VRIJE
UNIVERSITEIT
° AMSTERDAM

VU Research Portal

Coordination Approaches for Complex Software Systems
Bosse, T.; Hoogendoorn, M.; Treur, J.

2006

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Bosse, T., Hoogendoorn, M., & Treur, J. (2006). Coordination Approaches for Complex Software Systems.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021


https://research.vu.nl/en/publications/da0cb15c-a40c-4b88-a996-6f6f1746c1f3

Coordination
Approaches for Complex
Software Systems

Tibor Bosse, Mark Hoogendoorn, and Jan Treur

vrije Universiteit amsterdam






Preface

This document presents the results of a collaboration between the Vrije Universiteit
Amsterdam, Department of Artificia Intelligence and Force Vision to investigate coordination
approaches for complex software systems. The project was funded by Force Vision. More in
particular, the following people participated:

Force Vision:

Rob Duell, Andy van der Meg, and Bas Vermeulen.

Vrije Universiteit:

Tibor Bosse, Egon van den Broek, Mark Hoogendoorn, and Jan Treur.






Contents

(= =0 OSSPSR 3
O] 1= 01 KSR URUSRI 5
I 1 11 [ o £ oo IO 7
2  Coordination in Software Systems: The Problem...........ccoccoiiiiiiiiininnee 9
3 MethOdOIOgY .....c.cooveieeree e 11
3.1 Coordination APProaches............ccooeierieiineneeee e 11
3.2 TESLEXAMPIES ... e e 11
3.3 SIMUIBLTON ..ot 12
34 EVAIUBLION. ....cueiiiiiicieeie e 12

4 SOftware ENVIFONMENTS .......cceuiieieieiiriisiesiesie s st 13
4.1 The LEADSTO Simulation ENVIroNMeNt ...........ccceeveerienenenenenieneenens 13
4.2 The TTL AnalySIS ENVIrONMENt........cccovirieiinieie e 14

5  Coordination APPrOBCHES........coiiiiirieiesieie ettt srenns 15
51  Behavior NEIWOIKS.......ccccoeieirirerisesies e 15
512 Mathematical MOdE ..........ccooiriiiiiiiree s 16

52  TheMUti-Mind......cccooiiiiieee e 17
5.3  Society Of the MiNd........ccoviiiiieieeeeeseee e 18
531 Minsky’SMeChaniSMS..........cccuveeiiiinie s 19

54 PandemOniUM........coooeierererieiesisesesesies e sr s 20
54.1 Concepts via Pandemonium ...........ccoeeverieniennesesieesee e 21
54.2 A Computing Perspective on Pandemonium............cccceeerennens 22

LT o 1] oo TSP 22
551 Voting Methods for Pattern Recognition ...........c.cccccevevceeniennens 23
55.2 Variants of the Borda Count Method ............ccoooiiiiiiinininnnees 27
553 Drawbacks Of VOLING ......cccoiiriiriiireeiee e 28

6 TESt EXAMPIES ... e 31
EXample 1 - SEQUENCE..... .o e 31
Example 2 - Parallel Split........ccooiiiieiii e 33
Example 3 - Synchronization .............cccoeeeii e 34
Example 4 - EXCIUSIVE ChOICE ........ccooiiiiene e 35
Example5 - SIMple MErge. ... 36
Example 6 - Multi CROICE........ccoiiiieeee e 37
Example 7 - Synchronizing Merge..........cooeieieeienenieieneeee e 38

7  Behavior Networks SImulation ..........cccooeeiene e 41
7.1 SIMUIAtion MOGE .......ccoeeiiiieeeee e e 41
7.2 SIMUIALION TIECES. ... i cveeieeiteeeteeee st estee e see et sre e r e seesreenree e 41

8  Pandemonium SIMUIELION ........ccooirieiiieie e 51
8.1 SIMUIELION MOE ......cceeieiiieeee e 51
8.2 SIMUIELION TTACES.....ccui et 52

9 VOUNG SIMUIBLTION ...cuviiiiie ettt 57
9.1 SIMUIELION MOE ......ooeiieeeee e 57
9.2 SIMUIBLION TFBCES. .....eiveieeriesie et 58
10 SIMUIELION EVAIUBLTION ...t e 63
10.1 SUCCESSIUINESS.......euieiieiiriiste sttt 63



L o (o= o)y RS PRR 63

10.3 Specifying and Checking Palterns..........ccococeevenvneeienesieese s 65
Pattern 1 - SEOUENCE.......oceiiieiie et e st 65
Pattern 2 - Parallel SPlit.......ccccovivinieiisiee s 66
Pattern 3 — SyNChroniZation ...........cccueveverieneseereeseseee e 66
Pattern 4 - EXCIUSIVE CNOICE ........ccucviieieiineesereese e 66
Pattern 5 - SIMPIE MEIQE......ociieeeeeee e 66
Pattern 6 - Multi ChOICE.........c.cooiiiiciee e 67
Pattern 7 - Synchronizing Merge.........ccovevereceeiesisiee e 67

10.4 Comparison Of APPrOaCNES. .......ceeveiiiieeie et 68

11 DISCUSSION ..ttt sttt es b nn e nnenn e 69
12 REFEIBNCES ..o 71
ApPPendiX A - LEADSTO PAPEN ...ccviieierieeeeriesieeieseesee e e eee s ssesse e seeseeene 73
APPENTIX B - TTL PADEL ...eeiieeeieeieeeeee et 85
Appendix C - LEADSTO SPeCIfiCaioNS ........cccoereerierirrie e eeeseesieeee s 101



1 Introduction

How to control or coordinate the processes in a complex software system is a nontrivia issue.
By a component-based approach to software systems a divide and conquer strategy can be used
to address the various aspects involved. This may lead to a possibly large number of
components, which each can be analysed and designed independently. However, a designer
may still be left with a connectivity problem: how can all these fragments be combined into a
coherent system. One aspect of connectivity is how specific information generated by one
component can become available to another component that needs that information. This is
sometimes caled the data flow problem. Such a problem is often addressed by drawing
connections between components that indicate where possibly which information can transfer
from one component to another one (a data flow diagram). Another possibility to solve thisis
by creating a (shared data) storage where information from all componentsis posted and which
can be accessed by al components to obtain needed information. Such solutions may provide
satisfactory solutions for the connectivity problem in the static sense of what the possibilities of
transfer between components are. However, this does not address the dynamics in the sense of
when actually such information transfer occurs, or when a component is active in processing its
input information to generate new output information. This problem of the connectivity
between components in terms of dynamics is the harder problem, sometimes called the control
problem or the coordination problem. This report addresses this problem. Whilst in the
literature both the terms coordination and control are used, in the remainder of this document
only the former term is used.

First, in Section 2 a more detailed analysis of the problem is provided. Next, in Section 3 the
methodology is described to explore what specific coordination approaches can contribute.
Section 4 briefly introduces the modelling techniques and supporting software tools used (with
a reference to two appendices where more details are given). In Section 5 a number of
coordination approaches obtained from the literature are briefly introduced. Section 6 describes
a set of test examples that can be used as input for the coordination approaches. In Section 7, 8,
and 9 the simulations are shown that were undertaken to evaluate the usefulness of the
coordination approaches for the test examples. Section 10 presents the results, and Section 11 is
afinal discussion, positioning the results achieved this far and providing further perspectives.






2 Coordination in Software Systems: The Problem

Software systems that consist of a large number of components are not easy to coordinate. One
approach is to prescribe in a centralised manner when exactly a component should become
active. This can be obtained, for example, by a control specification (or coordination
specification) that indicates, based on results of components that already have been active,
which component has to be the next active component. An example of a component-based
modelling approach incorporating such a form of coordination specification (by means of
socaled supervisor rules) is the first version of DESIRE (Design and Specification of
Interacting Reasoning components), developed the end of the 80s and the beginning of the 90s
of the previous century; cf. Langevelde, Philipsen, and Treur (1992); Gavrilaand Treur (1994).
However, for more complex component-based systems such a coordination specification can
have a number of disadvantages:

e it can become large and intransparent.

e it may suffer from overspecification, i.e., the dynamics of component activation may
have to be prescribed in much more detail than actually needed

« it may require quite an effort to acquire the coordination knowledge, i.e., find out how
the coordination choices should bein al possibly occurring system states

« itsflexibility and adaptivity with respect to circumstances at runtime often islimited

To remedy the first disadvantage, it is possible to add hierarchica structure to the component-
based system, by clustering components to higher-level components, thus introducing
aggregation levels, in such a way that at each aggregation level the number of lower-level
components from which a higher-level component is composed is low. By itself this does not
address the other three disadvantages. A second way to address the disadvantages above,
especidly the second one, is to alow components to be active in paralel and where possible
leave it to a component when it becomes active, for example, in response to new input
information. These two ways to address the disadvantages, by hierarchical structure and by
giving more autonomy to components allowing them to be active in parallel, were worked out
in the second, agent-oriented version of DESIRE developed in mid and second half of the 90s;
cf. Brazier, Dunin-Keplicz, Jennings, and Treur (1995, 1997); Brazier, Treur, Wijngaards, and
Willems (1998); Brazier, Jonker, and Treur (1998/2004, 2002a, 2002b).

However, while addressing the first two disadvantages in a satisfactory manner, this approach
does not contribute much to address the third and fourth disadvantage. In fact, it can even make
the third disadvantage worse, because opening up the possibility of more autonomy and paralld
processing of components may seriously increase the number of possible states of the system:
e.g., for n components, for the sequentia case at any point in time there can be 1 component out
of n possible components active, whereas in the parallel case there can be 1 subset of
components out of 2" possible subsets active. To overcome such problems, this report aims to
contribute to solutions addressing the third and fourth disadvantage as well.
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3 Methodology

To explore possibilities to address the coordination problem as described above, a genera
methodology has been followed that is based on the following elements (see a so Figure 1):

- anumber of promising coordination approaches from the literature are selected

- anumber of test examples representing software component configurations are chosen

- simulations are performed where selected coordination approaches are applied to the
chosen test examples, resulting in a number of simulation traces

- the simulation traces are evaluated (automatically) on a number of relevant dynamic

properties
Test Examples
l Dynamic
Properties
Coordination
Approaches
Simulation Automated
—>
Traces Checker YESNO

Fig. 1. General research methodology

Each of the elements of Figure 1 will be briefly discussed bel ow.

3.1 Coordination Approaches

The problem of coordination of component-based software systems has crucia aspects in
common with the problem of coordination in natural (biological), cognitive (human and anima
mind) or societal systems (organisational structures). Evolution processes over long time
periods have generated solutions for the coordination problem in these areas. Therefore it may
make sense to analyse in more detail how these solutions work. Some literature is available that
describes theories for coordination in these areas. This literature can be used as a source of
inspiration to obtain more innovative approaches to coordination of complex component-based
software systems. As afirst step a number of such approaches will be evaluated to see whether
they can overcome the problemsidentified in Section 2.

3.2 Test Examples

To evaluate a given coordination approach, adequate test examples of component-based
software configurations are needed. One may be tempted to use a real-life component-based
software system as a test example, for example, consisting of hundreds of components.
However, such type of testing for one case would take a lot of effort, and to get a reasonable
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idea it should be repeated for a representative number of software systems at least. For this
stage of the exploration this would not be appropriate. Instead, a number of smaller test
examples have been identified. As a source the library of workflow patterns described in (van
der Aalst et d., 2002) has been used. The examples given there have been extended with input
and output data and information flow channels.

3.3 Simulation

To test the selected coordination approaches on the chosen examples, implementations have to
be made. One way to do this would be to create specific implementations for each of the
(abstract) test examples, by explicitly defining the internal functioning of the components
involved. Next, one would add to these implementations one by one implementations of the
coordination approaches, and then run each of these implementations. The resulting log data,
which should include a registration of the processing time, for example, in terms of processor
time or number of computation steps, can then be evaluated. Such an evaluation at an
implementation level, however, has some drawbacks: the specific implementations chosen may
affect the results, and the specific underlying software/hardware combination may affect the
processing times measured; eg., think of aspects of concurrency that within a
software/hardware environment may have to be mapped onto a form of interleaving of
processes. Therefore a different approach is chosen. All the testing is done within one given
simulation environment. Within this environment, one by one the processing of a software
system based on one example and one coordination mechanism is simulated. In that case, the
examples are defined at an abstract level (i.e., only in terms of input-output relations, ignoring
the interna functioning). The measured time then is simulated time, not processing time. In
simulated time, processes can easily be active in paralel. The simulation environment chosen is
logic-based, so that the simulation models are logically specified and both these models and the
resulting simulation traces can be logicaly analysed, supported by another software
environment.

3.4 Evaluation

To evaluate the resulting simulation traces, in the first place it is needed to identify the relevant
properties on which such an evaluation should be based. A number of aspects can be covered in
such properties. A first aspect is effectiveness or successfulness to provide the desired output
for the example system. When a coordination approach does not involve the right components
at the right times, and therefore is not able to generate the desired output that is possible, then it
is not effective. A second aspect to evaluate is efficiency: to what extent time is wasted in the
process to come up with output. A third aspect is to what extent the coordination approach is
able to generate the possible activation traces one has in mind for the given example. Such
properties can be formally specified and automatically checked for the simulation traces.
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4 Software Environments

To support the methodology described in Section 3 two software environments are used:

- asimulation environment to specify simulation models and to execute these modelsin
order to get simulation traces

- achecking environment to specify relevant dynamic properties of traces and to check
such properties against traces

For the first, the LEADSTO environment is used (cf., Bosse, Jonker, v.d. Meij, and Treur
2005), for the second the TTL environment. In the Appendices A and B a more extensive
description of these environmentsis shown.

4.1 The LEADSTO Simulation Environment

An important problem during system design is the validation of the design specification: can it
be proven that the specification shows the expected behaviour (eg., as described by
requirements) before it is actually implemented? Especialy when the specification is given in
terms of abstract high-level concepts this is a non-trivia task. Simulation can be a useful
method to analyse a design. In order to simulate a system to be designed, it is important to
model its dynamics. LEADSTO can be used to model the dynamics of systems to be designed,
on the basis of highly abstract process descriptions. If those dynamics are modelled correctly,
the LEADSTO software environment can use them for simulation of the behaviour of the
system. Although such simulations are no formal proof, they can contribute to an informa
validation of the specification: by performing a number of simulations, it can be tested whether
the behaviour of the specification is satisfactory. Depending on the domain of application,
specifications of a simulation model need to be formulated quantitatively or qualitatively.
Usually, within a given application explicit boundaries can be given in which the mechanisms
take effect. For example, “from the time of planting an avocado pit, it takes 4 to 6 weeks for a
shoot to appear”. When considering current approaches to modelling dynamics, the following
two classes can be identified: logic-oriented modelling approaches, and mathematical modelling
approaches, usually based on difference or differential equations. Logic-oriented approaches are
good for expressing quaitative relations, but less suitable for working with quantitative
relationships. Mathematical modelling approaches (e.g., Dynamica Systems Theory), are good
for the quantitative relations, but expressing conceptua, qualitative relationships is very
difficult. The LEADSTO language (and software environment) is a language combining the
specification of qualitative and quantitative relations.

The LEADSTO format is an executable format that can be used to obtain a specification of a
simulation model in terms of executable dynamic properties. The format is defined as follows.
Let a and 3 be state properties of the form ‘ conjunction of literals' (where aliteral isan atom or
the negation of an atom), and e, f, g, h non-negative real numbers. In the LEADSTO language a
— e, 1, h B, Means:

if state property a holds for a certain time interval with duration g,
then after some delay (between e and f) state property 3 will hold
for a certain time interval of length h.

A specification of dynamic properties in LEADSTO format has as advantages that it is
executable and that it can often easily be depicted graphically. For more details, see Appendix
A.
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4.2 The TTL Analysis Environment

For the purpose of specification and execution of a simulation model, the limited format of the
LEADSTO language is adegquate. However, to anayse the more complex dynamic properties
that emerge from such direct, executable temporal relationships, for example, in smulations, a
more expressive language is needed. The Temporal Trace Language (TTL) is such a more
expressive language for the analysis of dynamic properties. This predicate logica language
supports formal specification and analysis of dynamic properties covering both qualitative and
quantitative aspects. A special software environment has been developed for TTL, featuring
both a Property Editor for building and editing TTL properties and a Checking Tool that
enables the formal verification of such properties against a set of (smulated or empirical)
traces.

For the TTL properties informal, semi-forma or forma representations can be given, briefly
defined as follows. A state ontology is a specification (in order-sorted logic) of avocabulary. A
state for ontology ont is an assignment of truth-values {true, faise} to the set atonty of ground atoms
expressed in terms of ont. The set of all possible states for state ontology ont is denoted by
sTATES(Ont).. The set of state properties statpProp(ont) for state ontology ont is the set of all
propositions over ground atoms from atont). A fixed time frame 1 is assumed which is linearly
ordered. A trace or trajectory y over a state ontology ontand time frame T isamappingy:T -
STATES(Ont), i.€., a sequence of states y; (t 0 T) in sTaTEs(ont. The set of al traces over state
ontology ont is denoted by Traces(ont). Depending on the application, the time frame T may be
dense (e.g., the rea numbers), or discrete (e.g., the set of integers or natural numbers or afinite
initial segment of the natura numbers), or any other form, as long as it has a linear ordering.
The set of dynamic properties pynpror©nt) is the set of tempora statements that can be
formul ated with respect to traces based on the state ontology ont in the foll owing manner.

Given atrace y over state ontology ont, the input state of some component ¢ at time point t is
denoted by state(y, t, input(c)); @analogously state(y, t, output(c)) and state(y, t, internal(c)) denote the output
state and internal state.

These states can be related to state properties via the formally defined satisfaction relation |=;
i.e., state(y, t, output(c)) |= p denotes that state property p holdsin trace y at time t in the output state
of component c. Based on these statements, dynamic properties can be formulated in a formal
manner in a sorted first-order predicate logic with sorts Time or T for time points, Traces for traces
and r for state formulae, using quantifiers over time and the usual first-order logical connectives
suchas-, 0,0 =, 0,0
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5 Coordination Approaches

As mentioned earlier, the coordination problem in software systems has crucial aspects in
common with the problem of coordination in natural (biological), cognitive (human and anima
mind) or societal systems (organisationa structures). Therefore, a large body of literature is
available that describes coordination approaches in these areas. In this section, some of the most
well-known approaches are discussed. Section 5.1 focusses on the Behavior Networks approach
by Patty Maes. Section 5.2 describes Ornstein (1986)’s structure of the Multi-Mind. Section 5.3
describes Minsky (1985)’s Society of the Mind theory. Section 5.4 describes Selfridge (1958)’s
Pandemonium model, and Section 5.5 addresses the classifier combination techniques known as
voting methods. All sections, with the exception of Section 5.5, are summaries on the basis of
Franklin (1997).

5.1 Behavior Networks

Behavior networks have been introduced by Pattie Maes in 1989. Behavior networks contain
competence modules which can be seen as components or agent. They are interactive, mindless
agents, each with a specific competence. The question is how the behavior of these modules can
be coordinated. One option is to hardwire or hand-code the coordination. This strategy works
well only for systems with simple, non-conflicting goals in a relatively static and not too
complex environment like a thermostat, and assembly line robot or atoy Al system playing tic-
tac-toe. Some military agencies often rely on a hierarchical coordination structure, and
symbolic Al systems employ this strategy as well. Some expert system shells implement
agorithms that, given a set of input-output pairs as examples, produce an appropriate decision
tree. A hierarchical strategy often suffersrigidity, working well until an unusua circumstanceis
encountered, then crashing. In Jackson’s (1987) work, a distributed system of coordination is
present, where strength decide who gets to act. Maes takes the same approach. A competence
module looks very much like a production rule, each having some preconditions. Each module
also consists of lists of additions and of deletions, that is, statements the module wants to add to
the global database or statements it wants to delete. The difference between a competence
modules and a production rule is the presence of an activation, a number indicating some kind
of strength level.

5.1.1 Algorithm

To illustrate the algorithm, one can think of each competence module as occupying a node of a
digraph. The links between the nodes are completely determined by the competence modul es. If
a competence module X will add a proposition b which is on competence Y’ s precondition list,
then put a successor link between X and Y. There might be several such propositions resulting
in several links between the same nodes. Next, whenever you put a successor going one way,
put a predecessor going the other. Finaly, suppose you have a proposition m on competence
Y’'s delete list that is also a precondition for competence X, draw a conflictor link from X to .
So how can we use this digraph? First of al, the underlying digraph spreads the activation. The
activation comes from the activation stores by the competence modules themselves, from the
environment, and from goals. The system has only built in global goals. So let’s describe the
sources of spreading activation over the system. The environment awards activation to a
competence module for each of its true preconditions. The more true preconditions a
competence has, that is, the more relevant it is to the current situation, the more activity it's
going to receive from the environment. This source of activation alows the system to be
opportunistic. Next, each goals awards activation to each component that, by being active, will
satisfy the goal. In other words, if the competence includes a proposition on its add list that
satisfies a goal, then this goal will send activation to that competence. Protected goals are also
possible: A completed goal inhibits any competence that will undo it. Finally, activation is
spread from competence to competence along links. Along successor links, one competence
strengthens those competences whose preconditions it can help fulfill, it does so by sending
them activation aong the link. Along predecessor links, one components strengthens any other
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competence whose add list fulfills one of its preconditions. A competence sends inhibition
aong a conflictor link to any other competence that can delete one of its true precondition,
thereby weakening it. Every conflictor link is inhibitory. A competence is called executable
when all of its preconditions can be satisfied. The agorithm in pseudo code:

Loop forever
Add activation fromenvironnent and goal s
Spread activation forward and backward anpbng conpetence
nmodul es
Decay — total activation renmins constant
Conmpet ence nmodule fires if
a. it’'s executable
b. it’'s over threshold
c. it’s the maxi num such
5. If one conpetence nodule fires, its activation goes to 0,
and all thresholds return to their normal val ue
6. If none fires, reduce all thresholds by 10%

Bo D

5.1.2 Mathematical model

Maes uses a mathematical modd to calculate the activations and how it spreads. This text
originates from Maes 1989. Let a competence module i be defined by a tuple (c, &, d;, ;)
where ¢; isthelist of preconditions that need to be fulfilled before the competence module can
become active, g and d; represent the expected effects of the activation of the module in the
form of an add and delete list, and each competence module has a level of activation a;.
Furthermore, the following elements are assumed to be given:

e A set of competence modules 1....n,

e A setof propositions P,

« A function S(t) returning the propositions that are observed to be true at time t; S is
implemented by an independent process (or the real world),

e A function G(t) returning the propositions that are the goals of the agent a timet; G is
again implemented by an independent process,

« A function R(t) returning the propositions that are a goal of the agent that have aready
been achieved at timet, R is again implemented by an independent process,

e A function executable(i, t) which returns 1 if competence module i is executable at time t
(i.e. if al of the preconditions of competence module i are members of S(t)), and O
otherwise.

e A function M(j), which returns the set of modules that match proposition j, i.e., the
modules x for which j O ¢,

e A function A(j) which returns the set of modules that achieve propositionsj, i.e. modules x
for whichj O g

e A function U(j) which returns the set of modules that undo proposition j, i.e. modules x for
whichj O d,

* m,themean level of activation,

e 0, the threshold of activation, where is lowered 10% every time no module could be
selected, and isreset to itsinitial value whenever a module becomes active,

* @ theamount of activation energy injected by the state per true proposition,

« vy, theamount of activation energy injected by the goals per goal,

« 9, theamount of activation energy taken away by the protected goals per protected goal.

Given competence module X = (¢, &, dx, Oy), the input of activation to module x from the state
attimetis

. 1 1
i Latad J w W
input from.state{z,1) %ﬁ*}#ﬁé(}} Fe.

where § € ${t) (¢, and where # stands for the cardinality of & set.

16



The input of activation to competence module x from the goals at timetis:
1

input_from.goals(z,t) = Z‘ym#—a

where 7 € G(t) N a,.
The remova of activation from competence module x by the goals that are protected at time t
is:

1 1

taken_away by.protected_goals(z,t) = E: §———
= FU0) #a

where j € R(t) N d,.
The following equation specifies what a competence module X = (¢, &, dy, 0y) spreads
backward to a competence moduley = (c,, a,, dy, ay):

spreads bu(z, y,t) = { B, ﬂm(t—l)#Tl(ﬁ#Ln' .if ezecutable(w,t) = 0
0 if ezecutable(z,t) = 1
where j ¢ S(t)Aj € ca N a,,.
For forward spreading from module x to y the following definition is used:

sty i Ejaa(t—1)¢ puimn gt if ezecutable(z,t) =
L4 0 if ezecutable(z,t) =

1

0

where j € S(t)Aj € a. Ncy.

The foll owing equation specifies what module x takes away from moduley:

takes_away(z,y,t) =

0 if (ea(t—1) < ay(t—1)) A (i € S(t) N, N d,

{ maz(Eja,(t—l)i-ﬁﬁ#%‘.,av(t—l)) otherwise ' i ‘

where j € ¢, Nd, N 5(2).

The activation level of acompetence moduley at timet is defined as:

ofy,0) = ¢

aly,t} = decay(a{y, 1< 1){1 ~ active(y, t-1))
+input. from.state(y, 1} + input from.goals{y, 1)
~taken.awayby protected goals(y, £}

+ ) (spreadsbuw(z, y,t) + spreads_fuw(z,y, 1) « takesawaylz,y, 1))
e

where x rangeé over the modules in the network, z ranges over the modules in the network
minus the moduley, t > 0, and the decay function is such that the global activation remains
constant:

Z ay(t) =nrx

The competence modul e that becomes active at timet is module | such that:
ali,t) >= 6 (1)
active(t,i) = 1if{ ezecutable(i,t) =1 (2)
V3 fulfilling(1) A (2) : a(i,t) >= a(j,t) (3)

active(t,i) = 0 otherwise

5.2 The Multi-Mind

Ornstein (1986) claims that we are not a single person but we are many. Our strong subjective
sense of a single, unified, conscious agent controlling life' s events with a singular integrated
purpose is only an illusion. It isillusory to think that a person has a single mind. Rather, there
are many. Ornstein sees the mind as being composed of different kinds of small minds. We
have lots of these minds that are specialised to handle different chores. These different entities
are whedled into consciousness, then usually returned to their place after use, and put back on
the shelf. The memories from Ornstein’s perspective are more like data structures that are
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retrieved. The conscious mind wheels in various small minds, which accomplish quite limited
and specific purposes. This wheeling in and out of small minds allows for diverse centers of
control. Ornstein speaks of centers of control at lower levels having developed over millions of
years to regulate the body, to guard against danger, to organise and plan efforts, and so on.
These various centers have different priorities, some are more important than others.

Ornstein identifies four strong tendencies or patterns of behavior:

«  What have you done for me lately? More sensitivity for more recent information.

e Don't call me unless anything new and exiting happens. Unexpected or extraordinary
events seem to enjoy afast track in our consciousness.

e Compared to what? We constantly judge by comparisons and rarely make absolute
judgments of any kind.

e Get to the point. The meaning of any event, its relevance to the person (or the
autonomous agent), is the point.

Ornstein claims that we throw out almost al the information that reaches us. The theory of
Ornstein can be seen as a high-level theory that will give a framework within which to view the
work on mechanisms.

Ornstein states that our world appears to us the way it does because we are built the way we are.
The world we create is also affected by internal transformations, an example is the differencein
perception of increase in el ectric shocks (exponent > 1) and brightness (exponent < 1).

The structure of the multi-mind according to Ornstein is as follows. At the lowest level of
organisation are the basic neural transformations. These can be pictured as groups of neurons
acting cooperatively to perform a set function. Then come domain-specific data-processing
modules, the quick and stupid analytical systems of the mind, one of which might produce the
consistent perception of red under bright sunlight and dusk. Slower, but smarter, more general,
and more flexible, are the talents. Combinations of talents, useful in particular situations,
comprise small minds. And finally, at the top of the heap, rests consciousness, into which small
minds are wheeled as our goals and environment demand. One question that’ s still left iswho is
in control of the wheeling. Ornstein postulates a governing self that controls the wheeling of
small minds in and out of consciousness. In most of us, which small mind gets wheeled in is
decided automatically on the basis of blind habit. However, a person can become conscious of
the multi-mind and begin to run them instead of hopel essly watch anger wheel in once again.

5.3 Society of the Mind

In Minsky (1985), Marvin Minsky motivates his theory of mind from an evolutiond
perspective: each human cranium contains hundreds of kinds of computer, developed over
hundreds of millions of years of evolution each with a somewhat different architecture.
Contrary to Ornstein, Minsky takes the bottom up approach. He wants to show how you can
build a human mind from many little parts, each mindless by itself. He refers to these little parts
as agents. Each menta agent by itself can only do some simple things that needs no mind or
thought at all. Yet when these agents are joined in societies this leads to true intelligence.
Minsky's agents care all processes, even when they empower memory. Basically, Minsky is
trying to sell the idea of intelligence implemented by a society of relatively unintelligent agents.
Agents can call on other agents as procedures can in a programming language. The chance of
picking two agents randomly out of the human mind and their having anything whatever to say
to one another is vanishingly small. Each agent only uses a small number of others with whom
it can communicate. If you look at the brain, the lack of communication between agents seem
plausible.
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5.3.1 Minsky’s mechanisms

Minsky proposes many possible mechanisms of mind, most of them at areatively high level of
abstraction with many possible implementations.

