
VU Research Portal

Constraint-based Modelling of Organisations

Viara, Popova; Sharpanskykh, A.

2008

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Viara, P., & Sharpanskykh, A. (2008). Constraint-based Modelling of Organisations.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303691115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/682df9dd-d846-4cc7-a20a-420a5391c07a

Constraint-based Modelling of Organisations

Technical Report AI91008

Viara Popova1,2 and Alexei Sharpanskykh2

1 De Montfort University, Centre for Manufacturing, Leicester, UK

2 Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Abstract. Modern organisations are characterised by a great variety of forms
and often involve many actors with diverse goals, performing a wide range of
tasks in changing environmental conditions. Due to high complexity, mistakes
and inconsistencies are not rare in organisations. To provide better insights into
the organisational operation and to identify different types of organisational
problems explicit specification of relations and rules, on which the structure and
behaviour of an organisation are based, is required. Before it is used, the
specification of an organisation should be checked for internal consistency and
validity w.r.t. the domain. To this end, the paper introduces a framework for
formal specification of constraints that ensure the correctness of organisational
specifications. To verify the satisfaction of constraints, efficient and scalable
algorithms have been developed and implemented. The application of the
proposed approach is illustrated by a case study from the air traffic domain.

1 Introduction

Organisations that exist in modern society and nature are characterised by a great
variety of structures and dynamics. The complexity of an organisation is
interdependent on the complexity of the environment, in which it is situated [16]. To
achieve high productivity, internal structures of an organisation should be organised
effectively and efficiently, so that the fit with the environment is achieved. Due to a
high structural and behavioural complexity of many modern organisations, this goal is
difficult to achieve, to a great extent because of mistakes and performance
bottlenecks. With the growth of complexity, the possibility of rapid and reliable
analysis of organisations becomes increasingly important. Manual analysis of
specifications can be cumbersome, error-prone and slow. Automated, formally
grounded analysis is devoid of these issues. To enable automated analysis, a formal
specification of an organisation reflecting its structural and behavioural dependencies
and rules, is required. Moreover, a formally defined organisational specification
provides a basis for many automated processes (e.g., computer integrated
manufacturing [2]), and for inter-enterprise cooperation and organisational change.

To represent diverse aspects of organisations, highly expressive formal modelling
languages are required. To decrease the complexity of modelling, several dedicated
perspectives (or views) on organisations are often distinguished [7]. In particular, in

the framework from [11] used for defining the specifications in this paper four
interrelated views with their dedicated predicate logic-based languages are defined:
performance-oriented, process-oriented, organisation-oriented and agent-oriented.
The internal consistency and validity of organisational specifications can be ensured
by defining a set of constraints that should be satisfied by them. An approach for
modelling and verification of constraints is the main contribution of this paper. A
constraint is a restriction imposed on some aspect(s) of the organisational structure
and/or behaviour. Syntactically, a constraint is an expression over the language of a
view(s). The languages of the views allow specifying a great variety of constraints.
Some constraints define meta-rules for the correct use of language concepts in a view
based on its semantics. Any specification of the view should satisfy such constraints.
Other constraints reflect domain-specific regulations of a particular organisation(s)
and are required to be satisfied by the specifications of this (these) organisation(s).
The paper proposes a classification framework for constraints.

To ensure satisfaction of constraints by organisational specifications, efficient
verification techniques are required. Formally, a set of constraints is represented by a
logical theory that consists of formulae constructed from the terms of the languages of
the views. A specification is correct if this theory is satisfied by the specification - all
sentences in the theory are true in the logical structure(s) corresponding to all possible
executions of the specification. The algorithms for verification of correctness of
specifications w.r.t. different types of constraints were developed and implemented.

The correctness of a specification does not guarantee its flawless execution by
agents performing organisational roles. Currently many organisations use information
systems controlling the execution of their processes. Such systems may also be used
to check the correspondence of actual executions of organisational scenarios to the
organisational specification (e.g., by the method from [13]). To enable such
verification, a special class of constraints is required, which is also addressed here.
Diverging behaviour of agents may have positive or negative influence on
organisational performance. To identify such influences, automated analysis methods
are required, which are considered in this paper. Based on the results of such analysis,
changes in the constraints and/or the specification of an organisation may follow.

The paper is organized as follows. Section 2 briefly describes the framework for
organisation modelling. Section 3 introduces the classification framework for
constraints. Examples of constraints and checking algorithms are given in Section 4.
Methodological guidelines for redesign of constraints are described in Section 5.
Section 6 discusses the related literature. Section 7 concludes the paper.

2 The Organisation Modelling Framework

In this Section the general organisation modelling framework is briefly described via
the four interrelated views. For each view a dedicated predicate logic-based language
has been developed. To express temporal relations, the dedicated languages of the
views are embedded into the Temporal Trace Language (TTL) [20], which is a variant
of the order-sorted predicate logic. In TTL the organisational dynamics are
represented by a trace, i.e. a temporally ordered sequence of states. Each state is

characterized by a unique time point and a set of state properties that hold (are true)
and are expressed using the dedicated languages of a view(s). Temporal (dynamic)
properties are defined in TTL as transition relations between state properties.

