distributed
objects, dynamically downloaded classes, mobile objects en event-space architectuur
stijlen. De stijlen verschillen in object eigenschappen, connectie types, en lo-
catie eigenschappen. Dit betekent dat ze, afhankelijk van de eisen aan de ar-
chitectuur, in verschillende contexten ingezet kunnen worden. De besproken
vuistregels zijn een eerste stap in de richting van de keuze voor één specifieke
stijl in bepaalde situaties.

Samenvattend beschrijft dit proefschrift een architectuur voor dynamische, in-
teractieve visualisatie die meerdere gebruikers en meerdere perspectieven on-
dersteunt. De drie hoofdproblemen van huidige visualisatie tools, namelijk
weinig ondersteuning voor meerdere gebruikers, nauwe koppeling (tight cou-
pling) en beperkte interactiemogelijkheden vormden de uitgangspunten voor
DIVA. Concluderend heeft dit project zeker bijgedragen om de problemen op
te lossen. De DIVA architectuur ondersteunt namelijk meerdere personen en
perspectieven en heeft door middel van de SHARED CONCEPT SPACE een los-
gekoppelde (maar toch geïntegreerde) structuur. Tenslotte maakt DIVA inter-
actieve visualisatie mogelijk: alle aspecten van het visualisatie proces kunnen
worden beïnvloed om zo tot een nuttige en waardevolle visualisatie te komen.

202 Nederlandstalige samenvatting

Titles in the SIKS Dissertation Series

1998-1 Johan van den Akker (CWI)
DEGAS - An Active, Temporal Database of Autonomous Objects
Promotor: Prof.dr. M.L. Kersten (CWI/UvA)
Co-promotor: dr. A.P.J.M. Siebes (CWI)
Promotie: 30 maart 1998

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically Browsing Meta-Information
Promotores: Prof.dr.ir. A. Hasman (UM)

Prof.dr. H.J. van den Herik (UM/RUL)
Prof.dr.ir. J.L.G. Dietz (TUD)

Promotie: 7 mei 1998

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of Business Conversations
within the Language/Action Perspective
Promotores: Prof.dr.ir. J.L.G. Dietz (TUD)

prof.dr. P.C. Hengeveld (UvA)
Promotie: 22 juni 1998

1998-4 Dennis Breuker (UM)
Memory versus Search in Games
Promotor: Prof.dr. H.J. van den Herik (UM/RUL)
Promotie: 16 oktober 1998

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting
Promotores: Prof.mr. H. Franken

Prof.dr. H.J. van den Herik
Promotie: 13 mei 1998

204 Titles in the SIKS Dissertation Series

1999-1 Mark Sloof (VU)
Physiology of Quality Change Modelling; Automated modelling of
Quality Change of Agricultural Products
Promotor: prof.dr. J. Treur
Co-promotor: Dr.ir. M. Willems
Promotie: 11 mei 1999

1999-2 Rob Potharst (EUR)
Classification using decision trees and neural nets
Promotor: prof. dr. A. de Bruin
Co-promotor: Dr. J.C. Bioch
Promotie: 4 juni 1999

1999-3 Don Beal (Queen Mary and Westfield College)
The Nature of Minimax Search
Promotor: Prof.dr. H.J.van den Herik
Promotie: 11 juni 1999

1999-4 Jacques Penders (KPN Research)
The practical Art of Moving Physical Objects
Promotor: Prof.dr. H.J. van den Herik
Co-promotor: Dr. P.J. Braspenning
Promotie: 11 juni 1999

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legitimate User-Driven
Specification of Network Information Systems
Promotor: Prof.Dr. R.A. Meersman
Co-promotor: Dr. H. Weigand
Promotie: 1 oktober 1999

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems
Promotor: prof.dr. J. Treur
Copromotor: Dr. F.M.T. Brazier
Promotie: 30 september 1999

1999-7 David Spelt (UT)
Verification support for object database design
Promotor: Prof. Dr. P.M.G. Apers
Assistent promotor: Dr. H. Balsters
Promotie: 10 september 1999

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a Multi-Agent
Mechanism for Discrete Reallocation
Promotor: Prof. dr. H.J. van den Herik
Co-promotor: Dr. P.J. Braspenning
Promotie: 3 december 1999

