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Off-shell length for the two-nucleon 7" matrix in the ’s 1—3D1 state

Michael G. Fuda
Natuurkundig Labovatovium dev Vvije Universiteit, Amstevdam, The Netherlands *
(Received 12 August 1974)

It is shown that the off-shell behavior of the low energy two-nucleon 7T matrix, in the
coupled 3S1—3D1 state, can be characterized by a single parameter, which is the general-
ization from central to noncentral forces of the equivalent or off-shell length. An approxi-
mate linear relation between the square of the off-shell length and the intrinsic range,
which holds for central forces, is shown to be also valid for noncentral forces. It is
found that the approximate relation is exact for a separable potential of the Yamaguchi
type, and hence for the unitary pole approximation.

I. INTRODUCTION

Several authors'~® have shown that the low-ener -
gy off-shell two-nucleon scattering matrix is de-
scribed by a single parameter in each spin state,
in addition to the usual on-shell effective range
parameters. This parameter is referred to as the
equivalent length®® or off-shell length®® and is the
coefficient of the first order term in an expansion
of the T matrix or K matrix about zero energy.

Following a suggestion by Sprung,” Fiedeldey and
McGurk® have shown that for a certain class of
phase -shift-equivalent separable potentials, there
is an approximate linear relation between the tri-
ton binding energy and the square of the off-shell
length. The calculations of Bruinsma et al.° indi-
cate a strong correlation between the various nu-
cleon-deuteron reaction quantities and the off-shell
lengths. It appears, therefore, that this parame-
ter provides a useful way of characterizing the
off -shell T matrix, at least insofar as the three-
nucleon system is concerned. One of the purposes
of the present note is to show that, even when the
coupling between the S, and *D, two-nucleon
states is taken into account, there is still only
one parameter needed to describe the low-energy
T matrix in each spin state.

It has been shown by Kok® that for central forces
there is an approximate linear relation between
the intrinsic range of Blatt and Jackson'® and the
square of the off-shell length. This relation is
exact for a rank-one central separable potential.®®
It will be shown here that this approximate relation
is also valid for the coupled °S,-°D, state and, fur-
thermore, is exact for a noncentral separable po-
tential of the Yamaguchi and Yamaguchi®! type.
Since the unitary pole approximation'? (UPA) gives
rise to a 7 matrix with the same structure as the
Yamaguchi'' 7 matrix, it follows that the linear
relation between the intrinsic range and the square
of the off-shell length is exact for the UPA.

II. OFF-SHELL LENGTH AND NONCENTRAL FORCES

It is most convenient, here, to write the two-
nucleon 7 matrix in the coupled °S,-*D, state in
the form of a 2 X2 matrix as shown below:

Ca(@)|T(s) | alq)) <a(p)]T(s)lB(q)>]
(B T(s) [ alg) (Bp)T(s)]B(g))
1)

where the matrix elements are taken with respect
to the states

| a(k)) =] kO11M) cose (k) +| £211M) sine (k), (2)

T(p, q; S)=[

| B(RY = —| RO11M) sine (k) +| k211M) cose (k).
(3)

Here €(k) is the mixture parameter of Blatt and
Biedenharn,'® and the states on the right-hand sides
of (2) and (3) are given by

(T|RLSIM) =V2/m j (kr)Y¥s, (7). (4)

Jj is the usual spherical Bessel function, and y¥,
is a vector spherical harmonic.'* Throughout, the
complex energy parameter s will be taken to be

s=k%iin, (5)
where k% is the on-shell energy in inverse fm?
and 77 is a small positive real quantity. On the en-
ergy shell the matrix (1) is diagonal, and is given
in terms of the Blatt-Biedenharn'? phases 6, and

85 by

T(k, k; s)

9 [e'?9® sin[5 (k)] 0
T wk 0 ¢ 38® sin[6,(R)] |

(8)
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We now consider expanding the various matrix
elements in (1) to first order in p2, ¢ 2, and k2.
We have, from Refs. 13 and 14 and Egs. (2)-(4),

e(R)=ck® 4+, (7
(Fla(k)) =va/r (1 - ¢ k2r2)Yl + -, (8)
(F|B(R)) =Va/m R*(—cYgy +15 7 2Ypi) +++ . (9)
We can write
Cap)| T(s)| alg) =Calk) | T(s) | a(k)
+[Ca@) | -Ca®) ] T(s)| alk)
+(ak)| T(s) | alq)) - | alk))]
+[{a®) |- (a®)]T(s)
x[lal(g) —la®)n].  (10)
From (8) it follows that the last term on the right-

]

w,, become outside the range of forces:
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hand side of (10) is second order in energy, and
can therefore be ignored. As is well known,™* we
can write

T(s)| a(k)) = V| ¥, (k) (11)
with

| w, (k) =[1+(s —H) ' T(s)] | al®)), (12)
where H,, V, and | ¥ (%)) are the two-particle ki-
netic energy operator, potential energy operator,

and wave function, respectively. Using Ref. 15, it
is straightforward to show that