For the further illustration of the views of the framework and of different types of
constraints, a case study from the air traffic management domain is used. In this case
[19] an Air Traffic Control Organisation (ATCO) has been modelled and analysed.
An ATCO ensures a safe and efficient flow of aircrafts both at airports and in the air.
Nowadays, an ATCO represents a complex organisation that involves many parties
with diverse goals (e.g., airports, air navigation service providers (ANSP), airlines,
regulators, and the government) performing a wide range of tasks. In this paper two
tasks performed by the ATCO are considered: movement of an aircraft on the ground,
and incident reporting and investigation. The ground movement task includes the
taxiing of an aircraft to the designated runway and the subsequent take off from this
runway. During taxiing an aircraft moves from one sector of the airport to another.
The monitoring and the traffic control in a sector or runway are performed by a
dedicated air traffic controller from the ANSP. During taxiing the control over an
aircraft is handed over from one controller to another, depending on the physical
position of the aircraft. Before crossing an active runway the crew of an aircraft
should request the controller responsible for the runway for clearance. Only when
clearance is provided, the aircraft is allowed to cross. In case an incident/accident
occurs during taxiing or take off, this should be reported and investigated.

The process-oriented view of the framework contains information about the
organisational functions, how they are related, ordered and synchronized and the
resources they use or produce. Tasks represent organisational functions characterized
by name, maximal and minimal duration. Tasks can be decomposed into more
specific ones using AND- and OR-relations, forming hierarchies, e.g., the task “Taxiing
the aircraft to the designated runway” has a subtask “Inquiry for the clearance for crossing an
active runway” with minimal duration 2 seconds and maximal duration 5 seconds.

A workflow is defined by a set of (partially) temporally ordered processes. A
process uses a task as a template and inherits all characteristics of the task. Decisions
are treated as processes associated with decision variables. The order of process
execution is defined by sequencing, branching, synchronization and cycle relations
which can express the most commonly used workflow templates. Figure 1 gives an
example of the workflow for formal incident reporting initiated by a crew. The
duration of each process in a workflow may vary in actual executions and each
process may have different starting points in different executions. The earliest and the
latest starting time point for each process p can be identified (denoted as estp and lstp).

Create a
notification report
and provide it to

the SMU

Investigation
of the

occurrence
Begin

begin_or(or1)
Report

occurrence?

Yes begin_or(or2)
Decision on
investigation

positive?

Making decision on
the occurrence

investigation and
the role-investigator

Distribute the
occurrence

investigation
report

end_or
(or2)

No

end_or
(or1)

No

Process a
notification report
and provide it to
the Regulator

Yes

End

Create a notification
report and provide it

to the Regulator

begin_or(or3)
Inform Regulator

directly?

Yes

No

end_or
(or3)

Fig. 1. The workflow defining the execution of the incident reporting task initiated by a crew.

The value of estp (lstp) is calculated under the assumption that all processes
influencing the starting point of p have the minimum (resp. maximum) duration. The
earliest (latest) ending time of a process p (eetp (letp)) is calculated as estp +
p.min_duration (lstp + p.max_duration). More details on the calculation are given in [12].

Tasks use, consume and produce resources of different types describing tools,
supplies, components or data. Among the characteristics of resource types are location
and expiration_duration (the time duration for which a resource type can be used).
Resources are instances of resource types, inherit their characteristics and have, in
addition, name and amount. Some resources can be shared by processes (e.g., storage
facilities, transportation vehicles). The process-oriented view is discussed in [12, 13].

Central notions in the performance-oriented view are goal and performance
indicator (PI). A PI is a quantitative or qualitative indicator reflecting the state/
progress of a company, unit or individual. PIs can be hard, i.e., quantitative (e.g., PI1
“time for incident investigation”) or soft, i.e., not directly measurable (e.g., PI2 “level of
quality of incident investigation”). PIs can be connected by various relationships, such as
(strongly) positive/negative causal influence of a PI on another, positive/negative
correlation between PIs, aggregation (PIs express the same measure at different
aggregation levels). For example, PI1 and PI2 are related by a negative causality
relation meaning that positive change of one PI causes negative change of the other.

Goals are objectives that describe a desired state or development and are defined as
expressions over PIs. The characteristics of a goal include, among others: priority;
horizon – for which time point/interval should the goal be satisfied; hardness – hard
or soft (for which instead of satisfaction, degrees of satisficing are defined). Based on
the PIs defined above the following goals can be formulated: G1: “It is required to
achieve high level of quality of the investigation of an incident”, G2: “It is required to minimize the
investigation time for an incident”. A goal can be refined in sub-goals forming a hierarchy.
Information about the satisfaction of lower-level goals is propagated to determine the
satisfaction of high-level goals. Detailed description of the view can be found in [11].

In the organisation-oriented view organisations are modelled as composite roles
that can be refined iteratively into composite or simple roles, representing as many
aggregation levels as needed. The refined role structures correspond to different types
of organisation constructs (e.g., groups, units, departments). The view provides means
to structure roles by defining interaction and power relations on them.

Each role has an input and an output interface, which facilitate the interaction (in
particular, communication) with other roles and the environment. Role interfaces are
described in terms of interaction (input and output) ontologies: a signature specified
in order-sorted logic. Generally speaking, an input (resp. output) ontology determines
what types of information are allowed to be transferred to (generated at) the input
(output) of a role or the environment. Roles that are allowed to interact are connected
by an interaction link that indicates the direction of interaction. Interaction between
adjacent aggregation levels is enabled by interlevel links. For example, the interaction
relations between the roles at the aggregation level 1 of the air traffic organisation
from the case study are depicted in Figure 2a. Figure 2b zooms into role Air
Navigator Service Provider and presents its subroles at aggregation level 2.

For more details on interaction relations in organisations we refer to [8].

