VRIJE
UNIVERSITEIT
° AMSTERDAM

VU Research Portal

Orca: A Language for Distributed Object-Oriented Programming
Bal, H.E.; Tanenbaum, A.S.; Kaashoek, M.F.

published in
SIGPLAN notices

1990

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Bal, H. E., Tanenbaum, A. S., & Kaashoek, M. F. (1990). Orca: A Language for Distributed Object-Oriented
Programming. SIGPLAN notices, 25(May), 17-24.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 14. Sep. 2021

https://research.vu.nl/en/publications/2ae6e918-cede-40ab-8484-1cd797c25041

Orca: A Language for Distributed Programming

Henri E. Balt
Andrew S. Tanenbaum
M. Frans Kaashoek

Dept. of Mathematics and Computer Science
Vrije Universiteit
Amsterdam, The Netherlands

ABSTRACT

We present a simple model of shared data-objects, which extends the abstract
data type model to support distributed programming. Our model essentially
provides shared address space semantics, rather than message passing seman-
tics, without requiring physical shared memory to be present in the target sys-
tem. We also propose a new programming language, Orca, based on shared
data-objects. A compiler and three different run time systems for Orca exist,
which have been in use for over a year now.

1. INTRODUCTION

The growing interest in distributed computing systems has resulted in a large
number of languages for programming such systems [1]. Many of these languages are
oriented towards systems programming and are typically used for distributed operating
systems, file servers, and other systems programs. In this paper we will discuss a
language designed for implementing distributed user applications. In particular, our
language is intended for parallel, high-performance applications.

An important reason for implementing parallel applications on distributed
systems—rather than on shared-memory multiprocessors—is the fact that distributed
systems scale very well. It is relatively easy to build a distributed computing system
(e.g., a hypercube, Transputer grid, or a collection of workstations connected through an
Ethernet) with hundreds of processors. Connecting the same number of processors to a
shared memory is difficult and expensive. In addition, distributed systems offer a good
price/performance ratio and are available to many people.

On the other hand, programming distributed systems is potentially more difficult
than programming shared-memory machines, since it is impossible for processes on dif-
ferent machines to share data, A process that needs information from a remote process
has to send a message to that process to ask for the information. Moreover, message
passing introduces noticeable delays, so the information may be out-of-date by the time
it arrives. Multiprocessors do not have this problem, since shared data can simply be put

t This research was supported in part by the Netherlands Organization for Scientific Rescarch (N.W.0.) under grant 125-30-10.

17

STGPT.AN Notices, Vol. 25, No.

5

in the shared memory, where they are accessible by every processor immediately.

Our approach tries to combine the advantages of distributed systems and shared-
memory multiprocessors. We present a language for programming distributed systems
based on logically shared data rather than message passing. In other words, the pro-
grammer can use shared data—much as on a multiprocessor—but the implementation of
the langunage does not need physical shared memory.

The structure of the rest of the paper is as follows. In Section 2 we will describe
the underlying model of the language, called the shared data-object model, and the
language itself, called Orca. In Section 3 we will give examples of distributed program-
ming in Orca. Finally, in Section 4 we compare our approach to those of others and we
will briefly describe the current implementation status of the project.

2. AN OVERVIEW OF THE SHARED DATA-OBJECT MODEL

Our model uses processes for expressing parallelism and shared data-objects for
communication and synchronization between processes. An object in our model is a
passive entity; it only contains data. An object is an instance of an object rype, which is
essentially an abstract data type. The data stored in an object can only be accessed
through the operations defined for the object’s abstract type.

A process is an active component. Processes are created dynamically. Each pro-
cess contains a single thread of control. Objects are created by declaring variables of
object types. When a process spawns a child process, it can pass any of its objects as
shared parameters to the child, The children can pass the object to their children, and so
on. In this way, the object gets distributed among some of the descendants of the pro-
cess that declared the object. All these processes share the object and can perform the
same set of operations on it, as defined by the object’s type. Changes to the object made
by one process are visible to other processes, so a shared object is a communication
channel between processes. This mechanism is similar to call-by-sharing in CLU [2].

Each operation is applied to only a single shared data-object. Such operations are
executed indivisibly.* Processes will not see intermediate states of an operation. The

data of the object will never get in an inconsistent state due to simultaneous operation
invocations.

An object type definition consists of a specification part and an implementation
part. The specification part defines one or more operations on objects of the given type.
The declaration of an object type IntQueue is shown in Figure 1.

object specification IntQueue;
operation append (X: integer);
append X to the gueue
operation remove_head(): integer;

wait until queue is not empty; remove and
return head element
end;

Figure 1: specification of object tvpe IntQueue.

