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C H A P T E R 1 

I N T R O D U C T I O N 

A s early as 1892 von Pechman (92 P) and Bamberger (92 B) discovered 

the formazans, a c lass of compounds having the chain of atoms 

i V 
— N = N — C = N — N — 

1 2 3 4 5 

in common and nearly always having phenyl groups attached to the outmost 

nitrogen atoms N , and Nc, for instance: 

1, 3, 5-Tr iphenyl formazan. 

Formazans have received several important applications: 

1. The oxidation products of formazans, the tetrazol ium salts (Chapter 2), 

are used in biology (41 K, 55 N) for identification of enzymatic reduction 

processes. 

2. Formazans can form complexes (Chapter 2), which receive applications 

in industry as dyeing agents for wool, cotton and synthetic f ibers (15 P, 

55 N, 68 W). 
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3. In analyt ical chemistry certa in formazans are used as co lo r imet r i c and 

as extract ing reagents: Zincon and Dithizone (58 I, 37 F ) are well-known 

examples. 

Formazans were chosen as subject of our investigations owing to their 

importance in analyt ical chemistry and on account of the already exist ing 

experience in this laboratory on s im i l a r compounds (62 B). 

The a im of this thesis is to study some aspects of the oxidation of 

formazans. 

In the oxidation of l igands with metal complexes two possibi l i t ies can 

be distinguished (67 S): 

F i r s t the oxidation can proceed by way of an " inner sphere" electron 

transfer process, in which complex formation of the ligand to be oxidized 

and the oxidiz ing reagent take place in the intermediate state of the reaction. 

Th i s is found to be the case, for instance in the oxidation of hydroxyethylene-

diaminetr iacet ic ac id by vanadate (V) ions (66 J). 

Secondly the oxidation can proceed by way of an "outer sphere" electron 

transfer mechanism, in which no complex formation of the ligand and the 

oxidiz ing reagent is found. Oxidations by hexacyanoferrate(III) anions are 

generally assumed to proceed according to this mechanism (68 Wi); the ox i ­

dation of E D T A by the hexacyanoferrate (III) anion (66 L ) is an example 

of this kind of e lectron transfer process. 

A n "outer sphere" mechanism is also expected for the oxidation of 

formazans by hexacyanoferrate (III) anions. A study of this oxidation process 

is treated in Chapter 4. 

A s a consequence of the abi l i ty of formazans to form complexes 

(Chapter 2) with metal ions l ike copper(II), it is possible that the oxidation 

of formazans by copper(II) proceeds by way of an " inner sphere" electron 

transfer mechanism. In order to investigate this possibi l i ty , we f i rs t have 

to study the complex formation of formazans. 

Most formazans are oxidized rather rapidly by copper (II) so that no 

complex formation can be observed. 

One exception is found, however: Copper (II) rapidly forms complexes 

with 1,3-Diphenyl x 5-o-carboxyphenyl formazan, whereas the oxidation of this 

formazan by copper(II) appears to be very slow. Consequently complex 
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formation of this formazan can be studied independently of oxidation (Chap­

ter 5). In this way results as regards complex formation are obtained which 

can be used in interpret ing the copper (II) oxidation of the simple formazans 

(Chapter 6). 

Compar ison of the severa l studies and f inal conclusions w i l l be given 
in Chapter 7. 

11 



C H A P T E R 2 

R E V I E W O F L I T E R A T U R E 

In this Chapter a survey of those aspects of the l i terature on formazans 
w i l l be given, which are of d irect importance of the work dealt with in this 
thesis. 

2.1 PREPARAT ION OF F O R M A Z A N S 

Since 1892 innumerable formazans have been synthesized mainly ac ­

cording to the following routes: 

1. Treatment of an arylhydrazone (a) or a compound with an active methylene 

or methylgroup (b) with aryldiazonium salts under alkal ine conditions, 

e .g . : 

a . 
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2. Condensation of carbonic ac id derivatives with arylhydrazines followed 

by dehydrogenation of the condensation product, e . g . : 

2 ( ^ 3 J ) — NH—NHg * COCI2 » < ^ ^ ) _ N H — N H — C — N H — N H — Ha 
INt-l U 1 J 

O 

O OH 

3. Synthesis by modification of other formazans, for example: 

CN COOH 

Excel lent and comprehensive reviews on the preparation of formazans 

are given by Nineham (55 N) and Putter (65 P). 

2.2 PHYSICAL PROPERTIES OF F O R M A Z A N S 

Due to the organic character of formazans, these compounds show a 

reasonably good solubil ity in solvents l ike ethanol, benzene and chloro form. 

When a proper substitution has been made in the phenyl groups at N^ or N^ 

(Chapter 1) or at the carbon atom Cg (for instance of -COOH, -OH or 

-SO^H) a moderate water solubil ity of the formazan is obtained. Th i s water 

solubil ity is enhanced when the groups mentioned are deprotonated by a base. 

Solutions of formazans show strong absorption bands in the UV and 

in the v is ib le region of the spectrum (55 N). Detailed studies of IR spectra 

of several formazans have been reported (59 F , 69 S, 69 O). A l s o NMR 

studies of some formazans are known (60 T , 68 M , 68 F ) . 

Geometr ica l i s omer i sm i s possible with formazans. The structure of 

a formazan in solution is influenced by the nature of the solvent, by v is ib le 

l ight i r rad iat ion and by the presence of catalysts (e.g. metal ions) (41 H, 53 K, 

53 Ku). 
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Two forms of formazans are observed: a " r e d " form and a "ye l low" 

form. One assumes that in the " r e d " form the hydrogen atom is between 

and (see II), whereas in the "ye l low" form the hydrogen atom of 

i s rotated from (see III). 

\ \ 
N=N N — N 

\ \ 

H C — C 
\ * // 

N - N N 
/ \ 
7 N - H 

/ 

II III 

2.3 C H E M I C A L PROPERTIES OF F O R M A Z A N S 

A s our main interest in formazans is directed to their behaviour to­

wards oxidiz ing reagents we w i l l now give some remarks on these proper­

ties of formazans. 

Formazans can be oxidized to the generally co lor less tetrazol ium salts 

by mi ld oxidiz ing reagents l ike isoamylni tr i te , mercury (II) oxide, lead tetra­

acetate and halogenoamides (51 L , 41 K, 53 K, 55 N), e .g . : 

Ri 

H' C — R a - 2c - H + " ~ | C — R 3 

/ 
R= 

Th is process is revers ib le : hence tetrazol ium salts can be reduced to 

their corresponding formazans by mi ld reducing agents l ike ammonium 

sulphide and alkaline solutions of ascorbinic acid or hydroxylamine (96 W, 

53 K, 55 N). 

Fur thermore formazans can act both as acids and bases. F o r a l imi ted 

number of formazans containing sulfonic or benzimidazole groups, protonation 

constants for the nitrogen atom possessing a lone pair and deprotonation 

constants of the imino group are published (62 T , 68 S, 69 I). 

F r o m these reports it can be concluded that formazans are weak 

acids and bases. Furthermore the simple formazans show a poor water so lu-
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bi l i ty (usually 10 M), that is why it i s understandable that no work on 

protonation and deprotonation constants has been done on the simple formazans. 

Formazans show a reasonable resistance to strong alkaline solutions, 

although under these conditions they are l iable to a i r oxidation (37 K). The 

formazan skeleton is destroyed (92 B, 55 N, 67 Sc) in concentrated minera l 

ac id solutions (especially at elevated temperatures). 

A t last we w i l l mention here the complex forming properties of 

formazans. With some metal ions formazans can form complexes. A number 

of c lasses can be distinghuished: 

1. Unstable sol id salt l ike compounds can be formed by reaction of a l ka l i 

metal ions and s i l v e r ions with formazans (92 Ba, 01 B, 46 R). The com­

pounds obtained in this reaction are easi ly hydrolysed by water, and have 

the composition of one metal ion to one formazan molecule. Very l i t t le 

about this type of complexes i s known; perhaps in this case the formazan 

acts as a monodentate l igand. 

2. Complexes of formazans with divalent metal ions l ike copper (II), n icke l (II), 

cobalt(II) and palladium(II) can be prepared (41 Hu, 60 E , 60 Z , 68 W), 

in which the metal ion is supposed to be surrounded by two formazan 

molecules in this way: 

In these complexes the formazans behave l ike bidentate l igands. 

3. By introducing of one complex forming group (e.g. -COOH or -OH) at 

the ortho position of one phenyl group on the outmost nitrogen atoms, 

complexes (45 B, 49 W, 68 W) of copper (II) and nicke l (II) can be formed, 

having the composit ion of one metal ion to one formazan. The following 

structure is suggested for these complexes (57 K, 57 K i , 57 F , 58 F , 

60 E): 
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o = c - N - N / — x 

N - N N ' 

Complexes of this kind of formazans with cobalt (III) and chromium (III) 

can also be prepared (63 B, 64 S, 68 W). In these complexes (see VI) 

the metal ion i s coordinatively saturated; the complex is negatively 

charged and consists of one metal ion and two formazan molecules. 

In a l l the complexes of c lass three the formazan acts as a tridentate 

l igand. 

4. Complex forming properties of formazans can be enhanced by introducing 

a complex forming group in the ortho position of both outmost phenyl 

groups. Complexes of this type show a very good acid resistance and can 

be used succesfully for dyeing purposes (68 W). 

Of the complexes mentioned here we are especial ly interested in b i -

and tridentate formazan complexes and for this reason we w i l l d iscuss some 

properties of these complexes in detai l . We refer to the review of Wizinger 

(68 W) for a complete survey of work done on formazan complexes. 

The copper (II), n ickel (II) and cobalt (II) complexes of type 2 and 3 

are generally thought to be planar. Th is conclusion was drawn from magnetic 

SO2CH3 

VI 
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susceptibi l i ty measurements (57 F , 58 F , 60 E , 60 I) performed on powders 

of nickel(II ) and cobalt (II) complexes. Th i s conclusion seems to be premature 

because the following arguments: 

1. The nicke l complexes were found to be diamagnetic, no diamagnetic co r ­

rection for the l igand part of the molecule, however, was applied by the 

authors (57 F , 58 F , 60 E , 60 I). 

We have applied these correct ions using Pascal constants and found M - e ^ 

varying between 0.4 and 0.7 B. M . 

2. Copper (II) complexes may be expected to retain one unpaired electron 

whatever the structure of these complexes i s . Some of the copper (II)-

formazan complexes have anomalous magnetic propert ies (57 K, 57 K i , 

58 K), probably due to interactions between neighbouring copper atoms, 

causing a lowering af magnetic moments (64 K). The same effect may 

also influence the magnetic moments of the nickel(II ) complexes. 

Cobalt (III) complexes of tridentate formazans with -COOH as com­

plex forming group (VI) ( in which the formazan rest is coordinated in 6, 6 

fused rings) can be separated in coordinative stereomers by chromatography 

over a lumina; consequently a Pfeiffer (41 P) or sandwich structure (VII) 

must be adpoted for this complex. 

