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NN interaction from bag-model quark interchange
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(Received 16 October 1981)

A partial-wave helicity-state analysis of elastic nucleon-nuclon scattering is carried out in
momentum space. Its basis is a one- and two-boson exchange amplitude from a bag-model
quark interchange mechanism. The resulting phase shifts and bound-state parameters of
the deuteron are compared with other meson theoretic potentials and data up to laboratory

energies of ~350 MeV.

NUCLEAR REACTIONS NN elastic scattering, E);, <350 MeV.

Coupling constants, form factors of renormalized OBE calculated from

bag-model quark interchange. Phase shifts, deuteron parameters calcu-
lated from covariant partial-wave analysis.

I. INTRODUCTION

Elastic nucleon-nucleon scattering at low energies
below the pion production threshold and at medium
to long internucleon distances is well described by a
potential model derived from one-boson exchange
(OBE) and two-pion exchange (TPE).! The TPE of
the Paris potential® is related to 7N phase shift data
by means of z-channel dispersion relations. The
Bonn potential® generates some TPE from s-channel
NN —AN and NN—AA transition potentials. Its
OBE requires additional phenomenological scalar-
isoscalar meson (o) exchange. In both approaches
nucleons are treated as point particles and their fin-
ite size is then taken into account by means of form
factors. The OBE coupling constants and form fac-
tors are not calculated but either fitted to NN phase
shifts or related to other data.

In the past few years, an SU(3) color gauge
theory (quantum chromodynamics, QCD, Ref. 4)
has become a candidate for a strong interaction
theory. It is widely believed that QCD would have
to provide an explanation of the meson exchange
mechanism and the little understood NN amplitude
at short range. The success of the OBE + TPE
model is somewhat surprising because nucleons are
now known to be extended particles, consisting
predominantly of three valence quarks, with a mean
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square radius of ~0.85 fm so that they barely fit
into nuclei without overlapping. Eventually QCD
must also reconcile at long range the chiral aspects
of the pion as a Nambu-Goldstone mode with its
SU(6) quark-antiquark bound-state nature that it
shares with the heavier mesons.

However, asymptotic freedom® holds in QCD,
and this makes renormalized perturbation theory
applicable, but only at high four-momentum
transfer g. At low ¢ when the effective quark-gluon
coupling a,=g?*/4r is large, color confinement is
expected to govern strong interaction processes. It
is not known in detail how this comes about.
Therefore, phenomenological models have been
developed which impose quark and gluon confine-
ment by means of a local potential, which is either
taken as a potential linear in the radial distance 7 of
a quark from the hadron’s center of mass, a har-
monic oscillator, or an infinite square well in the
MIT bag model.® Here we adopt the latter as a con-
venient and successful description of hadron spec-
troscopy which realizes color confinement in terms
of boundary conditions.

In the past few years, several attempts’ were
made to obtain also the NN interaction from an ef-
fective quark-quark potential acting between the six
valence quarks of two more or less overlapping nu-
cleon bags. The results are rather model dependent
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25 NN INTERACTION FROM BAG-MODEL QUARK INTERCHANGE 1135

and inconclusive. There is now increasing evidence
that the strong interactions at low energy and long
range cannot be obtained from such a “quark-
molecular” approach.® In fact, when @, becomes
sufficiently large, i.e., a, >0.37, gluon pairing® ap-
pears to occur in the QCD vacuum and, for a, > 7,
it has been suggested that also quark-antiquark con-
densation'” sets in. These condensates imply nonlo-
cal effective quark interactions.!

In this framework it has been suggested'? that the
meson (i.e., quark-antiquark) exchange of the OBEP
translates into a nonlocal, nonperturbative quark in-
terchange mechanism between hadrons. This
mechanism (cf. Figs. 1 and 2) has been shown'>!? to
produce interactions of the same algebraic structure
as the OBE + TBE + ... expansion. Moreover, the
coupling constants and form factors of hadronic
vertices that are calculated are in agreement with
the measured values within the uncertainties of the
MIT bag model. The mesonic vertex invariants are

generated from the basic quark-gluon vector cou-
pling igy#%k“ by a Fierz transformation that is
given below. The resulting relative phases are in
agreement with the usual symmetry principles.
More specifically in this model, the current-current
coupling from gluon exchange initiating exchange
scattering between valence quarks of two interacting
hadrons is taken to effect their spin, color, and fla-
vor exchange. Even when the hadrons are separat-
ed, but within a coherence length of the order of
m,~}, it is assumed that this signal (i.e., the t-
channel exchange of a color singlet quark-
antiquark-gluon system) couples to and thereby
propagates through an ordered quark-antiquark
condensate chain of the QCD vacuum. Such a non-
perturbative process involves a space exchange
operator P(x<>y) similar to the permutations that
occur in the Bethe Ansatz!* for condensed matter.
In the static limit, the resulting nonlocal quark in-
terchange amplitude therefore takes the form

To=—(i58)2 [ d° &% P (D)W1) aa (WP (x)G (900 ()Y #1 ) the (%) 5 (1.1)

where ?;- is the appropriate color matrix element, 1, denotes the unit matrix in flavor space, and the ¢’s are
bag wave functions of valence quarks. Through the Fierz transformation

2( 1f )c’d( lf )d’c(?’y)c'd(yﬂ)d’c = 2 Og'cog'd ’
a

Ty generates precisely those vertex invariants

i i .
0%=Li¥s, 7= 5 Vsl ("7

(1.2)

(T'=0 isoscalar and T=1 isovector channel), which occur in the OBE interactions. In our model, this is the
origin from which the SU(6) symmetry derives in color dynamics. No adjustable parameters are introduced
except those of the underlying bag model which are determined from hadron spectroscopy including the me-
son masses. _

The penetration depths, i.e., self-energy corrections mg? in the color singlet (QQ) condensate propagator G
in (1.1), of the exchanged color singlet gluon-QQ system into the quark-antiquark condensate of the QCD va-
cuum are taken to depend on the symmetry properties of the quark-antiquark component $0%). Consequent-
ly, Tp may now be written in the form

