
VU Research Portal

Distributed Redirection for the World-Wide Web

Baggio, A.; van Steen, M.

2004

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Baggio, A., & van Steen, M. (2004). Distributed Redirection for the World-Wide Web. (VU Technical Report; No.
IR-CS-009.04). Vrije Universiteit, Faculty of Mathematics and Computer Science.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303691085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/5b013e19-d338-4a82-922a-f01eba525ded

Distributed redirection for the World-Wide Web

(extended version)

Aline Baggio and Maarten van Steen

October 2004

Technical report IR-CS-009

Abstract

Replication in the World-Wide Web covers a wide range of techniques. Often, the redirec-
tion of a client browser towards a given replica of a Web page is performed after the client’s
request has reached the Web server storing the requested page. As an alternative, we propose
to perform the redirection as close to the client as possible in a fully distributed and trans-
parent manner. Distributed redirection ensures that we find a replica wherever it is stored
and that the closest possible replica is always found first. By exploiting locality, we can keep
latency low.

1 Introduction

Replication in the World-Wide Web encompasses a wide range of techniques from proxy caches to
mirrors and Content Distribution Networks (CDNs). One goal of these replication mechanisms is to
allow clients to use the replicas that best suit their needs in terms of network distance, consistency
or security. Nevertheless, the use of location-dependent URLs in today’s World-Wide Web does
not facilitate transparent access to the replicated Web pages. Instead, it is often necessary to
explicitly redirect clients towards a given replica.

Redirection in the case of proxy caches occurs in an implicit way: each HTTP request is routed
through the cache or the hierarchy of caches and, in the best case, the replica of the requested Web
page is retrieved directly from the cache storage space. In the case of mirrors or CDNs, the client
browser has to be explicitly redirected to a host that is normally not on the route followed by the
request. Redirection is, in most cases, achieved in a home-based way. A client is redirected only
after its request has reached the home server, that is to say, the host named in the document’s
URL. The decision where to redirect a client to is therefore centralized.

One important disadvantage of centralized redirection mechanisms is the induced latency. An-
other is that the home server may become overloaded. Ideally, a client request should not be forced
to go all the way to the home site in order to be redirected to a close-by replica. On the contrary,
the redirection should take place as soon and as close to the client as possible. We have devised a
distributed redirection scheme in which the redirection decision can be taken locally at the client
machine or, in the worst case, before the HTTP request leaves the client’s network. In this paper,
we present our design and show how it can be transparently integrated with the current Web.

The paper is organized as follows. Section 2 gives a brief overview of the existing redirection
methods for the World-Wide Web. It outlines the advantages and disadvantages of each method.
Section 3 presents the principle of our distributed redirection scheme. Section 4 details the de-
sign of the redirection server. Section 5 describes aspects concerning client and redirection server
interaction. Section 6 presents simulation results of the distributed redirection mechanisms. Sec-
tion 7 discusses the benefits and drawbacks of our redirection scheme with respect to other Web
redirection mechanisms. And finally, Section 8 concludes and gives some future work directions.

1

Browser

Home
Web server

Replica
Web server

HTTP request
HTTP redirect

HTTP reply

HTTP request

Home
Web server

Figure 1: HTTP-based redirection

2 Alternatives for redirecting clients in the Web

Redirection in today’s World-Wide Web is achieved in three different ways: application-level
redirection, DNS-based redirection and transport-level redirection [5].

HyperText Transfer Protocol (HTTP) features can be used to achieve application-level redi-
rection. Whenever a client browser requests a Web page, it contacts the Web server named in
the URL of the page. Instead of directly sending back the contents, the Web server can decide
to redirect the client browser to another server. This redirection takes the form of another URL
specifying the server where a replica of the requested page can be found [5, 9] (see Figure 1). The
browser then issues a new HTTP request to fetch the Web page at the replica site. HTTP is
widely used for communication with browsers, servers and proxy caches [9]. As a consequence,
HTTP-based redirection has the merit of being simple and easy to deploy.

The Transmission Control Protocol (TCP) can also be used to redirect clients [5, 15, 23] and
belongs to the group of transport-level redirection-mechanisms. In TCP, communicating parties
are identified by an end point: the network address of the machine on which the party resides
and the port number it uses. The data exchanged between two communicating parties are sent
in portions called segments. The origin end point can be falsified when producing TCP segments.
Using this feature, a third party such as a Web server hosting a replica of the requested Web page
can let the requesting client believe that the segment originates from the original Web server. The
client browser keeps sending its requests to the original Web server. The requests are intercepted
by the original Web server’s gateway, which forwards the requests to the Web server holding the
replica. This Web server can respond directly to the client (with falsified origin end points) or
indirectly through the original Web server’s gateway. The former approach for redirection at the
transport-layer level is known as TCP handoff (Figure 2), the later as TCP splicing (Figure 3).

Finally, the Domain Name System (DNS) can be used for redirection purposes [5, 13, 21]. DNS-
based redirection exploits the fact that a browser needs to resolve the domain name contained in a
URL to a network address. Unless the name-to-address mapping is already cached at the client’s
DNS, the client’s DNS request eventually reaches the DNS server responsible for the Web server’s
domain (i.e., the authoritative DNS server) (see Figure 4). As a reply, the authoritative server
can decide to send any appropriate network address and not only the address of the Web server
designated in the URL. In particular, the DNS server can respond with the address of a Web
server holding a replica of the Web page. The returned address is cached at the client’s DNS. The
subsequent DNS requests for this domain are therefore resolved to the replica’s network address
until the address is flushed from the DNS cache. A similar approach used for example in the
Akamai Content Distribution Network [8] redirects a client in two steps. The client’s DNS request
reaches first the home DNS server, as in the previous case. The client’s DNS is then asked to
contact a second DNS server closer than the home DNS server. This second DNS server chooses

2

Client 1

TCP connection endpoint

Client 2 Client 3

Server

Gateway

for doc. 1
Server

for doc. 2
Server

for doc. 3

Server side

HTTP request
for doc. 3

HTTP request
for doc. 1

HTTP request
for doc. 1

Client 1 Client 2 Client 3

Server

Gateway

for doc. 1
Server

for doc. 2
Server

for doc. 3

Server side

HTTP reply
for doc. 3

HTTP reply
for doc. 1

HTTP reply
for doc. 1

Figure 2: TCP handoff

Client 1

TCP connection endpoint

Client 2 Client 3

Server

Gateway

for doc. 1
Server

for doc. 2
Server

for doc. 3

Server side

HTTP request
for doc. 3

HTTP request
for doc. 1

HTTP request
for doc. 1

Client 1 Client 2 Client 3

Server

Gateway

for doc. 1
Server

for doc. 2
Server

for doc. 3

Server side

HTTP reply
for doc. 3

HTTP reply
for doc. 1

HTTP reply
for doc. 1

Figure 3: TCP splicing

3

Browser

Home
Web server

Replica
Web server

DNS

DNS request

HTTP reply

HTTP request

DNS reply

DNS reply

Home
DNS server

Client
DNS server

request

Figure 4: DNS-based redirection

the replica to which the client is redirected. Until the client’s DNS cache get flushed, the client
keeps contacting the close-by DNS server. This approach is known as two-tier DNS-redirection.

Each of these three methods for Web redirection has its own characteristics that make it not
entirely satisfactory. Most importantly, the three methods require that the actual redirection is
done by a server close to the Web server hosting the requested page. Either it is the Web server
itself, the front end to the Web server (in the case of a Web cluster) or the Web server’s DNS
server. As a consequence, a large number of requests travel up to the server side before the
redirection takes place. DNS-based and two-tier DNS redirection tackle this problem by using
DNS caches. While each first request for a particular domain has to travel to that domain’s DNS
server before being redirected, subsequent requests can in the best case be treated locally using
the client’s DNS or a close-by one in the case of two-tier DNS redirection. In fact, DNS-based
redirection mechanisms rely heavily on temporal locality in accessing documents. Whenever DNS
cache entries get flushed due to staleness or replacement in the cache, a request has to travel all
the way to the Web server side again. CDNs like Akamai make use of two-tier DNS-redirection
and are therefore subject to these limitations.

The worst case with respect to not benefiting from locality is HTTP-based redirection, where
each single request has to be redirected independently of the others. Latency is thus an im-
portant disadvantage of HTTP-based redirection [5]. However, since subsequent redirections are
independent from each other, HTTP-based redirection provides a fine granularity that TCP- and
DNS-based redirection can not offer. For both DNS-based and two-tier DNS redirection, the
granularity of the redirection is the DNS domain name. This makes the use of different replica
repositories for different (sub)directories in a given domain impossible. For example, one may like
to replicate the ’Bioinformatics’ and the ’Computer Systems’ pages from the Vrije Universiteit
Web server http://www.cs.vu.nl/ separately. However, a given Web server, accessible through a
given domain name such as www.cs.vu.nl has to be replicated as a whole or make use of virtual
domains at the Web server level. This coarse granularity also makes it difficult to use different
replication policies for different documents of the same domain as advised in [19].

Another disadvantage of HTTP-based redirection is that it does not provide support for redi-
rection transparency. Clients are aware of the fact that they are redirected since the replica’s
address is passed to the client. This allows a client to cache and reuse references towards repli-
cas, which may conflict with the redirection policy of the Web server. On the other hand, TCP
handoff or TCP splicing are fully transparent but not scalable. The traffic generated by the seg-
ment forwarding in with these transport-level redirection mechanisms makes the methods more
suited for long-lived sessions such as FTP [5, 20] or for use in local-area networks such as with
clusters of Web servers. In that respect, DNS-based redirection is more scalable, as messages need
not be forwarded and travel in the best case to local DNS servers. DNS-based redirection also
achieves a reasonable transparency provided the users are referring to documents using domain

4

San Francisco

Sydney

NaplesSan Diego

Redirection server with replica address

Redirection server

Amsterdam

HTTP- or DNS-based redirection

Distributed redirection

Figure 5: Using distributed redirection to access a close-by replica

names and not IP addresses. In the latter case, the DNS name resolution is by-passed and so is
the redirection.

3 Principles of distributed redirection

Considering the disadvantages of HTTP-, DNS- and TCP-based redirection, we would like to
devise a redirection method offering a fine granularity in redirection without loss of scalability or
transparency. We consider scalability by locality important. First, a request to look for a replica
of a Web page has to avoid traveling a long distance. Second, the selected replica should remain
the nearest possible to the requesting client browser. This is what we refer to as network locality.
In addition, we would like our redirection mechanism to be as independent as possible of temporal
locality, as used for example in DNS-based redirection mechanisms. It should also work well for
pages that are frequently updated and as such cannot simply be replicated everywhere.

