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1 Introduction 
How to control or coordinate the processes in a complex software system is a nontrivial issue. 
By a component-based approach to software systems a divide and conquer strategy can be used 
to address the various aspects involved. This may lead to a possibly large number of 
components, which each can be analysed and designed independently. However, a designer 
may still be left with a connectivity problem: how can all these fragments be combined into a 
coherent system. One aspect of connectivity is how specific information generated by one 
component can become available to another component that needs that information. This is 
sometimes called the data flow problem. Such a problem is often addressed by drawing 
connections between components that indicate where possibly which information can transfer 
from one component to another one (a data flow diagram). Another possibility to solve this is 
by creating a (shared data) storage where information from all components is posted and which 
can be accessed by all components to obtain needed information. Such solutions may provide 
satisfactory solutions for the connectivity problem in the static sense of what the possibilities of 
transfer between components are. However, this does not address the dynamics in the sense of 
when actually such information transfer occurs, or when a component is active in processing its 
input information to generate new output information. This problem of the connectivity 
between components in terms of dynamics is the harder problem, sometimes called the control 
problem or the coordination problem. This report addresses this problem. Whilst in the 
literature both the terms coordination and control are used, in the remainder of this document 
only the former term is used. 
 
First, in Section 2 a more detailed analysis of the problem is provided. Next, in Section 3 the 
methodology is described to explore what specific coordination approaches can contribute. 
Section 4 briefly introduces the modelling techniques and supporting software tools used (with 
a reference to two appendices where more details are given). In Section 5 a number of 
coordination approaches obtained from the literature are briefly introduced. Section 6 describes 
a set of test examples that can be used as input for the coordination approaches. In Section 7, 8, 
and 9 the simulations are shown that were undertaken to evaluate the usefulness of the 
coordination approaches for the test examples. Section 10 presents the results, and Section 11 is 
a final discussion, positioning the results achieved this far and providing further perspectives. 
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2 Coordination in Software Systems: The Problem 
Software systems that consist of a large number of components are not easy to coordinate. One 
approach is to prescribe in a centralised manner when exactly a component should become 
active. This can be obtained, for example, by a control specification (or coordination 
specification) that indicates, based on results of components that already have been active, 
which component has to be the next active component. An example of a component-based 
modelling approach incorporating such a form of coordination specification (by means of 
socalled supervisor rules) is the first version of DESIRE (Design and Specification of 
Interacting Reasoning components), developed the end of the 80s and the beginning of the 90s 
of the previous century; cf. Langevelde, Philipsen, and Treur (1992); Gavrila and Treur (1994). 
However, for more complex component-based systems such a coordination specification can 
have a number of disadvantages: 
 

• it can become large and intransparent.  
• it may suffer from overspecification, i.e., the dynamics of component activation may 

have to be prescribed in much more detail than actually needed 
• it may require quite an effort to acquire the coordination knowledge, i.e., find out how 

the coordination choices should be in all possibly occurring system states 
• its flexibility and adaptivity with respect to circumstances at runtime often is limited 

 
To remedy the first disadvantage, it is possible to add hierarchical structure to the component-
based system, by clustering components to higher-level components, thus introducing 
aggregation levels, in such a way that at each aggregation level the number of lower-level 
components from which a higher-level component is composed is low. By itself this does not 
address the other three disadvantages. A second way to address the disadvantages above, 
especially the second one, is to allow components to be active in parallel and where possible 
leave it to a component when it becomes active, for example, in response to new input 
information. These two ways to address the disadvantages, by hierarchical structure and by 
giving more autonomy to components allowing them to be active in parallel, were worked out 
in the second, agent-oriented version of DESIRE developed in mid and second half of the 90s; 
cf. Brazier, Dunin-Keplicz, Jennings, and Treur (1995, 1997); Brazier, Treur, Wijngaards, and 
Willems (1998); Brazier, Jonker, and Treur (1998/2004, 2002a, 2002b).  
 
However, while addressing the first two disadvantages in a satisfactory manner, this approach 
does not contribute much to address the third and fourth disadvantage. In fact, it can even make 
the third disadvantage worse, because opening up the possibility of more autonomy and parallel 
processing of components may seriously increase the number of possible states of the system: 
e.g., for n components, for the sequential case at any point in time there can be 1 component out 
of n possible components active, whereas in the parallel case there can be 1 subset of 
components out of 2n possible subsets active. To overcome such problems, this report aims to 
contribute to solutions addressing the third and fourth disadvantage as well. 
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3 Methodology 
To explore possibilities to address the coordination problem as described above, a general 
methodology has been followed that is based on the following elements (see also Figure 1): 
 

- a number of promising coordination approaches from the literature are selected 
- a number of test examples representing software component configurations are chosen 
- simulations are performed where selected coordination approaches are applied to the 

chosen test examples, resulting in a number of simulation traces 
- the simulation traces are evaluated (automatically) on a number of relevant dynamic 

properties 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. General research methodology 

 
 
 
Each of the elements of Figure 1 will be briefly discussed below. 

3.1  Coordination Approaches 
The problem of coordination of component-based software systems has crucial aspects in 
common with the problem of coordination in natural (biological), cognitive (human and animal 
mind) or societal systems (organisational structures). Evolution processes over long time 
periods have generated solutions for the coordination problem in these areas. Therefore it may 
make sense to analyse in more detail how these solutions work. Some literature is available that 
describes theories for coordination in these areas. This literature can be used as a source of 
inspiration to obtain more innovative approaches to coordination of complex component-based 
software systems. As a first step a number of such approaches will be evaluated to see whether 
they can overcome the problems identified in Section 2.  

3.2  Test Examples 
To evaluate a given coordination approach, adequate test examples of component-based 
software configurations are needed. One may be tempted to use a real-life component-based 
software system as a test example, for example, consisting of hundreds of components. 
However, such type of testing for one case would take a lot of effort, and to get a reasonable 

 
Test Examples 

 

Coordination 
Approaches 

 

Simulation 
Traces 

Automated 
Checker 

 
 

Dynamic 
Properties 

 

YES/NO 



 12

idea it should be repeated for a representative number of software systems at least. For this 
stage of the exploration this would not be appropriate. Instead, a number of smaller test 
examples have been identified. As a source the library of workflow patterns described in (van 
der Aalst et al., 2002) has been used. The examples given there have been extended with input 
and output data and information flow channels. 

3.3  Simulation 
To test the selected coordination approaches on the chosen examples, implementations have to 
be made. One way to do this would be to create specific implementations for each of the 
(abstract) test examples, by explicitly defining the internal functioning of the components 
involved. Next, one would add to these implementations one by one implementations of the 
coordination approaches, and then run each of these implementations. The resulting log data, 
which should include a registration of the processing time, for example, in terms of processor 
time or number of computation steps, can then be evaluated. Such an evaluation at an 
implementation level, however, has some drawbacks: the specific implementations chosen may 
affect the results, and the specific underlying software/hardware combination may affect the 
processing times measured; e.g., think of aspects of concurrency that within a 
software/hardware environment may have to be mapped onto a form of interleaving of 
processes. Therefore a different approach is chosen. All the testing is done within one given 
simulation environment. Within this environment, one by one the processing of a software 
system based on one example and one coordination mechanism is simulated. In that case, the 
examples are defined at an abstract level (i.e., only in terms of input-output relations, ignoring 
the internal functioning). The measured time then is simulated time, not processing time. In 
simulated time, processes can easily be active in parallel. The simulation environment chosen is 
logic-based, so that the simulation models are logically specified and both these models and the 
resulting simulation traces can be logically analysed, supported by another software 
environment. 