To=38>> [fd3x P00y (x)e* T F (g2 —m D)~ [ dy B0 (e~ T T |, (1.3)
y—2Xa, = N N

FIG. 1. Nonperturbative, nonlocal quark interchange

mechanism. FIG. 2. NN OBE via quark interchange.
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which exhibits the characteristic structure of OBE force components that may be related to a quark-
interactions. The m, are taken to be the (QQ)J"T molecular mechanism at short range.’
(meson) masses, which is consistent with the role of The paper is organized as follows. In Sec. IT we
the effective one-gluon exchange in the hadronic present the OBE formalism and in Sec. III the TBE
(meson) mass formula in bag-model spectroscopy. renormalizations of OBE couplings and form fac-
However, instead of the bag-model meson masses tors. The latter originate from our effective quark
we prefer to use the measured values. Finally, only interchange in second and third order. The partial-
the valence quarks inside each nucleon are antisym- wave helicity-state formalism including the formu-
metrized besides the two nucleons, as if the quarks las for the axial-vector meson exchanges are given
“knew” to which hadron they belong through color in Sec. IV including a discussion of the methods
confinement during the collision. used to solve the Lippman-Schwinger (LS) equation.
Our purpose here is to study the meson theoretic Our numerical results are given and discussed in
components of the NN interaction resulting from Sec. V.

Ty in (1.3). We present phase shifts and low energy
parameters including the deuteron wave function

from the OBE and TBE renormalizations. Our II. ONE-BOSON EXCHANGE (OBE)
principal aim is not to fit the data but, in a com-

parison with other more phenomenological, meson As shown in Ref. 12, the quark interchange am-
theoretic potentials, to isolate their meson exchange plitude Ty of (1.3) implies the following OBE rep-
contributions from fundamentally different NN resentation for the elastic NN amplitude

TAr" =582 F§ 2 [9g ~m )™ + 7" Flg = mg) 1 —goysvsllg—my D)~ + 57" 7g = m )]
— 3 [F 10Vt Fx0i0 j1yq*/2my Ng? —m )~ [Fioy* —Faic**q, /2my]
—%[Fx17’,’;+F21i0;qu/2m1v]?"?(qz—mpz)_I[Fm/”‘leiU‘w v/2my]
-%[&4,07”57’;;+8P,o?"5¢1p][(qz—mvz)—1+“255‘?"?(qz—m,q12)_1][gA,o?’5?’”—gP,o7’5f1"]} .

Q.1

The form factors in (2.1) are defined as matrix ele- FY =Fy(Ry2+R %)
ments of the vertex invariants 0% with valence B ’
quark wave functions taken here from the MIT bag
model.

The latter are written'as

4mN
8o0= —Tpl(Ro'R1 ),
Fir=(1—¢%/4my*) "' [Ger — (g2 /4my*)Gyr]

Ry(7) Fyr=(1—¢%/4my*)""[Gyr —Gpr] ,

——lRl(r)&’~?

Y= X, 2.2)

Ger=3""TF§", Gyr=(3)"ge, (T'=0,1),
gA,o=F0(R02—%R12)+%Fz(Rlz) ,

4m
gP,0=_——qu Fy(R{?) . (2.4

where the radial wave functions Ry, are given in
Refs. 6 and 12. With the notation

For ¢ <0.5 GeV/c, the momentum transfer depen-
dence of these form factors can be equally well ap-
proximated by [A%2/(A2—g¢?)]" with regulator
A=0.64 GeV/c for n=1 (monopole shape) and
A=0.9 GeV/c for n=2. The dipole shape is close
to the empirical proton charge form factor and is
the form factors take the following form therefore adopted in the following. These shapes

R .
Fi(f)=4m fo drrij(qr)f(r), 23

g=14|, ¢’=—9% q=pi—p=p—p),
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are smooth extrapolations for ¢ >0.5 GeV/c, where
the MIT-bag form factors start spurious oscillations
that are caused by the underlying infinite square-
well potential and do not exist for a linear or har-
monic oscillator confinement potential. More accu-
rate monopole and dipole approximations may be
obtained (cf. Table I) but the uncertainties (e.g.,
recoil corrections) of the MIT bag model are larger
than the differences between the calculated form
factors.

The long range (i.e., monopole regulator
A=0.5—-0.65 GeV/c) of our theoretical OBE form
factors is a novel feature which contrasts with the
larger values and fairly wide interval, 1.2 <A <2.5
GeV/c, in phenomenological OBE potentials.’ In
addition to (2.1, 2.4), higher order quark inter-
changes generate form factor renormalizations with
a similar falloff in g, as we shall discuss below.

The values of the coupling constants involving
the form factors at G>=0 are listed in Table II for
the effective quark mass parameter mg=0.108
GeV/c?, on which the bag spectroscopy depends.
We note that a linear confinement potential'® yields
similar coupling constants that are also listed (for
a.=1.9).

A comparison of our calculated coupling con-
stants with those fitted in more phenomenological
OBE models shows several discrepancies. First, our
value for the w-vector coupling, 5—6 in Table II, is

TABLE 1. Form factor shapes for g <

consistent with the SU(6) symmetry but provides
too little repulsion for the S, and 3S, phase shifts.
Quark interchanges in second and third order
corresponding to TBE do not modify the w-vector
coupling significantly. This weakened repulsion at
short range is only partially restored by the addi-
tional 4;-meson exchange which is increased to
~ 1.4 by higher order renormalization. Comparing
our weak w-vector and 4; coupling with those of
the Paris potential (11.75 and 14, respectively) sug-
gests that these larger fitted values simulate repul-
sive interactions of nonmesonic origin which may
be related to the short range repulsion generated by
the quark-molecular mechanism.’

Second, our calculated € and 8 couplings are fair-
ly weak and short ranged, if the physical masses of
these mesons are used in the OBE (2.1). This as-
sumption may be particularly questionable for
scalar mesons because of possible appreciable
multi-QQ admixtures.'® These €-§ exchanges to-
gether do not provide enough attraction at medium
range. In the following section we shall verify that,
in second and third order with intermediate nucleon
and A(1232) isobar states, the quark interchange Ty
produces low-mass effective scalar-meson ex-
changes of the correct order of magnitude which
correspond to TPE contributions or (QQ)?> com-
ponents of exchanged scalar mesons.

