VRIJE
UNIVERSITEIT
° AMSTERDAM

VU Research Portal

A Method of Implementing Paged, Segmented Virtual Memories on
Microprogrammable Computers

Tanenbaum, A.S.

published in
ACM SIGOPS Operating Systems Review

1979

document version _
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Tanenbaum, A. S. (1979). A Method of Implementing Paged, Segmented Virtual Memories on
Microprogrammable Computers. ACM SIGOPS Operating Systems Review, 13(Apri.), 26-32.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 14. Sep. 2021


https://research.vu.nl/en/publications/8888b316-49ce-4c7e-b55c-73ffc78e738b

A Method for Implementing Paged, Segmented Virtual Memories
on Microprogrammable Computers

by

Andrew S. Tanenbaum

Computer Science Group
Vrije Universiteit
Amsterdam, The Netherlands

1. INTRODUCTION.

A large, segmented, paged, virtual memory [1-4] makes the programming
of certain applications easier. There are several reasons why such a two
dimensional address space is helpful. First, the programmer need not waste
any effort trying to cram a large program into a small memory. Second, if
one procedure is changed, it is only necessary to relink the segment to
which it belongs, and not any other segments. Third a protection system
such as the MULTICS ring structure [5] can be implemented to increase secu-
rity and trap certain kinds of errors. In addition to the above reasons,
which apply primarily to the program, there are also advantages that accrue
from having many large data segments as well.

A virtual address on a computer with a segmented virtual memory con-
sists of two parts: the segment number and the address within the segment.
If the segments are large, it will be impossible to keep an entire segment
in memory at one time, so the segment will have to be divided into pages.
Note that paging is an implementation convenience with which the programmer
need not be concerned, whereas segmentation is a logical partitioning of
the address space that is visible to the programmer. kach virtual address

%ﬁplioitly specifies a segment number, a page number, and an offset within
e page.

In the wusual implementation, the hardware recognizes a speclal
descriptor segment, each of whose entries points to the page table for the
corresponding sSegment. Each page table tells where in primary memory the
pages comprising that segment can be found. Of course, not all pages and
page tables need be in primary memory at all times. When the hardware 1is
given the virtual address of a word (or byte) to be read, the following
steps occur (conceptually). The segment number is used as an index into
the descriptor segment to find the page table. Then the (virtual) page
number 18 used as an 1index into the page table to fetch the (physical)

address of the page frame where the requested page is 1located. From the

physical address where the page frame starts and the offset within the
page, the physical address of the needed word can be computed. The physi-

cal 'address 18 then fed to the memory subsystem to read the word. Many of
the irrelevant details have been omitted here; see [4] for the full story.

26



The process of converting a virtual address to a physical one is com-
plicated, as shown in Fig. 1. Remember that every instruction requires at
least one read (to fetch the instruction itself) and possibly 1 or more
reads and/or writes for data as well. On a microprogrammed computer the
virtual memory could be implemented by simply putting the function virtual-
tophysical in the control store, and having it carried out step by step on
every memory access.

If the virtual memory actually were implemented in firmware as sSug-
gested by Fig. 1, the machine would be horribly slow. To achieve speed,
computers with paged, segmented virtual memories are equipped with an
(expensive) associative memory that remembers the location of the last n
pages referenced. Given a (segment, page) pair, it can very quickly find
the page origin if the page happens to be among the n most recently refer-
enced pages. If the page has not been used recently, virtualtophysical must
be invoked.

In summary, if the computer does not have an associative memory it
will be slow, and if it does have an associative memory it will be expen-
sive. For applications where a microprogrammable mini- or microcomputer
has been chosen due to its excellent price performance ratio, neither of
these alternatives (low performance or high price) is attractive. Neverthe-
less, having a large segmented virtual memory is desirable, and it would be
nice if a method could be found to implement it without any special
hardware, and at a performance equal to or only slightly less than the same
machine without the virtual memory feature. Such a method is described in
the following section.