3.4  Evaluation 
To evaluate the resulting simulation traces, in the first place it is needed to identify the relevant 
properties on which such an evaluation should be based. A number of aspects can be covered in 
such properties. A first aspect is effectiveness or successfulness to provide the desired output 
for the example system. When a coordination approach does not involve the right components 
at the right times, and therefore is not able to generate the desired output that is possible, then it 
is not effective. A second aspect to evaluate is efficiency: to what extent time is wasted in the 
process to come up with output. A third aspect is to what extent the coordination approach is 
able to generate the possible activation traces one has in mind for the given example. Such 
properties can be formally specified and automatically checked for the simulation traces. 
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4 Software Environments 
To support the methodology described in Section 3 two software environments are used: 
 

- a simulation environment to specify simulation models and to execute these models in 
order to get simulation traces 

- a checking environment to specify relevant dynamic properties of traces and to check 
such properties against traces 

 
For the first, the LEADSTO environment is used (cf., Bosse, Jonker, v.d. Meij, and Treur 
2005), for the second the TTL environment. In the Appendices A and B a more extensive 
description of these environments is shown. 

4.1  The LEADSTO Simulation Environment 
An important problem during system design is the validation of the design specification: can it 
be proven that the specification shows the expected behaviour (e.g., as described by 
requirements) before it is actually implemented? Especially when the specification is given in 
terms of abstract high-level concepts this is a non-trivial task. Simulation can be a useful 
method to analyse a design. In order to simulate a system to be designed, it is important to 
model its dynamics. LEADSTO can be used to model the dynamics of systems to be designed, 
on the basis of highly abstract process descriptions. If those dynamics are modelled correctly, 
the LEADSTO software environment can use them for simulation of the behaviour of the 
system. Although such simulations are no formal proof, they can contribute to an informal 
validation of the specification: by performing a number of simulations, it can be tested whether 
the behaviour of the specification is satisfactory. Depending on the domain of application, 
specifications of a simulation model need to be formulated quantitatively or qualitatively. 
Usually, within a given application explicit boundaries can be given in which the mechanisms 
take effect. For example, “ from the time of planting an avocado pit, it takes 4 to 6 weeks for a 
shoot to appear” . When considering current approaches to modelling dynamics, the following 
two classes can be identified: logic-oriented modelling approaches, and mathematical modelling 
approaches, usually based on difference or differential equations. Logic-oriented approaches are 
good for expressing qualitative relations, but less suitable for working with quantitative  
relationships. Mathematical modelling approaches (e.g., Dynamical Systems Theory), are good 
for the quantitative relations, but expressing conceptual, qualitative relationships is very 
difficult. The LEADSTO language (and software environment) is a language combining the 
specification of qualitative and quantitative relations. 
 
The LEADSTO format is an executable format that can be used to obtain a specification of a 
simulation model in terms of executable dynamic properties. The format is defined as follows. 
Let α and β be state properties of the form ‘conjunction of literals’  (where a literal is an atom or 
the negation of an atom), and e, f, g, h non-negative real numbers. In the LEADSTO language α 
→→e, f, g, h β, means: 
 
 if state property α holds for a certain time interval with duration g, 
 then after some delay (between e and f) state property β will hold 
  for a certain time interval of length h. 
 

A specification of dynamic properties in LEADSTO format has as advantages that it is 
executable and that it can often easily be depicted graphically. For more details, see Appendix 
A. 
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4.2  The TTL Analysis Environment 
For the purpose of specification and execution of a simulation model, the limited format of the 
LEADSTO language is adequate. However, to analyse the more complex dynamic properties 
that emerge from such direct, executable temporal relationships, for example, in simulations, a 
more expressive language is needed. The Temporal Trace Language (TTL) is such a more 
expressive language for the analysis of dynamic properties. This predicate logical language 
supports formal specification and analysis of dynamic properties covering both qualitative and 
quantitative aspects. A special software environment has been developed for TTL, featuring 
both a Property Editor for building and editing TTL properties and a Checking Tool that 
enables the formal verification of such properties against a set of (simulated or empirical) 
traces.  
 
For the TTL properties informal, semi-formal or formal representations can be given, briefly 
defined as follows. A state ontology is a specification (in order-sorted logic) of a vocabulary. A 
state for ontology Ont is an assignment of truth-values {true, false} to the set At(Ont) of ground atoms 
expressed in terms of Ont. The set of all possible states for state ontology Ont is denoted by 
STATES(Ont). The set of state properties STATPROP(Ont) for state ontology Ont is the set of all 
propositions over ground atoms from At(Ont). A fixed time frame T is assumed which is linearly 
ordered. A  trace or trajectory γ over a state ontology  Ont and time frame T  is a mapping γ : T → 

STATES(Ont), i.e., a sequence of states γt (t ∈ T) in  STATES(Ont). The set of all traces over state 
ontology Ont is denoted by TRACES(Ont).  Depending on the application, the time frame T may be 
dense (e.g., the real numbers), or discrete (e.g., the set of integers or natural numbers or a finite 
initial segment of the natural numbers), or any other form, as long as it has a linear ordering. 
The set of dynamic properties DYNPROP(Ont) is the set of temporal statements that can be 
formulated with respect to traces based on the state ontology Ont in the following manner.  
Given a trace γ over state ontology Ont, the input state of some component c at time point t is 
denoted by state(γ, t, input(c)); analogously state(γ, t, output(c)) and state(γ, t, internal(c)) denote the output 
state and internal state.  
 
These states can be related to state properties via the formally defined satisfaction relation |=; 
i.e., state(γ, t, output(c)) |= p denotes that state property p holds in trace γ at time t in the output state 
of component c. Based on these statements, dynamic properties can be formulated in a formal 
manner in a sorted first-order predicate logic with sorts TIME or T for time points, Traces for traces 
and F for state formulae, using quantifiers over time and the usual first-order logical connectives 
such as ¬, ∧, ∨, �, ∀, ∃.  
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5 Coordination Approaches 
As mentioned earlier, the coordination problem in software systems has crucial aspects in 
common with the problem of coordination in natural (biological), cognitive (human and animal 
mind) or societal systems (organisational structures). Therefore, a large body of literature is 
available that describes coordination approaches in these areas. In this section, some of the most 
well-known approaches are discussed. Section 5.1 focusses on the Behavior Networks approach 
by Patty Maes. Section 5.2 describes Ornstein (1986)’s structure of the Multi-Mind. Section 5.3 
describes Minsky (1985)’s Society of the Mind theory. Section 5.4 describes Selfridge (1958)’s 
Pandemonium model, and Section 5.5 addresses the classifier combination techniques known as 
voting methods. All sections, with the exception of Section 5.5, are summaries on the basis of 
Franklin (1997). 

5.1  Behavior Networks 
Behavior networks have been introduced by Pattie Maes in 1989. Behavior networks contain 
competence modules which can be seen as components or agent. They are interactive, mindless 
agents, each with a specific competence. The question is how the behavior of these modules can 
be coordinated. One option is to hardwire or hand-code the coordination. This strategy works 
well only for systems with simple, non-conflicting goals in a relatively static and not too 
complex environment like a thermostat, and assembly line robot or a toy AI system playing tic-
tac-toe. Some military agencies often rely on a hierarchical coordination structure, and 
symbolic AI systems employ this strategy as well. Some expert system shells implement 
algorithms that, given a set of input-output pairs as examples, produce an appropriate decision 
tree. A hierarchical strategy often suffers rigidity, working well until an unusual circumstance is 
encountered, then crashing. In Jackson’s (1987) work, a distributed system of coordination is 
present, where strength decide who gets to act. Maes takes the same approach. A competence 
module looks very much like a production rule, each having some preconditions. Each module 
also consists of lists of additions and of deletions, that is, statements the module wants to add to 
the global database or statements it wants to delete. The difference between a competence 
modules and a production rule is the presence of an activation, a number indicating some kind 
of strength level. 
 