1 GeV/c and mgy=0.108 GeV/c2.

A (GeV/o) A (GeV/o)
Form factor monopole (n=1) dipole (n=2)
Fo(Ri>—R?) 0.615 0.920
Fp(Ry24+R}?) 0.520 0.780
4
¥ F\(RoR;) 0.605 0.910
Fo(Ro>— TR+ 2Fy(R,?) 0.610 0.915
Lrwry 0.725 1.075
q
2 2 5 4mN
Fo(Re*+R?) + ;«—q—F,(RORl) 0.710 0.910
FO(R02+R,2)~§-;?—F,(ROR1) 0.600 0.900
N
2 2 4mN
3Fo(Ro*+R )+ F1(RoR,) 0.405 0.615
0.510 0.770

3F0(R02+R12)— _LF1(R0R1 )
my
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TABLE II. OBE interaction parameters.

Unrenormalized Lin. conf. pot.
Meson  Mass (MeV/c?)  Refs. 23 and 12 Renormalized  Refs. 15 and 12 Ref. 19 Bonn®
€ 1200 3.89 3.89 4.53
) 960 0.44 0.47 0.503 6.12
n 548.5 4.87 6.68 5.32 8.05 2
T 138.5 13.4 14.14 14.8 14.4 14
(7] 782.3 6 (0.37) 6 (0.37) 3.78(—0.49) 9.05(—0.1) 9.8(0)
P 763 0.67(2.16) 0.67(4.2) 0.42(3.18) 0.605(4.78) 0.7(4.5)
D 1285 0.33(1.55) 0.33(1.55) 0.22
A, 1100 0.94(1.55) 1.39(1.27) 0.6 ‘
oo 495 5.17 6.8 5.04
oy 495 0.08
III. TBE RENORMALIZATIONS or A(1232) states corresponds to isobar-TBE config-
urations.!” If we restrict ourselves to the ys7 part
of Ty and one intermediate A(1232), then we obtain
The second order iteration of the quark inter- the TPE amplitude in the static approximation,
change force Ty (cf. Fig. 3) with intermediate N,N* viz.,
|
1 d’q1 8ona(T)8evW(T2)ZanalT1)8avn(T1) ot e T -
T =— 2 f 3 = - ~ ahihl (S 202'q2)TI'72T1'T2(Sl'QI‘72°q1) ’
4my°D © (2m) (G2 +m2)d2?+m,?)
(3.1)
l
where and D =m, —my is the static energy denominator.
, , The following identities
q91+92=9=p1 —P1=P2—P2
is the overalllmorglentum transfer, and § T are the =% L= 2
spin-isospin 5 — transmon operators of the TNA Ty 7T Ty=2+ 57172,
—>1— —»1&» - 4 2 5
vertex. The form factors are!? Tl Ta=5— 27172 a3
4m j )
5,2 N G=2 L a (- xT
ngN(q)="'T(?g) —q“‘F1 S dS1°di=5d>q1— ? 1(q2X4qy),
, 4m 02 4202°q1=G2q1+i02° (42X q})
gonalg)=—V2(3g) TNFI (3.2)

my

serve to isolate the spin-i i
faNa= —= SoNA e o isolate the spin-independent components in
N

(3.1) which can then be parametrized as effective o

TABLE III. Renormalized OBE interaction parame-
ters (strong p-tensor).

Meson Mass (MeV/c?) g /4 f/g NE

— N
o 495 5.41 qx qu
oy 495 0.05 NE&E — N
P 763 0.67 5.82
D 1285 1.1 0.9 FIG. 3. Iterated quark 1nterchange corresponding to

AN isobar configuration.
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and o, (i.e,, T=0,1) scalar meson exchanges with
monopole form factor shape, viz.,

2 Aj2

Aj2+-q>2

T =
ww,o; 2 2
4 q°+m;

(3.4)

For mg=0.108 GeV/c? we obtain mg,1=0.5
GeV/c?, Ay 1=0.725 GeV/c, go*/4m=0.9, and
g1%/4w=0.5 in T=1 NN channels. The (AA) inter-
mediate states are treated similarly, and are found
to give the same form of effective oy and o ex-
changes but are smaller in strength, viz., 0.52 and
0.30, respectively, in all NN channels. Numerically
the effective o exchange from AN, NA, and AA
isobar configurations provides about 20% of the re-
quired attraction at medium range, and it lies in the
lowest scalar-meson mass range around 0.5 GeV/c?.
The relatively small contribution from isobar con-
figurations agrees with the results reported in Ref.
3. Crossed TPE diagrams which correspond to
higher order quark interchanges and noniterative
TPE contributions are not considered here but are
known!® to contribute to the attraction at medium
range about equally. Thus our calculations provide
only a crude o estimate.

The spin dependent part of Egs. (3.1) and (3.3)
can be written as effective vector-meson tensor cou-
pling, viz.,

6F4?8,52m
Ton=(38)0(p") |~
q '—mo'o

s BT T X T)(F2XF)

To=—(3) 2
(447m1rm1v) (mA“mN)

3

» dgig:* 1
— 5 (do—542)8,nn(Tq1)
fo q2m, 0—542/87nN 1

X fanaldy)

. 1 dx Pi(x) R -
4=1+7) f_lmgmzv(%)fwm(%) ,

(3.5

42=4,—d, x=4,7 .

