

VU Research Portal

Decay of^{61}Fe to levels in^{61}Co

Bron, J.; Jongsma, H. W.; Verheul, H.

published in Physical Review C 1975

document version

Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

Bron, J., Jongsma, H. W., & Verheul, H. (1975). Decay of \{61} Fe to levels in \{61} Co. Physical Review C, 11(3), 966-973.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:

vuresearchportal.ub@vu.nl

Decay of ⁶¹Fe to levels in ⁶¹Co

J. Bron, H. W. Jongsma,* and H. Verheul Natuurkundig Laboratorium der Vrije Universiteit, Amsterdam, The Netherlands (Received 12 August 1974)

Single γ ray, $\gamma-\gamma$ coincidence, and level spectrometer studies have been performed on the decay of 61 Fe $(T_{1/2}=5.98\pm0.06 \text{ min})$. $48~\gamma$ transitions with energies up to 3365 keV are assigned to this decay and 22 levels are proposed in the 61 Fe decay scheme. Spins and parities of levels in 61 Co are given. The level structure of 61 Co is compared with neighboring odd Conuclei.

RADIOACTIVITY ⁶¹Fe; measured $T_{1/2}$, E_{γ} , I_{γ} , γ - γ coin, γ - γ anticoin; deduced $\log ft$, J^{π} . ⁶¹Co; deduced $E_{\rm levels}$, $J_{\rm levels}^{\pi}$; compared with odd Co nuclei.

I. INTRODUCTION

The β decay of 61 Fe was investigated by several groups¹⁻⁷; the data of most of these groups¹⁻⁶ as well as the data of Blair and Armstrong,8 who investigated the 62 Ni $(t, \alpha)^{61}$ Co reaction, are summarized in Ref. 9. The conclusions drawn from these studies, for instance the ground-state spin of 61Fe, are not very well argued. Since then more reaction data became available. Coop et al. investigated the ⁶⁴Ni(p, α)⁶¹Co ¹⁰ and the ⁶⁴Ni(p, $\alpha\gamma$)-⁶¹Co ¹¹ reactions, and Hudson et al. studied the 62 Ni $(t, \alpha)^{61}$ Co and the 59 Co $(t, p)^{61}$ Co 12 reactions. A comparison of the energy levels of 61 Co proposed by different groups who studied the β decay of 61Fe reveals several problems. The level at 1410 keV proposed by Gujrathi et al.3 was not found by others. Furthermore, it is not clear which members of the multiplets at 1650 and 2000 keV, found in reaction work, are populated in the decay of 61 Fe.

A theoretical calculation of Satpathy and Gujrathi describes13 the low-lying levels in the odd Co nuclei as a proton hole coupled to a vibrating Ni core (cf. Sec. IV D). Recently Stewart, Castel, and Singh, 14 and Gómez 15 performed calculations based on the same model, but now including microscopic core excitations 14,15 and anharmonic terms in the vibrating Ni core. 14 Up to about 2000 keV the level schemes of ⁵⁷Co and ⁵⁹Co, calculated by Stewart et al. and Gómez, are in good agreement with the experimental data. For 61Co the data about the spin and parity of the experimentally observed levels are rather scarce, so a comparison with the theory is hampered. The present investigation of the decay of 61 Fe was undertaken to resolve the discrepancies between the experimental data as mentioned above, to investigate if levels above 2000 keV are fed by β decay and to get more experimental information about the excited states of ⁶¹Co.

Some of the results have been published before. 16

II. SOURCES, EQUIPMENT AND METHODS

The 61 Fe sources were produced by the 64 Ni- $(n,\alpha)^{61}$ Fe reaction on enriched 64 Ni (97.92% 64 Ni; 0.92% 58 Ni; 0.73% 60 Ni; 0.05% 61 Ni; and 0.38% 62 Ni), packed in polyethylene capsules. Two capsules with 20 mg Ni were available. We used 15 MeV neutrons produced by the 600 keV Cockroft-Walton generator, as well as neutrons produced by a 16 MeV deuteron beam of the AVF cyclotron of our institute on a thick Be target. The sources produced by the generator appeared to be very weak, but also very clean. Using the cyclotron we could produce three times as much 61 Fe, but the sources contained much more contamination, particularly 65 Ni arising from neutron capture on 64 Ni.