Consider a replicated Web page, referred to as http://www.globule.org/index.html that is
available at four Web servers: Amsterdam (the “home” location), Naples San Francisco and
Sydney (see Figure 5). Assume a client browser located in San Diego issues an HTTP request for
the Globule page. With the current redirection mechanisms, the request travels, in principle, to
the home server in Amsterdam and only there is it redirected to a close-by replica. We propose
to improve locality for client HTTP requests by using a collection of redirection servers installed
close to the clients. In our example, the browser’s HTTP request is processed first by its local
redirection server in San Diego

For preserving locality when looking up replicas, a redirection server knows only about pages
that are available in its own area. Since the Globule Web page is not locally available, the redirec-
tion server in San Diego has to issue a lookup request to find a replica. To keep the communication
costs relatively low and preserve locality, a redirection server always tries first to find a requested
Web page in its vicinity and gradually expands the search area if necessary. The gradual search
expansion is achieved by organizing the collection of servers as a hierarchy and by forwarding
the lookup requests along this hierarchy. The organization of the redirection servers is done on
a per-page basis: each page or group of pages has its own separate hierarchical organization of
servers that assist in redirecting HTTP requests. To further enforce locality, only leaf servers store
addresses of replicas. The information on which leaf server holds which replica is distributed to the
relevant intermediate servers so that any replica can be found when issuing a request at any point
of the hierarchy. Figure 6 shows the hierarchy for the page http://www.globule.org/index.html.

5

San Francisco

Sydney

NaplesSan Diego

Amsterdam

USA

Redirection server with replica address

Redirection server

HTTP- or DNS-based redirection

Distributed redirection

Figure 6: Building a hierarchy of redirection servers

San Francisco

San Diego

USA

Figure 7: A forwarding pointer at the USA server

The replica lookup request issued by the redirection server in San Diego is further treated as
follows. It reaches the page’s redirection server for the USA. The intermediate USA server thus
does not have an address for the Web page. However, as shown in Figure 7, it holds a pointer
to a child redirection server, here in San Francisco, which is known to have information about a
replica of the page. The USA server further forwards the lookup request to the redirection server
in San Francisco. San Francisco replies with the address of the Web page completing the lookup
request. It is the task of the client’s redirection server in San Diego to actually retrieve the Web
page from the San Francisco Web server. Finally, the San Diego server can decide to cache the
address. The client browser will benefit from caching, for example, when requesting the inline
images of the document.

This scenario shows that by contacting its local redirection server, a client browser implicitly
initiates a lookup for a replica at the lowest level of the redirection service. In the best case,
the address of a replica can be found at this server (local replica or cached address). If not, the
forwarding of the lookup request takes place. Each step up in the hierarchy of redirection servers
broadens the search. Having lookups always starting locally at the client site and gradually
expanding the search area guarantees us that the potential local and close-by replicas are found
first. This also guarantees us to find a replica wherever it is stored. The forwarding of the
requests along the hierarchy goes no further than necessary and allows us to avoid unnecessary
communication with parties that are far apart. In addition, by keeping the number of levels
in the hierarchy relatively small, we can also keep the latency minimal when forwarding the
requests. Note that this scheme works well even in the presence of updates. Updates to the
(contents of the) replicas themselves such as consistency management are of no influence on the
redirection service. Updates related to adding or removing a replica and therefore its address in

6

USA

Naples

Sydney

World

Americas

Europe
Asia-Pacific

Amsterdam

The Netherlands
Italy

San Francisco

San Diego

City

World

Continent

Country

Figure 8: The hierarchy of domains and a hierarchy of servers

the distributed redirection service are the only visible updates at the redirection-mechanism level.
They are scalably handled by the forwarding mechanism.

4 Detailed design

The redirection service relies on two main components: a hierarchical collection of redirection
servers and the mechanisms of the redirection server itself. This section details what the hierarchy
of redirection servers is and how it is built. It also describes how a redirection server works and
how it makes use of the hierarchy.

4.1 A hierarchy of redirection servers

The collection of redirection servers is distributed world-wide and organized hierarchically in such
a way that each part of the globe is taken care of by a redirection server. The redirection servers
are themselves organized on a world-wide collection of redirection hosts. Each redirection server
belongs to a single domain and operates at one given level of the hierarchy. In our example, a
domain corresponds to a geographical region such as a city, a country, or a continent, as shown in
Figure 8. A domain therefore carries a notion of locality. The hierarchy takes the form of a tree
and is constructed as follow: the leaf domains are aggregated into larger subdomains, which in turn
are aggregated as well and eventually the highest-level domain covers the entire network. Each
domain is allocated to at least one redirection server. However, we can expect multiple redirection
servers and hosts per domain. The root domain, for example, is likely to have thousands of
redirection servers distributed all over the world. For each Web page, one given server of the
collection acts as root server and pages originating from different leaf domains will generally have
different root servers, as suggested in [28]. The full redirection service is therefore organized as
a collection of trees of redirection servers rather than as a unique hierarchy. Note that this full
distribution balances the load across all the servers of the redirection service. The hierarchy of
domains, however, is unique. Figure 8 shows the hierarchy of redirection servers for the Globule
page. The page has one redirection server in each domain of the hierarchy. Together, they form
the hierarchy of redirection servers for the Globule Web page. This hierarchy is organized around
the Amsterdam redirection server which is the home location of the Web page. In other words,
the root server World is located in Amsterdam.

For enforcing locality, a server stores information only on replicas that reside in its own domain.
The address of a given replica is therefore to be found at one redirection server. Moreover, storing
addresses only at leaf servers makes it unnecessary to maintain consistency within the redirection
service. For example, if the addresses of a given document were stored at random servers – leaf
or intermediate servers – it would be necessary to search for addresses each time an update would

7

have to occur. Looking up or deleting an address would imply a tree-wide search respectively for
finding the address the closest to the client of for fetching all the copies of the address to be deleted.
In contrast, using a single address location per replica – in our case a leaf server – preserves the
efficiency of access. Storing addresses only at leaf servers enforces further the locality of accesses
and favor local clients: the address in the leaf is close to the clients as they query their local leaf
node directly; the address is also close to the replica that was placed in that particular domain
since the traffic, in terms of client requests, was sufficiently high. As a whole, the world-wide
collection of redirection servers stores the addresses (URLs) of all the replicas of the Web pages
willing to participate in the service.

In order to be able to find a given address starting from any redirection server in the hierarchy,
intermediate redirection servers store forwarding pointers to other redirection servers located in one
of their subdomains. The presence of such a forwarding pointer guarantees that a replica address
will eventually be found and that the replica lies in a subdomain of the considered intermediate
redirection server. In our example, the US server holds a pointer to a redirection server in the San
Francisco subdomain (see Figure 7).

The hierarchy of domains of the redirection service reflects geographical locality. However, the
locality metrics can also be expressed in terms of network distance such as latency. From now on,
we assume that geographical and network distances are equivalent. Of course, this is extremely
inaccurate. However, it has an impact only on the way the hierarchy is built. Neither does it
influence the locality in the treatment of requests, nor does it change the way we manage the
hierarchy of domains or the redirection servers. Choosing another locality metric would only lead
us to building the redirection service hierarchy in a different way (see for example research on
latency-based topologies [14, 16, 25]).

Finally, for each Web page, the redirection service is brought up with an initial configuration
for the hierarchy of domains, for example, a four-level hierarchy, as shown in Figure 8. This initial
configuration is a rough estimate of what the redirection service needs once the entire service is
up and running. It may be that this initial configuration shows not to be very appropriate and
that the locality has to be improved by creating or removing domains.

4.2 The redirection server

A redirection server has to handle two kinds of tasks: answer incoming requests and manage the
location information for the replicas to be found in its own domain. The following subsections
describe how this is achieved.

4.2.1 Basic request handling

The above scenario showed that a redirection server can receive requests from client browsers or
from other redirection servers which we call client redirection servers. These requests are known
as lookups. They do not modify the information stored in the redirection service but allow clients
to retrieve addresses of replicas of Web pages. In order to let the Web servers hosting replicas
add and maintain replica information, a redirection server also has to support update requests.
An update corresponds to either an insert, which stores the address of a replica in the redirection
service or to a delete, which removes an address from the redirection service. Each redirection
server has to handle these three types of requests.

The technique for handling requests in the redirection service is the same for both updates and
lookups (for details, see [2, 29]). Requests are always initiated at a lowest-level redirection server.
In the case of update requests, the request is forwarded only upwards. For an insert request, the
upper domain has to be contacted to ask permission to store an address. If the permission is not
granted, the upper domain has to care for the insertion of the address itself. This could mean
that other addresses of replicas of this particular document are already stored at an upper level.
This can occur in the case of mobile documents or objects as explained in [2]. In the case of the
World-Wide Web, the documents should be fairly static and the permission should be granted.
The upper domain then installs a pointer towards its child domain. This happens recursively until

8

a server is reached that already holds information for the considered Web page. In such a case
there is no need for forwarding the request any further. It simply means that the upper level
already has a forwarding pointer installed. Installing forwarding pointers guarantees that any
inserted address can be found following a path of pointers from the root to the server where the
address is actually stored.

In the case of a delete request, the upper domain has to be contacted only if the record for the
Web page at the current redirection server becomes empty. In such a case, the pointer at the next
higher-level server has to be deleted. This recursively happens up to the root redirection server if
necessary. This mechanism guarantees that following a path of forwarding pointers always leads
to an address and never to an empty record.

Finally, in the case of a lookup, the request is forwarded upwards in the hierarchy until it
reaches a redirection server that holds information about the Web page that is being looked up.
In the best case, this redirection server is the local leaf redirection server and a replica address is
immediately found. When a pointer is found, the lookup request is further forwarded downwards
to the redirection server referred to by the pointer and eventually reaches the leaf redirection server
that stores the address. The presence of a pointer guarantees us to find an address in one of the
subdomains. This address is eventually sent back to the requesting client browser. Section 4.2.3
will describe the alternatives for sending back replica addresses.

Each redirection server acts independently when dealing with its contents or the with the
requests it receives. It makes use of local information as much as possible in order to reduce the
communication overhead. However, during an update or a lookup request, another redirection
server may have to be contacted. This redirection server can be unreachable because of software
or hardware faults. In such a case, the requesting redirection server can make use of a simple fall-
back mechanism. Whenever a lookup request takes too long to proceed, the initiating server can
take the decision of contacting directly the home server of the document (i.e., the server whose
address is contained in the URL). This fall-back mechanism prevents a client from indefinitely
waiting for a redirection server that is currently unavailable. In the case of update requests, the
client does not have to wait until the full completion of the request but can get an answer directly
after the update has been completed locally.