In third order, quark interchanges generate vari-
ous mesonic triangle diagrams. Consequently, dou-
ble counting with isobar configurations and the
OBE is avoided because the latter originate from
different quark interchange iterations. Next we es-
timate the TPE triangle mechanism (A=N or A,
a=PB=m, y=0p=¢€ in the TPE mass range, Fig. 4)
involving wN S-wave scattering on one nucleon.
We take the intermediate nucleon or A(1232) on its
mass shell. Occasionally we will also compare to
time-ordered perturbation theory which generally
yields underestimates. To normalize properly the
N S-wave bag-model amplitude'? we compare with
one from p dominance,

folg+q")i€agAN"|J#| N )G 2 +m, 1)~}

with f,= %g\/i, which yields the normalization
constant 2m . Thus the isoscalar component of

—i€apymyFo" (p +P")ulq> —m ) TN F v # +iFy 0", /2my) |u (p)

(3.6

is substituted in the triangle amplitudes with an intermediate A(1232). This yields the following isoscalar-

scalar TPE contribution

dq; [ 42wt |- 072 =
Ty =(38)2m - —=“=F 84 —="=F8,-4
0,A~'38 T f (2m)? 7 191°92 1 Py 191°q1
X 6FG (g2 NG +mg, ) (G P m ) (G 2 (3.7)
I
Using (3.3) to decompose T, 4, the spin indepen- where
dent part of (3.7) can be parametrized as in Eq. (3.4) P ig aF(—)
with the strength e 32 o
1 , 4 gevw=783F;, (3.9)
-8 =7 8wre8eNN
4 =% 3m, T 0, (gD =m*+q.

o dgi191* fonalqr)
fo 9191" [ nalgq (38

@2} w0,4q?

For mp=0.108 GeV/c? and the dipole shape with
A =0.9 GeV/c for the form factors, this contributes
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A ) (OBE), = = =
N,——=——N, Tpo=—2m, S0 D e o) T @)
a(q])\'\ /’B(qa) q +mg 2my
‘{ — — - =
N ¥Y@Q) N'Z 9 f d’q1  gann(d8enn(dr) &y

FIG. 4. TBE triangle mechanism.

1.5 to the effective o, strength, with a monopole
form factor regulator A;=0.6 GeV/c.

The corresponding contribution from an inter-
mediate nucleon in Fig. 4 can be written similarly

1 ) dmg

Z‘;g ooN 4my? 8rre8eNN

fw dq19:* g-nv*(q1)
0

QnP wfgd) (3.10)

and this contributes 1.17 to the o strength.
In time ordered perturbation theory, @, in Eq.
(3.7) is replaced with

[(wﬂ+mA "'mN)_2+m‘rr—1(w1r+mA—mN)_I]/(zwﬂ) .

This expression reduces the radial integral in (3.7)
by —;— and is known'’ to give an underestimate,
whereas the static approximation (3.7) may overesti-
mate somewhat. Altogether we obtain a o strength
~4.1 from AN + NA + AA isobar configurations
and 7N + 7mA triangle graphs, which supplies the
bulk of the known attraction at medium range. We
have estimated the contributions from nucleon reso-
nances in the mass range 1.5 to 2 GeV/c? and find
them capable of providing additional o strength,
but little o strength. All together our conclusion
confirms that the bulk of the attraction at medium
range comes from a variety of mesonic TPE
mechanisms including crossed diagrams.

The effective 0 ; exchanges are particular cases
of triangular TBE contributions (third order quark
interchanges, cf. Fig. 4) which generally renormal-
ize the OBE coupling constants and form factors.
The following estimates are based on the 7re, wmp,
w8, and mpA, couplings in triangular TBE di-
agrams.

The 7NN vertex renormalization due to the mme
triangle mechanisms with an intermediate nucleon
state takes the form (with an € mass again in the o
mass range 0.5 <m . <0.7 GeV/c?)

Cm? (G2 4+m, (G2 +m2) 2my
3.11)

where q; + d,=4q. Since T,, N can be param-

etrized as
(OBE)_(N) e
87NN 8NN 2.7 01°q0°q
S 172
q +m17'2 4""1\’2

with roughly the same ¢ dependence as the 7 ex-
change in (2.1), these triangle graphs define the re-
normalized coupling

(OBE) , _(N)
87NN =8 NN +8&zNN >

» dgiq,*g' A (q;)

2m
Ny _ M -
8oy == =3 8endl ) g +m,?)
d 8enn(dy)
dq? | §2+4,2+m?

(3.12)

The resulting renormalization increases g,yy by
12% for my=0.108 GeV/c? and m.=0.5 GeV/c2.
The mNN renormalization due to the 78 triangle is
much smaller.

However, the p meson exchange part of T,y in
the mmp triangle graphs generates a negative renor-
malization of g'QbE",

g =—(3 (32
4mN

fw dq1q14 . q1
0 317'sz (q12+m,,2)(q12+mp2)

(3.13)

Fy

)

which subtracts 24% for mgy=0.108 GeV/c>.
There is a smaller contribution, —8%, from the
mmp triangle graphs with an intermediate A(1232)

such that gS,.A’N) =8g:,1X’rK,)/25 at d 2=0. Both nega-
tive contributions are just about cancelled by the
positive g,yy renormalization due to the center-of-
mass (recoil) form factor correction.!? All together
the 7NN renormalizations increase the =wNN
strength from 134 in Table II close to the
phenomenological value 14—15 which is therefore
used in our numerical calculations.

The 7mp triangle TPE mechanisms with an inter-

|
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mediate nucleon and A(1232), T, 5 and T, 4, also
renormalize the p-tensor coupling, while the p-
vector coupling is hardly affected by the T,y com-
ponent involving (g1 —g5)o'{N1|(¥or)) |Ny). In
order to separate the Dirac (y,) and p-tensor parts,
we write

T, n=7(3) (N1 | (—=Fr,) | Ny Y@ 2+m, D)~

f d*q; (—i€)F5T (g)(q1—T>)
@r) (G +m A +m,)
0 q 32'31

% @ )02'6127_ (@)
8xnN ]2 2my 287NN q1 m

T2a
(3.14)
in the same form as the p exchange in the OBE
(2.1),1i.e.,

" . . TI'T2 A
Ty n=(51,)N} [(=7) \N\) 5 InF1iodxq ,
q°+m,
(3.15)
where,'? according to the p exchange in (2.1),
(N1 [ ()| Ny)=yopeiF10x§ , 516
yOBEZ_%O'a fp=%g‘/§~ .
From (3.14) and (3.15) we find
2.3, 10,2 Q¢
yw=(3)(5) p—
% f°° dq,q,*Fo*'(q)) [ 4my
o (g4m2? | @ |’
(3.17)

ya=2yy/5 .