5.1.1 Algorithm 
To illustrate the algorithm, one can think of each competence module as occupying a node of a 
digraph. The links between the nodes are completely determined by the competence modules. If 
a competence module X will add a proposition b which is on competence Y’s precondition list, 
then put a successor link between X and Y. There might be several such propositions resulting 
in several links between the same nodes. Next, whenever you put a successor going one way, 
put a predecessor going the other. Finally, suppose you have a proposition m on competence 
Y’s delete list that is also a precondition for competence X, draw a conflictor link from X to . 
So how can we use this digraph? First of all, the underlying digraph spreads the activation. The 
activation comes from the activation stores by the competence modules themselves, from the 
environment, and from goals. The system has only built in global goals. So let’ s describe the 
sources of spreading activation over the system. The environment awards activation to a 
competence module for each of its true preconditions. The more true preconditions a 
competence has, that is, the more relevant it is to the current situation, the more activity it’s 
going to receive from the environment. This source of activation allows the system to be 
opportunistic. Next, each goals awards activation to each component that, by being active, will 
satisfy the goal. In other words, if the competence includes a proposition on its add list that 
satisfies a goal, then this goal will send activation to that competence. Protected goals are also 
possible: A completed goal inhibits any competence that will undo it. Finally, activation is 
spread from competence to competence along links. Along successor links, one competence 
strengthens those competences whose preconditions it can help fulfi ll, it does so by sending 
them activation along the link. Along predecessor links, one components strengthens any other 
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competence whose add list fulfills one of its preconditions. A competence sends inhibition 
along a conflictor link to any other competence that can delete one of its true precondition, 
thereby weakening it. Every conflictor link is inhibitory. A competence is called executable 
when all of its preconditions can be satisfied. The algorithm in pseudo code: 
 
Loop f or ever  

1.  Add act i vat i on f r om envi r onment  and goal s 
2.  Spr ead act i vat i on f or war d and backwar d among compet ence 

modul es 
3.  Decay – t ot al  act i vat i on r emai ns const ant  
4.  Compet ence modul e f i r es i f  

a.  i t ’ s execut abl e 
b.  i t ’ s over  t hr eshol d 
c.  i t ’ s t he maxi mum such 

5.  I f  one compet ence modul e f i r es,  i t s  act i vat i on goes t o 0,  
and al l  t hr eshol ds r et ur n t o t hei r  nor mal  val ue 

6.  I f  none f i r es,  r educe al l  t hr eshol ds by 10% 

5.1.2 Mathematical model 
Maes uses a mathematical model to calculate the activations and how it spreads. This text 
originates from Maes 1989. Let a competence module i be defined by a tuple (ci, ai, di, αi) 
where ci  is the list of preconditions that need to be fulfilled before the competence module can 
become active, ai and di represent the expected effects of the activation of the module in the 
form of an add and delete list, and each competence module has a level of activation αi. 
Furthermore, the following elements are assumed to be given: 
 
• A set of competence modules 1....n, 
• A set of propositions P, 
• A function S(t) returning the propositions that are observed to be true at time t; S is 

implemented by an independent process (or the real world), 
• A function G(t) returning the propositions that are the goals of  the agent at time t; G is 

again implemented by an independent process, 
• A function R(t) returning the propositions that are a goal of the agent that have already 

been achieved at time t, R is again implemented by an independent process, 
• A function executable(i, t) which returns 1 if competence module i is executable at time t 

(i.e. if all of the preconditions of competence module i are members of S(t)), and 0 
otherwise. 

• A function M(j), which returns the set of modules that match proposition j, i.e., the 
modules x for which j ∈ cx 

• A function A(j) which returns the set of modules that achieve propositions j, i.e. modules x 
for which j ∈ ax 

• A function U(j) which returns the set of modules that undo proposition j, i.e. modules x for 
which j ∈ dx 

• � , the mean level of activation, 
• θ, the threshold of activation, where is lowered 10% every time no module could be 

selected, and is reset to its initial value whenever a module becomes active, 
• φ, the amount of activation energy injected by the state per true proposition, 
• γ, the amount of activation energy injected by the goals per goal, 
• δ, the amount of activation energy taken away by the protected goals per protected goal. 
 
Given competence module x = (cx, ax, dx, αx), the input of activation to module x from the state 
at time t is: 
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The input of activation to competence module x from the goals at time t is: 

 
The removal of activation from competence module x by the goals that are protected at time t 
is: 

 
The following equation specifies what a competence module x = (cx, ax, dx, αx) spreads 
backward to a competence module y = (cy, ay, dy, αy): 

 
For forward spreading from module x to y the following definition is used: 

 
The following equation specifies what module x takes away from module y: 

 
The activation level of a competence module y at time t is defined as: 

 
where x ranges over the modules in the network, z ranges over the modules in the network 
minus the module y, t > 0, and the decay function is such that the global activation remains 
constant: 

 
The competence module that becomes active at time t is module I such that: 

 
 

5.2  The Multi-Mind 
Ornstein (1986) claims that we are not a single person but we are many. Our strong subjective 
sense of a single, unified, conscious agent controlling life’s events with a singular integrated 
purpose is only an illusion. It is illusory to think that a person has a single mind. Rather, there 
are many. Ornstein sees the mind as being composed of different kinds of small minds. We 
have lots of these minds that are specialised to handle different chores. These different entities 
are wheeled into consciousness, then usually returned to their place after use, and put back on 
the shelf. The memories from Ornstein’s perspective are more like data structures that are 



 18

retrieved. The conscious mind wheels in various small minds, which accomplish quite limited 
and specific purposes. This wheeling in and out of small minds allows for diverse centers of 
control. Ornstein speaks of centers of control at lower levels having developed over millions of 
years to regulate the body, to guard against danger, to organise and plan efforts, and so on. 
These various centers have different priorities; some are more important than others. 
 
Ornstein identifies four strong tendencies or patterns of behavior: 
 

• What have you done for me lately? More sensitivity for more recent information. 
• Don’t call me unless anything new and exiting happens. Unexpected or extraordinary 

events seem to enjoy a fast track in our consciousness. 
• Compared to what? We constantly judge by comparisons and rarely make absolute 

judgments of any kind. 
• Get to the point. The meaning of any event, its relevance to the person (or the 

autonomous agent), is the point. 
 
Ornstein claims that we throw out almost all the information that reaches us. The theory of 
Ornstein can be seen as a high-level theory that will give a framework within which to view the 
work on mechanisms. 
 
Ornstein states that our world appears to us the way it does because we are built the way we are. 
The world we create is also affected by internal transformations, an example is the difference in 
perception of increase in electric shocks (exponent > 1) and brightness (exponent < 1). 
 
The structure of the multi-mind according to Ornstein is as follows. At the lowest level of 
organisation are the basic neural transformations. These can be pictured as groups of neurons 
acting cooperatively to perform a set function. Then come domain-specific data-processing 
modules, the quick and stupid analytical systems of the mind, one of which might produce the 
consistent perception of red under bright sunlight and dusk. Slower, but smarter, more general, 
and more flexible, are the talents. Combinations of talents, useful in particular situations, 
comprise small minds. And finally, at the top of the heap, rests consciousness, into which small 
minds are wheeled as our goals and environment demand. One question that’s still left is who is 
in control of the wheeling. Ornstein postulates a governing self that controls the wheeling of 
small minds in and out of consciousness. In most of us, which small mind gets wheeled in is 
decided automatically on the basis of blind habit. However, a person can become conscious of 
the multi-mind and begin to run them instead of hopelessly watch anger wheel in once again.  
 

