VRIJE
UNIVERSITEIT
° AMSTERDAM

VU Research Portal

A Survey of Operating Systems
Tanenbaum, A.S.

published in
Informatie

1976

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Tanenbaum, A. S. (1976). A Survey of Operating Systems. Informatie, 18(Dec.), 689-698.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 14. Sep. 2021

https://research.vu.nl/en/publications/c3fbf3fc-4a83-491c-8368-fd487a3b0019

A SURVEY OF OPERATING SYSTEMS

by Andrew S. Tanenbaum

Keywords: operating
system, multi-
programming
Kodes: 000.015.580

Like the proverbial 3 blind men exploring the elephant, different people viewing

the same operating system can come to radically different conclusions as to what the
‘true nature’ of the beast is. Some people define ‘operating system’ as the totality

of software delivered by their computer manufacturer, including the COBOL compiler,

H payroll program and tape sort routine. Other, more discriminating, people view
an operating system as a collection of programs whose function is to manage the
computer’s resources (e.g. CPU, primary memory, peripherals, disks, etc.) in order to
maximize performance. Still other people regard the operating system as a partial
interpreter whose task is to hide the unpleasant characteristics of the hardware from the
programmer. In this view, the operating systen’s function is to provide the user
with an ‘extended’ or ‘virtual’ machine, one which is more convenient to use than the

original.

Prepared with the knowledge that no two people seem to agree on what an operating
system (henceforth OS) is, it should come as no shock to the reader that there is no
generally accepted breakdown of the subject into subdisciplines. In this article we will
examine 6 topics that this author considers the essence of the subject: functional
capabilities, processes, structure, resource management, protection, and evaluation.
The subjects treated here are all areas of current research.

1 OPERATING SYSTEM CLASSIFICATION
AND CAPABILITIES

1.1 Taxonomy of Operating Systems

The simplest OS type is the monoprogramming Sys-
tem. In this system the operator manually enters a
job. When the job is finished, the operator manually
enters the next one. Many stand alone minicomputers
use a monoprogrammed OS.

To eliminate wasted time between jobs, the batch
system was invented. In this system a collection of
jobs are strung together on some input medium (mag-
netic tape, card decks, or a disk file). The batch sys-
tem simply runs them in sequence without operator
intervention. Each job waits until its predecessor has
terminated before starting.

Most programs must occasionally pause to wait for
/o to complete. In a batch system the CPU i1s idle
during 1Yo wait time. In a commercial data processing
environment, /0 wait time i1s often 90% or more. To
increase CPU utilization, multiprogramming systems
were invented. In a multiprogramming system, several
programs are Kkept in primary memory simulta-
neously. When one program is blocked, waiting for
i/o to complete, the CPU can be given to another
program. If the primary memory is sufficiently large,
there will nearly always be an unblocked program
around, and CPU utilization can be raised to close
to 100%.

Multiprogramming, although a valuable technique,
brings with it a host of complications. For example
if there 1s insufficient primary memory, sometimes
all programs will be blocked, and CPU time will be
wasted. If primary memory is added to a system al-
ready running at 100% CPU utilizations, the added
memory 1S unnecessary, hence wasted. Achieving a
balance of CPU, memory and other resources in the

Met veel genoegen plaatsen wij het artikel van
dr. A. S. Tanenbaum.
Het artikel is geschreven in het Engels, de
moedertaal van de auteur. Wij hebben over-
wogen het te laten vertalen. Hiervan is afgeziéen,
niet alleen vanwege de hoge kosten, maar ook
omdat het erg moeilijk is voor de onderhavige
materie goede Nederlandse terminologie te
vinden.
Zowel door de vreemde taal als door het on-
derwerp zal het voor vele lezers geen eenvou-
dige kost zijn. Als redaktie willen wij daarom
een extra aanbeveling doen om het artikel te
bestuderen.
Het geeft een zeer goed overzicht over de
huidige stand van zaken op het gebied van de
systeem programmatuur. Maar het is niet alleen
voor systeemprogrammeurs van belang. Veel
algemene aspekten van programmering komen
aan de orde. Voorts zullen veel gebruikers hun
voordeel kunnen doen met lezing. Met name
de paragrafen 5. ‘Protection’ en 6 ‘Performance
monitoring and evaluation’ verdienen een
brede belangstelling.

Namens de Redactie

J. A. van der Pool

face of a dynamically varying load is not easy.
Nevertheless, most OS’s nowadays, except for some
mini’s, are multiprogrammed, and we will concentrate
our study on these.

If some of the programs running under a multipro-
gramming system can interact with a human being at
a remote terminal, the system is called a timesharing

689 Informatie jaargang 18 nr. 12 pag. 665 t/m 731 Amsterdam december 1976

system. Timesharing introduces the additional com-
plication of the need to swap programs waiting for
human input out of primary memory.

Some multiprogramming systems have remote ter-
minals consisting of laboratory equipment or indus-
trial process control devices instead of teletype or
CRT terminals. These devices send data to the con-
nected program for storage or processing. If there
is no buffering at the equipment end, the computer
must respond to a request for service before the data
is lost. A multiprogramming system with terminals
operating under strict time constraints 1s called a real
time system. Often real time systems have hundreds
of terminals, each of which requires service within
microseconds of the time a request is posted.

Yet another species is the network or distributed sys-
tem. These handle substantial numbers of CPU’s
(> 10). The distinction between a network and a
distributed computer is one of computational in-
timacy. If the CPU’s are physically far apart, and
working on different problems, it 1s regarded as a
network (e.e. FARBER’s ring network [1]); if they
are physically close together, working on the same
problem it is regarded as a distributed system (e.g.
the CMU Multimini, WULF [2]). These types of
systems are new, but rapidly increasing In 1mpor-
tance.

Lastly there are dedicated systems, which do not
attempt to support general programming, but are
specific to one application. Data base management,
banking, and computer aided instruction are typical
application areas.