In addition to the above tasks, a redirection server has to handle the registration of Web
servers willing to participate in the service. This encompasses registering replicas of Web pages
and offering space for hosting replicas. When a Web server is participating, we assume that
all its Web pages are registered in the redirection service. This does not mean that all the Web
pages are actually replicated. The replication granularity is not enforced by the redirection service
but chosen by the administrator of a participating Web site. This administrator can very well
use differentiated replication strategies on a per-document basis, as suggested in [19]. However,
registering all the pages of a participating Web site means that for each Web page of a participating
Web server, there is at least one reference to the Web page to be found in the redirection service:
the original copy of the Web page, located at the home site. We return to the registration procedure
in more details in Section 5.2.

4.2.2 Server selection and placement

The placement of the redirection servers also has its importance. First of all, it is best to choose
the Web page home location as root server. Second, not only the placement of the root is of
importance, consider the following example. Figure 8 shows the hierarchy of servers for the
Globule Web page. The root redirection server for the Globule Web page is placed on a host
physically located in Amsterdam and so is the leaf server Amsterdam. Consider a lookup request
for the Globule Web page traveling up to the root server in Amsterdam. At this point, the lookup
request should follow the forwarding pointers down to the leaf server in Amsterdam. It would be
counter-productive to have this request traveling away from Amsterdam to the European level,
hosted for example in Germany, then to the Dutch level, hosted in Rotterdam and finally back
to Amsterdam where the leaf server resides. Instead, all the redirection servers for the root, the
European level, the Dutch level and the Amsterdam leaf server should be run on the same host

9

located in Amsterdam. Forwarding a lookup along the forwarding pointers on this branch will
have a minimal cost (no networks delays). As it is the case for Web servers, a given host can very
well run several redirection servers possibly acting at different levels of the hierarchy. Moreover,
these servers can be implemented in a single multi-threaded redirection server, if need be. A given
redirection server (or thread) will be identified by both the IP address of its host and an server
identifier.

4.2.3 Caching

DNS-based redirection makes use of caching mechanisms to treat subsequent queries on a given
DNS domain more efficiently. Caching mechanisms can also be applied to distributed redirection.
A redirection server can store the address of a replica it has served for later use. We are considering
here only the caching of addresses of replicas of Web pages. The caching of the page itself is out
of the scope of this paper.

Depending on whether or not address caches are in use at the redirection servers, update and
lookup requests can be handled in three ways. To enable caching at all the levels of the hierarchy,
we can follow what DNS calls a recursive scheme. The response to a lookup request follows the
same path the query used through the hierarchy. Each intermediate server can cache the resulting
address on the way back. In order to put less load on the redirection servers, it is also possible
to use an iterative scheme as for DNS. All the requests within the redirection service are thus
initiated by the leaf server. It is in charge of successively contacting the redirection servers until
the address is found, no forwarding takes place. This scheme makes caching possible only at leaf
servers. Alternatively, we can follow a hybrid approach where the query follows a recursive scheme
and the reply follows an iterative scheme. That is to say, the redirection server holding the address
answers directly to the initiating redirection server. This has the advantage of putting less load
on the intermediate servers when the reply is sent back. It is also cheaper in terms of messages
and distances traveled by the messages than going through all the intermediate servers.

The time-to-live of each address in the cache is a crucial parameter: a short time-to-live can
dramatically reduce the cache hit percentage and makes the caches practically useless. A long time-
to-live will act no better than HTTP-based redirection when replicas are deleted faster than their
addresses in the cache. The user will not keep references to removed replicas, but the cache will
without the user being aware of it. Nevertheless, in the case of distributed redirection, the time-
to-live value can be provided directly by the Web server hosting the replica. Each participating
Web server hosting a replica of a Web page has to fulfill a contract determining precisely what
it should store, keep up-to-date and how long it should maintain a replica. This time value can
be given to the redirection server where the address of the replica is stored and further used as
time-to-live value in the cache of the client redirection server. The standard lookup procedure can
therefore be short-cut by using the address cache and it can be guaranteed than an address found
in the cache is always valid. It is important to note that the contents of a replica can still change
without invalidating the cached addresses.

Enabling the caching mechanisms in the redirection service appears very appealing. Both DNS-
based or two-tier DNS redirection are using such caching mechanisms but have the disadvantage
that cache entries become stale and that the home Web server still has to be contacted after each
cache flush. In the case of distributed redirection, even in the case of a cache miss, we can continue
to exploit locality by gradually letting the request travel up in the hierarchy.

4.3 Building hierarchies of redirection servers

We mentioned in Section 4.1 that the redirection service is organized as a collection of hierarchies of
redirection servers. Therefore, a given redirection server can be part of several hierarchies, serving
for different Web pages or sites. Prior to the forwarding of a request, a redirection server has to
select the hierarchy it will use for the considered Web page. In other words, a redirection server
has to select the parent to which it will forward the request. The parent selection is achieved using
a function mapping the URL of a Web page to a given parent server. The mapping function can

10

be implemented by means of a mapping table or a hash function. This implies that a redirection
server maintains a list of its parent servers and can select one among those when needed. Note that
the same holds for the child servers: a server has to maintain a list of child servers per hierarchy.

Maintaining a list or a cache of parent and child servers means that the structure of each
hierarchy of redirection servers has somehow to be distributed. A hierarchy of redirection servers
is potentially composed of hundreds of thousand servers. It is therefore not reasonable to assume
that the positioning of the servers in a given hierarchy will be broadcast at once by the root to
each server composing the hierarchy. On the contrary, we assume that the hierarchy is constructed
on-the-fly. Whenever a redirection server from domain Di (with 0 < i ≤ 3, i.e. leaf or intermediate
domain, D0 being the root domain) receives a request for a page that is not mapped to a hierarchy
yet (i.e. has no known parent server), the redirection server in domain Di contacts the root server
and gets the IP address and identifier of the parent server in domain Di−1. Once the parent is
known, the request can be forwarded up as described in Section 4.2.1. As an optimization, the
requesting redirection server from domain Di can first select a parent server in domain Di−1 and
then contact the root. The root will either install the proposed server as server for the domain
Di−1 or, if a server for the domain Di−1 is already known, reject the proposed server and send
the IP address and identifier of the correct parent to the server from domain Di. Note that we
assume that the domains are static, i.e. the domain of a server does not change and that a given
server from domain Di knows some servers from domain Di−1 so that it can select parent servers
if need be.

The selection of parent or child servers can be optimized in two ways. First, whenever the
address of a replica of a Web page is installed at a leaf domain D3, the parent and child servers
on the path from the root server to the leaf server in domain D3 are selected and immediately
installed at the relevant servers. Second, the installation of new parent or child servers can be
piggybacked with other messages in order to avoid contacting the root server as much as possible.

The Web page of a non-participating Web site can never be mapped to a hierarchy. This
means that a leaf redirection server receiving a client request for such a page will never have a
parent server for this given page. In the case of a delete, the request will simply be rejected. In
the case of an insert, the leaf server will contact directly the root server and the forwarding of the
insert downwards will care for the installation of the forwarding pointers and the installation of
the parent server wherever it is appropriate. In the case of a lookup, the leaf redirection server will
contact the supposed root of the hierarchy, i.e. the Web page’s home server. The leaf redirection
server can simply send an HTTP request for the desired Web page. The non-participating Web
server will send back the page contents as usual. The redirection server acts as a proxy and returns
the requested page to the client browser. Note that the HTTP protocol can also be used in the
case of a participating Web server, only the answer to the request will differ. The root server can
decide to return directly the page contents as well as the IP address and identifier of the parent
server, the address of a close-by replica as well as the IP address and identifier of the parent server,
or only the IP address and identifier of the parent asking the leaf server to contact its parent.

There is of course a tradeoff between the volume of information concerning the hierarchies that
we want to disseminate and the latency we add to the client requests when lacking this information.
As an optimization of the above protocol, the information concerning the hierarchies can lazily
be distributed to the redirection servers and be stored in a local database. Doing so allows us
to look for parent servers in the local database thus offloading the root server and removing the
parent lookup from the critical path, i.e. the client request. The database can efficiently be
implemented by using a modified DNS server. For example, the modified DNS server can store
a DNS TXT record along with the domain name of each participating Web server, similarly to
what is described in [3]. The TXT record can, for example, contain a parent server IP address
and identifier to be used with this particular domain, or a path to the root server. This means
that one (Web server) domain name is mapped to one unique hierarchy. Another domain name,
for example a virtual server supported by the same Web server, can use the same hierarchy simply
by having the same IP addresses and identifiers stored in the DNS TXT record. It could also be
possible use a finer-grain mapping by storing URL prefixes in the DNS TXT record, allowing the
use of several hierarchies for one given domain name. However, we do no think this is appropriate

11

in the case of the Web servers.

5 Interacting with the redirection server

A redirection server can interact with three kind of entities: Web clients such as browsers, Web
servers and other redirection servers. In Section 4, we described the possible interactions between
redirection servers. This section presents how a browser and a Web server can interact with a
redirection server and how the redirection server is integrated into the Web environment, avoiding
as much as possible modifications at the end-user side.

5.1 Web-client and redirection-server interaction

The client browser interacts with the redirection server to look for replicas of Web pages. This
interaction has to occur as transparently as possible. As such, we have decided to use only well-
known and widely-used protocols such as HTTP and DNS.

5.1.1 Maintaining transparency

First, a client should not be aware it is dealing with a replica of the Web page it requested. A client
should not be able to keep an explicit reference towards a replica of a Web page, for example by
bookmark it. Not preventing this can lead to dangling pointers when the replica is removed. This
is unacceptable if the original page is itself still accessible. Furthermore, discovering new replicas
closer to the client would require an explicit action from the end user, which is also unsatisfying.
This is what we call replication transparency.

It is the task of the client’s redirection server to maintain replication transparency. This is
achieved by not displaying the addresses of the replicas to the client browser. The client sees only
the original location (home location) of a Web page. It has no way of discovering the address of
a replica when using the redirection service and subsequently cannot access the replica directly.
The redirection server at the client side therefore takes care of fetching the replica of the Web
page for the client and acts towards the client as if it were the original Web server.

Second, a client browser should not be aware its requests are going through a redirection
service. The end user should have to do the least possible to take benefit of the redirection
service. This makes the deployment and the use of the redirection service at client sites easier.
We can achieve this by carefully integrating the components of the redirection service with the
existing environment, Web applications and protocols. This is what we call transparency of use.

To satisfy the transparency of use requirement, we decided to integrate our distributed redirec-
tion scheme with the DNS service at the client site. A distributed redirection server has therefore
to act as authoritative DNS server. A client browser automatically accesses the redirection service
by contacting its authoritative DNS server, as it is the case with today’s DNS-based redirection.
Note, however, that the use of DNS in this context remains confined to the client site. Figure 9
shows the message exchanges between the client browser, its authoritative DNS server (component
of the redirection service) and the local redirection server. Note that this authoritative DNS server
can also be charged of mapping URLs to hierarchies of redirection servers.