Hence, yogg is renormalized so that y, =yope + ¥y
+ ya. Now we apply (19') and (20) of Ref. 12. As
a result, the renormalization of the ratio of p-tensor

to p-vector coupling becomes
s

For mg=0.108 GeV/c? yy=—1.69, yp=—0.54,
and «,=2.13. The renormalized f/g ratio is
K=KoBEg + K,.=5.83, if KOBE=3.7, the value of the
isovector magnetic moment of the nucleon and p
dominance are used. This value of « is close to the
values 6.1—6.7 obtained from =N dispersion
analysis.”> The somewhat low bag model value'?

4my (3.18)

K =5(N+Ya) F,

4
' —2.18

q=0

1
kope=—14+3YoBE F,

yields k=4.31. We have calculated NN phase shifts
with both values. Using the three time-ordered tri-
angle diagrams, instead of the on-mass-shell ap-
proximation for the intermediate nucleon and
A(1232), yields the somewhat smaller values
3.25—4.75 for «.

For the A renormalization through the mpA4, tri-
angle TBE, we find only a moderate increase from
~1 to less than 2. Hence, just as for the large value
of the fitted » strength, we"reach the conclusion
here, too, that the large fitted value, 14, for the 4,
strength g4, ~n2/41 in the Paris potential, which is
repulsive in both 3§, and 'S, partial waves, is in-
consistent with our meson theoretic quark inter-
change (that is linked to QQ and gluon condensates)
and probably simulates some short range repulsion
of quark-gluon origin.

The coupling constants of our OBE in (2.1) and
soft form factors are similar to Schierholz’s poten-
tial’ which uses as much information as possible
from other processes to determine its parameters in-
stead of obtaining best fits to the data as in Refs. 2
and 3. The small ¢;-8 coupling, in particular, has
motivated us to look into ;-8 renormalizations
from the 78 triangle TBE mechanism with an in-
termediate nucleon. However, we obtain only a
small positive renormalization for 8o NN SO that the

total o strength remains small, viz., <0.7.

Finally, we have also estimated ladder type 3-
exchange contributions with two intermediate AN
states from quark interchange in third order and
found such contributions to be small and attractive.
Second order triangle 3m-exchange mechanisms in-
volving two p-meson exchanges as well are also
small, « q2 and, therefore, do not renormalize the o
coupling constant, in contrast with crossed and non-
iterative m-p exchanges.

The loop integrals in the isobar configuration and
triangle mechanisms depend sensitively on the di-
pole OBE form factor shape characterized by its
regulator A~0.9 GeV/c. We consider our success
in reproducing the bulk of the medium range attrac-
tion and the p-tensor renormalization as a confir-
mation of the basic underlying OBE including its
soft form factors which here come from the effec-
tive quark interchange amplitude T,.

IV. PARTIAL-WAVE HELICITY-STATE
EXPANSION

The covariant helicity-state formalism of
Erkelenz® is now applied to the OBE + TBE poten-
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tial in the NN c.m. system upon choosing the

kinematics as shown in Fig. 5. This expansion

reduces the Lippmann-Schwinger equation (LS

equation),

d*k_ V(B KtK,B)

(27} K2—32-i0
4.1)

1B B)=V (B B)—my [

to its radial form. To satisfy elastic unitarity, both
t and V are modified by minimal relativity factors,
i.e.,

m 1/2
P\ Vip)=|—~ ,
p'lVip £
172 4.2)
BN | Vope | BA) | —
(P OBE E(f”

The momentum transfer is k=p| —p;=p;. In the
following we extend this treatment to the axial vec-
tor coupling

fa

A*D) =a(p] ,A}) |gavsy*+ 5 vspi —pi ¥
my
X Tiu (pi; ;)
=MD+, (1=1,2) . 4.3)

In the isoscalar channels A* represents the axial
current of the D meson and m, =mp, whereas for
the isovector case 4* represents the 4, meson with
my=my . The other OBE contributions are
presented in Ref. 3 to which we refer for conven-
tions and further details involving the helicities A,
the representation of the nucleon spinors u in that
basis, and the partial-wave expansion of the poten-
tial matrix ‘elements. It is convenient to define the
terms

V=—J,1)J42)/(g*~m,?) ,
Vip=—[J4(1)J,(2)+J,2)M,(D]/(g>—m,?) ,
Vpp=—J,(1)J,(2)/(g>—m?) . (4.4)

8w .,
Vy=-—4"1) z_ym 2A 2, If we substitute the expressions (4.3) for the vertex
7 A factors, and the appropriate spinors are used, the
where following expressions are obtained:
|
—g4° 1 Mp A MDA
Var=—3 = 2 662 4 1:19 - 2; +— (AN [ MA)
g?—my? dmy € € € €
‘A’ A’ N
— 1+4_1'_1pp 1 Izpp (11'7»2'|01’02M1}\2>]’ 4.5)
€'e €e
—84fa__€e |AE'—E) , | MMP?  Midp?
Var="— 2 2 2 T 2
qg-—my” dmy my € €
AAp'p | | AP Mp || MP M
+ €'e € € my
"Aop’ Mp' A A'p'—A
oy Rl |\ MY b M”(Mkﬂklkz), 4.6)
€'e € € my
_ 2 , ' 2 =0 o2 A'p’ A A'p! 7\21’ o
v, = Ja e (E-EV+(Popr, \Mp AP Rap ———}ulxzmlxz).
P02 m,? dmy? my € € €

Here we used the notation

4.7
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E=E(p), E'=E(B'),
6=E+m1v, €’=E’+mN 5 (4.8)
q*=(E'—E)*—(3'—B).