All experiments were performed with 75 cm³ Ge(Li) detectors (Gamma Tech), standard Ortec electronics, and a ND 50/50 analyzing system. The PDP8/L computer, part of this system, controlled the experiments. The PDP8/L is interfaced with a CDC1700 computer, where the data were dumped on magnetic tapes. 16 The single γ ray spectra were measured, after ten minutes of irradiations, during eight consecutive periods of three minutes. Because the sources were weak they were placed against the cap of the detector. This made intensity corrections for coincident summation necessary (cf. Sec. III). A two-dimensional γ - γ coincidence experiment was performed with two 75 cm³ Ge(Li) detectors in a face-to-face geometry, separated by a lead shield with a hole in which the source was placed. Coincidences were stored temporarily, event by event, in a part of the memory of the ND 50/50 system and

then dumped on a magnetic tape. Afterwards digital gates were set and the tapes were searched in order to build up the coincident spectra. We used an anti-Compton system as a "level spectrometer". The single and suppressed spectrum were measured simultaneously. Because of the almost 4π geometry of the NaJ(Tl) crystal, all peaks will be strongly suppressed, except ground-state transitions from levels directly fed by β decay. The suppression (=suppressed intensity/single intensity) of a ground-state transition from a level is a measure for the ratio of the total intensity of the direct β feeding to this level and the total γ feeding to this level.

III. RESULTS AND ANALYSIS

The γ ray spectrum of 61 Fe is shown in Fig. 1. The spectra were analyzed by a peak-search and peak-fit code POESPAS developed by Blok *et al.*¹⁸ The energies were calibrated with 56 Co 19 and 133 Ba. 20

In order to calculate the corrections for coincident summation, not only the photopeak efficiency but also the Compton efficiency in the same geometry was determined. The photopeak efficiency plus Compton efficiency varied from 22% for 122 keV to 15% for 1115 keV. These corrections were calculated using the level scheme shown in Fig. 4 and assuming an isotropic angular distribution of the γ rays. For the strongest γ transitions the corrections were checked in a measurement with a larger source-detector distance. The energies and relative γ intensities of the transitions assigned to the decay in ⁶¹Fe are listed in Table I. As far as they were known before, the intensities of the γ transitions are in agreement with the values adopted in Ref. 9; however, the γ transitions of 230, 400, and 2250 keV, reported by several authors, 1-3 are not found in the present investigation. The γ ray branching ratios obtained from this study are in agreement with the data from the 64 Ni $(p, \alpha \gamma)^{61}$ Co reaction. (See Table II.) From

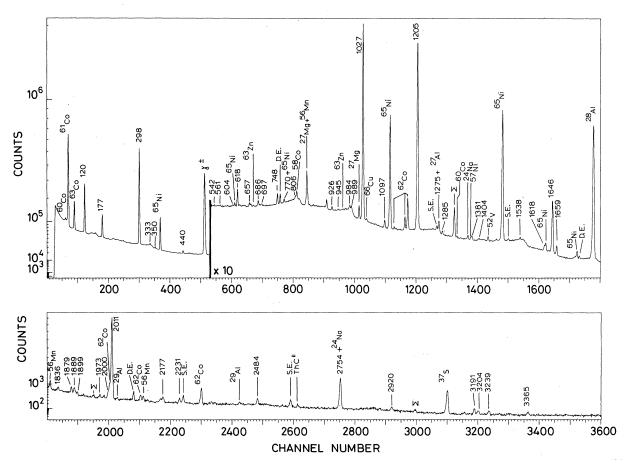


FIG. 1. The γ ray spectrum of ⁶¹Fe, obtained by adding the spectra of 25 sources, produced by the ΔVF cyclotron. Each spectrum was measured during 6 min, starting 0.5 min after the end of irradiation. The γ transitions of ⁶¹Fe are indicated with their energies in keV. Peaks due to coincident summation are indicated by a " Σ ".