(F| ¥, (k) =v2 /7 (k) e®® sin[5 (k)]
x [ g, (b, 7YX (7) +w, (R, VYL ()], (13)

where the S and D radial wave functions #, and

uy(k,v) =k e™® sin=[5, (k)] jo(k¥) +hS (k¥)]cos[e(k)],

;gl—r/a,

(14)

w, (R, v) = k| e™%® sin[6,, (k)] j,(k7) +h$") (k7)] sinle (B)],

—_— 30/72 .
k=0

(15)

Here 4§ (kv) is a spherical Hankel function,™ and a is the triplet scattering length. From (11), (13), and

the Schrodinger equation, it follows that

(F| T(0)| @(0)) =¢'27',;ar1{-gdy-; [1 -2 (0, r)] fygfu+< az i) [?.g —w,,(0, y)]yg‘u}. (16)

By using (6), (8), and (16), and carrying out an in-
tegration by parts, we arrive at

[Calp) | -CalR)|]T(s)| alk))
=(a(0)| 7(0) | a(0)) 3A%(R2=p®)+-=-, 17

where
A2=2 fm drv[l -v/a-uy0,7)]. (18)
0

The terms that are being neglected in Eq. (17), and
in the rest of this section, are third order in the
momenta p, g, and k.

From (10) and the well known symmetry relation

T(p,q; $)=T(q,0; ) (19)
it follows that

Ca@) | T(s) | alq)) =CaR)| T(s)| a(k)
X[1+3A2Q2k% —p2 —gq?)++-].
(20)

ar? " r?) \r

r

Clearly, A is the off-shell length for noncentral
forces, and is given by a relation just like the one
for central forces.'”®

We now consider one of the off-diagonal elements
of (1). We can write

(B T(s)| a(q)) =CB@) | T(s) | a(R))
+{(BA) T | alg)) - | (kD ],
(1)

where from (8) and (9) it follows that the second
term on the right-hand side can be neglected. By
using (9) and (16), it is easy to show that to first
order in energy {8(p) | T(s)| a(k)) is zero. To the
same order {8(p)| T(s) | @(gq)) and, from (19),
(a(p)| T(s)|B(q)) are zero, as well as

(BP)| T(s)|B(g)). This means that in the low-en-
ergy region the off-shell length, given by (18), is
the only parameter needed to characterize the off-
shell behavior of the T' matrix for the coupled
35,-3D, state at low energies.
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It is somewhat surprising that the off-diagonal
matrix element (8(p)| T(s)| a(g)) vanishes to
first order in energy. It should be kept in mind,
however, that if the 7 matrix given by Eq. (1) is
transformed to the more conventional basis given
by the states | X011M) and | #211M), there will be
an off-diagonal term of this order. The point is
that the mixture parameter [see Eq. (7)] is already
first order in the energy and going off shell intro-
duces no new energy dependence to this order,

HI. INTRINSIC RANGE AND OFF-SHELL LENGTH

The effective range for the coupled 3S,-°D, state
is given by'®

7o=2 fm ar[(1 =v/aP —u 2(0,7) -w,2(0, 7)].
(22)

The intrinsic range b'° is the effective range for a

and the subscript ¢ refers to the potential which
produces the intrinsic range. If we assume that
y and w, are approximately equal to y; and w,;,
respectively, then

b~ry,+20%/a, (25)

and we have a linear relation between b and A% for
fixed @ and 7,

We will now show that this approximation is ex-
act for a noncentral separable potential of the
Yamaguchi'! type. The partial wave matrix ele-
ments of such a potential have the form

(pLIIM| V|gL'1IM) = - g, (p)A g, (q),
L,L'=0,2. (26)

It is easy to show that the T matrix arising from
(26), in the representation of (1) - (3), is given by

potential whese strength has been adjusted to pro- 1 g(p)glq) O
duce a bound state at zero energy or, what is T, q; 3)25(3_) { ] L @7)
equivalent, an infinite scattering length. From 0 0
(18) and (22), it follows that 1/2
o (e =[ 220 g0, (28)
b=ro+— +2f ar[2y;(r) -2y(r) - y;2(r)
0 tan[e (k)] =g,(%)/g,(k), (29)
+y2(r) =wy;2(0, 7) +w 2(0, )],
(23) D(s)=-2"" - f [22(p)+£2(p)] 2 pz . (30)
where
y@)=1-7r/a-u,0,7) (24) From (1), (2), (4), (8), (12), and (27)-(30) it
follows that
- e 2. p dp g(p)g(k)
(Flug(o) =(Fla@)+ [ (Flatp) ¢ £557 (31)
=va /1 (k7)™ e®® sin[6, (k)]
x{kr[e~*%® sin~![5,, (k)]]o(k7)+h(” (k7)] cosle (k)] Y,
+kr] e ® gin=1[5 (k)] j,(k7) +hS) (k7)) sinfe (k)]YY, +terms independent of A}, (32)

By comparing (13) and (32), we see that the differ-
ence between u, and its asymptotic form (14), and
the difference between w, and its asymptotie form
(15), are independent of the potential strength A.
This means that for the separable potential (26)
the approximations leading to (25) are exact. As
pointed out in the introduction the UPA!? is of the
same form as (27), and therefore for potentials

—

whose T matrix is well approximated by the UPA,
the relation (25) should be quite accurate.
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