The implementation part contains the data of the object, code to initialize the data of new
instances (objects) of the type, and code implementing the operations. The code imple-
menting an operation on an object can access the object’s internal data. An operation
that does not block simply consists of a sequence of statements. Blocking operations

* We usc the term {ndivisibie rather than atomic, as atomicily usually also implies recoverability.

18

consist of one or more guarded commands:
operation name (parameters) ;
begin
guard expr, do statements, od;
guard expr, do statements, od;

guard expr, do statements, od;
end;

The expressions must be side-effect free boolean expressions. The operation blocks
(suspends) until at least one of the guards evaluates to ‘‘true.”’ Next, one true guard is
selected nondeterministically, and its sequence of statements is executed. An outline of
the implementation of object type IntQueue is shown in Figure 2.
object implementation IntQueue;
Q: list of integer; # internal representation

operation append(X: integer);

begin # nonblocking operation
add X to end of Q;

end;

operation remove_head(): integer;
R: integer;
begin
guard Q not empty do
R := first element of Q;
remove R from Q;
return R;
od;
end;

begin

Q := empty; # initialization of an IntQueue object
end;

Figure 2: Outline of implementation of object type IntQueue.

Objects can be created and operated on as follows:

myqueue: IntQueue; # create an object of type IntQueue
myqueueSappend(34); # add 34 to myqueue
x = myqueueSremove_head(); # remove first element

Shared objects can be used to transfer data between processes as well as to syn-
chronize processes. Synchronization in Orca is based on operations that block. As an
example, a process executing the statement:

x := myqueue$remove head();

suspends until myqueue is not cmpty. If the queue is initially empty, the process waits
until another process appends an element to the queue. 1f myqueue contains only one
element and several processes try to execute the statement simultaneously, only one pro-
cess will succeed in calling remove head. Other processes will suspend until more
elements are appended to the queue.

In summary, processes communicate and synchronize via objects that are passed as

19

call-by-sharing parameters when processes are created. Call-by-sharing is restricted to
indivisible objects; other data can only be passed by value.

The distribution of objects among the participating processors is left entirely to the
implementation. This decision significantly contributes to the simplicity of the
language. The design of Orca allows the compiler and run time system to deal effi-
ciently with the distribution of objects. There are no global objects (objects have to be
passed as parameter), so the run time system can keep track of which processes can
access which objects. The semantics of an operation invocation do not depend on
whether the object and the invoker are on the same or different processors. This location
independence makes it possible to move objects dynamically. Shared data can only be
accessed via a well-defined set of operations. This enables the system to dynamically
replicate objects. An operation can access only a single object, allowing indivisible

operations to be implemented without using a complicated locking or version manage-
ment scheme.

3. DISTRIBUTED PROGRAMMING IN ORCA

The shared data-object model described above is very general and supports several
different programming styles. To illustrate this, we will show how the model can simu-
late shared variables, build distributed data structures, and emulate explicit message
passing constructs.

As an introductory example, consider the specification of the abstract data type
IntObject shown in Figure 3.

object specification IntObject;
operation value () : integer; # return current value
operation assign(val: integer); # assign new value
operation min(val: integer);
set value toe minimum of current value and ‘‘val”
operation max (val: integer);
set value to maximum of current value and ‘‘val”

end;

Figure 3: specification of object type IntObject.

Instances (objects) of this type can be created and distributed among other processes.
Such an object effectively becomes a shared integer variable, with several operations to
read or change its value. The operations (value, assign, etc.) are all indivisible. If
two processes simultaneously invoke X$min (A) and XS$min (B), the new value of X

is the minimum of A, B, and the old value of X. On the other hand, a sequence of opera-
tions, such as

if A < X$value() then
X$assign (B);
fi;

is not indivisible. This rule for defining which actions are indivisible and which are not
is both easy to understand and flexible: single operations are indivisible, sequences of

operations are not. The set of operations can be tailored to the needs of a specific appli-
cation.

Programming with distributed data structures has already been studied extensively
by Carriero et al., using the language Linda [3]. An interesting example is the replicated
worker model, which structures a program as a collection of replicated worker processes

20

(one per processor) that repeatcdly take a work item from a taskbag, perform the work,

and (possibly) generate some more work. The taskbag is implemented as a distributed
data structure, accessible by all workers.

We have combined the advantages of (simulated) shared variables and taskbags in
the design of a distributed Traveling Salesman Problem (TSP)* algorithm, based on an
earlier algorithm described in [4]. The algorithm uses one process to generate partial
routes for the salesman (containing only part of the cities) and any number of worker
processes to further expand (search) these partial solutions. A worker systematically
generates all full routes that start with the given initial route, and checks if they are
better (shorter) than the current best solution. Every time a worker finds a shorter full
route, it updates a variable shared by all workers, containing the length of the shortest
route so far. This variable is used to cut-off partial routes that are already longer than
the current shortest route, as these will never lead to an optimal solution. The shared
variable is implemented as an object of type IntObject (see Figure 2). As several work-

ers may simultaneously try to decrease the value of this variable, it is updated using the
indivisible min operation.