Titles in the SIKS Dissertation Series 205

2000-1 Frank Niessink (VU)
Perspectives on Improving Software Maintenance
Promotor: prof.dr. J.C. van Vliet (VU)
Promotiedatum: 28 maart 2000

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management
Promotores: prof. dr. P.M.E. De Bra

prof. dr. R.H. McClatchey
Copromotor: dr. P.D.V. van der Stok
Promotie: 29 mei 2000

2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van kennistechnologie;
een procesbenadering en actorperspectief
Promotor: Prof. dr. B.J. Wielinga
Co-promotor: Dr. P.A.A. van den Besselaar
Promotie: 20 juni 2000

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence Knowledge for
User Interface Design
Promotor: Prof. dr. J.C. van Vliet
Co-promotores: Dr. G.C. van der Veer

Dr. M.J. Tauber
Promotie: 10 oktober 2000

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in Information Retrieval
Promotores: Prof.dr. H.J. van den Herik (UM/RUL)

Prof.dr.ir. J.L.G. Dietz (TUD)
Prof.dr.ir. A. Hasman (UM)

Promotie: 14 september 2000

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent Communication
Promotor: prof. dr. John-Jules Ch. Meyer
Co-promotoren: Dr. Frank S. de Boer

Dr. Wiebe van der Hoek
Promotie: 18 oktober 2000

2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clinical Patient Management
Promotor: prof.dr. J.-J. Ch. Meyer
Co-promotor: Dr.P.J.F.Lucas
Promotie: 30 oktober 2000

2000-8 Veerle Coupé (EUR)
Sensitivity Analyis of Decision-Theoretic Networks
Promotores: prof.dr.J.D.F. Habbema

206 Titles in the SIKS Dissertation Series

prof.dr.ir.L.C van der Gaag
Promotie: 27 september 2000

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Optimization
Promotor: prof. dr. M.L. Kersten (CWI/UvA)
Promotie: 03 november 2000

2000-10 Niels Nes (CWI)
Image Database Management System Design Considerations,
Algorithms and Architecture
Promotor: prof. dr. M.L. Kersten (CWI/UvA)
Promotie: 14 december 2000

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for Database Management
Promotor: prof. dr. M.L. Kersten (CWI/UvA)
Promotie: 14 december 2000

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying Probabilistic Networks
Promotores: prof.dr. J.-J.Ch. Meyer (UU)

prof.dr.ir. L.C. van der Gaag (UU)
Co-promotor: dr. C.L.M Witteman (UU)
Promotie: 12 maart 2001

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Programming with Mental Models
Promotor: prof. dr. J.-J.Ch. Meyer (UU)
Co-Promotoren: dr. W. van der Hoek (UU)

dr. F.S. de Boer (UU)
Promotie: 5 februari 2001

2001-3 Maarten van Someren (UvA)
Learning as problem solving
Promotor: prof. dr. B.J. Wielinga (UvA)
Promotie: 1 maart 2001

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with
Instance-Based Boundary Sets
Promotor: Prof. dr. H.J. van den Herik (UM/RUL)
Promotie: 22 februari 2001

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter of Style
Promotor: prof.dr. J.C. van Vliet (VU)
Promotie: 10 april 2001

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

Titles in the SIKS Dissertation Series 207

Promotor: prof.dr. J.C. van Vliet (VU)
Co-Promotoren: dr. G.C. van der Veer (VU)

dr. A. Eliëns (VU)
Promotie: 17 april 2001

2001-7 Bastiaan Schönhage (VU)
Diva: Architectural Perspectives on Information Visualization
Promotor: prof.dr. J.C. van Vliet (VU)
Co-Promotor: dr. A. Eliëns (VU)
Promotie: 8 mei 2001

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for Multi-Agent Systems Dynamics
Promotores: prof.dr. F.M.T. Brazier (VU)

prof.dr. J. Treur (VU)
Promotie: 12 juni 2001

208 Titles in the SIKS Dissertation Series

Index

3D versus 2D, 133

Architectural Description Lan-
guage (ADL), 81

Architectural styles, 158, 162–170
Arena, 62
AVS Express, 64

Behaviors, 122
BizViz, 33
Blackboard, 141
Brushing, 26
Business processes, 129
Business visualization, 29, 33, 34

Capacity visualizations, 42
Chair, 101
CMU’s Visage, 69
Collaboration, 75

face to face, 75
interactor, 75
listener, 75
synchronous distributed, 75
talker, 75