New Operation
Design Team

Regulator

Airline

Controller-Crew
Interaction

Air Navigator Service
Provider

Airport

Env

����������	�
���
����
���
���
�

���
	�����
�	���	�
�����	

��
��	�
�

�����
�
�	��
��

������
��	��

�����
�
�	
��
��	�
�

���
���
�	����	

��
��	�
�

�
��������	

�

���
�	�
!����	

�
�	�
!!
��

���
�����
��	
��

��	
���	�
��!��"

��	
�!
�
!�!��"

 (a) (b)

Fig. 2. Interaction relations in the air traffic organisation considered at aggregation level 1 (a)
and in the composite role Air Navigator Service Provider considered at aggregation level 2 (b).

Besides interaction relations, also power relations on roles are a part of the formal
organisational structure. Formal power (authority) establishes and regulates normative
superior-subordinate relations on roles w.r.t. tasks. Roles may have responsibilities or
rights w.r.t. specific aspects of tasks: e.g., monitoring, execution, consulting, making
decisions. Roles with managerial rights may authorize or make other roles responsible
for some aspects of task execution. For instance, for the task “Investigation of occurrence
based on the notification report”: the Safety Investigator is responsible for execution and
technological decisions and the Head Safety Investigation Unit - for monitoring,
consulting and managerial decisions. Details on authority relations are given in [17].

In the agent-oriented view an agent is defined as an autonomous entity able to
interact (e.g., by observations and actions) with other agents and the environment. An
agent is characterised by a set of capabilities (knowledge and skills) and personal
traits. In general, an agent can be allocated to a role if s/he possesses the necessary
capabilities and traits required for the role. Depending on the type of the organisation,
allocation of agents to roles may be prescribed by a specification or may be
determined at runtime. The framework allows representing both intentional (e.g.,
goals) and motivational aspects of agent behaviour. Other internal states of agents are
represented as beliefs. Using TTL any particular type of agent behaviour can be
specified. More detailed description of the agent-oriented view can be found in [18].

3 The Classification Framework for Constraints

The role of constraints may differ in organisation modelling which influences their
format, purpose and way of use. In this Section we present a classification framework
for constraints covering a range of perspectives on organisations from very detailed to
global, from specification to actual execution and from internal to external point of
view, connecting the organisation with its environment.

Two main groups of constraints were identified: specification constraints and
execution constraints. Specification constraints are embedded in the specification of
an organisation and represent statements that must be true for the current
specification. They are expressed as formulae that are constructed from terms of the
formal languages of one or more views using Boolean connectives and quantifiers.
Specification constraints can be checked at every step of the (re-)design process in

order to ensure the correctness of the current specification. They can be classified in
two dimensions based on their scope and on their origin. Based on their scope,
specification constraints are divided into:
- Constraints within one structure to ensure its consistency and validity: Several
structures can be defined in the specification, e.g.: goal and performance indicators
structures in the performance-oriented view, workflow, task and resource structures in
the process-oriented view, role and authority structures in the organisation-oriented
view. Each structure can have specific constraints expressed using the language of the
view. When the structure is hierarchical a specific type of constraints is defined to
preserve the consistency between the aggregation levels of the structure. The relevant
aspects vary depending on the structure, e.g. inheritance of characteristics, matching
of durations, uniqueness of an object in a structure, etc. Examples of hierarchical
structures are the goals, task, resource and role decomposition structures.
- Constraints within one view: The constraints of this type are expressed using the
language of the corresponding view. Some take care of the consistency between
related structures within the view such as: consistency between the goals and the
performance indicators structures, between the task structures and the workflow, etc.
Note that constraints on the agent-oriented view alone cannot be formulated due to the
descriptive character of this view unlike the other three views which have prescriptive
character. However it is possible to define constraints of the remaining two types.
- Constraints between views are expressed using the union of the languages of the
corresponding views. Some of them ensure the consistency of the specification.
- Constraints between the specifications of different organisation: These constraints
ensure that organisations related by some kind of contract/cooperation are aligned so
that successful interaction can be achieved. Such constraints are very specific and
depend on the types of the involved organisations and on the contract/cooperation
between them. An example is a supply chain that needs to coordinate its operations by
making sure the involved parties have the necessary goals, processes, resources, etc.

Based on their origin, the constraints can be classified into: generic constraints that
need to be satisfied by any specification built using the framework; domain-specific
constraints dictated by the application domain of the specification.

Two types of generic constraints are considered: structural constraints used to
ensure correctness of the structure and views; constraints imposed by the physical
world - the laws of the physical world render certain events, relationships between
concepts, etc. impossible (e.g. a resource cannot be at two locations at the same time).

Domain-specific constraints are imposed by the application domain in which the
particular specification will be used and can be classified according to their sources:
- Constraints imposed by the organisation have been chosen (e.g. by the
management of the company) as necessary and need to be satisfied by any
specification for the particular organisation. Such constraints can often be found in
company policy documents, internal procedures descriptions, etc.
- Constraints coming from external parties are enforced by external parties such as
the society or government and contain rules about working hours, safety procedures,
emissions, etc. Sources for such constraints can be laws, regulations, agreements, etc.
- Constraints of the physical world come from the physical world w.r.t. the specific
application domain and should be satisfied by any specification in this domain. This is

in contrast to the generic physical constraints which should be satisfied by any
specification irrespective of the application domain.