TABLE I. Energies and relative intensities of the γ transitions of 61 Fe.

To the sale			7		
Ref. 9	E_{γ} (ke Ref. 5	This work	Ref. 9	I_{γ} Ref. 5	This work
120.0	121 ± 1	120.34 ± 0.12	12.0	11.9 ± 0.7	12.2 ± 0.9
177.1	177 ± 2	177.61 ± 0.12	4.5	5.0 ± 0.5	4.6 ± 0.4
230 ^a			3		<0.07
297.3	298 ± 3	297.90 ± 0.07	49	54 ± 3	51 ± 4
		333.0 ± 0.4			0.51 ± 0.08
		349.7 ± 0.3			0.37 ± 0.09
400 ^a			0.7		<0.07
		440.5 ± 0.4			0.50 ± 0.10
		542.6 ± 0.5^{b}			0.15 ± 0.07
		$561.4 \pm 0.5^{\rm b}$			$\textbf{0.13} \pm \textbf{0.06}$
		603.3 ± 0.5			0.17 ± 0.07
		618.40 ± 0.16			2.14 ± 0.17
		657.3 ± 0.4			0.51 ± 0.22
		686.0 ± 0.3			$\textbf{0.92} \pm \textbf{0.18}$
		696.9 ± 0.4			0.26 ± 0.07
		748.10 ± 0.18			1.85 ± 0.17
		769.4 ± 0.5			0.37 ± 0.09
		806.3 ± 0.4			0.44 ± 0.11
		925.6 ± 0.3			0.78 ± 0.09
		945.4 ± 0.5			0.25 ± 0.07
		978 ^c			0.17 ± 0.09
		984.1 ± 0.4			1.4 ± 0.3
		989.2 ± 0.4			1.4 ± 0.3
1025	1025 ± 3	1027.42 ± 0.11	100	86 ± 7	98 ± 5
		1097.8 ± 0.2			1.60 ± 0.13
1204	1202 ± 3	1205.07 ± 0.12	100	100	100
		1275			1.4 ± 0.3^{d}
		1285.7 ± 0.3			0.85 ± 0.13
		1381.4 ± 0.3			0.92 ± 0.11
		1403.9 ± 0.5			0.27 ± 0.12
		1538.8 ± 0.3			0.63 ± 0.11
1636 ^a		1618.9 ± 0.2	10.1		0.84 ± 0.10
1030		1645.95 ± 0.16	19.1		16.0 ± 0.8
		1659.3 ± 0.2			1.78 ± 0.20
		1837.2 ± 0.6			0.32 ± 0.07
		1879.4 ± 0.4			0.60 ± 0.08
		1889.0 ± 0.4			0.41 ± 0.08
		1899.3 ± 0.5			0.17 ± 0.05
		1972.7 ± 0.5			0.14 ± 0.04
1973 ^a		1999.8 ± 0.8	9.9		0.30 ± 0.10
1973		2011.6 ± 0.2	9.9		10.1 ± 0.7
		2177.1 ± 0.7 2230.8 ± 0.4			0.48 ± 0.10 0.25 ± 0.04
2250 a		2230.0 ± 0.4	2.6		<0.03
2200		2484.4 ± 0.4	4.0		0.28 ± 0.03
2720 ^a		2754.4 ± 0.4 2754.4 ± 0.4	2.6		1.76 ± 0.20
		2734.4 ± 0.4 2920.0 ± 0.5	2.0		0.16 ± 0.20
		3191.0 ± 0.6			0.19 ± 0.03 0.19 ± 0.03
		3204.2 ± 0.6			0.19 ± 0.03 0.10 ± 0.02
		3239.1 ± 0.6			0.13 ± 0.03
		3364.9 ± 0.7			0.10 ± 0.0