Let us see how an end-user request for loading the Globule page is handled when using the
redirection service. For loading the page, the browser must achieve two tasks. First, it has to
resolve the DNS-domain name www.globule.org into the IP address of a Web server by contacting
its authoritative DNS server. Second, it has to construct an HTTP request for the page and send
it to the Web server whose address was returned. Since redirection has to take place locally at the
client side, the redirection service has to be integrated in between these two steps. We decided to
act at the DNS level (this choice is discussed in Section 7). We let the client’s authoritative DNS
server resolve the client browser’s DNS request into the address of its local redirection server (see
Figure 9, message exchange 1). Without noticing it, the client browser is therefore asked to contact
the redirection service which it believes to be the Web server of the Globule page. This approach

12

San Francisco domain

Amsterdam domain

Modified
DNS

Client
browser

Redirection
server

Home Web
server

Web
server

¬

 ¯°

®

San Diego domain

Initial user request for
http://www.globule.org/index.html

Modified
DNS

Redirection
server

Modified
DNS

Redirection
server

¬

¯
°

®

DNS name resolution of www.globule.org
HTTP request to supposedly www.globule.org
Lookup request in the redirection service
HTTP request to the Web server hosting the replica
HTTP reply with the contents of the page

Figure 9: Components used for distributed redirection

realizes transparency of use. As for the second step, the browser sends an HTTP request to its
local redirection server (message 2) which looks for a replica as explained in Section 4 (message
exchange 3). The lookup can recursively lead to several message exchanges with other redirection
servers (not shown in the figure). The client’s local redirection server is in charge of fetching
the requested Web page (message exchange 4) and returning it to the client (message 5). Using
an HTTP-redirect at this stage would violate replication transparency. The redirection server at
the client side therefore takes care of fetching the replica of the Web page for the client and acts
towards the client as if it were the original Web server. Note that Web proxies display a similar
behavior. Moreover, the HTTP reply the redirection server sends back to the browser has to use
the original URL to designate the page and thus preserve replication transparency. It also means
that the URLs contained in a replicated Web page are not rewritten to match the location of the
replica. Any subsequent request goes through the redirection server and is not bound to a given
replica. Rewriting would even be counter-productive in the presence of caching at the redirection
server side.

Figure 9 shows the components taking part in the redirection service as well as the message
exchanges between these components. Four entities are used: the Web browser (the client), a
modified DNS server, a redirection server and a Web server. The modified DNS server and the
redirection server are both installed at each participating client and server sites. A Web server site
is said to participate if it hosts replicas of Web pages or has replicas hosted at some other sites.
A client site is said to participate if it has a modified DNS server and a redirection server locally
installed. Figure 9 shows the case where no Web proxy is installed in the browser configuration.

The servers necessary for the redirection service can be integrated into a single component.
The modified DNS server may just be a front-end to the redirection server, as shown in Figure 10.
The redirection server component has therefore to act as (1) a DNS server, resolving DNS names;
(2) a Web proxy, receiving client browser requests and fetching replicas of pages from Web servers
on behalf of client browsers; and (3) a redirection server, performing lookups in the redirection
service.

In our example, the Globule Web page was known from the redirection service and a replica
address was eventually found. It may, however, happen that no replica of the requested Web page
is found in the redirection service. Since all the Web pages of a participating site are registered
in the redirection service, this can only mean that the page has disappeared from the home Web
server. In such a case, the client’s redirection server simply sends back an appropriate HTTP error
code. In the case of a non-participating Web server, the lookup never gets initiated and therefore
does not lead to a lookup miss. Instead, an HTTP request is issued and sent to the supposed root

13

Client
browser

¬

¯

°

®

San Diego domain

Initial user request for
http://www.globule.org/index.html

¬

¯
°

®

DNS name resolution of www.globule.org
HTTP request to supposedly www.globule.org
Lookup request in the redirection service
HTTP request to the Web server hosting the replica
HTTP reply with the contents of the page

DNS HTTP

Redirection
server

Figure 10: Single redirection server component

(i.e. the home server). The client’s local redirection server then acts as a regular Web proxy and
eventually forwards the reply to the client.

Note that when receiving an HTTP client request, a redirection server may have to resolve the
domain name contained in the request. This happens only if this particular domain name cannot
directly be mapped to a hierarchy by the client’s local redirection server. This means either that
the home Web server is not participating in the redirection service or that the parent server for
this hierarchy is still unknown. During the name resolution, extra information can also be found
about the hierarchy, most likely a parent server or a path to the root (see Section 4.3). If a parent
server is found, the client’s redirection server issues a lookup request in the hierarchy, otherwise,
it uses the resolved domain name to contact the home Web server.

An optimization can be applied to the basic redirection protocol. We saw that the DNS, proxy
and redirection servers can be integrated into one single entity. In such a case, the client browser
exchanges two sets of messages with the same entity but using different protocols. We can improve
efficiency by relaxing the transparency constraint: we can let the client browser consider the
redirection server as a Web proxy (see Figure 11). The browser proxy configuration has thus to be
adjusted accordingly. However, to preserve transparency, the redirection service could be directly
integrated at the router or switch level, as it is the case for transparent caches. It would then
intercept TCP traffic for port 80. In the proxy configuration, the protocol does not fundamentally
differ from previous cases. The browser has only to send an HTTP request to the redirection
server which performs the subsequent lookup and DNS name resolution if necessary. For more
details about implementation considerations and deployability, we refer the reader to [1, 18, 17].

5.2 Web-server and redirection-server interaction

A Web server has to declare all the pages it wants to replicate and how much storage space it is
offering for the replicas of other Web servers. To do so, the Web server has to contact its local
redirection server. The latter is in charge of inserting the addresses of the declared Web pages
so that they can be located by others. We call this procedure registration. At the end of the
registration process, the Web server is considered as a participating server. This implies that it
is to be found in the database of participating sites which the redirection servers keep, that the
Web pages that were declared are automatically replicated and that the addresses of the replicas
can be looked-up at client request.

In addition to dealing with Web server registration, a redirection server has to handle update
requests concerning the Web servers’ pages. That is to say, the administrator of a participating
Web server may want to let new pages be replicated and add replicas to the redirection service or
instead remove some. This can be achieved using the update operations described in Section 4. It

14

San Francisco domain

Amsterdam domain

Modified
DNS

Client
browser

Redirection
server

Home Web
server

Web
server

¬ ¯°

San Diego domain

Initial user request for
http://www.globule.org/index.html

Modified
DNS

Redirection
server

Modified
DNS

Redirection
server

¬

¯
°

®

HTTP request to the proxy
Lookup request in the redirection service
DNS name resolution of the replica Web server
HTTP request to the Web server hosting the replica
HTTP reply with the contents of the page

®

Figure 11: Redirection server configured as a proxy

is likely that both registration and management of registered Web pages (update requests) will be
done via a separate management tool serving as a friendly user interface to the local redirection
server. The description of this tool is out of the scope of this paper.

5.3 Integration in today’s World-Wide Web

Despite the functional requirements described above, we want our distributed redirection mecha-
nisms to integrate seamlessly in the current World-Wide Web. We consider integration at three
different levels: at the server implementation level, at the replica naming level and at the appli-
cation level.

To facilitate installation and deployment, we decided to implement our redirection server as
a module in the Apache server. Apache is a well-known and widely-used Web server. It has
the advantage of being easily extendable with new features. Moreover, similar experiments with
integrating replication [17] or redirection [24] features in Apache modules have shown the approach
to be feasible.

Using an Apache module means that the administrator of a site willing to participate has to
install the module by recompiling its Apache Web server. Once the redirection service module
is installed, it is set as authoritative DNS server. All the client DNS requests automatically go
through the redirection server without any action to be taken by the end users.

Another integration point is the naming scheme. To find addresses of replicas of Web pages,
the redirection service has a need for unique, location-independent identifiers for each Web page.
An identifier is associated with a number of location-dependent addresses that denote the physical
location of the replicas. The de facto naming scheme in use in today’s World-Wide Web (i.e.,
URLs) does not meet these requirements. However, considering the large number of users and
applications using this naming scheme, proposing a new naming scheme does not comply with our
goal of seamless integration.

We propose to keep URLs as both human-friendly names and addresses of replicas. The
redirection service is in charge of translating these names into identifiers and then use the identifiers
to look for replica addresses. An identifier is directly derived from a URL. It is composed of a
hash of the URL and by the identifier of the home Web server contained in the URL. The home
Web server identifier is used to avoid collisions due to the hash function. As a matter of fact,
each URL has to be given a unique identifier to be able to look for the correct replica addresses
in the redirection service. The home location identifier could be replaced by the result of another
hash function. An identifier could therefore be computed as the result of two independent hash

15

functions. For a given URL identifier, several replica addresses can be registered in the redirection
service. The address of a replica is simply stored under the form of a URL.

Finally, as for integration at the application level, each participating Web server has to register
its pages with the redirection service. In other words, a participating Web server has to publish
the addresses of its pages in order to make them available through the redirection service. The
registration of pages can be achieved automatically by having a Web page indexer running at the
participating site from time to time and by letting it register the pages it finds if they are not
already. However, such an indexer has also to take into account pages that have disappeared or
pages that have moved. Disappearing pages are dealt with by adding leases to addresses of replicas
in the redirection service and letting the indexer run periodically. The address of a replica that
is not reinserted before its lease expires is deleted from the redirection service, thus facilitating
garbage collection and keeping the indexer stateless – there is thus no need to maintain a list of
registered pages.

Saying that a page has moved means that the URL of the page has changed while its content
remained identical. This happens in most cases after the directory structure has been changed on
the home Web site, for example, a directory was renamed or moved. As a consequence of the move
and of the URL change, the page identifier changed as well. Providing continuity of service in the
redirection service for a given page is important. This means that even if a page has moved (i.e.
is known under a new page identifier), the redirection service should still be able to find replicas,
even if the users are still referring to the page using the old URL and therefore the old identifier.
This cannot be achieved using only naming or unique identifiers. Either it is necessary to use an
extra service mapping URLs to identifiers, or a Web page identifier has to be embedded in the page
contents. The first approach has the advantage of being fully transparent but adds yet another
level of indirection. It uses a name service mapping multiple, potentially broken, URLs to multiple
valid identifiers. After that the redirection service maps the identifiers to still existing Web pages.
The second approach does not require this extra level of indirection but is very user-dependent.
At any point the author of a Web page can remove the identifier embedded in the HTML code.

6 Simulating distributed redirection

To validate the distributed redirection mechanism and estimate the overheads and gains of the
method, we built a trace-driven simulation. This section describes the simulation settings and
presents results.