The first involves the use of collections of agents for the representation of concepts. Agents can
either be active or not, or may have some activation level other than on or off. Active agents
can represent properties or features, for example representing a certain shape, substance, color,
and size. When for example another shape becomes active, different agents in the shape
division will become active. Question that remains is how these representations are retrieved.
Minsky introduces the notion of a K-line as the basic mechanism for memory. A K-line is a
mental data structure and also an agent. It connects other agents and awakens them when
appropriate. You can think of a K-line as a wire-like structure that attaches itself to agents that
are active when the K-line is formed. A K-line representing the sentence “Jack flies a kite” is
shown in Figure 2.

PAPER  sSTRING

OUTSIDE

RED

Fig. 2. Example K-line

K-lines can be directly hooked to agents as shown above, but also to other, preexisting K-lines
as shownin Figure 3.

Another important question is how these mechanisms are controlled. Minsky proposes a B-
brain influencing an A-brain, that in turn, interacts with the world. Picture the A-brain as being
comprise of agents that sense the outside world and of other, motor agents that act upon it. The
B-brain is sitting atop only in contact with A’s agents and is composed out of executives who
direct, or at least, influence A’s activity. Some examples. if A seems to be repeating itself,
caught in an endless loop, B makes it try something new. If A does something B likes, B makes
A remember it. If A istoo much involved with detail, B makes it take a higher-level view, and
conversely. The notion of a B-brain provides a high-level, abstract coordination mechanism.
Both brains are composed hierarchically. At the bottom are the agents with their own hierarchy.
At the next level up we find societies, organisations of agents. Up another level you have layers
of societies. Minds according to Minsky develop as sequences of layers of societies. Each new
layer begins as a set of K-lines and learns to exploit whatever skills have been acquired by the
previous layer. When a layer acquires some useful and substantia skill, it tends to stop learning
and changing.
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Fig. 3. Example K-line, hooked to other K-lines

Minsky refers to another possible mechanism of mind, at least for some high-level agents, asa
difference engine. A comparison of the current situation with a description of the goal it wants
to reach provides a set of differences. Agents acting upon the world so as to minimise these
differences are then activated, thus moving the situation towards the goal. The strategy is
referred to, in symbolic Al, as means-end analysis. Means-end andysisis a “weak” method in
that it requires little domain knowledge to accomplish its objective. Difference engines require
goal descriptions. Goals must persist over some time, and require some image or description of
adesired state.

Now suppose a procedure has failed in a certain situation. Fixing it might introduce errors in
other situations where it now works perfectly well. Minsky suggests inserting a censor that
remembers some abstraction of the situation in which the procedure doesn't work for this
purpose. When that situation arises again, the censor suppresses the misbehaving procedure and
calls on some other, special purpose, procedure to do the job.

Another element is learning new behavior, the old behavior must remain while the learning
process is ongoing. Therefore, the old system is kept intact and operationa while building the
new as a detour around the old. The system can be tested without letting it assume control.
When satisfied, cut or suppress some of the connections of the older system.

Conflicting goals can aso be present when looking at the agents within the mind. Minsky
claims that such conflicts among our most insistent goals produce strong emotiona reactions.
These emotions are needed to defend against competing goals. He concludes that the question is
not whether systems can have any emotions, but whether machines can be intelligent without
any emotions.

Finally, Minsky introduces the idea of accumulation. Each agency will accumulate under awide
variety of agentsto do its bidding, so asto have severa different ways of getting its job done.
Some of these might be more efficient than others, but if oneislost in a particular circumstance,
chances are there will be another way.

5.4 Pandemonium

Selfridge (1958) proposed a pandemonium theory of perception, built on primitive constructs
called demons. A demon is arule, procedure or agent in Minsky's sense. In computer science,
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demons are processes sitting around for something specific to happen. Selfridge uses demons to
identify objects, the one from a crowd of demons shouting loudest is taken to identify this
particular object. Jackson extends this idea to a theory of mind. He identifies demons involved
in perception but aso demons that cause externa actions and demons that act internally on
other demons. These classes need not be digoint; a single demon may, for example, affect an
action while influencing some other demon as a side effect. These demons can be seen as an
abstraction of Minsky's agents. Now picture these demons living in a stadium. Almost al of
them are up in the stands; they’re the crowd cheering on the performers. Six are down on the
playing field, exciting the crowd in the stands. Demons in the stands respond selectively to
these attempts to excite them. Some are more excited than others, some shout louder. The
loudest demon in the stands getsto go down, and join those on the field, displacing one of those
currently performing back to the stands. The loudness of the shouting of a demon is dependant
upon being linked with the demon that must excite. Stronger links produce louder responses.
These links are created in the following way. Initidly, the system starts off with a certain
number of initial demons and initial, built-in links between them. New links are made between
demons and existing links are strengthened in the proportion to the time they have been together
on the field, plus the gain of the system (when al is going well, the gain is higher). In addition,
a sub arena is present that performs a number of tasks. First of al, it measures the system’'s
well-being so that “improved conditions” can be discerned, and turns the gain up or down. The
sub arena aso performs sensory input by sending demons representing low-level input to the
playing field, providing an interface between the actua sensory input and whatever the system
does with it. Demons a so represent low-level actions that are carried out by the sub arena at the
command of action demons on the playing field.

A visudlisation of the pandemonium theory, instantiated for the domain of pattern recognition,
is shown in Figure 4. Here, the goal of the pandemonium is to recognise a certain letter (the
letter R in this case). Different feature demons are responsible for identifying certain
characteristic features of the letter. Next, cognitive demons use this information to determine
how loud they will shout. Each cognitive demon corresponds to a single letter. Findly, a
decision demon decides which cognitive demon shouts loudest, and the corresponding letter is
selected.

5.4.1 Concepts via Pandemonium

Jackson also allows for the creation of concepts in the system. Demons that have appeared
together frequently can be merged into a single concept demon. When concept demons are
created, their component demons survive and continue to do their things. Concept demons help
overcome the bottleneck of the limited playing field. Concept demons can be grouped into
compound concept demons. To model dreaming, simply turn off the sub arena interference,
especidly the external sensory channels.

Decay is aso built into the system. Unused links decay, or lose strength at some background
rate. Negative links may decay at a different rate. High-level demons enjoy a slower decay rate.
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Fig. 4. Visudisation of the Pandemonium theory
(from Lindsay and Norman, 1977, p. 266)

5.4.2 A Computing Perspective on Pandemonium

Jackson (1987) states that this pandemonium system avoids the major pitfalls of parald and
serial computing by combining their better features. Serial machines are often too slow, and at
any given time are actively using only afraction of their available hardware. Parallel machines
can be faster and make more efficient use of their hardware. But they often spend much of their
time communicating between one processor and another. This system combines the best of the
two worlds according to Jackson. Firgt, it scans the demons in the crowd in parale to
determines the loudest. After that the demons are executed into a single threat on the playing
field.

5.5 Voting

In this section, the classifier combination techniques known as voting methods will be
discussed. Voting methods are simple algorithms that can be used to combine classifier outputs.
However, as will be illustrated in this section, voting methods can be used to combine the
output of agents. They are called voting methods as most are direct derivatives of techniques
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used in elections. By replacing the electorate by components (or agents) and the candidates by
the possible activations of components, it is very simple to apply the voting methods to
coordination problems in component-based software systems (or multi-agent systems). The
major advantage of the voting methods lies in their elegant simplicity. Furthermore, the voting
methods tend to have a very acceptabl e performance rate.

Voting methods can be explained as follows. Consider an agent A as a function that assigns a
value v to each possible class ¢ depending on the data sample d of which the correct class is
sought, i.e., A(d,c) = v. The value v that the agent returns can represent, for example, the chance
the agent assignsto c of being the correct class for d (also called a confidence value) or asimple
boolean (represented by 0 and 1) to indicate whether c is the top-favorite of A or not. A voting
agorithm V consist of one or two elementary arithmetic functions that are applied per class c to
al the values v; assigned by all the agents A to c. For example, if V is the voting method known
as the product rule then V(d,c) = (i Ai(d,c). The agents are then ordered by the value assigned to
them by V and the top class (or bottom class, depending on V) is returned as the matching class
for d. Note that a voting method also defines the type of values v it uses as input. For instance,
when comparing the voting methods of the Borda count and the sum rule, the mgjor difference
does not lie in their applied algorithm (both are more or less characterised by V(d,c) = (i
A_i(d,c)), but on the input they use. The sum rule uses the afore-mentioned confidence val ue,
while the Borda count uses the rank assigned to al the classes by the agents. This also implies
that some voting methods cannot use the output of some agents. For example, the sum rule
cannot use the output of an agent that assigns only ranks such as the Borda count would use.

In pattern recognition research, voting methods are often used when the late-fusion part of a
classifier combination is of little importance. This includes, among others, research into
ensemble creation. In turn, the wide use of voting methods has generated interest into these
methods themselves. The relationship between severa of the voting methods has been
researched in order to find to one with the best performance (e.g., see Kittler and Alkoot (2001)
and Kuncheva (2002)). Other research has focused on finding alternative versions of some of
the voting methods. These efforts aim to increase the flexibility of the methods. Examples
include Ho, Hull and Srihari's adaptation of the Borda Count (1994) and the weighted voting
variants (Lam and Suen (1995) and Ginter and Bunke (2004)).

As is apparent from the last line of research, voting methods can be improved upon. Voting
methods are simple and, as a result, are not well equipped for variance. This variance can stem
from the amount, format and importance of the input sources. Sometimes classifiers, but
especialy agents, which are the input sources of voting methods, are able to provide more
information than that can be used in voting methods. This may result a loss of information,
which in turn implies a potentia loss of performance. Yet, how serious is this loss of
information and what is its impact on the performance? After dl, the striking simplicity of
voting methods makes them so easy to use that it may warrant a small dip in performance. The
diversity of voting methods and the degree of information they use offer a perfect means to
explore this trade-off between needed knowledge and performance on the one side and ease of
use and simplicity on the other.

This section will delveinto thisissue and describes what problems frequently ariseif the simple
voting methods are used on complex multi-agent systems.

5.5.1 Voting Methods for Pattern Recognition

In agent research, there is a growing use of multi-agent systems with the goal to increase
recognition performance. In many cases, plurality voting is apart of the combination process. In
this section, we discuss several well known voting methods from politics and economics on
agent combination in order to see if an alternative to the simple plurality vote exists. We found
that better methods are available, that are comparatively simple and fast.
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I ntroduction

The area of multi-agent systems has rapidly established itself as a mgor topic in the agent
community (Dietterich (2000), Kittler and Alkoot (2001), and Xu et a. (1992)). In this section,
we will explore and evaluate the application of severa well-known voting methods on
combining multiple-classifier hypotheses.

In pattern recognition, two forms of classifier combination exist: the multi-stage, hierarchica
(Alpaydin et a. (2000) and Vuurpijl and Schomaker (2000)) methods and the ensemble (or late
fusion) (Dietterich (2000) and Kuncheva (2002)) methods. In the first approach, the classifiers
are placed in a multi-layered architecture where the output of one layer limits the possible
classes, or chooses the most applicable classifier, in the next layer. The second approach
explores ensembles of classifiers, trained on different or similar data and using different or
similar features. The classifiers are run ssimultaneously and their outputs are merged into one
compound classification. In most cases, this combination of output hypotheses is done by using
the smplest of voting methods (plurdity vote; often erroneously called “magjority vote”),
though more elaborate combination schemes have been proposed (e.g., Dempster-Schafer, BKS
and DCS (Giacinto and Roli, 2000). Plurality voting is mostly used in classifier combination, as
it is simple and yields acceptable results. However, we will show that there exist alternative,
and sometimes better voting methods, par excellence suitable for multi-agent systems. The
concept of voting is well-known from politics and economics, where multiple opinions shared
by people must be merged into one fina decision. Many different voting methods stem from
these areas, which are all relatively simple to perform but use different amounts of information.
In this section, we will present and discuss the best known of these voting methods that are
suitable for application in classifier combination. The performance of these voting methods will
be assessed by combining various ensembl es of classifiers.

In the next section, an overview and discussion is presented of the voting methods. Followed by
an introduction of bagging, a method to test the effect of different voting methods.

Voting methods

In this section, the voting methods will be presented. We will start in next Section with a
general overview of voting methods and their application to combining agents. Next, the actual
voting methods will be discussed conform three distinguishable classes. unweighed voting
methods, confidence voting methods, and ranked voting methods.

General overview

In human society (as ‘natura’ multi-agent systems), voting is a formal way of expressing
opinions. A well-known example is the election of a president. In this example, voters are the
people that express their opinion by means of a vote. When voting, a voter chooses one of the
candidates or indicates some kind of rank-order which indicates his preference. The voting
method is the mechanism of integrating al votes into one final decision. The winner is the
candidate that is chosen as result of the voting method.

Here, we would like to show how voting is trandlated for use in multi-agent systems. Now, the
agents are the voters, the possible classes are the candidates and an election is the of one
sample. This produces a winner, which is the resulting decision made for the sample by the
ensemble of agents. The actual voting depends on the voting method used, but an agent
expresses its opinion simply by classifying a sample. The result of this classification, be it a
single class, aranked list of all classes, or even ascored list of the classes, can be interpreted as
avote. The voting methods are simple, formal, step-by-step methods (see the next section). So,
implementing them, given the trand ation above, is straightforward.

Actualy, the process of voting by agents is simpler than the process of voting by humans.
Agents are programmed to classify a sample independent of the results of other agents.
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Therefore, current agents will not ater their results in order to use the voting method to the
benefit of apreferred class, as a human might do. In other words, an agent does not cheat (yet).

Unweighed voting methods

The unweighed voting methods consist of methods in which each vote carries equal weight. The
only differentiation between the candidates is the number of votes they have received. As a
consequence, voters cannot express the degree of preference of one candidate over another.
Although this removes relevant information, it also results in less complex methods because no
elaborate measures need to be taken to limit the power of the voter when expressing degrees of
preference. Another drawback is the larger chance on a tied result. With the lack of extra
information this can only be solved by

a random draw. Three of the voting methods presented here (amendment, run-off, and
Condorcet) are multi-step procedures. These methods require that the agents are able to give a
preference choice between any two given classes. This makes these three voting methods more
difficult to apply than other unweighed voting methods. It might be argued that the multi-step
methods should be placed under the ranking methods, but the separate steps are inherently
unweighed voting, so they are discussed here.

In terms of multi-agent systems, the (single step) unweighed voting methods demand no
prerequisites from the agents, but also do not use any extra information the classifiers may
provide. The multi-step methods expect the agents to be able to handle two-class subdomains of
alarger population of classes.

Plurality: Also known as first past the post', plurdity is the simplest form of voting. Every
voter has one vote, which it can cast for any one candidate. The candidate with the highest
number of votes wins. The benefits of this method are its simplicity and ease of use. The major
drawback of plurality voting is the real possibility of awin on asmall number of votes and thus
of aminority (and very probably an erroneous) winner.

Majority: In mgjority voting every voter has one vote that can be cast for any one candidate.
The candidate that received the magjority (i.e., more than half) of the votes, wins the election.
Note that majority voting is often confused with plurdity voting in which no majority is needed
to win. The benefits of this method are its simplicity and its low error count. The method only
appoints awinner in case of amajority candidate, so in order to produce an error the majority of
the agents has to be wrong. The chances of this happening are low, especidly with a large
number of agents. However, the downside is that when no majority candidate is present, no
result is produced and the sampleis rgjected by the voting method.

Amendment vote: Amendment voting starts with a magjority vote between the first two
candidates. The winner of that election is pitted against the next available candidate and so on
until the one remaining candidate is declared the winner. This voting method is favourable for
the candidates that are added last in the total election. This lack of neutrality should be
recoghised when using this voting method.

Runoff vote: The runoff vote is atwo step voting process. In the first step each voter can vote
for any one candidate. The two candidates with the highest number of votes advance to the next
round. The second round is a majority vote between these two candidates in which al voters
can participate again. The runoff vote solves the biggest problem of the plurality vote and has
no rejections like the majority vote at the cost of a dight decrease of transparency. It will
always deliver a winner and the chances of electing a minority candidate have decreased
considerably.

Condorcet count: In this method, all candidates are compared in pairwise €l ections. The winner
of each election scores a point. The candidate with the highest number of points wins the total
election. This method is more complex then the other unweighed voting methods, but also
suffersleast from the problems of these methods.
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Confidence voting methods

In confidence voting methods, voters can express the degree of their preference for a candidate.
This is done by assigning a value (called the confidence value, hence the name for these voting
methods) to candidates. The higher the confidence value, the more the candidate is preferred by
the voter. Examples of confidence scores are probabilities and distances. The prerequisite for
using these voting methods in multi-agent systems is not only that agents produce such a
confidence value, but also that these confidence values are scaed correctly. So questions like
“is there a limit to the confidence value or will any number do? and “how does one
proportionally correctly translate a preference for a candidate in avalue?’, should be answered.

Pandemonium: Every voter is given one vote, which it can cast for any one candidate. The voter
casts the vote by stating its confidence in the candidate. The candidate which received the vote
with the highest confidence of all votes cast wins. This method, known as Selfridge's
Pandemonium (Selfridge, 1958), is one of the very first examples of using separate
experts/agents in computer science. It is very simple, but misses the possibility for a voter to
express differences of preference between candidates. Only the voter's top choice and its
confidence are known. Furthermore, there is no limit to the amount of confidence nor a scale
for voter's to adhere to. While limits are easily added to the method, a correct scale is still
difficult to implement. However, with well scaled classifiers, this method could be sufficient.

Sum rule: When the sum rule is used each voter has to give a confidence value for each
candidate. Next all confidence values are added for each candidate and the candidate with the
highest sum wins the election.

Product rule: Like with the sum rule, each voter gives a confidence vaue for each candidate.
Then al confidence values are multiplied per candidate. The candidate with the highest
confidence product wins. The product ruleis highly subjective to low confidence values. A very
low value can ruin a candidate's chances on winning the election no matter what its other
confidence values are.

Ranked voting methods

In ranked voting methods, the voters are asked for a preference ranking of the candidates. This
way, more information on the voter's preference is used than in the unweighed voting methods.
On the other hand, it does only convey the degree of preference between two classes in fixed
amounts (the ranks) instead of the confidence values of the confidence vote methods. This
constitutes a loss of information, though it is easier in use (no problems in scaling the voters
confidences) and it prevents over-confidence in voters (see also Ho et a. (1994)). Ranked
voting methods are useful in classifier combination if the classifiers can give some kind of
confidence value that is hard to scale correctly.

Borda count: This method, developed by Jean-Charles de Borda (1781), needs a complete
preference ranking from al voters over al candidates. It then computes the mean rank of each
candidate over al voters. The classes are reranked by their mean rank and the top ranked class
wins the election. Note that the Borda count is the ranked variant of the sumrule.

Sngle transferable vote (STV): Also known as aternative voting (in case of one winner
situations), each voter gives a preference ranking of the candidates. Incomplete ranks are
possible, though it may result in avoter losing his vote altogether. A majority vote is held based
on the highest ranked candidate of each voter's preference ranking. If some candidate gains the
majority, it wins the election. Otherwise, the candidate with the least number of votes in the
majority election is eliminated from further participation. This candidate is removed from al
preference rankings. Now, the process repeats itself, starting with the mgjority vote, until one
candidate gains the magjority. One low rank in an STV election is less disruptive for a
candidate’'s chances of winning then in the Borda count. However, due to the elimination
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procedure, complex and illogical side effects may occur (e.g. voting for a candidate may result
initsloss of the el ection).

Bagging

To test the effect of the different voting methods when combining outputs of agents, the
technique of bagging can be used (Breiman, 1994). Bagging is a simple method known from
pattern recognition to increase the recognition performance of a classification technique that
depends on training the classifier. Bagging consists of the following steps:

1. New training sets were created by randomly sampling with replacement from the
origina training set. A number of training sets between 10 and 20 is sufficient
(Breiman, 1994). The number of samplesin each training set is normally equal to the
number of samples in the original training set. Note that the number of different
samplesis probably smaller as doubles are possible (and even very likely).

2. For each new training set, train a classifier using a consistent technique. The bagged
classifier is now complete.

3. For classification, each ssmpleis classified by al classifiers.

4. When the classifiers return their results for a sample, these results are then combined
using a plurality vote.

5.5.2 Variants of the Borda Count Method

In dl fields of pattern recognition, there exist multiple, different techniques to classify instances
of patterns, each approach being characterised by its own virtues and shortcomings. The idea of
combining the output of multiple classifiers has been studied for several years (Ho (1992),
Powalka et al. (1995), Selfridge (1958), and Xu et a. (1992)) but it is ill difficult to choose a
suitable combination agorithm. The choice of a good combination agorithm is even more
pressing for multi-agent systems since it enables the use of all available knowledge and the
extra computing time becomes less of a problem with the current developments in computer
processing power.

Instead of defining the integration of opinions for agents as a meta-decision problem, we will
focus on less cumbersome techniques. This avoids the undesirable consequences of meta
decision (Vuurpijl and Schomaker, 1998): (1) an extra, large amount of training data is needed
and (2) for every agent that is added, the complete “ meta-agent” needsto betrained again.

The most straightforward form of opinion integration is to let the agent cast a vote by
forwarding the outcome they prefer best. The outcome with the most votes wins. Thisis called
plurality voting and while it is simple and quite effective, it lacks depth. With depth we mean
that agents often have a ranking of outcomes to indicate which are more likely candidates than
others. Pluraity voting only uses the absolute top of those rankings. In this section, we will
thoroughly discuss a specific method for combining the rankings of different agents: the Borda
count.

The Borda count is an easy, intuitively appealing, and powerful method of combining different
rankings. Moreover, it has some variants that may perform better on specific decision making
problems. However, the theoretical foundation of the approach is less well developed then in
the case of plurality voting.

Standard Borda count and two variants

The Borda count is originally a voting method in which each voter gives a complete ranking of
al possible aternatives (Ho (1992) and Borda (1781)). The highest ranked aternative (in for
example an n-way vote) gets n votes and each subsequent alternative gets one vote less (so the
number two gets n-1 votes and the number three n-2 and so on). Then, for each alternative, al
the votes are added up and the alternative with the highest number of votes wins the election.
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Ties in the accumulated votes are not resolved in the origina Borda count. This method was
introduced in 1770 by Jean-Charles de Borda (Black, 1968).

Each agent is a voter and the classes are the candidates. The method has depth as it uses the
entire ranking information to come to a decision, not just the best guess of each agent. It aso
returns a complete ranking of the possible classes instead of its best guess, offering more
flexibility for further uses. For example, consider decisions with a large number of possible
outcomes, where the top-ranked candidate may be wrong. If the application context allows it
(i.e., acollection of outcomes can be the answer instead of just one outcome), one could choose
to accept a group of the best possible outcomes instead of just the top guess, increasing the
probability of including the correct outcome. The ranked result of the Borda count gives
suggestions concerning the alternatives just below the top rank.

What the Borda count lacks, is a way to differentiate between several outcomes based on their
general performance or expertise. In fact, the assumption is that the top-ranked candidates of all
outcomes are of comparable quality, thus al outcomes (voters) are treated equal, while this may
not be desirable. A solution for this problem is given in (Ho, 1992). Another way of calculating
the Borda count is averaging the rank given by each voter to an outcome, instead of adding up
the votes. The new ranking is then calculated by ranking the averaged votes, highest one on top.
Note that effectively, this does not change the results of the combination process, however, the
concept of an average rank has interesting implications: assuming a probability distribution of
rank numbers for a given outcome, there exist other measures than the mean to describe centra
values of that distribution. An example is the median: the rank value that splits the number of
given rank numbersin half. The Borda count using the median instead of the mean, will be less
susceptible to extreme voting behavior of afew agents with respect to some outcomes.

The second Borda variant is Nanson's Borda-elimination procedure (Black (1968) and Nanson
(1882)). This is a multi-step procedure that repeatedly performs a Borda count and with each
iteration deletes the lowest Borda ranked alternative from each agent's ranking. This alows the
top-ranked outcomes to recover from extreme low votes.

5.5.3 Drawbacks of voting

The popularity of voting methodsis easy to explain. They provide an increased performance for
aminima effort. They are simple, straightforward, and easily understood. This makes voting
methods idea in research on combining classifiers that does not focus on the combination of
outputs, but that needs it al the same. As such, voting methods are much used in early fusion
and ensemble creation research. Yet, when attention is shifted to the late fusion, it rapidly
becomes obvious that voting methods have severe drawbacks.

As the pattern recognition problems grow increasingly complex, and with it the classifier
combination system that has to solve it, the available information becomes more voluminous
and heterogeneous. This is where the boon of the voting methods turns into their bane. Due to
the inherent simplicity of the methods, they cannot properly deal with this multitudinous
information. Either the voting methods will not function properly (1) or they will harshly reduce
the information density (2).

Case (1) occurs more frequently in the more complex voting methods, such as the Borda Count
and the Product rule. These methods have very strict requirements on their input. For example,
most voting methods require all classifiers to produce results, in order to give a robust
performance over subsequent classifications. The more sophisticated methods even require
complete results over al classes. If these requirements are not met, the agorithm will not
function or it will behave in an undefined manner. The Product rule, for example, multiplies all
confidence values a class received from each classifier. If a class did not receive a confidence
value from a classifier, it is unclear and implementation dependent what the result will be.
Regarding it as a zero confidence would ruin the total score of the class, while ignoring it would
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amount to substituting it with a confidence of one (i.e. perfect) which is aso unfair. It is
possible to adapt or implement the voting methods so that irregularities in the input can be
handled without failure or undefined results (mostly by explicitly defining the results in such
cases). However, thiswill lead to a different behavior of the algorithm in different cases. Thisis
a disadvantage, as it is a consequence of the adaptation and not a functionaly planned
imbalance.

Another situation in which voting methods do not function robustly can be seen in the second
part of Section 5.5.2. Here, the Borda count and some variants are tested on two sets of data
with a different type of noise in it. The tests show that the Borda count has a very different
performance on both types of noise. In other words, if the classifiers on which the voting
methods base their conclusions are subject to a larger variance in the type of errors they
produce (not an unlikely situation, especialy in harder problem areas), the voting methods will
start to behave more eccentrically. They possess no mechanisms to detect or to cope with such
variance.

Case (2) applies to the inability of voting methods to deal with extra information. This time, it
are the simpler methods that are more problematic, instead of the complex voting methods asin
case (1), yet al methods suffer this drawback. Voting methods work with the outcome of the
classifiers and accept only that each classifier assigns a single similar feature per class. Simple
arithmetics are then applied to these features. Furthermore, no prior information on the process
whatsoever is used. All classifiers and possible classes are treated equally and all features are
used exactly according to their numerical representation. For example, the difference between
the first and fourth rank in the Borda Count is identical to the difference between the 11th and
14th rank, even though in most classifier outcomes, the former difference would be much more
telling than the latter.

In previous sections, it became clear that the more complex voting methods that use more
information have a similar or better performance than the methods that use less information.
While this does not constitute a proof, it does support the notion that more information offers
more possibilities to find the correct partition between the classes. If thisistrue on the relatively
simple problems of the previous sections, one can only imagine how important the extra
information will be with the truly complex applications in pattern recognition.

Voting methods are not designed to cope with extra information. While it is possible to adapt
some methods to some of the problems (for example by adding a type of weight measure to the
votes of classifiers), this only involves a small bit of information in each adaptation. The more
information is put into the system, the more adaptations are needed and the more intricate the
solution will be. It is highly doubtful that creating such a system by increased adaptations will
outperform a system that is designed from the start to handle the information. Furthermore, it is
highly questionable whether al problems can be solved, either in increasingly large
combinations or even individually.

Voting methods are excellent when the classifier combination needs to be quick and simple.
They should be used as such and are hard to beat in that area. However, using them when high
quality results are expected or when a lot of information is available, is a misapplication of
these elegant little algorithms.
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6 Test Examples

Test examples have been identified to test the different coordination approaches. The examples
were inspired by the workflow patterns defined by van der Aalst et al., 2002, also shown at
www.workflowpatterns.com. In total, seven test examples are described, as shown below. A
test example consists of a number of components (agents), called {C1, C2, C3, ...}, and several
types of data, called {d1, d2, d3, ..}. Different components need different data as input, and
create different data as outpuit.

Example 1 - Sequence

A screenshot of a computer animation of pattern 1 (taken from www.workflowpatterns.com) is
depicted in Figure 5. The pattern is straightforward: after completion of the first component, the
second component is activated, and after completion of the second, the third component is
activated.

i
] ]

[
EIE'E 2003 @ Wil van der Aalst and Vincent Almering

Fig. 5. Workflow pattern 1 - Sequence

On the basis of this pattern, a next step was to create a corresponding test example. In principle,
this means defining an example (in terms of components and data) in such a way that, if
provided as input to a coordination approach, pattern 1 will come out. A visualisation of such
an example (based on Pattern 1 above) is given in Figure 6. As can be seen in the figure, in this
case component C1 needs data d1 as input, and creates data d2 as output. Moreover, as
indicated in the box on the right, the input data (the data that is initially available to the system)
isdl, and the goal data (the data that the system needsto create in order to be successful) is d4.
Given this situation, the expectation is that if any coordination mechanism is applied to the
example, the result will be atrace in which the components are activated in sequence (i.e., first
C1, then C2, and then C3). Note that in this caseit is assumed that data is shared, i.e., whenever
acomponent generates output data, this dataisimmediately availableto all other componentsin
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the system. This could be implemented, for example, by incorporating a “shared repository”,
where all components store their output data and read their input data from. As opposed to this
assumption, another aternative would be to alow loca access to data, for example by
incorporating explicit information links that specify which datais transferred from components
to each other. Finaly, note that another assumption is that data cannot be removed. Thus, once
datais written to the shared repository, it will stay there.

