VRIJE
UNIVERSITEIT
° AMSTERDAM

VU Research Portal

A Distributed Interactive Computer System
Tanenbaum, A.S.

1977

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Tanenbaum, A. S. (1977). A Distributed Interactive Computer System. (Report, Wiskundig Seminarium, Vrije
Universiteit; No. IR-20).

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

https://research.vu.nl/en/publications/b8b244bf-00b8-4873-941c-2d634b2e16c7

A Distributed Interactive Computer System

by

Andrew S Tanenbaum
Vrije Universiteit

Amsterdam, The Netherlands

Abstract

A computer system in which each interactive user has his own
dedicated CPU is described. These user machines are each connect-
ed to a central minicomputer on which the operating system runs.
The user machines request operating system services such as file
i/o by exchanging messages with the central machine. The pro-
posed design 1is based on the idea of having the user machines
interpret the machine language of a virtual machine whose object
programs are very compact in order to reduce memory and bandwidth
requirements. Various potential problems and bottlenecks are
analyzed, including CPU performance, memory usage, and
transmission time. We conclude that the minicomputer can prob-
ably provide over 100 user machines with operating system ser-

vices.

1. IENTRODUCTTON

ror some appliecations; interactive ("timesharing") use of
computers 1s more convenient than non-interactive ("batch") use.

Program development and debugging, computer aided instruction and

many problems 1involving computer graphics fall into this ca-
tegory. In the old days a programmer could simply S1ERD up for -'an
hour of machine time and have the machine all to himself. As
demand for time increased and machines became more expensive,
timesharing systems were developed to make more efficient use of
the machine than was possible using the previous "dedicated" mode
of opération.

Unfortunately timesharing systems (and in fact all multipro-
gramming systems) have a severe drawback: they are exceedingly
complicated. This complexity 1leads to high development costs
(MULTICS cost more than $50 million [1]), high overhead both in
terms of time and memory wasted, and systems that are unreliable
ana aifficult to modify.

In this paper we discuss a new architecture for interactive
computer systems that can greatly reduce this complexity, and
thereby lead to simpler, more reliable systems. The basic idea is
to give each user his own LSI microcomputer instead of having all
the users share a single large CPU.

Rather than equipping each microcomputer with its own com-
plement of expensive disks the system contains 1 or 2 eentral
minlicomputers to which the disks are attached. These minicomput-
ers do NOT run user jobs, but merely provide: file system ser-
vices, message switching, and other typical operating system type

services to the microcomputers upon request. The sSystem described

here is currently under development by the Computer Science Group

at the VYrije Universiteilt.:

2. OVERVIEW OF THE S1ol1kM

Fig 1 gives a simplified picture of the system. Two confi-
gurations are being 1nvestigated: UnapryiiStar: ' insEiig-dislaw. jand
Binary Star,; ‘in Eig b Unary Star has the advantage of relative
simplieity, but the disadvantage of vulnerability. Binary Star
is more complex, but also more failure tolerant. In each case
the user has his own private machine (CPU, memory, and terminal),
which we will refer to as the UM (User Machine). Each UM has a
connection to the central node(s), which we will refer to as the
OSM (Operating System Machine(s)).

All actual computing activity takes place in the UM's. When
a person logs in, the job control interpreter residing ‘in his UM
asks for a command. A typical command would be to compile a pro-
gram, in which case the UM requests the compiler and the source

program from the OSM and loads them into the UM's memory. The

compilation then occurs entirely within the UM.

A program in a UM can request service from the OSM by send-

ing it a message. Typical requests are create a new file, “open
an - existing file, read, write, ‘give "the time jand ‘da‘te ¥=*=1n short

- the same type of services provided by "normal" operating sys-

tems. When a read message 1is sent to the OSM, the resulting

answer message from the OSM contains the data requested. Note
that the only way a UM can get file, i/0, and other services per-
formed is by sending a message to the OSM and waiting fior ' &the

answer message. In the initial version, the types of services to

be provided by the OSM will be similar to those provided by

UNIX[2].