To reduce complexity of modelling and analysis, organisational specifications can
be considered at different aggregation levels (e.g., to investigate certain organisational
aspects, while abstracting from irrelevant details). To ensure consistency of
specifications and sets of constraints of different aggregation levels, and integrity of a
complete organisational specification, a set of interlevel consistency constraints is
defined. A part of these constraints belong to the class of generic structural
constraints, examples of which are given in the following Section 4. The rest of
interlevel consistency constraints are domain-specific and should be identified and
checked for a particular organisation. To this end, the automated method for verifying
relations between properties of different aggregation levels described in [20] is used.

The second main group of constraints are the execution constraints. They are
based on the specification but need to be satisfied by the actual execution traces
ensuring that the execution traces conform to the specification. Every specification
can be used to formulate such constraints. The set of execution constraints needs to be
sufficiently complete in order to provide meaningful results, i.e. a guarantee that the
actual execution of an organisational scenario is correct w.r.t. the specification.
Execution constraints are defined using a dedicated formal language for expressing
execution traces from [13]. Aspects monitored and recorded in traces include started/
finished processes, produced/used resources, measured values of performance
indicators, roles assigned to and agents performing processes, etc. Execution
constraints can be checked at runtime at every step or after the trace is completed. It is
also possible to formulate execution constraints for more that one organisation so that
alignment of the organisations is ensured in all their actual execution traces.

To facilitate the specification of complex constraints parameterized templates are
introduced, which play a role of shortcuts for complex logical expressions, and can be
easily used by non-professionals in logics. Such templates can be selected and
customized by the designer by assigning specific values to the parameters of the
template. Examples of such templates are given in Section 4.

4 Examples of Constraints

In this Section, examples of constraints are given following the classification from
Section 3. All constraints considered in this paper can be formalized using the
dedicated languages of the views and TTL. Due to the length limitations, formal
representation is only provided for some constraints.

4.1 Constraints within one structure or within one view

Within the process-oriented view three types of structures are defined: a task
structure, a resource structure and a flow of control (or workflow structure).

A task structure is a hierarchy and to ensure its consistency several constraints
have been identified, among which is this interlevel consistency constraint:

CS1: For every and-decomposition of a task, the minimal duration of the task is at least the
maximal of all minimal durations of its subtasks.

The following constraint is required for the consistency of a resource structure:
CS2: If data type dt2 is a functional part of data type dt1, then the expiration duration of dt1 is at
most the expiration duration of dt2.

Structural constraints for a workflow are defined as the workflow correctness
properties in [12]. The following generic constraints are expressed over multiple
structures of the process-oriented view:
CV1: If a task produces certain resource type as output then there exists at least one subtask in
at least one and-decomposition of this task that produces this resource type (interlevel
consistency constraint)
CV2: For every process that uses certain amount of a resource of some type as input, without
consuming it, either at least that amount of resource of this type is available or can be shared with
another process at every time point during the possible execution of the process.
CV3: Non-sharable resources cannot be used by more than one task at the same time.

An example of the domain-specific process-oriented constraint from the case:
CV4: A clearance to cross/takeoff is provided to some aircraft becomes invalid either when the
aircraft has crossed the runways 2 minutes after the time point of its generation.

In the performance-oriented view constraints are defined for performance
indicators and goal structures. To ensure the consistency of a PI structure the
following constraints are specified:
CS3: PIs related by an aggregation relation should have the same unit of measurement.
∀pi1, pi2:PI aggregation_of(pi1, pi2) � pi1.unit = pi2.unit
CS4: Aggregation is an antisymmetric relation.
∀pi1, pi2:PI aggregation_of(pi1, pi2) � ¬aggregation_of(pi2, pi1)

CS5: The causality relation is transitive.
∀pi1, pi2, pi3:PI, s1, s2, s3:EFFECT causing(pi1, pi2, s1) & causing(pi2, pi3, s2) � causing(pi1, pi3, s3)

Consider several constraints ensuring the interlevel consistency of a goal structure:
CS6: A goal cannot be a subgoal of itself.
CS7: In each refinement of a soft goal, should be at least one subgoal that satisfices this goal.

The following constraints are expressed over both PI and goal structures:
CV5: If goals are related by a refinement, then the PIs on which these goals are based should be
related by some kind of a causality relation.
∀ g1, g2: GOAL, ∀ l: GOAL_LIST ∀ gp1, gp2: GOAL_PATTERN ∀pi1, pi2: PI
is_in_goal_list(g1, l) & is_refined_to(g2, l) & is_based_on(gp1, pi1) & is_formulated_over(g1, gp1) &
is_based_on(gp2, pi2) & is_formulated_over(g2, gp2) � ∃pn: EFFECT causing(pi1, pi2, pn)
(EFFECT = {very_negative, negative, positive, very_positive})

CV6: The hardness of a goal and the PI, on which this goal is based, should be the same.
The organisation-oriented view describes two types of structures: an interaction

structure and an authority structure. First, constraints over an interaction structure are
considered. Examples of generic constraints that ensure the interlevel consistency of
an interaction structure are the following constraints:
CS8: No role can be a subrole of itself at any aggregation level.
CS9: A role can be a subrole of one role at most.
In the structure Γ ∀r, r1, r2: ROLE subrole_of_in(r, r1, Γ) & subrole_of_in(r, r2, Γ) � r2=r1

CS10: Each subrole of a composite role r should interact with at least one other subrole of r.
In the structure Γ ∀r1: ROLE subrole_of_in(r1, r, Γ) � ∃r2:ROLE ∃e:INTERACTION_LINK subrole_of_in(r2,
r, Γ) & (connects_to(e, r2, r1, Γ) | connects_to(e, r1, r2, Γ))

CS11: Information provided to the input of a composite role should be further transmitted to one
or more its subroles.
CS12: Any subrole of a composite role is not allowed to interact directly with any other role
outside of this composite role.