The work-to-do is stored in an ordered taskqueue, the order being determined by
one of the many heuristics that exist for the Traveling Salesman Problem (e.g., nearest-
city-first). The taskqueue is similar to the IntQueue data type of Figure 1, except that
the elements are ‘‘routes’’ rather than integers, (Orca provides generic objects, to
express this conveniently.) The basic algorithm for the worker processes is outlined in
Figure 4. (Figure 4 does not show how termination of the worker processes is dealt

with; this requires an extension). Conceptually, the distributed algorithm is as simple as
the sequential TSP algorithm.

Shared data objects can also be used to construct lower level message passing prim-
itives. Asynchronous message passing, for example, can be specified using a message-
queue data type, similar to the IntQueue data type of Figure 1. A message is sent by
appending it to the queue and received using a statement like:

msg := msgqueueSremove head() ;

Abstract data types of general use can be collected in a library, thus building a stan-
dard environment for the language. In this way, programmers can access a lot of useful
primitives, but the language itself is kept simple.

4. DISCUSSION

Our technique extends the abstract data type model to distributed systems. The
resulting language uses a minimum of features to support distributed programming.
Abstract data types also have been used for several other parallel and distributed
languages, especially monitor-based and object-oriented languages.

Concurrent Pascal [S] uses monitors to encapsulate data shared by multiple
processes. Traditionally, monitors have been used for single-processor systems or for
multiprocessors with shared memory. Monitors can also be used in a distributed system,
by putting the data on one specific processor and invoking the operations as remote pro-
cedure calls. This approach, however, is not truly distributed, as data are still central-
ized. Process synchronization with monitors is based on condition variables, using an
operation (wait) to suspend on a ‘‘false’’ variable, and another one (signal) to inform
suspended processes that the variable has become ‘‘true.”” Orca intentionally lacks such

* The Traveling Salesman Problem is the problem of finding the shortest route for a salesman to visit each of a number of cities
in his territory exactly once.

21

process worker (minimum: shared Ir..Zbject; q: shared taskqueue);
r: route;
begin
do # forever
r := gSremove_head();
tsplr, minimum) ;
od;
end;

function tsp(r: route; minimum: shared IntObject);
begin
cut-off (partial) routes longer than the current best one
if length(x) < minimum$value () then
if “r” is a full solution (covering all cities) then
r is a full route shorter than the current best
¥ route, so update the current best solution.
minimum$min (length{x));

else
for all .cities “‘¢’’ not on route ‘‘r” do
search route r extended with ¢
tspl{r|lc, minimum);
od;
fi;

fi;
end;

Figure 4: Algorithm for TSP worker processes.

a feature. If an Orca process is blocked in an operation, the operation’s guards are re-
evaluated whenever the object is changed. Although adding a signal-like primitive

could increase efficiency, it would not be in the spirit of keeping the language design as
simple as possible.

Emerald [6] is an object-oriented language, which considers all entities to be
objects. Objects in Emerald can be active as well as passive (data). Objects can dynam-
ically move from one processor to another, either under program or system control. By
default, the compiler and run time system decide where objects are stored. To increase
efficiency, the programmer can move objects around. Unlike Orca, Emerald does not
entirely hide locations of objects from the programmer,

Several other languages and systems also provide logically shared data. One
interesting example is Linda’s Tuple Space [7]. Orca differs primarily by allowing pro-
grammers to define operations of arbitrary complexity on shared data structures. Linda

supports a fixed number of low-level primitives for manipulating single tuples, which we
feel is a disadvantage [8].

Many designers of distributed operating systems have also proposed or imple-
mented abstract shared memory models. Examples are: Cheriton’s Problem-oriented
Shared Memory [9], Li's Shared Virtual Memory {10}, the Agora Shared Memory [11],
and Mirage [12]. In these systems, the unit of sharing typically is a physical page, rather

than a logical, programmer defined entity (as in our model). For a comparison of several
of these systems, we refer the reader to [13].

We have built a compiler and three prototype run time systems for Orca. One RTS
runs on a multiprocessor system of MCA8020s connected by a VME bus. The second
RTS runs on top of the Amoeba [14] distributed operating system. The third RTS runs
on the bare hardware, a collection of MC68020s connected by an Ethernet [15]. This

22

RTS uses an efficient reliable broadcast protocol [16] for updating all copies of an
object. The replication techniques used for the two distributed RTSs are discussed
in[17].

The implementations have been in use for over a year now. Orca has been used for
several parallel applications, including chess problem solving [18], branch-and-bound,
graph algorithms, matrix algorithms, and numerical algorithms [19, 20].

ACKNOWLEDGEMENTS

The authors would like to thank Wim van Leersum for implementing the Orca com-

piler and Roberi-Jan Elias and Jack Jansen for implementing the distributed run time
systems.