The helicity matrix elements (A1A3 | A;A,) and (AjA; | 0102 | A1A,) depend on the scattering angle 6. Now
the partial wave decomposition of ¥4 can be carried out, and the results for

1 ’ ’ ’
(WA | V42p'p) | Mdp) =2m [~ dcosbdy _, 50 0 (0)(AiAp" | Vi | Madap) 4.9)

are given in the Appendix. To solve the uncoupled singlet LS equation, the Kowalski-Noyes method® has
been used to remove the singularity in (4.1). The asymptotic wave function is expanded in partial waves

dr(p)= 3 I+ DP(k-Plal(p) , (4.10)
1
where ]
at(p)=Qm)*y(k)fy(k,p)(p?—k2—i0)~!, 4.11)
and
filk,k)=1, t;(k)=e"sin8;/(27%k) . (4.12)
Using this expression in the radial LS equation generates the singularity-free integral equation for
Vilk,p) = dgg? | Vitk@Vi(p.k)
k,p)=——+4 k,q) . 4.1
fillep)=— 0"+ [ A | ek ) | filk,q) 4.13)
Solving (4.13) for the f;(k,p) with the normalization
Vip,k)=41 3 Vip, ) Y;(5)- Yy (K) ,
1
the phase shifts are obtained by principal value integrations
-1
tand; = —2m*V;(p,p) |1 +47P f Vl(p,k)fl(p,k) (4.14)

The coupled equations were solved by the R-matrix method in the basis |JMAA,), where the R matrix ele-
ments are real. The R-matrix principal-value integral equation is written schematically as

© dk k*
R ', ;EZV( I, -
" E)=V(p',p)—my |, )}

my? (4.15)
E(k)k*—py?) ’

==_V(",k)G{(k,ER (k,p;E) ,

G(k;E)=P

where p, is the nuclear on-mass-shell momentum in the c.m. system and E=(p,*> 4+ my?)'/%. Equation (4.15)
is solved using the technique of Ref. 21. The on-shell R-matrix elements are then connected to the phase
shifts and mixing angles as follows.> For spin singlet S=0, and the uncoupled spin triplet S=1,

S§7 — _ﬂ%SRJ
(41r)

s/ _ NP gy spiy 12RV_MRI_4[J(J +1)]'/255R’
24my - (2J +1)cos2e;
2 [J(J +1)]72(12R7_3R7) 4 55RY

— ]ZRJ 34RJ 4[J(J+1)]1/255RJ .

tan ’

tan* , (4.16)

tan2e; =
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The SR’ correspond to the six independent helicity states defined as in the Appendix (A2), i.e., SR’ for
L'=L=J, and

+R!= 11 {(J+1)2RT 4T ¥R _2[J(J +1)]/25R7}, L'=J+1=L;
_RJ=§1+—1{J-12RJ+(J+1)*34RJ+2[J(J+1)]1/2.56RJ}, L'=J—1=L;
172
+—RJ=_M 12RJ_34RJ+_J_+_1___55RJ__J—.66RJ g 1L —) 1.
2J+1 [J(J+1)]1/2 [J(J—{—l)]l/z ’ +1, 5
JJ+1]2 J J+1
—+g/= LD g wgs ¥R’ 6RI\ L'=J—_1L = .
Y+l [/ + D)7 WU+017 L=J+1;

(4.17)

which arise in the diagonalization of
R, 0
0 R,

—RJ —+RJ

+-RJ +RJ =U-! U

with

cose; —siney

~ |sine; cosey

The bound-state integral equations for the deuteron are free of singularities for positive binding energy
Eg=2my —p,, where py=my in the deuteron rest frame. In the helicity basis they take the form

my © dk k*

120000y 21795, k) 267 (k) + 55V (o, k) (k)]
)= S kg Y k)
34,7 my © dkk® 34, 34,7 1247,

- Vi (p, k)M (k 1. 4.18
V== 3 I o A O CRRR () (4.18)

TABLE IV. Dependence of 'S, scattering length, effective range, and phase shift upon varying one coupling con-
stant. g =[(g‘,02 + galz)/41'r]'/2, gp=gp/V4m, g,'g1 =84,/ V4m.

Varied IS, phase shift at E, (MeV)

parameter ag (fm) ros (fm) Epp=1 50 100 200 300 400

gs=2.355 —224 3.27 59.6° 30.3° 14.2° —4.0° —14.7° —21.8°
gs=2.340 —24.9 3.24 61.5° 30.6° 14.5° 3.7 —14.4° —21.6°
gp=0.78 —96.6 3.02 75.4° 33.7° 17.1° —1.2° —11.9° —19.1°
gp=0.90 —44.6 3.11 . 69.5° 32.4° 16.0° —2.3° —12.9° —20.1°
gp=0.95 —35.7 3.15 66.8° 31.9° 15.5° -2.7° —13.4 —20.6°
gp=1.00 —29.5 3.19 64.2° 31.3° 15.0° —3.2 —13.9° —21.1°
g,',l =1.28 —61.8 3.06 72.5° 33.1° 16.6° —1.7 —12.4° —19.6°

g,;l =1.38 —24.8 3.24 61.4° 30.7° 14.5° =3.7 —14.3° —21.5°
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—_— X

/ B, E=E(p)
~ <05 E-E(p

—Z

-p
FIG. 5. NN kinematics.

The S- and D-state wave functions are linear combi-
nations of ?¢” and 3¢’ for J=1,

1 12, 34,7
os= (12¢7 +v234¢7) ,
Ve 4.19)
bp= ‘/13(_1/212¢J+34¢J) .

The deuteron D-state probability is calculated from

Py= [T dkkh/ [ 7 dk kX5 +4p7) ,
(4.20)

and the quadrupole moment from

V2 e ,49s dép dép
%="5 Jo dklk a ak Ty

2

d
_E_D_ +6¢D2

_p2
lk dk

/2@] )
4.21)

The binding energy Ep is found from the homo-
geneous equations

[(1-GE¢ (E)W1¢=0. 4.22)

The effective ranges and scattering lengths can
also be expressed in the momentum representation.

TABLE V. Dependence of deuteron binding energy
Ep and D-state percentage Pp upon varying the triplet o
coupling g; =[(g,,’—3g,,°)/4m1'"2.

Varied
parameter Epz (MeV) Pp (%)
8:=2.29 2.170 2.42
8:=2.30 2.337 245

ISO
-—— ARNDT et al.@
-=-=- ARNDTb

—— weak p tensor
—e— strong p tensor

1 | i Il
0 100 200 300 400
Elgb (MeV)

FIG. 6. 'S, phase shift compared with the phase
shift analysis of Ref. 25.