Collaboration Session Manager,
104

Collaborative visualization, 87,
100, 106

Collaborative visualization archi-
tecture, 103

Color mapping, 18
Communication, 138

Communication space, 81
Component libraries, 65
Components, 138
Concept

data, 88
derived, 85, 88, 146
hierarchical, 145

Cone tree, 125
Conetree, 23
Connectors, 159
Contouring, 19
Controller, 105
CORBA, 99, 160
Coupling, 175
CSE, 68

Data overload, 34
Data provider, 81
Data visualizer, 81
DCOM, 161
Decision support, 29
Decision-makers, 34, 120
Decoupled communication, 138
Decoupled data manipulation, 85
Decoupling, 81, 83, 140
Derivation, 49
Direct communication, 138
Display agent, 86, 105, 113

implementation, 115
Distributed Object Feature-space,

159
Distribution, 138

210 Index

Diva
architecture recapitulation, 90
conceptual architecture, 74,

76–79
contributions, 174
goal, 4
information architecture, 74,

87–90
project, 3
requirements

basic, 80
extensions, 83

software architecture, 74
basic, 79–83
extensions, 83–86

Diva Services Directory (DSD), 104
Drill-down, 25

Embedded visualization, 60
Evaluation, 46
Event-service, 161
Extensibility, 64

Fully shared control, 100

Gadget, 105, 121, 125–129
3D histogram, 126
cone tree, 125
graph, 128

Gak Netherlands, 37, 120, 129, 151

Hyperlinking, 26

Information, 12
Information design, 13
Information retrieval, 27
Information visualization, 21

challenges in, 36
definition, 22
problems, 1
purpose of, 21

Interaction, 3, 45, 85, 132, 175
Interaction protocol, 101
Interaction techniques, 25
Interactor, 101
interference, 102
Isomorphism, 58

Isosurface, 19
Iterative approach, 49

Java3D, 121

Knowledge, 12

Limited shared control, 100
Listener, 101
Local Collaboration Component,

105
Local control, 100
Local control with shared data, 100
Location, 160

Management information, 35
Management processes, 35
Mapping

conceptual, 78
presentational, 78

Meta-information, 159
Microsoft Excel, 62
Mobile objects, 113
Model

conceptual, 78
derived, 77
presentation, 77
primary, 77

Model-View-Controller (MVC),
142

MRI-scan, 19
Multi-perspective, 82
Multi-user, 82, 174
Multi-user support, 2
Multi-user visualization, 75
Multiple views, 74
Multiple visualizations, 49
MUSE, 67

Nasa’s Visage 3.0, 69
News feed metaphor, 140

OpenDX, 64
OpenViz, 66
Organizational forces, 49

Particle animation, 19

Index 211

Pattern
language, 141

Patterns, 141
architectural, 141
design, 141

Perspective repository, 102, 105
Perspectives, 4

academic, 5
business, 5
software engineering, 5
visualization, 5

Processor, 85, 146
Prolog, 147
Prototypes, 95

Gak management information,
96

Modern Times, 96, 97
The Great Dictator (TGD), 96

Quake, 119
Quantity visualizations, 40

Remote Method Invocation (RMI),
161

Research projects, 68
Role, 101
Rules of thumb, 169

Scatterplot, 23
Scientific Visualization, 17
Session, 101
Shared Concept Space (SCS), 82,

137–155
software architecture, 145

Simulation, 44, 48, 98
Social Security Institutions, 37
Software architecture, 90–94, 158

definitions, 91
use, 92
why?, 93

Talker, 101
Talker-Listener, 143
Technology, 98, 109

distributed object, 160
Tight coupling, 2, 64

Trend visualization, 45

Unified Modeling Language
(UML), 81

Viewer, 86
Virtual experimentation, 17
Visual information, 11, 12
Visual queries, 27
Visual taxonomy, 52
visual-information-seeking

mantra, 36
Visualization

adaptable, 74
definition, 17
effective, 22, 49
expressive, 22
formal framework, 57
models, 78

Visualization models
practice, 51, 60
theory, 51

Visualization pipeline, 52
Visualization reference model, 54
Visualizing

future, 44, 70
past, 39, 70, 132
present, 39, 70, 132

Voyager, 161
VRML, 109, 110

external authoring interface,
110

VTK, 66

212 Index

	Preface
	Contents
	Introduction
	Problems
	Lack of multi-user support
	Tight coupling
	Limited interaction