Several examples of domain-specific constraints over an interaction structure are:
CS13: Particular information should be always transferred between some roles.

An instantiated version of this constraint with the corresponding template
CS13(role1, role2, information_type) is applied in the air traffic domain:
CS13(first_pilot, second_pilot, controller_instructions): The pilots of a crew should always
share with each other information about the controllers’ instructions.
CS14: An interaction path should exist between two particular roles.

For checking this constraint a specification of role interaction Ι is represented as a
directed graph G = (V, E), in which each vertex v ∈ V corresponds to a role from Ι and
each edge e ∈ E with the initial vertex representing role r1 from Ι and the terminal
vertex representing role r2 from I corresponds to either interaction link e specified by
connects_to(e, r1, r2, I) or to interlevel link il specified by interlevel_connection(il, r1, r2, I).
Then, using the simple algorithms for establishing the existence of a path between
two vertices from the graph theory the satisfaction of the constraint is established. The
time complexity of such a transformation procedure is linear in the size of I.

An instantiated version of this constraint with the template CS14(role1, role2) from
the air traffic domain is the following:
CS14(Ground Controller, Safety Investigator): An interaction path should exist between
Ground Controller and Safety Investigator roles.

Among the generic constraints for the authority structure of an organisation are:
CS15: Roles that are responsible for a certain aspect related to some process should be
necessarily authorized for this.
∀r ROLE ∀a:TASK ∀aspect:ASPECT responsible_for(r,aspect,a) � authorized_for(r,aspect,a)

CS16: The relation is_subordinate_of_for: ROLE x ROLE x PROCESS is transitive
CS17: Only roles that have the responsibility to make managerial decision w.r.t. some process
are allowed to authorize other roles for some aspect of this process.

In the air traffic domain the following domain-specific constraint is defined:
CS18: The taxiing of an aircraft should be supervised by the controller of a sector, in which the
aircraft is situated.

A number of constraints that ensure the consistency between the structures of the
organisation-oriented view have been identified, among which:
CV7: Roles related by a superior-subordinate relation should interact.
∀r1, r2:ROLE ∀a1:PROCESS is_subordinate_of_for(r2, r1, a1) � ∃e1, e2:INTERACTION_LINK
connects_to(e1, r2, r1, Γ) & connects_to(e2, r1, r2, Γ)

CV8: The role that supervises the execution of some process, should interact with the role
performing the process.

An example of the domain-specific constraint over the view from the case study is:
CV9: As soon as a runway is vacated and some aircraft is (are) waiting for clearance for this
runway, the controller responsible for the runway should provide clearance to one of the aircraft.

4.2 Constraints over multiple views

Since the views are interrelated, also constraints may be expressed over combined
specifications of two or more views, using the relations defined between the views.
Explicit identification of such constraints allows to specify and investigate (often
latent) dependencies that may exert a significant influence on the organisational
functioning and performance. In the following a number of generic and domain-
specific constrains over multiple views are identified.

Over the performance-oriented and process-oriented views:
CMV1: Each task should contribute to the satisfaction of one or more goals (generic).
CMV2: Each goal should be realized by execution of one or more tasks (generic).

Over the process-oriented and organisation-oriented views:
CMV3: At the beginning of each process for each of the basic aspects for this process (execution,
tech_des, and manage_des) a responsible role should be assigned (generic).
CMV4: For any time point of the taxiing of an aircraft at most one supervising controller is
assigned (domain -specific).

Over the performance-, process-oriented and organisation-oriented views:
CMV5: If a role is committed to a goal, this role should be responsible for some aspect(s) of a
task(s) that realizes this goal (generic).

Over the process-oriented, organisation-oriented and agent-oriented views:
CMV6(ag_list, dr): The amount of working hours of each agent from the ag_list should not
exceed dr (domain-specific)

This constraint is instantiated for the air traffic domain:
CMV6(CONTROLLER, 5): Each controller should work not more that 5 hours per day.

Another constraint for the air traffic organisation:
CMV7: After each work session of a controller there is 1 hour break before the next session
(domain-specific)
CMV8: A controller may guide maximum five aircraft at the same time (domain-specific)

The taxiing of an aircraft is supervised by the Aircraft Controller role. Generally,
the agent assignment to this role changes, when the aircraft moves to another airport’s
sector. In some cases a re-assignment may occur in the same sector. All cases of
assignment change should be taken into account, when constraint CMV8 is checked.
Consider the algorithm for checking constraint CMV8 for an agent-controller ag1:

1. In the organisational specification identify the set of roles of type
AIRCRAFT_CONTROLLER, to which agent ag1 is allocated: ROLES_REL = {r:
AIRCRAFT_CONTROLLER | agent_plays_role(ag1, r)}

2. Identify the set of taxiing processes supervised by the roles from ROLES_REL:
PROC_REL={p:PROCESS| ∃r∈ ROLES_REL is_responsible_for(r, supervision, p)}

3. For each process p∈ PROC_REL identify the execution interval [estp, letp] and write the
values estp and letp in a new row of the allocation matrix M of ag1. If an agent has an
allocation for a part of the execution interval of the process performed by a role, then the
time points of the beginning and end of this allocation should be written in M.

4. Process the obtained allocation matrix M row by row. For each row identify the existence
of non-empty intersections with intervals represented by other rows of M. An intersection
of the intervals represented by rows i and j is nonempty if ¬((mi2 < mj1) ∨ (mj2 < mi1)) is true.
When a row is processed, it is not taken into account in any other evaluations. If for a row
the amount of non-empty intersections is greater than 4, then CMV8 is not satisfied, exit.