In the singlet channel, let us write
R (0)="R%p’=0,p =0;p,)

for the on-shell R matrix,
R (p")="R%p’,0;p0)

——— ARNDT et al@

weak ¢ tensor
—— strong g tensor

0 100 200 300 400 500
Elab ¢ MeV )

FIG. 7. 38, Stapp-bar (Ref. 26) phase shift compared
with the phase shift analysis of Ref. 25.
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TABLE VI. Low energy results for weak and strong p tensor coupling.

Strong p tensor Weak p tensor Experiment

a; (fm) —234 —234 —23.715 +40.015
ros (fm) 3.26 2.90 2.73  +0.03

a; (fm) 5.66 5.67 5.423 +0.005
roe (fm) 2.01 1.97 1.748 +0.014
Ep (MeV) 2.22 2.217 2.224 62+0.00006
Qp (fm?) 0.2486 0.2622 0.2860 +0.0015
Pp (%) 243 3.1 5 +3

for the half-on-shell amplitude, and define

R"(0)= hm ——[R (p')—R(0)].

Then
=R(0)/(2m) ,
ros=— 5 1R"(0)+ f0°° %[Rz(O)—RZ(qH
mag mTq
(4.23)
,0,=ﬁ12 0)+f 2(0)—R ()]

24} [ dp ¢s2<p>] ,

where R is defined via (4.16) as

- 3D1
4a0L - - — ARNDT et al@
_ -=-—- ARNDTP

weak p tensor
strong p tensor

E qp (MeV)

FIG. 8. 3§,—°D, Stapp-bar (Ref. 26) phase parame-
ters compared with the phase shift analyses of Ref. 25.

myp
2(44r)?

The LS equations were solved numerically. Our
computer code was checked for accuracy and reli-
ability by reproducing the results of Erkelenz® using
his potentials without our 4; and D meson contri-
butions.

tan=8 = — 1-

V. RESULTS AND DISCUSSION

The OBE potential (2.1) alone does not fit the NN
phase shifts and deuteron properties. At least the
effective 0y meson exchanges must be included to
supply sufficient attraction at medium range. The
corresponding results were reported®? as potential 1.

Here we find that taking into account more sys-
tematically the TBE renormalizations of the OBE
improves further .the agreement with the data.

OO
1
A
— —— ARNDT et al®
~ weak p tensor
o SNo— strong etensor

-5}
0] 100 200 300 400
‘ ab (MeV)
FIG. 9. 'P| phase shift compared with the phase

shift analysis of Ref. 25.
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3%
——— ARNDT et ald
weak e tensor
= ——strong e tensor
o5l 3
&
/ ’ T ~ ~
o BN
~N
~
~
~ ~
~ ~
-25° 1 1 |
(0] 100 200 300 400
E lab (MeV)

FIG. 10. °P, phase shift compared with the phase
shift analysis of Ref. 25.

Their effects on the NN interaction can be summa-
rized as

(i) fairly strong o, exchanges (3.4), (3.8), (3.10)
from quark interchanges in second order (generat-
ing the isobar TPE-box diagram configurations) and
quark interchanges in third order (i.e., TPE triangle
mechanisms);

(ii) increasing the p-tensor strength close to the
value, 6, known from 7N dispersion relations via
third-order quark interchanges (TPE mmp triangles)
which improves the 'P; phase shift significantly;
and

(iii) the TBE-triangle renormalizations of the

1147
102
20°L - ——-ARNDT et al®
weak e tensor
——strong p tensor
8 ////’ I
10°L -
— -
_ -
//
-~
~
7 e
ol 1 ] 1 ]
0 100 200 300 400 500
E lab (MeV)

FIG. 12. 'D, phase shift compared with the phase
shift analysis of Ref. 25.

OBE coupling constants from quark interchanges in
third order, e.g., TNN, nNN.

Instead of using the bag model values for the ex-
changed meson masses (especially for the pion), we
prefer here to employ the empirical meson masses.
This procedure facilitates also a comparison with
other meson theoretic NN potentials. Since the
scalar-isoscalar meson is known from the dispersion
theoretic treatment of the TPE to have a fairly wide
mass distribution, we therefore determine an aver-
age oo mass by adjusting the singlet scattering
length and the deuteron binding -energy. In this
process we also determine more precisely the o and

)
ot — — — ARNDT et al?
N —— weak p tensor
RS strong @ tensor

o ~ ~
-20} ~ .
-40° 1 1 1

(o] 100 200 300 400

E lab (MeV)

FIG. 11. P, phase shift compared with the phase
shift analysis of Ref. 25.

3
D2
——— ARNDT et al@
weak e tensor
strong Ptensor
50’
)
25° - -
" ~
7
i
%
o L L !
(0] 100 200 300 400
E lab (MeV)

FIG. 13. 3D, phase shift compared with the phase
shift analysis of Ref. 25.
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3 3
8, A
— -~ ARNDT etall
—— weak p tensor
—— strong ¢ tensor

o

50+
25°+
///
//
//
o’ 1 L 1 1
o} 100 200 300 400 500

Elub (MeV)

FIG. 14. 3P,—°F, Stapp-bar (Ref. 26) phase parame-
ter compared with the phase shift analysis of Ref. 25.

30
- Zr
83
1’
oo
_10_
/
7
7
7
-2+ s
c \ Vs
2 \ Ve
\ 7
- 3° N ~ o — d -
B 3p _3
7R
---- ARNDT et al?
-4 —— weak p tensor
B —— strong g tensor
1 1 1
(o] 100 200 300 400

E|Ob (MeV)

FIG. 15. 3P,—°F, Stapp-bar (Ref. 26) phase parame-
ters compared with the phase shift analysis of Ref. 25.

weak o tensor 7
strong p tensor

itq®_ (Gev "2

D N
o 1 1 1 1 n -l —
0 01 Q2 03 04 05 086 07
q (GeV/c)

FIG. 16. Deuteron S and D state wave functions.

o coupling constants which are only crudely es-
timated in (3.1), (3.4), (3.8), and (3.10). We note in
this context that the phase shifts in general, and the
scattering lengths and effective ranges particularly,
are fairly sensitive to small changes in the o, D, 4,
couplings. In the 'S, channel, these effects are
displayed in Tables IV and V. This way we obtain
a reasonable oy mass value m 0, =0.5 GeV/c?, and

we take m,, (=M. With these interaction parame-

ters, given in Table II for weak p-tensor coupling,
we are able to reproduce the trend of most of the
phase shifts which are displayed in Figs. 6—15 and
the remaining low energy parameters that are given
in Table VI. For strong p-tensor coupling we leave
the 0 ; couplings almost unchanged but adjust the
D-meson coupling somewhat as given in Table III.
The D-meson exchange acts attractively in the 3§,
and repulsively in the 'S, partial waves.