a Only observed with scintillation detectors.
b Tentatively assigned.
c Tentatively assigned; evidence for this γ transition is found in the 298 keV coincidence spectrum (cf. Fig. 3).
d The intensity is deduced from the coincidence spectra, because the contribution of the 1275 keV transition of 29 Al $(T_{1/2} = 0.00)$ from the coincidence spectra, because the contribution of the 1275 keV transition of 29 Al $(T_{1/2} = 0.00)$ from the coincidence spectra, because the contribution of the 1275 keV transition of 29 Al $(T_{1/2} = 0.00)$ from the coincidence spectra, because the contribution of the 1275 keV transition of 29 Al $(T_{1/2} = 0.00)$ from the coincidence spectra, because the contribution of the 1275 keV transition of 29 Al $(T_{1/2} = 0.00)$ from the coincidence spectra $(T_{1/2} = 0.00)$ from the coincidence $(T_{1/2} = 0.00)$ from the coincidence

its three strongest γ rays the half-life of 61 Fe is determined to be 5.98 ± 0.06 min, in agreement with previous results.

The results of the coincidence experiment are summarized in Fig. 2 and some of the coincident spectra are shown in Fig. 3.

The results from the energy level experiment show that the 1027, 1205, 1646, 2011, 2484, 2754, 2920, 3191, 3204, 3239, and 3365 keV γ rays and the 1325, 1953, and 3000 keV sum peaks are only partly (1027 keV) or very little suppressed, showing that there are levels in 61 Co at these energies which are directly fed by β decay. The suppressions for the 1286, 1619, 1889, and 2230 keV γ rays are <0.10, <0.15, 0.20 ± 0.10, and 0.15 ± 0.05, respectively, showing that the levels with these energies are not fed, or very weakly fed, by direct β decay.

IV. DISCUSSION

A. Decay of 61Fe to 61Co

The decay scheme of 61 Fe based on our data is given in Fig. 4. The parity of the ground state of 61 Fe is negative because of the allowed β transitions to the L=2 negative parity levels at 1205, 2754, and 3000 keV. [All L assignments refer to the 59 Co(t, p) 61 Co reaction of Hudson and Glover. 12 All l_p assignments refer to the 62 Ni(t, α) 61 Co reaction of Blair and Armstrong. 8] The level at 1027 keV has $J^{\pi} = \frac{3}{2}^{-}$, as can be concluded from a $L=2(J^{\pi}=\frac{3}{2}^{-}-\frac{11}{2})$ and a $l_p=1$ ($J^{\pi}=\frac{1}{2}^{-},\frac{3}{2}^{-}$) transition. The β feeding to this level restricts the spin of the ground state of 61 Fe to $\frac{1}{2}^{-},\frac{3}{2}^{-}$, and $\frac{3}{2}^{-}$. The $\frac{1}{2}^{-}$ assignment can be ruled out, because β feeding to $l_p=3$ ($J^{\pi}=\frac{5}{2}^{-},\frac{7}{2}^{-}$) levels should be at least second

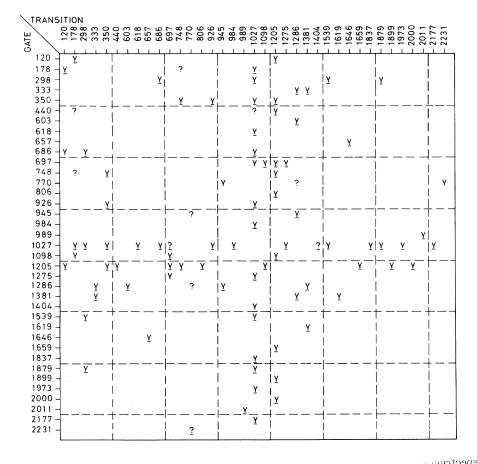


FIG. 2. Coincidence matrix of the decay of ⁶¹Fe. A "Y" indicates a coincidence relationship and a "" indicates a coincidence relationship that is uncertain due to weak statistics (nWhen the coincidence relationship (γ_1, γ_2) is observed, the symbol at (γ_2, γ_1) is underlined.