5. When all rows are processed, CMV8 is satisfied.
The presented algorithm proceeds under the assumption that any organisational
process p may be executed at any time point during the interval [estp, letp]. Thus, the
satisfaction of constraint CMV8 is checked for all possible executions (combinations of
intervals) of the processes allocated to an agent. To this end, instead of the calculation
of combinations of processes at each time step (as in state-based methods [3]), the
algorithm establishes the existence of non-empty intersections of the complete
execution intervals of processes in a more efficient way. As shown in [12] the time
complexity for the calculation of the execution bounds for all processes of a workflow
for the worst case is not greater than O(|P|2 Cw), where P is the set of processes of the

workflow, and Cw is the set of constraints on the workflow. When the execution
bounds for processes are known, the time complexity of the algorithm for CMV8 is
estimated as follows: the execution of the steps 1-3 takes O(|C|), where C is the set of
constraints of an organisation; the execution of the step 4 requires O(|C|2); thus the
time complexity of the complete algorithm is O(|C|2), which is much better than the
exponential time complexity of state-based algorithms.

4.3 Execution Constraints

In the air traffic organisation for safety reasons most of the events observed by human
agents and technical systems are registered and stored electronically in form of traces.
Using the approach of [13] the specification from the case study was translated into
execution constraints, some of which are:
EC1: Taxiing process of aircraft AC20 taxiing2_AC20 should start and finish in the workflow.
∃t1 holds(state(γ, t1), process_started(taxiing2_AC20)) �
∃t2 holds(state(γ, t2), process_finished(taxiing2_AC20)

EC2:The duration of crossing process of aircraft AC20 crossing1_AC20 should be as specified by
the formal organisation:
∃t1, t2 holds(state(γ, t1), process_started(crossing1_AC20)) &
holds(state(γ, t2), process_finished(crossing1_AC20))
� crossing1_AC20.min_duration # t2-t1 & t2-t1 # crossing1_AC20.max_duration
EC3: The delay between the time point, when the clearance to cross is provided to aircraft
taxiing2_AC20 and the time point when the actual crossing starts should be less than 2 seconds
EC4: Active_runway1 is allowed to be used by one process at most at any time point:
∀L:PROCESS_LIST_EX ∀p1:PROCESS_EX ∀t: TIME holds(state(γ, t), [resource_used_by(active_runway1, L)
∧ is_in_list(p1, L)] � ¬∃p2 p2 ≠ p1 is_in_list(p2, L)])

EC5: Each instruction of controller CONTR_A guiding aircraft AC20 should be read back by
either PILOT_A or by PILOT_B of the crew of AC20 within 5 minutes.
EC6: When aircraft AC20 has moved from sector_A to sector_B, the responsibility over AC20
should be transferred from controller CONTR_A to controller CONTR_B within 1 minute.

5 Methodological Guidelines for Redesign of Constraints

This Section considers the problem of organisational change and redesign from the
point of view of formulating constraints. Organisational change can be necessary for
various reasons internal (e.g., the performance decrease) or external which are out of
the scope of this paper. Often the analysis leading to the decision to change starts by
observing the behaviour of the organisation in its environment, i.e. its actual
execution traces. Checking the execution constraints can give insights when it is
observed that the traces do not conform to the specification. However, even when the
traces are correct, analyzing them is important. Execution traces can be very long and
automated support can greatly reduce the effort. TTL and the dedicated execution
language allow formulating properties that can be checked automatically over one or
more traces at once. These properties can, for example, express hypotheses of the
analyst over recurrent patterns of behaviour, bottlenecks or other relations between
events in the traces and how they are linked to the observed performance of the
organisation. The results of such an analysis may have high significance (i.e., safety-

related issues in safety-critical organisations) and require a change of the
organisational structure and/or behaviour. Furthermore, sometimes informal patterns
of agent behaviour may be observed regularly. If such patterns do not create a conflict
with the major organisational goals and contribute positively to the satisfaction of
some goals of agents, the organisation may consider institutionalizing them. The type
of change required is based on the identified relationships, which do not form a part
of the current organisation and which may play the role of constraints over the new,
future organisation that should result from the change process. Since the identified
properties are expressed in the execution language, a translation into the format of a
formal organisation is required. Since both formats are closely related, such a
translation can easily be automated although sometimes a direct translation from
properties to constraints might not be enough and reformulation might be necessary.

Furthermore, together with the constraints the designer might start changing the
specification by adding/deleting structures, relations or objects. Constraints that have
become irrelevant should be removed or reformulated. The resulting new set of
constraints can be checked over the new specification at every step of the design
process, if necessary, in order to ensure consistency.