5.3  Society of the Mind 
In Minsky (1985), Marvin Minsky motivates his theory of mind from an evolutional 
perspective: each human cranium contains hundreds of kinds of computer, developed over 
hundreds of millions of years of evolution each with a somewhat different architecture. 
Contrary to Ornstein, Minsky takes the bottom up approach. He wants to show how you can 
build a human mind from many little parts, each mindless by itself. He refers to these little parts 
as agents. Each mental agent by itself can only do some simple things that needs no mind or 
thought at all. Yet when these agents are joined in societies this leads to true intelligence. 
Minsky’s agents care all processes, even when they empower memory. Basically, Minsky is 
trying to sell the idea of intelligence implemented by a society of relatively unintelligent agents. 
Agents can call on other agents as procedures can in a programming language. The chance of 
picking two agents randomly out of the human mind and their having anything whatever to say 
to one another is vanishingly small. Each agent only uses a small number of others with whom 
it can communicate. If you look at the brain, the lack of communication between agents seem 
plausible. 
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5.3.1 Minsky’s mechanisms 
Minsky proposes many possible mechanisms of mind, most of them at a relatively high level of 
abstraction with many possible implementations. 
 
The first involves the use of collections of agents for the representation of concepts. Agents can 
either be active or not, or may have some activation level other than on or off. Active agents 
can represent properties or features, for example representing a certain shape, substance, color, 
and size. When for example another shape becomes active, different agents in the shape 
division will become active. Question that remains is how these representations are retrieved. 
Minsky introduces the notion of a K-line as the basic mechanism for memory. A K-line is a 
mental data structure and also an agent. It connects other agents and awakens them when 
appropriate. You can think of a K-line as a wire-like structure that attaches itself to agents that 
are active when the K-line is formed. A K-line representing the sentence “Jack flies a kite”  is 
shown in Figure 2. 

Fig. 2. Example K-line 

 
K-lines can be directly hooked to agents as shown above, but also to other, preexisting K-lines 
as shown in Figure 3. 
 
Another important question is how these mechanisms are controlled. Minsky proposes a B-
brain influencing an A-brain, that in turn, interacts with the world. Picture the A-brain as being 
comprise of agents that sense the outside world and of other, motor agents that act upon it. The 
B-brain is sitting atop only in contact with A’s agents and is composed out of executives who 
direct, or at least, influence A’s activity. Some examples: if A seems to be repeating itself, 
caught in an endless loop, B makes it try something new. If A does something B likes, B makes 
A remember it. If A is too much involved with detail, B makes it take a higher-level view, and 
conversely. The notion of a B-brain provides a high-level, abstract coordination mechanism. 
Both brains are composed hierarchically. At the bottom are the agents with their own hierarchy. 
At the next level up we find societies, organisations of agents. Up another level you have layers 
of societies. Minds according to Minsky develop as sequences of layers of societies. Each new 
layer begins as a set of K-lines and learns to exploit whatever skills have been acquired by the 
previous layer. When a layer acquires some useful and substantial skill, it tends to stop learning 
and changing. 
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Fig. 3. Example K-line, hooked to other K-lines 

 
Minsky refers to another possible mechanism of mind, at least for some high-level agents, as a 
difference engine. A comparison of the current situation with a description of the goal it wants 
to reach provides a set of differences. Agents acting upon the world so as to minimise these 
differences are then activated, thus moving the situation towards the goal. The strategy is 
referred to, in symbolic AI, as means-end analysis. Means-end analysis is a “weak”  method in 
that it requires little domain knowledge to accomplish its objective. Difference engines require 
goal descriptions. Goals must persist over some time, and require some image or description of 
a desired state. 
 
Now suppose a procedure has failed in a certain situation. Fixing it might introduce errors in 
other situations where it now works perfectly well. Minsky suggests inserting a censor that 
remembers some abstraction of the situation in which the procedure doesn’ t work for this 
purpose. When that situation arises again, the censor suppresses the misbehaving procedure and 
calls on some other, special purpose, procedure to do the job. 
 
Another element is learning new behavior, the old behavior must remain while the learning 
process is ongoing. Therefore, the old system is kept intact and operational while building the 
new as a detour around the old. The system can be tested without letting it assume control. 
When satisfied, cut or suppress some of the connections of the older system. 
 
Conflicting goals can also be present when looking at the agents within the mind. Minsky 
claims that such conflicts among our most insistent goals produce strong emotional reactions. 
These emotions are needed to defend against competing goals. He concludes that the question is 
not whether systems can have any emotions, but whether machines can be intelligent without 
any emotions. 
 
Finally, Minsky introduces the idea of accumulation. Each agency will accumulate under a wide 
variety of agents to do its bidding, so as to have several different ways of getting its job done. 
Some of these might be more efficient than others, but if one is lost in a particular circumstance, 
chances are there will be another way. 

5.4  Pandemonium 
Selfridge (1958) proposed a pandemonium theory of perception, built on primitive constructs 
called demons. A demon is a rule, procedure or agent in Minsky’s sense. In computer science, 
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demons are processes sitting around for something specific to happen. Selfridge uses demons to 
identify objects, the one from a crowd of demons shouting loudest is taken to identify this 
particular object. Jackson extends this idea to a theory of mind. He identifies demons involved 
in perception but also demons that cause external actions and demons that act internally on 
other demons. These classes need not be disjoint; a single demon may, for example, affect an 
action while influencing some other demon as a side effect. These demons can be seen as an 
abstraction of Minsky’s agents. Now picture these demons living in a stadium. Almost all of 
them are up in the stands; they’ re the crowd cheering on the performers. Six are down on the 
playing field, exciting the crowd in the stands. Demons in the stands respond selectively to 
these attempts to excite them. Some are more excited than others; some shout louder. The 
loudest demon in the stands gets to go down, and join those on the field, displacing one of those 
currently performing back to the stands. The loudness of the shouting of a demon is dependant 
upon being linked with the demon that must excite. Stronger links produce louder responses. 
These links are created in the following way. Initially, the system starts off with a certain 
number of initial demons and initial, built-in links between them. New links are made between 
demons and existing links are strengthened in the proportion to the time they have been together 
on the field, plus the gain of the system (when all is going well, the gain is higher). In addition, 
a sub arena is present that performs a number of tasks. First of all, it measures the system’s 
well-being so that “ improved conditions”  can be discerned, and turns the gain up or down. The 
sub arena also performs sensory input by sending demons representing low-level input to the 
playing field, providing an interface between the actual sensory input and whatever the system 
does with it. Demons also represent low-level actions that are carried out by the sub arena at the 
command of action demons on the playing field. 
 
A visualisation of the pandemonium theory, instantiated for the domain of pattern recognition, 
is shown in Figure 4. Here, the goal of the pandemonium is to recognise a certain letter (the 
letter R in this case). Different feature demons are responsible for identifying certain 
characteristic features of the letter. Next, cognitive demons use this information to determine 
how loud they will shout. Each cognitive demon corresponds to a single letter. Finally, a 
decision demon decides which cognitive demon shouts loudest, and the corresponding letter is 
selected. 