No coordinative s tereomer ism could be demonstrated with 1 : 2 co-

balt(III) complexes containing the formazan rest coordinated in 5,6 fused 

r ings (with -OH as extra complex forming group) and a Drew-Pf i tzner 

structure (39 D, 50 P) is adopted for those complexes (VIII) (63 B). 

o nitrogen 

• oxygen 

VII 

It is often suggested that the copper (II) and nickel (II) complexes of 

tridentate formazans can possess the unusual coordination number three 

(52 T, 68 W), which can be augmented to four by the addition of ammonia 

or pyridine, producing a notable change in spectrum (68 W, 52 T) . Th is ad­

dit ion is not always possible and is influenced by the nature of the formazan 
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and the complex forming group in the formazan. F o r instance: the tendency 

of the metal ion in the formazan complex to become four coordinated by ad­

dition of an ammonia or a pyridine molecule, is promoted when the extra 

complex forming group is -OH instead of - C O O H . Substitution of the 

phenyl group at the Cg posit ion in the formazan by - C N has a s im i l a r ef­

fect. The causes of this tendency are not known. Undoubtedly ster ic factors 

must play a part, but this cannot explain a l l facts found, and inductive ef­

fects may be of importance too. 
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C H A P T E R 3 

E X P E R I M E N T A L 

3.1 C H E M I C A L S 

The following formazans were studied ( re ferr ing to the formula below) 

Rt 
\ 
N=N 

H'"' C — R a 
N - N 

_ / 

1, 5-Diphenylformazan {DPF) 

1, 3, 5-Triphenylformazan (TPF) 

1, 5-Diphenyl-3-carboxyformazan (DPF-C) 

1, 3-Diphenyl-5-o-carboxyphenylformazan (DPC^-PF) 

1, 3-Diphenyl-5-p-carboxyphenylformazan {DPC -PF) 
P 

In parentheses the abbreviations used for the formazans. 

TPF was obtained in purum quality from F luka A . G . ; DPF was synthe­

sized according to Von Pechman (92 P); D P F - C according to Bamberger (02 B); 

for D P C Q - P F the method of Wizinger (49 W) was used; the same method was 

applied in the synthesis of D P C ^ - P F , only 4-aminobenzoi'c ac id was taken i n ­

stead of 2-aminobenzoic ac id . 

19 
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C c H r H C H 
6 5 o 5 

C 6 H 5 C 6 H 5 C 6 H 5 

C £ H C COOH C H 
6 5 o 5 

c * H r C ^ H C C H - o - COOH 6 5 6 5 6 4 

C H,_ C H C H - p - COOH 
6 5 6 5 6 4 



Ana lys i s (in parentheses the calculated percentages) 

C in % H in % 

DPF 69.82 (69,62) 5.43 (5.39) 

D P F - C 62.71 (62.67) 4.56 (4.51) 

D P C Q - P F 69.70 (69.75) 4.71 (4.65) 

D P C p - P F 68.59 (69.75) 4.64 (4.65) 

F o r complex dissociat ion studies the copper(II) and nicke l (II) com­

plexes of D P C Q - P F were prepared in this way: 

F o r the copper (II) complex a hot f i l tered solution of 2.4 g copper (II)-

nitrate hexahydrate in 30 m l ethanol 96% was poured into a hot solution of 

5 g D P C Q - P F in 400 m l ethanol 96%. The precipitate that instantly formed 

was f i l tered, washed thoroughly, f i rs t with water and then with ethanol 96%. 

Af ter dry ing over phosphorus pentoxide for a night the compound was ana­

lysed for copper: 15.53% (theoretical value for 1 : 1 complex 15.65%). 

F o r the nickel complex a hot f i l tered solution of 4 g nickel (II) nitrate 

hexahydrate in 30 m l ethanol 96% was mixed with a hot solution of 5 g D P C Q -

PF in 300 ml ethanol 96%. Af ter ref luxing for three hours, the precipitate 

formed was f i l tered, washed thoroughly with water and ethanol 96%. Af ter 

dry ing over phosphorus pentoxide for a night the complex was analysed for 

n icke l : 14.48% (theoretical value for a 1 : 1 complex 14.64%). 

Sodium hexacyanoferrate(III) was prepared by chlorine oxidation (66 C) 

of sodium hexacyanoferrate (II), to which a few drops of 2 N sodium hydroxide 

had been added. The reddish brown solution was poured into twenty t imes 

its volume of ethanol. The precipitate was f i l tered, washed with ethanol, 

dr ied and analysed. Ana lys i s yielded (in parentheses the calculated per­

centages). 

Fe (CN)^ " 66.56% (66.87%) 
Fe 17.86% (17.62%) 
N 27.17% (26.52%) 

A l l other reagents used were reagent grade. 
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3.2 R E A C T I O N CONDITIONS 

G e n e r a l 

On account of the poor water solubi l i ty of formazans and their com­

plexes, a l l work was ca r r i ed out in a medium consist ing of an ethanol 

(45.5 wt %) - water mixture . Whenever possible the reactions were also 

performed in water. 

Ionic strength was kept constant (0.09) either by adding ammonium 

nitrate or by adding a mixture of ammonium nitrate and potassium nitrate 

or sodium nitrate. 

A s many equi l ibr ia are present in the solutions under investigation, 

of which temperature dependencies are hardly known under the conditions 

used in the experiments, it did not seem fruitful to us to perform oxidation 

as wel l as complex formation studies at more than one temperature. 

A l l solutions were intensively treated with nitrogen to prevent a i r 

oxidation of the formazans. 

3.3 OXIDATION 

Ac id i c solutions (pH < 2.0) of the formazans under study are instable. 

The oxidations performed in the pH traject 3.0 - 6.0 are found to be very 

slow. F o r these reasons the reactions were performed under alkaline con­

dit ions; ammonia was used as a base giving as a further advantage that no 

hydrolys is occurred of the copper(II) solutions. A s a result it was neces­

sary to work in a pH traject between pH 8.0 and 11.0 (A potassium hydroxide 

t i trat ion of the carboxyl ic formazans proved the carboxyl ic group to be com­

pletely dissociated under these conditions). Under these c ircumstances the 

decrease of the formazan concentration could be observed photometrically 

and the reactions ended in a reasonable t ime. 

A s the oxidation reaction was found to l iberate hydrogen ions it was 

inevitable to buffer the solutions; to this end and for keeping ionic strength 

constant, ammonium nitrate was added. 

The oxidations were performed in this way: 

Solutions containing a fixed concentration of the formazan (usually between 

(0.9 - 4 . 0 ) x 10 ^M) were treated with a ten- to fiftyfold excess of the 

oxidiz ing reagent. The vary ing concentrations were obtained by di luting more 
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concentrated stock solutions of the formazans and potassium hexacyano-

ferrate(III) or copper(II) ammine complexes. The stock solutions were 

prepared freshly every day in order to prevent a i r oxidation of the formazan 

(37 K) and hydrolys is of the hexacyanoferrate (III) (66 C) and the copper (II) 

solutions. Temperature was kept constant during the reactions (25.0 + 0. 1)°C. 

The decrease in concentration of the formazans was followed at 435 mo. 

for DPF , DPC -PF and D P F - C and at 485 mu, for TPF and DPC - P F . Because o P 
the hexacyanoferrate (III) anion also showed an appreciable absorption at the 

wavelengths used for measuring the formazan concentrations, the reference 

was made up to contain a compensating quantity of potassium hexacyano­

ferrate (III). When the formazans were oxidized by copper (II) solutions no 

compensation for copper (II) ammine complexes was necessary. 

3.4 C O M P L E X DISSOCIATION AND F O R M A T I O N STUDIES 

In the experiments on dissociat ion and formation of n icke l (II) and 

copper (II) complexes of D P C Q - P F the same medium was used as in the ox i ­

dation experiments. 

The composition of the metal complexes in the ammoniacal solutions 

(45.5 wt % ethanol) was studied by the continuous var iat ion method (28 J), 
-4 

in a constant sum concentration - metal ion plus formazan - of 1.0 x 10 M . 

F o r each system seven different mole fractions were prepared of which the 

absorption spectra were measured at regular time intervals . Af ter comple­

tion of the reaction - one week for the n icke l and one day for the copper 

complex - Job curves were plotted for the wavelength of maximum complex 

absorbance (corrected for the reagent contribution): \ = 660 mu. (Ni) and 

550 m|i (Cu). The ammonia concentration was also var ied: 0.133 and 0.333 M 

for the n icke l and 0 .1 , 0.2, 0 .3 , 0.4 and 0.5 M for the copper system. 

The experiments on dissociat ion of the complexes were ca r r i ed out in 

this way: 

To aliquots of solutions of the copper complex in ethanol 96%, in which so l ­
vent no appreciable decomposition was found to occur, a measured portion 
c* water as added containing the various chemicals (NH^NO^, N H 4 N O g + 
KNOg resp. NH-j) to make up the desired medium. The nickel complex was 
dissolved direct ly into the selected medium. 

The experiments were performed at four different concentrations of 
the complexes (1.0 - 4 .0 ) x 1 0 - 5 M for the copper and (6.0 - 10) x 1 0 _ 5 M for 
22 



the n icke l complex and with at least four different concentrations of ammonia. 

The ammonium nitrate concentration was also var ied, while the ionic strength 

was kept constant (0.09) by adding potassium nitrate. 

The concentration of the complexes was determined spectrophoto-

met r i ca l l y using the separately determined absorbancy indices for the com­

plexes and the formazan. No correct ion had to be made for the metal ammine 

complexes, because their absorbances could be neglected as compared with 

the absorbancies of the formazan and the formazan complexes at the wave­

lengths used for measurements (455 m n and 550 mp, for the copper case 

and 660 m p, in the n icke l case). 

In the formation experiments exactly the same c ircumstances have 

been used as in the decomposition experiments using equal concentrations of 

the formazan and the metal salt. 

The oxidation of the complexes by hexacyanoferrate (III) ions has been 

done under the same conditions as those used in the oxidation of the 

formazans by hexacyanoferrate (III) ions. 

A l l studies on complex dissociat ion and formation have been done at 

(23 + 1)°C-

3.5 STABILITY CONSTANTS OF COPPER(II ) A M M I N E C O M P L E X E S 

A s yet these constants have not been determined in (45.5 wt %) 

ethanol - water (64 Si). By means of the pH method of Bjerrum (41 B) the 

stepwise stabil ity constants for the copper (II) - ammine system in ethanol 

(45.5 wt %) water containing 0.09 M NH^NO^ have been determined at 

(25.0 + 0. 1)°C. 

3.6 APPARATUS 

In observing the reactions an Optica C F 4 DR of a Ze iss PM QII 

spectrofotometer was used, both equipped with thermostated, stoppered 10 

or 40 mm glass c e l l s . 

The pH was measured with an E . I . L . 46 A pH meter fitted with a 

G . H . S . N 33 glass electrode and a R . J . 23 calomel reference electrode. 

F o r least-squares calculations and var iat ion analysis an I . B . M . 1130 

computer was used. 
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C H A P T E R 4 

K I N E T I C S O F T H E O X I D A T I O N O F S O M E F O R M A Z A N S BY 

T H E H E X A C Y A N O F E R R A T E ( I I I ) A N I O N 

In this Chapter the oxidation of several formazans by the hexacyano-

ferrate (III) anion (an outer sphere oxidiz ing reagent) is discussed. 

The reactions are performed in water as wel l as in ethanol (45.5wt%) -

water mixtures at a temperature of 25°C and at an ionic strength of 0.09 

(fixed by adding ammonium nitrate to the solutions). 

The influence of the ammonium ion concentration on the reaction rate 

was determined by a var iat ion of the ammonium nitrate concentration. In 

these experiments the ionic strength was kept constant by adding sodium n i ­

trate. Under these conditions two competing reactions were found: the ox i -
3- 2-dation of the formazan anion by the Fe (CN)^ and by the NH^Fe(CN)^ anion. 

The predominant reaction was found to be the oxidation of the formazan anion 

by Fe (CN)^ " . 

F o r detailed reaction conditions we refer to Chapter 3. 

