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Practical Equations for Three-Particle Scattering Calculations
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A new method is presented for solving the singular integral equations that arise in the
Faddeev theory of three-particle scattering, The method is tested by means of an ex-

ample and found to be practical.

In general, it is more difficult to perform
three-particle calculations above the breakup
threshold than below. In the Faddeev' formalism
for nonrelativistic three-particle systems, this
difficulty can be attributed to the presence of cer-
tain logarithmic singularities in the kernels of
the momentum-space integral equations. Three
successful techniques for handling these singular-
ities are contour rotation,? a method based on the
use of Padé approximants to sum a multiple-scat-
tering series,® and a modification of the method
of moments.* The purpose of the present note is
to present an alternative approach, which appears
to have some advantages over these methods.

The work of Alt, Grassberger, and Sandhas®
shows that, in general, it is possible to reduce
three-particle collision problems to the solution
of equations that have the same structure as
those which arise when separable two-particle
interactions are assumed. Accordingly, here I
shall deal with only the equation that arises when
each of the pair interactions consists of a single
separable term. Furthermore, for the sake of
simplicity I shall assume that all of the particles l

are identical and spinless, and that the two-par-
ticle bound state is an s state. This example
suffices to illustrate the method; the generaliza-
tions to more complicated interactions are not
difficult to carry out.

With the assumptions just stated, the two-par-
ticle transition operator becomes

1s)= | T(sXgl, (1)

where s is a complex energy parameter, and
|g) is related to the two-particle bound-state
wave function |B) with binding energy B by the
relation

|g)= (- B-H,)|B). (2)

Here H, is the kinetic-energy operator. The
propagator T is given by

[T(s)]"'=(s+B)B|(s - H,)"*| &). (3)

Clearly, it has a simple pole at s=—B. With this
this interaction, it is well known>® that the half-
off-shell partial-wave amplitudes for the scatter-
ing of one particle from a bound state of the other
two can be obtained by solving the equations

X, (g, k;8)=Z,(q, k;8)+fo Z,(q,q';8)q"%dq’ T(s - 3¢')X,(q', k;s), L=0,1,2, ..., (4)

where

2,00, 9)= [ dx P (g(133+3' g (53’ +dD/(s - ¢* - §-§

s=-B+3k%+ie=E +ie.
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The troublesome logarithmic singularities, referred to above, are associated with the vanishing of the
denominator in (5). It is easy to see that this can happen only if

q, q' <c = (4E/3)"2, (6)
The singularities can be separated out by using the relation

Z.(q,9'58)=Wy(q,q58)+Y,(q,q'5), (7
where

, 1 dx P (x) T -
W.(q,q ;s)=[1 5 _qz__al:ql _q,zlg(l%q+q Dg(zq’ +dl)
-0(c - Q)gU(E - i) ")e((E - 3¢ (c - ¢")], (8)
Y.(q, 45 8)=6(c —q)gU(E - 3¢3)2)(2/q9")Q.((s = ¢* - a"*)/q4" )e((E - 1¢)"*M (c - q). (9)

The associated Legendre function @, contains the logarithmic singularities. Upon putting (7) into (4),
it is not difficult to show that (4) can be replaced with the following two equations:

X, (g, k;8)=R(q, k; )+ fRL(q, q';8)q"dq’ T(s - 1¢'>)X,.(q', k; s), (10)

R.(q,q'58)=W,(q,q';s)+ f Y.(q, q"; s)q"?dq" T(s - 3¢"*)R.(q", q'; S). (11)
From (9) and (11), it follows that

R;(q,q'58)=Wo(q,q;5s), a>c. (12)
The logarithmic singularities in (11) can be treated by simply iterating the equation once to give

R.(q,q";s)=By(q, q'; s)+ fOCVL(q, q";5)4"dq" R.(q", q'; $), (13)
where

By(q,4'58)=Wy(q, q';8)+ fYL(q, q";$)q"*dq" T(s — 39"*)W (9", q'; 5), (14)

Vi(a, q'; s)=gUE = 3¢*)A)T(s - 3¢'))g\(E - 3¢')"*)(4/qq")