5.4.1 Concepts via Pandemonium 
Jackson also allows for the creation of concepts in the system. Demons that have appeared 
together frequently can be merged into a single concept demon. When concept demons are 
created, their component demons survive and continue to do their things. Concept demons help 
overcome the bottleneck of the limited playing field. Concept demons can be grouped into 
compound concept demons. To model dreaming, simply turn off the sub arena interference, 
especially the external sensory channels. 
 
Decay is also built into the system. Unused links decay, or lose strength at some background 
rate. Negative links may decay at a different rate. High-level demons enjoy a slower decay rate. 
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Fig. 4. Visualisation of the Pandemonium theory 
            (from Lindsay and Norman, 1977, p. 266) 

5.4.2 A Computing Perspective on Pandemonium 
Jackson (1987) states that this pandemonium system avoids the major pitfalls of parallel and 
serial computing by combining their better features. Serial machines are often too slow, and at 
any given time are actively using only a fraction of their available hardware. Parallel machines 
can be faster and make more efficient use of their hardware. But they often spend much of their 
time communicating between one processor and another. This system combines the best of the 
two worlds according to Jackson. First, it scans the demons in the crowd in parallel to 
determines the loudest. After that the demons are executed into a single threat on the playing 
field. 

5.5  Voting 
In this section, the classifier combination techniques known as voting methods will be 
discussed. Voting methods are simple algorithms that can be used to combine classifier outputs. 
However, as will be illustrated in this section, voting methods can be used to combine the 
output of agents. They are called voting methods as most are direct derivatives of techniques 
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used in elections. By replacing the electorate by components (or agents) and the candidates by 
the possible activations of components, it is very simple to apply the voting methods to 
coordination problems in component-based software systems (or multi-agent systems). The 
major advantage of the voting methods lies in their elegant simplicity. Furthermore, the voting 
methods tend to have a very acceptable performance rate. 
 
Voting methods can be explained as follows. Consider an agent A as a function that assigns a 
value v to each possible class c depending on the data sample d of which the correct class is 
sought, i.e., A(d,c) = v. The value v that the agent returns can represent, for example, the chance 
the agent assigns to c of being the correct class for d (also called a confidence value) or a simple  
boolean (represented by 0 and 1) to indicate whether c is the top-favorite of A or not. A voting 
algorithm V consist of one or two elementary arithmetic functions that are applied per class c to 
all the values vi assigned by all the agents Ai to c. For example, if V is the voting method known 
as the product rule then V(d,c) = (i Ai(d,c). The agents are then ordered by the value assigned to 
them by V and the top class (or bottom class, depending on V) is returned as the matching class 
for d. Note that a voting method also defines the type of values v it uses as input. For instance, 
when comparing the voting methods of the Borda count and the sum rule, the major difference 
does not lie in their applied algorithm (both are more or less characterised by V(d,c) = (i 
A_i(d,c)), but on the input they use. The sum rule uses the afore-mentioned confidence value, 
while the Borda count uses the rank assigned to all the classes by the agents. This also implies 
that some voting methods cannot use the output of some agents. For example, the sum rule 
cannot use the output of an agent that assigns only ranks such as the Borda count would use. 
 
In pattern recognition research, voting methods are often used when the late-fusion part of a 
classifier combination is of little importance. This includes, among others, research into 
ensemble creation. In turn, the wide use of voting methods has generated interest into these 
methods themselves. The relationship between several of the voting methods has been 
researched in order to find to one with the best performance (e.g., see Kittler and Alkoot (2001) 
and Kuncheva (2002)). Other research has focused on finding alternative versions of some of 
the voting methods. These efforts aim to increase the flexibility of the methods. Examples 
include Ho, Hull and Srihari's adaptation of the Borda Count (1994) and the weighted voting 
variants (Lam and Suen (1995) and Günter and Bunke (2004)). 
 
As is apparent from the last line of research, voting methods can be improved upon. Voting 
methods are simple and, as a result, are not well equipped for variance. This variance can stem 
from the amount, format and importance of the input sources. Sometimes classifiers, but 
especially agents, which are the input sources of voting methods, are able to provide more 
information than that can be used in voting methods. This may result a loss of information, 
which in turn implies a potential loss of performance. Yet, how serious is this loss of 
information and what is its impact on the performance? After all, the striking simplicity of 
voting methods makes them so easy to use that it may warrant a small dip in performance. The 
diversity of voting methods and the degree of information they use offer a perfect means to 
explore this trade-off between needed knowledge and performance on the one side and ease of 
use and simplicity on the other. 
 
This section will delve into this issue and describes what problems frequently arise if the simple 
voting methods are used on complex multi-agent systems. 

5.5.1 Voting Methods for Pattern Recognition 
In agent research, there is a growing use of multi-agent systems with the goal to increase 
recognition performance. In many cases, plurality voting is a part of the combination process. In 
this section, we discuss several well known voting methods from politics and economics on 
agent combination in order to see if an alternative to the simple plurality vote exists. We found 
that better methods are available, that are comparatively simple and fast. 
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Introduction 
The area of multi-agent systems has rapidly established itself as a major topic in the agent 
community (Dietterich (2000), Kittler and Alkoot (2001), and Xu et al. (1992)). In this section, 
we will explore and evaluate the application of several well-known voting methods on 
combining multiple-classifier hypotheses. 
 
In pattern recognition, two forms of classifier combination exist: the multi-stage, hierarchical 
(Alpaydin et al. (2000) and Vuurpijl and Schomaker (2000)) methods and the ensemble (or late 
fusion) (Dietterich (2000) and Kuncheva (2002)) methods. In the first approach, the classifiers 
are placed in a multi-layered architecture where the output of one layer limits the possible 
classes, or chooses the most applicable classifier, in the next layer. The second approach 
explores ensembles of classifiers, trained on different or similar data and using different or 
similar features. The classifiers are run simultaneously and their outputs are merged into one 
compound classification. In most cases, this combination of output hypotheses is done by using 
the simplest of voting methods (plurality vote; often erroneously called “majority vote” ), 
though more elaborate combination schemes have been proposed (e.g., Dempster-Schafer, BKS 
and DCS (Giacinto and Roli, 2000). Plurality voting is mostly used in classifier combination, as 
it is simple and yields acceptable results. However, we will show that there exist alternative, 
and sometimes better voting methods, par excellence suitable for multi-agent systems. The 
concept of voting is well-known from politics and economics, where multiple opinions shared 
by people must be merged into one final decision. Many different voting methods stem from 
these areas, which are all relatively simple to perform but use different amounts of information. 
In this section, we will present and discuss the best known of these voting methods that are 
suitable for application in classifier combination. The performance of these voting methods will 
be assessed by combining various ensembles of classifiers. 
 
In the next section, an overview and discussion is presented of the voting methods. Followed by 
an introduction of bagging, a method to test the effect of different voting methods. 

Voting methods 
In this section, the voting methods will be presented. We will start in next Section with a 
general overview of voting methods and their application to combining agents. Next, the actual 
voting methods will be discussed conform three distinguishable classes: unweighed voting 
methods, confidence voting methods, and ranked voting methods. 

General overview 
In human society (as ‘natural’  multi-agent systems), voting is a formal way of expressing 
opinions. A well-known example is the election of a president. In this example, voters are the 
people that express their opinion by means of a vote. When voting, a voter chooses one of the 
candidates or indicates some kind of rank-order which indicates his preference. The voting 
method is the mechanism of integrating all votes into one final decision. The winner is the 
candidate that is chosen as result of the voting method. 
 