6.1 Experimental settings

The goal of the simulation is to show how the distributed redirection performs in a realistic Web
environment without having to deploy it in real. One important aspect is to evaluate the gain in
user-perceived latency booked with distributed redirection compared to a direct access to a Web
page (i.e. no redirection, direct access to the home location of a Web page). Another important
point is to show that the load on the home Web server decreases and that this load is evenly
distributed among the Web pages’ replicas.

The simulation is based on HTTP traces from our department Web server www.cs.vu.nl at
the Vrije Universiteit. It spans more than one year (57 weeks from June 7th 2002 to July 20th
2003). This HTTP trace logs for each request received by our Web server the following data:
the time at which the request was performed, the IP address of the requesting client, the HTTP
method, the URL and the file name of the page, the HTTP code returned by the server, the size of
the document, its last modification date and the time it took to process the request at the server.
Prior to the simulation, a considerable amount of data preprocessing is necessary: the HTTP trace
is filtered, the hierarchy of redirection servers for our Web server is built and the placement of the
Web pages’ replicas is determined.

Filtering: Since not all the HTTP requests are suited for our redirection experiment, the
HTTP trace gets first filtered. The only requests to be replayed in the simulator are the well-

16

formatted, successful requests, namely the GET requests with return code 200 with well-formatted
URLs (no space, accents or other illegal characters). From these requests, we produce a filtered
HTTP trace with, per request, the IP address of the client and the file it requested.

Building the hierarchy: We use a four-level domain hierarchy, as shown in Figure 8, formed
by the levels Root, Continent, AS and Network. During the trace filtering, we extract the clients
IP addresses. Each client is given an Autonomous System (AS) using BGP router information [27].
The IP addresses not found in the BGP routing tables are placed in the fake Autonomous System 0.
Each AS is given a continent, based on NetGeo information from Caida [4]. The partitioning into
continents is as follows: Africa, Asia, Europa, North America, Oceania, South America, Unknown.
The continent “Unknown” is used for all the ASes for which we do not have a geographical mapping
and for AS 0.

Knowing the client IP addresses to AS and the AS to continent mappings, we can place each
client into the appropriate domain. First, per AS, the client IP addresses are grouped according to
their network prefix into so called networks groups. The latency within a network group remains
small and enables the distributed redirection mechanism to benefit from locality. The grouping
mechanism uses BGP router information to group the clients using a 16- or 8-byte mask (matching
IP addresses on x.x. ∗ .∗ or x.x.x.∗). The minimal size of a network group is 20 addresses and
the maximum size 300. If a given AS has less than 20 IP addresses, it is not divided but forms
one unique network group. If a given network group has more than 300 IP addresses, it is further
divided (the prefix becomes x.x.x.∗). If, even with the 8-byte mask (x.x.x.∗), a network group
still has more than 300 addresses, it is not further divided as it makes no sense to have network
groups containing only one IP address. The network groups form the fourth level of the hierarchy.
The third level of the hierarchy is formed by the ASes. These ASes are aggregated into continents
and they form the second level of the hierarchy. Finally, the continents are aggregated and the
root forms the first level of the hierarchy.

Whereas the hierarchy of domains is common to all the participating Web servers, the hierarchy
of redirection servers depends on the Web server we are considering. It is built as follows. For
each network group, one IP address is selected to act as a redirection server for this group. One IP
address per AS is selected among the network group redirection servers to act as an AS redirection
server. The same happens for the continent level: for each continent, one of the AS redirection
servers is selected to act as continent server. Finally, a redirection server among the continent
servers is selected for being the root server. Since we are building a hierarchy for the www.cs.vu.nl
Web server, some of the redirection servers have to be explicitly placed in Amsterdam, home
of www.cs.vu.nl, as explained in Section 4.2.2. This means that the redirection servers of the
www.cs.vu.nl AS (AS 1103), the continent server “Europe” and of the Root server are all allocated
to the same IP address. This IP address has to be part of one of the Vrije Universiteit network
groups (IP address matching 192.31.231.∗ or 130.37. ∗ .∗).

At this stage, all the redirection servers are known. The filtered HTTP trace is rewritten: each
client IP address is substituted with the IP address of its local redirection server (i.e. network
group server). Seen from the redirection service point of view, the local redirection server is
the representative for the client. This means that the filtered trace contains only references to
network group servers and not to clients anymore. With respect to the simulation, this substitution
accelerates the replay: the simulator does not have to map a client IP address to a given network
group server.

Placing the replicas: Once the hierarchy of redirection servers is built, we generate the
placement of each unique Web page. Each page is first placed at the home server www.cs.vu.nl,
that is to say at the Vrije Universiteit network-group server that was appointed as Root. For
example, in Figure 8, the addresses of all the www.cs.vu.nl Web pages would be available at the
Amsterdam server. In addition, a replica of the page is placed in each network group where there
are enough clients and therefore enough demand. For example, for each network group where the
number of requests for a given page is greater than five, a replica is placed. At this point, we
can choose to differentiate network groups located at the Vrije Universiteit and network groups
located elsewhere: we can choose to place extra replicas at the Vrije Universiteit or not. To do so,
we use a list of IP addresses of the network-group servers located at the Vrije Universiteit that we

17

extracted when building the hierarchy. This way we can generate two possible placements of the
replicas, one with replicas placed in the Vrije Universiteit network groups and one without.

Measuring the latencies: As an additional step, we measure the latency between each pair
of parent and child redirection servers. These latency values are stored along with the hierarchy
of redirection servers. We also measure the latency between each network group redirection server
and the root redirection server. These latency measurements will be used during the trace replay
to estimate the latencies of the requests with or without redirection.

To measure the latency, we used a modified version of King [10]. King takes benefit of the
existing DNS infrastructure to evaluate the latency between any arbitrary couple of IP addresses.
More precisely, King gives an estimate of the latency between IP addresses α and β by measuring
the latency between α’s DNS and β’s DNS. In order to be able to measure a latency, King needs
that at least one DNS server is recursive. The changes we made to King concern mainly two
aspects. First, while King always returns the minimal latency value it found, we made it possible
to get the maximal value and the average where the minimal and maximal values are removed. For
our experiment, we used averages of 10 latency measures (i.e. average on 8 values, maximum and
minimum excluded). Second, when taking two arbitrary IP addresses, it can happen that these two
addresses are in the same local-area network and are likely to use the same DNS server. In such
a case, King returns some incoherent latency values and sometimes even negative latencies. To
be able to detect errors and to speed-up the latency measurement process, we check for potential
DNS matches before trying to evaluate the latency.

Due to name-resolution errors, unreachable hosts, lack of recursive DNS servers, or matching
DNS servers, errors or missing latencies always remain, leading to gaps in our latency measure-
ments. To reduce the number of gaps, when building the hierarchy, we selected as redirection
server in priority pingable IP addresses. It can still happen that some of the selected redirection
servers are unreachable but we avoid as much as possible selecting an unreachable server in the
AS, continent or root level of the hierarchy.

The last step consists in filling the remaining gaps in the latency measurements. This is
done by calculating statistics on the latencies per level and by using average values per network
group, AS. At the continent level we did not have to fill gaps thanks to the careful selection of
redirection servers. In addition, some of the gaps are easily corrected, for example, the latency
of two redirection servers having a DNS server in common is set to a fixed value. These servers
are assumed to be in the same network. In some cases, the same IP address is acting at different
levels of the hierarchy. In that case, the parent-child latency is set to zero.

6.1.1 Figures about the simulation

• Vrije Universiteit Web server trace

– 57 weeks (up to July 2003)
– 1,633,404 unique client IP addresses
– 2,615,952 unique documents
– 61,670,630 “correct” requests (GET, 200, well-formatted URLs, etc.)

• Building the simulation

– 4-level hierarchy of redirection servers: root - continent - AS - network group
– 180,686 redirection servers

- 1 root server
- 7 continent servers (6 continents + 1 “unknown”)
- 10261 AS servers
- 170417 leaf servers (network groups)

– 1,633,404 ping checks (independent of the hierarchy)
– 351,102 king latency measurements (hierarchy-dependent: latency child-parent & leaf-

root) x 10 (average)
– from 3,718,179 up to 7,688,606 replicas (& number of insert requests) (dependent on

the replica placement policy)

18

– 61,670,630 lookup requests

6.2 Running the simulation

The simulator is built to reproduce the behavior of the collection of redirection servers, in our case
for the Vrije Universiteit Web server www.cs.vu.nl. Again we emphasize that we wish to support
a fine granularity in redirection, as HTTP-based redirection does, while maintaining scalability and
transparency. In that sense, we want to combine the benefits from both HTTP- and DNS-based
redirection mechanisms (DNS or two-tier DNS redirection) into a single scheme.

The simulator is fed with the hierarchy of redirection servers, the placement of the replicas of
the Web pages and the filtered HTTP trace. The first step of the simulation consists in building
the hierarchy and placing the replicas of the Web pages both at the home server and in the other
networks groups if need be. Placing the addresses of the Web pages is done by invoking insert
requests, as described in Section 4.2. For each insert, we log the latency and the number of hops
in the hierarchy the request had to travel.

Once the hierarchy is constructed and replicas are placed the simulator replays the clients
requests found in the filtered HTTP trace. Each request from the trace leads to a lookup request
initiated at the specified network-group server. For each lookup, the simulator logs the latency of
the request, number of hops in the hierarchy it traveled and at which server the address of the
requested document was found. If during the lookup several replicas (i.e. forwarding pointers) are
found, the request follows the branch with the smallest latency. In addition, each redirection server
records how many lookup requests it had to handle during the trace replay, for both client lookup
requests or forwarded lookup requests. This gives us an estimate of the load of each redirection
server “inside” the hierarchy as well as that of the network group servers.

6.3 Result analysis

We ran the simulation a couple of times with the same hierarchy but with different replica place-
ment or document set. The results of our simulations are as follows.

Figure 12 shows the results of the simulation for a trace were all the documents are replicated.
The policy for placing replicas is as follow: each document requested two times by the same leaf
server gets replicated at that location. This replication threshold is of course not realistic in a
real environment but allows us to get a large number of replicas from our Web server trace, which
is mandatory for testing the benefits of the distributed redirection. However, this low replication
threshold only influences the placement of the replicas and not the redirection mechanism in
itself. In addition, once the replicas are placed, we extract from the HTTP trace all the requests
concerning documents requested just once (i.e. not replicated). These requests are not replayed
during the simulation. We rejected in total close to 6% (3,667,549) of the requests (over 61,670,630)
and 61% (1,596,990) of the documents (over 2,615,952). In the following, we refer to this simulation
as “selected documents, threshold 2”.