X focQ,,((s -4 -q")/qq"Mq" §(E - 1¢")")T(s - 34" Q. (s - ¢'* - ") /q'q"). (15)

It is not hard to see that B, and V, are finite and continuous, and therefore (13) can be solved by
standard methods. Following Kowalski,® it can be shown that the propagator pole [see (3)] in the ker-
nel of (10) can be treated by replacing (10) with the equations

T,k $)=R.(a, &5 )+ [ [RL(a, 4’5 $)T(s - 34"?)
—R.(q, k; shy(k, @)/ (Gk*+ i€ — 3q'?)|q’'?dq’ T, (q', k; 5), (16)
X, (q,k;s)=T(q, k;s)[1 - [n(k, q')q'?dq’ Ty (q’, k; s)/(ik*+ie - 5¢'%)]". (17)

Here v, is any well-behaved function with the ‘
property y, (&, k) =1,

broken up into the intervals (0,¢) and (¢, ), and

In order to test the practicality of this scheme, the points and weights for Gauss-Legendre quad-
a calculation has been carried out for the s-wave, rature were mapped from the interval (-1, 1) on-
quartet, neutron-deuteron amplitude. Even to these intervals by using the transformations

though the equations presented here are for spin- _ _
less particles, they can be used for this case by g=cx+1)/2, q=c+(1+x)/(1-x).

simply taking into account a spin-isospin re- The same points and weights were used in solv-
coupling coefficient of —3 in the “potential” Z,. ing (13). The function y, was taken to be

The two-nucleon interaction was taken to be the P

same as that used by Sloan.” The logarithmic volk, 4) = (k*+ 8%)/(q” + £%),

singularities in (14) and (15) were treated by a with =1 fm~!, The rate of convergence with
subtraction technique similar to that of Ref. 3. respect to the number of quadrature points is
The range of integration in (16) and (17) was illustrated in Table I, where the parameters that
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TABLE I. The s-wave, quartet, elastic n-d ampli-
tude at a neutron lab energy of 14.1 MeV, for various
sets of quadrature points.,

Number of quadrature points Re(6)
0-c C—x (deg) Yo

6 6 72.80 0.9702
10 6 72.66 0.9719

6 10 72.31 0.9721
10 10 72.14 0.9738
16 10 72.10 0.9758
10 16 72.04 0.9743
16 16 72.00 0.9763

describe the elastic amplitude (g=#) at a neutron
lab energy of 14.1 MeV are given for various sets
of quadrature points. The parameters are the
real part of the phase shift 6, and the inelasticity
yo. It is seen that the rate of convergence is
very good. The last entries in the table agree
closely with values of Re(5,)=71.9° and y,=0.978
found by Sloan.™ The converged off-shell am-
plitude is shown in Fig. 1, where the known
square-root singularity® at ¢=c is clearly re-
vealed. The off-shell elastic amplitude on the
interval 0 < ¢ sc¢ is used in the construction of
the breakup amplitude.

In conclusion, it should be noted that in con-
trast to the contour-rotation technique,? the
method presented here only requires that the two-
particle input be known for real momenta. This
is a significant practical advantage, when the two-
particle ¢ matrix cannot be obtained analytically.
The method of Kloet and Tjon® has the same ad-
vantage; however, with their technique it is nec-
essary to perform a large number of interpola-
tions. This can lead to a loss of numerical ac-
curacy, as well as necessitating the use of a
large amount of computer time. The modified
method of moments® is also a real-axis tech-
nique. An assumption of this approach is that
the scattering amplitude can be well approxim -
ated by a polynomial on the interval 0 <q <c.
Because of the square-root singularity, it is not
clear that this assumption is a good one. Finally,
there is no reason to believe that the approach
presented here will not work just as well for the
doublet state of neutron-deuteron scattering. The
rate of numerical convergence is determined
mainly by the smoothness of the functions B; and
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Re [xo(q,k 'S )] (fm)
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FIG. 1. Amplitude for s-wave, quartet, n-d scatter-
ing at a neutron lab energy of 14.1 MeV, as a function
of the momentum.

V, lsee Egs. (14) and (15)], and the same expres-
sions occur in the doublet case.
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