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The results are presented of a two-dimensional flexural modelling study of the lithosphere 
underlying the southern Pyrenees and the Ebro Basin. The modelling is based on a crustal-scale 
balanced cross-section along a profile through the north-eastern part of the Iberian plate. Two 
time slices of the structural evolutions of the mountain chain are modelled: the present day 
configuration and the configuration at Middle Lutetian time (47 Ma), where important structural 
and sedimentological changes are observed. The flexure model incorporates lateral variations in 
the effective elastic thickness (EET) of the lithosphere. The present day deflection in the profile is 
simulated using boundary forces and a northward decreasing EET that varies from 30 to 11 km. 
Models for Middle Lutetian times indicate EET values of 26-18 km in the northern part of the 
profile, assuming that the EET at the distal margin of the Ebro Basin has not significantly changed 
since Middle Lutetian times. These higher values for the EET at Middle Lutetian times suggest 
that the effect of the Cretaceous extensional phase on the present day flexural rigidity is small 
and, therfore, the inferred northward decreasing rigidity is predominantly related to the Pyrenean 
collision. Flexural modelling provides also constraints for the palaeo-elevation of the inner part of 
the chain. Including the assumption that the EET at the distal margin of the Ebro Basin has not 
significantly changed since Middle Lutetian times, the model predicts a maximum palaeo- 
elevation of -2000 m, which is in agreement with geological observations concerning the 
relation between basin-fill and palaeo-elevation. 
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As demonstrated by several studies during the last 
decade (e.g. Beaumont, 1981; Flemings and Jordan, 
1989; Sinclair et al., 1991), the flexural history of the 
lithosphere exerts a strong influence on the strati- 

* C o r r e s p o n d e n c e  to D r  H.  Millfin 

graphic development of foreland basins. Of specific 
interest in this respect is the spatial distribution and 
temporal evolution of the lithospheric rigidity. 
Expressed in the effective elastic thickness (EET), the 
lithospheric rigidity largely depends on the dynamic 
balance between the lithospheric structure, topo- 
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graphic load and intraplate (boundary) forces (Burov 
and Diament, in press). 

Royden and Burchfiel (1989), Royden (1993) and 
Doglioni (1993) have proposed that thrust belts 
developed at continental subduction boundaries can be 
divided into two distinct classes depending on the rates 
of subduction and large-scale plate convergence. This 
classification is based on significant differences in 
structure, topographic elevation, metamorphism, 
sedimentation and also by differences in the influence 
exerted by the topographic and subsurface loads on the 
compensation of the foreland lithosphere flexure. 

In the present paper we present the results of flexural 
modelling of a profile through the south-eastern 
Pyrenees and Ebro Basin (Figure 1). The construction 
of a balanced crustal-scale section of the Pyrenees 
orogen for Middle Eocene time by Vergds et al. (this 
issue) forms the basis for our flexural analysis (Figure 
2a). We analyse the relative contributions of topo- 
graphic and subduction loads on the present day 
deflection and deflection at the Middle Lutetian time. 
Our approach yields insights in the temporal and spatial 
changes in EET in the north-eastern part of the Iberian 
flexural plate, as well as in the changes in topographic 
and subsurface loads at the intra-continental sub- 
duction boundary. 

Tectonic setting 

The southern Pyrenean foreland basin is located on the 
north-eastern Iberian Peninsula, surrounded by three 
mountain chains, the Pyrenees to the north, the 
Catalan Coastal Ranges to the south-east and the 
Iberian Cordillera to the south-west (Figure 1). The 
structural development of the three chains, which 
evolved during the N - S  convergence of the Iberian and 
the Eurasian plates, strongly controlled the sedi- 
mentation and geometry of the basin from late 
Cretaceous to Oligocene-Early Miocene times 
(Puigdef~bregas and Souquet, 1986; Guimer~ and 
Alvaro, 1990; Casas Sainz, 1992). 