4.1 R E S U L T S 

A . S p e c t r a 

The v is ib le absorption spectra of the formazans (in concentrations of 

(1.0 - 5.0) x 10 ^M) were recorded in the same medium as that used for the 

redox reactions (Chapter 3). In ethanol (45.5 wt %) water mixtures, D P F , 

D P F - C and D P C Q - P F had an absorption maximum between 435 and 455 m|i; 

TPF and D P C p - P F had a maximum at 485 mu,. In water only the absorption 

maximum of D P C p - P F changed to 435 mu., the other maxima remained in 

the same position. 
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B. R e d o x k i n e t i c s a t c o n s t a n t a m m o n i u m n i t r a t e c o n c e n ­
t r a t i o n 

Of a solution of formazan, potassium hexacyanoferrate (III), ammonia 

and ammonium nitrate in water or a water - ethanol mixture, the formazan 

absorbance was measured at 435 or 485 mu. . A logar i thmic plot of this ab-

sorbance versus time showed straight l ines at various concentrations of the 

reactants, but at constant ammonium nitrate concentration (0. 09 M). 

F igure 4^ shows some representative plots. 

4 0 0 -

3 0 0 -

10
00

- 2 0 0 

X. 

UJ 
a 

LU 100 
o> 
O 

6Ö0 
t(sec) 

Figure 4 . 

Plots of log Eo/Et versus time for TPF (3. 6 x 10 ^M) in a 45.5 wt % ethanol -
water mixture at constant ammonium nitrate concentration (0. 09 M) and 
ammonia concentration (0.604 M). 

+ K Fe(CN) = 8. 0 x 10 M 
3 0 -4 

. K Fe (CN) = 12.0 x 10 M 
3 6 

x K Fe(CN) = 16.0 x 10 M 
3 6 

Th is result proves the reactions to be f i rst order in the formazan. 
In this Chapter we w i l l denote the undissociated formazan by F N H , the d i s ­
sociated formazan by F N and concentrations by ( - - - - ). 
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Defining the rate of the react ion as: 

Q _ d (FNH) 
Fe dt 

The former result means 

s p e = k p e . (FNH) 

(1) 

(2) 

where k p e i s computed from the logari thmic plots. The influence of the 

excess potassium hexacyanoferrate(III) concentration (Fe (CN)^ ) (t = total) 

and the ammonia concentration (NH^) on k p e could be expressed by: 

v3-
k F e = k F e . ( N H 3 ) . ( F e ( C N ) 6 r ) t 

Exper imental results for k p e are given in Table 4^. 

(3) 

Table 4 . 

Reaction conditions and rate constants ' ( i n units sec . M ) for 
the formazan-hexacyanoferrate (III) oxidations in 0. 09M ammonium 
nitrate. 

a**) 
DPF 0.9 1.35 1.80 

114 119.6 115.4 113.7 
152 119. 6 113.3 117.4 
229 119. 6 117.3 118.6 
305 112.5 111. 9 111.0 

TPF* 8.0 12.0 16. 0 20. 0 

483 3. 63 3.68 3. 67 3.70 
604 3.60 3.57 3. 59 3. 69 
724 3.46 3.48 3.45 3.53 
966 3.71 3.52 3.46 3. 58 

D P F - C 3 4.32 5.76 7.20 

381 10. 63 10. 98 10.94 
305 10. 69 10.53 10. 56 
228 11. 18 11.40 10.79 
191 11. 15 10.84 11.31 

D P F - C b 4.32 5.76 7.20 

3. 8 4094 3661 3924 
5.7 3238 3339 3404 
7.6 3451 3461 3458 

11.4 3401 3296 --
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Vervolg Table 4 

DPC - P F a 

P 
6.0 10.0 14.0 

477 2.42 2.39 2.33 
286 2. 17 2.30 2.26 

b 
DPC -PF 

P 
4.0 6.0 8.0 

1. 91 1370 1461 1431 
0.76 1539 1513 1433 

DPC - P F b 

O 
4. 0 10.0 20.0 

327 17.4 18. 9 _ _ 

167 18.0 18.0 18.3 
67 19. 9 18.5 --

*) For each formazan k has been given as a function of: hori-
3- -4 

zontally (Fe(CN) ) in units 10 M and vertically (NH ) in 
-3 6 3 

units 10 M . 

**) a. The formazan is dissolved in 45.5 wt % ethanol in water; 

b. The formazan is dissolved in water. 

The average k p e values from Table 4^ are given in Table 4 

Table 4 . 

Reaction conditions and rate constants (in units sec . M ) for the formazan-hexacyanoferrate (III) 
oxidations in 0.09 M ammonium nitrate. 

Formazan (FNH) 
3- **) 

(Fe(CN) 6 ) (NH 3) Solvent 
Fe 

DPF 0.9 0.9- 1.8 114-305 a 116 + 3 

TPF 3.6 8.0-20.0 302-966 a 3. 6 + 0.1 

DPF-C 3.6 4 .3 - 7.2 191-382 a 11.0 + 0.3 

DPF-C 3. 6 4 . 3 - 7.2 3.8-11.4 b 3520 + 250 

DPC -PF 
p 

4.0 6.0-14.0 286-477 a 2. 3 + 0. 1 

DPC -PF 
p 

4.0 4 .0 - 8.0 0. 76-1.91 b 1450 + 50 

DPC -PF 
o 

4.0 10.0-30.0 66-328 b 18.3 + 0.9 

*) (FNH) in 

**) (Fe(CN) 3 ' 
6 

units 10" 5 M . 

) in units 10' - 4 M . 

***) (NH 3) 

****) a. 45. 

in units 10" ̂ M . 

5 wt % ethanol in water; b. water. 
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The simplest explanation of the (NH^) dependence of the reaction rates 

is that the hexacyanoferrate (III) ion oxidizes the weakly acidic formazans as 

the anion: F N (of which only a very smal l amount can be present (Chap­

ter 2) ). In this case the oxidation of the "neu t ra l " formazans can be neg­

lected, since no (NH^) independent part is observed. The term "neut ra l " 

only refers to the dissociat ion of the iminogroup, the carboxyl ic acid group 

being completely dissociated (see Chapter 3). 

Th is interpretation impl ies the acid dissociat ion to be rapid, com­

pared with the oxidation of the anion. The very rapid proton exchange be­

tween the terminal nitrogen atoms in some formazans points in this d i rec ­

tion (68 F ) . 

Only for D P C Q - P F in 45.5 wt % ethanol - water mixtures the oxidation 

was found to be independent of (NH^): 

—= (4.5 + 0.1) x 1 0 " 3 s e c ^ . M " 1 

( F e ( C N ) p 

Consequently this formazan is oxidized in the "neu t ra l " form. 

In order to investigate the effect of d ie lectr ic constant of the reaction 

medium, the percentage of ethanol was varied between 0 and 45.5 wt % for 

D P F - C . 

Results in k^ are given in Table 4~. 

Table 4 y 

-1 -2 3-
Rate constants (in units sec . M ) for the DPF-C Fe (CN),_ 

6 
reaction as a function of the percentage of ethanol, at con­
stant ammonia, ammonium nitrate and hexacyanoferrate (III) 
concentrations. 

% k % k 
Fe Fe 

0 3381 22.1 188 

4. 0 1836 29. 1 54 

6.6 1194 45.5 11 

14.0 512 
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c . R e d o x k i n e t i c s a t v a r y i n g a m m o n i u m n i t r a t e 

t r a t i o n b u t a t c o n s t a n t i o n i c s t r e n g t h 
c o n c e n -

It i s known (67 Sw, 61 D, 67 C) that univalent ions have a consider­

able augmenting effect on the reaction rate of anion-anion redox reactions. 

The exact role of the univalent ion in the activated complex is not c lear 

(67 K, 60 L n , 65 S). The metal ion may act as an actual bridge for elec­

tron transfer (67 K) or s imply as a means of bringing together the two nega-
3-

tively charged ions (in casu F N an Fe (CN)^ )- Th is means that the cation 

NH^ may influence the rate considerably. No study on ion pa i r ing between 

ammonium and hexacyanoferrate(III) has been reported. Ion pair ing occurs 

(37 H , 50 J) between K and Fe (CN)^ and in a l l probabil ity not between Na 
3- -f and Fe (CN)^ (67 Sw). The N H 4 effect on the reaction rates can only be 

evaluated by vary ing the NH^ concentration. Th is has been done for T P F in 

the following way: The var iat ion of k p with varying (NH.) at constant ionic 

strength (addition of Na or K ) and constant pH (Figure 4 9 ) proves the ef-
+ 3-

fect of ion pa ir ing on the oxidation rates in the NH^-Fe (CN)^ system to be 

approximately the same as it is in the K + - F e ( C N ) ^ system. 

30.0-

25.0-

o o in 

c 3 

200 

15.0£ 

"25 50 
(NH«) (units 10"3M) 

100 

Figure 4 ^ 

1 5 Reaction rate kp e for the hexacyanoferrate (III) oxidation of TPF (3. 6 x 10 M) 
as a function of (NH4) in 45. 5 wt % ethanol water mixtures. The quotient of 
the ammonia concentration and the ammonium nitrate concentration is 6.42. 
Solid line : (K 3 [Fe (CN) 6 ] ) = 12 x 1 0 - 4 M ; (K) + (NH 4) = 0. 1 M 
Dotted line: (Na3[Fe (CN) 6 ]) = 12 x 10 " 4 M; (Na) + (NHj) =.0.1 M 
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These resul ts mean that in the oxidation of the anion F N two 

competing reactions must be considered: 

k l F e 
Fe + F N r e > 

N H 4 F e + F N 2 F e > 

Here and in the continuation of this section ionic charges w i l l be dropped. 

Fe = Fe(CN)J*". 

The rate constants of equation (3) can now be decomposed as follows: 

k p e . ( F N H ) = k l p e . ( F e ) . ( F N ) + k ^ . (NH 4 Fe ) . (FN) (4) 

Defining the concentration constants: 

(FN). (NH.) (NH.Fe) 
a = * ; 3 = 

(FNH) . (NH 3 ) (NH 4 ) - (Fe) 

and the pseudo constant 

(FN) 
a -

(FNH) 
(NH 3 ) 

then when working at constant ionic strength and constant (adjusted by 
(NH ) 

f ix ing the pH) and varying (NH 4 ) , k p e of equation (4) can be expressed as: 

k F e v * k l F e - « ' + k 2 F e " * - * - < * ™ 4 > 
= k = (6) 

(Fe ) t ^ e 1 + |3.(NH4) 
When (NH.) i s very smal l , the amount of NH .Fe i s negligible compared with 

2 
(Fe ) t and equation (6) reduces to (after neglecting terms in (NH 4 ) and 

higher): 
k F e = k i F e + <k2Fe " k l F e ' <7> 

i » 1 ? with k, _ = k. „ . a and k o r r . a . . l F e l F e 2Fe 
1 

Indeed plots of k p e versus (NH 4 ) (of which F igure 4^ gives a repre ­

sentative one for TPF ) approach straight l ines at low (NH 4 ) . F r o m these 
30 



plots k 1 F e and ( k 2 p e " k i F e ' ^ c a n b e o b t a i n e d - A t higher (NH 4 ) the plot 
deviates from the in i t ia l straight l ine ; in this case we get from (6): 

k F e ~ k l F e ' * 
~ K 2 F e T e ' p ' (NH 4 ) ^ e ^ e 

(8) 

Plotting the left hand term of (8) versus k p e gives 3 (see F igure 4^). 

in units sec - 1. M •1 
(NH/) 

Figure 4 . 
3 

k F e " k i p e * « N H 3 > 
Plot of versus k for DPF, ionic strength 0. 10, 

(NH ) Fe 8 (NH ) 
= 0.66, 

(Na. Fe (CN) ) = 12.0 x 10 M . 

In this way values of — l F e 

2Fe 

l F e 

k 2 F e * ^ 

and of p have been obtained for three 

formazans at different ionic strengths. 