Figure 12 shows that more that 34% of the documents addresses are served locally (latency
equals zero) and that close to 43% of the addresses are found with a latency less than 4000 µ
seconds. Past this latency threshold, distributed redirection and HTTP redirection (i.e. direct
access to the home Web server) perform similarly. Note that only the latency necessary to the
redirection is taken into account and not the latency necessary for fetching the document. The
latter depends on the location of the selected replica. In the case of HTTP-based redirection,
the redirection part boils down to a direct access to the home Web server; with distributed
redirection, to the access to the closest distributed redirection server holding a replica address
for the requested document. HTTP-based redirection (or here HTTP direct access such as in
a classical Web environment) provides a reference point for our mechanism as it combines both
the worst and the best cases. HTTP-based redirection is the worst case as each request travels
invariably to the home Web server for being redirected. HTTP direct access is the best case as
the request need no more forwarding once it has reached the home Web server and the document
can be served directly.

19

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

Latency (in blocks) (usec)

Selected documents, threshold 2
HTTP redirection

Figure 12: Proportion of requests serviced within a given latency for the “selected documents,
threshold 2” experiment

In order to evaluate the effect of rejecting requests, we performed a simulation with the same
replica placement as used in “selected documents, threshold 2” but without rejecting any HTTP
requests from the trace. In the following, we refer to this simulation as “all documents, thresh-
old 2”. Figure 13 compares the output of “selected documents, threshold 2” with “all documents,
threshold 2”. It shows that including documents having no replica and being requested only a few
times (approximatively 6% of the total number of requests) does not affect the overall performance
of the distributed redirection.

Figure 14 shows the result of a simulation in which we increased the replication threshold to five
requests. It leads to a simulation setting where close to 90% of the documents are not replicated.
With respect to the distributed redirection mechanism, this is a worst-case scenario. The majority
of requests will travel through the hierarchy, up to the root server, thus accumulating latencies.
In the following, we refer to this simulation as “all documents, threshold 5”.

Figure 14 shows that even with a small number of replicated documents, the distributed redirec-
tion performs better than HTTP redirection up to 3000 µ seconds. Close to 16% of the documents
addresses are served locally (latency equals zero) and at 3000 µ seconds, 23% of the requests have
been served against 24% for HTTP redirection.

Figure 15 shows the number of hops for the different simulations. We count hops as follow: one
hop is counted for transferring the HTTP request from the client browser to its leaf redirection
server. After that, each time a redirection server forwards the lookup request to its parent server,
one extra hop is added. In the case of HTTP redirection, the number of hops is always one.

The conclusions we can draw from the different simulations is that most of the requests served
in few hops (one or three) show a redirection latency smaller than the one of HTTP redirection.
They are likely to improve the user perceived latency, assuming the Web server of the target replica
serves the request with a reasonable latency. The lookups requiring more hops in the hierarchy of
redirection servers are too costly and do not really improve the performance experienced with a
direct access to the home Web server.

Figures 16 and 17 show the latency for the “selected documents, threshold 2” simulation when
including server time. As an estimate for the server time, we use either 1000 µ seconds or 3000 µ

20

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

Latency (in blocks) (usec)

Selected documents, threshold 2
All documents, threshold 2

HTTP redirection

Figure 13: Proportion of requests serviced within a given latency: comparison of the “selected
documents, threshold 2” and “all documents, threshold 2” experiments

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

Latency (in blocks) (usec)

All documents, threshold 5
HTTP redirection

Figure 14: Proportion of requests serviced within a given latency for the “all documents, thresh-
old 5” experiment

21

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 3 5 7

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

Number of hops

All documents, threshold 5
Selected documents, threshold 2

All documents, threshold 2
HTTP redirection

Figure 15: Proportion of requests serviced within a given number of hops

seconds, respectively referred as optimistic or pessimistic. For each replayed request, we multiply
the number of hops by the server time.

Figure 16 shows the output in the case of an optimistic server time. The curves are slightly
shifted compared to Figure 12. Close to 34% of the requests are now serviced in 1000 µ seconds.
The distributed redirection still performs better than HTTP redirection up to 5000 µ seconds
(more than 42.3% of the requests in the case of distributed redirection, 41.8% in the case of
HTTP redirection). As previously, past this point, distributed redirection and HTTP redirection
perform similarly.

Figure 17 shows the output in the case of a pessimistic server time. The client-perceived
redirection latency still remains interesting for the requests served locally (34%). However, the
curves show that the server time affects the results quite heavily when a request has to visit several
redirection servers.

Let us now concentrate on the overall load placed on the distributed redirection servers. In
the following, we consider the “selected documents, threshold 2” simulation. Our simulations show
that the load on the various distributed redirection servers is not balanced. The load here is
measured in terms of number of processed operations. The imbalance comes from the fact that
the clients’ HTTP requests in our Web server trace are themselves not balanced. The most loaded
leaf redirection server is the VU leaf server since most of the clients are located at the Vrije
Universiteit and because we did not replicate documents within the Vrije Universiteit’s network.
However, the load on the distributed redirection servers is decreasing when we reach higher levels
(root, continent) in the hierarchy. The root server gets to see only a small proportion of the client
requests, namely 0.12%. Figure 18 shows the repartition of operations in the different levels of the
hierarchy.

The conclusions we can draw from the above figures is that while the load is not evenly
distributed among the (leaf) redirection servers, we still offload the root server. Getting the overall
load evenly distributed may mean reconfiguring the distributed redirection servers hierarchy on
the fly: some domains are clearly too large (in number of clients) and some others are too small.
This comes from the fact that the hierarchy of redirections servers has been built using geographic
and routing properties and not by looking at the access patterns of the clients. The placement

22

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

Latency (in blocks) (usec)

Selected documents, threshold 2
HTTP redirection

Figure 16: Proportion of requests serviced within a given latency with optimistic server time for
the “selected documents, threshold 2” experiment

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

Latency (in blocks) (usec)

Selected documents, threshold 2
HTTP redirection

Figure 17: Proportion of requests serviced within a given latency with pessimistic server time for
the “selected documents, threshold 2” experiment

23

 0

 10

 20

 30

 40

 50

 60

 70

Root Continent AS

Pe
rc

en
ta

ge
 o

f p
ro

ce
ss

ed
 o

pe
ra

tio
ns

Level in the hierarchy

Number of operations

Leaf

Figure 18: Distribution of operations among the different levels for the “selected documents,
threshold 2” experiment

of the replicas of course also has an impact on the distribution of the load. This means that
installing a new replica close to a set of clients may trigger a reconfiguration of the hierarchy in
that particular zone.

7 Discussion

This section discusses the merits and disadvantages of distributed redirection. It gives a detailed
comparison of the distributed redirection with other Web or non-Web redirection mechanisms as
well as other mechanisms such as Web caches.

7.1 Web redirection mechanisms

Section 2 gave an overview of the the redirection mechanisms currently in use in today’s World-
Wide Web, namely application-level, transport-level and DNS-based redirection. Table 1 shows
a comparison of the distributed redirection mechanism with HTTP-based redirection, DNS-based
redirection and TCP handoff. This table refines an earlier study on DNS-based redirection [24]
and incorporates remarks from [5]. In this table, the number of stars expresses how well or badly
a redirection mechanism supports a given feature. A rate of five stars denotes the best mechanism
for the considered criterion. The other mechanisms are rated relative to the best. A single star
rates a redirection mechanism that does not support the considered feature or does it in a very
unsatisfactory way.

The first property denotes how transparent the redirection is to clients. HTTP-based redirec-
tion performs the worst here: references to replicas are explicitly displayed to clients. TCP handoff
performs the best. Since redirection is achieved at the network level, clients are not aware they
are redirected. DNS-based redirection is less transparent than TCP handoff since it operates only
at the domain-name level. The redirection is short-cut if the clients use IP addresses to access
Web pages rather than names. Distributed redirection is as transparent as DNS-based redirection
but has the advantage that it it cannot be short-cut if used as a proxy.

24

No. Property HTTP-based
redirection

TCP handoff DNS-based
redirection

Distributed
redirection

1 Redirection transparency * ***** *** ****
2 Level of integration ***** ***** ***** *****
3 Scalability **** ** ***** *****
4 Deployment ***** * **** ****
5 Redirection granularity ***** *** *** *****
6 Client loc. identification ***** ***** *** ***
7 Multiple response * * ***** ****
8 Server control ***** **** **** *
9 Simplicity (implementation) ***** ** **** ****
10 Replica selection (static) ***** *** *** ****
11 Replica selection (dynamic) ***** *** *** *
12 Installation transparency ***** ***** ***** **
13 Load on the primary * ** ** *****
14 Responsiveness * ** *** *****
15 Support for massive replication ** * ** *****

Table 1: A comparison of redirection mechanisms

The level of integration of the four redirection protocols in the existing World-Wide Web
infrastructure is equally good. All four are based on well-known protocols and require no protocol
modification.

The third criterion evaluates how scalable the different redirection mechanisms are. Both
DNS-based and distributed redirection perform well with respect to scalability. The DNS name
resolution mechanisms are widely used in today’s Internet and have proved to be very efficient and
scalable. An important aspect is to be found in DNS caching features. Distributed redirection is
based on scalable mechanisms similar to those of DNS. It relies less heavily on caching, however, the
load of redirecting is fully distributed over the whole collection of redirection servers. HTTP-based
redirection implies that each HTTP request goes to the home server before being redirected. In
that respect, it is less scalable than DNS-based and distributed redirection. Finally, TCP handoff
shows a behavior absolutely not suited for wide-area networks. The traffic generated by the
redirection mechanisms breaks down the scalability to only local networks.

The deployment property gives a hint about the ease of installation and maintenance of each
redirection method. HTTP-based redirection scores the best here since it relies entirely on the
HTTP protocol. No extra software is required. This is not the case with DNS-based and dis-
tributed redirection. Both mechanisms can be implemented by means of an Apache module and
require Apache to be recompiled. With TCP handoff, modifications of the operating system and
network gateways are necessary. It thus rates the worst.

The fifth property denotes the level of granularity at which each of the four mechanisms achieve
redirection. HTTP-based redirection shows to have a fine granularity. The selection of the replica
can be made on a per-page basis. This enables flexibility when redirecting. It scores the best,
together with distributed redirection which also supports fine-grained redirection. TCP handoff
and DNS-based redirection work, respectively, at the TCP end-point (IP address and port number)
or DNS-domain levels which provides a coarser-grained redirection mechanism.

The sixth criterion expresses how accurately we can establish the location of the client browser.
This piece of information is important when the replica selection is based on geographical distance.
To select a replica as close to the client as possible, the client location has to be evaluated. HTTP-
based redirection and TCP handoff perform the best here. In both cases, the address of the client
host is known when the redirection takes place. DNS-based redirection provides a less accurate
evaluation: only the location of the client’s authoritative DNS server is known, which is usually
rather inaccurate [12]. Distributed redirection is as inaccurate. A client is represented by its

25

redirection server, which is likely to be located in its own local network (the redirection server
should be co-located with the local Web server).