This design differs from a distributed system using intelli-

gent terminals in that not only is editing done locally, but also

compilation, linking, and execution of all programs. Even number
crunching 18 daone in the UM's. The design differs from a tradi-
tional network in that the UM's are small monoprogrammed machines
with no disks or peripherals whereas network nodes are typically
larger multiprogrammed machines with a full set of ©peripherals.
Furthermore, since a UM has neither a self contained operating
system nor local files, it is not capable of running if isolated
from the rest of the system, whereas a network can be character-
ized by the ability of its nodes; to run loeal jobs even 1f the
network goes down. In other words, this design is neither for a
single machine nor for a network, but rather for an intermediate
form. Other distributed systems are described in [3-5].

In addition to the "“personal computer"™ approach of the

design presented thus far, we are also considering having a pool

of microcomputers avallable for "background" Jjobs. 1T & user
Knew that a certain request e.g. a compilation, was going to take
a substantial amount of time, he could request it to be performed
on one of the pool processors, leaving his personal computer free
for other activities during compilation.

A refinement of this approach would allow a job to be split
over several pool processors, with the output of ‘one being wused
as tThe input of the next. For example, one machine might read a
program and perfiormi the first pass:of a compilation. The inter-

mediate code output by pass 1 would be fed into a second pool

processor (as it was produced) for pass 2. Its output might be
fed intoe yet a third machine for assembly. In UNIX terminology,
these inter-machine connections are pipes, and the machlines are
funetioning a8 ..I1llters. Of ' course the faet that the end of a
pipe is on a different machine should be transparent to the pro-

grams. using the pipe:.

3. ADVANTAGES

The most important feature of this system 1s 1ts extreme
simplicity. Since none of the machines are multiprogrammed, near-
ly all of the complexity associated with scheduling, memory

management, swapping etc. vanish. The operating system in the OSM

can be very straightforward, since essentially all it does 1s
accept, queue, and carry out requests to read and write files and
messages.

A second unusual aspect is the ability ¢to have different,
and incompatible computers (UM's) use the same operating system.
Since all communication between programs and the operating system
is carried out by exchanging simple fixed format messages, com-
puters from different manufacturers, with different 1instructilon
sets can be added to the system quite easily. This 1s 1n contrast
to the present situation where each new computer must have 1ts
own, unique operating systemn. It is alseo in contrast Tto some

experimental distributed and multiprocessor systems 1n which the
choice of a particular microcomputer is deeply embedded in the

design.

A third virtue 1is the relative ease by which the system

capacity can be expanded in small increments. Up sto:zasiipolnt. one

can Just add as many more UM's as desired. When the OSM fainalily
saturates 1t will have to be upgraded or replaced, but: mnone’ of
the UM's will be affected.

AiTourth poidntiids thatithis system' takes #Full advantage of
the new Lo imdier oproecessor " technology'“with © its “attractive
price/performance ratio without requiring any special hardware to
pe- designed or built. Some o0f the experimental distributed
machines being proposed are one of a kind systems that may or may
not ever be produced commercially. This approach has the disad-
vantage that i1f no manufacturer decides to produce the machine,
few . end’ ~users' will ' ever 7:be able tio' take advantage' of 1t no
matter how sophisticated it may be, simply because few users have
the capabillity or inclination to do a major hardware design and
congtrucitilon® Job. A system such as ours can be assembled from a
variety of existing microcomputers without a soldering iron. The
UM-0SM connections are just 20 mA current loops.

A G atith - clongideration Sis o fthe ¥ irelative 1nsensitivity to
hardware failures. If the CPU or memory in one of the UM's fails,
1ts demise only affects one user, and its repair does not neces-
sitate interrupting service to 6ther users. ihiif jciourse:, a - failwure
in the « 0OSM 4 (inlithe = Unary Starconfiguration) will affeect all
users, but statistically most CPU and memory failures will occur
in the UM's 8since that is where most of ‘them are. Ihe Binary

Star system will (hopefully) be relatively tolerant of any

failures.

4. DISADVANTAGES

Once a substantial body of code exists for any computer

system, changing to a new computer 1is fraught with problems.

Since LSI microcomputers are so cheap, and since new ones with
yet greater speeds are being announced so frequently, when new
machines are added to the system, the temptation to use the most
recent ones (even if from another manufacturer) is much harder to
resist than with large, expensive machines. Thus program porta-
bility from one microcomputer tolanoether ™ is “rrealilyiecruciallSsiro
countering (psychological) obsolescence.