order forbidden; however, β feeding (logft < 5.5) was observed to the $l_b = 3$ levels at 2864 and 3000 keV. In the odd ⁵⁷Co and ⁵⁹Co nuclei we find a low lying $\frac{1}{2}$ level²²⁻²⁴; in ⁶¹Co the only $\frac{1}{2}$ candidate is the 1325 keV level, which is fed by β decay (logft=5.8). The spin and parity of the ground state of 61 Co is known to be $\frac{7}{2}$ -. 12,21 In previous decay work no direct β feeding to the 61 Co ground state was observed; in the present study no direct β feeding to the $\frac{7}{2}$ level at 1619 keV is observed either, while the $\frac{7}{2}$ -12 level at 2348 keV is not found at all. So, a $J^{\pi} = \frac{3}{2}$ assignment for the ground state of ⁶¹Fe is most probable; however, $J^{\pi} = \frac{5}{2}$ cannot be definitly excluded. Previous arguments for a $J^{\pi} = \frac{3}{2}$ assignment were also taken from systematics and shell model considerations. However, in ⁵⁷Fe, $^{61}\mathrm{Ni}$, and $^{63}\mathrm{Ni}$ the $\frac{3}{2}$, $\frac{1}{2}$, and $\frac{5}{2}$ levels are much closer than in $^{55}\mathrm{Fe}$ and $^{57}\mathrm{Ni}$ with a single neutron configuration. 57 Ni, 59 Ni, 61 Ni, 55 Fe, and 59 Fe have a $\frac{3}{2}$ ground state, ⁵⁷Fe and ⁶³Ni have a $\frac{1}{2}$ ground state and 65 Ni has a $\frac{5}{2}$ ground state. So it is not justified to consider only the $2p_{3/2}$ and the $1f_{7/2}$ states as Gujrathi and Mukherjee³ and Ehrlich⁵ did, nor to compare the ⁶¹Fe ground state only with ⁵⁹Fe as done by Grench, Coop, and Menlove.4

B. Properties of levels of ⁶¹Co

The γ transitions of 230 keV (Refs. 2 and 3) and 400 keV (Ref. 2) reported by various authors were not found, so we had no arguments to propose a level at 1410 keV.9 The same holds for the level at 1800 keV, tentatively proposed by Strain and Ross.² Both levels were not seen in reaction studies either. The spin and parity assignments as given in Fig. 4 for levels in 61 Co are based on L^{12} and $1_{b}^{8.9}$ values, the occurrence of a groundstate γ transition, and $\log ft$ values, supposing that $J^{\pi} = \frac{3}{2}^{-}$ for the ⁶¹Fe ground state. From the doublet at 1280 keV, as observed by Hudson and Glover, 12 we found only the 1286 keV member. The absence of direct β feeding to this level makes a high spin $(\geq \frac{7}{2})$ probable. The L=2 assignment then selects $\frac{7}{2}$, $\frac{9}{2}$, or $\frac{11}{2}$ for J^{π} . Because of large energy uncertainties it was not clear which member of the doublet at 1650 keV was fed by β decay. From this study it follows that the 1646 keV member is fed by direct β decay, in contrast with Ref. 9. From the logft and L=2 it follows that $J^{\pi}=\frac{3}{2}$, $\frac{5}{2}$, but from the 62 Ni $(t, \alpha)^{61}$ Co reaction Hudson and Glover¹² argued that the $\frac{5}{2}$ assignment is most probable. From the γ intensities a β feeding of

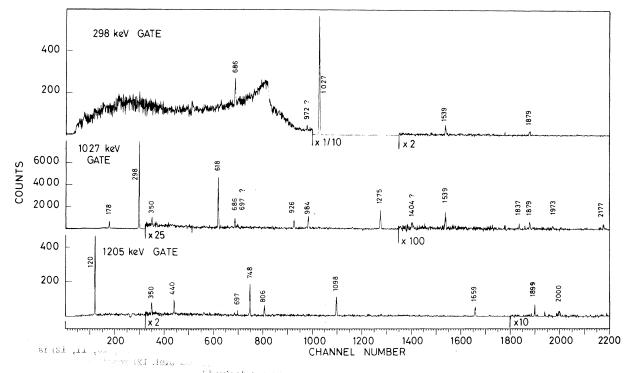


FIG. 3. The γ ray spectra coincident with the 297.90, 1027.42, and 1205.07 keV γ transitions. The background is subtracted.