The described approach has been applied to the case study. The formal air traffic
organisation describes the incident reporting path, initiated by a controller and/or a
crew, who creates a report based on an observed incident. Based on such report(s), the
decision about the investigation necessity is made by the Safety Investigation Unit
(SIU) role of ANSP, and in the case of a crew initiation - by the Regulator role. Thus,
the following property can be checked on actual execution traces to ensure that each
incident investigation is after a positive decision by either the SIU or the Regulator:
∀γ:TRACE ∀t:TIME ∀p: PROCESS_INVESTIGATION_EX holds(state(γ, t),process_started(p)) �
∃t1:TIME ∃r:ROLE t1< t holds(state(γ, t1), decision_taken(initiate_investigation_p, positive) ∧
decision_maker(initiate_investigation_p, r) ∧ (r = SIU ∨ r = REGULATOR))

The automatic verification of this property using the checking tool [13] showed
that for some traces it did not hold. The further analysis identified that in some cases
the incident investigation started based on the positive decision of the Operation
Management Team (OMT). The informal aspects of the organisational dynamics are
not registered electronically and were made explicit by performing interviews. The
analysis of the informal behaviour of the organisation showed that potential safety-
related problems have sometimes been reported by controllers based on their informal
discussions during breaks. Information about these problems was propagated along
the informal incident reporting path to the OMT, who made the decision to initiate
incident investigation. The analysis based on the empirical data and stochastic agent-
based simulations showed that the informal incident reporting always resulted in
faster identification of safety-related problems than the formal incident reporting [19].
At least two reasons can be identified that may explain this finding: (1) the informal
incident reporting path is shorter and does not require inter-organisational cooperation
that may involve delays; (2) the identification of a problem in the informal incident
reporting case is based on the combined knowledge and experience of the controllers
involved in the discussion, which may expedite the problem identification. Although
evident patterns of interaction can be identified in the informal incident reporting, still
it occurs sporadically, without proper organisation. Since the safety-related issues
have first priority in air traffic management, the organisation may consider
institutionalizing (or at least providing a certain structure to) this process.

6 Related Literature

Studies relevant for the focus of this paper have been performed in Enterprise
Modelling, Social Science and Artificial Intelligence. Some are discussed here.

The idea of defining rules (often called business rules) that determine structural
relations and regulate the execution of organisational processes is becoming
increasingly popular in the area of Enterprise Modelling. In [22] some advantages of a
rule-based approach are identified, e.g. externalization of rules, clarity and traceability
of rules, possibility of rapid change. Several classification schemata for business rules
have been proposed [4, 14, 22]. Usually rules are classified along the functional
dimension, based on how they are used in applications. In [4] several rule types are
identified, e.g. presentation rules describing the interaction with users, database rules
defining operations on databases, logical inference rules allowing inference of truth
values of statements. Constraints are often distinguished as a separate category of
business rules defining integrity conditions on specifications of business rules. In the
mentioned approaches business rules and constraints are defined at a low (machine)
level and do not capture different conceptual aspects related to organisational
structures and behaviour (e.g., related to interactions, power, goals). In contrast, the
classification framework introduced in [10] distinguishes a number of dimensions that
capture some aspects of organisations (e.g., related to goals and to task execution).
However the concepts are treated at a high abstraction level only and are not
elaborated (e.g., by giving precise definitions, introducing relations and structures).
The framework allows specifying rules across multiple categories, but it does not
address consistency and correctness of such specifications in a precise manner.

The approach presented in [9] focuses on temporal constraints defined over
workflow structures. Although the approach provides precise definitions of concepts
and relations, and describes possibilities for automated analysis, it does not consider
influence of different important organisational factors (power structure, interaction
relations) on execution of processes.

Many enterprise architectures and methodologies provide means to capture diverse
types of structural relations and dynamics of organisations using dedicated
specification languages (e.g., ARIS [15], CIMOSA [2], TOVE [6], BPML [1]) but
only simple (or no) verification or validation tools are provided for the analysis of
organisational models.

In the theoretical work on institutions [16] the notion of a norm plays an important
role. Norms are statements that regulate behaviour of institutional actors and the
interactions between them. Some norms form a part of an organisational specification
(e.g., define interactions between roles, ordering relations on processes), while other
may be considered as domain-specific constraints by the classification of this paper.
Consistency, correctness and integrity are considered as meta-properties on sets of
norms. Checking properties is not addressed in the theory of institutions in Social
Science due to the absence of formal foundations of institutional models. Many
algorithms for checking consistency of norms have been proposed in the area of
Artificial Intelligence [5] for electronic institutions. However, electronic institutions
are created with the primary aim to improve computational properties of distributed
algorithms based on agent systems - many key structural and behavioural aspects of
human organisations are not captured by the models of artificial institutions.

The constraint-based approach considered in this paper differs from another
technique from the area of Artificial Intelligence - constraint satisfaction [21]. While
the focus of the latter is on finding (optimal) solutions given a consistent and stable
set of constraints, the proposed approach addresses both design of a specification and
constraints that should be satisfied by the specification. The designer can vary both
the specification and the set of constraints, supported by the automated analysis tool.

7 Conclusions

Explicit identification of relations, rules and norms, regulating the structure and
behaviour of an organisation, provides better insight in the organisational operation,
allows various forms of analysis and facilitates organisational change. All
organisational specifications should be checked for internal consistency and validity
w.r.t. the domain. To this end, the paper introduces a classification framework for
constraints that ensure the correctness of organisational structures and behaviour
specified using the framework from [11]. Constraints are divided into specification
and execution constraints. Specification constraints are defined using the expressive
languages of the views over all key organisational aspects (performance, power,
interaction, etc.). Execution constraints ensure that the actual executions of
organisational scenarios correspond to the specifications of formal organisations.

Often, for an organisation to achieve its primary goals in changing environmental
conditions, it needs to change its structure and behaviour, which usually results in a
change of the set of constraints. Methodological guidelines for redesign of constraints
are discussed in this paper. Different types of constraints and the application of the
proposed guidelines are illustrated using the case study from the air traffic domain.