1.2 Characteristics of Multiprogrammed Operating
Systems
First, they are huge. OS/360, for the IBM 360, con-
sists of 30,000 pages of assembly code. It took 5000
man-years to construct it. The MULTICS system, for
the Honeywell 6180 consists of 4000 pages of PL/I.
Second, they involve parallelism, both in hardware
and software. Many simultaneous activities must be
coordinated.
Third, they are nondeterminate. If two travel agents
simultaneously try to reserve the last seat on an air-
plane, one will win and one will lose (hopefully).
Operating system behaviour is not reproducible, un-
less timing considerations down to the nanosecond
level are taken into account, and even then, the prob-
lem of arbitration of exactly simultaneous events
must be considered.
Fourth, multiprogramming systems must provide
facilities for permanent long term storage of infor-
mation (file system). If the owner of a 100,000
volume medical library available from remote ter-
minals had to retype the entire library every day, he
would probably not be wildly enthusiastic about his
operating system.
Fifth, multiprogramming systems must provide for
the controlled sharing of information and recources.
There i1s a crucial distinction between technological
sharing and intrinsic sharing. Technological sharing
iIs done for economic reasons only. When CPU’s

become cheap enough to give every program its own
(1980-1985), there will be no need to share CPU’s

among programs. On the other hand, the sharing of
the passenger lists in an airline reservation system
among the various programs (one per travel agent)
is essential. No improvement in technology will elim-
inate this sharing (except maybe giving each pas-
senger his own airplane).

In a large system, with many independent user
groups, adequate facilities for, and controls on, shar-
ing is of great importance. The MULTICS project
began as a prototype of a national or regional com-
puter utility, which would provide 24-hour a day
continuous service on a metered basis, much Ilike
telephone service or electricity distribution. This
would eliminate the need for potential computer users
to start out by buying or renting an entire computer,
with its attendant space, staff and maintenance head-
aches. In a computer utilily, providing adequate faci-
lities for, and controls on, sharing i1s probably the
dominant design consideration.

Sixth, multiprogramming systems must automatically
manage the allocation and use of the various hard-
ware facilities, without expecting much help on the
part of the users.

1.3 Services Provided by Typical Operating System

One view of an operating system is that it provides
its user with a virtual machine, one that 1s less
awkward than the bare hardware. This is accomplish-
ed by implementing a class of instructions and fea-
tures not present in most third generation hardware.
Special instructions are usually invoked via a ‘super-
visor call’ or ‘emulator trap’ instruction.

One major feature provided by most large scale OS’s
is virtual memory. Programs can address a large
address space — often larger than the machine’s phys-
ical memory — with the mapping of virtual to real
addresses handled by hardware, except when the
addressed piece of program is not in primary mem-
ory. In this case the OS intervenes to fetch it.

Virtual instructions to read and write files are com-
mon. Files may be read or written sequentially or
randomly. OS/360 provides a multitude of access
methods and options, including automatic buffering,
deblocking, queueing, and searching. An OS must
also provide for creating, destroying, protecting and
cataloging files, as well as many other functions relat-
ing to file directory management. Users have come
to expect all file operations to be device independent,
so that a program written to accept card input will
also run using tape input.

All operating systems provide a Job Control Lan-
guage (JCL) which allows the user to communicate
with the OS. Typical JCL’s look like assembly lan-
guage, with one instruction and its parameters per
line. Instructions are things like call a compiler,
execute a program, print a file, request a resource
(primary or secondary memory space, tape drive,
plotter, etc.), produce a memory printout, catalog a
file etc. It 1s an unfortunate property of most OS’s
that the JCL interpreter is buried deep inside the OS.
A better strategy would be to provide ‘virtual in-
structions’ for all the available facilities, thus allowing

anyone who wanted to, to provide his own JCL com-
piler or interpreter.

Informatie jaargang 18 nr. 12 pag. 665 t/m 731 Amsterdam december 1976 690

2 PROCESSES

2.1 Characterization of a Process

The concept of a process is central to understanding
how an OS works. A process is a program 1n execu-
tion. At every point in time a process has a certain
state, consisting of the program, the values of all its
variables, registers, program counter etc. As the pro-
cess runs, its state changes; the variables take on new
values, the program counter advances, and so forth.
It is useful to distinguish that part of the process that
does not change in time (e.g. the program ttself, as-
suming it is reentrant, and perhaps certain tables)
from the part that does change in time. The change-
able part is called the state vector.

One way of looking at a process 1s to say that a pro-
cess consists of 2 parts: The program (including fixed
tables) and the state vector. The program is a set of
rules describing how the state vector is to be changed
in time. The CPU is regarded as an engine that forces
the state vector through the sequence described by
the program. Another viewpoint regards a process as
a (past and future, history of a program’s state vec-
tor. Either way, a process is an active entity. It can
cause events in the outside world to occur, for
example. writing Chinese on the plotter, or playing
chess with another process or being. In contrast, a
program is a passive entity. It just sits there and does
nothing.

Note carefully that a process is a strictly sequential
entity. There is no parellelism within a process.

In order to keep track of the status of each process
under its control, an OS must maintain a small table
for each process. This table, sometimes called a Pro-
cess Control Block (PCB), contains information such
as the process’ status (running, ready to run, block-
ed), primary memory allocation (the memory contains
the program and variables), files in use, i/o device
status, accounting information (i.e. process history).
program status word, quotas (e.g. maximum disk
space allowed) etc. Whenever a process is suspended
for any reason, its PCB must be updated, in order
that it can be restarted 1n the same state that it stop-
ped in. In fact, the contents of the PCB’s in a par-
ticular system i1s an operational definition of what
processes consists of. It should be clear now that a
program is but one of many components of a process.
In fact, from the OS’s point of view, the function
carried out by the program 1s irrelevant, only its
resource usage and demand for services 1s visible.
Although sharing of reentrant code 1s sometimes pos-
sible, each process normally runs in its own private
address space. No process can just reach into an-
other process’ address space and examine or change
data, except by prior consent. Protection mechanisms
use this feature heavily.