Continent-continent collision resulted in the sub- 
duction of the lower crust and lithospheric mantle of 
Iberia below the Eurasian plate (ECORS-Pyrenees 
Team, 1988). In this tectonic framework the Pyrenees 
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Figure 1 Location of the Ebro Basin and the main tectonic units 
in the area (modified after Verges et aL, this issue) 

formed at the intra-continental plate boundary, 
whereas the growth of the Catalan Coastal Ranges took 
place at the interior of the Iberian plate. 

The Pyrenean orogeny was characterized by a 
slightly oblique collision with an onset of deformation 
commencing earlier in the east than in the west 
(Plaziat, 1981; Puigdeffibregas and Souquet, 1986). The 
E - W  trending orogen is constituted by a double- 
verging wedge developed by foreland propagating 
thrusts at Late Cretaceous to Miocene time (Seguret, 
1972; Fischer, 1984; Vergds and Martinez, 1988; 
Puigdeffibregas et al., 1992). During this compressional 
period thrust sheets containing basement rocks as well 
as Mesozoic and Tertiary cover were translated to the 
north and south over the autochthonous parts of the 
Aquitaine and the Ebro Basins, respectively (Cfimara 
and Klimowitz, 1985; Souquet and Peybernds, 1987; 
Martfnez Pefia and Pocovf, 1988; Baby et al., 1988). 
Within the Catalan Coastal Ranges, the Alpine 
orogeny was mainly dominated by strike-slip tectonics 
(Guimer/~, 1984). The most distinctive structural 
features of the range are basement-involved, NE to 
ENE striking faults which were reactivated with a 
sinistral movement from Late Cretaceous to Oligocene 
times (Anaddn et al., 1985; Roca and Desegaulx, 
1992). During the Late Oligocene-Early Miocene, the 
western Mediterranean area was subject to NW-SE 
extensional tectonics (Roca and Guimerh, 1991; Roca 
and Desegaulx, 1992), probably related to north-west 
directed subduction of the African plate beneath Iberia 
(Boccaleti and Guazzone, 1974; Horvath and 
Berckhemer, 1982). During this time period the 
structure of the Catalan Coastal Range was strongly 
controlled by inherited structures of the previous 
compressive phase (Fontbot6 et al., 1990). The present 
day Catalan margin is characterized by a general uplift 
and a well-developed horst and graben structure that 
extends to the south-east in the Valencia Trough. This 
Plio-Quarternary uplift caused a regional north-west 
tilting of the south-eastern part of the Ebro Basin 
(Verg6s, 1993) and is probably related to the formation 
of a rift shoulder in the Catalan margin domain and to 
detachment of subducted slabs in Mediterranean area 
(Janssen et al., 1993). 

Before the Alpine orogenic period, the Pyrenean and 
the Catalan domains were affected by extensional 
tectonics often controlled by Hercynian structures 
(Puigdef~bregas and Souquet, 1986; S~ilas, 1987; Roca, 
1992). This distensional period was mainly related to 
the sinistral transtentional movement of Africa with 
respect to Eurasia from the Late Triassic to Middle 
Cretaceous (Ziegler, 1989; Srivastava et al., 1990). 
Later on, during the compressive stages, tectonics were 
strongly influenced by Hercynian and Mesozoic pre- 
orogenic structures. This was especially significant in 
the Pyrenees, where the inherited Mesozoic faults 
controlled the geometry and size of the first cover 
thrust sheets (Martinez Pefia, 1991). 

The North Pyrenean Fault, crustal-scale fault, 
developed during the sinistral displacement of Iberia in 
Middle Albian to Early Cenomanian (Debroas, 1987; 
1990). The structure has been interpreted as the axis of 
the collision belt and the present day boundary 
between Iberia and Europe (Choukroune, 1976; 
Mattauer, 1985). Support for this interpretation was 
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Figure2 (a) Simplified cross-section of modelled profile, Location given in Figure 1. More detail and a complete balanced 
cross-section are given in Verges et aL (this issue). Deep crustal architecture is based on results of ECORS (ECORS-Pyrenees Team, 
1988). Black dots indicate the base of the Pataeocene, assumed to be the first infill of the foreland basin, (b) Calculated deflection 
profile. Two different grey scales represent two different densities for the load. The free boundary of the model is placed at the 
outcropping trace of the North Pyrenean Fault, Boundary conditions:/14o (bending moment} and Vo (shear force), Between point A 
(southernmost data point) and point B a gentle basement dip is observed and between point B and C (northernmost data point) 
a steeper dip is observed 