At present the cost 'of the UMY'si'memory i1simuch: “l'arpgersthan
the cost of its CPU..This dstlikely to continue ifiors a numberisoil:
years, at least. Unfortunately our design does not make efficient
use of memory, since it cannot be shared among UM's. When a user
is thinking his (UM's) memory is wasted. A method of reducing
memory requirements is needed.

Since the UM's rely upon the OSM for file storage, when a
program 1is executed, both the program and its input files and
other data must be shipped across the communication line from the

OSM to the UM. It is not difficult to imagine that the bandwidth

of this line could become a bottleneck.

5. APPROACH TO OVERCOMING THE DISADVANTAGES

The portability problem can be attacked by providing each UM
with an interpreter for a virtual machine. All software for the
UM is to be written for the virtual machine, rather than for the

UM's own machine 1language. In particular, compiiliers are to

translate source programs into object programs for the virtual

machine. These programs are then carried out by the interpreter

running on the UM. The machine language will ©be specifically

designed for the purpose of allowing programs to be represented
in as few bits as possible (to save memory and bandwidth) without
sacrifieing. too much speed.

I1f all software is written in, or compiled into, the machine
‘language of some carefully chosen virtual machine, then introduc-
ing a new LSI microcomputer into the system requires only writing
one program for 1t - an 1nterpreter for the virtual machine
language. Once this is available, 1t will be able to run all the
existing UM software. Of course, there is a penalty in execution
time for using this approach but two points should be kept in
mind: (1) the existence of large numbers of commercially avail-
able machines using this principle (e.g. all the IBM 370's)
strongly suggests that +the execution time penalty can be made
acceptable and (2) a distributed timesharing system with tens or
even hundreds of CPU's will have a huge amount of raw computing
power, allowling execution time to be traded for other desirable
characteristics. CPU performance will be discussed in detail
later.

We have already developed a virtual machine language called
EM-1 (Experimental Machine-1) to be interpreted by the UM's. 1t
1s specifically intended for use with block structured languages
supporting recursion such as PASCAL, since systems programs such
as compilers and editors are generally written in such languages
nowadays.

EM-1 1is stack oriented, with a variety of instructions for
pushing and popping local variables, global variables (variables
declared 1in the outermost block), intermediate level variables,

constants, array elements, etc. The arithmetic and Dboolean

instructions fetch 1 or 2 operands from the stack and leave their
result on the stack.'Conditional jumps pop 1 on 2 values from the
stack and jump forward if the specified condition is met. e
chief virtue of a stack architecture 1s gimplieltys: it is . easy .o

generate efficient code for 17T.

The EM-1 architecture also provides for a paged, segmented
virtual memory. Each segment is 64K bytes. There are 256 in-
struction space and 256 data space segments. Procedures are
called using (2 word) descriptors. Jumps may not change the

current instruction segment, hence 16 bit addresses suffice for

addressing the program itself. Most data references are to the
stack, or to local variables, 80 only a few® "address , bitvsZ. are
needed. Only for accessing array elements are 24 bit addresses

needed; special array instructions are provided for these cases.
The most frequently occurring EM-1 instructions require only
a single byte, which includes both the opcode and address. For
example, PUSH LOCAL 0, PUSH LOCAL 1, PUSH LOCAL 2 etc. might bDe
assigned opcodes 182, 183, 184, etc. By not having distinctU
"instruction" and "address" bits we eliminate decoding time and
increase flexibility. The interpreter executes an instruction Dby
fetching 1 byte and executing a 256 way branch (using a Jjump
table) based on its value. A few opcodes are reserved for escapes
to 2, 3, 4, 5, and 6 byte formats for less common instructions.
Measurements show that the 250 most common opcode-address combl-
nations account for about 85% of all opcode address combinations.
This means that 85% of the instructions will.. sbie . ol obyt el sl on:.
Most of the .rest will.K .-be 2 .bytes long. The mean instruction

length is about 1,3 bytes. Preliminary results [6] indicate that

10

this technique can compress programs by a factor of 3 compared to
most existing third generation computers.

Once the price of interpretation has been pald, c¢certain
facilities can be added a a relatively low cost. These 1nclude
not only +the . large virtual address: space, but alse overflow
checking on arithmetiec 'instructions, cheeks for wuninitialized

variables (-32768 is used), and detailed performance profiles.

6. CPU PERFORMANCE

In the next 4 sections we examine the expected performance
of the distributed system and attempt to analyze the most likely
bottlenecks.