C1 C2

[ | [ 2] [e] [ s ]

System input: d1

System output: d4

C3

[ | [ a4 ]

Fig. 6. Test example 1 - Sequence

In LEADSTO, thisexampleisformalised as follows:

component_input_number((c|1), 1)
component_input ((c|1), (d|1))
component_output_number((c|1), 1)
component_output ((c|1), (d|2))

component_input_number((c|2), 1)
component_input ((c|2), (d|2))
component_output_number((c|2), 1)
component_output ((c|2), (d|3))

component_input_number((c|3), 1)
component_input ((c|3), (d|3))
component_output_number((c|3), 1)
component_output ((c|3), (d|4))

initial_data(d|1)
goal_data(d|4)

Here, the first statement indicates that component C1 needs one type of input data. The second
statement indicates that this component needs d1 as input data.
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Example 2 - Parallel Split

A screenshot of pattern 2, the paralld split, is depicted in Figure 7. Here, the two components
on the right can be executed either ssimultaneously or in any order.

[
EDE 2003 © Wil van der Aalst and Vincent Almering

Fig. 7. Workflow pattern 2 - Parallel Split

The test example that was created on the basis of this pattern is shown in Figure 8.

C1 C2

d1 dordd [ a2 d4

System input: d1

System output: d40d5

C3

[ ] | a5 ]

Fig. 8. Test example 2 - Parallel Split

Note that in this case the O stands for the conjunction of two data types. For example, the output
data of component C1isd2 and d3. Likewise, the goal datais d4 and d5.
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Example 3 - Synchronization

A screenshot of pattern 3, the synchronization, is depicted in Figure 9. Here, the two
components on the | eft can be executed either simultaneously or in any order.

[
D@E 2003 ® Wil van der Aaist and Vincent Almering

=

Fig. 9. Workflow pattern 3 - Synchronization

The test example that was created on the basis of this pattern is shown in Figure 10.

C1 C2

[ | [ @] [a] [ a3 ]

System input: d1

System output: d4

C3

d2Cd3] d4

Fig. 10. Test example 3 - Synchronization

Note that in this case it is assumed that a component cannot reason with “partial” data (this
would be the case when, e.g., component C3 starts reasoning with d2 only, whilst its input data
isd2 and d3).
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Example 4 - Exclusive Choice

A screenshot of pattern 4, the exclusive choice, is depicted in Figure 11. Here, either component
B or component C may be activated, but not both.

2003 ©® Wil van der Aalst and Vincent Almering

Fig. 11. Workflow pattern 4 - Exclusive Choice

The test example that was created on the basis of this pattern is shown in Figure 12.

C1

Cc2

d1 XOR(d2,03) | [ d2 da

[as |

C3

System input: d1

System output: d4

o]

Fig. 12. Test example 4 - Exclusive Choice

Note that in this case the XOR stands for the exclusive digunction of two data types. For
example, the output data of component C1 is either d2 or d3, but not both. The specific output
generated by the component may differ in different simulation runs.

35



Example 5 - Simple Merge

A screenshot of pattern 5, the simple merge, is depicted in Figure 13. Here, either component A
or component B may be activated, but not both.

2003 @ Wil van der Aalst and Vincent Almering

Fig. 13. Workflow pattern 5 - Simple Merge

The test example that was created on the basis of this pattern is shown in Figure 14.

C1 C2

d1 d3 | [ a2 d3

System input: XOR(d1,d2)

System output: d4

C3

[ | | a4 ]

Fig. 14. Test example 5 - Simple Merge

Note that in this case the input data is the exclusive disunction of d1 and d2, i.e., in some
simulation runsitisdl, and in othersit is d2.
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Example 6 - Multi Choice

A screenshot of pattern 6, the multi choice, is depicted in Figure 15. Here, either component B,
or component C, or both components may be activated.

r

oo

B

2003 © Wil van der Aalst and Vincent

Fig. 15. Workflow pattern 6 - Multi Choice

The test exampl e that was created on the basis of this pattern is shown in Figure 16.

C1

C2

d1 dord3)

[ d2 d4

System input: d1

C3

System output: d4d5

Fig. 16. Test example 6 - Multi Choice

Note that in this case the O stands for the standard digunction of two data types. Thus, in this
case the god data of the system is d4 or d5 or both.
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Example 7 - Synchronizing Merge

A screenshot of pattern 7, the synchronizing merge, is depicted in Figure 17. The beginning of
this pattern is similar to pattern 6, but after the “sync. merge” entity has been reached, only
component D has to be activated.

o
[ 1]
EIIE"E‘ 2003 © Wil van der Aalst and Vincent Almering

Fig. 17. Workflow pattern 7 - Synchronizing Merge

The test exampl e that was created on the basis of this pattern is shown in Figure 18.

C1 Cc2

[ | 2rad [ ] [ a4 ]

System input: d1

System output: d6

C3 C4

[ | [ 05|  [oacas | a6 |

Fig. 18. Test example 7 - Synchronizing Merge

As can be seen in Figure 18, in this last example both a conjunction in a component’s output
data and a disunction in a component’s input data occur. Furthermore, note that, when
formalising this example in LEADSTO, the digunction on the input side of C4 is modelled by
defining three separate variants of C4: one with d4 as input, one with d5 as input, and one with
d4 and d5 asinput.

38



To compare the coordination approaches described in Section 5 against these patterns, a number
of simulation experiments have been performed. In these experiments, the focus was on three
approaches in particular: Maes' Behavior networks, Selfridge’ s Pandemonium, and the Voting
Mechanism. These approaches were chosen for two reasons. First, because they are among the
most popular and well-known approaches in the literature on coordination. Second, because
together they more or less cover the area of different coordination approaches: the Behavior
networks use arather ‘global’ strategy (i.e., the different agents have information about all other
agents in the system), whereas the Voting Mechanism and (especialy) the Pandemonium use a
‘local’ strategy (i.e., the agents involved only have information about themselves or their direct
neighbours).

The three selected coordination approaches have been implemented in the LEADSTO
simulation language. Findly, the implemented simulation models have been applied to the test
examples. The simulation models for the Behavior networks, the Pandemonium, and the Voting
Mechanism, are addressed, respectively, in Section 7, 8, and 9.
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7 Behavior Networks Simulation

7.1 Simulation Model

The simulation model for Maes behavior networks is created based on the mathematical
calculations as presented in Section 5.1. One difference is present which is the lowering of the
threshold which is not performed within the simulation model, the highest executable
component is simply selected. It can however easily be incorporated in the simulation model.
The LEADSTO specification for the agorithm can be found in Appendix C1 and roughly
corresponds to the order in which the formulas are presented in 5.1.2. The setting that have been
used for @, y, and o are 0.1, 0.3 and 0.5 respectively. The ontology used within the simulation
model is shown in Table 1. Note that this does not specify the complete ontology within the
LEADSTO specification, but does explain all the terms that will be shown in the traces in the
next section.

Table 1. Relations used within the behavior networks simulation model

Relation Description

input_from_state: TIME x COMPONENT x VALUE At the time point the component gets the value for
activation through the state at that time point.

input_from_goals: TIME x COMPONENT x VALUE At the time point the component gets the value for
activation through the goals that have been set.

spreads_fw: COMPONENT x COMPONENT x TIME | At the specified time point the specified activation

x VALUE spreads forwards from the first component to the second

spreads_bw: COMPONENT x COMPONENT x At the specified time point the specified activation

TIME x VALUE spreads backwards from the first component to the
second

executable: TIME x COMPONENT This specifies that the component is executable at the
particular time point.

decay: TIME x COMPONENT x VALUE The component has the specified decay value at the
particular time point.

alpha: TIME x COMPONENT x VALUE The component has the specified apha value at the
particular time point.

active: TIME x COMPONENT x VALUE This relationship specifies whether or not a component

was active at a particular time point. In case VALUE is
1 thisisthe case, in case of a0 thisis not the case.

activated: COMPONENT The component is activated.

7.2 Simulation Traces

This section presents the simulation traces that have resulted from executing the algorithm on
the examples as presented in Section 6. The calculations in the first trace will be explained in
detail whereas for the remainder of the traces only the overall result of the calculations will be
shown.

Trace Example 1 — Sequence

Figure 19 shows the simulation trace of the behavior network algorithm for the first example.
The left side of the figure shows the states during the simulation whereas the right side shows a
time line where a dark indicates the state being true and alight box the state being fal se.
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current_time(1)
data((d|1))
goal((d]4))
alpha(0, (c|1),
alpha(0, (c|2), 0
alpha(0, (c|3), 0
active(0, (c|1), 0)1
), 0
), 0

active(0, (c|2

active(0, (c|3
executable(1, (c
input_from_state(1, (c|2),
input_from_state(1, (c|3),
input_from_goals(1, (c|1),
input_from_goals(1, (c|2),
input_from_goals(1, (c|3), 0.
input_from_state(1, (c|1), 0.
0.

0.

)

0)
)
)
)
)
)
)
),
)
)
)
)
)
)
)
)

IR EREEE

decay(1, (c|3),
decay(1, (c|1),
decay(1, (c|2
alpha(1, (c|1), 0.25)
alpha(1, (c|2), 0)
alpha(1, (c|3), 0.75)1
active(l, (c|1), 1)1
active(1, (c|2), 0)1
active(1, (c|3), 0)
data((d|2)) ]
current_time(2) ] i
executable(2, (c|1))
executable(2, (c|2))
input_from_state(2, (c|3), 0)
input_from_goals(2, (c|1), 0)1
input_from_goals(2, (c|2), 0)1
input_from_goals(2, (c|3), 0.3)1
input_from_state(2, (c|2), 0.1) ]
spreads_bw((c|3), (c|2), 2, 0.75) ]
input_from_state(2, (c|1), 0.1) ]
decay(2, (c|1), 0.1)1 ]
decay(2, (c|2), 0.85) 1
decay(2, (c|3), 1.05)1 1
alpha(2, (c|1), 0.05) ]
alpha(2, (c|2), 0.425) ]
alpha(2, (c|3), 0.525) f
active(2, (c|1), 0)
"me 4 11 12 13 14 5

0
0
0
0
3 4
1
3
1
0

Fig. 19. Trace resulting from running the behavior networks algorithm on example 1
(continued on next page)
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active(2, (C|2), 1), w

active(2, (c|3), 0)4 ]

data((d|3))1

current_time(3)- ] i

executable(3, (c|1))1 { i
executable(3, (c|2)) ——
executable(3, (c|3))1 ] i
input_from_goals(3, (c|1), 0) ] i
input_from_goals(3, (c|2), 0) ] i
input_from_goals(3, (c|3), 0.3) f i
input_from_state(3, (c|3), 0.1)- ——
input_from_state(3, (c|2), 0.1) i
input_from_state(3, (c|1), 0.1) ] i
decay(3, (c|1), 0.15) ] i

L

!

decay(3, (c|2), 0.1)1 {
decay(3, (c|3), 0.925) ]
alpha(3, (c|1), 0.12766)- ]
alpha(3, (c|2), 0.0851064) ]
alpha(3, (c|3), 0.787234) ]
active(3, (c|1), 0)q f
active(3, (c|2), 0)1 ]
active(3, (c|3), 1)1 ]
data((d|4))1 f

time 1 4 1 1 12 13 1 15

Fig. 19 (contd). Trace resulting from running the behavior networks a gorithm on example 1

Initialy, the data present is set to d1.

data(d|1)
Furthermore, the goal is set to d4 for this particular scenario:

goal(d|4)
Before executing the algorithm severa initia values are set to enable a proper functioning of
the algorithm. First of all, the al pha value of the component currently present in the system are
set to O for the time point before the current time point (i.e. time point 0):

alpha(0, c|1, 0)

alpha(0, c|2, 0)

alpha(0, c|3, 0)
Furthermore, the components’ activity at time point O is set to 0 aswell:

active(0, c|1, 0)

active(0, c|2, 0)

active(0, c|3, 0)
Now the algorithm is executed. First of al, it is determined that only component C1 is
executable give the current data available:

executable(1, c|1)
Calculations are performed to determine the activity within the different component. To enable
this calculations several intermediate steps are taken. First of all, the input from the current state
is calculated (i.e. given the current data available what is the activation caused for the different
components). Since component C1 is the only component that has its preconditions fulfilled, it
is the only component to have activation from this source:

input_from_state(1, c|1, 0.1)
Another intermediate step is the input from the goals. Since only C3 has a goal as an outpuit,
this component it the only one to receive activation through this source:

input_from_goals(1, c|3, 0.3)
Due to the fact that the previous aphavalue is 0, no activation is spread around the network, so
the decay can be calculated for the three components present in the system by simply summing
up the input from the goals and state per component:

decay(1, c|1, 0.1)

decay(1, c|2, 0)

decay(1, c|3, 0.3)
Calculating the alpha value entails normalizing these numbers. The maximum activation is set
to 1inthis example, resulting in the following a pha val ues:

alpha(1, c|1, 0.25)
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alpha(1, c|2, 0)

alpha(1, c|3, 0.75)
As a result, component C1 is activated as this is the executable component with the highest
aphavalue:

active(l, c|1, 1)

active(d, c|2, 0)

active(d, c|3, 0)
Due to the activity of component C1 its output data is generated, which shows in the trace by
means of the presence of data d2:

data(d|2)
A new round of the algorithm is performed, both components C1 and C2 are now derived to be
executable as the data is assumed to remain present permanently. The input from the goals
remains the same as these have not changed. The input from state however changes due to the
additional datad2 being present, resulting in an input from state for component C2 as well:

input_from_state(2, c|2, 0.1)
Since C3 was not active at the previous time point, its activation spreads back through the
network, resulting in a backwards spread from C3 to C2:

spreads_bw(c|3, c|2, 2, 0.75)
Calculation of the decay can now be performed:

decay(2, c|1, 0.1)

decay(2, c|2, 0.85)

decay(2, c|3, 1.05)
Normalisation takes place and eventually C2 is selected, resulting in data d3 being present. In
the last cycle, C3 is selected with by far the highest apha value, resulting in the overal goal
being reached:

data(d|4)

Trace Example 2 — Parallel Solit

Similar to the trace described in the section above, Figure 20 shows the trace of the behavior
networks algorithm in the paralle split case. There are however more possible outcomes for the
trace which can al be generated by the algorithm.

data((d|1))
alpha(o, (c|1), 0)1
alpha(o, (c|2), 0)1
alpha(0, (c|3), 0)
executable(1, (c|1)) =
alpha(1, (c|1), 0.142857) ]
alpha(1, (c|2), 0.428571) i
alpha(1, (c|3), 0.428571) ]
activated((c|1)){ -

data((d|2)) ]

data((d|3)) f
executable(2, (c|1)) ] I
executable(2, (c|2)) ] i
executable(2, (c|3))1 ] I
alpha(2, (c|1), 0.0569106) ]
alpha(2, (c|2), 0.471545) ]
alpha(2, (c|3), 0.471545)- ]
activated((c|2)){ =,
data((d|4)) ]
executable(3, (c|1))1 J—
executable(3, (c|2)) ] I
executable(3, (c|3))1 ] i
alpha(3, (c|1), 0.109846)- ]
alpha(3, (c|2), 0.280023) I
alpha(3, (c|3), 0.610131)- ]
activated((c|3))1 i
data((d|5)) ]

time 1 4 10 1 12 13 14

Fig. 20. Trace resulting from running the behavior networks algorithm on example 2



Figure 21 shows another possible outcome of the agorithm; this variation in outcome is
established through a random selector in case the evaluation value of the different components
is the same. Figure 21 shows that first of all, component C1 is activated as this is the only
executable component at the start. Data d2 and d3 are both generated and now a conflict arises:
Both C2 and C3 have the same evaluation value, which is logical: They both have their input
data available and contribute evenly to the overall goal. A random choice is made, in the case of
Figure 20 component C2 is selected first after which component C3 is selected. Figure 21
shows however that the different order can be generated as well (C2 after C3). At this point, the
algorithm does no support parallel execution, but this can easily be incorporated if wanted.

data((d|1))
alpha(0, (c|1), 0)
alpha(o, (c|2), 0)1
alpha(o, (c|3), 0)1
executable(1, (c|1))1 =
alpha(1, (c|1), 0.142857) ]
alpha(1, (c|2), 0.428571)- ]
alpha(1, (c|3), 0.428571) ]
activated((c|1)) m

data((d|2)) ]

data((d|3)) ]
executable(2, (c|1))1 ] I
executable(2, (c|2))1 ] i
executable(2, (c|3)) ] I
alpha(2, (c|1), 0.0569106) ]
alpha(2, (c|2), 0.471545) ]
alpha(2, (c|3), 0.471545)- ]
activated((c|3))- =
data((d|5)) I
executable(3, (c|1)) ] i
executable(3, (c|2))1 ] i
executable(3, (c|3))1 f |
alpha(3, (c|1), 0.109846) I
alpha(3, (c|2), 0.610131) I
alpha(3, (c|3), 0.280023) ]
activated((c|2))1 !
data((d|4)) f

time 1 4 b 1 12 1 14 15

Fig. 21. Another trace resulting from running the behavior networks algorithm on example 2
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Trace Example 3 — Synchronization

Figure 22 shows and example of a trace for patterns 3, in this particular trace the activation
sequence is C1-C2-C3. The trace is specified in the same fashion as before, and will therefore
not be explained in detail.

data((d|1))
current_time(1)
active(0, (c|1), 0)
active(0, (c|2), 0)
active(0, (c|3), 0)
alpha(0, (c|1), 0)1
alpha(0, (c|2), 0)1
alpha(o, (c|3), 0)4
executable(1, (c|1)) I
executable(1, (c|2)) i
decay(1, (c|2), 0.05)1 ——H i
[

[

LTI

decay(1, (c|1), 0.05)] p=——pd
decay(1, (c[3), 0.3) ‘
alpha(1, (c|1), 0.125) ‘
alpha(1, (c|2), 0.125){ ‘
alpha(1, (c|3), 0.75){ !
active(1, (c|1), 1) 1
active(1, (c|2), 0) 1
active(1, (c|3), 0) 1
activated((c|1)) ™
data((d|2)) ]
current_time(2) ]
executable(2, (c|1))1 y ‘
executable(2, (c|2))q ! !
decay(2, (c|1), 0.05) ‘ ‘
[
[

decay(2, (c|2), 0.925)1 f
decay(2, (c|3), 1.12083) f
alpha(2, (c|1), 0.0238569) ]
alpha(2, (c|2), 0.441352)1 ]
alpha(2, (c|3), 0.534791)4 f
active(2, (c|1), 0)
active(2, (c|2), 1)
active(2, (c|3), 0)
activated((c|2))
data((d|3)) f
current_time(3) I
executable(3, (c|1))1 ]
executable(3, (c|2))1 ]
executable(3, (c|3)) ]
decay(3, (c|1), 0.0738569) ]
decay(3, (c|2), 0.05) ]
decay(3, (c|3), 0.934791) ]
alpha(3, (c|1), 0.0697653) I
alpha(3, (c|2), 0.04723) ] 4
alpha(3, (c|3), 0.883005)- ]
active(3, (c|1), 0)4 f

active(3, (c|2), 0)1 f

active(3, (c|3), 1)1 f
activated((c|3))- i
data((d|4)) i

time 1 4 x n 2 13 1 15

Fig. 22. Trace resulting from running the behavior networks algorithm on example 3
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Trace Example 4 — Exclusive Choice

Figure 23 shows an example trace for the exclusive choice example. As can be seen, Cl is
activated first, after which it generates output d3. Since only C3 can use this data, this
component is selected and generates the goal data.

data((d|1))q
current_time(1)
active(0, (c|1), 0)-
active(0, (c|2), 0)4
active(0, (c|3), 0)
alpha(0, (c|1), 0)4
alpha(0, (c|2), 0)1
alpha(o, (c|3), 0)
executable(l, (c|1))1 = ;i
decay(1, (c|1), 0.1)1 ] I
decay(1, (c|3), 0.15) f i
decay(1, (c|2), 0.15) ] I
alpha(1, (c|1), 0.25)
alpha(1, (c|2), 0.375)
alpha(1, (c|3), 0.375)
active(l, (c|1), 1) ]
active(1, (c|2), 0) ]
active(1, (c|3), 0)1 ]
activated((c|1)){ =,
data((d|3))q ]
current_time(2) ] ;
executable(2, (c|1)) ]
executable(2, (c|3))1 ]
decay(2, (c|3), 0.625) ]
decay(2, (c|1), 0.475)1 f
decay(2, (c|2), 0.608333) | f—
alpha(2, (c|1), 0.278049) ]
alpha(2, (c|2), 0.356098)- ]
alpha(2, (c|3), 0.365854)- ]
active(2, (c|1), 0)- f
active(2, (c|2), 0) f
active(2, (c|3), 1)1 ]
activated((c|3)){ -
data((d|4))q i

time 4 bl 1 12 13 14 15

Fig. 23. Trace resulting from running the behavior networks algorithm on example 4

47



Trace Example 5 — Smple Merge

An exampl e result trace for example 5 using behavior networks is shown in Figure 24. Initialy,
date dl isavailable in this trace, resulting in C1 being activated after which C3 is activated and
the goal datais formed.

data((d]1))
current_time(1)
active(0, (c[1), 0)
active(0, (c[2), 0)
active(0, (c|3), 0)1
alpha(0, (c|1), 0)
alpha(0, (c|2), 0)
alpha(o, (c|3), 0)
executable(1, (c|1))
decay(1, (c|1), 0.1)
decay(1, (c|2), 0)
decay(1, (c|3), 0.3) ‘
alpha(1, (c|1), 0.25) !
alpha(1, (c|2), 0) )
alpha(1, (c|3), 0.75) ‘
active(1, (c[1), 1) ‘
active(l, (c|2), 0)1 ‘
active(1, (c[3), 0) !
activated((c|1))1 n
data((d]3)) ]
current_time(2) ]
executable(2, (c|1)) ‘
executable(2, (c|3)) ‘
decay(2, (c|1), 0.1)4 ‘
decay(2, (c|2), 0) ‘
decay(2, (c|3), 1.15) :
alpha(2, (c|1), 0.08) ‘
alpha(2, (c|2), 0) :
alpha(2, (c|3), 0.92) :
active(2, (c|1), 0)1 ‘
active(2, (c[2), 0) ‘
active(2, (c[3), 1)1 !
activated((c|3))q M
data((d|4)) I
current_time(3)q !
time i omoEomowE

|

LY

Fig. 24. Trace resulting from running the behavior networks algorithm on example 5
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Trace Example 6 — Multi Choice

In the multi choice scenario there are three components. In the trace shown in Figure 25 the
agorithm first activates C1 after which C2 is activated. Finally, C3 is activated as well, as this
is alowed by the pattern. Thisis not an efficient trace as the shortest path would either be C1 —
C2 or C1 — C3, some fine-tuning of the parameters can however improve these situations.

data((d|1))4
current_time(1)
active(0, (c|1), 0)
active(0, (c|2), 0)
active(0, (c|3), 0)
alpha(0, (c|1), 0)
alpha(0, (c|2), 0)
alpha(0, (c|3), 0)4
executable(1, (c|1))1 =
decay(1, (c|1), 0.1) ]
decay(1, (c|3), 0.3) 1
decay(1, (c|2), 0.3) ]
alpha(1, (c|1), 0.142857)+ f
alpha(1, (c|2), 0.428571)+ ]
alpha(1, (c|3), 0.428571)4 f
active(1, (c|2), 0) ]
active(1, (c|3), 0) f

active(1, (c|1), 1) 1
activated((c|1))1 =,
data((d|2)) ]

data((d|3)) ]
current_time(2) ] |
executable(2, (c|1))q ]
executable(2, (c|2))q f
executable(2, (c|3)) ]
decay(2, (c|1), 0.1) !
decay(2, (c|2), 0.828571) ]
decay(2, (c|3), 0.828571) !
alpha(2, (c|1), 0.0569106) f
alpha(2, (c|2), 0.471545)+ ]
alpha(2, (c|3), 0.471545)+ ]
active(2, (c|1), 0) ]
active(2, (c|2), 1) 1
active(2, (c|3), 0) ]
activated((c|2)) =
data((d|4)) ]
current_time(3) 1
executable(3, (c|1))q ] I
executable(3, (c|2))q f |
executable(3, (c|3)) ] I
decay(3, (c|1), 0.156911) ] |

decay(3, (c|2), 0.4) ]
decay(3, (c|3), 0.871545) ]
alpha(3, (c|1), 0.109846) ]
alpha(3, (c|2), 0.280023) ]
alpha(3, (c|3), 0.610131) f
active(3, (c|1), 0)1 ]

active(3, (C|2), 0), —
active(3, (c[3), 1)1 ]
activated((c|3))1 L
data((d|5)) ]
time 1 4 1 1 12 13 14 1

Fig. 25. Trace resulting from running the behavior networks a gorithm on example 6
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Trace Example 7 — Synchronizing Merge

An example trace for the synchronizing merge is shown in Figure 26. Note that the component
C4 has been split up into three components. C4, C5 and C6: C4 takes asinput d4 and generates
d6; C5 uses d5 to generate d6, and finally, C6 takes d4 and d5 as input and generates d6. This
has been done to minimise adaptation of the agorithm. The trace shows that the following
sequence is taken: C1 — C2 — C3 — C4 whereas you would expect the agorithm to go for the
optimal solution. Fine-tuning of the parameters could avoid these kind of inefficient traces.

data((d|1))q

alpha(0, (c|1), 0)1
alpha(0, (c|2), 0)1
alpha(0, (c|3), 0)1
alpha(o, (c|4), 0)4
alpha(o, (c|5), 0)4
alpha(o, (c|6), 0)4
executable(1, (c|1)){ =
alpha(1, (c|1), 0.25)1
alpha(1, (c|2), 0)1
alpha(1, (c|3), 0)1
alpha(1, (c|4), 0.25)
alpha(1, (c|5), 0.25)
alpha(1, (c|6), 0.25)
activated((c|1)) .
data((d|2))q f

data((d|3))q f

executable(2, (c|1))q ] I
executable(2, (c|2))1 ] I
executable(2, (c|3))1 ] i
alpha(2, (c|1), 0.0425532)-
alpha(2, (c|2), 0.255319)
alpha(2, (c|3), 0.255319)
alpha(2, (c|4), 0.148936)
alpha(2, (c|5), 0.148936)
alpha(2, (c|6), 0.148936)-
activated((c|2))1 =
data((d|4))q ]

executable(3, (c|1))1
executable(3, (c|2))
executable(3, (c|3))
executable(3, (c|4))
alpha(3, (c|1), 0.0800239) f
alpha(3, (c|2), 0.0561362) f
alpha(3, (c|3), 0.366677) ]
1

1

alpha(3, (c|4), 0.167811)
alpha(3, (c|5), 0.163631)
alpha(3, (c|6), 0.165721)
activated((c|3)) i
data((d|5)) i

executable(4, (c|1))
executable(4, (c|2))
executable(4, (c|3))1
executable(4, (c|4))
executable(4, (c[5))
executable(4, (c|6))
alpha(4, (c|1), 0.130139) ]
alpha(4, (c|2), 0.11287) ]
alpha(4, (c|3), 0.0722897) ]
alpha(4, (c|4), 0.229745)- ]
1

1

alpha(4, (c|5), 0.226723)
alpha(4, (c|6), 0.228234)
activated((c|4)) =
data((d]6))] ]

time 1 4 0 1 12 13 14 5 16 17

Fig. 26. Trace resulting from running the behavior networks al gorithm on example 7
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8 Pandemonium Simulation

8.1 Simulation Model

Generic Part

The algorithm used for the Pandemonium is similar to the description in Section 5, but modified
with some simplifying assumptions. In particular, the following procedure is assumed: at the
beginning of the process, only the initial data is placed at the “shared repository” (see Section
6). Whenever new data has been added to the repository, a new round starts in which all agents
can shout. The idea is that, the more urgent an agent thinks it is for him to be activated, the
louder it will shout. The agent that shouts loudest will be allowed to start reasoning. In case two
agents shout with the exact same strength, then either the first agent, or the second agent, or
both are activated (this decision is made randomly, with equal probabilities). When an agent is
activated, this results in the agent adding its output data to the repository, and the start of a new
round.