Exper imenta l conditions and results are in Table 4^. 

31 



Table 4 . 
4 

Rate constants and reaction conditions *) for experiments with variation of the ammonium 
nitrate concentration. 

Formazan Ionic Strength 
(NH 3) 

k 
lFe ( k 2 F e - k ' l F e - ^ ß 

k 2Fe 
Formazan Ionic Strength 

<NH4) 
k 

lFe ( k 2 F e - k ' l F e - ^ ß 

k ! F e 

TPF 0. 10 6.42 1.2 21 14 2.2 

TPF 0. 15 7. 60 1.7 24 11 2.3 

DPF 0.075 0. 66 3.7 96 20 2.3 

DPF 0. 10 0. 66 5.4 74 17 1.8 

DPF-C 0. 10 0.52 6. 6 17 18 7.5 

*) DPF and TPF were dissolved in ethanol (45. 5 wt %) - water, DPF-C was dissolved in 

water; 
-5 

(FNH) = 3.6 x 10 M ; ( Na 3 [ Fe(CN) 6^|) 
-4 

= 12.0 x 10 M . 

The results in Table 4^ have a semiquantitative character, because 

of the diff icult nature of the experiments. 

4.2 DISCUSSION 

The reaction rates measured in water differ considerably f rom the 

rates measured in water - ethanol mixtures, as can be seen from Table ^2 
and 4g- The effect of ethanol addition on the rates may be explained from 

the corresponding change in die lectr ic constant. Table 4^ shows a smooth 

change, indeed. The ionic strength is too high (61 F ) to connect this be­

haviour quantitatively with the proposed reaction mechanism. 

The rate constants for the different formazans can only be compared 
in 45.5 wt % ethanol - water mixtures, in which a l l formazans could be d i s ­
solved. Here k„ increases in the order: 

Fe 

DPF > DPF - C > TPF « DPC - PF » DPC - PF 
P o 

The rate constants for the f i r s t four formazans are a l l of the same order 

of magnitude, whereas the rate constant for D P C Q - P F is extremely sma l l 

as compared to the other rate constants. Furthermore the rate constant of 

D P C Q - PF i s independent of the ammonia concentration; this means that under 

these c ircumstances no oxidation of the DPC -PF anion is observed. The 
o 

analogous para substituted DPCp-PF , however, i s oxidized as the anion with 
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k p e = 2.33 comparable with k p e for T P F (3.60). The independence of k p e 

for D P C Q - P F f rom the ammonia concentration may therefore be ascr ibed to 

a ster ic ortho effect: an internal proton bridging between the termina l n i t ro ­

gen atom and the anionic ortho-carboxyl ic group in the formazan. Th i s 

proton bridging w i l l depress the N -H dissociat ion constant and since the 

formazan anion i s supposed to be responsible for the pH dependent part of 

the oxidation reaction, this part of the reaction w i l l be much slower for 

D P C Q - P F . 

Some more can be said about the sequence of the f i rs t four constants. 

A s is known formazans show (Chapter 3) geometrical i s omer i sm; two of the 

possible i somers are re lat ive ly stable, an open "ye l l ow" and a closed " r e d " 

form, the latter having proton bridging between the terminal (1,5) N-atoms. 

A s the names already suggest these two stable forms may be identified by 

their v is ib le absorption spectra: the yellow form tends to have an absorption 

band around 430 mp,, while the red form has a band at 490 m\i. F r o m the 

spectra it can be concluded that DPF , D P F - C and D P C Q - P F are in the yellow 

form and T P F and DPC -PF are in the red form under the conditions used 
P 

in the experiments. Thus comparing the reaction rates of DPF and T P F , 

DPCp-PF there are. indications that the yel low form (DPF) is somewhat more 

easi ly oxidized than the red form (TPF, D P C p - P F ) . 

Since oxidation is proceeded by acid dissociat ion the cause of the 

difference observed may also be that the red form is a weaker ac id on ac­

count of i ts proton bridging capacity. The difference in rate constant between 

DPF and D P F - C (both being in the yel low form) can possibly be ascr ibed to 

proton bridging in D P F - C (see Chapter 2 formula III). 
k 2 F e 

In vary ing the ammonium nitrate concentration the rat io is 
K l F e 

found to be greater than one for a l l formazans. A s discussed ea r l i e r (Chap­

ter 4. 1 C) the enhancing effect of a cation on a anion-anion reaction may be 

expected. 
The values found for (3 are of the same order as the stabil ity con-

+ 3-
stants for the K - Fe (CN)^ ion associate in water. 

The rate constants obtained in this Chapter refer to the f i rs t one-
electron transfer step giv ing a formazan rad i ca l . Most probably this step is 
followed by a very rapid consecutive reaction forming the tetrazol ium salt. 
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C H A P T E R 5 

K I N E T I C S O F C O M P L E X F O R M A T I O N A N D C O M P L E X 

D I S S O C I A T I O N O F 1 , 3 -D I P H E N Y L - 5 - o - C A R B O X Y P H E N Y L 

F O R M A Z A N W I T H N I C K E L ( I I ) A N D C O P P E R ( I I ) I O N S . 

In this Chapter the complex formation between 1,3-Diphenyl-5-o-

carboxyphenylformazan (DPC Q -PF ) and nicke l (II) or copper (II) in ammoniacal 

ethanol (45.5 wt %)- water mixtures w i l l be discussed. Th i s formazan was 

chosen because it forms complexes with copper (II) and nicke l (II), at a 

measurable rate, while on the other hand the copper complex is not oxidized 

by an excess of copper (II). The system metal ion + formazan could be 

described by way of an equi l ibr ium. A detailed reaction mechanism, con­

sistent with the experimental findings, w i l l be worked out. A l s o attention 

w i l l be paid to the hexacyanoferrate (III) oxidation of the copper (II) and the 

nickel(II ) complexes of D P C Q - P F . 

F o r the reaction conditions we refer to Chapter 3. 

5.1 R E S U L T S 

A . S t a b i l i t y c o n s t a n t s of t h e c o p p e r ( I I ) a m m i n e c o m p l e x e s 

In the reaction medium used for the complex formation experiments 
2+ 

copper(II) and nicke l (II) occurs as ammine complexes (M ( N H g ^ ^ O ) ^ ^ ) 
In order to separate the contributions of the various ammine complexes to 
the measured reaction rates, i t i s necessary to know the values of the cor­
responding stepwise stabil ity constants of these complexes. In the l i terature 
no values of these constants measured under the conditions used in the ex-34 



periments, are mentioned. It may, however, be assumed that the values 

measured in 45.5 wt % ethanol-water do not differ much from those measured 

in aqueous solutions, because no neutral isat ion of charge i s involved in the 

complex formation (61 R, 61 F ) . Th i s assumption has been tested by a de­

termination of the copper (II) ammonia constants in 45.5 wt % ethanol-water 

(see Chapter 3). The values obtained were: 

log K : = 4.26 (4.06) 

log K 2 = 3.46 (3.41) 

log K 3 = 2.80 (2.80) 

log K 4 = 2. 13 (2.04) 

K denotes the stepwise stabil ity constant (61 R, 41 B) for the complex 
n 2+ 

Cu(NHg) (I^O)^ ; in parentheses we have given the values obtained by 

B jerrum for aqueous solutions containing 0.09 M ammonium nitrate. Because 

of the sma l l differences between the two sets, the or ig inal Bjerrum values 

were used in our calculat ions. 

B. S p e c t r a 

The spectra of the copper and nicke l complexes of D P C Q - P F have 

been recorded in ethanol 96% and in ethanol (45.5 wt%) -wate r , with and 

without 0.09 M NH^NO^ and in vary ing concentrations of ammonia (0.1 to 

0.4 M) . Changes in the medium had only minor effects on the in i t ia l ab­

sorption maxima and the mo lar absorbancy indices of the complexes: 

C u : X = 550 + 5 mu-max — 
e = (16.69 + 0.20) x 1 0 3 M - i . c m " 1 

max — 

N i : \ = 660 + 5 mu, max — 

e = (6.23 + 0.18) x 1 0 3 M _ 1 . c m " 1 

max v — 

C . C o m p o s i t i o n o f the m e t a l c o m p l e x i n s o l u t i o n 

The composition of the nickel(II ) and copper (II) complexes of D P C Q - P F 

in ammoniacal solution (45. 5 wt %) ethanol - water was studied by the continu­

ous variat ion method (28 J). 
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After completion of the reaction "Job curves " (28 j) were plotted for 

the wavelengths of maximum absorbance. The plots (of which F igure 5^ 
gives a representative one for copper) had a symmetr i ca l or nearly sym-

2+ 
me t r i ca l maximum for the mole proportion M : D P C Q - P F = 1 : 1 . Th i s 
resul t proves the mole proportion of these complexes in the solution to be 
the same as in the sol id state. 

O.t 40, , 

* MOLE FRACTION 

Figure 5^. 
2+ 

Corrected (61 R) continuous variation plot for the system Cu - DPC -PF; 
2+ -4 ° 

(Cu ) + (DPC -PF) = 10 M, (NH ) = 0.4 M ; \= 550 m|i,. 
o 3 

D - l R e a c t i o n k i n e t i c s 

The kinetic work on the complexes was started with a pre l iminary 

survey of the pH dependence of the decomposition rates for the nickel and 

the copper complexes of D P C Q - P F , the resul ts of which w i l l be given here, 

because of their relevance for interpret ing the results of ammonia containing 

solutions. 

Both complexes were found to be rapidly destroyed by ac id . F o r 

pH > 8.0 the rate of decomposition of the copper complex was nearly 

independent of the pH, when the pH was adjusted with KOH (pH = 9-11): 

The f i r s t 10% decomposition obeyed a f i r s t order law with k = 1.8 x 10 sec 

The rate increased considerably (10 - 100 fold) on using NHg to make up 

the pH. The rate also increased on the addition of ammonium nitrate; other 

salts (sodium and potassium nitrate) did not show this effect. 
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The rate of decomposition of the n icke l complex in the absence of 

ammonium nitrate depended on the pH, whether it had been made up by 

adding potassium hydroxide or ammonia. Addit ion of ammonium nitrate (but 

not of potassium or sodium nitrate) to solutions of the n icke l complex i n ­

creased the react ion rate about 10 fold. 

F o r these reasons the reaction rates have been determined at vary ing 

ammonia and ammonium nitrate concentrations, as has been descr ibed 

(Chapter 3). 

The final results obtained could be interpreted (61 F ) by assuming a 

pseudo f i r s t order decomposition and a pseudo second order formation r e ­

action with rates: 

M F o denotes the metal formazan complexes, H F o the parent ligand (DPC Q -

PF) (with a dissociated - COOH group (Chapter 4)), (--) denotes a concen­

trat ion. ( M ) t Q t denotes the total metal ion concentration present as metal 

ammine complexes. F o r convenience ionic charges have been dropped. The 

k and k' values have been obtained by applying the usual analysis for this 

type of revers ib le reaction (61 F ) . 