The speed of the 1interpreted EM-1 machine 13 determined
largely Dby the number of host machine instructions required to
carry out the most common EM-1 instructions pushing and popping
values from the stack, and short conditional branches forward,
since these are the ingredients of assignment, IF, and WHILE
statements. We assume the host machine has a facility for mani-
pulating 8 bit bytes and 16 bit words, and has a few 16 bit re-
Zisters. The main loop of the interpreter must perform the fol-
lowling operations:

1. Feteh the next instruction byte dinto'a register.
2. Increment the program counter.
3. Execute a 256 way branch (e.g. indexed jump) using
the 1Tnstructilion as the' index.
The exact timing will depend on the host machine's architecture
and speed, but several existing 16 bit LSI microprocessors can

perform these 3 functions in about 5-8 microseconds.

11

Each of the 256 1-byte opcodes must have its own execution
routine. . but in many *cases . this. . willfonly.be 280rs3iclnstrucclions..
Pushing local variable 3, for.example, requires simply «fetching
the value, pushing it on the stack and Jjumping back to the mailn
loop. Note that no bit fields need be extracted since the 256 way

branch jumps to different locations for PUSH LOCAL 3, PUSHLOCAL

4, etc. It seems reasonable to assume the EM-1 machine will have
an instruction ¢time of about 10-12 microseconds. If the LSI mi-
croprocessor is microprogrammable, the EM-1 instructions time can
probably be reduced to 5 microseconds.

The impact of the virtual memory..is8 - kiept.4(reasonabilie sby a

clever trick. The . program. .counter, PC,:ls =sitored: swiithiin the

interpreter as a physical, rather than a virtual address. The
address of the last word on the current code page, LIMIT, is kept
in a register. Before each dnstruction . byte: 18 [fetiched), agarl test
is made to see 1f PC <= LIMIT. ..Lf .80, N0:zactitons i'siineeded 1P
not, the true virtual address must be computed, and PC and LIMIT
updated. The important thing to note is that most of the /tame no
action will be needed (most instructions are on the same page as
their predecessor), so the only overhead is a register-register
compare and conditional branch. Jumps and procedure calls must be
handled specially, but if jumps are all pe relative, no special
action is needed for any forward jump, no matter how far (if it
jumps off page, the PC <= LIMIT test will deteect that faectiibiefiore
the next instruction fetch). We estimate that the cost of imple-
menting a large paged, segmented, virtual address space without
any hardware assistance will be about 20-30% of performance, put-

ting instruction execution times in the range 12-15 microseconds.

12

Barely 15 years ago there were many universities and scien-

tific computer —centers that possessed a single IBM 709 (cycle
time = 12 microseconds) which served the entire user population.
In our design each user has his own, private, machine comparable
to a 709. Preliminary measurements show that a PASCAL compiler
running on EM-1 should be able to compile 15 lines/see, Or a page

of source text in 4 seconds of CPU time.

1t 1s also worth noting that the stack architecture of EM-1
allows simple compilers to produce locally optimal code, whereas
compilers for traditional multiregister machines often lose a
ractor of' 3 or 4 -im speed [T]. & 12 mierosecond ‘machinme whose
programs are near optimal is only a factor of 4 worse than a 1
microsecond machine whose programs are slowed by a factor 'of 3
due to bad code. The conclusion we draw is that the performance
loss due to interpretation will be acceptable.

1f this should subsequently prove to be untrue, we can al-
ways adopt a mixed strategy of interpretation and compilation.
I'he most heavily executed portions of the Key programs can be
complled instead of interpreted. By varying the amount of code
compiled, we can trade time against space. Most programs have
th'e property that a small “part of the ' code 1is responsible for
most of +the execution time, s0 this strategy 18 an attractive
one; a small increase in size may produce a large performance
galin.

Raw CPU speed is only part of the story. When comparing two
UM's, one using this interpretation scheme and one not, one must
consider what would happen if the non-interpreted program did not

fit 1n memory. 1t would have to be written as a collection of

S

overlays, or software paging would have to be employed. In: “ibieth
cases the resulting 1i/0 activity would greatly degrade perfor-

mance, making interpreation a far more attractive strategy than

L might at fipst.appear-to be.