The LEADSTO specification for the agorithm can be found in Appendix C2. To model this
algorithm in LEADSTO, the following ontology is used (again, only the elements that are
shown in the traces are mentioned):

Table 2. Relations used within the pandemonium simulation model

Relation Explanation
data: DATA This specifies that a certain type of datais present in the
repository.
shout: COMPONENT x VALUE An agent shouts with a certain (real) value.
active_component: COMPONENT An agent is activated.
Soecific Part

To determine how loud they will shout, the agents make use of a shout function. For different
variants of the Pandemonium model, different shout functions may be used. In the current
model, each agent uses the following types of information in its shout function at time point t:

« theamount of datait needs asinput (represented by i1)
e theamount of itsinput datathat is available at t (represented by i2)
« theamount of datait produces as output (represented by ol)
e theamount of its output datathat is already present at t (represented by 02)
e the maximum amount of input data any agent may need (represented by max_i)
¢ the maximum amount of output data any agent may produce
(represented by max_o)

Given these elements, the shout value (i.e., the strength with which an agent shouts, represented
by sv) is modelled as follows:

sv = (i2/i1)P * (1 - 02/01)P?* (iUmax_i)*** (ol/max_o)**

Here, 31, B2, B3, and 4 are real numbers between 1 and 1.5, indicating the importance of the
corresponding factor. For example, B1=1.4, 2=1.3, 3=1.1, and 4=1.2. Thus, sv will be a
value between 0 and 1.

To illustrate the idea, consider example 3 above (the synchronization). Suppose that at a certain
point in time the only data that is present at the repository is d1 and d2. Then, the following
information would be avail able to agent C3:

e i1 =2 (because C3 needs d2 and d3 asinput)

e i2=1 (because only d2 is available as input)

e 01 =1 (because C3 produces d4 as output)

e 02=0 (because d4 is not present as output)
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¢ max_i = 2 (because ho component heeds more than 2 different data types)
« max_o =1 (because no component produces more than 1 different data types)

As aresult, the shout value sv of C3 will be: (1/2)P* * (1 - 0/1)F? * (2/2)F * (1/1)*.

8.2 Simulation Traces

This section presents the simulation traces that have resulted from applying the pandemonium
algorithm to the examples presented in Section 6.

Trace Example 1 — Sequence
Figure 27 shows the simulation trace of the pandemonium algorithm for example 1.

data((d|1))1 =

data((d|2))

data((d|3))

data((d|4))

shout((c|1), 0.0)
shout((c|1), 1.0)
shout((c|2), 0.0)-
shout((c|2), 1.0)- ]
shout((c|3), 0.0)-
shout((c|3), 1.0)
active_component((c|1))1
active_component((c|2))
active_component((c|3))1 I
[ime 4 10 12 14 16 2 2 24 26 2 3 32 4 36 3 A

Fig. 27. Pandemonium trace 1.

As can be seenin Figure 27, initialy the only datathat is present is d1:
data((d|1))
Based on this data, every agent starts shouting. Agent C1 shouts loudest (with strength 1.0,
whilst the others shout with strength 0.0):
shout((c|1), 1.0)
shout((c|2), 0.0)
shout((c|3), 0.0)
Thus, agent C1 is selected to become active:
active_component((c|1))
As aresult, agent C1 creates data d2, which is stored at the repository as well:
data((d|2))
Again, every agent starts shouting. Agent C2 shouts loudest (with strength 1.0, whilst the others
shout with strength 0.0):
shout((c|1), 0.0)
shout((c|2), 1.0)
shout((c|3), 0.0)
Next, agent C2 is selected to become active:
active_component((c|2))
Next, agent C2 creates data d3, which is stored at the repository as well:
data((d|3))
Again, every agent starts shouting. Agent C3 shouts loudest (with strength 1.0, whilst the others
shout with strength 0.0):
shout((c|1), 0.0)
shout((c|2), 0.0)
shout((c|3), 1.0)
Next, agent C3 is selected to become active:
active_component((c|3))
Eventually, agent C3 creates data d4, which is stored at the repository as well:
data((d|4))
Since d4 isthe goa data, at this point the process terminates.
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Trace Example 2 — Parallel Solit

As dready shown earlier, test example 2 contains a non-deterministic element. Therefore,
applying the pandemonium agorithm to this pattern may result in different traces. In total, three
different traces may be generated. These traces are shown in Figure 28, 29, and 30.

data((d|1))1 =

data((d|2)) f

data((d|3)) f

data((d|4))

data((d|5))

shout((c|1), 0.0)
shout((c|1), 1.0)
shout((c|2), 0.0)
shout((c|2), 0.435275)
shout((c|3), 0.0)1 =
shout((c|3), 0.435275)-
active_component((c|1))q
active_component((c|2))1
active_component((c|3)) I
time 4 10 12 14 1 1 P 2 24 2 2 ! 32 4 3 3 40

Fig. 28. Pandemonium trace 2a.

This trace shows a situation where the example components are activated in a sequence: first C1
is activated, then C2 (based on arandom choice), and then C3.

data((d|1))q

data((d|2))q ]

data((d|3))q ]

data((d|4))q

data((d|5))q

shout((c|1), 0.0)4
shout((c|1), 1.0)
shout((c|2), 0.0)4
shout((c|2), 0.435275)1 f
shout((c|3), 0.0)+
shout((c|3), 0.435275)1
active_component((c|1))1
active_component((c|2))1
active_component((c|3))1 I
[ime 4 10 12 14 16 2 2 2 26 2 3 32 4 36 3 A

[0

Fig. 29. Pandemonium trace 2b.

This trace shows another situation where the example components are activated in a sequence:
here, first C1is activated, then C3 (based on arandom choice), and then C2.

data((d|1))7 =

data((d|2)) ‘

data((d|3))- ‘

data((d|4))- ‘

data((d|5)) ‘

shout((c|1), 0.0){ -
shout((c|1), 1.0)
shout((c|2), 0.0)
shout((c|2), 0.435275)
shout((c|3), 0.0)
shout((c|3), 0.435275)
active_component((c|1)){ -
active_component((c|2)){ -
active_component((c|3))- i
tlme 4 1 12 14 1 1 2 22 24 2 2 32 34 A

Fig. 30. Pandemonium trace 2c.
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This trace shows the situation where two of the example components are activated in paralld:
here, first C1 is activated, but then both C2 and C3 are activated simultaneously (again, based
on arandom choice).

Like test example 2, most examples contain a non-deterministic element, thus may result in
multiple different traces. To limit complexity, for the remaining patterns only one trace is
shown.

Trace Example 3 — Synchronization
Figure 31 shows a simulation trace of the pandemonium agorithm for example 3. Here, first
both C1 and C2 are activated, followed by C3.

data((d|1))7 =

data((d|2)) f

data((d|3)) f

data((d|4))

shout((c|1), 0.0)
shout((c|1), 0.466516)
shout((c|2), 0.0)
shout((c|2), 0.466516)
shout((c|3), 0.0)
shout((c|3), 1.0)
active_component((c|1))q I
active_component((c|2))1 I
active_component((c|3)) !
time 4 10 12 14 1 1 P 2 24 2 2 ! 32 4 3 3 40

Fig. 31. Pandemonium trace 3.

Trace Example 4 — Exclusive Choice
Figure 32 shows a simulation trace of the pandemonium algorithm for example 4. Here, first C1
is activated, followed by C2.

data((d|1))q

data((d|2))q

data((d|4))q

shout((c|1), 0.0)1
shout((c|1), 1.0)
shout((c|2), 0.0)4
shout((c|2), 1.0)4 f
shout((c|3), 0.0)+
active_component((c|1))1
active_component((c|2))1 I
[ime 4 10 12 14 16 2 2 2 26 2 3 32 4 36 3 A

[0

Fig. 32. Pandemonium trace 4.
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Trace Example 5 — Smple Merge
Figure 33 shows a simulation trace of the pandemonium algorithm for example 5. Here, first C1
is activated, followed by C3.

data((d|1))q

data((d|3))q

data((d|4))q

shout((c|1), 0.0)1
shout((c|1), 1.0)
shout((c|2), 0.0)4
shout((c|3), 0.0)+
shout((c|3), 1.0)4
active_component((c|1))1
active_component((c|3))1 I
[ime 4 10 12 14 16 2 2 2 26 2 3 32 4 36 3 A

[0

Fig. 33. Pandemonium trace 5.

Trace Example 6 — Multi Choice
Figure 34 shows a simulation trace of the pandemonium algorithm for example 6. Here, first C1
is activated, followed by both C2 and C3.

data((d|1))1 =

data((d|2)) f

data((d|3)) f

data((d|4)) f

data((d|5)) f

shout((c|1), 0.0)
shout((c|1), 1.0)
shout((c|2), 0.0)
shout((c|2), 0.435275)
shout((c|3), 0.0)
shout((c|3), 0.435275)-
active_component((c|1))q
active_component((c|2))1 I
active_component((c|3)) !
time 4 10 12 14 1 1 P 2 24 2 2 ! 32 4 3 3 40

Fig. 34. Pandemonium trace 6.
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Trace Example 7 — Smple Merge

Figure 35 shows a simulation trace of the pandemonium algorithm for example 7. Here, first C1
is activated, then both C2 and C3 are activated, and finally C6 (which is a specific variant of
C4, see the description of the example) is activated.

data((d|1))] =
data((d|2))q f
data((d|3))q f
data((d|4))q f
data((d|5))1 f
data((d|6))1
shout((c|1), 0.0)
shout((c|1), 0.466516)1

 I—
shout((c|2), 0.0)1 ——
shout((c|2), 0.203063)
shout((c|3), 0.0){ =1
shout((c|3), 0.203063) ]
shout((c|4), 0.0)1 = ]
shout((c|4), 0.203063)
shout((c|5), 0.0){ =1

shout((c|5), 0.203063)1 -
shout((c|6), 0.0)1 =
shout((c|6), 0.435275)1
active_component((c|1))1
active_component((c|2))1 i
active_component((c|3))1 i
active_component((c|6))1 I
[ime 4 10 12 14 16 2 2 2 26 2 3 32 £ 36 3 A

Figure 35. Pandemonium trace 7.
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9 Voting Simulation

9.1 Simulation Model

Generic Part

The algorithm used for the Voting Mechanism is similar to the description in Section 5. The
following procedure is assumed: at the beginning of the process, only the initial datais placed at
the “shared repository” (see Section 6). Whenever new data has been added to the repository, a
new round starts in which all agents can vote. The idea is that each agent can vote on only one
agent (possibly on itself). After all agents have voted, the votes are counted, and the agent with
most votes will be allowed to start reasoning. In case two agents have an equa amount of votes,
then either the first agent, or the second agent, or both are activated (this decision is made
randomly, with equal probabilities). When an agent is activated, this results in the agent adding
its output data to the repository, and the start of anew round.

The LEADSTO specification for the agorithm can be found in Appendix C3. To model this
algorithm in LEADSTO, the following ontology is used (again, only the elements that are
shown in the traces are menti oned):

Table 3. Relations used within the voting simulation model

Relation Explanation
data: DATA This specifies that a certain type of datais present in the
repository.
vote for: COMPONENT x COMPONENT An agent votes for a certain (other) agent.
active_component: COMPONENT An agent is activated.
Soecific Part

To determine on whom they will vote, the agents make use of a voting algorithm. For different
variants of the Voting model, different voting algorithms may be used. In the current model,
each agent follows the following algorithm:

1. if myinputispresent, and my output is not, then | vote for myself

2. if my input is not present, and this input is generated by one other agent, vote for that
agent

3. if myinputisnot present, and thisinput is generated by n>1 other agents, vote for one
of those agents (at random)

4. if my output is present, and this output is used by one other agent, vote for that agent

5. if my output is present, and this output is used by n>1 other agents, vote for one of
those agents (at random)

6. if my output is present, and this output is used by no other agents (i.e,, it is part of the
goal data), do not vote

Note that this algorithm assumes a local perspective of the agents. This means that each agent
only has knowledge about itself and its direct neighbours. For example, each agent knows
which other agents need the data that it produces as input, but does not know which data the
other agents produce as output.
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9.2 Simulation Traces

This section presents the simulation traces that have resulted from applying the voting
a gorithm to the examples presented in Section 6.

Trace Example 1 — Sequence
Figure 36 shows the simulation trace of the voting algorithm for example 1.

data((d|1)] g

data((d]2))

data((d]3))

data((d]4))
vote_for((c|1), (c|1))q
vote_for((c|1), (c|2))q
vote_for((c|2), (c|1))
vote_for((c|2), (c|2))
vote_for((c|2), (c|3))q
vote_for((c[3), (c|2)){ |—fmrm———fm=——
vote_for((c|3), (c|3)) —
active_component((c|1))
active_component((c|2))
active_component((c|3)) i
t| me 10 5 2 25 3 35 A 45 L 55 60 65 70

]
|
1

N
|

Fig. 36. Voting trace 1.

As can be seen in Figure 36, initialy the only datathat is present isdl.:
data((d|1))
Based on this data, every agent starts voting:
vote_for((c|1), (c|1))
vote_for((c|2), (c|1))
vote_for((c|3), (c|2))
Agent C1 receives 2 votes, agent C2 receives one vote, and agent C3 receive no votes. Thus,
agent C1 is selected to become active:
active_component((c|1))
As aresult, agent C1 creates data d2, which is stored at the repository as well:
data((d|2))
Again, every agent starts voting:
vote_for((c|1), (c|2))
vote_for((c|2), (c|2))
vote_for((c|3), (c|2))
Agent C2 receives al 3 votes and is thus selected to become active:
active_component((c|2))
Next, agent C2 creates data d3, which is stored at the repository as well:
data((d|3))
Again, every agent starts voting:
vote_for((c|1), (c|2))
vote_for((c|2), (c|3))
vote_for((c|3), (c|3))
Agent C3 receives 2 votes, agent C2 receives one vote, and agent C1 receive no votes. Thus,
agent C3 is selected to become active:
active_component((c|3))
Eventualy, agent C3 creates data d4, which is stored at the repository as well:
data((d|4))
Since d4 isthe goal data, at this point the process terminates.
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Trace Example 2 — Parallel Solit
Figure 37 shows a simulation trace of the voting algorithm for example 2. Here, first C1 is
activated, then C2, and then C3.

data((d[1))] &

data((d]2)) f

data((d]3)) f

data((d|4))

data((d]5))
vote_for((c|1), (c[1)){ =
vote_for((c|1), (c|2))q
vote_for((c|1), (c|3)) —
vote_for((c|2), (c|1))
vote_for((c|2), (c|2))1
vote_for((c|3), (c|1))
vote_for((c|3), (c|3))
active_component((c|1)) I
active_component((c|2))

active_component((c|3))
time 1 15 2 25 5 A 45 E 55 5

Bk
1

Fig. 37. Voting trace 2.

Trace Example 3 — Synchronization
Figure 38 shows a simulation trace of the voting algorithm for example 3. Here, first C1 is
activated, then C2, and then C3.

data((d|1)){ H

data((d]2))

data((d]3))

data((d]|4))
vote_for((c|1), (c|1))
vote_for((c|1), (c]3))- f——
vote_for((c|2), (cl2))]
vote_for((c|2), (c|3))
vote_for((c|3), (c|1))] =
vote_for((c|3), (c|2))] f—
vote_for((c|3), (c|3)) —
active_component((c|1))
active_component((c|2))
active_component((c|3)) i
time 10 5 2 25 A 35 A« 45 E 55 6 65

[

Fig. 38. Voting trace 3.
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Trace Example 4 — Exclusive Choice
Figure 39 shows a simulation trace of the voting algorithm for example 4. Here, first C1 is
activated, followed by C3.

data((d[1))] &

data((d]3))

data((d]4))
vote_for((c|1), (c|1))] =
vote_for((c|1), (c|3)) —
vote_for((c|3), (c|1)){ =
vote_for((c|3), (c|3))1 ]
active_component((c|1)) i
active_component((c|3)) I
time 1 15 2 25 5 A 45 E 55 5

Figure 39. Voting trace 4.

Trace Example 5 — Smple Merge
Figure 40 shows a simulation trace of the voting algorithm for example 5. Here, first C2 is
activated, followed by C3.

data((d[2))] &

data((d|3))

data((d|4))
vote_for((c|2), (c|2))1
vote_for((c|2), (c|3))1
vote_for((c|3), (c|1))
vote_for((c|3), (c|2))
vote_for((c|3), (c|3))1 ]
active_component((c|2)) I
active_component((c|3)) i
time 1 15 2 25 5 A 45 E 55 5

NN
|

Fig. 40. Voting trace 5.

Trace Example 6 — Multi Choice
Figure 41 shows a simulation trace of the voting algorithm for example 6. Here, first C1 is
activated, followed by C3.

data((d|1))] o

data((d|2)) ]

data((d]3)) f

data((d|5)) | e R i
vote_for((c|1), (c|1)){ =
vote_for((c|1), (c]|3)) —
vote_for((c|2), (c|1))
vote_for((c|2), (c|2))
vote_for((c|3), (c|1)){ ===
vote_for((c|3), (c|3)) ]
active_component((c|1)) |
active_component((c|3)) I
time 1 15 2 25 5 A 45 E 55 5

[

Fig. 41. Voting trace 6.
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Trace Example 7 — Smple Merge

Figure 42 shows a simulation trace of the voting algorithm for example 7. Here, first C1 is
activated, then C3 is activated, then C2 is activated, and finally C6 (which is a specific variant
of C4, see the description of the example) is activated. Note that the current version of the
model contains a small bug: in some cases multiple votes are made by one agent. In Figure 42,
this can be seen in the third voting round. Here, agent C3 votes for C5 and C6 at the same time.
In anext version of the model this bug will be removed.

data((d|1))] o
data((d|2)) I
data((d|3)) ]
data((d|4))
data((d|5))
data((d|6))
vote_for((c|1), (c|1)){ =
vote_for((c|1), (c|2)) —
vote_for((c|1), (c|3))q
vote_for((c|2), (c|1)){ =
vote_for((c|2), (c|2)) —
vote_for((c|2), (c|4))q ]
vote_for((c|2), (c|6)) ]
vote_for((c|3), (c|1)){ =
vote_for((c|3), (c|3))1
vote_for((c|3), (c|5)) ]
vote_for((c|3), (c|6)) ]

a

NN
f

vote_for((c[4), (c|2))1 = = R
vote_for((c|4), (c|4))1
vote_for((c[5), (c[3))] =—r—y

vote_for((c|5), (c|5))1 ] |
vote_for((c|6), (c|2))1 ] i
vote_for((c|6), (cI3))] 1]
vote_for((c|6), (c|6))1
active_component((c|1)) B
active_component((c|2))
active_component((c|3)) !
active_component((c|6)) iy
t| me 10 5 2 25 3 35 A 45 L 55 60 65 7

Fig. 42. Voting trace 7.
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10 Simulation Evaluation

This section addresses the evaluation of the performance for the different algorithms that have
been simulated in Section 7, 8, and 9. This evaluation can be performed from multiple
perspectives. First of al, the achievement of the goals that have been set for the system are an
important evaluation criterion. Secondly, an element in the evaluation is the efficiency of the
algorithm. Finally, patterns can be specified which occur in the component specifications used
for the agorithms, and it can be checked whether the coordination mechanism can indeed
identify these patterns within the component specifications. To enable automated checking of
the results of the agorithms, a formal specification of the different properties is required. For
this purpose, the TTL language as described in Section 4.2 is used to formalise the desired
properties. After such a formal description has been obtained, the automated TTL checker can
be used to see how well the algorithm performs.

10.1 Successfulness
Inthetracey al goas g will eventually be derived:

successful_algorithm(y. TRACE) =
OtTIME, d:DATA

[state(y, t) |= goal(d) =

[X2:TIME [t2 > t O state(y, t2) |= data(d)]]

The results of automatically checking the property against the traces that were generated in the
simulation are shown in Table 4. A plusin the table indicates that the solution is found in al
generated traces, a minus indicates that no solution is found in at least one of the generated
traces.

Table 4. Successfulness of the different agorithms on the examples

Example Behavior Networks | Pandemonium Voting

Sequence + + +
Parallel Solit + + +
Synchronization + + +
Exclusive choice + + +
Smple Merge + + +
Multi Choice + + +
Synchronizing merge + + +

As can be seen, all agorithms eventually find the solution for the examples that have been used.
More extensive testing is to be done to investigate under what circumstances the different
agorithms fail to find the solution.

10.2 Efficiency

Efficiency can be viewed from multiple perspectives. First, one can look at the efficiency of the
solution path found by the agorithm. It is for now assumed that each component takes an equal
amount of time, and therefore the most efficient solution is simply the solution in which the
least amount of components have been activated. Another way to describe efficiency can aso
be the efficiency of the algorithm itself, i.e. how much computation time does the agorithm
need to generate a solution.

The approach taken in this section is to check whether the shortest path is used to reach the

goalsthat are set. For the formalization of this property, it is for now assumed that the length of
the shortest path is known for the particular example being checked:
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efficient_algorithm(y. TRACE, shortest_path:INTEGER) =
successful_algorithm(y) O
component_activations(y, shortest_path)

To enable a definition of the amount of activations of a component, first the activation of one
component is defined, including itsinterval:

has_activation_interval(y: TRACE, c: COMPONENT, tb: TIME, te:TIME) =
tb<teO

state(y,te) |# activated(c)

[Ot th<t<te = state(y,t) |= activated(c)] O

Ol<tb [Ot2 tl<t2<tb — state(y,t2) |# activated(c)]

An example of adefinition for a trace with one component activation is shown below.

component_activations(y. TRACE, 1) =
[(£:COMPONENT, th:TIME, te:TIME
has_activation_interval(y, c:COMPONENT, tb:TIME, te:TIME) O
[Oc2:COMPONENT, th2:TIME, te2:TIME
[has_activation_interval(y, c2:COMPONENT, tb2:TIME, te2:TIME) =
c=c2 Uth =th2 Ote = te2]]

Table 5 shows the outcome of checking the property in the TTL Checker for the generated
traces. Again, a plus indicates that in all generated traces the efficient solution was found,
whereas a minus was put in the tablein the other case.

Table 5. Efficiency of the different algorithms on the examples

Example Behavior Networks | Pandemonium Voting

+

Sequence + +

Paralld Solit

Synchronization

Exclusive choice

++|+|+

+
+
+
+

Smple Merge

+ [+ |+

Multi Choice - -

Synchronizing merge - - -

For the first five examples, both the behavior networks and the pandemonium aways find the
optimal path to the solution. For voting the optimal solution for the parallel split is not always
found: apparently, there are situations when this approach is not efficient. An example of such a
situation is the case that C1 and C2 have aready been active, but C3 still has to be activated. In
that case, C2 will not vote anymore, because its output data is part of the goal data (see the
voting algorithm described in Section 9.1). Moreover, C3 will vote for itself, because its output
datais not present yet. However, C1 could possibly vote for C2 (it does not know that C2 has
aready been active, because it has only local information). If thisis the case, then C2 and C3
will both receive one vote, and C1 will receive no votes. As a result, it is possible that C2 is
again selected (by random choice) to be active, athough it has aready been activated. Clearly,
this is a very inefficient move. This problem could be solved by alowing a more global
perspective for the agents.

For the multi choice and synchronizing merge, the behavior network fails to find the optima
solution in some cases. For the first, it activates both C2 and C3 whereas only one of the
components is required to obtain the goa data. Adapting the parameters of the algorithm could
prevent this from occurring. Furthermore, in the synchronizing merge case, both C2 and C3 are
activated whereas C4 only needs oneinput to generate its output.

Also the Pandemonium mode is not always efficient for the multi choice and synchronizing
merge. For the multi choice, this is the case because the model sometimes generates traces
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where first C1 is activated, and then C2 and C3 are activated simultaneously. Although this
solution is efficient in terms of activation rounds (i.e., only two rounds), it is not efficient in
terms of component activations: three components are activated in tota, where two activations
would have been sufficient (i.e, C1 followed by C2, or C1 followed by C3). For the
synchronizing merge, in some cases the same situation occurs as with the behavior network:
sometimes both C2 and C3 are activated simultaneously, whilst only one of them is required.

The Voting model however succeeds in always finding the efficient solution for the muilti
choice. Here, the aforementioned situation that both C2 and C3 are activated never occurs,
because there is aways one component that receives more votes than the others. However, like
the other approaches, the Voting model is sometimes inefficient with respect to the
synchronizing merge. Here, again the same situation occurs as with the behavior network and
the pandemonium: sometimes both C2 and C3 are activated, where only one of them is
necessary.

10.3 Specifying and Checking Patterns

As has been mentioned, patterns can be specified for component examples and it can be
checked whether these patterns are indeed found by the different agorithms. For the examples
used in this document the component specifications originate from workflow patterns and
therefore the patterns to be found within the component examples are precisely the workflow
patterns from which these examples have been derived. Specification of patterns can be done
from two perspectives: (1) exhaustively summing up al possible outcomes; (2) specifying the
constraints between activation intervals of different components. For the second approach the
interval relations as identified by Allen (ref) are used and specified in TTL:

before(b1:TIME, el:TIME, b2:TIME, e2:TIME) = el < b2
meets(b1:TIME, el:TIME, b2:TIME, e2:TIME) = el = b2
overlaps(b1:TIME, el:TIME, b2:TIME, e2:TIME) =bl < b2 <el < e2
equals(b1:TIME, el:TIME, b2:TIME, e2:TIME) =bl =b2 Jel =e2
starts(b1:TIME, el:TIME, b2:TIME, e2:TIME) =bl =b2 Jel <e2
finished_by(b1:TIME, e1l:TIME, b2:TIME, e2:TIME) = b1 < b2 Oel = e2
contains(b1:TIME, e1:TIME, b2:TIME, e2:TIME) =bl < b2 Uel > e2

Below, the workflow patterns that have been used (1-7) are specified using TTL expressions.
First, dl traces are summed up in an informa fashion and thereafter the TTL expressions
specifying the constraints between the activation intervals of the different components are
shown.

Pattern 1 - Sequence

Possible traces:
ABC

Activation interval constraintsin TTL:
[bA,eA,bB,eB,bC,eC:TIME
has_activation_interval(tracel, A, bA, eA) O
has_activation_interval(tracel, B, bB, eB) O
has_activation_interval(tracel, C, bC, eC) O
before(bA, eA, bB, eB) O

before(bB, eB, bC, eC)

/*
If desired, the following additional condition can be included to ensure that no other components are
activated during the trace:
Oc:COMPONENT [Ot1,t2: TIME
[has_activation_interval(tracel, c, t1, t2) =
[c=A Otl=bA Ot2=eA] O[c=B Ot1=bB Ot2=eB] O [c=C Ot1=bC Ot2=eC]]
*

65



Pattern 2 - Parallel Split

Possible traces:

A[BC]

Note: [BC] means either simultaneously or in any order (= in theory, any of the possibilities
before, meets, overlaps, equals, starts, finished_by, contains. However, in our current specifications
(both Maes and Pandemonium) we do not handle parallelism. Thus, in the case of [BC] we will
only generate the traces BC and CB).

Activation interval constraintsin TTL:
[bA,eA,bB,eB,bC,eC:TIME
has_activation_interval(tracel, A, bA, eA) O
has_activation_interval(tracel, B, bB, eB) O
has_activation_interval(tracel, C, bC, eC) U
before(bA, eA, bB, eB) O

before(bA, eA, bC, eC)

Pattern 3 — Synchronization

Possible traces:
[AB]C

Activation interval constraintsin TTL:
[bA,eA,bB,eB,bC,eC:TIME
has_activation_interval(tracel, A, bA, eA) O
has_activation_interval(tracel, B, bB, eB) [
has_activation_interval(tracel, C, bC, eC) U
before(bA, eA, bC, eC) O

before(bB, eB, bC, eC)

Pattern 4 - Exclusive Choice

Possible traces:
- AB
- AC

Activation interval constraintsin TTL:
[CbA,eA,bB,eB:TIME
has_activation_interval(tracel, A, bA, eA) O
has_activation_interval(tracel, B, bB, eB) O
before(bA, eA, bB, eB)]

0

[(bA,eA,bC,eC:TIME
has_activation_interval(tracel, A, bA, eA) O
has_activation_interval(tracel, C, bC, eC) U
before(bA, eA, bC, eC)]

Pattern 5 - Simple Merge

Possible traces:
- AC
- BC

Activation interval constraintsin TTL:
[CbA,eA,bC,eC:TIME
has_activation_interval(tracel, A, bA, eA) O
has_activation_interval(tracel, C, bC, eC) O
before(bA, eA, bC, eC)]

g

[CbB,eB,bC,eC:TIME
has_activation_interval(tracel, B, bB, eB) O
has_activation_interval(tracel, C, bC, eC) U
before(bB, eB, bC, eC)]
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Pattern 6 - Multi Choice

Possible traces:
- AB

- AC

- A[BC]

Activation interval constraintsin TTL:
parallel_split O exclusive_choice

Pattern 7 - Synchronizing Merge

Possible traces:
- ABD

- ACD

- A[BCI|D

Activation interval constraintsin TTL:
[CbA,eA,bB,eB,bD,eD:TIME
has_activation_interval(tracel, A, bA, eA) O
has_activation_interval(tracel, B, bB, eB) O
has_activation_interval(tracel, D, bD, eD) O
before(bA, eA, bB, eB) O

before(bB, eB, bD, eD)]

O

[CbA,eA,bC,eC,bD,eD:TIME
has_activation_interval(tracel, A, bA, eA) O
has_activation_interval(tracel, C, bC, eC) O
has_activation_interval(tracel, D, bD, eD) O
before(bA, eA, bC, eC) O

before(bC, eC, bD, eD)]

O

[CbA,eA,bB,eB,bC,eC,bD,eD:TIME
has_activation_interval(tracel, A, bA, eA) O
has_activation_interval(tracel, B, bB, eB) O
has_activation_interval(tracel, C, bC, eC) O
has_activation_interval(tracel, D, bD, eD) O
before(bA, eA, bB, eB) O

before(bA, eA, bC, eC) O

before(bB, eB, bD, eD) O

before(bC, eC, bD, eD)]

Table 6 shows whether the algorithms have indeed found the patterns (+) or whether there
exists atrace in which the patterns was not found (-).