obtained from seismic refraction data showing a drastic 
change in Moho depth below the trace of the North 
Pyrenean Fault (Daignieres et at., 1982). However, 
following the completion of the ECORS deep seismic 
reflection profile, this interpretation has been 
questioned as it appears that at present the fault is cut 
at depth by the North Pyrenean basal thrust (ECORS- 
Pyrenees Team, 1988; Roure et al., 1989; Mufioz, 
]992). 

Model description 
The deflection of the Iberian plate is modelled adopting 
a semi-infinite elastic plate overlying an inviscid 
substratum incorporating lateral variations of EET 
(Bodine, 1981). In our modelling approach (see 
Zoetemeijer et al., 1990; 1993), the deflection of the 
elastic plate occurs in response to topographic loading 
and plate boundary forces. In the model a theoretical 
Bouguer gravity anomaly is calculated, generated by 
the density distribution resulting from the bending of 
the plate. Comparing these inferred anomalies with 

Bouguer gravity anomaly data gives an independent 
control on the amount of flexural subsidence. 

The calculated deflection is compared with the 
present position of the base of the Palaeocene deposits 
in the autochthonous part of the Ebro Basin (Berastegui 
et al., 1993). These deposits correspond to the first thrill 
of the foredeep basin along most of the southern part of 
the foreland lithosphere. The position of its base is 
constrained by seismic reflection data (Figure 2). The 
deflection underneath the Pyrenees is more difficult to 
constrain. Note that the curvature of the detachment 
level, as can be observed from Figure 2a, is not the 
curvature due to lithosphere deflection. The curvature 
of the Moho, however, is a good indicator and, 
therefore, the amount of deflection is derived from 
the present depth of the Moho minus the crustal 
thickness measured from the restored cross-section. 
For the modelling of the present day sit.uation we have 
excluded the southern part of the basin to avoid the 
effect of rift shoulder uplift related to the Neogene 
extension of the Catalan domain (Janssen et al., 1993; 
Verg6s, 1993). Field data suggest that the effect of rift 
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shoulder uplift is negligible north of Cardona (Verg6s, 
this issue) and, therefore, we restricted the analysis of 
the flexure to the area north of this locality (Figure 2a). 
The northernmost extremity of the subducted lower 
crust which experienced the most intensive extensional 
deformation (see Verg6s et al., their Figure 2, this 
issue) is not included in the modelling, in the absence of 
geophysical control on its present day state and position. 

We defined the northern model boundary of the 
elastic plate by a vertical line coinciding with the North 
Pyrenean Fault at the surface (Figure 2b). As 
mentioned earlier seismic data (Choukroune et al., 
1989) show that the continuation of the structure at 
depth is uncertain. Gravity data, however (Torn6 et al., 
1989), indicate a gravity minimum at this location, 
implying lateral density changes at depth. The 

modelling takes into account the gravimetric and 
subload effects of a triangular-shaped part of upper 
mantle corresponding to the European lithosphere. 
This mantle segment overrides the down-going Iberian 
plate and lies within the limits of the model (Figure 2a 
and 2b). An alternative scenario with a plate boundary 
defined at the southernmost limit of the European plate 
(Figure 2a) underestimates the loading of the Iberian 
plate and overestimates the elastic support of the 
European plate. 