The multiple response property specifies whether it is possible to get the addresses of several
replicas as part of a reply. Both HTTP-based redirection and TCP handoff do not support this
feature. With DNS-based redirection, it is possible to get the addresses of several hosts to redirect
to. It gets the highest mark. Distributed redirection also allows a client to get a multiple response
but is slightly less efficient than DNS-based redirection. The hierarchy of redirection servers has to
be recursively browsed through possibly up to the root to find the requested number of addresses.

The server control criterion shows how much control the redirection method leaves to the
home server of the Web page. HTTP-based redirection scores the best since each URL can
be independently redirected by the home server itself. TCP handoff and DNS-based redirection
perform somewhat worse as they allow only per-address or per-domain-name redirection. However,
the redirection is still decided by the server side (gateway or DNS server). Distributed redirection
completely removes the control of the redirection from the home server. This can be seen as a
disadvantage if the redirection has to be achieved on criteria such as the load of the different
replicas, although such decisions can easily be taken by redirection servers.

The ninth property denotes the internal complexity of the implementation. It is kept to
a minimum with HTTP-based redirection since redirection is directly supported by the HTTP
protocol. TCP handoff shows here to be a rather complex solution involving operating system and
network gateway modifications. Both DNS-based and distributed redirection approaches exhibit
similar properties for the complexity of their implementation. They score a bit worse than HTTP-
based redirection.

The tenth property expresses how easy it is to select a replica based on static criteria such as
location or specific replica properties. HTTP-based redirection makes it easy to select a specific
replica based on some static properties of this replica. It scores the best. TCP handoff and DNS-
based redirection are slightly worse as they allow only coarse-grain redirection. Only the initial
request to a given domain or address is actually selected. For the other Web pages with the same
address or domain name, such as the inline images of a Web page, the client is redirected to the
same replica. The distributed redirection approach enables a fine-grain redirection but changing
the selection criterion requires a hierarchy reconfiguration (the hierarchy of redirection servers is
normally built on a locality criterion).

Replica selection can also be based on dynamic criteria such as the load of each replica. This
is represented by the eleventh criterion. HTTP-based redirection also makes it easy to select
a specific replica based on dynamic properties. For example, the home location knows all the
available replicas as well as their estimated load (we can not take into account the load induced
by the clients accessing directly the replicas). It is therefore easy to use this information to
redirect new incoming requests. TCP handoff and DNS-based redirection are slightly worse as in
the case of static criteria. Distributed redirection makes it more difficult to deal with dynamic
criteria. The dynamic information, for example, the load, has to be distributed and the hierarchy
of servers may have to be adapted (or, if not, we are forced to browse up to the root for each
lookup request). However, any redirection server can take decisions based on local and as such
incomplete information. For example, a redirection server having a forwarding pointer to a replica
address can count the number of clients it redirected to that specific address. In other words, the
load can be taken into account but cannot reflect the global load on a Web page or even on a
given replica.

The twelfth property expresses how transparent the installation of the redirection mechanism
is. It quantifies the actions that have to be taken at the client side (browser) to make use of the
redirection mechanisms. Nothing has to be installed at the client side for using HTTP redirection,
TCP handoff or DNS-based redirection. In these three cases, actions are taken at the server
side (gateway or DNS server), if not at the server itself. With distributed redirection, the client
needs to contact the redirection server, whether it is acting as the authoritative DNS server or
as the client’s proxy. In both cases, the system administrator of the client site has to install the
redirection server (Apache module) and configure it as the authoritative DNS server. Due to this,
distributed redirection scores the worst here.

26

The thirteenth criterion evaluates the load set on the home Web server or on the Web server
side. The HTTP-based redirection performs the worst as any client request as to be dealt with by
the home Web server. TCP handoff and DNS-based redirection perform slightly better in the sense
that requests reach the home server side (DNS or gateway) and not the server itself. However,
there is still traffic that potentially travels large network distances. The distributed redirection
performs the best here since the redirection is fully distributed. The home Web server or server
side do not have to be contacted at all since the redirection occurs locally to the client.

The fourteenth criterion examines responsiveness in terms of expected latency. HTTP-based
redirection performs the worst. For each request, the home Web server has to be contacted,
process the request, choose the replica and send back the redirection message. TCP handoff is
slightly better since only the server-side gateway has to be contacted. DNS-based redirection is
also slightly better as it can benefit from DNS caches. Distributed redirection shows here to be the
best. The good responsiveness comes from the fact that mostly local communication is involved. A
client contacts its local redirection server which is in charge of finding the closest possible replica.
A lookup goes no further than necessary in the hierarchy. The latency is kept to a minimum.

The last criterion evaluates how easy it is for each method to support massive replication.
HTTP-based redirection relies on the home Web server for achieving the redirection. First, the
home server has to know about all the replicas. Second, it has to handle all the incoming client
requests. When one of its pages becomes very popular, the home server can therefore easily become
a bottleneck. HTTP-based redirection thus does not score well for this property. However, TCP
handoff scores worse. As for HTTP-based redirection, all the requests have to travel to the
home server side. Moreover, TCP handoff scales only to local-area networks, it cannot easily
support massive replication of Web documents. DNS-based redirection benefits from its caching
capabilities. However, as for HTTP-based redirection or TCP handoff, the traffic and the load
generated at the home Web server side makes it inappropriate for supporting a very large number
of replicas. Distributed redirection shows a good behavior as the load is fully distributed over the
hierarchy of servers. It gets the highest mark.

As a summary, the most important problems of the different methods are as follows. HTTP-
based redirection shows good behavior in most of the criteria but it severely lacks transparency of
redirection and responsiveness. TCP handoff is complex and not usable in a wide-area environ-
ment. DNS-based redirection enables only coarse-grained redirection and gives only an approxima-
tion of the client location. Distributed redirection can be slightly more accurate in client location
identification but it does not show such a dramatic change compared to DNS-based redirection.
Moreover, the control let to the home Web server and the possibility of selecting replicas on dy-
namic criteria are more limited than with HTTP- or DNS-based redirection. Using an entirely
decentralized mechanism makes it more difficult – but not impossible – and costly to take into
account changing information over the different replicas since those have to be distributed. Never-
theless, dynamic information can be gathered independently at each redirection server, such as the
load expressed in number of clients having requested a given page or address. This local informa-
tion can be used to take decisions on where to redirect a client. If need be, this local information
can be transfered to other redirection servers, potentially up to the root, using piggy-backing
techniques.

The bad score of distributed redirection at properties eight and eleven can be dealt with.
In any of the three other Web redirection mechanisms, controlling to which replica the client is
redirected is considered as a task of the home Web server. The home Web server has therefore
to gather information about the load of its different replicas and redirect the clients accordingly.
We consider that this should be dealt with by the replication policy associated to each replicated
Web document. A Web page, its inlined images and other embedded or related documents can
be seen as a whole, let us call it a Web object, as in [11]. Each Web object is given a replication
object in charge of implementing its replication policy. The replication object has to gather load
information, for example, and creates new replicas as the need arise. This separation of concerns
lets the home Web server concentrate on its main task: serve Web pages.

27

7.2 Other Web mechanisms

Web caches provide an alternative for redirection. Each HTTP request that a client generates may
first travel to the local cache in order to check whether the Web page has already been downloaded.
Hierarchical caches are based on the same principle [7]. The caches are organized as a tree and
requests are forwarded to higher-level caches. If a Web page was not found in the local cache, the
request is forwarded to the upper-level cache. Hierarchical caches are commonly used. However,
they do not guarantee that a request returns the closest replica. They do not guarantee either
that a replica is inevitably found if there is one somewhere in the cache hierarchy.

Cooperative caches aim at short-cutting the forwarding of requests and at taking benefit of
pages cached at low-level caches [26]. Cached data is partitioned (and sometimes replicated)
among the different sites participating in the cooperative cache. By maintaining a directory of
cache entries at each site, a cached Web page can be found in at most two hops: one hop to the
local cache and to fetch the actual location of the cached page, one hop to the cache where the
page is currently stored. However, two problems arise with cooperative caches [30]. First, the
maintenance of the directory of cache entries is often costly. Second, the cache hit percentage
appears to be low in the current Web, making it not worth it to maintain the directory.

Cooperative caches show similarities with distributed redirection: information is kept on where
a given Web page can be found, often rather than the page itself. However, a lookup in the
redirection service guarantees us to find a replica wherever it is stored if it has been registered in
the service. Distributed redirection can hopefully provide benefits of cooperative caches without
the cost of it.

7.3 Discussion concerning the design

In the context of the Web, there are a number of alternatives for intercepting and redirecting
queries. The level at which the redirection is performed can also vary: browser, proxy, DNS, home
Web server. This section justifies why we opted for the DNS level.

One of our goals is to achieve transparency of use. An end user should have to do the least to
benefit from distributed redirection. In addition, it should be easy for the administrator of a local
network to install and maintain the distributed redirection components.

Integrating the redirection mechanisms in a browser is not an option with respect to trans-
parency of use: forcing users to install a customized browser is anything but transparent. Moreover,
customizing a browser implies a major effort in developing and releasing new versions, whether the
browser is developed from scratch or based on existing publicly available source code. For these
reasons, our redirection service is not directly integrated into a browser. However, this would be
the best option with respect to efficiency and integration in the current Web. It would also be
the best solution to accurately position the client hosts and therefore to enforce a better locality
when redirecting requests (in our design, the location of the client is assimilated to the location
of its authoritative DNS server).

Since we want the redirection decision to be taken as close to the client as possible, redirecting
at the home Web server is not ideal as the home server can be located far away from the client.
Moreover, a home Web server can redirect client requests to any suitable replica and not necessarily
the closest. This depends on the home Web server own redirection policy. We consider that
redirecting at the home Web server side is already “too late”. This method, therefore, does not
provide a satisfactory solution. It can, however, be used as a fall-back mechanism if a redirection
server becomes unreachable.

Working at the DNS level has the advantage that no end user has to take special actions to use
the redirection service. The authoritative DNS server for the client’s domain is a modified server
that takes care of the redirection or redirects the client to a separate process. The disadvantages
are that any DNS request at the client side will go through the modified DNS and that the client
side administrator has of course to install the redirection server components and configure them
as authoritative DNS server.

Finally, the Web proxy approach offers a slightly less transparent solution. An end user has

28

to configure his browser: either he explicitly sets its proxy or he specifies that he wants to use the
standard proxy configuration at his site. The administrator has of course to install the redirection
server as proxy. As presented in Section 5.1, the DNS and proxy approaches can be easily com-
bined. The end user is then free to choose whether he wants to configure his browser or benefit
from a fully transparent distributed redirection mechanism.