Table 6. Patterns found by the different agorithms within the examples

Example Behavior Networks | Pandemonium Voting
Sequence + + +
Paralld Solit + + +-*
Synchronization + + +
Exclusive choice + + +
Smple Merge + + +
Multi Choice + + +
Synchronizing merge + + +

The behavior network, pandemonium, and voting algorithms always finds the patterns that have
been identified. In the parallel split case the success of the voting algorithm however is
debatable. The reason for thisis that besides the expected patterns (A[BC]) also patterns such as
A-B-B-C appear. According to personal communication with van der Aast thisis however not

67



a violation of the pattern. Following this perspective a trace satisfies a pattern when the
components as prescribed by the patterns aso occur being active in the trace in the specified
sequence. It is however alowed for other components (either a different component or
activation of the same component at another time point) to be active within the same trace. For
checking the more strict version (i.e. exactly the prescribed sequence without other activation)
the closed world assumption version of the property (see description of pattern 1 in this section)
can be used.

10.4 Comparison of Approaches

To conclude, the voting, pandemonium and behavior network algorithms have been thoroughly
evaluated with respect to a number of relevant performance indicators, namely successfulness,
efficiency, and pattern checks. It turned out that all algorithms found the solution in al cases.
However, none of the algorithms is dways efficient for al patterns. Both the behavior network
and pandemonium algorithm perform equally well; they succeed for the “simple” cases and
sometimes fail to be efficient for the two complicated cases (i.e. multi choice and synchronizing
merge). Surprisingly, the voting algorithm aways finds the most efficient solution for one of
the complicated cases, namely the multi choice. It does however fail in the rather trivial case of
the parald split. All algorithms aso find the patterns specified for each of the component
examples. All and all, when comparing the agorithms, the performance based on the criteria
specified above is amost similar. The way in which they find the component activation
sequences is however completely different. The behavior networks agorithm needs a globa
overview of the system: it needs to know for each component what data it needs as input and
what data it generates as output. Such a global view might not always be available or might be
inconvenient. On the other hand, for the pandemonium a completely local view is sufficient,
each agent only needs information about its own input and output data. In between is the voting
agorithm, which needs information about itself and its direct neighbours. When comparing the
algorithms on required computation time, the behavior networks take far more computation
time compared to the other approaches. This has two causes: first, due to the fact that all global
information is used within the algorithm; it has a lot more information to take into
consideration. Second, both for the voting and pandemonium algorithm the calculations per
agent can be performed in parallel which can not be donein the behavior networks algorithm.
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11 Discussion

The work reported in this document has increased insight in the area of coordination of complex
software systems in a number of respects. Moreover, based on the experiences during this
project, anumber of ideas for further steps to be undertaken have been devel oped.

What has been found this far

The following was gained by the work as reported. First, the following problems to obtain a
coordination specification for amore complex component-based system were identified.

e it can become large and intransparent.

e it may suffer from overspecification, i.e., the dynamics of component activation may
have to be prescribed in much more detail than actually needed

« it may require quite an effort to acquire the control knowledge, i.e., find out how the
control choices should bein al possibly occurring cases

« itsflexibility and adaptivity with respect to circumstances at runtime often islimited

To address these problems, specific coordination approaches borrowed from other disciplines
have been explored and found to be useful for the area of coordination of complex software
systems. It turns out that, in the form as used (kept close to the original description in the
literature), each of these approaches to coordination may have its value. At least the first three
of the identified problems are addressed by such coordination approaches.

Concerning differences between the considered coordination approaches, it can be concluded
that an advantage of the pandemonium approach is its locality: for this algorithm, each
component only needs information about its own input and output data, not about other data.
The behavior networks agorithm and (to a certain extent) the voting algorithm do not have this
advantage. In these a gorithms, the components involved need to have more globa information.
Thisisapotential drawback, since global information may not always be (easily) available.

For the chosen method to explore different coordination approaches, it has been found that the
simulation approach is quite useful. Within a reasonable time a nontrivid number of
approaches can be evaluated against a nontrivial number of cases. 3 x 7 = 21 combinations have
been explored. Similarly, the analysis of simulation results based on automated support for the
evaluation of propertiesin traces has turned out useful.

Furthermore, workflow patterns turned out a useful source for cases to be explored, athough
their specification needs also to cover data flow aspects. It was not too difficult to add such data
flow aspects.

Possible further steps

The work as reported has also led to a number of ideas for further research. First, while the
specific coordination approaches borrowed from other disciplines were found to have value, no
attempts have been made yet to come up with refinements, extensions or improvements of these
approaches, or, inspired by these approaches, to design completely new approaches. It may well
be possible to design approaches that perform still better. A number of possible extensions to
take into account are the following:

e Experimenting with more different parameter settings in the current coordination
approaches (for example, changing the 3 values in the Pandemonium agorithm).

» Actualy changing the algorithms (for example, in the shout function of the Pandemonium
agorithm, replace the ‘*’ operators by ‘+’, or enabling the voting algorithm to have more
global information).
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» Taking preferences for certain components into account. For example, suppose that two
rather similar components are allowed to be activated, but only one of them is needed. In
that case, it would be useful if there were a specific criterion by which one of them could
be sdlected. An example of such a criterion is the quality of the component, or its
expected execution time.

e Allowing a dynamic environment, which requires updating of information. For example,
the aspect that certain information loses its val ue after some time, because it is no longer
up to date, is an interesting one.

e Allowing the components to reason with partiad data. For example, suppose that a
component has d1 and d2 as its input data, but that only d1 is present. Then it would be
useful if the component could already start reasoning with d1.

e Adding loops to the test examples. This would place additionad demands on the
coordination approaches in the sense that they will have to deal with multiple activations
of the same component.

e Taking into account how recently a component has been active. This would be a useful
addition in combination with the above issue of multiple activations. For example, in that
case, it might be undesirable if components are activated twicein arow.

Adding these kinds of elements will definitely pose further challenges for any coordination
approach.

Moreover, a specia category of approaches that can be considered are adaptive control
approaches. Such approaches do not need a prespecified coordination specification, but create
one during processing. This option would solve the fourth issue mentioned above, and is an
interesting areato investigate further.

In addition, to specify a coordination approach, two distinctions might be useful to make:

- the distinction between object information and processing, and coordination
information and processing

- the distinction between a coordination specification and a generic coordination
agorithm that acts as an interpreter on the coordination specification

The first distinction is an extension of the classica distinction between control (flow) and data
(flow). The second digtinction alows to separate a more declarative part of a coordination
specification from the dynamics of its use. Such a coordination specification may involve
declarative representation of properties of components such as the quality of a component, for
example, itsreliability, processing speed, and the uncertainty of its output.

Another area that can be investigated further is compositionality of coordination specification.
It is possible to proceed as follows. First, extend workflow patterns to software coordination
patterns by adding data flow aspects (for example, specified in Petrinet style). Next, use these
as building blocks to create an overal control specification, based on some principles of
compositionality.

Findly, still another areathat can be investigated is verification and validation of a coordination
specification. More specific evaluation criteria can be developed. For example, it can be
automatically verified whether for each occurring system state, there is a next step that can be
undertaken. Last but not least, after a more focused view has been developed on a coordination
approach to be adopted, testing it for area software system would be interesting.
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Abstract. This paper presents the language and software environment LEADSTO that
has been developed to model and simulate the dynamics of Multi-Agent Systems
(MAYS) in terms of both qualitative and quantitative concepts. The LEADSTO language
is a declarative order-sorted temporal language, extended with quantitative means. Dy-
namics of MAS can be modelled by specifying the direct temporal dependencies be-
tween state properties in successive states. Based on the LEADSTO language, a soft-
ware environment was developed that performs simulations of LEADSTO specifica
tions, generates simulation traces for further analysis, and constructs visua representa-
tions of traces. The approach proved its value in a number of projects within different
domains of MAS research.

1 Introduction

Two important phases in the development of Multi-Agent Systems are the Design phase and
the Implementation phase. In principle, the result of the Design phase is a high-level descrip-
tion (a model) of the system to be developed which, when encoded in some programming
language, solves a particular problem. To this end, the problem is decomposed into modules,
of which the functions and interfaces are specified in detail [10]. Then, the result of the De-
sign phase, the (technical) specification, can serve as a starting point for the Implementation
phase. However, an important problem is the validation of this specification: can it be proven
that the specification shows the expected behaviour (e.g. as described by requirements) be-
fore it is actually implemented? Especially when the specification is given in terms of abstract
high-level conceptsthisisanon-trivia task.

To contribute to the validation of Multi-Agent System specifications, this paper introduces
the language and software environment LEADSTO. LEADSTO can be used to model the
dynamics of systems to be designed, on the basis of highly abstract process descriptions. If
those dynamics are modelled correctly, the LEADSTO software environment can use them
for simulation of the desired behaviour of the system. Although such simulations are no for-
mal proof, they can contribute to an informal validation of the specification: by performing a
number of simulations, it can be tested whether the behaviour of the specification is satisfac-
tory. Therefore, LEADSTO may be an important tool to bridge the gap between the Design
and the Implementation phase.
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Generally, in simulations various formats are used to specify basic mechanisms or causal
relations within a process, see e.g., [1], [5], [9]. Depending on the domain of application such
basic mechanisms need to be formulated quantitatively or qualitatively. Usually, within a
given application explicit boundaries can be given in which the mechanisms take effect. For
example, “from the time of planting an avocado pit, it takes 4 to 6 weeks for a shoot to ap-
pear”.

As mentioned above, in order to simulate a system to be designed, it is important to model
its dynamics. When considering current approaches to modelling dynamics, the following
two classes can be identified: logic-oriented modelling approaches, and mathematical model-
ling approaches, usually based on difference or differential equations. Logic-oriented ap-
proaches are good for expressing qualitative relations, but less suitable for working with
quantitative relationships. Mathematical modelling approaches (e.g., Dynamical Systems
Theory [9]), are good for the quantitative relations, but expressing conceptual, qualitative
relationships is very difficult. In this article, the LEADSTO language (and software environ-
ment) is proposed as a language combining the specification of qualitative and quantitative
relations.

In Section 2, the LEADSTO language is introduced. Section 3 provides examples from ex-
isting case studies in which LEADSTO has been applied. Section 4 describes the tools that
support the LEADSTO modelling environment in detail. In particular, the LEADSTO Prop-
erty Editor and the LEADSTO Simulation Tool are discussed. Section 5 compares the ap-
proach to related modelling approaches, and Section 6 is a conclusion.

2 Modelling Dynamicsin LEADSTO

Dynamics can be modelled in different forms. Based on the area within Mathematics called
calculus, the Dynamical Systems Theory (DST) [9] advocates to model dynamics by continu-
ous state variables and changes of their values over time, which is also assumed continuous.
In particular, systems of differential or difference equations are used. This may work well in
applications where the world states can be modelled in a quantitative manner by real-valued
state variables and the world's dynamics shows continuous changes in these state variables
that can be modelled by mathematical relationships between rea -valued variables.

Not for all applications dynamics can be modelled in a quantitative manner as required for
DST. Sometimes qualitative changes form an essential aspect of the dynamics of a process.
For example, to model the dynamics of reasoning processes in Intelligent Agents usualy a
quantitative approach will not work. In such processes states are characterised by qualitative
state properties, and changes by transitions between such states. For such applications often
qualitative, discrete modelling approaches are advocated, such as variants of modal temporal
logic; e.g., [6]. However, using such non-quantitative methods, the more precise timing rela-
tions are lost too.

For the approach used in this paper, it was decided to consider time as continuous, de-
scribed by real values, but to allow both quantitative and qualitative state properties. The
approach subsumes approaches based on simulation of differential or difference equations,
and discrete qualitative modelling approaches, but also combines them. For example, it is
possible to model the exact (real-valued) time interval for which some qualitative property
holds. Moreover, the relationships between states over time are described by either logical or
mathematical means, or a combination thereof. Thisis explained below in more detail.

Dynamicsis considered as evolution of states over time. The notion of state as used hereis
characterised on the basis of an ontology defining a set of properties that do or do not hold at

74



a certain point in time. For a given (order-sorted predicate logic) ontology ont, the proposi-
tional language signature consisting of all state ground atoms (or atomic state properties)
based on ont is denoted by aprop(ont). The state properties based on a certain ontology ont are
formalised by the propositions that can be made (using conjunction, negation, digunction,
implication) from the ground atoms. A state s is an indication of which atomic state proper-
ties are true and which are false, i.e., amapping s: APROP(Ont) - {true, false}.

To specify simulation models a temporal language has been developed. This language (the
LEADSTO language) enables one to model direct temporal dependencies between two state
properties in successive states, also called dynamic properties. A specification of dynamic
properties in LEADSTO format has as advantages that it is executable and that it can often
easily be depicted graphically. The format is defined as follows. Let a and B be state proper-
ties of the form ‘conjunction of atoms or negations of atoms’, and e, f, g, h non-negative real
numbers. In the LEADSTO language the notation o — ¢ t ¢, nh B (als0 see Figure 1), means:

If state property a holds for a certain timeinterval with duration g, then after some delay
(between e and f) state property 3 will hold for a certain time interval of length h.

p fme s
o ; i
g cefw ,,,,,,,,,,,,,, o

t0 t1 t2

Fig. 1. The timing relationships

An example dynamic property that uses the LEADSTO format defined above is the fol-
lowing: “observes(agent_A, food_present) — 2 3 1, 15 belief(agent_A, food_present)”. Informally,
this example expresses the fact that, if agent A observes that food is present during 1 time
unit, then after a delay between 2 and 3 time units, agent A will believe that food is present
during 1.5 time units. In addition, within the LEADSTO language it is possible to use sorts,
variables over sorts, real numbers, and mathematical operations, such asin “has_value(x, v) —
e, g, h has_value(x, v<0.25)".

Next, atrace or trajectory y over a state ontology ont is a time-indexed sequence of states
over ont (where the time frame is formalised by the real numbers). A LEADSTO expression o
—e,f,g,h B, holdsfor atraceyif:

Ot: Ot tl-g<t<tl = o holdsinyattimet] = [H [esd<f & Ot [tl+d< t' < tl+d+h = P holdsinyattimet']

An important use of the LEADSTO language is as a specification language for smulation
models. As indicated above, on the one hand LEADSTO expressions can be considered as
logical expressions with a declarative, temporal semantics, showing what it means that they
hold in a given trace. On the other hand they can be used to specify basic mechanisms of a
process and to generate traces, similar to Executable Temporal Logic (cf. [1]).

Finally, the LEADSTO format can be graphically depicted in a causal graph-like format,
such as in Figure 2. Here, state properties are indicated by circles and LEADSTO relation-
ships by arrows. An arc denotes a conjunction between state properties. Agents are indicated
by dotted boxes. Circles that are depicted within an agent denote its internal (mental) state
properties. Circles that are depicted on the left or right border of an agent denote, respec-
tively, its input and output state properties, and circles that are depicted outside an agent
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denote state properties of the external world. Notice that this simple form leaves out the tim-
ing parameterse, f, g, h. A more detailed form can be obtained by placing the timing parame-
ters in the picture as labels for the arrows. For more details about the LEADSTO language,
See Section 4.

food_present belief(agent_A, food_present)
observes(agent_A, to_be_performed
food_present) (agent_A, eat_food)

O—O
performs(agent_A, eat_food)

no_enemies

O » O

observes(agéent_A, belief(agent_A, no_enemies)
no_enemiges)

Fig. 2. Example of agraphical representation of two LEADSTO properties

3 Applications

The LEADSTO environment has been applied in a number of research projects in different
domains. In this section, an example LEADSTO specification is given for a specific domain:
a Multi-Agent System for ant behaviour, adopted from [3]. The world in which the ants live
is described by a labeled graph as depicted in Figure 3. Locations are indicated by A, B,...,
and edges by E1, E2,... The ants move from location to location via edges; while passing an
edge, pheromones are dropped. The objective of the antsisto find food and bring this back to
their nest. In this example there is only one nest (at location A) and one food source (at loca-

o .
/ / \ N

Fig. 3. An antsworld

In [3], the dynamics of this system are formalised in LEADSTO, and some simulations are
shown for different situations. A number of LEADSTO expressions that have been used for
the simulation are shown in Box 1. For the compl ete specification, see [3].

In Figure 4 an example of a resulting simulation trace is shown. The upper part of the fig-
ure shows qualitative information; the lower part shows quantitative information. Timeis on
the horizontal axis. In the upper part, the state properties are on the vertical axis. Here, adark
box on top of the line indicates that the property is true during that time period, and a lighter
box below the line indicates that the property is false. For example, the state property
to_be_performed(ant2, pick_up_food) is true from time point 20 to 21. Because of space limita-
tions, only a selection of important state properties was depicted. In the lower part, different
instantiations of state property pheromones_at_E1(X) are shown, with different (real) values for
X. For example, from time point 1 to 7 the amount of pheromones on E1 is0.0.
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L P5 (Selection of Edge)

This property models (part of) the edge selection mechanism of the ants. It expresses that, when an ant a ob-
servesthat it is at location | coming from edge €0, and there are two other edges connected to that location, then
the ant goes to the edge with the highest amount of pheromones. Formalisation:

observes(a, is_at_location_from(l, €0)) and neighbours(l, 3) and connected_to_via(l, 11, el) and observes(a, pheromones_at(el, i1))
and connected_to_via(l, 12, e2) and observes(a, pheromones_at(e2, i2)) and e0 # el and e0 # e2 and el # e2 and i1 > i2 —0,0,1,1
to_be_performed(a, go_to_edge_from_to(el, I1))

L P9 (Dropping of Pheromones)

This property expresses that, if an ant observes that it is at an edge e from a location | to a location 11, then it
will drop pheromones at this edge e. Formalisation:

observes(a, is_at_edge_from_to(e, I, I11)) -0,0,1,1 to_be_performed(a, drop_pheromones_at_edge_from(e, 1))

L P13 (Increment of Pher omones)

This property models (part of) the increment of the number of pheromones at an edge as a result of ants drop-
ping pheromones. It expresses that, if an ant drops pheromones at edge e, and no other ants drop pheromones at
this edge, then the new number of pheromones at e becomes i* decay+incr. Here, i is the old number of phero-
mones, decay is the decay factor, and incr is the amount of pheromones dropped. Formalisation:

to_be_performed(al, drop_pheromones_at_edge_from(e, 11)) and CI2 not to_be_performed(a2, drop_pheromones_at_edge_from(e,
12)) and I3 not to_be_performed(a3, drop_pheromones_at_edge_from(e, I13)) and al # a2 and al # a3 and a2 # a3 and phero-

mones_at(e, i) —-0,0,1,1 pheromones_at(e, i*decay+incr)

Box 1. Example LEADSTO specification

Although this picture provides a very simple example (involving only three ants), it dem-
onstrates the power of LEADSTO to combine (real-valued) quantitative concepts with (con-
ceptual) qualitative concepts.

g‘ Leads To Simulation Tool | . ‘J|

Eile  Seftings Hle: ’W
=/ g
to_be_performed(ant1, drop_food)- \
to_be_performed(ant1, pick_up_food) i i
to_be_performed(ant2, drop_food)- i I —
to_be_performed(ant2, pick_up_food) i
to_be_performed(ant3, drop_food)- ]
to_be_performed(ant3, pick_up_food)- ]
ﬂme 1 1 2 25 3 35 4 45 i 55 1] B5 7 75 a0
pheromones_at_E1(X)

x 20
18
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14
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10
&

|

[
4
2
] L n L L
0 5 10 15 20 25 30 35 40 45 50 55 1] 65 70 75 a0

E Quit |Loadmg and running specification ants-leadsto lt.. Simulation completed

Fig. 4. Example smulation trace

Thus, Figure 4 shows an easy to read (important for the communication with the domain
expert), compact, and executable representation of an informal model for ant behaviour.
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Moreover, the example demonstrates the power of conceptual modelling based on highly
abstract process descriptions. In less than 3 pages of code, the global dynamics of ant behav-
iour are so well defined that the specification actually runs. The specification took only a
couple of days to construct, making the LEADSTO approach valuable for proof-of-concept
simulations, thus important for Agent-Oriented Software Engineering.

Finally, note that the ant example does not fully exploit the power of to use real-valued
time parameters (in fact, most of the rules use the values 0,0,1,1 for the parameterse, f, g, h,
see Box 1). Nevertheless, in a number of other domains the use of real-valued time parame-
ters turned out to be beneficial, since it allows for more realistic simulations of dynamic
processes. An example domain where this was the case, is the domain of adaptive agents
based on classical conditioning, see[2].

4 Tools

In this section, the LEADST O software environment is presented. Basically, this environment
consists of two programs: the Property Editor (a graphical editor for constructing and editing
LEADSTO specifications) and the Smulation Tool (for performing simulations of
LEADSTO specifications, generating data-files containing traces for further analysis, and
showing traces). Apart from the LEADSTO language constructs introduced in Section 2 the
LEADSTO software has a number of other language constructs. Section 4.1 discusses some
details. Next, Section 4.2 introduces the Property Editor and Section 4.3 deals with the Simu-
lation Tool. Section 4.4 describes the algorithm used to generate simulations. Finally, Section
4.5 provides some implementation details and discusses possible improvements for the fu-
ture.

4.1 Detailsof the LEADSTO language

There are various representations of LEADSTO specifications. A graphical representation is
shown in Section 4.2 when discussing the Editor. In this section all language constructs are
discussed using aformal representation, based on the way specifications are stored.

Variables. The language uses typed variables in various constructs. A variable is represented
as <Var-Name>:<Sort>.

Sorts. Sorts may be defined as a set of instances that may be specified: sortdef(<Sort-Name>,
[<Term>,...]). There are also built-in sorts such as integer, real, and ranges of integers repre-
sented as for example between(2,10).

Atoms. Atoms may be terms built up from names with argument lists where each argument
must be aterm or avariable, for example: belief(x AGENT, food_present).

LEADSTO rules. LEADSTO rules areintroduced in Section 2. They are represented as:
leadsto([<Vars>,] <Antecedent-Formula>, <Consequent-Formula>, <Delay>, where
<Delay> := efgh(<E-Range>,<F-Range>, <G-Range>,<H-Range>))!
<Vars> :=“[* <Variable>,... “]"
For example, o — g, 0, 1,1 B iS represented as leadsto(alfa, beta, efgh(0,0,1,1)). Variables occur-
ring in LEADSTO rules must be explicitly declared as <variable> entries.
Formulae. LEADSTO rules contain formulae. The current implementation allows conjunc-
tions and universal quantification over typed variables. Some variables are global, encom-

1 The reason for grouping the delay isto make it easier to use delay constants.
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passing the whole rule. Other - local - variables are part of universal quantification of some
conjunction. The first kind of variables may be of infinite types. Currently, local variables
must be of finite types. Some of these restrictions — such as on not allowing digunction —
will be removed in a next version. This will have no effect on the performance of the algo-
rithm discussed in Section 4.4, but will make the details of the algorithm more complex.
Other restrictions with respect to variables of infinite type will remain.

Time/Range. Time and Range values occurring in LEADSTO rules and interval constructs
may be any number or expression evaluating to a number.

Constants. Constants may be defined using the following construct: constant(<Name>,
<Value>). A constant(C1, a(1)) entry in a specification will lead to c1 being substituted by a(1)
everywhere in the specification.

Intervals. During simulation, some atom values will be derived from LEADSTO rules. Oth-
ers are not defined by rules but represent constant values of atoms over a certain time range.
They are expressed as:. interval([<Vars>,]<Range>,<LiteralConjunction>). Periodically reoccurring
constant values are represented as. periodic([<Vars>,]<Range>,<Period>,<LiteralConjunction>),
where

<Range> := range(<Start-Time>,<End-Time>)

<Vars> :=“[“ <Variable>,... “]"

<Period> : an expression or constant or variable representing a number.

<LiteralConjunction> := <Literal> { and <Literal> }*
<Literal> := <Atom> | not <Atom>

For example, an entry interval([X:between(1,2)], range(10,20), a(X)) makes a(1) and a(2) true in the
time range (10,20). Likewise, an entry periodic(P, range(0,1), 10) makes P true in time ranges
(0,1, (10,11), (20,21), and so on.

Simulation Range. The time range over which the simulation must be run is expressed by
means of the constructs start_time(<Time>) and end_time(<Time>).

Visualisation of Traces. The construct display(<Tag-Name>, <Property>) iS used to specify
details of how to display the traces. The <Tag-Name> argument makes it possible to define
multiple views of atrace. The active view may be specified from within the User Interface of
the Simulation Tool. A number of properties may be specified, for showing or hiding certain
atoms, for sorting atoms, for grouping atoms into a graph, and so on.

4.2 Property Editor

The Property Editor provides a user-friendly way of building and editing LEADSTO specifi-
cations. It was designed in particular for laymen and students. The tool has been used suc-
cessfully by students with no computer science background and by users with little computer
experience. By means of graphical manipulation and filling in of forms a LEADSTO specifi-
cation may be constructed. The end result is a saved LEADSTO specification file, containing
entries discussed in section 4.1. Figure 5 gives an example of how LEADSTO specifications
are presented and may be edited with the Property Editor. This screenshot corresponds to
(part of) the specification given in Box 1.
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Fig. 5. The LEADSTO Property Editor

K1

4.3 Simulation Tool

Figure 6 gives an overview of the Simulation Tool and its interaction with the LEADSTO
Property Editor.

‘ LEADSTO
gl Property Editor

LEADSTO
Specification Files

A

LEADSTO Specification Loader i i
Sp .. Simulation Tool
) Control
Intermediate Code Generator GUl
Runtime System
— Y
Internal 72 Trace Visudisation
Trace Storage Trace Loader > Gul

I A A

The bold rectangular borders define the separate tools. The lines with arrows represent data
transport; the dashed arrows represent control. The Property Editor is used to generate and
store LEADSTO specification files. The Simulation Tool |oads these specification files. The

Fig 6. Simulation Tool Architecture
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overall control of the Simulation Tool is handled by the Control-GUI component. The Simu-
lation Tool can perform the following activities:

e Loading LEADSTO specifications, performing a simulation and displaying the result.
« Loading and displaying existing traces (without performing simulation).
¢ Adjusting the visualisation of traces.

Loading and simulating a LEADSTO specification is handled in four steps:

1. The Soecification Loader |oads the specification.

2. The Intermediate Code Generator initialises the trace situation with values defined by
interval and periodic entries in the specification. The LEADSTO rules are preprocessed:
constants are substituted, universal quantifications are expanded and the rules are par-
tially compiled into Prolog calls.

3. The actual simulation is performed by the Runtime System. This is the part that con-
tains the algorithm, discussed in the next section.

4. At the end of asimulation the result is stored internally by the Internal Trace Sorage
component. The result can be saved as a trace file containing the evolution over time
of truth values of all atoms occurring in the simulation, and will be visualised by the
Trace Visualisation GUI. In principle, traces are three-valued, using the truth values
true, false, and unknown. Saved trace files can be inspected later by the simulation tool
and can be used by other tools, e.g., for automated analysis.

Note that visualisation of traces is integrated into the Simulation Tool through the Trace
Visualisation GUI component. It is possible to select what atoms must be shown and in what
order (sorting) etc. Figure 4 is an example of the visualisation of the result of a simulation.

4.4 Simulation Engine Algorithm

In this section a sketch of the simulation algorithm is given. The core of the semantics is
determined by the LEADSTO rules, for example leadsto(alpha,beta, efghe, f, g, h)) or (in the
notation of Section 2) a — ¢, 1 ¢, n B- The state properties a, B are internally normalised. Cur-
rently, only state properties that can be simplified to conjunctions of literals are allowed.

Restrictions on delays

The parameters g and h are time intervals, they must be >= 0. The algorithm alows only
causal rules, e,f >= 0. Allowing e,f < 0 would lead to non-causal behaviour (any trace situa-
tion could have an effect arbitrarily in the past) and an awkward simulation algorithm. The
causal nature of the semantics of LEADSTO rules results in a straightforward algorithm: at
each time point, a bound part of the past of the trace (the maximum of al g values of all
rules) determines the values of a bound range of the future trace (the maximum of f + h over
al LEADSTO rules).

Outline of the algorithm

First all interval and periodic entries are handled by setting the ranges of atoms according to
their definition. Next, for the algorithm a time variable HandledTime is introduced: all
LEADSTO rules with antecedent range up to HandledTime have fired. The ideaisto propagate
HandledTime until HandledTime >= EndTime? viathe following steps:

1. At acertain HandledTime, a value for NextTime is calculated. This will be the first
time in the future after HandledTime that firing of a LEADSTO rule with its g-interval
(see Figure 1) extending past HandledTime may have effect in the form of some conse-

2 EndTime is the time up to which the simulation should be run.
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guent atom set. The time increment will be at least as big as the minimum of e + h over
all LEADSTO rules.

2. An (optiona) Closed World Assumption is performed for all selected atoms in the
range (HandledTime, NextTime), i.e., al unknown atoms in this range are made false.