Here, we would like to show how voting is translated for use in multi-agent systems. Now, the 
agents are the voters, the possible classes are the candidates and an election is the of one 
sample. This produces a winner, which is the resulting decision made for the sample by the 
ensemble of agents. The actual voting depends on the voting method used, but an agent 
expresses its opinion simply by classifying a sample. The result of this classification, be it a 
single class, a ranked list of all classes, or even a scored list of the classes, can be interpreted as 
a vote. The voting methods are simple, formal, step-by-step methods (see the next section). So, 
implementing them, given the translation above, is straightforward. 
 
Actually, the process of voting by agents is simpler than the process of voting by humans. 
Agents are programmed to classify a sample independent of the results of other agents. 
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Therefore, current agents will not alter their results in order to use the voting method to the 
benefit of a preferred class, as a human might do. In other words, an agent does not cheat (yet). 

Unweighed voting methods 
The unweighed voting methods consist of methods in which each vote carries equal weight. The 
only differentiation between the candidates is the number of votes they have received. As a 
consequence, voters cannot express the degree of preference of one candidate over another. 
Although this removes relevant information, it also results in less complex methods because no 
elaborate measures need to be taken to limit the power of the voter when expressing degrees of 
preference. Another drawback is the larger chance on a tied result. With the lack of extra 
information this can only be solved by 
a random draw. Three of the voting methods presented here (amendment, run-off, and 
Condorcet) are multi-step procedures. These methods require that the agents are able to give a 
preference choice between any two given classes. This makes these three voting methods more 
difficult to apply than other unweighed voting methods. It might be argued that the multi-step 
methods should be placed under the ranking methods, but the separate steps are inherently 
unweighed voting, so they are discussed here. 
 
In terms of multi-agent systems, the (single step) unweighed voting methods demand no 
prerequisites from the agents, but also do not use any extra information the classifiers may 
provide. The multi-step methods expect the agents to be able to handle two-class subdomains of 
a larger population of classes. 
 
Plurality: Also known as 'first past the post', plurality is the simplest form of voting. Every 
voter has one vote, which it can cast for any one candidate. The candidate with the highest 
number of votes wins. The benefits of this method are its simplicity and ease of use. The major 
drawback of plurality voting is the real possibility of a win on a small number of votes and thus 
of a minority (and very probably an erroneous) winner. 
 
Majority: In majority voting every voter has one vote that can be cast for any one candidate. 
The candidate that received the majority (i.e., more than half) of the votes, wins the election. 
Note that majority voting is often confused with plurality voting in which no majority is needed 
to win. The benefits of this method are its simplicity and its low error count. The method only 
appoints a winner in case of a majority candidate, so in order to produce an error the majority of 
the agents has to be wrong. The chances of this happening are low, especially with a large 
number of agents. However, the downside is that when no majority candidate is present, no 
result is produced and the sample is rejected by the voting method. 
 
Amendment vote: Amendment voting starts with a majority vote between the first two 
candidates. The winner of that election is pitted against the next available candidate and so on 
until the one remaining candidate is declared the winner. This voting method is favourable for 
the candidates that are added last in the total election. This lack of neutrality should be 
recognised when using this voting method. 
 
Runoff vote: The runoff vote is a two step voting process. In the first step each voter can vote 
for any one candidate. The two candidates with the highest number of votes advance to the next 
round. The second round is a majority vote between these two candidates in which all voters 
can participate again. The runoff vote solves the biggest problem of the plurality vote and has 
no rejections like the majority vote at the cost of a slight decrease of transparency. It will 
always deliver a winner and the chances of electing a minority candidate have decreased 
considerably. 
 
Condorcet count: In this method, all candidates are compared in pairwise elections. The winner 
of each election scores a point. The candidate with the highest number of points wins the total 
election. This method is more complex then the other unweighed voting methods, but also 
suffers least from the problems of these methods. 
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Confidence voting methods 
In confidence voting methods, voters can express the degree of their preference for a candidate. 
This is done by assigning a value (called the confidence value, hence the name for these voting 
methods) to candidates. The higher the confidence value, the more the candidate is preferred by 
the voter. Examples of confidence scores are probabilities and distances. The prerequisite for 
using these voting methods in multi-agent systems is not only that agents produce such a 
confidence value, but also that these confidence values are scaled correctly. So questions like 
“ is there a limit to the confidence value or will any number do?”  and “how does one 
proportionally correctly translate a preference for a candidate in a value?” , should be answered. 
 
Pandemonium: Every voter is given one vote, which it can cast for any one candidate. The voter 
casts the vote by stating its confidence in the candidate. The candidate which received the vote 
with the highest confidence of all votes cast wins. This method, known as Selfridge's 
Pandemonium (Selfridge, 1958), is one of the very first examples of using separate 
experts/agents in computer science. It is very simple, but misses the possibility for a voter to 
express differences of preference between candidates. Only the voter's top choice and its 
confidence are known. Furthermore, there is no limit to the amount of confidence nor a scale 
for voter's to adhere to. While limits are easily added to the method, a correct scale is stil l 
difficult to implement. However, with well scaled classifiers, this method could be sufficient. 
 
Sum rule: When the sum rule is used each voter has to give a confidence value for each 
candidate. Next all confidence values are added for each candidate and the candidate with the 
highest sum wins the election. 
 
Product rule: Like with the sum rule, each voter gives a confidence value for each candidate. 
Then all confidence values are multiplied per candidate. The candidate with the highest 
confidence product wins. The product rule is highly subjective to low confidence values. A very 
low value can ruin a candidate's chances on winning the election no matter what its other 
confidence values are. 

Ranked voting methods 
In ranked voting methods, the voters are asked for a preference ranking of the candidates. This 
way, more information on the voter's preference is used than in the unweighed voting methods. 
On the other hand, it does only convey the degree of preference between two classes in fixed 
amounts (the ranks) instead of the confidence values of the confidence vote methods. This 
constitutes a loss of information, though it is easier in use (no problems in scaling the voters 
confidences) and it prevents over-confidence in voters (see also Ho et al. (1994)). Ranked 
voting methods are useful in classifier combination if the classifiers can give some kind of 
confidence value that is hard to scale correctly. 
 
Borda count: This method, developed by Jean-Charles de Borda (1781), needs a complete 
preference ranking from all voters over all candidates. It then computes the mean rank of each 
candidate over all voters. The classes are reranked by their mean rank and the top ranked class 
wins the election. Note that the Borda count is the ranked variant of the sum rule. 
 
Single transferable vote (STV): Also known as alternative voting (in case of one winner 
situations), each voter gives a preference ranking of the candidates. Incomplete ranks are 
possible, though it may result in a voter losing his vote altogether. A majority vote is held based 
on the highest ranked candidate of each voter's preference ranking. If some candidate gains the 
majority, it wins the election. Otherwise, the candidate with the least number of votes in the 
majority election is eliminated from further participation. This candidate is removed from all 
preference rankings. Now, the process repeats itself, starting with the majority vote, until one 
candidate gains the majority. One low rank in an STV election is less disruptive for a 
candidate's chances of winning then in the Borda count. However, due to the elimination 
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procedure, complex and illogical side effects may occur (e.g. voting for a candidate may result 
in its loss of the election). 

Bagging 
To test the effect of the different voting methods when combining outputs of agents, the 
technique of bagging can be used (Breiman, 1994). Bagging is a simple method known from 
pattern recognition to increase the recognition performance of a classification technique that 
depends on training the classifier. Bagging consists of the following steps: 
 

1. New training sets were created by randomly sampling with replacement from the 
original training set. A number of training sets between 10 and 20 is sufficient 
(Breiman, 1994). The number of samples in each training set is normally equal to the 
number of samples in the original training set. Note that the number of different 
samples is probably smaller as doubles are possible (and even very likely). 