Gravity data used as a constraint for the modelling 
are obtained from the Bouguer anomaly map of 
Catalunya (Casas et al., 1987). In the following we use 
different densities for the calculation of the topographic 
load (i.e. the load produced by thrusting and basin 
infill); see Figure 2. The constraint density zones are 
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Figure 3 Model results for the present day situation using three different subduction loading scenarios: (1) Mo = 0.0 N, Vo = 0.0 N/m 
and relat ively low EET values; (2) Mo = 0.0 N, Vo = 0.0 N/m and intermediate EET values; and (3) Mo = 8.0 × 10 T M  N, Vo = 2.0 x 1011 N/m 
and relatively high EET values. Dots represent gravity and reflection data. Upper panel: gravity anomal ies predicted by the three model 
scenarios. Realistic est imates of the density of infill in the model  do not lead to a fit wi th observed Bouguer anomalies. An intracrustal 
higher density layer is adopted as a possible explanation. Middle panel: deflection profi les result ing f rom the three different model 
scenarios. For the scenarios wi th zero/14o and Vo a fit is not obtained, even for very low EET values. Lower panel: EET variat ions for the 
three different computed deflections. All EET values are decreasing towards the north 
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F i g u r e  4 Relative contributions of subduction and topographic loading. Upper panel: gravity anomalies predicted by the best flexural 
fit of Figure 3 (scenario 3). Middle panel: contribution of topographic loads is dominant relative to contribution of Subduction loads 
(/14o = 8.0 × 10 TM N, Vo = 2.0 × 1011 N/m). Lower panel: EET values for the model with the best flexural fit of Figure 3 (scenario 3) 

divided by a vertical line, indicated by different shading 
in Figure 2b. We adopt a density of 2.8 g/cm 3 for the 
Palaeozic rocks and crustal materials involved in 
thrusting. A density of 2.5 g/cm 3 is adopted for the 
Mesozoic rocks and Tertiary basin infill. We assume 
crustal and mantle densities of 2.8 and 3.3 g/cm 3, 
respectively. 

Flexural modelling results 

Present day profile 
The present day geological section is shown in Figure 2. 
The southern part of the foreland lithosphere gently 
dips from the southernmost datapoint (point A in 
Figure 2b) towards the Pyrenees, reaching a depth of 
4400 m below sea level at 59 km from the northern 
edge of the model (point B in Figure 2b). To the north 
of point B the basement dips more steeply, interpreted 
from seismic sections to a maximum depth of -7250 m 
below sea level (point C in Figure 2b). 

Approximation of the general pattern of the deflec- 
tion (Figure 3) by models with zero moment or force at 
the free boundary requires unreasonably low values of 
EET over a large area of the Iberian plate. It should be 
noticed that without information about basement 
depths from the northernmost part of the profile, the 
data could have been matched without requiring any 
subload forces at the free end of the plate or the need 
of significant reduction of the EET towards the north 
(see Zoetemeijer et al., 1990). 

Taking the data for the present day profile into 
account, the best-fitting deflection was obtained for a 
model with a decreasing EET towards the north and 
sub-crustal forces at the plate boundary (Figure 3). The 
northward decreasing flexural rigidity is consistent with 
the results based on a cross-section located westward 
of the present study (Brunet, 1986). The southern 
and undeformed part of the foreland lithosphere is 
characterized by EET values of 30 km. In the northern 
part of the plate EET values decrease to 11. km (Figure 
3). 
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The plate boundary conditions support values for a 
bending moment of 8.0 x 1016 N and a vertical shear 
force of 2.0 x 1011 N/m (Figure 4). These values are 
relatively low compared with estimates obtained from 
other mountain chains developed at continental plate 
boundaries (Royden, 1993). 

The average thickness of the Iberian crust is 31 km 
(Banda, 1987). The calculated gravity profile shows 
a downward shift in relation to gravity anomaly 
observations. This discrepancy extends along the whole 
model, increasing towards the area of maximum 
flexure. As more realistic densities for the Tertiary in fill 
(2.45 g/cm 3) and the Mesozoic cover (2.65 g/cm 3) do 
not alter the computed gravity significantly, the misfit 
between the calculated and observed anomalies is 
probably the result of an intra-crustal higher density 
layer, as suggested by Torn6 et al. (1989) for the 
ECORS-Pyrenees transect, 50 km west to the present 
study. The step in the computed gravity observed in the 
present day profile is due to the sharp transition 
between the lower densities used for the sedimentary 
infill/Mesozoic rocks and the higher densities of the 
basement thrust sheets. The predictions of the gravity 
model do not take into account the contribution of the 
density distribution in the European plate. Therefore, 
the calculated gravity anomaly in the area within 10 km 
of the northern plate boundary is not realistic. 