Several of the calculated phase shifts are sensitive
to the p-tensor coupling. In particular the 'P,
phase shift (see Fig. 9) improves with the strong p-
tensor value ~6. However, upon inspecting all the
phase shift results, the preference for the strong p-
tensor coupling becomes less clear.

We notice that, in general between 0.2 and 0.3
GeV, the calculated phase shifts start to deviate sys-
tematically from the data, and some fit the data
only qualitatively even below 0.2 GeV. We attri-
bute this feature to insufficient strength, and the
lack of repulsion at short range more specifically, in
our OBE + TBE potential which contrasts with the
more phenomenological NN potentials that contain
large, fitted (but theoretically unjustified) values for
the o and, sometimes also for the 4; meson cou-
pling. Since our quark interchange model appears
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to reproduce all meson exchange interactions at low
g, this suggests that such an additional NN force
has a nonmesonic origin.”?*

VI. CONCLUSION

The nonlocal quark interchange amplitude Tg
generates an effective OBE potential with the fol-
lowing characteristic features.

(i) the w meson has the (low) SU(6) coupling that
is not appreciably renormalized in higher orders;

(ii) the momentum-space form factors are soft:
they have the dipole shape of the proton charge
form factor. This prediction is successfully tested
in the calculation of TBE renormalizations which
turn out to be correct both in sign and magnitude,
and in the calculation of isobar contributions that
are reproduced by T in second order. Both involve
loop integrals over OBE form factors;

(iii) both the o( and the p-tensor coupling are
correctly reproduced from TBE renormalizations
that use Ty in second and third order and agree
with dispersion relation approaches.

There are some marked differences between our po-
tential and older interactions:

(a) Our results indicate that an expansion of the

baryon-baryon interaction in the form OBE + TBE
+ - -+ should be preferred to the too narrow con-
cept of OPE + TPE + - underlying the disper-
sion theory of nuclear forces.

(b) The overly large 4; and o couplings give
phenomenological repulsion in the Paris and the
Bonn potentials that, we believe, simulates the ef-
fect of short-range repulsion from nonmesonic ori-
gin, possibly due to quark-molecular mechanisms.

(c) Our Ansatz for Ty contains the invariant
> o AaA%,¥P)exch in contrast to the color invariant
>« AaA%qi of the effective quark potentials.

Finally, we emphasize the main point of this
study: Our full renormalized OBE nuclear ampli-
tude is a concrete step towards a calculated NN in-
teraction. It reproduces most phase shifts qualita-
tively and some even quantitatively.
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APPENDIX

Using the expressions given in Ref. 3, we can perform the partial wave analysis. With Erkelenz’s notation

for

Vi=(++ |V ++), Vi={+—|V|+-),
Vi=(++ |V |—=), Vi=(+—|V|—+),
Vi=(++ |V [+=), Ve=(+—|V/|++),

and the combinations
P =yi-v;, W=vi-Vi,
Rpl=p{+vy, ¥V =Vi+Vy,
ssyl—ayd, spi=2yi

we find
2mg,? 2E'E +my?
Vu=—"5 ; 0,(Zy) ,
my pp
10,d _27TgA2 E'E (2)
VAAz—E‘_ P QJ(ZA)+QJ (ZA) ’
my pp
2mg 4’ my®
IZVjAz ) 2QJ(ZA)— ; QJ (ZA) ’
my pp

(A1)

(A2)

(A3a)

(A3b)

(A3c)
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_21Tg 2 ’
#yl, =2 10 zo+EE oz, |, (A3d)
my pp
44t
Pl = g’; 0Pz, (A3e)
my
47g,r E'm
Oy y=—r —,i z,), (A3D)
my
4rg f
Oty =—[YQNZ)— QS Z,)] (Ada)
mN
4mg,f,
Wip=—28 A 1 yoz)—0PZ,], (Adb)
mN
‘2V1p———5£[QJ<ZA>—YQ Yz1, (Adc)
mzv
4rng f
Wy lp=—L110,/(Z)—YOP(Z))], (Add)
mN
— 8
ssy i, = —Sm8afa (E'—E)E'E )7 (Ade)
my myp’
Sy ip=—"Vip, (A4f)
2w ’
V= mf” [(E'E —mp)YQ,(Z4)—(p'PY — m 420} ”(zn—’f—f—a“], (ASa)
N
Whp=—"" f L (E'E —my?)YQ)(Zy)—(E'E —my QY Z) —[(E'—EP— +m 210 Z)— 2p'pds1 }
(A5b)
—27f? (E'E —mpy)[(E'—EP—smy2]+pp?
gy =24 [w'p)YQJ(zA)—%(E'E—mN2>8n— ud : < oMz |,
my pp
(A5c)
2mfa | [(E'—E)*—5m 2 )(E'E —m y?)
yhp= m'i P'PYQAZ ) —p'pQSNZ 4)— HE'E —m 28, — ZP,P 0¥(Z,)
(A5d)
4nfy’ (E'—EV—m,*/2 V3
ssyd (3)_ Ve
VPP_ mN2 my P',D QJ 6 8Jl ’ (ASC)
“Vep=—""Vsp . (A5D)
The function Q;(Z) is Legendre’s functions of the second kind; the other Q functions are related to it:
oMNZ)=0,(Z2)—58,,
JZQ,(Z)+Q;_1(2)
(2) _
J 172
1
0P D=3 |77 | [2e(2-0, (2.
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Furthermore,
E'E —my*+ ';_mAz
p’p
- E?{E*_E'E —my? '
p'p

ZA=

b

(A7)
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