8 Conclusion and future work

The redirection mechanisms used in today’s World-Wide Web such as HTTP-based redirection,
DNS-based redirection or TCP handoff exhibit characteristics that make them not fully satisfac-
tory. The main concern is that with any of these methods, a home-based approach is used. The
request of a client is in most cases redirected only after it has reached the Web page’s home lo-
cation. Not only does this put a load on the home Web server and does it generate traffic on the
network, it also induces latency that can be perceived by the end user.

We devised a scheme where the redirection is fully distributed and combines the benefits of
HTTP- and DNS-based redirection. An important aspect is that the network locality is preserved:
the redirection decision has to take place as locally to the client as possible and the selected replica
of the requested Web page has to remain close to the client. In such a way, we avoid unnecessary
communication for both finding a replica and contacting it. Latency is kept low. This lets the
system scale well, while there is no need for temporal locality anymore as it is the case with
DNS-based redirection schemes. Distributed redirection also provides a fine-grained redirection
mechanism as HTTP-based redirection does, while preserving transparency: a user is never aware
that his requests are being redirected.

Distributed redirection makes use of a world-wide collection of redirection servers organized as
a collection of trees, one per Web page or group of Web pages from the same leaf domain. Leaf
servers store addresses of replicas and perform lookup requests on behalf of clients. A redirection
server supports both DNS and HTTP protocols for interacting with clients, as well as its own
protocol for looking up and updating addresses of replicas. Each participating client or server site
has to run its own redirection server.

Future work encompasses additional experiments and performance measurements of our redi-
rection scheme, for example, by comparing it with DNS redirection and two-tier DNS redirection.
DNS redirection mechanisms benefit from caching. This means that we need to enable the caching
of replica addresses in the distributed redirection service as well as in the simulator. Experiments
will include various scenarios with which we will evaluate the influence of the time-to-live of the
DNS cache entries for DNS-based and two-tier DNS redirection. We will compare these results
with the ideal time-to-live value used in distributed redirection (the real time-to-live of the replica
of the document specified at installation time). Using a simulation again, we will counter the non-
reproducibility effect implied by using caches. We expect to show that using the real time-to-live
value of a replica significantly benefits to the user.

Further extensions relate to making the hierarchy of distributed redirection servers more dy-
namic, for example to let the redirection servers adapt their load. Our experiments have shown
that the load is not balanced among the servers, simply because the requests are not balanced.
This comes from the fact that the hierarchy of redirection servers has been built using geographic
and routing properties and not by looking at the access patterns of the clients. The placement
of the replicas of course also has an impact on the distribution of the load. This means that
installing a new replica close to a set of clients may trigger a reconfiguration of the hierarchy in
that particular zone.

The distributed redirection mechanisms have to integrate seamlessly in the current World-
Wide Web. A redirection server will run as an Apache module and be used transparently by
being configured as an authoritative DNS server. We are currently in the process of implementing
such a module, which aims at being integrated with another Apache module supporting document
replication currently in development within the Globule project [17]. The replication module is
using a more peer-to-peer approach. This is another motivation for making the hierarchy more

29

dynamic and trying to avoid as much as possible to distribute information about the hierarchy.
Hints about bringing dynamicity into the hierarchy are given in [1].

Integration with the current World-Wide Web also encompasses supporting dynamic Web
documents. Commercial services such as online bookstores, computers hardware shops or music
stores do not deliver static Web pages but generate them based on history of requests, clients’
profile and request parameters. Such dynamic Web documents are composed of both code (e.g.
EJBs, CGI scripts, PHP, ASPs) and data stored either in databases or files. Replicating such pages
requires replicating both the application code and its data. The complexity of the replication
mechanism relies in the trade-off it has to make between fast access to a dynamic page and
maintenance of the consistency of the replicated data. In other words, the overhead of maintaining
the consistency of the data should not counter-balance the benefits of replicating the dynamic page.
As such, replicating the data everywhere is not suited for applications with a high percentage
of data updates. The CDN Akamai, for example, tackles this problem by enabling fragment
caching [6]: the responses for popular requests are cached, which means that the dynamic document
need not be regenerated but is simply retrieved from the cache. This mechanism is suitable for
requests that do not modify the application data and are not unique, for example, a request for
the local weather is time and location dependent. An alternative to fragment caching is to use on-
demand application replication as proposed in [22]. On-demand application replication replicates
(chunks of) data only where frequently accesses. This reduces the data-consistency management
overhead while improving the user-perceived latency. The mechanism cares for a strong consistency
between the replicas (code and data) and is fully transparent to both the user and the application
programmer. On-demand application replication can be further combined with fragment caching
as suggested in [22] allowing the system to perform well for a wide range of application workloads
and access patterns. The redirection technique is orthogonal to the redirection mechanism itself.
On-demand application replication as proposed in [22] uses DNS-based redirection mechanism can
but can be combined with distributed redirection to retrieve code, data or even fragments. It
is, however, important to note that the time-to-live of a fragment and therefore its address in
the distributed redirection service will be considerably shorter than regular replicas of static or
dynamic pages. As such, fragment addresses will generate more update traffic in the distributed
redirection service.

Finally, another possible extension of the distributed redirection scheme would be to support
replica or object mobility. In such a case, it could be necessary to store addresses also at inter-
mediate nodes and not only at leaf servers. For a highly mobile object, the mobility pattern can
be analyzed and the intermediate server storing its address be strategically chosen on the path
of the object, as proposed in [2]. Internal mechanisms for supporting mobility are partly present
in the distributed redirection service, for example when a leaf server willing to install the address
of a replica in the redirection service requires permission to store the address. Additional mech-
anisms for moving addresses in the hierarchy and gathering information about mobility patterns
are described in [2].

References
[1] A. Baggio. Distributed redirection for the Globule platform. Technical Report IR-CS-010, Vrije Universiteit,

Oct. 2004. http://www.cs.vu.nl/globe/techreps.html.

[2] A. Baggio, G. Ballintijn, M. van Steen, and A. S. Tanenbaum. Efficient tracking of mobile objects in Globe.
The Computer Journal, 44(5):340–353, 2001.

[3] A. Bakker, I. Kuz, M. van Steen, A. S. Tanenbaum, and P. Verkaik. Global distribution of free software (and
other things). In SANE, Maastricht, The Netherlands, May 2002.

[4] Caida. Netgeo – the internet geographic database. http://www.caida.org/tools/utilities/netgeo/.

[5] B. Cain, A. Barbir, F. Douglis, M. Green, M. Hofmann, R. Nair, D. Potter, and O. Spatscheck. Known CN
request-routing mechanisms. Internet draft, May 2002.

[6] J. Challenger, P. Dantzig, A. Iyengar, and K. Witting. A fragment-based approach for efficiently creating
dynamic web content. To appear in the ACM Transactions on Internet Technology, 2004.

[7] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K. Worrell. A Hierarchical Internet Object
Cache. In Annual Technical Conference, pages 153–163, San Diego, CA, Jan. 1996. USENIX.

30

[8] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl. Globally distributed content delivery.
IEEE Internet Computing, 6(5):50–58, September-October 2002.

[9] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext Transfer
Protocol – HTTP/1.1. RFC 2616, June 1999.

[10] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating latency between arbitrary internet end hosts.
In SIGCOMM IMW 2002, Marseille, France, Nov. 2002.

[11] I. Kuz. An Approach to a Scalable Wide-Area Web Service. PhD thesis, Vrije Universiteit, 2003.

[12] Z. M. Mao, C. D. Cranor, F. Douglis, M. Rabinovich, O. Spatscheck, and J. Wang. A Precise and Effi-
cient Evaluation of the Proximity between Web Clients and their Local DNS Servers. In Annual Technical
Conference. USENIX, June 2002.

[13] P. Mockapetris. Domain names - concepts and facilities. RFC 1034, Nov. 1987.

[14] T. E. Ng and H. Zhang. Predicting internet network distance with coordinates-based approaches. In 21st
INFOCOM Conference, pages 170–179, New York, NJ, USA, June 2002. GNP.

[15] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel, and E. Nahum. Locality-Aware Request
Distribution in Cluster-Based Network Servers. In 8th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 205–216, San Jose, CA, Oct. 1998. ACM.

[16] M. Pias, J. Crowcroft, S. Wilbur, S. Bhatti, and T. Harris. Lighthouses for scalable distributed location. In
2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA, USA, Feb. 2003.

[17] G. Pierre and M. van Steen. Globule: a platform for self-replicating Web documents. In 6th Int. Conf. on
Protocols for Multimedia Systems, pages 1–11, Enschede, The Netherlands, Oct. 2001.

[18] G. Pierre and M. van Steen. Design and implementation of a user-centered content delivery network. In Third
IEEE Workshop on Internet Applications (WIAPP 2003), San Jose, CA, USA, June 2003.

[19] G. Pierre, M. van Steen, and A. S. Tanenbaum. Dynamically selecting optimal distribution strategies for Web
documents. IEEE Transactions on Computers, 51(6):637–651, June 2002. http://www.cs.vu.nl/∼gpierre/
publi/DSODSWD toc2002.php3.

[20] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959, Oct. 1985.

[21] M. Rabinovich and O. Spastscheck. Web Caching and Replication. Addison-Wesley, Reading, MA., 2002.

[22] S. Sivasubramanian, G. Pierre, and M. van Steen. Replicating web applications on-demand. In IEEE Inter-
national Conference on Services Computing, Shanghai, China, Sept. 2004.

[23] W. Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley, 1994.

[24] M. Szymaniak. DNS-based client redirector for the Apache HTTP server. Master’s thesis, Warsaw University
and Vrije Universiteit, June 2002.

[25] M. Szymaniak, G. Pierre, and M. van Steen. Scalable cooperative latency estimation. In Tenth International
Conference on Parallel and Distributed Systems (ICPADS), Newport Beach, CA, USA, July 2004.

[26] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Considerations for Distributed Caching on the Internet.
In 19th International Conference on Distributed Computing Systems, pages 273–284, Austin, TX, June 1999.
IEEE.

[27] University of Oregon. The route views project. http://www.routeviews.org/.

[28] M. van Steen and G. Ballintijn. Achieving scalability in hierarchical location services. In 26th International
Computer Software and Applications Conference (CompSac), pages 899–905, Oxford UK, Aug. 2002.

[29] M. van Steen, F. Hauck, G. Ballintijn, and A. Tanenbaum. Algorithmic Design of the Globe Wide-Area
Location Service. The Computer Journal, 41(5):297–310, 1998.

[30] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. R. Karlin, and H. M. Levy. On the scale and
performance of cooperative web proxy caching. In Seventeenth Symposium on Operating Systems Principles,
pages 16–31, Kiawah Island Resort, SC, USA, Dec. 1999.

31