2.2 Interprocess Communication

Processes need to communicate with other processes
for a variety of reasons. One of the most important
Is to communicate information. For example, in an
OS consisting of several processes, there i1s likely to
be a process that manages the line printer. All print-
ing i1s handled by the line printer process. To have a

file printed, a user process must somehow convey to
the printer process the fact that it wants a file printed,
and which one. Situations like this are very common.
Another reason interprocess communication (IPC) 1s
needed is to allow processes to synchronize their
activities. As an example consider a producer-con-
sumer problem with a shared buffer capable of hold-
ing only a single item. The sequence of execution
must be: producer fills buffer; consumer empties
buffer; producer fills buffer; consumer empties buf-
fer, etc. In other words, the two processes must com-
municate with each other in order to strictly alternate
their buffer accesses.

A somewhat related problem is that of mutual ex-
clusion. In many systems certain data bases must only
be accessed by one process at a time, although the
order of access is not important. A typical example
s a flight list in an airline reservation system; bad
things could happen if two processes tried to reserve
one seat simultaneously. From the viewpoint of the
processes and the OS, it does not matter which of
several interested processes gets the data base first,
so long as no more than one has it at any given time.
All interprocess communication involves sharing of
some address space (or object upon which an instruc-
tion operates) between the communicating processes.
Sometimes this i1s disguised, as in the case where all
processes can (indirectly) read and write from a com-
mon table within the OS. Three of the many inter-
process communication mechanisms in use are de-
scribed below.

2.2.1 Semaphores

Excluding very low level communication primitives,
like test-and-set and lock-or-skip type instructions,
DIJKSTRA’s semaphore system [3] 1s about as simple
as IPC can be. To communicate, processes arrange
for the existence of a protected, non-negative integer
variable (semaphore) shared between (among) them-
selves. Two 1nstructions on the semaphore are provid-
ed by the OS: down and up. If a process does a down
on a positive semaphore, its value 1s simply decre-
mented by 1. If a process does a down on a zero
valued semaphore, 1t 1s blocked and the down is not
completed. If a process does an up on a semaphore,
its value 1s increased by 1. However, if another pro-
cess was blocked on the semaphore, it can now com-
plete its down instruction and proceed. If several pro-
cesses were blocked on the same semaphore, one of
them 1s chosen by magic to continue. The others
remain blocked.

Semaphores are simple to implement. The OS need
only maintain for each semaphore a list of processes
blocked on 1t. If a field 1s provided in the PCB, a
semaphore can be represented by two items of infor-
mation: a value, and a pointer to the first PCB linked
on the blocked list for that semaphore. Subsequent

processes blocking on the same semaphore are linked
together via the PCB field.

Semaphores also have a severe disadvantage: pro-
cesses can use them to synchronize control, but not
to pass information. The example of a process want-

69 | Informatie jaargang 18 nr. 12 pag. 665 t/m 731 Amsterdam december 1976

Ing to print a file given above would be impossible
to implement using semaphores alone; a second IPC
mechanism (e.g. address space sharing would be
needed in addition).

2.2.2 Messages

With this IPC mechanism, every process has a mail-
box associated with it. Two primitive instructions are
provided: get and send. When a process executes a
send 1nstruction it specifies a destination process and
message buffer within its own address space. The OS
then copies the message to the receiver’s mailbox, and
the sending process is then free to continue. The
mailboxes are maintained within the OS itself, so no
process can examine its own or any other process’
mailbox. To get a message, a process executes a get
instruction. If there is a message waiting, the OS
copies into the receiver’'s address space, along with
the sender’s identity, provided by the OS, so as to
be unforgeable. If no message is waiting, the receiver
blocks until such time as a message arrives.

One can regard each mailbox as a private semaphore
associated with each process. Doing a get is analogous
to doing a down; sending a process a message to a
process i1s analogous to doing an up on its semaphore.
The number of messages in the mailbox is analogous
to the semaphore value. Many variations of this
popular scheme exist, such as the ability for two
processes to create a private tube (event channel)
between them for sending and getting messages.
Messages have the obvious advantage of combining
communication of information with synchronization.
They have the disadvantage of requiring a space
consuming message table within the OS. If the table
threatens to fill up, processes attempting to send mes-
sages can be retroactively suspended (at the send in-
struction) until there is more room.

2.2.3 Monitors

A monitor (BRINCH HANSEN [4]) is a data struc-
ture consisting of local data, and 1 or more proce-
dures that processes can execute. Monitors have the
property that only 1 process at a time may be in-
voking a given procedure. There is a special data type
called a condition. A process may execute a wair
instruction on a condition variable, which causes it
to block until another process executes a signal in-
struction on the same variable. For example, here is

a monitor to allocate and release a single dedicated
resource.

monitor resource —
begin bool busy: = false; condition flag;
proc acquire = void:
(if busy then wait flag fi; busy; = true);
proc release = void:
(busy: = false; signal flag)
end

Monitors may contain procedures and initialized local
data. To acquire the resource, a process executes
acquire. If the resource is in use, the flag busy will
be true and the process will execute the wait flag
instruction, blocking itself. When some other process
calls release, it will signal flag, freeing the blocked
process to continue.

2.3 Petri Nets

Multiprocess systems can be modeled by Petri Nets.
A Petri Net (PETRI [5]) is a directed graph con-
taining two kinds of nodes, places (circles) and tran-
sitions (bars). There are a finite number of tokens
distributed among the places. The Petri Net moves
[rom state to state in time. A transition is said to be
enabled if every input place has at least one token.
At every step in time, exactly 1 transition fires, re-
moving exactly 1 token from each input place, and
depositing exactly 1 token in each output place.
Tokens are not conserved. The following Petri Net
models mutual exclusion.

1 2
o« (o
= '1'3

A token at A indicates process 1 is running; a token
at C indicates that process 2 is running. A token at B
indicates that the OS is about to choose a process to
run, by the nondeterministic firing of either tran-
sitton 3 or 4 but not both. The firing sequence
141414141414 shows process 1 hogging the CPU,
whereas 132413241324 is a round robin scheduler.

3 OPERATING SYSTEM STRUCTURE

3.1 The Big Mess

This 1s the traditional form used by nearly all com-
mercial systems. It consists of having hundreds of
procedures randomly calling one another. The result
1s systems that crash 3 times a day, leaving the sys-
tems programmers to wonder how they work at all.

3.2 Hierarchial Systems

This system design was made popular by DIJK-
STRA’s THE system [6]. It is essentially a bottom-up
design in which a virtual machine is built up in layers,
each layer adding new features to the virtual machine
used to construct the next higher layer.