2. For each new training set, train a classifier using a consistent technique. The bagged 
classifier is now complete. 

3. For classification, each sample is classified by all classifiers. 
4. When the classifiers return their results for a sample, these results are then combined 

using a plurality vote. 

5.5.2 Variants of the Borda Count Method 
In all fields of pattern recognition, there exist multiple, different techniques to classify instances 
of patterns, each approach being characterised by its own virtues and shortcomings. The idea of 
combining the output of multiple classifiers has been studied for several years (Ho (1992), 
Powalka et al. (1995), Selfridge (1958), and Xu et al. (1992)) but it is still difficult to choose a 
suitable combination algorithm. The choice of a good combination algorithm is even more 
pressing for multi-agent systems since it enables the use of all available knowledge and the 
extra computing time becomes less of a problem with the current developments in computer 
processing power.  
 
Instead of defining the integration of opinions for agents as a meta-decision problem, we will 
focus on less cumbersome techniques. This avoids the undesirable consequences of meta-
decision (Vuurpijl and Schomaker, 1998): (1) an extra, large amount of training data is needed 
and (2) for every agent that is added, the complete “meta-agent” needs to be trained again. 
 
The most straightforward form of opinion integration is to let the agent cast a vote by 
forwarding the outcome they prefer best. The outcome with the most votes wins. This is called 
plurality voting and while it is simple and quite effective, it lacks depth. With depth we mean 
that agents often have a ranking of outcomes to indicate which are more likely candidates than 
others. Plurality voting only uses the absolute top of those rankings. In this section, we will 
thoroughly discuss a specific method for combining the rankings of different agents: the Borda 
count.  
 
The Borda count is an easy, intuitively appealing, and powerful method of combining different 
rankings. Moreover, it has some variants that may perform better on specific decision making 
problems. However, the theoretical foundation of the approach is less well developed then in 
the case of plurality voting. 

Standard Borda count and two variants 
The Borda count is originally a voting method in which each voter gives a complete ranking of 
all possible alternatives (Ho (1992) and Borda (1781)). The highest ranked alternative (in for 
example an n-way vote) gets n votes and each subsequent alternative gets one vote less (so the 
number two gets n-1 votes and the number three n-2 and so on). Then, for each alternative, all 
the votes are added up and the alternative with the highest number of votes wins the election. 
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Ties in the accumulated votes are not resolved in the original Borda count. This method was 
introduced in 1770 by Jean-Charles de Borda (Black, 1968). 
 
Each agent is a voter and the classes are the candidates. The method has depth as it uses the 
entire ranking information to come to a decision, not just the best guess of each agent. It also 
returns a complete ranking of the possible classes instead of its best guess, offering more 
flexibility for further uses. For example, consider decisions with a large number of possible 
outcomes, where the top-ranked candidate may be wrong. If the application context allows it 
(i.e., a collection of outcomes can be the answer instead of just one outcome), one could choose 
to accept a group of the best possible outcomes instead of just the top guess, increasing the 
probability of including the correct outcome. The ranked result of the Borda count gives 
suggestions concerning the alternatives just below the top rank. 
 
What the Borda count lacks, is a way to differentiate between several outcomes based on their 
general performance or expertise. In fact, the assumption is that the top-ranked candidates of all 
outcomes are of comparable quality, thus all outcomes (voters) are treated equal, while this may 
not be desirable. A solution for this problem is given in (Ho, 1992). Another way of calculating 
the Borda count is averaging the rank given by each voter to an outcome, instead of adding up 
the votes. The new ranking is then calculated by ranking the averaged votes, highest one on top. 
Note that effectively, this does not change the results of the combination process, however, the 
concept of an average rank has interesting implications: assuming a probability distribution of 
rank numbers for a given outcome, there exist other measures than the mean to describe central 
values of that distribution. An example is the median: the rank value that splits the number of 
given rank numbers in half. The Borda count using the median instead of the mean, will be less 
susceptible to extreme voting behavior of a few agents with respect to some outcomes. 
 
The second Borda variant is Nanson's Borda-elimination procedure (Black (1968) and Nanson 
(1882)). This is a multi-step procedure that repeatedly performs a Borda count and with each 
iteration deletes the lowest Borda ranked alternative from each agent's ranking. This allows the 
top-ranked outcomes to recover from extreme low votes. 

5.5.3 Drawbacks of voting 
The popularity of voting methods is easy to explain. They provide an increased performance for 
a minimal effort. They are simple, straightforward, and easily understood. This makes voting 
methods ideal in research on combining classifiers that does not focus on the combination of 
outputs, but that needs it all the same. As such, voting methods are much used in early fusion 
and ensemble creation research. Yet, when attention is shifted to the late fusion, it rapidly 
becomes obvious that voting methods have severe drawbacks. 
 
As the pattern recognition problems grow increasingly complex, and with it the classifier 
combination system that has to solve it, the available information becomes more voluminous 
and heterogeneous. This is where the boon of the voting methods turns into their bane. Due to 
the inherent simplicity of the methods, they cannot properly deal with this multitudinous 
information. Either the voting methods will not function properly (1) or they will harshly reduce 
the information density (2). 
 
Case (1) occurs more frequently in the more complex voting methods, such as the Borda Count 
and the Product rule. These methods have very strict requirements on their input. For example, 
most voting methods require all classifiers to produce results, in order to give a robust 
performance over subsequent classifications. The more sophisticated methods even require 
complete results over all classes. If these requirements are not met, the algorithm will not 
function or it will behave in an undefined manner. The Product rule, for example, multiplies all 
confidence values a class received from each classifier. If a class did not receive a confidence 
value from a classifier, it is unclear and implementation dependent what the result will be. 
Regarding it as a zero confidence would ruin the total score of the class, while ignoring it would 
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amount to substituting it with a confidence of one (i.e. perfect) which is also unfair. It is 
possible to adapt or implement the voting methods so that irregularities in the input can be 
handled without failure or undefined results (mostly by explicitly defining the results in such 
cases). However, this will lead to a different behavior of the algorithm in different cases. This is 
a disadvantage, as it is a consequence of the adaptation and not a functionally planned 
imbalance. 
 
Another situation in which voting methods do not function robustly can be seen in the second 
part of Section 5.5.2. Here, the Borda count and some variants are tested on two sets of data 
with a different type of noise in it. The tests show that the Borda count has a very different 
performance on both types of noise. In other words, if the classifiers on which the voting 
methods base their conclusions are subject to a larger variance in the type of errors they 
produce (not an unlikely situation, especially in harder problem areas), the voting methods will 
start to behave more eccentrically. They possess no mechanisms to detect or to cope with such 
variance. 
 
Case (2) applies to the inability of voting methods to deal with extra information. This time, it 
are the simpler methods that are more problematic, instead of the complex voting methods as in 
case (1), yet all methods suffer this drawback. Voting methods work with the outcome of the 
classifiers and accept only that each classifier assigns a single similar feature per class. Simple 
arithmetics are then applied to these features. Furthermore, no prior information on the process 
whatsoever is used. All classifiers and possible classes are treated equally and all features are 
used exactly according to their numerical representation. For example, the difference between 
the first and fourth rank in the Borda Count is identical to the difference between the 11th and 
14th rank, even though in most classifier outcomes, the former difference would be much more 
telling than the latter. 
 