In our case ( i .e . when the concentrations of ammonia and ammonium 

nitrate are kept constant) k and k' are pseudo constants and can be deter­

mined by the following procedure: 

s ' (formation) = k' . (M) to t ' (HFo) (1) 

s (decomposition) = k. (MFo) (2) 

k' 
M F o > M + H F o 

k tot 

Then 

= k . ( M F o ) t - k' . ( M t o t ) t . ( H F o ) t (3) 
dt 

and for the decomposition reaction at t = o 

<Mtot>o = ( H F o ) o = ° 

then 

(HFo) t = ( M t o t ) t = ( M F o ) Q - (MFo ) t (4) 
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Introducing the equi l ibr ium concentration ( M F o ) e and using equa­

tion (3) and (4) gives: 
k . (MFo) = k ' { (MFo) - (MFo) } 

now substitution of (5) into (3) gives: 

d (MFo) t 

= k. 
dt 

(MFo) 
(MFo) 

Z | ( M F o ) o - ( M F o ) e | : 

| ( M F o ) o - ( M F o ) t } ' 

(5) 

(6) 

which can also be written as: 

d | ( M F o ) t - ( M F o ) e | ( M F o ) e . | ( M F o ) t - ( M F o ) e | 

dt (MFo) - (MFo) 2 

{ (MFo )^ - (MFo )^ } 

(MFo) 
(MFo) £ - ( M F o ) e (7) 

When proper substitutions have been made the integrated resul t i s : 

( M F o f - ( M F o ) e . (MFo ) t 

In = k. 
{ (MFo ) t - ( M F o ) e j . (MFo) Q 

(MFo ) Q + ( M F o ) e 

( M F o ) Q - ( M F o ) e 

. t (8) 

F r o m this equation k can be evaluated with the help of a graph (of which 

F igure 5 2 gives a representative example). The rate constant k ' then follows 

f rom equation (5). 

Figure 5 

Plot of log. 
(MFo) - (MFo) . (MFo) 

o e t 

/ (MFo Fo) - (MFo) 1 . (MFo) 
L t e ƒ o 

(2.0 x 1 0 _ 5 M ) at (NH 3) = 0- 163 M and (NH^) = 0. 09 M 

versus time for copper complex of DPC^-PF 
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F o r complex formation when, ( M F O ) q = o and if ( M T Q T ) and (HFo ) Q 

have the same concentrations, a s i m i l a r derivation can be made resul t ing 

into equations f rom which k and k' can be calculated. 

It i s c l ear that the values of k. and k* are dependent upon the medium 

as the resul ts in Table 5^ and Table 5 2 show. 

The values obtained for (NH 4 ) = 0.09 M , the medium selected for the 

redox reactions, have been obtained by averaging over at least three inde­

pendent runs. 

By way of comparison, other NH^ concentrations have also been used. 

Only a few formation rates for N i F o nave been obtained from decomposition 

experiments; in the other experiments only the decomposition rate constant k 

was calculated from the f i r s t 10% react ion obeying a f i r s t order rate law. 

The cause of this procedure i s the slowness of the react ion. 
Table 5 ^ 

2+ 
Rate constants for the C u - DPC -PF reaction at varying of (NH ) 

o 3 
and (NH NO ); (from the decomposition experiments). 

(NH 3 ) 

in M 

(NH NO ) 
4 3 

in M 

k 

in 10 sec 

k' 
-1 

in sec 

0. 109 0. 09 4.3 18.7 
0. 163 0. 09 5.5 10. 3 
0.217 0.09 8.4 8.8 
0. 271 0. 09 10. 9 7. 9 
0.326 0.09 14.0 5.9 
0.380 0.09 16.2 5.8 
0.434 0.09 18.1 4.6 

0. 162 0. 015 1.2 11.6 
0. 162 0. 03 2.2 11.6 
0.162 0.045 2.8 11. 3 
0. 162 0.06 3.9 11.1 
0. 162 0.075 4.7 10.2 
0. 162 0. 09 5.9 11. 2 

0.241 0. 015 1.9 8.0 
0.241 0.03 3.2 7. 1 
0.241 0. 045 4.7 8.0 
0. 241 0. 06 6.6 7. 6 
0.241 0.075 7.2 7.3 
0. 241 0.09 8.5 7.7 

0.365 0. 015 2.5 5. 1 
0.365 0.03 5.3 6. 1 
0.365 0.045 7.5 5.3 
0.365 0.06 9.8 5.0 
0.365 0.075 11.3 5.4 
0.365 0.09 13.5 4.7 
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Table 5 . 
2 

2+ 
Rate constants for the Ni - DPC -PF reaction at varying of (NH ) 
and (NH^NO^); (from the decomposition reactions). 

(NH ) (NH NO ) k V 
3 4 3 „ 

-7 -1 -2 -1 
in M in M in 10 sec in 10 sec . M 

A. 0.092 0.09 9.7 9.5 
0.139 0.09 11.0 5.7 
0. 147 0.09 13. 1 4. 5 
0.170 0.09 15.3 3.4 
0.197 0.09 22.9 3.2 
0.241 0.09 24.1 2.0 
0.253 0.09 26,0 1.7 
0.288 0.09 28.0 1.5 
0.362 0.09 48.0 
0.497 0.09 63.3 
0.543 0.09 85.4 
0.575 0.09 87.4 
0.608 0.09 89.2 
0.663 0.09 111 
0.723 0.09 137 
0.904 0.09 196 
1.085 0.09 296 

B. 0.102 0.03 5.1 
0.102 0.045 6.4 
0.102 0.06 7.6 
0.102 0.075 9.4 
0.102 0.09 10.3 

C . 0.306 0.03 14.1 
0.306 0.045 18.6 
0.306 0.06 22.8 
0.306 0.075 26.0 
0.306 0.09 31.2 

D. 0.442 0.03 26.8 
0.442 0.045 33.5 
0.442 0.06 42.0 
0.442 0.075 50.0 
0.442 0.09 57.5 

E. 0.663 0.03 50.9 
0.663 0.045 68.1 
0.663 0.06 78.7 
0.663 0.075 91.2 
0.663 0.09 111.3 

F. 0.723 0.03 55.7 
0.723 0.045 81.6 
0.723 0.06 99.8 
0.723 0.075 166.1 
0.723 0.09 138.0 



D.2 A n a l y s i s o f t h e k i n e t i c s o f c o m p l e x d e c o m p o s i t i o n 

A survey of Table 5^ reveals that for the copper complex as a f i r s t 

approximation the decomposition rate ' constant k i s proportional to both (NH q ) 
2 

and (NH 4 ) . To investigate the possibi l i ty of a (NH^) dependent term in k, 

the values of Table (constant (NH 4 ) were analysed for the two r e l a ­

tions: 
(I) k = k Q + k x . (NH 3 ) 

(II) k = k Q + k x . (NH 3 ) + k 2 . ( N H 3 ) 2 

by means of a Polynomial Regress ion Program. Use of a var iat ion analysis 

as descr ibed in the Appendix resulted in rejection of formula (II); i t turned 

out that formula (I) gives an adequate fit. The values of kg (I) and kg (II) ap­

peared to be smal l compared to k^ and k 2 and had no physical real i ty 

(k Q ( I ) = - 0 . 2 8 . 1 0 ~ 3 s e c _ 1 and kQ(II) = - 0 .11.10~ 3 sec~ A ) . 

Af ter this, a l l values of Table 5 ^ were analysed by a Mult ip le Re ­

gress ion Program using the functions: 

(III) k = k Q + k x : . ( N H 3 ) . (NH 4 ) 

(IV) k = k Q + k l i Q . (NH 3 ) + ( N H 3 ) . (NH 4 ) 

Apply ing the var iat ion analysis as described in the Appendix turned 

out that formula (III) gives an adequate fit. The value of k n (III) was found 
-4 -1 

to be negative and sma l l ( ( -0.28 + 0.24) x 10 sec ) compared to k. 
— 2 A - 1 

Inclusion of a term proport ional to (NHg). (NH 4 ) turned out to be of no 
signif icance. The values of Table 5 ^ can therefore be fitted adequately by 
the equation k = ^ y . (NH 3 ) . (NH 4 ) ; with ^ 1 = (4.4 + 0. 4) x 1 0 " 2 s e c _ 1 . M ~ 2 . 

The analysis of the dissociat ion of N i F o appeared to be rather compl i ­

cated. In the f i r s t place i t must be remembered that the dissociat ion i s pH 

dependent; secondly i t can be seen f rom Table 5 2 ^ (constant (NH 4 ) = 0.09 M) 

that the dissociat ion rate must include a term proportional to ( N H 3 ) 2 ; thirdly 

it was found that plotting the k values of Tables 5 2 B c D E F a £ a i n s t ( N H 4 ) 

(at constant (NH 3 ) and ionic strength), gave straight l ines with intercepts on 

the k axis , which were proportional to (NH 3 ) . With these three points in 

mind we tr ied to f it k with the formula: 
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k = k 1 0 . (NH 3 ) + k 1 ; 1 . ( N H 3 ) . (NH 4 ) + k _ l f x . ( N H 3 ) - i . (NH^) + 

+ k 2 1 . ( N H 3 ) 2 . (NH 4 ) (9) 

The k_ j ^ term i s proportional to (H) and represents the pH de­

pendence. The te rm k^ ^ . (NH 3 ) . (NH 4 ) was added because it played an i m ­

portant part in the dissociat ion experiments of the copper complex. To test 

the significance of the different terms in equation (9) the number of terms 

in this equation was var ied and each var iat ion analysed with the help of a 

Mult ip le Regress ion Program. The following survey gives the various equa­

tions, together with their F values and their theoretical F for P = 0. 99: 

(V) k = k 1 Q . (NH 3 ) + k 1 ; 1 . ( N H 3 ) . (NH 4 ) + k . j j . f N H g ) " 1 . (NH 4 ) + 

+ k 2 1 . ( N H 3 ) 2 . (NH 4 ) 

F = 1255, F (P = 0. 99) = 4.28 

(VI) k = k i 0 - (NH 3 ) + k _ 1 ; A . ( N H 3 ) - 1 . (NH 4 ) + k 2 ^ . ( N H 3 ) 2 . ( N H 4 ) (10) 

F = 1468, F (P = 0.99) = 5.14 

(VII) k = k x > 0 . (NH 3 ) + k ^ : . ( N H 3 ) . (NH 4 ) + k 2 j x . (NHg) 2 . (NH 4 ) 

F = 719, F (P = 0. 99) = 5. 14 

(VIII) k = k ^ . (NH 3 ) . (NH 4 ) +k_^ r ( N H 3 ) _ 1 . ( N H 4 ) + k ^ i . ( N H 3 ) 2 . (NH 4 ) 

F = 278, F (P = 0. 99) = 5. 14 

(IX) k = k 1 0 . (NH 3 ) + k _ x l . ( N H 3 ) _ 1 . (NH 4 ) + v ( N H 3 ) . (NH 4 ) 

F = 137, F (P = 0.99) = 5. 14 

Selection VI was chosen in the usual way (Appendix). 
The constants involved were found to be 

k i Q = (2.6 + 0.2) x l O ^ s e c ' - ' - . M " 1 

k - l 1 = (5-9 ± °- 3> x 1 0 " 7 s e c _ 1 

k 2 x = (2.5 + 0.2) x 1 0 " 4 s e c - 1 . M ~ 2 

D. 3 A n a l y s i s o f t h e k i n e t i c s of c o m p l e x f o r m a t i o n 

Table 5^ and 5 2 a lso contain the pseudo second order formation rate 

constants k' obtained from the application of the formula (5). Var ia t ion of 
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the ammonium nitrate concentration had no influence on the formation rate 

of CuFo or N i F o when (NH^) was kept constant. 