 $(0.19 \pm 0.08)\%$ can be deduced for the level at 1619 keV; however, the results from the level spectrometer indicate a β feeding of <0.09% at least. In Fig. 4 only an upper limit is given for the β feeding to this level. It was not clear either which member of the triplet at 2000 keV, as observed in reaction studies, was fed by β decay. From the present work it follows that about 85% of the β feeding of this triplet goes to the 2011 keV level. The suppression of the 1889 keV transition, as found in the level-spectrometer experiment, cannot be explained by the intensity of the tentatively assigned 542.8 keV γ transition. Probably the level at 1889 keV is also fed by unobserved γ rays from higher excited levels. At 2247 keV Blair and Armstrong⁸ found in the 62 Ni $(t,\alpha)^{61}$ Co reaction a $\frac{1}{2}$ level. Hudson and Glover¹² found in the

 $^{59}\mathrm{Co}(t,\,p)^{61}\mathrm{Co}$ reaction a L=2 (so $\pi=-) level at$ 2239 keV. Coop et al. 11 observed a state at 2232 keV in the 64 Ni $(p, \alpha \gamma)^{61}$ Co reaction, deexcited by a 2232 keV γ transition, a 946-1283, and a strong 1205-1027 (or 1027-1205) keV γ ray cascade. We found a level at 2231 keV fed in the β decay. Due to the strong γ transitions from the first excited states in 61Co, the last cascade cannot be observed in the single γ ray spectrum. From our coincidence experiment, however, we found no indication for the mentioned cascade. Obviously both levels are excited in the 64 Ni $(p, \alpha \gamma)^{61}$ Co reaction, while in the β decay only the level with L=2is excited. So the data from the $^{64}{\rm Ni}(p,\,\alpha\gamma)^{61}{\rm Co}$ reaction and the data from the β decay strongly support the assignment of a close doublet at 2230 keV. The L=2 value limits J^{π} to $\frac{3}{2} - \frac{11}{2}$ for the level

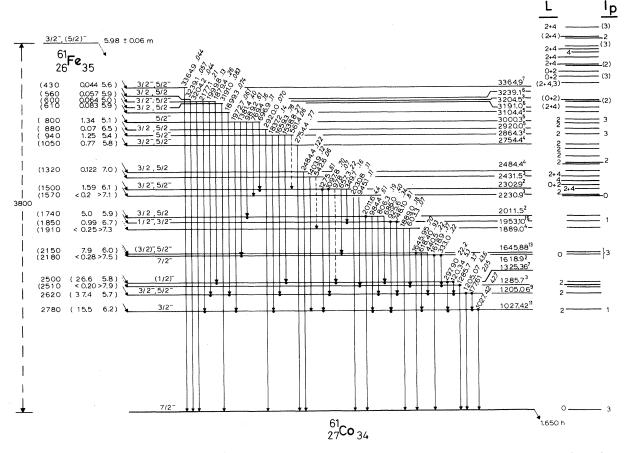


FIG. 4. The proposed decay scheme of 61 Fe. The energies are given in keV. The total decay energy, as well as the decay energies to the 1027.42, 1205.06, and 1325.36 keV levels are taken from Ref. 9. Transition intensities are given in percentage per decay. The β feedings are calculated from the relative γ intensities. Uncertain β feedings have been omitted. The log ft values are calculated by a program of the Nuclear Data Group. Coincidence relationships which are twice observed are indicated with dots. The level scheme of 61 Co as found in reaction work (Refs. 8, 10, 11, 12) is given on the right, together with the transferred angular momentum in the 59 Co (t,p)61 Co (Ref. 12) reaction (L) and in the 62 Ni (t,α) 61 Co (Refs. 8 and 9) reaction (l_p) . The spins of levels in $^{61}_{(1)}$ Co are derived by assuming that the g.s. spin of 61 Fe is $^{3}_{2}$.