7T. MEMORY REQUIREMENTS

One way ¢to estimate how much memory each UM should have 1is
to ask how much is needed to compile large programs. The prelim-
inary version of the PASCAL compiler can compile itself in 48K
bytes, used as follows: 24K bytes for the compiler itself, 16K
bytes for the stack and workspace, and 8K bytes for the inter-
preter and its data. The interpreter is permanently resident In
the UM and need only be loaded when the system is dead started.
The 24K bytes for the compiler includes the entire compiler; when
it is modified to take advantage of the EM-1 virtual memory, less
space will be needed s2ince 1t will not be necessary for sthe en-
tire compiler to be resident at once.

Amdahl's rule states that a cdmputer needs 1 megabyte of
memory per MIPS. With an instruction time of 12 mieroseconds

(0.083 MIPS) this rule indicates that 83K bytes of memory are

needed. However, EM-1 programs are a factor of 3 smaller than
their IBM 360 equivalents, on which this rule ' is Dbasedi i Data
(e.g. source programs) cannot be compressed as easily and still

be convenient to use, but by using the 128 unused character codes
available in an 8 bit byte to encode common strings (e.g. BEGIN,
END, THEN, ELSE, :=) some compression may be possible. If an
overall factor of 2 is achieved, we need 40-45K bytes of memory.
Since most byte addressable microcomputers have an address-

ing 1limit of 16 bits (i.e. 64K bytes) we estimate that each UM

14

should have 48K-64K bytes of memory.

8. TRANSMISSION BANDWIDTH

The connection between the UM's and the OSM could be accom-
plished by a single dedicated wire, several dedicated wires in
parallel, a message switching network, a packet switching net-
work, a broadcast network, etc. The simplest and cheapest way 1is
to use a single 20mA current loop interface. However, since 9600
baud 1s usually the highest bandwidth available off-the-shelf, we
consider using n lines in parallel, i.e. the first 1/n bytes are
sent over line 0, the next 1/n bytes over line 1, ete. For n=d,
the asynchronous transmission (1 start bit and 1 StOop- bit ' per
byte) rate is 4*¥960 = 3840 bytes/sec for Unary star. For Binary
Star this might mean 1920 bytes/sec. to each of the central
nodes.

olnce the response time to edit ecommands will be essentially

instantaneous, 1independent of system load, (once the editor and
data file have been loaded into the UM) let us examine compila-
tion, where the transmission time may be more of a problem. Meas-
urements show that an r line PASCAL program contains 32r charac-
ters, requires r/15 seconds of EM-1 CPU time for compilation, and
generates 38r characters of assembly code output.

Let us assume that due to overhead, queueing delays for the
disks, etc., an effective bandwidth of 3000 bytes/sec «can be
achieved. This means that each page of source text requires 640
ms to be read in, 4000 ms to ' be compiled, and 760 ms to be writ-
ten: out. 1f the 1/0 can proceed concurrently with the process-

ing, the transmission time is essentially free.

153

The time required to load the 24K byte compiler is 8 seconds.

Thus we arrive at the following rough estimates for compilation

time:
Program Size No 1i/0 overlap Overlap
1 page 13 see. 12 Seg.,
5 pages 35 sec. 28 sec.
10 pages b2 sec. 48 sec.
50 pages 278 sec. 208 sec.

It should be noted that these are real times and should be com-
pared to the response times of conventional timesharing systems,
not the CPU time used. Note that separate compilation of pro-

cedures becomes an attractive technique under these clr-

cumstances.

9. MAXIMUM NUMBER OF USERS

In this section we examine the factors that limit the number
of UM's that can be attached to one 0OSM, and try to estimate the
maximum number of users that can be given good service. For sim-
plicity we consider the Unary Star configuration with one disk.
The OSM does little except process requests for reading and writ-
ing files, an activity that requires wvery little CPU-‘time.* Howev=
er, +three other potentially limiting factors are present: memory
cycles, disk accesses, and buffer space.

Minicomputer 1i/0 generally works on a cycle stealing basis.
I'his limits the number of simultaneous transmissions, since the
interfaces to the UM's cannot steal more cycles than there are.

For reading, each buffer in the OSM's memory must first be filled

16

from the disk and then emptied Dy the communication interfaces.
Allocating half the cycles to the UM's, a quarter to the disk
(minicomputer disks transfer 2 bytes/cycle, serial interfaces 1
byte/cycle) and a quarter to the CPU and low speed i/0 and assum-
ing a 1 microsecond memory cycle, there are enough cycles avall-
able for 500000/960n simultaneous transmissions (n is the number
of 9600 baud asynchronous serial interfaces running in parallel
per UM). For n=4, this is 130 UM's.