To ensure satisfaction of constraints, efficient algorithms should be developed that
can also be automated. Most of the static structures of the views can easily be
translated into a graph representation, on which structural constraints can be checked
using efficient algorithms from graph theory. For checking dynamic constraints
related to processes execution, an approach has been developed, which differs from
standard state-based approaches. For each process the bounds of its execution interval
(i.e., the earliest starting and the latest ending time points) are calculated. Then
verification of constraints is performed based on operations on the obtained temporal
intervals. This type of verification is computationally much cheaper (has polynomial
time complexity) than the general-purpose state-based analysis (e.g., by model
checking [3], which has exponential time complexity).

The developed approach allows scalability by compositional modelling and
analysis. Depending on the purpose and level of details of analysis, constraints may
be specified at different aggregation levels. To ensure consistency between constraints
of different levels and to guarantee integrity of an organisational specification, a set of
interlevel consistency constraints is introduced, which is also addressed in the paper.

The proposed framework for specification of constraints together with the
developed scalable and efficient analysis techniques provide useful means for
improvement of performance and flexibility of modern organisations that operate in a
competitive, constantly changing environment.

References

1. Business Process Modeling Language (BPML).http://www.bpmi.org.
2. CIMOSA – Open System Architecture for CIM; ESPRIT Consortium AMICE, Springer-

Verlag, Berlin (1993)
3. Clarke, E.M., Grumberg, O., and Peled, D.A.: Model Checking. MIT Press (2000)
4. Date, C.: What Not How: The Business Rule Approach to Application Development,

Addison-Wesley Longman Inc. (2000)
5. Esteva, M., Rodriguez-Aguilar, J. A., Sierra, C., Garcia, P., Arcos, J. L.: On the Formal

Specification of Electronic Institutions. In the book Agent-mediated Electronic Commerce:
the European AgentLink Perspective, LNAI 1991, Springer-Verlag, (2001) 126-147

6. Fox, M, Barbuceanu M, Gruninger, M, Lin, J.: An Organization Ontology for Enterprise
Modelling. In: M. Prietula, K. Carley and L. Gasser (eds.), Simulating Organizations:
Computational Models of Institutions and Groups, AAAI/MIT Press, 131-152 (1997)

7. GERAM: The Generalized Enterprise Reference Architecture and Methodology. IFIP-IFAC
Task Force on Architectures for Enterprise Integration, In: Bernus P, Nemes L, Schmidt G.
(eds): Handbook on Enterprise Architectures, Springer-Verlag, 21-63 (2003)

8. Jonker, C.M., Sharpanskykh, A., Treur, J., Yolum, P.: A Framework for Formal Modeling
and Analysis of Organizations, Applied Intelligence, 27(1), 49-66 (2007)

9. Lu, R., Sadiq, S., Padmanabhan, V., Governatori, G.: Using a temporal constraint network
for business process execution. In Proceedings of the 17th Australasian Database
Conference, pp.157-166 (2006)

10. Orriens, B., Yang, J., Papazoglou, M. A Rule Driven Approach for Developing Adaptive
Service Oriented Business Collaboration. In Proceedings of the 3rd International Conference
on Service Oriented Computing (2005)

11. Popova, V., Sharpanskykh, A.: Formal Modelling of Goals in Agent Organizations. In: V.
Dignum, F. Dignum, E. Matson, B. Edmonds (eds.), Proceedings of the Workshop on Agent
Organizations: Models, and Simulation at IJCAI'07, 74-86 (2007)

12. Popova, V., Sharpanskykh, A.: Process-Oriented Organization Modeling and Analysis. In:
Proceedings of the 5th International Workshop on Modelling, Simulation, Verification and
Validation of Enterprise Information Systems, INSTICC Press, pp. 114-126 (2007)

13. Popova, V., Sharpanskykh, A.: Formal Analysis Of Executions Of Organizational Scenarios
Based On Process-Oriented Models. In: I. Zelinka et al. (eds.), Proceedings of 21st
European Conference on Modelling and Simulation, SCS Press, 36-44 (2007)

14. Ross, R.: Principles of the Business Rule Approach, Addison-Wesley (2003)
15. Scheer, A-W., Nuettgens, M. ARIS Architecture and Reference Models for Business

Process Management. LNCS 1806, Berlin et al. 366-389 (2000)
16. Scott, W.R.: Institutions and organisations. SAGE Publications, Thousand Oaks (2001)
17. Sharpanskykh, A.: Authority and its Implementation in Enterprise Information Systems. In:

Proceeding of the 1st International Workshop on Management of Enterprise Information
Systems, MEIS 2007, INSTICC Press, 33-43 (2007)

18. Sharpanskykh, A.: Modeling of Agents in Organizational Context. In: H-D. Burkhard, G.
Lindeman, L. Varga, R. Verbrugge (eds.), Proceedings of the 5th International Central and
Eastern European Conference on Multi-Agent Systems, LNAI 4696, Springer Verlag (2007)

19. Sharpanskykh, A.: Modelling and Analysis of Air Traffic Organizations. Technical Report
072510AI, Vrije Universiteit Amsterdam, http://www.few.vu.nl/~sharp/tr072510AI.pdf

20. Sharpanskykh, A., Treur, J.: Verifying Interlevel Relations within Multi-Agent Systems. In:
Brewka, G. et al. (eds.), Proceedings of the 17th European Conference on Artificial
Intelligence, IOS Press, 290-294 (2006)

21. Tsang, E.: Foundations of Constraint Satisfaction, Academic Press (1993).
22. von Halle, B.: Business Rules Applied: Building Better Systems Using the Business Rule

Approach. John Wiley & Sons Ltd (2002)