The values of k ' in Table 5^ and 52 re fer to the total metal ion 

concentration ( M ) t Q t : Us ing the overa l l stabil i ty constants 0 n for the metal 

ammine complexes given by Bjerrum (41 B), ( M ) t o t may be expressed as: 

( M ) t o t = (M) . S (NH 3 ) (11) 
6 

with S(NH~) = S 0 - ( N H Q ) n 

d n=0 n 6 

(M) refers to the concentration of hexaquo ion. Assuming now that each ammine 
2+ 

complex M ( N H g ) n ( H 2 ^ 6 - n r e a c t s w i t n m e formazan at its own rate given 
by the rate constant k°, the rate of the formation reaction may be ex­
pressed as: 

1 6 
s - = . ( M ) (HFo ) . E k * . ( N H „ ) n (12) 

S (NH 3 ) t 0 t n=0 n 6 

with k* = k ° . 3 . 
n n n 

Th i s resul t may a lso be expressed in the k ' value; using equation (1): 

6 
k ' . S ( N H Q ) = 2 k ' . ( N H Q ) n (13) 

6 n=0 n 6 

Calculat ions on the values of k ' in Table 5. and 5 9 revealed k ' . S(NHo)/ 
3 2 (NH 3 ) to be nearly constant, while the values of k ' . S (NH 3 )/ (NH 3 ) and 

k* . S (NH 3 )/ (NH 3 ) increased respectively decreased on increas ing ammonia 
concentrations. 

The k 3 term thus plays the most important part in complex formation, 
f rom these: 

k° (CuFo) = (235 + 10) s e c " 1 . M - 1 

k° (NiFo) = (31 + 2 ) x I 0 " 2 s e c _ 1 . M _ 1 

The resul ts obtained above have been checked in a l imi ted number of 

complex formation experiments by adding together metal ions and formazan 

in equal concentrations in exactly the same c ircumstances as already de­

scr ibed above. The resul ts obtained were expressed in the usual way in the 

constants k and k' defined above. 

Table 5 3 and Table 5^ give the calculated resu l ts . The values of k 
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and k* were interpreted as above, giving: 

C u F o : k l l = (3. 3 + 0. 4) x 1 0 _ 2 s e c " 1 . M ~ 2 

C u + H F o : k° = (280 + 15) s e c " 1 . M " 1 

O i l 
N i + H F o : k° = (31 + 3) x 10" sec" . M 

F o r the more complicated n icke l decomposition no rate constants 

were calculated; instead, the experimental rates have been compared with 

the rates calculated from equation (10), using the constants obtained in the 

decomposition experiments (Table 5g). It is seen that agreement between the 

formation and decomposition results is reasonable. 

Table 5 3 

2+ 
Rate constants for the Ni - DPC Q - PF reaction at varying (NH^) and 
constant (NH NO.) = 0. 09 M; (from the formation experiments). 

(NH 3 ) k (exp.) k(calc. ) k' 

in M 
- 7 - 1 - 7 - 1 

in 10 sec in 10 sec 
-3 -1 -1 

in 10 sec . M 

0.404 49.3 47.3 6. 8 
0.354 34.8 37.8 8,9 
0.303 29.6 29.6 11. 3 
0. 254 22.9 21.4 15. 9 

Each entry is the mean of at least three independent kinetic runs. 

Table 5 . 
4 

Rate constants for the C u ^ + - DPC -PF reaction at varying (NHj) and 
constant (NH^NO^) = 0. 09 M; (from the formation experiments). 

(NH ) k k' 
o 

in M 
-4 -1 

in 10 sec 
-1 , -1 

in sec . M 

0. 097 2.5 21. 1 
0. 137 4.1 17.5 
0. 190 5. 8 12. 1 
0.287 10. 1 9.6 

Each entry is the mean of at least three independent kinetic runs. 

E . O x i d a t i o n of t h e c o m p l e x e s 

The kinetics of the oxidation of CuFo and N i F o by the hexacyano-

ferrate (III) anion have been studied in the way described (in Chapter 3) for 
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the formazan - Fe (CN)^ system. The reactions were observed spectrophoto-

metr i ca l l y . The in i t ia l concentration of the complexes in most cases was 

2.0 x 10~^M. The reaction of N i F o was found to be f i rs t order in ammonia, 

hexacyanoferrate (III) and N iFo : 

s* = k* . (Fe (CN)^" ) . ( N H 3 ) . (NiFo) 

with k* = (2 .8+ 0.1) s e c - 1 . M ~ 2 . 

Table 5 . 

-4 -1 
Pseudo first order rate constant (in 10 sec ) for the oxidation of NiFo 
by excess hexacyanoferrate (III) ion at varying (NH^) and constant 
(NH 4 N0 3 ) 0.09 M . 

ion at varying (NH^) and 

(NH 3 ) 
(K Fe(CN) ) in 1 0 _ 4 M 

3 ö 

in M 4.0 6. 0 8.0 

0. 257 2. 9 3.8 5. 9 
0.314 3.6 5.0 6.7 
0.425 4.6 6.4 8.8 
0.522 6.4 8.5 12.0 
0. 627 7.4 10. 1 14. 6 

Compar ison of k* with the dominating decomposition rate constant k 2 ^ 
in section D.2 reveals that„the dissociat ion of N i F o is much slower (10, 000 
t imes) than the oxidation and therefore the N i F o is oxidized as a complex 
by hexacyanoferrate (III). It i s remarkable that N i F o i s oxidized at about the 
same rate as T P F ((3. 6 + 0.1) s e c " 1 . M~ 2 ) and D P C p - P F ((2. 3 + 0.1) s e c " 1 . M~ 2 ) . 

The oxidation of CuFo by the hexacyanoferrate (II) anion could be fitted 
best by the equation 

s* = k* . (NH 3 ) . (CuFo) 

with k* = (4.5 + 0 .4 ) x 1 0 " 3 s e c " 1 . M - 1 

Table 5^. 
o 

-4 -1 
Pseudo first order rate constant (in 10 sec ) for the oxidation of CuFo 
by excess hexacyanoferrate (III) ion at varying (NH ) and constant (NH NO,) = 0.09 M . 

4 3 

(NH 3) 
(K 3 Fe(CN) 6 ) in 1 0 _ 4 M 

in M 2.0 4. 0 6. 0 8.0 

0. 189 8.3 9.2 9. 1 9.2 
0.270 10.7 11.0 11. 0 11. 1 
0. 351 16.0 16.2 16. 2 16. 5 
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In section D.2 we found the value (4.0 + 0.4) x 10" sec" . M ~ for 

the pseudo dissociat ion rate constant (for constant NH^). F r o m these resul ts 

it is c l ear that CuFo dissociates only, but is not oxidized by hexacyano-

ferrate(III). 

It was attempted to oxidize the complex C u F o by a very large excess 
2+ 

(1,000 fold) of C u but even after weeks no change in spectrum was ob-
2 + 

served. Addit ion of a large excess of C u to N i F o only produces metal ion 

exchange in this complex. 

5.2 DISCUSSION 

Before consider ing the detailed complex formation reaction we give 

a short summary of what is known about coordination in the two formazan 

complexes. It i s general ly agreed upon (57 K i , 57 K, 57 F , 52 T) that 

three-coordination is of common occurrence in the complexes, both in the 

solution and in the sol id state, and that the fourth coordination place, marked 

by Q, in the M ^ O plane of the complex schematical ly represented by 

formula (IX), is diff icult to f i l l . The reason for this fact i s not known. 

A molecular model of the complexes c lear ly showed interference be­
tween a group coordinated to the "empty" site (0) and the remainder of the 
molecule. It must however be remembered that f i l l ing the fourth coordina­
tion place in these formazan complexes presents a very subtle equi l ibr ium; 
so four-coordination i s rather easy in C-cyano and N-ortho-hydroxyphenyl, 
N ' -ortho-chlorophenyl formazan complexes (68 W, 52 T). Th is perhaps 
means that it i s not solely a case of ster ic hindering. F i l l i n g of the "empty" 
site (®) with for instance ammonia produces a notable change in the ab­
sorption spectrum (52 T , 68 W). Therefore the s im i la r i t y between the ab­
sorption spectra, in water and ethanol, with and without ammonia as found 
in section B guarantees that under the experimental c i rcumstances this fourth 
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coordination place is not occupied by ammonia. 

Of the two reactions under study the easiest to deal with i s that be­

tween nicke l (II) and the formazan; the decomposition rate i s represented by 

equation (10): 

The term, k ^ ^ . (NH^) . (NH 4 ) , may be cal led a pH term as it i s pro­

portional to the hydrogen ion concentration and in this way represents the 

" t a i l " of the acid-dependent decomposition reaction (section D. 1). Therefore 

this very sma l l term (only a few per cent) is of no interest in the scope 

of our investigations on the reactions in ammonia buffers. F r o m the r e ­

maining two terms the te rm k^ q . (NHg) explains less than 15% of the ob­

served rate in the buffer medium NH^/NH^ with (NH 4 ) = 0.09 M employed 

in the redox react ion studied. Th i s t e rm is diff icult to interpret and w i l l be 

neglected. 

There remains as the main decomposition reaction: 

N i F o + 2 N H 3 + NH+ » 

with s = k
2 i • (N*^) 2 • ( N H 4 ) . (NiFo) 

The corresponding formation rate i s given by: 

s* = k ° . ( N i ( N H 3 ) 3
+ ) . (HFo) 

r e f e r r ing to the reaction: 

N i ( N H 3 ) 3
+ + H F o > 

(For the sake of s impl ic i ty , coordinated water w i l l not be indicated 

unless confusion may a r i s e . ) Th i s reaction i s preceded by a fast equi l ibr ium 
2 + 

between a l l ammine complexes in solution and N i ( N H 3 ) 3 . The s implest r e ­

action scheme consistent with, but not necessar i ly proved by, the resul ts 

given, i s : 
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This mechanism supposes that the association of an NH^- ion to the 

COO group (and not necessar i ly to the O coordinated to the metal ion as 
2+ 

the s impl i f ied scheme seems to suggest) and NHg coordination to the N i 
above and below the formazan plane weakens the N i - O bond to such an ex­
tent that this bond may easi ly be broken. Th is mechanism explains the rate 
law found i f i t i s assumed that X is in a fast equi l ibr ium with IX: 

IX + N H * + 2 N H 3 <—> X 

and that no appreciable quantity of X i s present. 
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The absence of any influence of (NH^) on the formation rates excludes 

the formulation of the reaction as: 

N i ( N H 3 ) 2 + + (N^)/~\»~ 

The copper (II) - formazan system presents a sl ightly more diff icult 

case than the system discussed above because at f i rs t sight there is a 

difference in the number of molecules involved in the formation and that i n 

the decomposition reaction: 

formation: s* = k° . ( C u ( N H 3 ) 3
+ ) . (HFo) 

or C u ( N H 3 ) 3
+ + H F o > 

decomposition: s = k^ ^ . (CuFo) . (NHg) . (NH 4 ) 

or C u F o + N H Q + N H ^ > 
3 4 

Th is difference necessitates changing the scheme elaborated for N i F o 

in this way: F o r mixed aquo complexes of copper (II) in aqueous solutions 

the addition of a fifth or sixth ligand is not easi ly accomplished (66 Co). 

Mutatis mutandis this means for the complex CuFo , where the fourth coord i ­

nation site i s "b locked" , that attachment of an extra molecule perpendicular 

to the CulS^O-plane of (IX) is rather unfavourable, while adding a second 

ammonia molecule as it was postulated to occur for N i F o w i l l be even more 

dif f icult energetical ly. 

On the other hand, although the fourth coordination place in the 

C U N 2 O plane cannot easi ly be used by ammonia, it may be assumed that at 

least on the "open" side the complex is preferably solvated by ammonia 

molecules in the second coordination sphere. A t the moment that the Cu -O 

bond breaks (reaction k^ in the N i scheme) coordination i s possible and i m ­

mediately an ammonia ligand comes in ; a l l this results in a stable planar 

coordination of the copper (with perhaps two water molecules above and be­

low the plane at l a rger distances). The following reactions and the rate 

constants expressions are in this case the same as those already given in the 

n icke l case. 

The extension of the N i F o mechanism worked out for CuFo resembles 

the one generally (67 B) assumed for the S ^ l anation of cobalt (III) complexes. 