3. All LEADSTO rules are applied for which the range of the antecedent ends before or
overlaps with NextTime.

4. Set HandledTime := NextTime

5. Continue with step 1 until HandledTime >= EndTime

4.5 Implementation Details

The complexity of the current algorithm is proportional to the number of LEADSTO rulesin
the specification, to the number of incremental time steps of the algorithm (which is at most
equal to the length of the smulation divided by the minimum of e + h over al LEADSTO
rules) and (at most) to the number of matching antecedent atoms per LEADSTO rule (limited
by the number of atoms set during the smulation). A number of optimizations aready im-
prove the performance, such as only considering antecedent atoms that have matching values
in the (HandledTime, NextTime) time range and not considering LEADSTO rules that have
been tested to not fire until some timein the future.

The software was written in SWI-Prolog/XPCE, and consists of approximately 20000
lines of code. The approach for the design and implementation has been to first focus on a
complete implementation that is easily adaptable, with acceptable performance for the current
users. For an impression of the performance: the simulation of Section 3 took two seconds on
aregular Personal Computer. More complex LEADSTO simulations have been created that
take about half an hour to run. For example: one smulation with 170 LEADSTO rules, 2000
time steps, with 15000 atoms set, took 45 minutes.

There is room for further performance improvement of the algorithm. One possible im-
provement is to increase the time increment NextTime — HandledTime introduced in the algo-
rithm above. Global analysis of dependency of LEADSTO rules should improve the perform-
ance, for instance by trying to eliminate simple rules with small values of their e + h parame-
ters. Furthermore, the LEADSTO language is being extended with constructs for probabilistic
rules, and with constructs for systematically generating traces of LEADSTO specifications
for arange of parameters.

5 Related Work

In the literature, a number of modelling approaches exist that have similarities to the ap-
proach discussed in this paper. Firstly, there is the family of approaches based on differential
or difference equations (see, e.g., [9]). In these approaches, to simulate processes by mathe-
matical means, difference equations are used, for example, of the form: Ax = f(x) ot or x(t +
AY) = x(1) + f(x(t)) At. This can be modelled in the LEADSTO language as follows (where d is
At): has_value(x, v) —d d. d, d has_value(x, v+f(v)*d). This shows how the LEADSTO modelling
language subsumes modelling approaches based on difference equations. In addition to those
approaches the LEADSTO language allows to express qualitative and logical aspects.
Another modelling approach, Executable Temporal Logic [1], is based on temporal logic
formulae of the form ¢ & X = W, where ¢ is a past formula, X a present formula and Y a
future formula. In comparison to this format, the LEADSTO format is more expressive in the
sense that it allows order-sorted logic for state properties, and allows one to express quantita-
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tive aspects. Moreover, the explicitly expressed timing parameters go beyond Executable
Temporal Logic. On the other hand, within Executable Temporal Logic it is alowed to refer
to different past states at different points in time, and thus to model more complex relation-
ships over time. For the LEADSTO language the choice has been made to model only the
basic mechanisms of a process (e.g., the direct causal relations), like in modelling approaches
based on difference equations, and not to model the more complex mechanisms.

The Duration Calculus [11] is a modal logic for describing and reasoning about the real-
time behaviour of dynamic systems, where states change over time and are represented by
functions from time (reals) to the Boolean values (0 and 1). It is an extension of Interval
Temporal Logic [7], but with continuous time, and uses integrated durations of states as in-
terval temporal variables. Assuming finite variability of state functions (i.e., between any two
time points only a finite number of state changes occurs), the axioms and rules of Duration
Calculus congtitute a complete logic (relative to Interval Tempora Logic). A number of in-
teresting tools have been created around (subsets of) Duration Calculus, see, e.g., [8] for
information on model checking duration calculus formulae. Duration Calculus itself is not
directly used for creating executable models, but environments for executable code exist
(e.g., PLC automata, see[4]) for which a semanticsis given in Duration Calculus.

Another family of modelling approaches based on causal relations is the class of qualita-
tive reasoning techniques (see, e.g., [5]). The main idea of these approaches is to represent
quantitative knowledge in terms of abstract, qualitative concepts. Like the LEADSTO lan-
guage, qualitative reasoning can be used to perform simulation. A difference with LEADSTO
isthat it is a purely qualitative approach, and that it is less expressive with respect to tempo-
ral and quantitative aspects.

6 Conclusion

This article presents the language and software environment LEADSTO that has been devel-
oped to model and simulate the dynamics of Multi-Agent Systems on the basis of highly
abstract process descriptions. If those dynamics are modelled correctly, the LEADSTO soft-
ware environment can use them for simulation of the desired behaviour of the system. Al-
though such simulations are no formal proof, they can contribute to an informal validation of
the specification: by performing a number of simulations, it can be tested whether the behav-
iour of the specification is satisfactory. Therefore, LEADSTO may be an important tool to
bridge the gap between the Design and the Implementation phase.

Within LEADSTO, dynamics can be modelled in terms of both qualitative and quantitative
concepts. It is, for example, possible to model differential and difference equations, and to
combine those with discrete qualitative modelling approaches. Existing languages are either
not accompanied by a software environment that allows simulation of the model, or do not
allow the combination of both qualitative and quantitative concepts.

The language LEADSTO is a declarative order-sorted temporal language extended with
quantitative notions (like integer, and real). Time is considered linear, continuous, described
by real values. Dynamics can be modelled in LEADSTO as evolution of states over time, i.e.,
by modelling the direct temporal dependencies between state properties in successive states.
The use of durations in these temporal properties facilitates the modelling of such temporal
dependencies. In principle, accurately modelling the dynamics of processes may require the
use of a dense notion of time, instead of the more practiced variants of discrete time. The
problem in a dense time frame of having an infinite number of time points between any two
time points is tackled in LEADSTO by the assumption of “Finite Variability” (see Section 5
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and, e.g., [11]). Furthermore, main advantages of the LEADSTO language are that it is ex-
ecutable and allows for graphical representation.

The software environment LEADSTO was developed especially for the language. It fea-
tures a dedicated Property Editor that proved its value for laymen, students and expert users.
The core component is the Simulation Tool that performs simulations of LEADSTO specifi-
cations, generates simulation traces for further analysis, and visualises the traces.

The approach proved its value in a number of research projects in different domains. It has
been used to analyse and simulate behavioural dynamics of agents in cognitive science (e.g.,
human reasoning, creation of consciousness, diagnosis of eating disorders), biology (e.g., cell
decision processes, the dynamics of the heart), social science (e.g., organisation dynamics,
incident management), and artificial intelligence (e.g., design processes, ant colony behav-
iour). LEADSTO is so rich that it can be used to model phenomena from diverse perspec-
tives. It has, for example, been used to model cognitive processes from a psychological/BDI
perspective and from a physical/neurological perspective. For more publications about these
applications, the reader isreferred to the authors' homepages.
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Abstract. Within many domains, among which biological and cognitive areas, multiple
interacting processes occur with dynamics that are hard to handle. Current approaches
to analyse the dynamics of such processes, often based on differential equations, are not
aways successful. As an alternative to differential equations, this paper presents the
predicate logical Temporal Trace Language (TTL) for the formal specification and
analysis of dynamic properties. This language supports the specification of both quali-
tative and quantitative aspects, and therefore subsumes specification languages based
on differential equations. A special software environment has been developed for TTL,
featuring both a Property Editor for building and editing TTL properties and a Check-
ing Tool that enables the formal verification of properties against a set of traces. TTL
has a number of advantages, among which a high expressivity and the possibility to de-
fine sublanguages for simulation and verification of entailment relations. TTL proved
its value in anumber of projects within different domains.

1 Introduction

Within many domains, among which biological and cognitive areas, multiple interacting
processes occur with dynamics that are hard to handle. Modelling the dynamics of such proc-
esses poses real challenges for biologists and cognitive scientists. Currently, within the areas
mentioned, differential equations are among the techniques most often used to address this
challenge, with limited success. For example, in the area of intracellular processes, hundreds
or more reaction parameters (for which reliable values are rarely available) are needed to
model the processes in question (Teusink et al., 2000). Thus, describing these processes in
terms of differential equations can seriousdy compromise the feasibility of the model. Like-
wise, in the area of Cognitive Science it is advocated to take the Dynamical Systems Theory
(DST, see e.g., Port and Gelder, 1995), which is also based on differential equations, as a
point of departure. Many convincing examples have illustrated the usefulness of DST; how-
ever, they often only address lower-level cognitive processes such as sensory or motor proc-
essing. Areas for which a quantitative approach based on DST offers less are the dynamics of
higher-level processes with mainly a qualitative character, such as reasoning, complex task
performance, and certain capabilities of language processing.
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As illustrated by these examples, within several disciplines it is felt that more abstract
modelling techniques are required to cope with the complexity. This paper introduces the
Temporal Trace Language (TTL) as such an abstract technique for the analysis of dynamic
properties within complex domains.

In Section 2, some desiderata are put forward for a suitable approach for modelling com-
plex dynamic processes, resulting in a novel perspective for the development of such an ap-
proach, based on the idea of checking dynamic properties on practically given sets of traces.
Next, in Section 3, the basic concepts of the TTL language are introduced. In Section 4 it is
shown how TTL can be used to express different kinds of dynamic properties. In Section 5, it
is shown how dynamic properties that are expressed in related languages can be trandated
into TTL. Section 6 describes the tools that support the TTL modelling environment in detail.
In particular, the TTL Property Editor and the TTL Checker Tool are discussed. Section 7 is
aconclusion.

2 Perspective of thispaper

As can be seen in the discussion about the different areas as given above, the demands for
dynamic modelling approaches suitable for these areas are nontrivial. Such desiderata for
modelling languages include:

(1) modelling at the right level of abstraction

(2) expressivity for logical relationships

(3) expressivity for quantitative relationships

(4) both discrete and continuous modelling

(5) difference and differential equations should be subsumed

(6) expressivity for dynamic properties of varying complexity, for example including

adaptivity
Moreover, analysis techniques that would be desirable concern both the generation and

formalisation of simulated and empirical trajectories or traces, as well as analysis of complex
dynamic properties of such traces and relationships between such properties. Such desiderata
for analysis techniques include:

(a) generating traces by simulation based on quantitative, continuous variables

(b) generating traces by simulation based on qualitative, logical notions

(c) formalisation of simulated or empirical traces

(d) analysisof properties of simulated traces

(e) analysisof properties of empirical traces

(f) analysis of relationships between (e.g., global and local) properties of traces

Taken together, the desiderata gathered above are not easy to fulfill. Sometimes they may

even be considered mutually exclusive. On the one hand, high expressivity is desired, but on
the other hand feasible analysis techniques are demanded. To make automated support for
these analyses feasible, often the strategy is followed to limit the expressivity of the model-
ling language, thereby compromising on the first list of desiderata. For example, the expres-
sivity islimited to difference and differential equations asin DST (excluding logical relation-
ships, compromising at least (2)), or to propositional modal temporal logics (excluding nu-
merical relationships, compromising at least (3), (5), (6)). In the former case calculus can be
exploited to do simulation and analysis (Port and van Gelder, 1995), fulfilling (a) and (c) but
not (b), (d), (e) and (f). In the latter case, for example, simulation can be based on a specific
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executable format (e.g., executable temporal logic (Barringer et al, 1996), fulfilling (b) and
(c) but not (a), (d), (e) and (f)) and model checking techniques can be exploited for analysis
of relationships between dynamic properties, fulfilling (d) to (f), e.g., (Clarke et al., 2000;
Manna and Pnueli, 1995; Stirling, 2001).

Within the literature on analysis of properties (verification), much emphasis is put on
computation of entailment relations. This essentially means checking properties on the set of
all theoretically possible traces of a process. To make that feasible, expressivity of the lan-
guage for these properties has to be sacrificed to alarge extent. However, checking properties
on a practically given set of traces (instead of all theoretically possible ones) is computation-
aly much cheaper, and therefore the language for these properties can be more expressive.
Such a set can consist of one or a number of traces, obtained empirically or by simulation. By
limiting the desiderata by giving up (f), but still keeping (c) to (€), a much more expressive
language for properties can be dealt with; the sorted predicate logic temporal trace language
TTL described in this paper is an example of this.

For simulation it is essential to have limitations to the language. Therefore, an executable
language can be defined as a sublanguage of the overall language for analysis. Moreover,
also analysis languages that allow analysis in the sense of (f) can be embedded in the overall
language. Thus the picture shown in Figure 1 is obtained. At the top there is an expressive
overall language, in our case TTL, which fulfills all of the desiderata for modelling lan-
guages, i.e., (1) to (6). Concerning the desiderata for analysis techniques, it fulfills (c) to (e),
but sacrifices (a), (b) and (f). In addition, a sublanguage can be defined for execution (fulfill-
ing (1) to (5) and (a) and (b)), and a sublanguage can be defined for analysis of relationships
between properties in the sense of (f), thereby also fulfilling (1) and (2)*. For the case of
TTL, one of the executable sublanguages that already exist is the LEADSTO language, cf.
(Bosse et al., 2005b). Moreover, for the sublanguage for analysis one could think of any
standard temporal logic, suchasLTL or CTL, see, e.g., (Benthem, 1983; Goldblatt, 1992).

L, TTL
L,:LEADSTO
L - temporal logic
.Lg;c Lan

Figure 1. Embedding relationships between languages

Loy

Having the language for simulation and the languages for analysis within one subsuming
language provides the possibility to have a declarative specification of a simulation model,
and thus to involve a simulation model in logical analyses.

Un principle, such languages could aso fulfill (6), but only to a certain extent. See Section 5.3 for an
elaborate discussion.
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3 Basic Concepts

To describe dynamics, the notion of state is important. Dynamics will be described in the
next section as evolution of states over time. The notion of state as used here is characterised
on the basis of an ontology defining a set of physical and/or mental (state) properties (follow-
ing, among others, (Kim, 1998)) that do or do not hold at a certain point in time. These prop-
erties are often called state properties to distinguish them from dynamic properties that relate
different states over time. A specific state is characterised by dividing the set of state proper-
ties into those that hold, and those that do not hold in the state. Examples of state properties
are ‘the agent is hungry’, ‘the agent has pain’, ‘the agent's body temperature is 37.5° C’, or
‘the environmental temperature is 7° C'. Real value assignments to variables are also consid-
ered as possible state property descriptions. For example, in a DST approach based on vari-
ables x4, x2, xs, x4, that are related by differential equations over time, value assignments such
as

X1 ~ 0.06
X2 ~ 1.84
X3 ~ 3.36
X4 « -0.27

are considered state descriptions. State properties are described by ontologies that define the
concepts used.

3.1 Ontologies and State Properties

To formalise state property descriptions, ontologies are specified in a (many-sorted) first
order logical format: an ontology is specified as a finite set of sorts, constants within these
sorts, and relations and functions over these sorts (sometimes also called a signature). The
example state properties mentioned above then can be defined by nullary predicates (or
proposition symbols) such as hungry, or pain, or by using n-ary predicates (with n>1) like
has_temperature(body, 37.5), has_temperature(environment, 7), OF has_value (x1, 0.06).

For a given ontology ont, the propositional language signature consisting of al state
ground atoms based on ont is denoted by At(Ont). The state properties based on a certain
ontology ont are formalised by the propositions that can be made (using conjunction, nega-
tion, digunction, implication) from the ground atoms and constitute the set SPROP(Ont).

In many domains, it is desirable to distinguish different agents that are involved in the
process under analysis. Moreover, it is often useful to distinguish between the internal, exter-
nal, input, and output state properties of these agents. To this end, the following different
types of ontologies are introduced:

«  IntOnt(A): to expressinternal state properties of the agent A

«  InOnt(A): to express state properties of the input of agent A

«  OutOnt(A)): to express state properties of the output of the agent, and
«  ExtOnt(A): to express state properties of the external world (for A)

For example, the state property pain may belong to IntOnt(A), whereas
has_temperature(environment, 7), may belong to Extont(A). The agent input ontology InOnt(A)
defines properties for perception, the agent output ontology outOnt(A) properties that indicate
initiations of actions of A within the external world. The combination of InoOnt(A) and Ou-
tont(A) is the agent interaction ontology, defined by InteractionOnt(A) = InOnt(A) O OutOnt(A).
The overall ontology for A is assumed to be the union of all ontologies mentioned above:
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OvOnt(A) = InOnt(A) O IntOnt(A) O OutOnt(A) O ExtOnt(A).

As yet no distinction between physical and mental internal state properties is made; the for-
mal framework introduced in subsequent sections does not assume such a distinction. If no
confusion is expected about the agent to which ontologies refer, the reference to A is some-
times left out.

3.2 Different Types of States

a) A state for a given ontology Ont is an assignment of truth-values {true, false} to the set of
ground atoms At(Ont). The set of all possible states for an ontology ont is denoted by
STATES(Ont). In particular, STATES(OvOnt) denotes the set of all possible overall states. For
the agent STATES(IntOnt) is the set of all of its possible internal states. Moreover,
STATES(InteractionOnt) denotes the set of all interaction states.

b) The standard satisfaction relation = between states and state properties is used: S = p
means that property p holds in state s. Here = is a predicate symbol in the language, usually
used in infix notation, which is comparable to the Holds-predicate in situation calculus. For a
property p expressed in Ont, the set of states over ont in which p holds (i.e., the s with s = p)
is denoted by STATES(Ont, p).

c) For a state s over ontology ont with sub-ontology ont, a restriction of S to ont’ can be
made, denoted by s|ont’; this restriction is the member of STATES(Ont’) defined by S|ont'(a) =
S(a) if a O Atont). For example, if sisan overal state, i.e., amember of STATES(OvOnt), then
the restriction of s to the interna atoms, S|intOnt is an interna state, i.e., a member of
STATES(IntOnt). The restriction operator serves as a form of projection of a combined state
onto one of its parts.

4 Expressing Dynamic Properties

To describe the (internal and external) dynamics of an agent, explicit reference is made to
time. Dynamic properties can be formulated that relate a state at one point in time to a state at
another point in time. Some examples of dynamic properties of a certain agent are shown
below, using an informal (natural language) notation.

A simple example is the following dynamic property specification for belief creation
based on observation:

Observational belief creation

‘At any point in timetl if the agent observes at t1 that it is raining, then there exists a point in time t2 after t1 such
that at t2 the agent believes that it israining'.

An example of another type is trust monotonicity; this dynamic property specification about
the dynamics of trust over time involves the comparison of two histories:

Trust monotonicity

‘For any two possible histories, the better the agent’s experiences with public transportation, the higher the agent’s
trust in public transportation’.

These examples were kept simple; they are just meant as illustrations. No attempt was made
to make them as realistic as possible. Aswill be explained below, TTL can be used to express
such dynamic properties, and other, more sophisticated ones, in a formal manner. First, in
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Section 4.1 the notion of trace is defined more explicitly. Next, in Section 4.2 it is shown in
detail how dynamic properties can be expressed formally in TTL.

4.1 TimeFrameand Trace

a) A fixed time frame T is assumed which islinearly ordered. Depending on the application, it
may be dense (e.g., the real numbers), or discrete (e.g., the set of integers or natural numbers
or afiniteinitial segment of the natural numbers), or any other form, aslong asit has alinear
ordering.

b) A trace y over anontology ont andtimeframeT isatime-indexed set of states
v OT)

in STATES(Ont), i.e., amapping
y: T - STATES(Ont).

For the specification of dynamic properties, these definitions work fine. However, for some
specific operations (such as verification), a dense time frame may cause problems, since it
consists of an infinite number of time points. Therefore, in such cases finite variability of
state functions is assumed (i.e., between any two time points only a finite number of state
changes occurs). Thisisdiscussed in more detail in Section 6.

Traces can be visualised, for example asin Figure 2. Here, the time frame is depicted on
the horizontal axis. The different predicates of the ontology are shown on the vertical axis. A
dark box on top of the line indicates that the predicate is true during that time period, and a
lighter box below the line indicates that it isfalse. Thus, in the example of Figure 2, predicate1
is true during the whole trace, predicate2 is true from time point 2.5 to time point 4.25, and
predicate3 is true from time point 2 to 3 and from time point 8 to 10.

The set of al traces over ontology Ont is denoted by TRACES(Ont) , i.€., TRACES(Ont) =
STATES(Ont)".

predicate1
predicate2 I 1

predicate3 1 -
time [ 05 I 15 2 25 3 3.5 4 45 5 55 3 65 7 7.5 a5 9 9.5 10

Figure 2. Example visualisation of atrace

¢) A temporal domain description w isagiven set of traces over the overall ontology, i.e.,
w [ TRACES(OvOnt).

This set represents all possible developments over time (respecting the world's laws) of the
part of the world considered in the application domain.

Different traces with respect to an agent A can refer to different experiments with A in-
volving different worlds, or different events generated in the world. For human beings one
can think of a set of experiments in cognitive science, in which different experiments are not
assumed to influence the behaviour of the agent. For software agents, it is possible to even
erase the complete history (complete reset) and then activate the agent in a new world setting.

d) Given atracey over the overall ontology ovont, the input state of an agent A at time point
t, I.€., vt |InOnt(A), is also denoted by

state(y, t, input(A)).

90



Analogoudly, state(y, t, output(A)) denotes the output state of the agent at time point t, state(y, t,
internal(A)) denotes the internal state, and state(y, t, external(A)) denotes the external world state.
If no confusion is expected about the particular agent, the reference to A can be left out, e.g.,
as in state(y, t, input). Moreover, the overall state of a system (agent and environment) at a
certain moment, is denoted by state(y, t).

4.2 Dynamic Properties

To express dynamic properties in a precise manner, it is needed to make explicit references to
time points and traces. Comparable to the approach in situation calculus, TTL is built on
atoms referring to, e.g., traces, time and state properties. For example, ‘in the output state of
Aintracey at timet property p holds' isformalised by

state(y, t, output(A)) & p.

Throughout the remainder of this paper, these kinds of atoms will be referred to as Holds
atoms. Based on such Holds atoms, Dynamic Properties can be built using the usua logical
connectives and quantification (for example, over traces, time and state properties). For ex-
ample, the following dynamic properties can be expressed:

Observational belief creation

‘In any trace, if at any point in time t1 the agent A observes that it is raining, then there exists a point in time t2
after t1 such that at t2 in the trace the agent A believesthat it israining’.

In formalised form:

OyOw 0Ot
[ state(y, t1, input(A)) = observation_result(itsraining)
= [@2>1t1 state(y, t2, internal(A)) £ belief(itsraining) ]
Trust monotonicity
‘For any two traces y1 and y2, if at each time point t the agent A’s experience with public transportationiny2 at t is

at least as good as A’s experience with public transportation in y1 at t, then in trace y2 at each point in time t, the
A’strustisat least ashighasA’strust at t intraceyl’.

In formalised form:

Oy, y2 0OW
[Ot [ state(yl, t, input(A)) £ has_value(experience, v1) &
state(y2, t, input(A)) = has_value(experience, v2) = vi<v2 |
=
Ot [ state(yl, t, internal(A)) = has_value(trust, wl) &
state(y2, t, internal(A)) = has_value(trust, w2) = wlsw2 ]]

Instead of the term Dynamic Property, sometimes the term TTL Formula is used within this
paper. This is especialy the case in Section 6, where the focus is on the technical aspects of
the language.

5 Relation to other Languages

In this section, TTL will be compared with a number of existing related languages. In Section
5.1 it is shown how differential equations can be modelled in TTL. In Section 5.2 it is shown
how executable properties expressed in LEADSTO can be trandated into TTL, and in Sec-
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tion 5.3 it is shown how properties expressed in standard Linear Temporal Logic (LTL) can
be trandated into TTL.

5.1 Expressing Difference and Differential Equationsin TTL

As mentioned in the Introduction, especially in cognitive domains complex continuous rela-
tionships over time can be encountered. These relationships are often modelled semantically
by differential equations, usually assumed to belong to the Dynamical Systems approach
(DST), put forward, e.g., in (Port and Van Gelder, 1995). The question may arise whether or
not such modelling techniques can be expressed in the Temporal Trace Language TTL. In
this section it is shown how modelling techniques used in the dynamical systems approach,
such as difference and differential equations, can be represented in TTL. First the discrete
case is considered. An example of an application is the study of the use of logistic and other
difference equations to model growth (and in particular growth spurts) of various cognitive
phenomena, e.g., the growth of a child’s lexicon between 10 and 17 months, cf. (Geert,
1995). Thelogistic difference equation used is:
L(n+1) = L(n) (1 +r-r L(n)/K)
Here r is the growth rate and K the carrying capacity. This equation can be expressed in our
temporal trace language on the basis of a discrete time frame (e.g., the natural numbers) in a
straightforward manner:
OyoOw Ot
state(y, t, internal) = has_value(L, v) =
state(y, t+1, internal) & has_value(L, v (1 + r - rv/K))
The traces y satisfying the above dynamic property are the solutions of the difference equa-
tion. Another illustration is the dynamical model for decision-making presented in (Town-
send and Busemeyer, 1995). The core of their decision model for the dynamics of the prefer-
ence P for an action is based on the differential equation
dP(t)/dt = -s P(t) +c V(t)
where s and ¢ are constants and v is a given evaluation function. One straightforward option
is to use a discrete time frame and model a discretised version of this differential equation
along the lines discussed above. However, it is also possible to use the dense time frame of
the real numbers, and to express the differential equation directly. To this end, the following
relation isintroduced, expressing that x = dy/dt:
is_diff_of(y, x, y) :
Ot,w Og>0 (B>0 Ot',v,v'
0 < dist(t',t) < & & state(y, t, internal) = has_value(x, w)
& state(y, t, internal) = has_value(y, v)
& state(y, t', internal) & has_value(y, V')
= dist((V-v)/(t-t)w) < e
where dist(u,v) is defined as the absolute value of the difference, i.e. u-v if thisis= 0, and v-u
otherwise. Using this, the differential equation can be expressed by:

is_diff_of(y,-sP +cV,P)
The traces y for which this statement is true are (or include) solutions for the differential
equation.
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Models consisting of combinations of difference or differential equations can be ex-
pressed in a similar manner. This shows how modelling constructs often used in DST can be
expressed in TTL.

5.2 Expressing Executable Propertiesin TTL

As mentioned in Section 2, executable languages can be defined as sublanguages of TTL. An
example of such a language, which was specifically designed for the simulation of dynamic
processes in terms of both qualitative and quantitative concepts, is the LEADSTO language,
cf. (Bosse et al., 2005b). Below, it is shown how dynamic properties expressed in LEADSTO
can betrandatedto TTL.

The LEADSTO language enables one to model direct temporal dependencies between
two state propertiesin states at different pointsin time. A specification of dynamic properties
in LEADSTO format has as advantages that it is executable and that it can often easily be
depicted graphically. The format of LEADSTO is defined as follows. Let a and B be state
properties of the form ‘ conjunction of atoms or negations of atoms’, and e, f, g, h non-negative
real numbers. In the LEADSTO language the notation o — ¢ 1 g, n B, Means:

If state property a holds for a certain timeinterval with duration g, then after some delay
(between e and f) state property 3 will hold for a certain time interval of length h.

In terms of TTL, the fact that the above statement holds for a trace y can be expressed as
follows:

O[Ot [tl-g<t<tl = state(y, ) Fa]=> [esd<f & Ot [tl+d< t'< tl+d+h = state(y,t) FEB]

5.3 Expressing Standard Temporal Logicsin TTL

As mentioned in Section 2, besides executable languages also languages often used for the
verification of entailment relations can be defined as sublanguages of TTL. Examples of such
languagesare LTL and CTL, see, e.g., (Benthem, 1983; Goldblatt, 1992). In this section, it is
briefly shown how dynamic properties expressed as formulae in standard temporal logics can
be trandated to TTL; in particular, this will be illustrated for the case of LTL. The general
idea is that this can be done in a rather straightforward manner by replacing the temporal
operators of LTL by quantifiers over time. For example, consider the following LTL formula:

G(observation_result(itsraining) - F(belief(itsraining)))

where the temporal operator G means ‘for al later time points’, and F ‘for some later time
point’. The first operator can be trandlated into a universal quantifier, whereas the second one
can be trandated into an existential quantifier. Using TTL, this formula then can be ex-
pressed, for example, as follows:

[t1 [ state(y, t1) = observation_result(itsraining) = [12 > t1 state(y, t2) = belief(itsraining) ]

However, note that the trandation is not bi-directiona, i.e., it is not always possible to
trandate TTL expressions into LTL expressions. An example of a TTL expression that can-
not be trandated to LTL is the property ‘ Trust Monotonicity’ expressed in Section 4.2. This
property cannot be expressed in LTL since it involves the comparison of two different traces
(y2 and y2 in this case). This shows that for example LTL can be considered a proper sublan-
guage of TTL, i.e., a sublanguage not equal to TTL. Similar observations can be made for
other well-known temporal logics such as CTL.
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To conclude, it was shown above that languages such as DST, LEADSTO and LTL can
be seen as sublanguages of the specification language TTL. Note that this does not imply that
al operations that can be done using these languages (e.g., solving differential equations
specified in DST, or performing simulation based on LEADSTO) can be performed using
TTL tools. Each language has its own tools to perform specific operations. The tools that
were specifically implemented for TTL will be introduced in the next section.

6 Tools

The TTL language and its supporting software environment have been applied in a number of
research projects in different domains. In general, the research goal in these projects was to
analyse the behavioural dynamics of agents in different domains. In most of them the focus
was on cognitive processes, such as human reasoning, the creation of consciousness, and
design tasks. TTL was used to formalise dynamic properties of these processes at a high level
of abstraction. Next, such dynamic properties (represented as TTL formulage) were automati-
cally checked against smulated or empirical traces. This section presents the software envi-
ronment that was built to support the process of specification and automated verification of
dynamic properties. Basically, this software environment consists of two closely integrated
tools: the Property Editor and the Checker Tool. To explain how these tools work, Section
6.1 describes more details of the TTL language from an implementation perspective. Next,
Section 6.2 describes the actual operation of the tools. Finally, Section 6.3 discusses some
implementation details of the Checker Tool.