REFERENCES

Bal, H.E., Steiner, J.G., and Tanenbaum, A.S., ‘‘Programming Languages for Distri-

buted Computing Systems,”” ACM Computing Surveys 21(3), pp.261-322 (Sept.
1989).

Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C., ‘‘Abstraction Mechanisms in
CLU,”” Commun. ACM 20(8), pp. 564-576 (Aug. 1977).

Carriero, N., Gelernter, D., and Leichter, J., ‘‘Distributed Data Structures in Linda,’’

Proc. 13th ACM Symp. Princ. Progr. Lang., St. Petersburg, FL, pp. 236-242 (Jan.
1986).

Bal, H.E., Renesse, R. van, and Tanenbaum, A.S., ‘‘Implementing Distributed Algo-
rithms Using Remote Procedure Calls,”’ Proc. AFIPS Nat. Computer Conf., Chi-
cago, IL 56, pp. 499-506, AFIPS Press (June 1987).

Brinch Hansen, P., ‘“The Programming Language Concurrent Pascal,”” IEEE Trans.
Softw. Eng. SE-1(2), pp. 199-207 (June 1975).

Black, A., Hutchinson, N., Jul, E., Levy, H., and Carter, L., ‘‘Distribution and Abstract
Types in Emerald,”” IEEE Trans. Softw. Eng. SE-13(1), pp. 65-76 (Jan. 1987).

Ahuja, S., Carriero, N., and Gelernter, D., “‘Linda and Friends,”’ JEEE Computer 19(8),
PpP- 26-34 (Aug. 1936).

Kaashoek, M.F., Bal, H.E., and Tanenbaum, A.S., ‘‘Experience with the Distributed
Data Structure Paradigm in Linda,” USENIX/SERC Workshop on Experiences with
Building Distributed and Multiprocessor Systems, Ft. Lauderdale, FL., pp. 175-191
(Oct, 1989).

Cheriton, D.R., *‘Preliminary Thoughts on Problem-oriented Shared Memory: A Decen-
tralized Approach to Distributed Systems,’” Oper. Syst. Rev. 19(4), pp. 26-33 (Oct.
1985).

Li, K. and Hudak, P., ““Memory Coherence in Shared Virtual Memory Systems,”” Proc.

Sth Ann. ACM Symp. on Princ. of Distr. Computing, Calgary, Canada, pp. 229-239
(Aug. 1986).

Bisiani, R. and Forin, A., **Architectural Support for Multilanguage Parallel Program-
ming on Heterogenous systems,”’ Proc. 2nd Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, Palo Alto, CA, pp. 21-30 (Oct.
1987).

Fleisch, B.D. and Popek, G.J., *‘Mirage: A Coherent Distributed Shared Memory
Design,”” Proc. of the 12th ACM Symp. on Operating System Principles, Litchfield

23

Park, AZ, pp. 211-223 (Dec. 1989).

Bal, H.E. and Tanenbaum, A.S., ‘‘Distributed Programming with Shared Data,’’ Proc.
IEEE CS 1988 Int. Conf. on Computer Languages, Miami, FL, pp. 82-91 (Oct.
1988).

Mullender, S.J. and Tanenbaum, A.S., ‘‘Design of a Capability-Based Distributed
Operating System,”” Computer J. 29(4), pp. 289-299 (Aug. 1986).
Bal, H.E., Kaashoek, M.F., and Tanenbaum, A.S., ‘A Distributed Implementation of the

Shared Data-object Model,”” USENIX/SERC Workshop on Experiences with Build-

ing Distributed and Multiprocessor Systems, Ft. Lauderdale, FL., pp. 1-19 (Oct.
1989),

Kaashoek, M.F., Tanenbaum, A.S., Flynn Hummel, S., and Bal, HE,, ‘‘An Efficient
Reliable Broadcast Protocol,”” Operating Systems Review 23(4), pp.5-20 (Oct.
1989).

Bal, H.E., Kaashoek, M.F., Tanenbaum, A.S., and Jansen, J., ‘‘Replication Techniques
for Speeding up Parallel Applications on Distributed Systems,”” Report IR-202,
Vrije Universiteit, Amsterdam, The Netherlands (Oct. 1989).

Elias, R-J., “‘Oracol, A Chess Problem Solver in Orca,’”” Master thesis, Vrije Universi-
teit, Amsterdam, The Netherlands (July 1989).

Bal, H.E., Programming Distributed Systems, Silicon Press, Summit, NJ (1990).

Bal, H.E., Kaashoek, M.F., and Tanenbaum, A.S., ‘‘Experience with Distributed Pro-

gramming in Orca,”” IEEE CS Int. Conf. on Computer Languages, New Orleans,
Louisiana (March 1990).

24