At the bottom level is the bare machine, which is
nondeterministic due to interrupts. The flow of con-
trol 1s unpredictable because any instruction may be
followed by the first instruction of some interrupt
routine. The next level has processes that commu-
nicate via semaphores. Each process is strictly se-
quential and deterministic. A hardware interrupt
merely causes the CPU to switch from whichever
process 1t was running to the interrupt process. Sub-
sequent layers add features such as virtual memory,
virtual terminals, virtual i/o instructions etc.

3.3 Extendable Systems

Another design technique, made popular by the
RC4000 system [7] of BRINCH HANSEN is that of
providing a common nucleus for different OS’s. In
the case of the RC4000 OS, the common nucleus is
based on a variation of the message handling IPC
mechanism. The nucleus provides certain basic facili-

ties to higher level processes, which can be used to
build OS’s.

Informatie jaargang 18 nr. 12 pag. 665 t/m 731 Amsterdam december 1976 692

As an example of an extendable system that 1s also
hierarchically structured, we note a time sharing sys-
tem for the PDP-11/45, TSS-11 (TANENBAUM [8]).
In this system, the facilities available are gradually
ncreased over a number of levels until the ‘genie’
level is reached. A process running at the genie level
has virtual memory, IPC via messages, virtual /o (by
sending messages to the terminal handling processes,
by sending file descriptors to printer, punch, etc. pro-
cesses) etc.

Associated with each user process is a genie process,
the latter of which runs at the genie level. The only
operation a user process is capable of executing 1s
sending a message to its genie. The genie then carries
the request out by sending messages to lower level
processes. Different users may simultaneously have
different genies. Since the nature of the user ma-
chine’s virtual instructions, file system, JCL, etc. are
determined by the genie, different users may appear
to be running on different and incompatible OS's
simultaneously.

3.4 Self Virtualizing Machines

A novel and extremely powerful technique for struc-
turing an OS follows from two observations: 1) In a
multiprogramming system, each user has a subset of
the ‘real hardware’ instructions, like register add, and
2 set of ‘virtual’ instructions, like read file. The for-
mer are carried out by the hardware or micropro-
gram, and the latter are carried out by the OS; 2) It
the OS is working properly nothing any user process
does can damage any other process.

In a self virtualizing machine system (GOLDBERG
[9]), the virtual machine presented to the user 1s an
exact duplicate of the complete real machine, includ-
ing all the i/o instructions, ability to change or cir-
cumvent the protection mechanisms etc. Each virtual
machine runs its own complete OS. This 1s accom-
plished as follows. To use this technique one needs
2 machine with two modes — user mode and system
mode, in which all sensitive instructions (i/0, fiddling
with the protection, changing the memory, mapping
etc.) are trapped in user mode. In a standard OS,
when a user process executes a sensitive instruction,
a hardware trap to the OS occurs, and the process
is abruptly aborted with a suitably rude message such
as INV INSTR AT 43B7A.

In a self virtualizing machine system the OS running
on the real hardware forces all virtual machines to
always run in user mode, but it keeps careful track
of whether each virtual machine is in ‘virtual user
mode’ or ‘virtual system mode’. When a virtual ma-
chine executes a sensitive instruction in virtual user
mode. the true OS running on the real machine (call-
ed a virtual machine monitor, or VMM) gets control.
Instead of aborting the offending program, it passes
control to the OS in the virtual machine causing the
trap. This OS then does whatever it normally does
when a user process does something wrong, such as
abruptly aborting the process.

However when a virtual machine in virtual system
mode executes a sensitive instruction, the VMM
handles the trap completely differently. It simulates
the instruction. If it was an i/o instruction, the VMM

carries out the i/o (using virtual card readers, virtual
disks, etc.) bit for bit the way the real hardware does.
When the sensitive instruction has been completed,
the virtual machine can continue.

Note that there is no way for a virtual machine to
damage its neighbors. It can erase the non-resident
portion of its own operating system and destroy all
the files on its virtual disk, but it cannot affect any
other virtual machine’s virtual disk.

This design has effected a complete partitioning be-
tween the multiprogramming and user command
interpretation functions of an OS. The VMM handles
all the multiprogramming, and the simulation of the
sensitive instructions (of which there are usually fewer
than 10). The OS’s in the virtual machines can be sim-
ple monoprogrammed systems that only need worry
about interpreting and executing user service requests.
By splitting an OS into two very distinct parts, it be-
comes much more manageable. This type of system
is available on the IBM 370’s under the name VM/
370. Certain defects in the 370’s design made writing
the VMM more difficult than it would otherwise
have been (the 360’s designers back in 1962 never
envisioned such a system), but it is easy to design a
machine to make VMM’'s easy to write. Future com-
puters will probably use this technique heavily.

3.5 No Operating System

In MULTICS, there is no distinction made between
the system processes and the user processcs. Each
user process has as part of its address space (albeit
protected) routines to schedule the CPU, handle page
faults, allocate disk space, etc. Thus cach user pro-
cess is self supporting, never needing to invoke ‘the
system’ for anything. Of course this does not address
the issue of how the protected routines within each
process are structured (hierarchically, as it turns out),
but the idea is intriguing.

4 RESOURCE MANAGEMENT

4.1 CPU Management

One resource that all OS’s must manage is the CPU.
Usually there are several processes competing for the
CPU. The OS must have some policy about deciding
in what order to run the processes. In a multipro-
gramming system with no time sharing users, a com-
mon scheduling algorithm is Run To Completion.
Each job is given an external priority (e.g. professors
get better service than students, rich people get better
service than poor people, everybody gets so many
minutes of ‘big rush’ time to use when he needs it,
etc.). Whenever the CPU is idle, the highest priority
program is given the processor. It continues running
antil it finishes or blocks for i/o. Then the next high-
est priority program is run. A variation of this sched-
uling algorithm has the priorities dynamically ad-
justed by the OS. For example, highly 1/0 bound pro-
grams could be given high CPU priority to make sure
their i/o keeps going continuously.