6.1 Detailsof the TTL language

The previous sections introduced the TTL language in a somewhat informal way. However,
the TTL software requires a strict representation. For instance, the implementation requires
al variablesin a TTL formulato be explicitly typed by specifying which sort they belong to.
In this section, the TTL language is described in detail.

To enter TTL formulae in the correct format, the TTL Property Editor provides a graphi-
cal interface. The user fillsin templates and builds up formulae by selecting building blocks
from a menu. TTL specifications may also be supplied as plain text. The following defini-
tions are used:

e« A TTL specification consists of a number of user-defined property definitions and
sort definitions. A property definition consists of a header (someprop(vi:si, v2:s2),
property name and formal arguments) and a body. The body isa TTL formula.

e A TIL formula is assembled from basic TTL formulae by conjunction, (Formulal and
Formula2), digunction (Formulal or Formula2), hegation (not Formula), implication and
quantification (forall ([vi:s1, v2:s2], Formula), exists ([v1:s1, v2:s2 < term2], Formula) ).

e Basic TTL formulae are user-defined properties, Holds atoms, predefined mathe-
matical properties (e.g. term1 = term2, term1 > term2) and built-in properties. The se-
mantics of a user-defined property occurring in some TTL formulais one of substi-
tution, not some kind of logic programming (recursion of propertiesis not allowed).

e Holdsatoms are introduced in Section 4.2, e.g. state(tracel, t, output(ew)) = al O a2 .
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e Built-in properties are complex properties encoded into the implementation lan-
guage.

e TTL formula elements contain terms at various places: as restrictions on range vari-
ables, as actual parameter values in sub properties, within Holds atoms, and so on.
Terms are “Prolog terms’ (e.g., in(t1,t2) , n1, t1 +t3, 1.3). Variables in terms are rep-
resented as x:sortl. Terms that are mathematical operations are evaluated, so the op-
erands must be of an appropriate type. The functions begin(i:interval), end(i:interval), in-
terval(t:time) and time(i:interval) introduced later are also terms that will be evaluated
and substituted by their values.

For expressing more complex functions, the following building blocks are defined:

e case(Formula, Then, Else) where Formulaisa TTL formula:
f(case(Formula, Then, Else)) iS equivalent to Formula and f(Then) or not Formula and
f(Else).

e sum([vl:sl, v2:s2,..vn:sn], Term) where Term is afunction of v1,..,vn: The sum of apply-
ing all tuples (v1,..vn) to Term.

e product(([vl:s1, v2:s2,..vn:sn], Term) where Term is a function of v1,..,vn: The product of
applying all tuples (v1,..vn) to Term.

Furthermore, the language has a number of built-in sorts for integer, real and range of in-
tegers (sorts integer, real, between(il:integer,i2:integer)). Sorts may be defined by enumerating
their elements. There are predefined sorts for the set of all states (sort STATE) and the set of
all loaded traces (sort TRACE, the temporal domain description set w introduced in Section
4.1).

TTL formulae usually contain variables referring to time, specificaly to time for a state
property. In case a dense time frame is used, this may cause problems for the verification
process, because an infinite number of time points must be considered. To deal with this
problem, in the TTL tools finite variability of state functions is assumed. This assumption
states that between any two time points only a finite number of state changes occurs. Thus,
when a property is checked against a set of traces, the software determines time-intervals
during which al atoms occurring in the property are constant in all traces. A built-in sort
interval enumerates these digoint time intervals. Values of this sort are ordered. A number of
primitives are introduced to trandate between interval values and time values:

e begin(i:interval) refersto the first time point of interval i.

e end(iinterval) refersto the last time point of interval i.

e interval(t:time) refersto the interval in which time point t occurs.
e time(i:interval) refersto atime point that occursin interval i.

For an example in which one of these primitivesis used, see the following Holds atom:

state(y: TRACE, time(i:interval), internal) = a.
Moreover, libraries of predefined properties and functions are available, some generic,
others for specific application domains.

6.2 Operation
As mentioned earlier, the TTL software environment comprises two closely integrated tools:
the Property Editor and the Checker Tool. The Property Editor provides a user-friendly way

of building and editing propertiesin the TTL language. It was designed in particular for less
experienced users. By means of graphical manipulation and filling in of formsa TTL specifi-
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cation may be constructed (see Figure 3 for an impression). The Checker Tool can be used to
check automatically whether a TTL formula holds for a set of traces. Operation of the tools
involves three separate actions:

1. Loading, editing, and saving a set of TTL properties and user-defined sorts with the
Property Editor (shown in Figure 3).

2. Activating the Trace Manager (not shown in Figure 3): loading and inspecting traces
that will be checked and that will constitute the set of traces, the elements of sort
TRACE (see section 6.1). Sources of traces can be both results of simulations such as
output from the LEADSTO simulation software (see Bosse et al., 2005b) and em-
pirical traces.

3. Selecting a menu entry “Check Property” while the cursor points to a property. The
property is compiled (see Section 6.3 for details) and checked, and the result is pre-
sented to the user.

TTL Checker . =0l x|

File  Edit Settings Eile:|h:fresearchftools.-fexample.fm

@ dg

F—ROoT
B—FROPERTY DEFINITION observational_belief_creation
farall

m ;. TRACE'
11 interal
implies

holds(state(m: TRACE', time(t1:interval)), observation_result{itsraining), true)
exists

t2:intaral==t1:interal
holds(state(m: TRACE', time(t2:intervall), belief{itsraining), true)

Qluit | |Luaded specification from "h:ftesearchiftoolsfexample fim”...

Figure 3. The TTL Checker with Trace Loader

In addition to the above, the TTL Checker has facilities for systematically loading traces and
checking properties without user interaction. The software runs on Windows, Solaris and
Linux platforms.

6.3 Implementation Details of the Checker

This section describes the algorithm used by the Checker Tool in detail. Fist, a humber of
introductory remarks are made:

e The Checker Tool was built specificaly for the process of checking TTL formulae
against traces. Here, a trace consists of a finite number of state atoms, changing a finite
number of times. This has the following consequences:

0 Usingintervalsinstead of (continuous) timein TTL formulae will improve per-
formance of the checking process (by simplifying quantification over time).
Nevertheless, both options are possible.
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0 Other quantification variables will often refer to arguments of state atoms.
There are a finite number of such state atoms. Iterating over values occurring in
the traces will often be faster than iterating over all possible values of some
variable.

e Checking may involve iteration over many values. Therefore, efficient coding is impor-
tant. Compiling the formula that needs to be checked into code in the implementation
language will improve performance (compared to interpretation).

e Checking may involve frequent access to values of state atoms. For acceptable perform-
ance, it isimportant to assure efficient access to state atoms specific to the formula that is
checked.

The implementation is in Prolog (SWI-Prolog, the graphical user interface uses XPCE). A
query to check some TTL formula against all loaded traces is compiled into a Prolog clause,
which will succeed if the formula holds. The compilation proceeds as follows:

1. Fast access to state atoms is ensured: all atoms occurring in state properties within
the TTL formula are gathered. Then, the set of al tracesis analysed to determine the
time intervals where all those atoms are constant. An index is built for fast accessto
all those atom values.

2. TheTTL formulais compiled into Prolog: the formulais transated by mapping con-
junction, disjunction and negation onto Prolog equivalents and by transforming uni-
versal quantification into existential quantification. For every variable occurring in
the property, information about whether it is bound is maintained. If the first occur-
rence of some variable in a conjunction is in a Holds atom, then this variable be-
comes bound by code that binds the variable to successive matching Holds atoms; in
a following element of the conjunction, the value may be used in expressions and
evaluations in other members of the conjunction. If a variable is not bound by such
an occurrence, but should be bound (because it appears in some mathematical opera-
tion or comparison), the variable must be bound by generating binding code to bind
the variable to successive elements of the variable sort. If the sort is infinite, an error
message is generated.

The specific optimizations discussed above make it possible to check realistic dynamic
properties with reasonable performance. For an impression of the performance: checking the
simply property ‘Observational belief creation’ (see Section 4.2) against a single trace takes
less than a second on a regular Personal Computer. Checking more complex properties may
take longer. For example, a property involving 8 different time points (taken from Bosse et
al., 2005a) took about three minutes to check.

7 Conclusion

Within many domains, among which biological and cognitive areas, multiple interacting
processes occur with dynamics that are hard to handle. Current approaches to analyse the
dynamics of such processes are often based on differential equations. However, for a number
of applications these approaches have serious limitations. For example, in Biology, ap-
proaches based on differential equations have problems in tackling more large-scale cellular
systems. Moreover, within Cognitive Science, such approaches are not particularly suitable to
model higher-level processes with mainly a qualitative character, such as reasoning and com-
plex task performance.
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To deal with these limitations, this paper presents the predicate logical Tempora Trace
Language (TTL) for the formal specification and analysis of dynamic properties. Although
the language has a logical foundation, it supports the specification of both qualitative and
quantitative aspects, and subsumes specification languages based on differential equations.

To support the formal specification and analysis of dynamic properties, a specia software
environment has been developed for TTL. This environment features both a dedicated Prop-
erty Editor for building and editing TTL properties and a Checking Tool that enables the
formal verification of properties against a set of traces, for example obtained from experi-
ments or simulation. Although this form of checking is not as exhaustive as model checking
(which essentially means checking properties on the set of all theoretically possible traces), in
return, this makes it possible to specify more expressive properties. Furthermore, more spe-
cialised languages can be defined as a sublanguage of TTL. Firgt, for the purpose of simula-
tion, the executable language LEADSTO has been developed (Bosse et al., 2005b). Second,
for the verification of entailment relations, standard temporal languages such as LTL and
CTL (see, e.g., (Benthem, 1983; Goldblatt, 1992)) can be defined as sublanguages of TTL.

As mentioned above, TTL has a high expressive power. For example, the possibility of
explicit reference to time points and time durations enables modelling of the dynamics of
continuous real-time phenomena, such as sensory and neural activity patterns in relation to
mental properties, cf. (Port and van Gelder, 1995). Also difference and differential equations
can be expressed. These features go beyond the expressive power available in standard linear
or branching time temporal logics.

Furthermore, the possibility to quantify over traces allows for specification of more com-
plex adaptive behaviours. As within most temporal logics, reactiveness and pro-activeness
properties can be specified. In addition, in our language also properties involving different
types of adaptive behaviour can be expressed. An example of such a property is ‘exercise
improves skill’, which is a relative property in the sense that it involves the comparison of
two alternatives for the history. Another property of this type is trust monotony: ‘the better
the experiences with something or someone, the higher the trust’.

The possibility to define restrictions to local languages for parts of a system or the world
is also an important feature. For example, the distinction between internal, external and input
and output languages is crucial, and is supported by the language TTL, which also entails the
possibility to quantify over system parts; this allows for specification of system modification
over time.

Finally, since state properties are used as first class citizens in the tempora trace lan-
guage, it is possible to explicitly refer to them, and to quantify over them, enabling the speci-
fication of what are sometimes called second-order properties, which are used in part of the
philosophical literature (e.g., Kim, 1998) to express functional roles related to mental proper-
ties or states.

The approach discussed in this paper follows the standard view on calculus (based on
epsilon-delta definitions). Recently, in (Gamboa and Kaufmann, 2001) an alternative ap-
proach, following the non-standard view (based on infinitesimals) has been presented for the
integration of calculus within alogical (and theorem proving) framework. It may be the case,
as claimed by some researchers, that for computational purposes the non-standard view has
advantages. Thiswill be an issue for further research.

To conclude, the approach proved its value in a number of research projects in different
domains. It has been used to analyse behavioural dynamics of agents in cognitive science
(e.0., human reasoning, creation of consciousness, diagnosis of eating disorders), biology
(e.g., cell decision processes, the dynamics of the heart), social science (e.g., organisation
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dynamics including organisational change, incident management), and artificia intelligence
(e.g., design processes, ant colony behaviour). For more publications about these applica-
tions, the reader is referred to the authors' homepages.

References

1 Barringer, H., M. Fisher, D. Gabbay, R. Owens, & M. Reynolds (1996). The Imperative Future:
Principles of Executable Temporal Logic, Research Studies Press Ltd. and John Wiley & Sons.

2. Benthem, JF.A.K., van (1983). The Logic of Time: A Model-theoretic Investigation into the
Varieties of Temporal Ontology and Temporal Discourse, Reidel, Dordrecht.

3. Bosse, T., Jonker, C.M., and Treur, J. (2005a). Representational Content and the Reciprocal
Interplay of Agent and Environment. In: Leite, J., Omincini, A., Torroni, P., and Yolum, P.
(eds.), Proc. of the Second Int. Workshop on Declarative Agent Languages and Technologies,
DALT'04. Lecture Notesin Artificial Intelligence, vol. 3476. Springer Verlag, pp. 270-288.

4, Bosse, T., Jonker, C.M., Meij, L., van der, and Treur, J. (2005b). LEADSTO: a Language and
Environment for Analysis of Dynamics by SimulaTiOn (extended abstract). Proc. of the 18th In-
ternational Conference on Industrial & Engineering Applications of Artificial Intelligence &
Expert Systems, IEAJAIE 2005. Lecture Notesin Al, Springer Verlag. In press.

5. Clarke, E.M., Grumberg, O., and Peled, D.A. (2000). Model Checking. MIT Press.

6. Gamboa, R., and Kaufmann, M. (2001). Nonstandard Analysis in ACL2. Journa of Automated
Reasoning, vol. 27, pp. 323-351.

7. Geert, P. van (1995). Growth Dynamics in Development. In: (Port and van Gelder, 1995), pp.
101-120.

8.  Goldblatt, R. (1992). Logics of Time and Computation, 2nd edition, CSLI Lecture Notes 7.

9. Kim, J. (1998). Mind in a Physical world: an Essay on the Mind-Body Problem and Mental
Causation. MIT Press, Cambridge, Mass.

10. Manna, Z., and Pnueli, A. (1995). Temporal Verification of Reactive Systems: Safety. Springer
Verlag.

11. Port, R.F., Gelder, T. van (eds.) (1995). Mind as Motion: Explorations in the Dynamics of Cog-
nition. MIT Press, Cambridge, Mass.

12.  stirling, C. (2001). Modal and Temporal Properties of Processes. Springer Verlag.

13. Townsend, J.T., and Busemeyer, J. (1995). Dynamic Representation in Decision Making. In:

(Port and van Gelder, 1995), pp. 101-120.

99



100



C LEADSTO Specifications

Cl LEADSTO Specification of Behavior Networks
cwa( )

E—Ileadsto
V: D : integer
A: data((d|D))
C: data((d|D))
EFGH: efgh(0, 0, 0.1, 0.1)

CONSTANT phi=0.1

CONSTANT gamma=0.3

CONSTANT delta=0.5

CONSTANT threshold_decrease_factor=0.1

E—interval
R: range(0, 1)
F and
init
current_time(1)
E—IJeadsto
V: C : integer
V: | integer
A: and
init
component_input_number((c|C), I)
= C: and
alpha(0, (c|C), 0)
active(0, (c|C), 0)
——EFGH: efgh(0, 0, 0.1, 0.1)
E—IJeadsto
—V: T: integer
—V: C : integer
—V:V:real

—A: alpha(T, (c|C), V)
——C: alpha(T, (c|C), V)
L—EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: T: integer

—V: C : integer

—V: | : integer

—A: active(T, (c|C), I)
—C: active(T, (c|C), I)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto
V: T: integer
=—A: and

Ecurrent_time(‘l’)
not

——time_change(T)
—C: current_time(T)
L—EFGH: efgh(0, 0, 0.1, 0.1)

E—IJeadsto

—V: T: integer

—V: D1 : integer

—V: D2 : integer

E—A: and

time_change(T)

number_of_goals(2)

goal((d|D1))

goal((d|D2))

D1\= D2

not
—data((d|D1))

——C: current_time(T+1)

——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

V: T: integer

V: D1 : integer

A: and
time_change(T)
number_of_goals(1)
goal((d|D1))

E—not

L—data((d|D1))
C: current_time(T+1)
EFGH: efgh(0, 0, 0.1, 0.1)
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E—Ileadsto

—V: C1: integer

—V: C2: integer

—V: D integer

E—A: and
component_output((c|C1), (d|D))
component_input((c|C2), (d|D))
Cl\=C2

—C: successor_link((c|Cl), (c|C2))

——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

—V: C1: integer

—V: C2: integer

—A: successor_link((c|C1), (c|C2))
——C: predecessor_link((c|C2), (c|C1))
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

—V: C1: integer

—V: C2: integer

—V: D integer

B—A: and
component_removes_data((c|C1), (dD))
component_input((c|C2), (d|D))
Cl\=C2

—C: conflictor_link((c|C1), (c|C2))

——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

——V: D integer

—V: T: integer

E—A: and
data((diD))
current_time(T)

—C: determine_M(T, (d|D), (c|1), 0)

——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto
——V: D integer
—V: T: integer
—V: C: integer
E—A: and
component_input((c|C), (d|D))
not
L—data((d|D))
current_time(T)
——C: determine_M(T, (d|D), (c|1), 0)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

—V: D integer
—V: T: integer
B—A: and

|:goal((dID))
current_time(T)
—C: determine_A(T, (d|D), (c|1), 0)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: D integer

—V: T: integer

—V: C: integer

E—A: and

F—component_input((c|C), (d|D))
not
L—data((dD))

current_time(T)

—C: determine_A(T, (d|D), (c|1), 0)

——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

—V: C: integer

—V: | : integer

—V: T: integer

B—A: and
current_time(T)
component_input_number((c|C), I)
1>0

—C: determine_input_from_state(T, (d|1), (c|C), 0)
——EFGH: efgh(0, 0, 0.1, 0.1)
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E—Ileadsto

——V: C: integer

——V: | : integer

—V: T: integer

BE—A: and
current_time(T)
component_input_number((c|C), I)
1=0

—C: input_from_state(T, (c|C), 0)
—EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: C: integer
—V: | integer
—V: T: integer
E—A: and

current_time(T)
component_output_number((c|C), )
1>0

—C: determine_input_from_goals(T, (d|1), (c|C), 0)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

—V: C: integer

—V: | : integer

—V: T: integer

E—A: and
current_time(T)
component_output_number((c|C), )
1=0

—C: input_from_goals(T, (c|C), 0)
—EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

——V: D integer

——V: C: integer

——V: V : integer

——V: A integer

—V: T: integer

BE—A: and

current_time(T)
determine_A(T, (d|D), (c|C), V)
number_of_components(A)
C<=A
component_output((c|C), (d|D))
——C: determine_A(T, (d|D), (c|C+1), V+1)
—EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: D: integer

—V: C: integer

——V: V : integer

——V: A integer

—V: T: integer

E—A: and
current_time(T)
determine_A(T, (d|D), (c|C), V)
number_of components(A)
C<=A
not

L—component_output((c|C), (d|D))
——C: determine_A(T, (d|D), (c|C+1), V)
—EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: D: integer

—V: C: integer

—V: V: integer

—V: A integer

—V: T: integer

B—A: and
current_time(T)
determine_A(T, (dD), (c|C), V)
number_of components(A)
C=A+1

—C: 'A(T, (d|D), V)

—EFGH: efgh(0, 0, 0.1, 0.1)
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E—Tleadsto

——V: D integer

——V: C: integer

——V: V! integer

—V: A integer

—V: T: integer

E—A: and

current_time(T)
determine_M(T, (d|D), (c|C), V)
number_of_components(A)
C<=A
component_input((c|C), (d|D))
——C: determine_M(T, (d|D), (c|C+1), V+1)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: D integer
—V: C: integer
—V: V: integer
—V: A integer
—V: T: integer
E—A: and

current_time(T)

determine_M(T, (d|D), (c|C), V)

number_of_components(A)

C<=A
E—mnot

L—component_input((c|C), (d|D))

—C: determine_M(T, (d|D), (c|C+1), V)
—EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

——V: D integer

——V: C: integer

——V: V! integer

——V: A integer

—V: T: integer

E—A: and

current_time(T)
determine_M(T, (dD), (c|C), V)
number_of_components(A)
C=A+1

—C:'M(T, (dD), V)

—EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V:
—V:
—V:
—V:
—V:
—V:
—V:
E—A:

: integer
: integer
real

: integer
: integer
: integer
: integer
d

24>»00<z0

current_time(T)

determine_input_from_goals(T, (d|D), (c|C), V)
amount_of_data(N)

D<=N

goal((d|D)

component_output((c|C), (d|D))

AT, (dD), A)

component_output_number((c|C), O)

——C: determine_input_from_goals(T, (d|D+1), (c|C), V+gamma* (LA)* (1/O))
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto
——V: D integer
——V: N: integer
—V:V:rea
——V: C: integer
—V: T: integer
E—A: and
current_time(T)
determine_input_from_goals(T, (dD), (c|C), V)
amount_of_data(N)
D<=N
goal((d|D))
not
L—component_output((c|C), (dD))
—C: determine_input_from_goals(T, (d|D+1), (c[C), V)
—EFGH: efgh(0, 0, 0.1, 0.1)
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E—Ileadsto
—V: D integer
—V: V:real
—V: C: integer
—V: A integer
—V: T: integer
E—A: and
current_time(T)
determine_input_from_goals(T, (dD), (c|C), V)
amount_of_data(A)
D<=A
not
L—goal((d|D))
——C: determine_input_from_goals(T, (d|D+1), (c|C), V)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: D integer

—V:V:rea

—V: C: integer

—V: A integer

—V: T: integer

E—A: and

current_time(T)
determine_input_from_goals(T, (dD), (c|C), V)
amount_of_data(A)
D=A+1

—C: input_from_goals(T, (c|C), V)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: D integer

—V: M integer

—V: V:real

—V: C: integer

—V: | : integer

—V: A integer

—V: T: integer

E—A: and

current_time(T)
determine_input_from_state(T, (d|D), (c|C), V)
amount_of_data(A)

D<=A

data((diD))

component_input((c|C), (dD))

‘M(T, (d[D), M)
component_input_number((c|C), I)

——C: determine_input_from_state(T, (d|D+1), (c|C), V+phi* (LIM)* (/1))
L—EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

—V: D integer
—V: V:real
—V: C: integer
—V: A integer
—V: T: integer
E—A: and

current_time(T)
determine_input_from_state(T, (d|D), (c[C), V)
amount_of_data(A)

D<=A

data((d|D))

not

L—component_input((c|C), (d|D))
—C: determine_input_from_state(T, (d|D+1), (c|C), V)
L—EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto
—V: D integer
—V: V:real
—V: C: integer
—V: A integer
—V: T: integer
E—A: and
current_time(T)
determine_input_from_state(T, (d|D), (c[C), V)
amount_of_data(A)
D<=A
not
L—data((d|D))
—C: determine_input_from_state(T, (d|D+1), (c|C), V)
——EFGH: efgh(0, 0, 0.1, 0.1)
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E—Tleadsto
— : integer

: real

: integer

: integer

: integer

: and
current_time(T)
determine_input_from_state(T, (d|D), (c|C), V)

ZSSSSS<
4>»0<0

[TI]]

amount_of_data(A)
D=A+1

——C: input_from_state(T, (c|C), V)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: C: integer

—V: | integer

—V: T: integer

B—A: and

current_time(T)
component_input_number((c|C), 1)
——C: determine_executable(T, (c|C), (d|1), 0)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: C: integer

——V: D: integer

—V: | integer

—V: A : integer

—V: T: integer

B—A: and

current_time(T)
determine_executable(T, (c|C), (d|D), I)
amount_of_data(A)

D<=A

data((dID))

component_input((c|C), (d|D))

——C: determine_executable(T, (c|C), (d|D+1), I+1)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: C: integer
—V: D: integer
—V: | integer
—V: A integer
—V: T: integer
E—A: and

current_time(T)
determine_executable(T, (c|C), (d|D), 1)
amount_of_data(A)
D<=A
not
L—data((d|D))
——C: determine_executable(T, (c|C), (d|D+1), I)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto
—V: C: integer
—V: D: integer
—V: | integer
—V: A integer
—V: T: integer
B—A: and
current_time(T)
determine_executable(T, (c|C), (d|D), 1)
amount_of_data(A)
D<=A
not
—component_input((c|C), (d|D))
——C: determine_executable(T, (c|C), (d|D+1), I)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: C: integer

—V: D integer

—V: | integer

—V: A integer

—V: N : integer

—V: T: integer

B—A: and
current_time(T)
determine_executable(T, (c|C), (d|D), )
amount_of_data(A)
D=A+1
component_input_number((c|C), N)
N=1

—C: executable(T, (c|C))

——EFGH: efgh(0, 0, 0.1, 0.1)
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E—Ileadsto

—V: C: integer

—V: D integer

—V: | : integer

—V: A integer

—V: N: integer

—V: T: integer

E—A: and

current_time(T)
determine_exacutable(T, (c|C), (d|D), 1)
amount_of_data(A)

D=A+1
component_input_number((c|C), N)
I<N

—C: not
L—executable(T, (c|C))
EFGH: efgh(0, 0, 0.1, 0.1)

El—Ieadsto
—V: D integer
—V: N: integer
—V: V:real
—V: Cl: integer
—V: C2: integer
—V: A integer
—V: AL : real
—V: T: integer
—V: O integer
E—A: and
——current_time(T)
——determine_spreads_bw(T, (d|D), (c|C1), (c|C2), V)
——amount_of data(N)
—D<=N
E—not

-—data((d|D))
——component_input((c|C1), (d|D))
——component_output((c|C2), (d|D))
—A(T, dD), A)
—alpha(T-1, (c|C1), AL)
——component_output_number((c|C2), O)
—C: determine_spreads_bw(T, (d|D+1), (c|Cl), (c|C2), V+AL* (UA* (1/OY)))
——EFGH: efgh(0, 0, 0.1, 0.1)

E—leadsto

—V: D: integer
—V: N: integer
—V: V:real
—V: Cl: integer
—V: C2: integer
—V: T: integer
E—A: and

current_time(T)

determine_spreads_bw(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)

D<=N

not
Z: L—data((d|D))
not

L—component_input((c|C1), (d|D))
—C: determine_spreads_bw(T, (d|D+1), (c|Cl), (c|C2), V)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—leadsto

—V: D: integer

—V: N: integer

—V: V:rea

—V: Cl: integer

—V: C2: integer

—V: T: integer

E—A: and

current_time(T)
determine_spreads_bw(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)
D<=N

not
Z: L—data((d|D))
not

L—component_output((c|C2), (dD))
—C: determine_spreads_bw(T, (d|D+1), (c|Cl), (c|C2), V)
——EFGH: efgh(0, 0, 0.1, 0.1)

107



E—Tleadsto

—V: D: integer

—V: N integer

—V:V:rea

—V: C1: integer

—V: C2: integer

—V: T: integer

BE—A: and

current_time(T)

determine_spreads_bw(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)

D<=N

data((d|D))

——C: determine_spreads_bw(T, (d|D+1), (c|C1), (c|C2), V)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: D integer

—V: N integer

—V:V:rea

—V: C1: integer

—V: C2: integer

—V: T: integer

E—A: and

current_time(T)
determine_spreads_bw(T, (dD), (c|C1), (c|C2), V)
amount_of_data(N)

D=N+1

—C: spreads_backwards(T, (c|C1), (c|C2), V)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: C1: integer
—V: C2: integer
—V: D1 : integer
—V: D2 : integer
—V: T: integer
E—A: and

current_time(T)
component_input((c|C1), (d|D1))
component_input((c|C2), (d|D2))

—C: determine_spreads_bw(T, (d|1), (c|C1), (c|C2), 0)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto
—V: D integer
—V: N integer
—V:V:rea
—V: C1: integer
—V: C2: integer
——V: M : integer
—V: AL: real
—V: T: integer
—V: | : integer
E—A: and
——current_time(T)
——determine_spreads_fw(T, (d|D), (c|C1), (c|C2), V)
—amount_of_data(N)
—D<=N
E—not

-—data((dD))
——component_output((c|C1), (d|D))
——component_input((c|C2), (d|D))
—M(T, (d|D), M)
—alpha(T-1, (c|C1), AL)
——component_input_number((c|C2), I)
——C: determine_spreads_fw(T, (d|D+1), (c|C1), (c|C2), V+AL* (phi/gamma* (I/M)* (1/1)))
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: D integer
—V: N integer
—V:V:rea
—V: C1: integer
—V: C2: integer
—V: T: integer
E—A: and

current_time(T)

determine_spreads_fw(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)

D<=N

not
L—data((d|D))
ot
—component_output((c|C1), (d|D))

——C: determine_spreads_fw(T, (d|D+1), (c|C1), (c|C2), V)
——EFGH: efgh(0, 0, 0.1, 0.1)
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E—Ileadsto