2. THE ALGORITHM

At any 1nstant 1in time, the program counter points to the next in-
struction word to be fetched. The page in which this instruction resides
will be called the current code page. Since most instructions are not
jumps, the program counter usually advances up the page more or less
linearly, 1increasing by one instruction length per instruction execution
time. Consequently, once a page has become the current code page, it tends
to remain so for a number of consecutive instructions.

Eventually, however, a new page will become the current code page.
We will call this a page change. Note carefully that a page change is quite
different from a page fault. The former occurs when the program counter
moves from one page to another; the latter occurs when a needed page, be it
a program page or a data page, is not in primary memory and must be fetched
from secondary memory. A page change may cause a page fault, but it need
not, since the new page may already be in primary memory.

Page changes can be initiated for a variety of reasons: the program

counter can simply advance off the end of the page; an off page procedure
can be called or returned from; a jump address may be off page; finally a

27



trap or interrupt may cause the program counter to suddenly take on a dis-
tant value. The key to the method lies in the fact that the number of in-
structions executed between page changes is relatively large. In other
words most instructions do not cause a page change.

The basic idea is as follows. The microprogram maintains three vari-
ables in its scratchpad memory: pc (the physical address of the next in-
struction word to be fetched), pclimit (the physical address of the 1last
word on the current code page) and pclimitvirtual (the virtual address
corresponding to the last word on the current code page). Since pc is a
physical and not a virtual address, the next instruction word can be
fetched by simply delivering pc to the memory hardware. It is not neces-
sary to invoke virtualtophysical. So far, at least, there is no penalty at
all for having a virtual memory.

Unfortunately there is no such thing as a free lunch. Once in a while
pc will stray off the current code page. If we did not check for this con-
dition, the program would execute incorrectly, since there is no particular
relation between virtual pages and physical page frames; the next highest
virtual page is generally not located in the next page frame. To detect the
page change condition, the main loop of the microprogram (the one that
fetches the instructions, increments the program counter, and then
dispatches to the execution routines for the various opcodes) should begin
with this statement:

if pc > peclimit then pagechange;

Since pc and peclimit are both kept in mlcroprogram scratchpad registers,
the needed statement amounts to comparing two internal registers, branching
if the first is larger than the second. Usually one or two micro instruc-
tions should be sufficient, which is fortunate, since the test has to be
made every time an instruction word is fetched. If an instruction occupies
multiple words, the test must be repeated before each one is fetched.

Now let us consider how the microprocedure pagechange works. For the
case of pc merely crawling across the upper page boundary, the virtual pro-
gram counter has the value pc - pclimlt + pclimitvirtual. Starting from
this virtual address and the known current segment number (which is not
changed by crawling over a page boundary), virtualtophysical is called to
compute the physical address where the pc should actually be pointing.

If the new code page is in primary memory, pclimit and pclimitvirtual
can be quickly updated and execution can continue on the new page. If the
new page is not in primary memory, the page fault sequence is initiated,
and the operating system is started to handle the fault. Notice that we
have managed to reduce calls to virtualtophysical from one per instruction
word, to one per page change.

For the case that pc does not crawl over the edge, but rather changes
suddenly via a jump, call, ¢trap etc., we proceed as follows. First

28



consider the subcase of instructions that stay within the current segment
and specify the jump or call address by giving the target distance relative
to the current instruction, rather than by giving an absolute address. If
the distance, d, jumped is positive, it can merely be added to pc and the
main loop restarted. Whether or not a page change is needed, the test in
the main loop will work correctly.

1f', however, the jump is backwards (d < 0) the microprogram must
check to see if pc + d is within one page of pclimit. If so, there is no
page change and the execution is the same as for forward jumps, calls, etc.
If there is a page change, the jump, call etc. microcode must itself com-
pute the new virtual address and then update the three registers, presum-
ably by calling pagechange. Note that although machine instructions gen-
erated from structured programs may contain many short forward jumps (from
the if statements) backward jumps only result from loops, with only one per
loop, and from calls, returns, traps and interrupts.