Another common algorithm is Round Robin. All the
programs bidding for service are given short quanta
(e.g. 100ms) in succession. Four programs would run

in the sequence 123412341234. In Run To Comple-

693 Informatie jaargang 18 nr. 12 pag. 665 t/m 731 Amsterdam december 1976

tion, a greedy process can get the CPU and keep it
for 2 hours; Round Robin prevents this.

Another well known scheduling algorithm 1is the
Feedback Queue system. The schedular maintains N
queues, the highest getting the best service. When a
process must be chosen, the first process on the high-
est populated queue i1s selected. If a process ter-
minates by blocking (for input) it i1s removed from
the queue system. When 1t later unblocks, it 1s re-
injected on the highest queue. If a process terminates
by using up its quantum, it moves down 1 queue. The
result of this algorithm 1s to keep the highly interac-
tive processes on the top queue, and the more com-
pute bound processes on successively lower queues.
Yet another scheduling algorithm attempts to give
process 1 N seconds of CPU time per minute, no
more and no less. Such an algorithm tends to give the
user uniform response, independent of system loading.
Butler LAMPSON has suggested that next to each
terminal there be a large red button. If a user is un-
happy with the service he i1s getting, he may opt for
pushing aforesaid button, in which case one of 2
things happens: cither his service gets better or he i1s
automatically logged off. The CPU time acquired by
logging people off in this fashion goes into a reserve
bool to be used for providing better service to the
winners of the big red button show. The 1dea is that
most people are reluctant to leave their terminal,
even when the service is bad and they have other
work to do.

4.2 Memory Management

0S/360 and some other systems divide primary mem-
ory into a number of partitions. In some versions the
number and size of the partitions i1s keyed in by the
console operator in the morning and remains fixed
all day. In this type of system each program is loaded
into some partition where it remains until finished.
In other versions the number and size of the parti-
tions 1s dynamically variable. Sometimes the OS can
compact memory by squeezing the partitions together,
in order to gather all the interpartition space into a
single hole, hopefully large enough for another pro-
gram. Moving programs around can be tricky, how-
ever, if 1/0 1s 1n progress. Compacting outward from
the middle i1s more efficient than ‘top down’ of ‘bot-
tom up’.

For time sharing systems, programs must frequently
be swapped out to secondary memory. Since 1t 1S
usually difficult to insure that they will be put back
later at the same address, some mechanism 1s needed
to allow programs to be reloaded anywhere. The most
common method is paging. The address space 1s
broken up into units called pages (typically 256-1024
words). Special hardware defines the memory loca-
tions (page frame) corresponding to each page of
address space. When a program references its
address space, the hardware correctly maps the ret-
erence onto the proper physical memory address, or
traps to the OS if the page is in secondary memory
(page faults).

[t is also possible to implement a 2-dimensional
address space, by having each instruction specify an
address space (segment) and a location within 1t. This

is called segmentation. Paging and segmentation
are convenient for the user, giving him the illusion
of a large address space, and other advantages. For
the OS, paging and segmentation mean more work,
keeping track of which pages are where, and manag-
ing all the paging traffic between primary memory
and (perhaps a hierarchy of) secondary memory.
After a process has been running for a while, the
pages being heavily used will naturally gravitate to-
wards primary memory, whereas the less heavily used
pages will be kept in secondary memory. The heavily
used pages are known as the working set. An OS can
attempt to determine the working set of all its pro-
cesses. When it comes time to run a process, the OS
can preload the working set. Alternatively the OS
can just start the process anyway, and let 1t cause
repeated page faults, bringing in the pages as needed.
This 1s called demand paging.

When a page fault occurs, the OS must choose a page
to remove. This is called a page replacement algor-
ithm. Some algorithms use a local strategy, removing
only the faulting process’ own pages, while others
use a global strategy, removing any convenient page.
Popular algorithms include removing the least recent-
ly used page, or removing the earliest loaded page,
regardless of its usage. A variation removes all the
pages of some unlucky process, the argument being
that it can’t run without its complete working set, so
why keep any of it around.

4.3 Management of Rotating Memories

Just as there innumerable algorithms for managing
primary memory, there are innumerable algorithms
for page placement in secondary memory, and traffic
control between the two. Some systems try to min-
imize page traffic to keep overhead low; others try
to maximize it, to produce a short turnaround by
keeping processes flowing through primary memory
at a high rate.

The simplest scheduling stategy for rotating memories
is first come first served. It is also the worst. If many
requests are pending when a decision has to be made,
one algorithm is to choose the one that can be com-
pleted fastest. On a moving head disk this may keep
the arm shuttling back and forth near the middle of
the disk, giving terrible service to pages at the ex-
tremes. The elevator algorithms sweeps from one
cylinder to another, changing direction only at the
ends. Algorithms taking rotational position into ac-
count as well exists for both disks and drums.
Another parameter to be considered i1s whether pages
should always be rewritten in the same place. In some
systems a page is rewritten in the first empty position
that comes by. This drastically reduces waiting for
completion and arm movement, and drastically in-
creases the bookkeeping required to find the page
again later. |

Since pages that have not been modified since being
brought into primary memory (clean pages) need not
be rewritten (a good copy already exists out there),
there is a high premium to maintaining a high ratio
of clean pages/dirty pages. Some systems use idle
disk or drum time to rewrite dirty pages, even 1if there
is no specific reason, just to maintain this ratio high.

Informatie jaargang 18 nr. 12 pag. 665 t/m 731 Amsterdam december 1976 694

These are called sneaky writes, and whether the over-
head required to perform them is worth the gain 18
an open question.

Note that the previous 3 sections all deal with tech-
nological sharing, which can be expected to decrease
in importance in the future.

4.4 Deadlocks

The CPU and primary memory arc pre-emptable re-
sources. If somebody more important COmMes along,
they can simply be snatched away from their current
owner. Tape drives, plotters, and certain other re-
sources cannot be effectively pre-empted without
abandoning all work currently in progress. Non-pre-
amptable resources can lead to trouble. Consider a
system with 1 tape drive and 1 plotter. Process 1 asks
for the tape drive and gets 1t. Process 2 asks for the
plotter and gets it. Now process | asks for the plotter,
and is blocked until it becomes available. Untor-
tunately, process 2 does not release the plotter, 1n-
stead it asks for the tape drive. Both processes are
stuck and will remain so forever. This 1s called a
deadlock.