—V: D integer

—V: N integer
—V:V:rea

—V: C1: integer

—V: C2: integer

—V: T integer

B—A: and

current_time(T)
determine_spreads_fwm(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)
D<=N

not
T ™ Loy

E—not
—component_input((c|C2), (d|D))
——C: determine_spreads_fw(T, (d|D+1), (c|C1), (c|C2), V)
L—EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto
—V: D integer
—V: N integer
—V:V:rea
—V: C1: integer
—V: C2: integer
——V: T: integer
E—A: and
current_time(T)
determine_spreads_fwm(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)
D<=N
data((d|D))
——C: determine_spreads_fw(T, (d|D+1), (c|C1), (c|C2), V)
L—EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

—V: D integer

—V: N integer

—V:V:rea

—V: C1: integer

—V: C2: integer

—V: T integer

E—A: and
current_time(T)
determine_spreads_fwm(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)
D =N+1

——C: spreads_forwards(T, (c|C1), (c|C2), V)

——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

—V: C1: integer
—V: C2: integer
—V: D1: integer
—V: D2 integer
——V: T: integer
E—A: and

current_time(T)
component_input((c|C1), (d|D1))

component_input((c|C2), (d|D2))
—C: determine_spreads_fw(T, (d[1), (c|C1), (c|C2), 0)
L—EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: C1: integer
—V: C2: integer
—V: T integer
—V:V:rea
B—A: and

current_time(T)
spreads_forwards(T, (c|C1), (c|C2), V)
executable(T, (c|C1))
—C: spreads_fw((c|C1), (c|C2), T, V)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: C1: integer
—V: C2: integer
—V: T integer
—V:V:rea
BE—A: and

current_time(T)
spreads_forwards(T, (c|C1), (c|C2), V)
E—not
L—executable(T, (c|C1))
——C: spreads_fw((c|C1), (c|C2), T, 0)
L—EFGH: efgh(0, 0, 0.1, 0.1)
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E—Ileadsto

—V: C1: integer
—V: C2: integer
—V:V:rea
——V: T: integer
E—A: and

current_time(T)
spreads_backwards(T, (c|C1), (c|C2), V)

not

L—executable(T, (c|C1))
—C: spreads_bw((c|C1), (c|C2), T, V)
L—EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

—V: C1: integer
——V: C2: integer
——V: T: integer
—V: V:rea
BE—A: and

current_time(T)
spreads_backwards(T, (c|C1), (c|C2), V)
executable(T, (c|C1))

—C: spreads_bw((c|C1), (c|C2), T, 0)

——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

——V: C1: integer
——V: C2: integer
——V: T: integer
—V: S:rea
—V: N integer
—V: V:rea
E—A: and

sum_spreads_fwm(c|Cl), (c|C2), T, S)
number_of_components(N)

Cl<=N

spreads_fw((c|C1), (c|C2), T, V)
—C: sum_spreads_fw((c|C1+1), (c|C2), T, S+V)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

—V: C1: integer

——V: C2: integer

—V: T: integer

—V:S:rea

—V: N integer

E—A: and

sum_spreads_fw((c|C1), (c|C2), T, S)

number_of components(N)
Cl=N+1

——C: sum_spreads_fw((c|C2), T, S)

——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: C1: integer
——V: C2: integer
—V: T: integer
—V: S:rea
—V: N integer
—V: V:rea
E—A: and

sum_spreads_bw((c|C1), (c|C2), T, S)
number_of_components(N)

Cl<=N

spreads_bw((c|C1), (c|C2), T, V)
—C: sum_spreads_bw((c|C1+1), (c|C2), T, S+V)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto
—V: C1: integer
——V: C2: integer
——V: T: integer
—V:S:rea
—V: N integer
E—A: and
sum_spreads_bw((c|C1), (c|C2), T, S)
number_of components(N)
Cl<=N
not
L—predecessor_link((c|C1), (c|C2))
——C: sum_spreads_bw((c|C1+1), (c|C2), T, S)
——EFGH: efgh(0, 0, 0.1, 0.1)
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E—Ileadsto

—V: C1: integer

—V: C2: integer

—V: T: integer

—V:S:rea

—V: N integer

B—A: and

sum_spreads_bw((c|C1), (c|C2), T, S)

number_of_components(N)
Cl=N+1

—C: sum_spreads_bw((c|C2), T, S)

——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

——V: T: integer

—V: C: integer

—V: | : integer

E—A: and

current_time(T)
component_input_number((c|C), I)
E—C: and

sum_spreads_bw((c|1), (c|C), T, 0)
sum_spreads_fw((c|1), (c|C), T, 0)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

——V: T: integer
—V: C: integer
—V: A:rea
—V: AC: real
—V:V1:rea
—V: V2:rea
—V: V3: rea
—V: V4 : real
BE—A: and

current_time(T)

alpha(T-1, (c|C), A)

active(T-1, (c|C), AC)
input_from_state(T, (c|C), V1)
input_from_goals(T, (c|C), V2)
sum_spreads_bw((c|C), T, V3)
sum_spreads_fw((c|C), T, V4)
——C: decay(T, (c|C), A* (L-AC)+V1+V2+V3+V4)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

——V: T: integer

—V: C: integer
—V:V:rea

E—A: and

current_time(T)
decay(T, (cIC), V)
——C: sum_decay(T, (c|1), 0)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

—V:T:
—V:C:
—V:V:

integer
integer
real

—V:N:
—V:D:
E—A: and

integer
real

sum_decay(T, (c|C), V)
current_time(T)
number_of_components(N)
C<=N

decay(T, (¢[C), D)

—C: sum_decay(T, (c|C+1), V+D)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

——V: T: integer

—V: C: integer

—V:V:rea

—V: N integer

E—A: and

sum_decay(T, (c|C), V)
current_time(T)
number_of_components(N)
C=N+1

——C: sum_decay(T, V)
——EFGH: efgh(0, 0, 0.1, 0.1)
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E—Tleadsto

—V: T: integer

—V: C: integer
—V:S:rea

—V:D: real

E—A: and

sum_decay(T, S)
decay(T, (¢|C), D)
E—C: and

alpha(T, (c|C), DIS)
determine_highest_alpha(T, (c|1), (c|0), 0)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto
—V: T: integer
—V: C: integer
—V: B : integer
—V:V:rea
——V: N integer
E—A: and
current_time(T)
determine_highest_alpha(T, (c|C), (c|B), V)
number_of_components(N)
C<=N
not
L—executable(T, (c|C))
—C: determine_highest_alpha(T, (c|C+1), (c|B), V)
L—EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

—V: T: integer
—V: C: integer
—V: B : integer
—V:V:rea
——V: N integer
—V:A:rea
E—A: and

current_time(T)
determine_highest_alpha(T, (c|C), (c|B), V)
number_of_components(N)

C<=N

alpha(T, (clC), A)

executable(T, (c|C))

A<V

—C: determine_highest_alpha(T, (c|C+1), (c|B), V)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto
—V: T: integer
—V: C: integer
—V: B : integer
—V:V:rea
——V: N integer
—V:A:rea
E—A: and
current_time(T)
determine_highest_alpha(T, (c|C), (c|B), V)
number_of_components(N)
C<=N
executable(T, (c|C))
alpha(T, (cIC), A)
A=V
E—C: and
yes
PXOR
Prob 0.5
L—determine_highest_alpha(T, (c|C+1), (c|C), A)
OTHERWISE

—determine_highest_alpha(T, (c|C+1), (c|B), A)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Tleadsto

—V: T: integer
—V: C: integer
—V: B : integer
—V:V:real
—V: N: integer
—V:A:rea
E—A: and

current_time(T)
determine_highest_alpha(T, (c|C), (c|B), V)
number_of_components(N)

C<=N

executable(T, (c|C))

alpha(T, (c[C), A)

A>V

——C: determine_highest_alpha(T, (c|C+1), (c|C), A)
——EFGH: efgh(0, 0, 0.1, 0.1)
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E—Ileadsto

|

: integer
: integer
: integer
: real

: integer

ITIIT]
ZS<S<<<
§-Z<UJO

current_time(T)
determine_highest_alpha(T, (c|C), (c|B), V)
number_of components(N)

C=N+1

——C: highest_alpha(T, (c|B), V)

——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

current_time(T)
highest_alpha(T, (c|B), V)
B=0
—C: selection_failed_at_time(T)
——EFGH: efgh(0, 0, 0.1, 0.1)

E—Ileadsto

—V: T integer

—V: B : integer

—V:V:rea

E—A: and
current_time(T)
highest_alpha(T, (c|B), V)
not

—highest_alpha(T, (c|C), V)

B\=0

E—C: and

active(T, (c|B), 1)
activated((c|B))
——EFGH: efgh(0, 0, 0.1, 0.1)
E—Tleadsto

—V: C: integer

—A: activated((c|C))

—C: deactivated((c|C))
—EFGH: efgh(1, 1, 0.1, 0.1)
E—Ileadsto

—V: T integer

—V: B : integer
—V:V:rea

—V: C: integer

—V:V2: rea

E—A: and

current_time(T)
highest_alpha(T, (c|B), V)
B\=0

alpha(T, (c|C), V2)
B\=C

—C: active(T, (c|C), 0)
——EFGH: efgh(0, 0, 0.1, 0.1)

OTHER : display(_, sort_atoms_time_global)

OTHER : display(_, show_atoms(data((_| ))))

OTHER : display(_, show_atoms(active(_, _, _)))

OTHER : display(_, show_atoms(activated(_| )))

OTHER : display(_, show_atoms(deactivated(_|_)))
OTHER : display(_, show_atoms(decay(_, _, _)))

OTHER : display(_, show_atoms(alpha(_, _, )))

OTHER : display(_, show_atoms(executable(_, _)))
OTHER : display(_, show_atoms(sum_spread bw(_, _, _)))
OTHER : display(_, show_atoms(sum_spread bw(_, _, )))
OTHER : display(_, show_atoms(sum_spread fwm(_, _, _)))
OTHER : display(_, show_atoms(current_time( )))
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C2 LEADSTO Specification of Pandemonium

end_time(40)
CONSTANT end=40
E—leadsto

V: D1 : between(1, data)
—V: D2 : between(1, data)
A initial_data((d|D1)xor (d|D2))
E—C: and
new_data
PXOR
Prob 0.5
—data((d|D1))
OTHERWISE
L—data((d|D2))
L—EFGH: efgh(0, 0, 1, 1)

E—leadsto

V: C: between(1, components)
—V: D1 : between(1, data)
—V: D2 : between(1, data)
—A: component_output((c|C), (d|D1)xor (d|D2))
E—C: and
dummy
PXOR
Prob 0.5
L—component_output((c|C), (d[D1))
E—OTHERWISE
L—component_output((c|C), (d[D2))
L—EFGH: efgh(0, 0, 1, end)

E—Tleadsto

V: C : between(1, components)
V: D : between(1, data)
E—A: and

new_data
not

L—data((d|D))
component_input_number((c|C), 1)
component_input((c|C), (d|D))
—C: component_input_present((c|C), 0)
L —EFGH: efgh(0, 0, 1, 1)

E—leadsto

V: C : between(1, components)

V: D : between(1, data)

E—A: and

new_data

data((d|D))
component_input_number((c|C), 1)
component_input((c|C), (d|D))
—C: component_input_present((c|C), 1)

L —EFGH: efgh(0, 0, 1, 1)

E—leadsto

V: C: between(1, components)
—V: D1 : between(1, data)
—V: D2 : between(1, data)
E—A: and
—new_data

not

—data((d|D1))
not

L—data((d|D2))
component_input_number((c|C), 2)
component_input((c|C), (d|D1))
component_input((c|C), (d|D2))
D1\=D2
—C: component_input_present((c|C), 0)
L—EFGH: efgh(0, 0, 1, 1)

E+—leadsto

—V: C: between(1, components)
—V: D1 : between(1, data)
—V: D2 : between(1, data)
E—A: and

new_data
data((d|D1))
not

L—data((d|D2))
component_input_number((c|C), 2)
component_input((c|C), (d|D1))
component_input((c|C), (d|D2))
D1\= D2

——C: component_input_present((c|C), 1)
L —EFGH: efgh(0, 0, 1, 1

E—Ieadsto
V: C : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
A: and

new_data
data((d|D1))
data((d|D2))
component_input_number((c|C), 2)
component_input((c|C), (d|D1))
component_input((c|C), (d|D2))
D1\= D2
C: component_input_present((c|C), 2)
EFGH: efgh(0, 0, 1, 1)
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E—leadsto
V: C: between(1, components)
V: D : between(1, data)
E—A: and

f——new_data
n

ot
—data((d|D))
component_output_number((c|C), 1)
component_output((c|C), (d|D))
—C: component_output_present((c|C), 0)
L—EFGH: efgh(0, 0, 1, 1)

E—leadsto

V: C: between(1, components)
V: D : between(1, data)
E—A: and
new_data
data((d|D))
component_output_number((c|C), 1)
component_output((c|C), (d|D))
—C: component_output_present((c|C), 1)
L—EFGH: efgh(0, 0, 1, 1)

E+—leadsto

—V: C: between(1, components)
—V: D1 : between(1, data)
—V: D2 : between(1, data)
E—A: and

new_data

ot

—data((d|D1))
not

—data((dD2))
component_output_number((c|C), 2)
component_output((c|C), (d|D1))
component_output((c|C), (d|D2))
D1\=D2
—C: component_output_present((c|C), 0)
L—EFGH: efgh(0, 0, 1, 1)

E—leadsto

—V: C: between(1, components)
—V: D1 : between(1, data)
—V: D2 : between(1, data)
E—A: and

new_data
data((d|D1))
not

L—data((d|D2))
component_output_number((c|C), 2)
component_output((c|C), (d|D1))
component_output((c|C), (d|D2))
D1\= D2

—C: component_output_present((c|C), 1)
L—EFGH: efgh(0, 0, 1, 1)

E—Ileadsto

—V: C: between(1, components)

—V: D1 : between(1, data)

—V: D2 : between(1, data)

E—A: and

new_data

data((d|D1))

data((d|D2))
component_output_number((c|C), 2)
component_output((c|C), (d|D1))
component_output((c|C), (d|D2))
D1\= D2

—C: component_output_present((c|C), 2)
L—EFGH: efgh(0, 0, 1, 1)

E+—leadsto
V: C: between(1, components)
V:i:integer
E—A: and

component_input_number((c|C), i)
component_input_present((c|C), i)
—C: component_allowed((c|C))
L —EFGH: efgh(3, 3, 1, 1)

E+—leadsto

—V: C: between(1, components)
1: integer

—V:i2: integer

—V: ol : integer

—V: 02 : integer

BE—A: and

component_input_number((c|C), i1)
component_input_present((c|C), i2)
component_output_number((c|C), ol)
component_output_present((c|C), 02)
not
—termination
—C: shout((c|C), (i2/i1)*1.4* (1-02/01).3* (il/max_input)"1.1* (01/max_output)"1.2)
L—EFGH: efgh(0, 0, 1, 1)
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E—leadsto
—V: C1: between(1, components)
—V: C2: between(l, components)
—V: x1:real
—V: x2: real
E—A: and
shout((c|C1), x1)
shout((c|C2), x2)
X1 >=x2
—C: weak_better_than((c|C1), (c|C2))
L—EFGH: efgh(0, 0, 1, 1)

E—leadsto
—V: C1: between(1, components)
—V: C2 : between(1, components)
—V:x1:real
—V: x2: real
E—A: and
shout((c|C1), x1)
shout((c|C2), x2)
x1>x2
—C: strong_better_than((c|C1), (c|C2))
L—EFGH: efgh(0, 0, 1, 1)

E—leadsto

—V: C1: between(l, components)
—V:x1:real

—A: shout((c|C1), x1)

—C: strong_better_than((c|C1), (c|C1))
L—EFGH: efgh(0, 0, 1, 1)

E—leadsto

V: X: between(1, components)

=—A: forall

V:'Y : between(1, components)
-weak_better_than((c[X), (c[Y))
—C: possible_component((c|X))
L—EFGH: efgh(0, 0, 1, 1)

E—leadsto
V: C1 : between(1, components)
V: C2 : between(1, components)
E—A: and
possible_component((c|C1))
possible_component((c|C2))
>C2

Cl
E—C: and
f—dummy
BE—~PXOR

Prob 0.33
—active_component((c|C1))

Prob 0.33
—active_component((c|C2))

OTHERWISE
E—and

active_component((c|C1))
active_component((c|C2))
L—EFGH: efgh(0, 0, 1, 1)

E—leadsto

V: X: between(1, components)

=—A: forall

V'Y : between(1, components)
strong_better_than((c|X), (c|Y))
—C: active_component((c|X)

L —EFGH: efgh(1, 1, 1, 1)

E—leadsto
V: C: between(1, components)
V: D : between(1, data)
E—A: and
-active_component((c|C))
component_allowed((c|C))
component_output((c|C), (dD))

E—C: and

data((d|D))
new_data
L—EFGH: efgh(0, 0, 1, 1)

E—leadsto

—V: D between(1, data)
—A: data((d|D))

I——C: data((d|D))
L—EFGH: efgh(0, 0, 1, 1)

E—leadsto

V: D : between(1, data)
E—A: and

data((d|D))
goal_data((d|D))
——C: termination
L—EFGH: efgh(0, 0, 1, 1)

E—leadsto

V: D1 : between(l, data)

V: D2 : between(l, data)

A: and
data((d|D1))
data((d|D2))
goal_data(and((d|D1), (dD2)))

C: termination

EFGH: efgh(0, 0, 1, 1)
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C3 LEADSTO Specification of Voting

end_time(end)
CONSTANT end=70
E—leadsto

V: D1 : between(1, data)
—V: D2 : between(1, data)
A initial_data((d|D1)xor (d|D2))
E—C: and
new_data
PXOR
Prob 0.5
—data((d|D1))
OTHERWISE
L—data((d|D2))
L—EFGH: efgh(0, 0, 1, 1)

E—Tleadsto

V: C: between(1, components)
—V: D1 : between(1, data)
—V: D2 : between(1, data)
—A: component_output((c|C), (d|D1)xor (d|D2))
E—C: and
dummy
PXOR
Prob 0.5
L—component_output((c|C), (d[D1))
E—OTHERWISE
L—component_output((c|C), (d[D2))
L—EFGH: efgh(0, 0, 1, end)

E—leadsto
V: C : between(1, components)

V: D : between(1, data)
E—A: and
new_data
not

L data((d|D))
component_input_number((c|C), 1)
component_input((c|C), (d|D))
—C: component_input_present((c|C), 0)
L —EFGH: efgh(0, 0, 1, 1)

E—leadsto

V: C : between(1, components)

V: D : between(1, data)

E—A: and

new_data

data((d|D))
component_input_number((c|C), 1)
component_input((c|C), (d|D))
—C: component_input_present((c|C), 1)

L —EFGH: efgh(0, 0, 1, 1)

E—leadsto

V: C: between(1, components)
—V: D1 : between(1, data)
—V: D2 : between(1, data)
E—A: and
—new_data

not

—data((d|D1))
not

L—data((d|D2))
component_input_number((c|C), 2)
component_input((c|C), (d|D1))
component_input((c|C), (d|D2))
D1\=D2
—C: component_input_present((c|C), 0)
L—EFGH: efgh(0, 0, 1, 1)

E—leadsto

—V: C: between(1, components)
—V: D1 : between(1, data)
—V: D2 : between(1, data)
E—A: and

new_data
data((d|D1))
not
L—data((d|D2))
component_input_number((c|C), 2)
component_input((c|C), (d|D1))
component_input((c|C), (d|D2))
D1\= D2
——C: component_input_present((c|C), 1)
L—EFGH: efgh(0, 0, 1, 1)
E—Ieadsto

V: C : between(1, components)

V: D1 : between(1, data)

V: D2 : between(1, data)

E—A: and

new_data

data((d|D1))

data((d|D2))
component_input_number((c|C), 2)
component_input((c|C), (d|D1))
component_input((c|C), (d|D2))
D1\= D2

——C: component_input_present((c|C), 2)
L —EFGH: efgh(0, 0, 1, 1)
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E—Tleadsto
V: C: between(1, components)
V: D : between(l, data)
—A: and
[—new _data
not

E " data(@dD)
component_output_number((c|C), 1)
component_output((c|C), (dD))

——C: component_output_present((c|C), 0)
——EFGH: efgh(0, 0, 1, 1)

E—leadsto
V: C: between(1, components)
V: D : between(l, data)
—A: and
new_data
data((dD))

component_output_number((c|C), 1)
component_output((c|C), (d|D))
—C: component_output_present((c|C), 1)
L—EFGH: efgh(0, 0, 1, 1)

E—Tleadsto

——V: C: between(1, components)
—V: D1 : between(1, data)
—V: D2 : between(1, data)
E—A: and

new_data
not
—data((dDD)

not

—data((d|D2))
component_output_number((c|C), 2)
component_output((c|C), (d|D1))
component_output((c|C), (d|D2))
D1\=D2
—C: component_output_present((c|C), 0)
L—EFGH: efgh(0, 0, 1, 1)

E—Tleadsto
——V: C: between(1, components)
—V: D1 : between(1, data)
—V: D2 : between(1, data)
E—A: and
new_data
data((d|D1))
not
—data((dD2)
component_output_number((c|C), 2)
component_output((c|C), (d|D1))
component_output((c|C), (d|D2))
D1\=D2
——C: component_output_present((c|C), 1)
L—EFGH: efgh(0, 0, 1, 1)

E—Tleadsto

—V: C: between(1, components)

—V: D1 : between(1, data)

—V: D2 : between(1, data)

E—A: and

new_data

data((d|D1))

data((d|D2))
component_output_number((c|C), 2)
component_output((c|C), (d|D1))
component_output((c|C), (d|D2))
D1\=D2

—C: component_output_present((c|C), 2)
——EFGH: efgh(0, 0, 1, 1)

B—Ileadsto

V: C: between(1, components)
V: i integer
E—A: and

component_input_number((c|C), i)
component_input_present((c|C), i)
—C: component_allowed((c|C))

——EFGH: efgh(components+4, components+4, 1, 1)

E—Ileadsto
——V: C: between(1, components)
—V:il: integer
—V:i2: integer
—V: ol : integer
—V: 02 : integer
—A: and
component_input_number((c|C), i1)
component_input_present((c|C), i2)
component_output_number((c|C), o1)
component_output_present((c|C), 02)
i1=i2
0l >02
not
—termination
—C: wte_for((c|C), (c|C))
—EFGH: efgh(0, 0, 1, 1)
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E—Ileadsto
—V: C1: between(1, components)
—V: C2: between(1, components)
—V: D between(1, data)
—V:il: integer
—V: i2: integer
——V: ol : integer
——V: 02 : integer
E—A: and
——component_input_number((c|C1), i1)
——component_input_present((c|Cl), i2)
——component_output_number((c|C1), 01)
——component_output_present((c|C1), 02)
—ilki2=1
E—not
—data((dD))
——component_input((c|C1), (d|D))
——component_output((c|C2), (d|D))
E—not

—termination
—C: wote_for((c|C1), (c|C2))
L—EFGH: efgh(0, 0, 1, 1)

E—Ileadsto

—V: C1: between(1, components)

—V: C2 : between(1, components)

—V: C3: between(1, components)

——V: D1 : between(1, data)

—V: D2 : between(l, data)

—V:il: integer

—V:i2: integer

—V: ol: integer

—V: 02 : integer

E—A: and

——component_input_number((c|C1), i1)
——component_input_present((c|C1), i2)
——component_output_number((c|C1), 01)
——component_output_present((c|C1), 02)
—ili2=2

E—mnot

L—data((d|D1))
——component_input((c|C1), (d|D1))
——component_output((c|C2), (d|D1))
E—mnot

L data((d|D2))
——component_input((c|C1), (d|D2))
——component_output((c|C3), (d|D2))
——D1> D2

E—not

—termination

and
|—dummy
E—PXOR

Prob 0.5
L—ote_for((c|C1), (c|C2))
E—OTHERWISE
L—ote_for((c|C1), (c|C3))
—EFGH: efgh(0, 0, 1, 1)

E—Tleadsto
——V: C1: between(1, components)
—V: C2: between(1, components)
—V: D between(1, data)
: integer
1 i2 @ integer
—V: ol : integer
—V: 02 : integer
E—A: and
——component_input_number((c|C1), i1)
——component_input_present((c|C1), i2)
——component_output_number((c|C1), 01)
——component_output_present((c|C1), 02)
—il=i2
—ol=o02
—ol=1
——component_output((c|C1), (d|D))
——component_input((c|C2), (d|D))
E—rnot

—termination
—C: wote_for((c|C1), (c|C2))
——EFGH: efgh(0, 0, 1, 1)
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E—leadsto
—V: C1 : between(1, components)
——V: C2 : between(1, components)
—V: C3 : between(1, components)
—V: D1 : between(1, data)
——V: D2 : between(1, data)
——V:il: integer
—V:i2: integer
—V: ol : integer
——V: 02 : integer
E—A: and
——component_input_number((c|C1), i1)
——component_input_present((c|C1), i2)
——component_output_number((c|C1), 01)
——component_output_present((c|C1), 02)
—il=i2
—ol=o02
—ol=2
——component_output((c|C1), (d|D1))
——component_input((c|C2), (d|D1))
——component_output((c|C1), (d|D2))
——component_input((c|C3), (d|D2))
—D1> D2
E—not

—termination

B—C: and
dummy
PXOR

Prob 0.5
L—ote_for((c|C1), (c|C2))
OTHERWISE

—ote_for((c|C1), (c|C3))

L—EFGH: efgh(0, 0, 1, 1)
El—leadsto

V: C1: between(1, components)

V: C2 : between(1, components)

E—A: and

[——wte_for((c|C1), (c|C2))
E—not

—count_for(components+1)
—C: wote_for((c|C1), (c|C2))
L EFGH: efgh(0, 0, 1, 1)

E—leadsto
V: C1 : between(1, components)
V: C2 : between(1, components)
-—A: and
E\Dteffor((qa), (©|c2)
not

—counting_started

B—C: and

forall
V: C: between(1, components)
wotes((c|C), 0)

count_for(1)

counting_started

——EFGH: efgh(0, 0, 1, 1)

E—leadsto
—V: C1: between(1, components)
—V: C2 : between(1, components)
—V: V : between(0, components)
E—A: and
counting_started
count_for(C1)
wote_for((c|C1), (c|C2))
wotes((c|C2), V)
B—C: and
counting_started
count_for(C1+1)
wotes((c|C2), V+1)
——EFGH: efgh(0, 0, 1, 1)

E—leadsto
—V: C1 : between(1, components)
——V: C2 : between(1, components)
—V: V : between(0, components)
E—A: and
counting_started
count_for(C1)
not
—ote_for((c|C1), (c|C2))
wotes((c|C2), V)
B—C: and
counting_started
count_for(C1+1)
wotes((c|C2), V)
——EFGH: efgh(0, 0, 1, 1)
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E—Ileadsto

——V: C1 : between(1, components)
—V: C2 : between(1, components)
—V: x1 : between(0, components)
——V: x2 : between(0, components)
E—A: and

count_for(components+1)
wotes((c|CL), x1)
votes((c|C2), x2)

X1 >=x2

—C: weak_better_than((c|C1), (c|C2))
—EFGH: efgh(0, 0, 1, 1)

E—leadsto

—V: C1: between(1, components)
—V: C2 : between(1, components)
——V: x1 : between(0, components)
—V: x2 : between(0, components)
—A: and

count_for(components+1)
wotes((c|Cl), x1)
wotes((c|C2), x2)

X1 > X2

—C: strong_better_than((c|C1), (c|C2))
—EFGH: efgh(0, 0, 1, 1)

E—Ileadsto

V: C1: between(1, components)
V: x1 : between(0, components)
—A: and
count_for(components+1)
wotes((c|Cl), x1)
—C: strong_better_than((c|C1), (c|C1))
—EFGH: efgh(0, 0, 1, 1)

E—leadsto

V: X: between(1, components)
H—A: forall
V'Y : between(1, components)
weak_better_than((c|X), (c|Y))
—C: possible_component((c|X)
——EFGH: efgh(0, 0, 1, 1)

B—Ileadsto
V: C1: between(1, components)
V: C2 : between(1, components)
—A: and
Epossible_componem((q(:l))

possible_component((c|C2))
Cl>C2
—C: and
dummy
PXOR
Prob 0.33
L—active_component((c|C1))
Prob 0.33
—active_component((c|C2))
OTHERWISE
B—and
active_component((c|C1))
-active_component((c|C2))
L—EFGH:; efgh(0, 0, 1, 1)

E—Ileadsto
V: X: between(1, components)
=—A: forall
V:'Y : between(1, components)
strong_better_than((c|X), (c|Y))
——C: active_component((c|X))
L —EFGH: efgh(1, 1, 1, 1)

E—Ileadsto
EV: C : between(1, components)

V: D : between(l, data)

A: and
active_component((c|C))
component_allowed((c|C))
component_output((c|C), (d|D))

—C: and

data((d|D))

new_data

—EFGH: efgh(0, 0, 1, 1)

E—leadsto

—V: D : between(l, data)
——A: data((d|D))

——C: data((d|D))
—EFGH: efgh(0, 0, 1, 1)

E—Tleadsto
[—V: D between(1, data)
E—A: and
data((d|D))
goal_data((d|D))
—C: termination
L—EFGH:; efgh(0, 0, 1, 1)
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E—eadsto

V: D1 : between(l, data)

V: D2 : between(1, data)

A: and
data((d|D1))
data((d|D2))
goal_data(and((d|D1), (d|D2)))

C: termination

EFGH: efgh(0, 0, 1, 1)
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