Now we must consider the worst case: a discontinuous change in pc
caused by an instruction specifying an explicit (i.e. absolute rather than
relative) address. The only alternative is to compute the physical address
using virtualtophysical and then to update all three variables.

It should be clear by now that the choice of instructions in the tar-
get machine's repertoire has a significant effect on efficiency. Both jumps
and calls should use relative rather than absolute addressing (the PDP-11,
for example allows all addresses to be relative). Furthermore, having dis-
tinct instructions for forward and backward eliminates the need to make a
run time test on the sign of the distance, d.

3. VIRTUAL MEMORY FOR DATA

Up until now we have only considered the virtual memory for program
segments. The method described above works because programs have the pro-
perty that page changes are relatively infrequent. With data references
the situation can be radically different. Depending on the language being
used and the target machine architecture, it is quite possible that data
references are spread out over a substantial number of pages. If ¢this 1is
true, the only way out is to separate the instruction space from the data
space (as on the PDP-11/45) and provide a segmented virtual memory for
instruction space, and an unpaged, unsegmented, permanently "wired down"
address space for the data. Although not perfect, it is still better than
forcing both the program and the data into a single, tiny address space.

However, for one particular class of target machine architecture,
there is still hope: stack machines (e.g. Burroughs B6700). On a stack
machine, at any given instant the stack pointer points to a word on a page
we will call the current stack page. The machine may well use different
stacks in different segments, at different times (e.g. for multiprogram-
ming), but once a given stack page becomes current, it tends to remain so

29



for a substantial number of machine instructions. Under these conditions we
can proceed in a manner analogous to the algorithm given for program pages.

When a stack machine is used to run programs written in block struc-
tured languages (e.g. PASCAL, ALGOL 68, ALGOL 60, PL/I, etc.) every time a
procedure (or block) is entered, space is reserved on the stack for 1its
actual parameters and local variables. This is accomplished by simply ad-
vancing the stack pointer, sp, by the appropriate amount. When the pro-
cedure is exited, the stack pointer is decremented again. Parameters and
local variables are addressed by giving their offset from the 1local base
register, 1b, which points to the first word allocated to the procedure.

Arithmetic is performed on stack machines by first pushing the
operands on to the top of the stack (above all the local variables). The
arithmetic instructions fetch their operands from the top of the stack, and
place their results where the operands previously had been. Most of the
details of how stack machines work are irrelevant for our purposes except
the observation that most data references will either be offset a small,
positive amount from 1lb (parameters and locals), or be in the general vi-
cinity of sp (arithmetic operands).

First we will show how pushing and popping operands from the top of
the stack can be handled, and then we will deal with parameters, locals and
other variables. The microprogram needs 4 internal scratchpad variables: sp
(the physical address of the top of the stack), splimit (the physical ad-
dress of the last word on sp's page), splimitvirtual (the virtual address
of splimit), and splolomit (the physical address of the first word of the
current stack page). The first three of these are analogous to their pc
counterparts.

Any instruction that pushes an operand onto the (upward growing)
stack must check for the condition sp > splimit. Likewise, any instruction
that pops an operand off the stack must check for sp < splolimit. Push type
instructions need not check splolimit since stack contraction off the bot-
tom of the page is impossible; pop type instructions need not check splimit
since stack expansion off the top of the page is impossible. Only one
register-register comparison and conditional branch is needed per stack
reference. Stack page changes are handled in exactly the same way as code
page changes.