Three deadlock management strategies are In use:
1) Prevent deadlocks by system design, 2) avoid dead-
locks at resource allocation time, 3) do not prevent
deadlocks: let them occur and have the operator
rerun the jobs. If studies show that a deadlock can be
expected once every 79 years in a particular system,
clearly alternative 3 18 preferable to permanently
tying up 10k of precious primary memory with some-
body’s deadlock algorithm, no matter how brilliant.

The most common ways of preventing deadlocks by
system design are to reserve all necessary resources
when a process starts, or to require a process o
release all previously acquired resources before mak-
ing additional requests. Strategy 2 above is excellent
for generating Ph. D. Theses. All methods require
the OS to know the maximum requirements of each
process in advance. One algorithm grants or denies
resource requests according to this criterion: after
each resource grant, there must be some execution
sequence that allows each process to complete.

5 PROTECTION

5.1 Why Bother?

[f a system had no protection one user could invade
the privacy of another. The public would not stand
for a system in which salary information, medical
histories, police records, etc. were essentially open
to the public.

Another problem is industrial espionage. Companies
have secret information, both technical and financial,
which they do not want their competitors to know.
[f a system had no protection, one user could destroy
the irreplaceable data of another, or in malicious
cases, secretly change it.

Several years ago a California university student
found a way to penetrate the telephone company's
OS. He formed his own corporation and rented a
small computer. Using this computer he called up the
telephone company’s computer and ordered expen-
sive electronic equipment to be delivered to ware-
houses around the state at 3 a.m. Shortly after each

delivery, he would show up with a truck and steal the
equipment. He managed to steal several million dol-
lars worth of equipment before he was accidentally
caught. After getting out of jail he became a con-
sultant on computer security.

Not too long ago another computer thief managed
to steal 200 railroad cars full of merchandise by con-
vincing the railroad’s computer that the cars had been
scrapped. It is estimated that computer theft in the
U.S. alone amounts to 2-3 x 10" dollars/year (ALLEN
[12]).

Still another reason why protection is important in
OS’s (as if the above were insufficient) is that without
+ one user could degrade the service given to other
users, for example by hoarding all the disk space.
The problem of protection is greatly compounded by
the need for sharing, both technological and intrinsic.
When one conceives of a computer utility with
thousands of users, some of whom are offering serv-
ices (programs, data, etc.) and some of whom are
using these services, the problem of allowing only
permitted accesses becomes Vvery difficult.

52 Defects in Present Operating Systems

The protection mechanisms used 1n most commercial
systems are very Inhomogencous. One mechanism Is
used to protect this, and another to protect that. For
example, memory is protected by address mapping,
relocation and bounds registers, or lock and Kkey
schemes. Files and logging in are protected by pass-
words. Access to peripherals and terminals 1s protect-
ed by internal OS tables. Privileged instructions are
protected by a user mode/system mode bit in the
PSW. which is in turn protected by yet another
mechanism.

It would be much more secure if a single mechanism
could be used for all protection. The PDP-11 for
example, has no i/0 instructions. Instead 1/0 1s per-
formed by setting bits in special memory locations.
Thus the memory protection mechanism also protects
i/o instructions. A generalization of this idea to the
point where memory protection protected everything
would be desirable.

Here are some general techniques for compromising
security in present OS’s. Systems are always In a state
of flux. New patches, changes, versions, and releases
occur often. As a result, a systems programmer could
be bribad into putting a ‘trapdoor’ in the system, SO
under certain very, very rare circumstances, security
could be breached.

Many OS’s allow processes to reqjuest memory, but
do not erase it before giving it to the process. By
sitting in a loop requesting, examining and releasing
memory, a process might discover all kinds of In-
teresting things in the residue, such as the system
password table.

Some multiprogramming systems have stringent con-
trols on interactive users, but none on batch jobs.
This leads to the Trojan Horse attack. Many systems
search the user’s file directory before searching the
system directory. A potential spy could submit a
batch job to catalog a special version of the editor or
loader in the victim’s directory. Whenever the victim
called the editor or loader, he would get the spy's

695 Informatie jaargang 18 nr. 12 pag. 665 t/m 731 Amsterdam december 1976

version, which as a side effect would spy on him and
record the information somewhere.

Hitting the user abort key on a terminal often leaves
the system 1n a peculiar state. This 1s a good target
for potential attack.

Files are usually protected by passwords. For users
with a few files, this is adequate, but for a large proj-
ect with many employees and many files it 1s not
secure. With 15% annual personnel turnover, a 50
person project will have employees coming and going,
monthly. A disgruntled employee with knowledge of
all the file passwords could wreak havoc. Changing
hundreds of passwords every time an employee de-
parted would require a constant stream of memos to
all remaining programmers to tell everyone the new
passwords. In addition to being an enormous nuisance
to the programmers and an administrative headache,
having hunderds of paper copies of the password lists
floating around is obviously a serious security prob-
lem itself.

Similar problems exist for a software house that
makes a program available, and charges by usage
(e.g. 75 cents per compilation). Preventing customers
or competitors from copying the program is nearly
impossible with present OS’s. Furthermore, taking
back permission from customers who terminate the
service but continue using the computer for other
reasons 1s well nigh impossible with password protec-
tion.

5.3 The Confinement Problem

As a test to see how much protection an OS offers,
consider the following problem (LAMPSON [11]).
There are 2 processes involved, the service and the
customer. The customer makes contact with the
service and provides it with information. In return
the service performs some computation, and gives
the customer the result. The cost of the service
rendered 1s given to the service’s owner, who then
mails a bill to the customer’s owner. (Owners are
human beings, not processes). One such service is a
program to help people with their income tax. Neither
process trusts the other. The customer might steal the
tax program, and the tax program might steal the
customer’s financial information.