Middle  Lutet ian palaeo-elevation 
Structural and stratigraphic data, together with 
palaeo-botanical assemblages and palaeo-geographical 
reconstructions, allow the construction of a partially 
restored crustal-scale cross-section for Middle Lutetian 
times (Verg6s et al., this issue). The analysis of the 
Middle Lutetian lithospheric deflection was prolonged 
southward, a few kilometres offshore under the 
Mediterranean Sea, in the absence of geological 
evidence for interference by other tectonic processes 
with the foreland basin development before this time 
slice. 

The reconstruction of the geometry of the basin 
provides a good control on the deflection of the base 
of the Palaeocene as determined in the present day 
section. Reconstruction of the horizontal extent of 
the subaerial palaeo-topography is constrained by 
the continental-marine transition of Middle Lutetian 
sediments. The southern limit between marine 
and continental infill of the Middle Lutetian basin 
(Puigdef~bregas et al., 1986) is located 150-170 km 
south of the northern limit of the flexural model (Figure 
2b). At the same time, the syn-tectonic shallow marine 
sediments related to the front of the Nogueres thrust 
sheet indicate submarine conditions of the more 
external parts. The Lutetian topography is assumed to 
have a maximum elevation (water divide) situated near 
the leading edge of the non-subducted European plate, 
based on experimental and analytical models that 
consider partial lithospheric subduction (Malavieille, 
1984; Knoons, 1990; Quinlan et al., 1993). 

For a partially restored cross-section the inferred 
structural topography is, of course, always less than the 
palaeo-elevation. For the internal part of the chain, the 
available limited geological data suggest a relatively 
low relief (Verg6s, 1993). To obtain a first estimate of 
the palaeo-elevation we examined the relationship 

between the elevation at Lutetian times and Lutetian 
basin-fill. In principle, having control on sediment 
provenance, the amount of erosion can be determined 
from its time-equivalent basin-fill. In the absence of 
such control three possible relations can be assumed 
between basin-fill and palaeo-elevation (Figure 5): 
(1) eroded topography equals basin-fill (Figure 5 upper 
panel); (2) the basin-fill exceeds the amount of eroded 
topography, which implies that part of the fill is derived 
elsewhere (Figure 5, middle panel); and (3) basin-fill is 
less than the eroded topography, assuming that part 
of the sediments from the eroded topography are 
deposited elsewhere (Figure 5, lower panel). In favour 
of the 'eroded topography equals basin-fill' scenario is 
the fact that the southern-eastern Pyrenean foreland 
basin (Ripoll Basin) was closed during Cuisian and 
Lutetian times (Puigdef~bregas et al., 1986; Verg6s 
et al., 1992). For such a scenario in which the mass of 
the eroded palaeo-elevation equals the Lutetian basin 
infill (40 km2), the palaeo-elevation is estimated to be 
about 2000 m (Verg6s, this issue). 

If we assume that the EET for the distal sectors of 
foreland basins represents an inherited feature which is 
not modified significantly by orogenic loading (Kominz 
and Bond, 1986), the wide range of possible topo- 
graphic elevations may be narrowed. In this instance, 
EET values are most similar between the present day 
and the partially restored sections (~30 km) for the 
same area of the less deformed sector of the plate (i.e. 
coordinates: x = 110-130 km for the present day 
section; x = 150-170 km for the partially restored 
section); see Figures 3 and 6b. This argument and the 
geological constraints mentioned earlier suggest that 
the most plausible maximum palaeo-elevation should 
range between 2000 and 1000 m. This result appears to 
be consistent with the low relief expected for the 
Middle Lutetian time. 

The different models for the Middle Lutetian Ebro 
Basin predict a position of the peripheral bulge slightly 
south of the profiles shown in Figure 6, in the surround- 
ings of the actual location of the Catalan Coastal 
Ranges. These results suggest that the lack of Upper 
Cretaceous-Middle Lutetian sediments in the Valencia 
Trough (Stoeckinger, 1976; Roca, 1992; Roca and 
Desegaulx, 1992), south-east of the Catalan Coastal 
Ranges, could be due to the subaerial exposure of this 
region. 