The maximum number of simultaneous transmissions is poten-
tially limited by the number of disk accesses per second. Most UM
requests will require one disk read or write. We assume that disk
seeks are largely overlapped, yielding an average effective seek
time of s ms, that rotational latency 1s 8.3 ms, and that an
average transfer takes t ms. Under these conditions,
1000/ (s+8.3+t) requests/sec can Dbe gatisfied. High performance
minicomputer disks transfer at a rate in excess of 1Mb/sec. For
mean block sizes between 1K and 4K bytes, (typical of page sizes
in virtual memory systems) about 25 requests/sec be satisfied 1f

g=30 ./ mg ffor the non-overlapped portion of the average seek.

In order to handle 25 requests/sec on a sustained basis,
sufficient buffers are needed 1n the OSM memory. For request
sizes of 1K to UK bytes, 6K to 100K bytes off ‘buffer " gpace are
required. Depending on the distribution of request sizes and ‘the
amount of OSM memory available, lack of buffer space could 1limit
the number of simultaneous transmissions.

Raged on: this data, the limiving factor appears to be access

to. the disk. The number of users that can be granted a given

level of service depends upon the rate at which they generate

17

requests. I requests come in too fast, a queue builds up and
service degrades. To make a rough estimate of the maximum number
of active users, we use an M/M/1 finite population queueing model
to estimate the number of UM's required to saturate the disk. We
define +the disk to be saturated when a request-must wait~1n the
queue for a time equal to its service (transmission) time.

Wwe have used the M/M/1 queueing model to derive the maximum
number of UM's, but we prefer to give a more intuitive argument
here. Let Q be the mean number of UM's with service requests

elther queued or being processed. These UM's generate no ENPAE:.

LE 1s the input rate of a single UM, the effective request rate
to the OSM from the N-Q unblocked users is (N-Q) . The disk sSys-
tem can process = 25 requests/sec.

In equilibrium in a saturated system (i.e. disk utilization

1), we have (N-Q)

This relation is maintained by the
negative feedback nature of the system. If the disk service im-
proves 1t reduces Q, which increases the rate at which work ar-
rives, which in turn increases Q again. If the disk slows down; Q

builds up and there is less input, which allows the disk to catch

up and reduce Q. From our definition of saturated, Q=2 approxi-
mately, since a wait time equal to service time implies 1 custo-
mer walting and 1 being served. Solving for N gives: N = 2+

Now we will estimate the data rate for a user engaged in the
edit, compile, assemble, execute, crash cycle known as debugging.
Based on preliminary measurements, we project the combined sizes
of the editor, compiler and assembler at 40K bytes. The .editor
reads -in the source text,. and writes itrout Fater: The compiler

reads 1t back in, and writes out assembly code, which is read

18

back in by the assembler. Finally the binary code is written out

and read back in for execution.

Assuming a page of source text is 60 x 32 = 1920 bytes, the
assembly code generated by it is 60 x 38 = 2280 bytes,“¥and s the
object code 1is 60 x 8 bytes, each page of source text generates
11280 bytes woth of data transmission. The total data transmit-
ted per cycle is 40000+11280%*P bytes, where P is the program size
in pages. If data is requested in blocks of B bytes, “and the

debug cycle takes T seconds, the number of requests per. second. is

= (40000 + 11280 * P) / (B#*T)

Given this, we can compute the number of users required to cause
disk queueing to become noticeable. A few typical values for a
10 minute <c¢ycle are shown below for 1,5, and 20 page programs,

and block sizes of 512, 1024, 2048, and 4096 bytes.

1 page 5 pages 20 pages
B2 152 81 30
028 302 160 59
2048 | 601 3 116
4096 | 1200 635 229

10. SIMULATION RESULTS

In this section the results of a simulation study wiil be

presented. I'he model 18 ‘again of Unary Star, with a single disk
(using the elevator algorithm). Finite buffer space, queueing,

and transmission delays are included in the model.

Choosing a performance metric is more datt=fdicnilts it han Swilth

19

conventional timesharing systems. Command response time is not
reasonable since the response time to edit commands is essential-
ly zero, independent of the system load, and one does not usually
speak of the "response time" in connection with compilations and
other long requests.