Some of the ways the service might leak information
to a third party are quite subtle. If the service has
memory, 1t can store the information for later col-
lection. If the service can create permanent files, it
can store the information there. If the service can
create a temporary file and grant access permission
to a third party, the third party can read the file
quickly while the service is still active. The service
might be able to leak via the interprocess communica-
tion facility. The service could encode information
in the bill sent to its owner. The service could lock
and unlock a file in a clocked manner, so a third
party process could acquire information by continu-
ally checking to see if the file were locked, because
the time function locked(t) is a binary bit stream.
Worst of all, the service could degrade system per-
formance (by heavy paging, CPU usage etc.) in a
clocked manner. A third party could notice the de-
gradation and decode it as a binary bit stream. Of
course this channel is very noisy and has a low band-

Informatie jaargang 18 nr. 12 pag. 665 t/m 731 Amsterdam december 1976

width, but information theory techniques could be
used to insure reliable transmission.

5.4 Protection Mechanisms

In MULTICS and some other advanced OS’s, a user
can map a file onto a segment, 1.e. the file becomes
part of the virtual memory. This allows the segment
protection mechanism to be used for active files as
well. One protection mechanism has a protection
matrix encompassing all active segments. The entry
M;; specifies the access segment 1 has to segment)
(read, write, call, etc.). Unfortunately, the matrix M
1s too large to be of much use in most systems.

In some systems protection on segments 1s provided
within each process, with the possibility of shared
segments. In MULTICS each segment has a ring
number, the lower the ring number the more protect-
ed. If the curent procedure is in ring 1, any attempt to
access ring j where j < 1 will be trapped by the hard-
ware. The OS itself operates in each process’ address
space 1n ring 0. A user wishing to build a debugging
system to debug his own programs can put the debug-
ger in ring k, and the debuggee in ring k + 1, thus
protecting the debugger.

A number of recent systems use the concept of a
domain as a protection environment, a generalization
of the MULTICS rings. In such systems, there exist
various classes of objects-processes, files, segments,
mailboxes, 1/0 channels, terminals, peripherals etc.
Within each domain, a certain set of objects is ac-
cessible, and with certain strings attached e.g. a read
only file. Each process is in some domain at each
moment, and has access to all the objects of that
domain. Note that the same object may appear in
several domains with different permissions.

One can imagine a giant matrix whose rows are the
domains and whose columns are the objects. Each
entry tells what access the domain has to the object,
If any. There are 2 practical ways to implement this
scheme. First, associated with each domain is a list of
all the objects it has access to. This list contains all
the nonzero entries in its row of the matrix. Each
item 1n this list is called a capability (DENNIS &
VAN HORN [12]).

A capability has 4 parts: a unique number (e.g. date
and time the object was created, expressed in micro-
seconds elapsed since 0000 GMT, 1 Jan. 1901.), the
object type, the access bits, and a pointer to the object
(its PCB), disk location etc.). The object itself also
contains the unique number. If an object is destroyed
and the space 1t occupied reused, an attempt to access
it via an old capability will be detected because the
unique numbers will not match.

The access bits depend on the object type. For a file,
read, write, execute, copy, give away, destroy and
extend might be reasonable. For a process, stop
destroy, and communicate with might be appropriate
accesses. In some systems users or at least subsystem
writers, can create new object types, and define what
the access bits mean.

Needless to say, the protection system would be
worthless if a process could manipulate its own ca-
pability list. The capability litsts must be maintained
by the OS. Whenever the OS creates a new object

696

for a process (e.g. a file) it inserts the capability for
the new object in the process’ capability list, and
returns the index, i, of the new capability (i.e. its
position in the C-list). To refer to an object, a process
uses the index of the capability. Using this scheme,
all objects are protected in a simple, homogeneous
way. Capabilities can also be used for accounting by
using some of the access bits for integer values. For
example, to use the CPU one would need a capability
for it, one of whose fields was the CPU time allowed.
The other way to slice the domain-object matrix is by
columns. Associated with each object is a procedure
which is invoked on every access. The procedure
could use any method it wanted to in order to restrict
access (such as asking permission from a logged in

user).

5.5 Fundamental Principles of Protection

Protection should be based on explicit permission,
not exclusion. The default is no access. Among other
things, security failures then generally show up in the
form of prohibiting an allowed access instead of
allowing a forbidden one. Check every access for
current authority; otherwise permission gets stored
away in local memories. The design should be public.
Protection should not be based on the assumption
that a potential attacker is ignorant. Do not give
anyone more access than he needs. The human inter-
face must be easy to use, or people will not use it.
Some users want strange things; provide him with
facilities to create his own protection subsystems.

5.6 User Authentication

In MULTICS, each registered user of the system has
his own private password. That is the only place pass-
words are used. The system keeps track of who may
access what (e.g. associated with every file 1s an
explicit list of users allowed to access it). Once you
are logged in as JANSEN you can do everything
JANSEN can do.

To reduce the chance of one person logging In as
another the following measures are taken. Terminals
do not echo when passwords are typed, so there is
no written record of the password. A user may
change his password at any time. Not even the system
administrator or computer center director can dis-
cover a user’'s password. Passwords are stored inter-
nally in an encrypted form that cannot be inverted.
This list could be posted on the terminal room wall
and it would not compromise system security (see
EVANS, KANTROWITZ & WEISS [13]). To dis-
courage users from picking easy to guess passwords,
the system supplies a random password generator that
uses English digram frequencies (e.g. foat, zabel,
norbid but not gfupz, hqiznp, jjaqrp). All batch jobs
must be started by a logged in user. After a period
of N minutes of inactivity and after all crashes, the
user must log in again. The system forcibly breaks
the telephone connection after 10 unsuccessful log
in attempts (to make random searches harder). All
login’s are recorded, and the time and place of the
previous one is printed after each login (if someone
clse logged in as you, you will at least be aware).
Lastly, a user can be set up to run a specific program
after login. This program could begin asking ques-

tions, etc. to give a user even more protection against

an intruder.

Other authentication systems used elsewhere include
the following. Passwords that are good for one use
only, with the new one being typed at logout, or
presupplied by user. (Stealing used passwords has no
value). Special terminals that require insertion of a
magnetically striped card during password type in.
Systems that hang up after login, and automatically
call the user back (this requires the intruder to get

into the user’s office).