	The Diva Project
	Perspectives on Visualization
	Visualization and architecture
	Academic and business perspectives
	Visualization perspectives
	The software engineering perspective

	Structure of the Thesis
	Visualization of the structure
	Paths through the dissertation

	Publications

	Information Visualization
	Visual Information
	Information design

	Scientific Visualization
	Scientific visualization techniques

	Information Visualization
	The purpose of information visualization
	Expressive and effective visualization
	Examples

	Interaction Techniques
	Visualization Application Areas
	Information retrieval--- visual queries
	Business visualization--- decision support

	Summary and Conclusions

	Management through Vision: a case study
	Business Visualization
	From data gathering to high-quality decisions
	Visualizing management information

	Managing Business Processes at Gak NL
	The problem
	Current information systems
	Goals

	Visualizing Past and Present
	Quantity visualizations
	Capacity visualizations

	Visualizing the Future
	Simulation
	Trend visualization and interaction

	Evaluation of Concepts and Prototype
	Benefits
	Shortcomings
	The simulation
	Discussion

	Discussion and Issues Raised
	Organizational forces

	Summary and Conclusions

	Visualization Models: theory and practice
	Visualization Models
	Visual taxonomy
	The visualization pipeline
	The visualization reference model
	A formal framework for visualization

	Visualization models in practice
	Embedded visualization
	General-purpose visualization tools
	Visualization component libraries
	Research projects

	Summary and Conclusions

	Diva: Distributed Visualization Architecture
	Distributed Visualization Architecture
	Multi-user Visualization
	Conceptual Architecture
	Primary, derived and presentation model
	Transition from model to model
	Example configuration of the conceptual model
	Relation to other visualization models

	Basic Software Architecture
	Basic requirements
	Basic software architecture

	Extending the Software Architecture
	Extended requirements
	Extensions to the basic software architecture

	Information Architecture
	Hierarchical data and derived concepts
	Example of the information structure

	Diva Architecture recapitulated
	Software Architecture revisited
	Definitions
	Use of the term architecture
	Why is software architecture important?

	Summary and Conclusions

	Experiments
	Overview of Prototypes
	Modern Times
	Software architecture
	Technology
	Wrap up

	So Many Users -- So Many Perspectives
	Sessions
	Sharing perspectives
	Interference versus non-interference
	Communications
	Requirements

	Collaborative Visualization Architecture
	Software components
	User environment

	Application of Collaborative Visualization
	TGD Technology
	Background on VRML
	Dynamic updates
	Mobile VRML gadgets
	Implementation of display agents

	Summary and Conclusions

	3D Gadgets for Business Process Visualization
	3D BizViz
	Managing Business Processes at Gak NL
	Visualization Gadgets in Java3D
	Overview of behaviors
	Visualization gadgets

	Case study: Visualizing Business Processes
	Overview
	User interaction
	Insight in present and past
	3D versus 2D
	Design issues

	Summary and Conclusions

	Shared Concept Space
	Introduction
	Communication paradigms

	The Shared Concept Space
	News feed metaphor
	Why a Shared Concept Space?

	Patterns underlying the Shared Concept Space
	Blackboard
	Model-View-Controller (MVC)
	Talker-Listener
	SCS and patterns

	Software Architecture of the SCS
	Hierarchical concepts
	Derived concepts
	Dynamic data
	Discussion

	Distribution aspects of the SCS
	Distributed system versus single machine
	Scalability
	Topology

	Example usage of the SCS
	Experiments with the SCS
	Summary and Conclusions

	Distributed Objects: from Features to Styles
	Software Architecture and Style
	Distributed Object Feature-space
	Objects
	Connectors
	Location
	Feature matrix of distributed object technology

	Architectural Styles
	Distributed objects architectural style
	Dynamically downloaded classes architectural style
	Mobile objects architectural style
	Event-space architectural style

	Styles in Diva
	Distributed objects
	Downloaded classes
	Mobile objects

	Evaluation and Discussion
	Feature-based classification
	Rules of thumb

	Summary and Conclusions

	Conclusions
	Summary
	Contributions
	Multi-user
	Coupling
	Interaction

	Open Issues and Future Research

	The Future of Visualization
	Bibliography
	Nederlandstalige samenvatting
	Titles in the SIKS Dissertation Series
	Index