TABLE II. Branching ratios of some levels in 61 Co from the 64 Ni(p, $\alpha\gamma$) 61 Co reaction of Coop et~al. (Ref. 11) and from the β decay of 61 Fe.

		Branchir	Branching ratios		
Initial state	Final state	Coop et al.	This work		
1027.42	0	100	100		
1205.06	0	100	95.6 ± 0.4		
	1027.42		4.4 ± 0.4		
1285.7	0	100	100		
1618.9	0	55 ± 8	62 ± 5		
	1285.7	45 ± 8	38 ± 5		
1645.88	0	88 ± 4	85.8 ± 1.1		
	1027.42	12 ± 4	$\textbf{11.5} \pm \textbf{1.0}$		
	1205.06		2.7 ± 0.6		
1889.0	0	50 ± 8	71 ± 9		
	1285.7	42 ± 8	29 ± 9		
	1645.88	8 ± 3	<15		
1953.1	1027.42		30 ± 3		
	1205.06	100	70 ± 3		
2230.9	0	18 ± 7	50 ± 8		
	1027.42	1			
	and/or	$>66\pm9$	<40 a		
	1205.06)			
	1285.7	16 ± 5	50 ± 8		
2302.9	1027.42	100 b	35 ± 5		
	1205.06		39 ± 4		
	1325.36		4 ± 2		
	1645.88		13 ± 5		
	1953.10		9 ± 2		

^a Cf. Sec. IV B.

fed in β decay; $\frac{11}{2}^-$ is excluded because of the γ transition from the $\frac{5}{2}^-$ level at 3000 keV. The high $\log ft$ value makes $J^\pi = \frac{3}{2}^-$, $\frac{5}{2}^-$ less probable. For levels above 3100 keV it is difficult to find a (1-1) correspondence between levels found in reaction work and the levels proposed from the present study; the spin and parity assignments are only based on β and γ decay properties.

C. Comparison with neighboring odd Co isotopes

For most of the levels up to 2500 keV in 57 Co and 59 Co the spins and parities are known. The experimental information about 63 Co is still incomplete. As shown in Fig. 5, the seven lowest excited levels in 57,59,61 Co lie within a region of 700 keV, followed by small gap of about 250 keV. Among the first seven excited states there is one $\frac{1}{2}$ -, $\frac{5}{2}$ -, $\frac{7}{2}$ -, $\frac{9}{2}$ -, and $\frac{11}{2}$ - level and there are two $\frac{3}{2}$ - states. This is in agreement with the proposed J^{π} values for the levels in 61 Co, if the 1205 keV level is the $(\frac{3}{2}^{-})_2$ state and if the 1271 and 1286 keV levels are the high spin states with J^{π} equal $\frac{11}{2}$ - and $\frac{9}{2}$ -. For the higher excited states

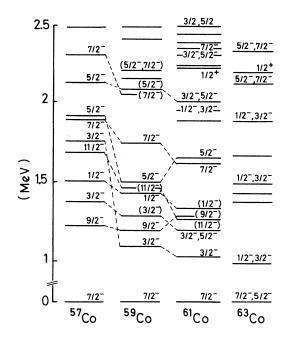


FIG. 5. Energy levels of 57,59,61,63 Co. The data about 57 Co are taken from Refs. 22 and 23, and data about 58 Co and 63 Co come from Ref. 24 and Ref. 25, respectively.

a comparison is less conclusive; a possible correspondence for the $(\frac{5}{2}^-)_2$ and $(\frac{7}{2}^-)_3$ levels is given in Fig. 5.

D. Comparison with theoretical treatments of ⁶¹Co

For the odd cobalt nuclei several types of calculations have been performed, but for ⁶¹Co only particle-phonon model calculations, in which a proton hole is coupled to a vibrating Ni core, are known. ¹³⁻¹⁵ Although it seems that microscopic excitations have to be taken into account, a detailed comparison based on the location of levels alone is not very significant. Unfortunately, no reliable calculated values for transition probabilities are available at the present moment. ^{14,26}

ACKNOWLEDGMENTS

We express our gratitude to Mr. L. Mars and Mr. J. Zevering for their assistance during the irradiations with the neutron generator, and to Dr. J. Rethmeier and his cyclotron staff. We wish to thank Dr. J. L. de Jager and Dr. K. Allaart for stimulating discussions. This work has been supported partly by the Foundation for Funda mental Research on Matter (F.O.M.), and financially supported by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

b Tentative assignment.