To determine how many users can be supported before requests
for data begin to bog down, we again define saturation as the
point where the response to a single request for data (e.g. read
530 2 bytes) takes twice as long as it would in an empty system.
Figs. 2 and 3 show this response time as a function of the number
of users for various combinations of block size and program size
(10 minute debug cycle). Two things are obvious: if the users
are working with large programs, the system saturates faster than
if they are working with small programs (hardly surprising): mak-
ing a smaller number of large requests is preferable to making a
larger number of small requests (because the disk access time is
important, and fewer requests means fewer seeks), except where

lack of buffer space begins to become important. The maximum

number of users is indicated.

117. CONCLUSION

A computer system consisting of many microcomputers attached
to a central minicomputer is proposed as an alternative to a
large centralized timesharing system. To keep memory and
transmission requirements down, the microcomputers interpret a
machine language designed for minimizing object program size. A
rough calculation and simulation indicate than one minicomputer

can can provide operating system services for over 100 users.

20

REFERENCES

[1]

[2]

[4]

L5]

[6]

[7]

[8]

R. Graham, Use of High Level Languages for System
Programming, Project Mac Report TM-13, MIT, Sept. 1970.
D.M. Ritchie and K. Thompson, The UNIX Timesharing System,
CACM, vol. 17, no. 7, July 1974, 365-375.

W.A. Wulf and C.G. Bell, C.mmp A Multi-mini-processor,
FJCC, vol 41, 1972, T765-T777.

S. Davidson, A Network of Dynamically Microprogrammable

Machines, IEEE 8th Annual Workshop on Microprogramming

Supplement.

B. Arden and A. Berenbaum, A Multi-microprocessor Computer
System Architecture, Operating System Review, vol. 9,

no. 5, 1975, 114-121.

A. Tanenbaum, Implications of Structured Programming for
Machine Architecture, to be published.

A. Tanenbaum, A General Purpose Macro Processor as a Poor
Man's Compiler-Compiler,IEEE Trans. on Soft. Eng.,

vol. SE-2, no. 2, June 1976, 121-125.

A. Scherr, An Analysis of Time-Shared Computer Systems,

MIT Press, Cambridge, Mass., 1967.

ST User machine
(CPU, memory, and terminal)

Opsrating system machine—27

disles

R f'f.’:pf:‘r‘:]t.t.ng

]

Ll | -‘t"' T - - -
SYSCemEmaenine

Oparacling systemn
macnlne

|

/ﬁ/ff
Y

‘:I L\
--"“I ‘ﬁ ,.u:: —_— -
] L i -j
A,
g f‘ < - == ==
EH’ -],-.,.I D_:_EEI * :) : .:" ;Pc_—:ﬁb
L 14
V’ : |
o M\
R o B . B / 100
% ! .3 I llﬂ"jrf 7
2 2L sSatTuracaion
o .
L.
7A B /
o | I
“y :
X5 !
— ! |
; /
5 /// 120 7
- ' P /
T 4
o ! /
;e s
/
:-: / / {
— /
5 | b4
F__l oo //
= . f=mx DYGC2S /
[-: /
P 26 :
S 4
y o
P s
- o e Qr—
BN T f/'"f pa TN :)U:)
| 2K #
1 17 i D '|
- o ______..---"'-"_-___
i. - ——
) LR
e G e e A l
i _) L
- i T i l T i ‘
= ey ' N = %)
~ C 100 150 200 250 300
i
ibamareral®e o e = -
LTI O] O1T LIS el S
- L o dll a2 =
1ot lnite purtaer, P = 5
i
l
-y i
)
)
)
T
.|
73 |
€5
Q)
=
=N
| -
&) n
i
— |
> =
D I
S
=i
e
&, |
i, |
- LI ¢
c‘-é L"'“é}' i
l
[i -
; Y
|
i _ |
" |
= - T R =T S D =i
Ll ol {0 | 50 200 250 300

b
-
e

e

o)
N\
>
>
.
ey
4,
(D
g
i,
|

0

)

fumoar ol s

P = 20

}l P el I RS e e ——— S — g

infinite buffer,

l!rr

v L s

1 e
P Y. - e e iy)
9 k) i OO0 | Eyif) 2010 251 y k)

T e . —— —

- T _—

U 2