A s already re ferred to it impl ies saturated solvation in the vulnerable 

coordination side. 

The reaction scheme given follows the general assumption (52 T , 
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68 W, 55 N) that the formazan complexes have planar structures. However, 

i f the metal-oxygen bond might be perpendicular to the plane of the meta l -

nitrogen bonds the mechanism may easi ly be adjusted to this effect without 

essential ly changing i ts content. 
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C H A P T E R 6 

K I N E T I C S O F T H E O X I D A T I O N O F S O M E F O R M A Z A N S B Y 

C O P P E R ( I I ) A M M I N E C O M P L E X E S 

In this Chapter the oxidation of some formazans by copper (II) ammine 
complexes w i l l be dealt with. The reaction conditions are equal to those used 
in the oxidation of the same formazans by the hexacyanoferrate(III) anion. The 
in i t ia l stage of the oxidation is found to be analogous to the complex for­
mation reaction of copper (II) with 1, 3-Diphenyl-5-o-carboxyphenylformazan. 

F o r detailed react ion conditions we refer to Chapter 3. 

6.1 R E S U L T S 

A logari thmic plot of the measured absorbance at the formazan max i ­
mum versus time showed straight l ines in a l l cases. Th is result proves the 
reaction to be f i r s t order in the total formazan, indicated by F N H ; in this 
section the same abbreviations and symbols as in Chapter 4 are used. The 
pseudo f i r s t order constant obtained from the logarithmic plots is pro­

port ional to the total copper(II) concentration (Cu) f (dropping ionic charges): 

s C u = k C u - ( F N H ) = k C u . ( C u ) t . ( F N H ) (1) 

( s n = reaction rate). 

Results in k are given in Table 6,. 
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Table 6 . 
1 

*) -1 -1 
Reaction conditions and rate constants ' (in units sec . M ) for the formazan-copper(ll) ammii 
oxidations in 0. 09 M ammonium nitrate. 

a **) 
TPF 5.4 8. 1 10. 8 

a 
DPF 5.4 8.1 10.8 

144 4.40 4.30 4.38 155 5. 32 5. 27 5. 29 
216 3.67 3.49 3.56 216 3. 84 3.86 3.75 
310 2. 91 2.80 2. 82 310 2.59 2.62 2.59 
432 2.46 2.38 2.35 432 1. 90 1. 89 1.84 

D P F - C a 2.7 3. 3 4.05 
b 

DPF-C 1.8 2.7 3.6 

ISO 33.70 _ 33.20 297 73.89 74.44 _ 

224 22. 67 21. 97 22. 67 446 50.39 49. 26 49. 17 
299 17.44 16.21 17.09 595 37.22 35. 19 37. 50 
449 11.33 10.94 11.03 744 30. 56 29.58 29. 17 

DPC - P F a 

P 
4 .0 6. 0 8.0 

201 2.55 2. 59 2. 68 
306 2.28 2. 14 2. 18 
400 - 1. 95 1. 95 
471 1. 69 1.71 1.66 

*) For each formazan has been given as a function of: horizontally (Cu^ +) in units 10~^M 
and vertically (NH3) in units 10"^ M . 

**) a. The formazan is dissolved in 45. 5 wt % ethanol - water; 
b. The formazan is dissolved in water. 

In order to analyse the ammonia dependence of the rate constants 

the various copper (II) - ammonia equi l ibr ia must be taken into account. F o l ­

lowing the analysis of the complex formation experiments in Chapter 5, we 

may separate the contributions of each ammine complex (equation (12) of 

Chapter 5). 

( C u ) t . ( F N H ) j o k n C u . ( N H 3 ) n 

' C u S (NH 3 ) 
(2) 

with (Cu). = (Cu ) .S (NH Q ) , S(NhU) = £ P . ( N H J n and k „ = k° _ . 0 
N t ^ 7 3 " v 3 ' n=o n v 3 ' n C u n C u n 

(Cu) = concentration of the hexaquo ion; 6 and k° „ are the overa l l s ta-
x ' n " n n Cu 
b i l i ty constant (41 B) and the redox rate constant for the complex 

2+ 
Cu(NHg) ( i^O)^ respect ively; because during the reactions the spectra 

did not show any evidence (49 V, 58 F , 41 Hu, 65 H , 60 E , 60 I, 60 H) 
of complex formation no appreciable quantity of the formazans is bound to 

2+ 
C u , so that for (FNH) the total formazan concentration may be used. 
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Combination of the equations (1) and (2) gives: 

6 
. S ( N H , ) = £ k n - (NH Q ) n (3) 

C u 3 n=o n C u v 3 ' v ' 

F r o m the values in Table 6. k„ . S ( N H Q ) in a f i r s t approximation i s 
3 J. C u o 

proportional to (NH 3 ) with probably a slight increase on increasing ( N H 3 ) . 

Therefore the values re ferred to have been analysed with a Mult ip le Re­

gress ion Program on an I . B . M . 1130 computer for the relat ions. 

(I) k C U . S ( N H 3 ) = k o + k 3 C u ( N H 3 ) 3 

(II) k C u . S ( N H 3 ) = k Q + k 3 C u ( N H 3 ) 3 + k 4 C u ( N H 3 ) 4 

(III) k C U . S ( N H 3 ) = k o + k 4 C u ( N H 3 ) 4 

The resul ts obtained for the various formazans are in Table 6 2 > to­

gether with the calculated F values and the F values for P = 0.99 (68 L ) . 

F r o m Table and with the help of a var iat ion analysis as described in the 

Appendix, it appeared that relat ion I gives the best fit for a l l formazans ex­

cept T P F , where an appreciable contribution of k 4 is found. In a l l cases k Q 

was found to be very sma l l as compared to kg and k 4 (<1%). 

Table 6,. 

Least squares analysis results for the rate constants of Table 6 . 

*1 
Formazan ' Test k Q in 1 0 1 0 

-1 -1 
sec . M 

12 
k 3 C u in 10 

-1 -4 
sec . M 

k. „ in 1 0 1 2 

4 C u 
sec . M 

F F(P - 0. 99) 

a 
DPF -0 . 16 2.00 + 0.03 2783 10.04 

II +0.04 1.6 +0 .3 0. 9 + 0.7 2671 8.02 
III +0. 95 - - 4. 3 + 0. 1 1553 10.04 

D P F - C 3 I -0.44 12.1 + 0. 1 15361 10.56 
II -0.09 11.5 + 1.3 1. 2 + 0.3 6986 8.65 

III 7.2 - - 25.2 + 0.6 1555 10. 56 
b 

DPF-C I -40.4 52.7 +0 . 8 - . 4757 10.56 
II 13. 9 42.2 + 8. 1 19. 5 + 10. 1 3095 8. 65 

III 168 - - 72.2 + 1.8 1571 10. 56 

DPC - P F a I -0 . 93 2.00 + 0.03 6732 10.56 
P II -0.46 1.4 + 0.2 1. 1 + 0.5 5311 8. 65 

III 7. 62 - - 4. 0 + 0.1 2018 10.56 
a 

TPF I -0 .78 2.6 +0 .1 2671 10.04 
II 0. 01 1.0 +0 .3 3.5 + 0.6 6479 8.02 

III 0. 53 - - 5. 6 + 0.1 5264 10.04 

*) a. The 
b. The 

formazan 
formazan 

is dissolved in 
is dissolved in 

45. 5 wt % ethanol-
water. 

water; 
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Table 6^ gives the resul t ing k° ^ u values for the least squares f it . 

Table 6 ^ 

Rate constants k„ and k _ (in sec . M ) for the oxidation of the 
3 C u 4 Cu ' 

formazans by the copper(II) ammine complexes. 

Formazan ' 
o -1 -1 

k„ _ in sec . M 
3 Cu 

o -1 -1 
„ in sec . M 

4 Cu 

DPF a 105 + 2 

D P F - C a 639 + 5 - -
b 

DPF-C 3052 + 44 - -
DPC - P F 3 

P 
106 + 3 - -

TPF 52 + 13 1.7 + 0.3 

*) a. The formazan is dissolved in 45.5 wt % ethanol - water, 
b. The formazan is dissolved in water. 

The influence of the solvent on the reaction rate has been investigated 

for D P F - C ; the same was done in Chapter 4 for the hexacyanoferrate(III) 

oxidation. F o r this formazan the reaction was performed in different weight 

percentages of ethanol (between 0 and 45.5 wt %), keeping the ammonia and 

copper(II) concentration constant. Results are in Table 6^. 

Table 6 . 
4 

- 1 - 1 2+ 
Rate constants (in units sec . M ) for the Cu - DPF-C reaction as 
a function of the percentage of ethanol, at constant ammonia and 
ammonium nitrate concentration K 

wt % ethanol 
k C u 

0 20.7 

4 .0 18.4 

6. 6 16.4 

14. 0 11. 8 

22. 1 9.7 

29.1 7.2 

4S.5 4.6 

*) (NH*) = 0.09 M 
4 

(NH 3 ) = 1. 10 M 
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Addit ion of a thousand-fold excess of the nitrates of zinc (II), 

cadmium (II) or n icke l (II) to the react ion mixture did not change the rate of 

the react ions. 

6.2 DISCUSSION 

The absence of a spectral indication (49 W, 58 F , 41 Hu, 65 H , 

60 E , 61 I, 60 H) for complex formation and the fact that even a thousand-
2+ 2+ 2+ 

fold excess of Zn , Cd or N i ions over the formazans did not change 

the rate of the oxidation, prove that no appreciable quantity of the metal 

formazan complex is present under the experimental conditions. On the 

other hand D P C Q - P F (Chapter 5) in contrast with the other formazans under 

study, rapidly forms complexes. Th is complex formation of D P C Q - P F has 

been studied in detail (Chapter 5) and it has been found that this formazan 

reacts with the t r iammine complex of copper (II). 

It i s found in the oxidation of formazans by copper (II) that the cop­

per (II) t r iammine complex also plays the most important part. A n exception 

is found,, however. F o r TPF the third and fourth ammine complex react 

with the formazan, the reaction rates of these copper complexes are of the 

same order, but after correct ion for p it was found that the th ird complex 

is more favourable for the oxidation (compare k~ „ and k° ). 

The importance of the third copper (II) ammine complex both in the 

complex formation (Chapter 5) and the oxidation reaction (Chapter 6) may 

be taken as a strong indication that at least in the in i t i a l stage the mecha­

n ism is the same for complex formation and oxidation. F o r reasons of 

analogy it may be assumed that in the rate determining step of the oxidation 

reaction the formazan molecule reacts with the tr iammine copper (II) com­

plex; this in contradiction to the hexacyanoferrate (III) - formazan reactions, 

for which indications have been found that the anion is the reactive species 

(Chapter 4). 

A t this moment it is not yet possible to say where the complex for-
2 + mation mechanism elaborated for the C u - DPC -PF system breaks off and o J 

electron transfer occurs . F o r D P C ^ P F , where no oxidation, but only com­

plex formation i s observed, metal oxygen bonding seems to prevent this 

electron transfer process. 

Table 6^ shows a slight decrease in when the die lectr ic constant 

decreases. Since this effect is sma l l and ionic strength differs from zero 



(61 F) , no quantitative interpretation can be given. 

The values of k° n for the copper (II) oxidation reactions w i l l be 

discussed in the following Chapter and be compared with the resul ts ob­

tained in the oxidation by hexacyanoferrate(III). 
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C H A P T E R 7 

C O N C L U S I O N S 

In this Chapter we w i l l summarize the conclusions obtained in the 

preceding Chapters and compare the various resul ts . 