6 PERFORMANCE MONITORING AND
EVALUATION

Operating systems are so complicated that it is dif-
ficult to tell how well they are working. In order to
tell if a new version is better than the old one, it is
necessary to make extensive measurements on both.
Such measurements include things like CPU idle
time, time spent in various processes, including sys-
tem activities (IPC, scheduling, paging etc.), virtual/
real memory ratio, paging behavior etc.

6.1 Measurement Tools

Some of the basic tools used for performance mon-
itoring are as follows. Counting invocations and time
spent in each OS procedure. Histograms of the pro-
gram counter sampled every T milliseconds (clock
interrupt). Records of page and segment faults. Event
tracing (messages sent, interrupts, /0, process switch-
ing etc.). Use of an external computer to display
statistics in real time. A program sitting in a tight
loop reading the clock, and logging all gaps (this can
measure interrupt handling time, and find scheduler
errors). The ability to have charged CPU time, num-
ber of page faults, etc. printed on each terminal after
each command. To reproduce input behavior for
making tests, an external minicomputer attached to
several telephone lines 1s best.

When constructing a synthetic workload, one method
is to use a known mix of assemblies, compilations,
sorts, matrix inversions, etc. Another method is to
characterize each job by its demand of system re-
sources, e.g. CPU, memory, page faults, file usage,
etc. Thus each job can be characterized by an n-tuple.
Run the OS for a while, and collect statistics on these
n-tuples. Use these to construct the probability density
function in n-space. Write a test program that
demands services randomly according to this p.d.f.

6.2 Modeling

Analytic models of OS behavior are useful for under-
standing complex systems. For example, should a
computer center buy a 500 nsec CPU with 500k
primary memory or a 200 nsec CPU with 300k
primary memory for the same price?

To give an idea of how modeling can be used, consid-
er a system in which the mean time between page
faults is linearly proportional to the primary memory,
M, allocated to a process’ pages, i.e. 1 page fault
every aM sec. [14] Assume a normal instruction takes
T1 and a page fault causing instruction takes T2 sec.
The average instruction time, T = T1 4 T2/aM sec/
instr. Suppose the machine rental cost 1s C; C-M

697 Informatie jaargang 18 nr. 12 pag. 665 t/m 731 Amsterdam december 1976

guilders/sec, where C2 accounts for memory charge,
and Ci everything else. The cost per instruction is
then (C1 + C:M) (T1 + T2/aM). Minimizing this
with respect to M we find that optimal memory size
1S (C1T2/aCaTh) %,

References

I FARBER, D. J.,, A4 Distributed Computer System,
Report TR-4, Dept. of ICS, Univ. of Calif., Irvine,
1970.

2 WULF, W, E. COHEN, W. CORWIN, A. JONES,
R. LEVIN, C. PIERSON, & F. POLLACK, HYDRA:
The Kernel of a Multiprocessor Operating System,
CACM 17 (1974) 337-345.

3 DIIKSTRA, E. W., Cooperating Sequential Processes,
in: Programming Languages, F. Genuys (ed.), Acad-
emic Press, New York, 1968.

4 BRINCH HANSEN, P., Operating System Principles.

Prentice-Hall, Englewood Cliffs, N.J., 1973.

PETRI, C. A., Communication With Automata, Rome

Air Develop. Cent., Suppl. I to Tech. Rep. No.

RADC-TR-65-377, Reconnaissance-Intelligence Data

Handling Branch, Rome Air Develop. Center,

Griffin AFB, New York, 1966.

6 DIJKSTRA, E. W., The Structure of the ‘THE’
Multiprogramming System, CACM 11 (1968) 341-346.

7 BRINCH HANSEN, P., The Nucleus of a Multi-
programming System, CACM 13 (1970) 238-241.

8 TANENBAUM, A. S., 4 General Purpose Time-

sharing System for the PDP-11/45. Wiskundig Semi-

narum Report IR-2, Vrije Universiteit, Amsterdam,
1973.

9 GOLDBERG, R. P., Survey of Virtual Machine
Research, Computer 7 (1974) June, 35-45.

10 ALLEN, B., Embezzler's Guide to the Computer,
Harvard Business Review, July-August, 1975, 79-89.

‘N

11 LAMPSON, B. W., 4 Note on the Confinement
Problem, CACM 16 (1973) 613-615.

12 DENNIS, J. & E. VAN HORN, Programming Sen-
antics for Multiprogrammed Computations, CACM
9 (1966) 143-155.

13 EVANS, A, JR., W. KANTROWITZ, & E. WEISS,
A User Authentication Scheme Not Requiring
Secrecy in the Computer, CACM 17 (1974) 442-445.

14 SALTZER, J. H., A Simple Linear Model of

Demand Paging Performance, CACM 17 (1974) 181-
186.

Reading list (books on operating systems)

BROOKS, F., The Mythical Man Month. Addison-
Wesley, Reading, Mass., 1975.

BRINCH HANSEN, P., Operating Systems Principles.
Prentice-Hall, Englewood Cliffs, N.J., 1973.

COFFMAN, E. G, JR. & P. J. DENNING, Operating
Systems Theory. Prentice-Hall, Englewood Cliffs,
N.J., 1973.

FREEMAN, P., Software Systems Principles. Science
Research Associates, Chicago, 1975.

KATZAN, H., JR., Operating Systems: A Pragmatic
Approach. Van Nostrand Reinhold, N.Y., 1973.
MADNICK, S. E. & J. J. DONOVAN, Operating Sys-

tems. McGraw-Hill, N.Y.. 1974.

ORGANICK, E., The Multics System. MIT Press,
Cambridge, Mass., 1972,

SAYERS, A. P.,, S. KURZBAN, & T. S. HEINES, Oper-
ating Systems Principles. Petrocelli/Charter, NLY-::
1975.

SHAW, A., The Logical Design of Operating Systems.
Prentice-Hall, Englewood Cliffs, N.J., 1974.

ISICHRITZIS, D. C. & P. A. BERNSTEIN, Operating
Systems. Academic Press. N.Y., 1974,

WATSON, R. W., Timesharing System Design Concepts.
McGraw-Hill, N.Y.. 1970.

Informatie jaargang 18 nr. 12 pag. 665 t/m 731 Amsterdam december 1976 698