Spatial and temporal variations in EET 

Comparison of the present EET values calculated for 
the northern sector of the Iberian plate (northward 
decreasing to 11 km at the plate edge) with the EET 
values for the partially restored profile at Middle 
Lutetian time (Figure 6b), reveals a decrease in the 
EET at this sector overprinting an inherited weakening 
produced by the Cretaceous extensional phase. 

From the Middle Lutetian onwards the crust in the 
modelled transect is thickened (e.g. Seguret and 
Daigni~res, 1986; ECORS-Pyrenees Team, 1988; 
Roure et al., 1989), the topography has increased 
(Verg6s et al., this issue) and the lithosphere is more 
curved (Mufioz, 1992; Verg6s et al., this issue). As each 
of these tectonic processes and structural features can 
lead to localized reduction of EET values (e.g. 
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Figure 5 Schematic diagram showing three main relationships between the structural topography, palaeo-elevation and basin-fill. 
Upper panel: mass of basin-fill equals mass of eroded topography. Middle panel: a lower palaeo-elevation results when basin-fill is not 
derived from erosion of the in-plane topography, but from a source outside the section. Lower panel: a higher elevation (compared 
with upper panel) is produced when part of the eroded pataeo-elevation is not preserved in the basin-fill, but transported out of the 
section by longitudinal sediment transport. 

Cochran, 1980; Cloetingh et al., 1989; Burov and 
Diament, in press), we attribute the actual flexural 
rigidity distribution to one or more of these possible 
causes. We concluded that the decrease of EET due to 
the Cretaceous rifting has been overprinted by later 
(pre-Lutetian) tectonic processes and the possible 
effects of thermal history of the lithosphere have been 
counteracted during the compressional evolution of the 
orogen. 

T o p o g r a p h i c  load ing  versus  s u b d u c t i o n  load ing  

Royden (1993) defined advancing subduction 
boundaries (e.g. the Alps and the Himalayas) as those 

continental convergent boundaries where the rate of 
overall plate convergence is greater than the rate of 
subduction. They are to be contrasted with retreating 
subduction boundaries (e.g. the Apennines) in which 
the rate of subduction exceeds the rate of overall plate 
convergence and which are also characterized by 
distinctive tectonic features. 

The notion that a large number of geological features 
which characterize the orogens developed in advancing 
subduction boundaries (e.g. antithetic thrusting, large 
involvement of basement rocks in thrusting, protracted 
post-collisional convergence, dominance of molasse 
sedimentation, large amounts of erosion, large thrust 
sheet transport) are found in the Eastern Pyrenees 
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(a) FLEXURE (Di f ferent  pa laeo -e l eva t i ons ;  3250 m, 3000 m, 2750 m) 
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2750 m, cor responding to  scenarios 1, 2 and 3, respect ively. Fits w i th  decreasing EETs to the north and/14o = 0.0 N and Vo = 0.0 N/m. 
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(c) 
FLEXURE (Palaeo-elevat ion 2000m.) 
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Figure 7 Comparison of relative contributions of subduction and topographic loads for different palaeo-elevations. (a) Palaeo-elevation 
of 2750 m and relat ively low EET values, Mo = 3.0 x 10 T M  N, Vo = 00  N/m. As for the model results for the present day situation 
(Figure 4), the contr ibution of topographic loads is dominant  relative to contr ibution of subduction loads. (b) Palaeo-elevation of 
2000 m and relat ively low EET values,/14o = 5.0 x 10 T M  N and Vo = 1.0 x 1011 N /m (c) Resulting EET distribution for a palaeo-elevation 
of 2000 m assuming that the boundary condit ions are similar to the present day situation (Mo = 8.0 x 10 T M  N, Vo = 2.0 x 1011 N/m). 
Note that higher EET values than in the present day situation (Figure 3) are required to fit the data 

indicates that, at least during the last stages of its 
evolution, this area evolved above such a plate 
boundary setting. 