- *Present address: St. Radboud University Hospital, Nijmegen, The Netherlands.
- W. G. Cross, Can. J. Phys. <u>20</u>, No. 2, Abstr. 7.5 (1964).
 J. E. Strain and W. J. Ross, J. Inorg. Nucl. Chem. <u>28</u>, 2075 (1966).
- ³S. C. Gujrathi and S. K. Mukherjee, Phys. Rev. <u>159</u>, 909 (1967).
- ⁴H. A. Grench, K. L. Coop, and H. O. Menlove, Phys. Rev. <u>161</u>, 1118 (1967).
- ⁵D. Ehrlich, Z. Phys. <u>207</u>, 268 (1967).
- ⁶V. N. Levkovskii, I. V. Kazachevskii, V. V. Sokol'skii, and G. P. Vinitskaya, Yad. Fiz. 4, 1258 (1966) [transl.: Sov. J. Nucl. Phys. 4, 904 (1967)].
- ⁷I. V. Kazachevskii and V. N. Levskovskii, Bull. Acad. Sci. USSR, Phys. Ser. <u>32</u>, 295 (1969).
- ⁸A. G. Blair and D. D. Armstrong, Phys. Rev. <u>151</u>, 930 (1966).
- ⁹J. Verviers, Nucl. Data <u>B2</u> (No. 5), 81 (1968).
- ¹⁰K. L. Coop, I. G. Graham, J. M. Poate, and E. W. Titterton, Nucl. Phys. <u>A130</u>, 223 (1969).
- ¹¹K. L. Coop, I. G. Graham, and E. W. Titterton, Nucl. Phys. A150, 346 (1970).
- ¹²F. R. Hudson and R. N. Glover, Nucl. Phys. <u>A160</u>, 482 (1971).
- ¹³L. Satpathy and S. C. Gujrathi, Nucl. Phys. A110, 400

- (1968) .
- ¹⁴K. W. C. Stewart, B. Castel, and B. P. Singh, Phys. Rev. C <u>4</u>, 2131 (1971).
- ¹⁵J. M. G. Gómez, Phys. Rev. C <u>6</u>, 149 (1972).
- ¹⁶H. W. Jongsma, Ph.D. thesis, Free University, Amsterdam, 1971 (unpublished).
- ¹⁷J. Konijn, P. F. A. Goudsmit, and E. W. A. Lingeman, Nucl. Instrum. Methods <u>109</u>, 83 (1973).
- ¹⁸H. P. Blok, J. C. de Lange, J. W. Schotman, and J. Blok, unpublished.
- ¹⁹D. C. Camp and G. L. Meredith, Nucl. Phys. <u>A166</u>, 349 (1971).
- ²⁰R. C. Greenwood, R. G. Helmer, and R. J. Gehrke, Nucl. Instrum. Methods 77, 14 (1970).
- ²¹K. P. Schmidt, R. Coussement, G. Langouche, and N. P. Lafaut, Nucl. Phys. <u>A204</u>, 279 (1973).
- ²²R. Dayras, M. Toulemonde, B. Cujec, B. Heusch, J. N. Mo, and I. M. Szöghy, Nucl. Phys. <u>A173</u>, 49 (1971).
- ²³G. Hardie, T. H. Braid, L. Meyer-Schutzmeister, and J. W. Smith, Phys. Rev. C 5, 1600 (1972).
- ²⁴C. P. Swann, Nucl. Phys. <u>A166</u>, 349 (1971).
- ²⁵H. Verheul, Nucl. Data <u>B2</u> (No. 3), 45 (1967).
- ²⁶K. Allaart, Nucl. Phys. A174, 545 (1971).