References to parameters, which, in fact, are very much like initial-
ized local variables, and local variables themselves, are handled 1in a
similar way, with variables 1lb, 1blimit, and lblimitvirtual. When the
machine tries to access local variable n, the value of lb+n is computed and
compared to lblimit. If it is greater page change is not invoked, (1b has
not moved off page) but instead virtualtophysical is called. Note that 1D
page changes can only occur as a result of procedure calls, returns, traps,
and interrupts, but not as a result of push, pop, branch or arithmetic
instructions. The fact that all parameters and locals have offsets that are

30



positive with respect to 1b means that nothing analogous to splolimit 1is
needed.

References to variables declared in outer lexicographical levels can-
not be handled so easily. It may be possible to use an ad hoc solution 1n
some cases, such as setting a certain flag whenever the entire stack 118 on
the sp page. In other cases, virtualtophysical will have to be called.
Fortunately, references to variables declared at intermediate lexicographi-
cal levels are relatively rare. If many references to variables declared at
the outermost scope level are to be expected (see [6] for why this is to be
discouraged), the microprogrammer might even consider having a fourth spe-
cial page for the bottom of the stack.

It is quite clear that the technique 1s less satisfactory for the
data than for the program. This is simply a reflection of the fact that
data references have more scatter than program references. Nevertheless
just as the working set concept [7] is on paper problematical, but in prac-
tice quite useful, if programs are well behaved, we believe this technique
will also be useful for a substantial class of programs.

It is probably worth pointing out that this technique is not res-
tricted to so called "microprogrammable" computers, but may also be wuseful
in other situations in which one machine performs an instruction Dy in-
struction interpretation of another machine's instructions.

4, REFERENCES

L] Corbato, F.J. and Vyssotsky, V.A.: "Introduction and Overview of the
MULTICS system," FJCC 27, Spartan Books, pp. 185-197, 1965.

[2] Bensoussan, A., Clingen, C.T., and Daley, R.C.: "The MULTICS Virtual
Memory: concepts and Design," CACM 15, pp. 308-315, May 1972.

[3] Daley, R.C., and Dennis, J.B.: "Virtual Memory, Processes, and shar-
ing in MULTICS," CACM 11, pp. 306-312, May 1968.

[4] Organick, E.I.: The MULTICS System, Cambridge, Mass., MIT Press 1972.

(5] Schroeder, M.D., and Saltzer, J.H.: "A hardware Architecture for
Implementing Protection Rings," CACM 15, pp. 157-170, March 1972.

[6] Wulf, W. and Shaw, M.: "Global Variable Considered Harmful," SIGPLAN
Notices 8, pp. 28-34, February 1973.

(7] Denning, P.J.: "The Working Set Model For Program Behavior," CACM 11,
pp. 323-333, May 1968.

31



type segnr = 0..highseg; {highseg is largest segment number}

pagenr = O..highpage; {highpage is number of pages per segment-1}
offsetnr = 0..highoffset; {highoffset is size of page-1}
physicaladdress = 0..highcore; {highcore is largest address in memory}
dsentry = record {descriptor segment entry}
pt: Tpagetable;
highestpage: pagenr;
pagetableabsent, accessprohibited: boolean
end;
ptentry = record {page table entry}
frameorigin: physicaladdress;
pageabsent: boolean
end;

descriptorsegment = array [segnr] of dsentry;
pagetable = array [pagenr] of ptentry;
word = {primitive machine word};

var ds: descriptorsegment;
memory: array [physicaladdress] of word; {primary memory}

function virtualtophysical (seg:segnr; page:pagenr; offset:offsetnr):
physicaladdress;

var d: dsentry

p: ptentry;

begin {return the physical address corresponding to a virtual one}
d = dsl|seg); {fetch descriptor for this segment}
if d.accessprohibited {check for protection violation}

then protectionfault
else if page > d.highestpage {check for length violation}

then lengthfault

else begin
if d.pagetableabsent then fixpagetablefault;

p := d.ptl [pagel; {p is page table entry}
if p.pageabsent then fixpagefault;
virtualtophysical := p.frameorigin + offset
end
end;

Fig. 1. An outline of how virtual addresses are converted to physical ones.

32