A geological signature that also distinguishes 
between the end-terms of continental convergent 
boundaries is the part played by the topographic and 
subduction loads in the subsidence of a foredeep basin. 
At advancing subduction boundaries the defection 
beneath the basin would be mainly due to the effect of 
the topographic load, whereas at retreating boundaries 
it is principally caused by subsurface loads (Royden, 
1993). To investigate this point we have subtracted 
separately the deflection caused by each load from the 
total plate deflection. 

Figure 4 shows an approximately linear deflection 
caused by the topographic load, which in turn 
compensates almost completely the subsidence of the 
southern part of the foreland lithosphere, approxi- 
mately south of point B in Figure 2b. In contrast, the 
subduction load produces a non-linear deflection that 
results in an upward force acting along most of the 
basin and a downward force that mainly accounts for 
the northward increase in the curvature of the sub- 
ducted plate. It therefore appears that within the 
framework of the plate boundary processes, the present 
Pyrenean continental boundary falls into the category 
of advancing subduction boundaries. 

The flexural analysis of the Middle Lutetian selected 
profiles (Figure 7a and 7b) reveals that, although the 
topographic load plays a predominant part in the sub- 
sidence of the southern and middle part of the foreland 
basin, the subsidence of the remaining part of the basin 
and the internal parts of the thrust belt is due to the 
combined effects of subduction and topographic loads. 
Moreover, as in the present day situation, the sub- 
surface loads cause an uplift of the southern foreland 
basin basement and an increase in the overall curvature 
of the lithospheric plate. 

An approximately homogeneous EET distribution 
with a thickness of ~ 27 km (Figure 7c) results when it 
is assumed that the palaeo-elevation was 2000 m and 
that the boundary conditions in the Middle Lutetian 
have the same values as for the present day situation. 
This may indicate that the low topography inferred for 
the Middle Lutetian time determines the subduction 
load to have a relatively greater importance in relation 
to the present day state where topography is high 
enough to compensate the foreland basin. Obviously, 
the temporal change in the part played by the topo- 
graphic load can account for the increase with time of 
the basin infill and for the shortening of the upper crust 
by stacking of the basement-involved thrust sheets, 
which, in turn, increases the size of the area affected by 
the topographic load. 
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Conclusions 

Two-dimensional flexural modelling of a crustal-scale 
balanced cross-section across the south-eastern 
Pyrenean domain demonstrates that the observed 
deflection of this sector of the Iberian plate can be 
explained by the combined effects of topographic and 
subsurface loads. The results presented in this paper 
support a scenario in which during the last stages of the 
Pyrenean orogeny the Ebro Basin evolved in front of 
an advancing subduction zone, where the subsidence of 
the trough was mainly controlled by the topographic 
load. 

The present day deflection was simulated with a 
northward decreasing EET, varying from 30 to 11 km. 
The flexural modelling of the partially restored section 
shows that the deflection of the Middle Lutetian fore- 
land lithosphere is controlled by both subsurface and 
topographic loads. In this instance, the deflection can 
be simulated with EET values between 30 and 18 km. 
For an EET of the external parts of the foreland basin, 
not modulated significantly by orogenic loading, 
palaeo-topographic elevations between 2000 and 
1000 m appear to be the most plausible values for 
Middle Lutetian times. 

The time step modelling described in this paper 
allows the quantitative discrimination of plausible 
genetic interpretations of the present day flexural 
strength of the lithosphere that are considered rheo- 
logically acceptable in the absence of constraints on 
palaeo-EET values. The decrease in EET since Middle 
Lutetian times is probably caused by relatively late 
stage orogenic processes invoking high plate curvature 
and thickening of the crust (McNutt et al., 1988; Watts, 
1992; Burov and Diament, in press). Apparently, the 
effect of the Cretaceous extensional phase on the 
present day flexural rigidity was small, as the Middle 
Eocene flexural rigidity of the plate is about the same 
or even greater than the actual rigidity. Assuming that 
boundary conditions and EET values at the southern 
margin have not changed since the Middle Lutetian, 
the EET distribution is approximately uniform with a 
thickness of 27 kin. 
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