In Chapter 4 it was found that the hexacyanoferrate (III) oxidation of 

the formazans under study proceeded by an "outer sphere" mechanism. 

In the presence of N H ^ ions, two competing reactions were found: The ox i ­

dation of the formazan anion by the hexacyanofer rate (III) anion and by the 

ammoniumhexacyanoferrate (III) anion. The predominant react ion appeared to 

be the oxidation of the formazan anion by the hexacyanofer rate (III) anion. 

One exception was found, however: D P C Q - P F i n a 4 5 . 5 w t % ethanol -

water mixture was oxidized at a much slower rate than the other formazans 

and from the kinetics it was concluded that in this case the "neu t ra l " formazan 

molecule was oxidized. Th i s exception was ascr ibed to a possible internal 

proton bridging in D P C 0 " P F , which prevents the deprotonation of the imino group. 

The results obtained for the other formazans in a 45.5 wt % ethanol-

water mixture are summarized in Table 7^. 

Table 7 . 

Reaction rate constants for the hexacyanoferrate (III) and the copper(ll) oxidation of 
several formazans. 

Formazan k_ in sec 
Fe 

1 -2 
. M 

o 
K _ in 3 Cu 

-1 -1 
sec . M 

o -1 -1 
k _ in sec . M 
4 C u 

TPF 3. 6 + 0.1 52 + 13 1.7 + 0.3 

DPF 116 + 3 105 + 2 -
DPF-C 11.0 + 0.3 639 + 5 -
DPC -PF 

P 
2.3 + 0. 1 106 + 3 -
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The significant difference in oxidation rate between the " r e d " T P F 

and DPC -PF on the one hand and the "ye l low" DPF on the other hand was 
P 

ascr ibed to the greater acidic strength of the "ye l low" formazan. The dif fer­

ence in rate constant between the "ye l low" DPF and D P F - C was suggested 

to be caused by proton bridging in the "ye l low" D P F - C . 

In Chapter 5 the complex formation between copper(II) and D P C Q - P F 

was studied and no interference from formazan oxidation was found. It i s 

supposed that the stabil i ty of the copper (II) complex of D P C Q - P F must be 

ascr ibed to the favourable poss ib i l i t ies of coordination present here: a t r i -

dentate complex can easi ly be formed without disturbing the rr -system of 

the l igand. 

Under the experimental conditions used here, no complexes of the other 

formazans with copper (II) have been observed, but instead the formazans 

were oxidized by copper (II). It is possible, however, to prepare the copper 

complexes of these formazans, if other experimental conditions are used. 

We suppose that these complexes are less stable than the D P C 0
_ P F com­

plexes, because in the complexes the ligand is a bidentate (TPF) or a t r i -

dentate with a disturbed n-sys tem (DPF-C) . 

An analysis of the kinetics of the complex formation between copper (II) 

and D P C Q - P F taught that the important step in this complex formation is the 

reaction between the copper (II) t r iammine complex and the "neut ra l " formazan 

molecule. 

In Chapter 6 the oxidation of the other formazans by copper (II) was 

studied. Here, too, an analysis of the kinetics revealed that the important 

step is the reaction between the copper (II) t r iammine complex and the "neu­

t r a l " formazan molecule. 

A n analogy was found therefore between the complex formation r e ­

action of copper (II) with D P C Q - P F and the oxidation reaction of the other 

formazans by copper (II). 

Th i s analogy strongly indicates that at least the in i t ia l step of both 

the complex formation of D P C Q - P F and the copper (II) oxidations of the other 

formazans are s i m i l a r and that therefore the oxidation proceeds by an " inner 

sphere" mechanism. 

The rate constants found in the copper oxidations are a l l of the same 

order of magnitude. These rate constants are approximately equal to the 
2+ 

rate constant found for the complex formation reaction of the C u - D P C o ~ P F 

system (k? _ 260 sec M *). Th i s i s another indication of the i m -
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portance of complex formation in the copper oxidations. 

A s a f i r s t step in the copper (II) oxidation, the copper (II) t r iammine 

complex is attached to the formazan molecule probably v ia the lone pa i r of 

the outmost nitrogen atom: In the complex formation reaction of copper (II) 

with D P C Q - P F the next step is coordination of the copper to the other 

outmost nitrogen atom, thus forming a bidentate. The second step of the 

oxidation process, however, presents two poss ib i l i t ies : 

a. An immediate oxidation of the formazan in the copper(II) t r iammine-

formazan system. 

b. A further complexation of copper to the other nitrogen atom in the 

formazan (as with D P C Q - P F ) followed by an internal oxidation. 

F r o m the experimental resul ts obtained in this work we cannot decide 

between the two possib i l i t ies mentioned above. The fact, however, that the 

rate constants found for the oxidation of the formazans and in the complex 

formation of D P C Q - P F are of the same order of magnitude suggests that the 

rate determining step is the same for both processes. 

Inspection of Table 7^ reveals that the oxidation rate constants for 

T P F , DPF and DPC^-PF with copper are approximately equal; this in con­

trast to the rate constants for the oxidation of the same formazans with the 

hexacyanoferrate (III) anion. The fact that for the copper oxidation the same 

rate constants are found for the "ye l low" and the " r e d " formazans indicates 

that in the copper oxidation the formazans are oxidized not as anion but as 

"neu t ra l " molecule. Th is once more supports the proposed mechanism. 

The higher reaction rate in the oxidation of the "ye l low" D P F - C with 

copper may be due to the carboxyl ic group favouring complex formation. 
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S U M M A R Y 

In this thesis an investigation of the kinetics and the mechanism of 

the oxidation in solution of a number of formazans is described. A s ox i ­

d iz ing agents copper (II) and hexacyanoferrate (III) ions were used. 

The oxidations were performed in an ethanol- water mixture at con­

stant ionic strength and temperature. The medium was buffered by an a m ­

monia/ammonium nitrate mixture since during the oxidation reactions protons 

were released. 

The oxidations of the formazans by the "outer sphere" oxidiz ing 

hexacyanoferrate (III) anion were found to involve the formazan anion. Th i s 

was concluded from the rate law found and supported by the fact that the 

reaction rates increased when univalent ions (capable of forming "outer 

sphere" ions associates with the hexacyanoferrate (III) anion) were added. 

Conf irmation of the supposed reaction mechanism was also obtained from 

the change in reaction rate when the die lectr ic constant of the reaction medi 

um was var ied. 

It i s known that formazans can form complexes with copper (II). One 

of the formazans under study (DPC Q -PF ) formed complexes with copper (II) 

at a measurable rate, while the formazan was not oxidized, not even by a 

large excess of copper (II). The complex formation of this formazan was 

studied in detail and it was found that as a f i r s t step the copper t r iammine 

complex reacted with the formazan molecule. 

The other formazans were rapidly oxidized by copper(II) solutions. 

A n analysis of the oxidation rates revealed, that in this case the copper (II) 

t r iammine complex also played the most important part in the oxidation of 

the formazan molecule. That is why it was concluded that in the oxidation 

of the formazans by copper(II), complex formation must play a role . Fur the r -
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more there were indications that the react ion of the formazan molecule with 
the copper (II) t r iammine complex is the rate determining step. A n "Inner 
sphere" oxidation mechanism is thus found in the copper (II) oxidations of the 
f ormazans. 
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A P P E N D I X 

C U R V E F ITT ING 

In order to come to a simple representation of the values measured 

for the rate constant, a number of equations was taken of which could be 

expected from experiments that they fitted more or less correc t ly the ex­

perimental values. 

With the help of regress ion analysis the coefficients of the various 

equations were calculated. 

F r o m these results the equation that fits best the experimental obser­

vations had to be selected. Th is was done with the help of an analysis of 

variance for the different regress ion l ines . In this analysis the total v a r i a ­

bi l i ty of the measured rate constants about their mean value is sp l i t into a 

component given by the variance of the regress ion l ine about the mean of 

the measured k values (reduction due to regression) and into a component 

which represents the variance of the measured k values about the calculated 

regress ion l ine (residual). The quotient of these variances (the common F 

value (68 L ) ) is used as a measure for fit. 

When regress ion l ines were compared with the same degrees of f ree­

dom, the l ine which had the highest F value was chosen. 

When regress ion l ines of different degrees of freedom were compared, 

further analysis was performed in which the significance of the additional 

term was tested. To this end (68 L ) the total var iat ion term was split into 

components which represented the reduction due to regress ion obtained by 

the or ig inal equation and in a component representing the reduction due to 

regress ion obtained by the additional t e rm. 

The latter reduction (expressed in mean squares) was divided by the 
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mean squares of i ts corresponding res idual and when the F value obtained 

in this way surpassed the F (P = 0. 99) value, significance of the additional 

term was accepted. F o r an extensive descr ipt ion of this method of var iat ion 

analysis we refer to Chapter V of the Book: "The Handling of Chemica l 

Data" (68 L ) . 

A s an example of curve f itt ing of k^, u values to equations of different 

degrees of freedom we give here the fitt ing to the functions: 

k C u . S ( N H 3 ) = k 0 + k 3 C u ( N H 3 ) 3 (1) 

k C u . S (NH 3 ) = k Q + k 3 C u ( N H 3 ) 3 + k 4 C u ( N H 3 ) 4 (2) 

We want to know whether k^ ̂ u is of significance in f itt ing the ex­

perimental resul ts . The curve fitting was done for D P F - C as we l l as TPF 

with the experimental values of k„ f rom Table 6 , . 

4 
Test of the significance of adding the term k (NH ) to equation (1), (for DPF-C) . 

Component of variation Sum of squares f Mean square Ratio F (P= 0.99) 

Total 
25 

0.190849 10 10 

Reduction due to 
25 

0.190737 10 
25 

0.190737 10 k n + k (NH )3 

0 3 Cu 3 
25 

0.190737 10 1 25 
0.190737 10 15361 10. 56 

Residual from the line 
0. 117521 1 0 2 2 0.130578 1 0 2 1 k„ + k _ (NH, ) 3 

0 3 C u v 3' 
0. 117521 1 0 2 2 9 0.130578 1 0 2 1 

Reduction due to adding 
the k (NH )4 

4 Cu 5 
term 0.008536 10 1 

21 
0.08536 10 0. 55 11.26 

Residual from the line 

k 0 + k 3 Cu i N H 3> 3 + 

k 4 Cu< N H3> 
22 

0.109216 10 8 0.161520 1 0 2 1 

4 
The term in (NH^) can be skipped, because ^calc. 

< F (P = 0.99). 
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Test of the significance of adding the term k (NH ) to equation (1), (for TPF) 

Component of variation Sum of squares f Mean square Ratio F (P = 0.99) 

Total 
23 

0.722740 10 11 

Reduction due to 
0.720044 1 0 2 3 0.720044 1 0 2 3 

k 0 + N C u ( N H 3 ) 3 
0.720044 1 0 2 3 1 0.720044 1 0 2 3 2671 9.65 

Residual from line 
k + k (NH J 3 

0 3 Cu 3 
20 

2.69504 10 10 
20 

0.269504 10 

Reduction due to adding 
the k ( N H J 4 

4 C u 3 
terra 

20 
2.19337 10 1 

20 
2.19337 10 39.4 10. 04 

Residual from the line 

k n + \ r ( N H / + 0 3 Cu 3 
k (NH )4 

4 C u 3 
20 

0.501667 10 9 
20 

0.5574 10 

The k values can be fitted best by equation (2), because in this case F , > F (P = 0.99). 
calc. 
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V 
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A . V . Davydov en E. S. Pal'shin, Russ. J . Inorg. Chem. 14, 750 (1969). 



V I 

L y s y j en N e l s o n geven te w e i n i g f e i t e l i j ke gegevens ove r de r e p r o d u c e e r ­
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