In previous sections, it became clear that the more complex voting methods that use more 
information have a similar or better performance than the methods that use less information. 
While this does not constitute a proof, it does support the notion that more information offers 
more possibilities to find the correct partition between the classes. If this is true on the relatively 
simple problems of the previous sections, one can only imagine how important the extra 
information will be with the truly complex applications in pattern recognition. 
 
Voting methods are not designed to cope with extra information. While it is possible to adapt 
some methods to some of the problems (for example by adding a type of weight measure to the 
votes of classifiers), this only involves a small bit of information in each adaptation. The more 
information is put into the system, the more adaptations are needed and the more intricate the 
solution will be. It is highly doubtful that creating such a system by increased adaptations will 
outperform a system that is designed from the start to handle the information. Furthermore, it is 
highly questionable whether all problems can be solved, either in increasingly large 
combinations or even individually. 
 
Voting methods are excellent when the classifier combination needs to be quick and simple. 
They should be used as such and are hard to beat in that area. However, using them when high 
quality results are expected or when a lot of information is available, is a misapplication of 
these elegant little algorithms. 
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6 Test Examples 
Test examples have been identified to test the different coordination approaches. The examples 
were inspired by the workflow patterns defined by van der Aalst et al., 2002, also shown at 
www.workflowpatterns.com. In total, seven test examples are described, as shown below. A 
test example consists of a number of components (agents), called {C1, C2, C3, ...}, and several 
types of data, called {d1, d2, d3, ..}. Different components need different data as input, and 
create different data as output. 

Example 1 - Sequence 
 
A screenshot of a computer animation of pattern 1 (taken from www.workflowpatterns.com) is 
depicted in Figure 5. The pattern is straightforward: after completion of the first component, the 
second component is activated, and after completion of the second, the third component is 
activated. 
 

 
 

Fig. 5. Workflow pattern 1 - Sequence 

 
On the basis of this pattern, a next step was to create a corresponding test example. In principle, 
this means defining an example (in terms of components and data) in such a way that, if 
provided as input to a coordination approach, pattern 1 will come out. A visualisation of such 
an example (based on Pattern 1 above) is given in Figure 6. As can be seen in the figure, in this 
case component C1 needs data d1 as input, and creates data d2 as output. Moreover, as 
indicated in the box on the right, the input data (the data that is initially available to the system) 
is d1, and the goal data (the data that the system needs to create in order to be successful) is d4. 
Given this situation, the expectation is that if any coordination mechanism is applied to the 
example, the result will be a trace in which the components are activated in sequence (i.e., first 
C1, then C2, and then C3). Note that in this case it is assumed that data is shared, i.e., whenever 
a component generates output data, this data is immediately available to all other components in 
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the system. This could be implemented, for example, by incorporating a “shared repository”, 
where all components store their output data and read their input data from. As opposed to this 
assumption, another alternative would be to allow local access to data, for example by 
incorporating explicit information links that specify which data is transferred from components 
to each other. Finally, note that another assumption is that data cannot be removed. Thus, once 
data is written to the shared repository, it will stay there. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Test example 1 - Sequence 

 
In LEADSTO, this example is formalised as follows: 
 
component_input_number((c|1), 1) 
component_input ((c|1), (d|1)) 
component_output_number((c|1), 1) 
component_output ((c|1), (d|2)) 
 
component_input_number((c|2), 1) 
component_input ((c|2), (d|2)) 
component_output_number((c|2), 1) 
component_output ((c|2), (d|3)) 
 
component_input_number((c|3), 1) 
component_input ((c|3), (d|3)) 
component_output_number((c|3), 1) 
component_output ((c|3), (d|4)) 
 
initial_data(d|1) 
goal_data(d|4) 

 
Here, the first statement indicates that component C1 needs one type of input data. The second 
statement indicates that this component needs d1 as input data. 

 
C1 

 d2  d1 

 
C2 

 d3  d2 

 
C3 

 d4  d3 

System input: d1 
 
System output: d4 
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Example 2 - Parallel Split 
 
A screenshot of pattern 2, the parallel split, is depicted in Figure 7. Here, the two components 
on the right can be executed either simultaneously or in any order. 
 

 
 
Fig. 7. Workflow pattern 2 - Parallel Split 

 
The test example that was created on the basis of this pattern is shown in Figure 8. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Test example 2 - Parallel Split 

 
Note that in this case the ∧ stands for the conjunction of two data types. For example, the output 
data of component C1 is d2 and d3. Likewise, the goal data is d4 and d5.  

 
C1 

 d2∧d3  d1 

 
C2 

 d4  d2 

 
C3 

 d5  d3 

System input: d1 
 
System output: d4∧d5 
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Example 3 - Synchronization 
 
A screenshot of pattern 3, the synchronization, is depicted in Figure 9. Here, the two 
components on the left can be executed either simultaneously or in any order. 
 

 
 
Fig. 9. Workflow pattern 3 - Synchronization 

 
The test example that was created on the basis of this pattern is shown in Figure 10. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Test example 3 - Synchronization 

 
Note that in this case it is assumed that a component cannot reason with “partial” data (this 
would be the case when, e.g., component C3 starts reasoning with d2 only, whilst its input data 
is d2 and d3).  

 
C1 

 d2  d1 

 
C2 

 d3  d1 

 
C3 

 d4  d2∧d3 

System input: d1 
 
System output: d4 
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Example 4 - Exclusive Choice 
 
A screenshot of pattern 4, the exclusive choice, is depicted in Figure 11. Here, either component 
B or component C may be activated, but not both. 
 

 
 
Fig. 11. Workflow pattern 4 - Exclusive Choice 

 
The test example that was created on the basis of this pattern is shown in Figure 12. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Test example 4 - Exclusive Choice 

 
Note that in this case the XOR stands for the exclusive disjunction of two data types. For 
example, the output data of component C1 is either d2 or d3, but not both. The specific output 
generated by the component may differ in different simulation runs. 

 
C1 

 XOR(d2,d3)  d1 

 
C2 

 d4  d2 

 
C3 

 d4  d3 

System input: d1 
 
System output: d4 
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Example 5 - Simple Merge 
 
A screenshot of pattern 5, the simple merge, is depicted in Figure 13. Here, either component A 
or component B may be activated, but not both. 
 

 
 
Fig. 13. Workflow pattern 5 - Simple Merge 

 
The test example that was created on the basis of this pattern is shown in Figure 14. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Test example 5 - Simple Merge 

 
Note that in this case the input data is the exclusive disjunction of d1 and d2, i.e., in some 
simulation runs it is d1, and in others it is d2. 

 
C1 

 d3  d1 

 
C2 

 d3  d2 

 
C3 

 d4  d3 

System input: XOR(d1,d2) 
 
System output: d4 
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Example 6 - Multi Choice 
 
A screenshot of pattern 6, the multi choice, is depicted in Figure 15. Here, either component B, 
or component C, or both components may be activated. 
 

 
 
Fig. 15. Workflow pattern 6 - Multi Choice 

 
The test example that was created on the basis of this pattern is shown in Figure 16. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. Test example 6 - Multi Choice 

 
Note that in this case the ∨ stands for the standard disjunction of two data types. Thus, in this 
case the goal data of the system is d4 or d5 or both. 

 
C1 

 d2∧d3  d1 

 
C2 

 d4  d2 

 
C3 

 d5  d3 

System input: d1 
 
System output: d4∨d5 
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Example 7 - Synchronizing Merge 
 
A screenshot of pattern 7, the synchronizing merge, is depicted in Figure 17. The beginning of 
this pattern is similar to pattern 6, but after the “sync. merge” entity has been reached, only 
component D has to be activated. 
 

 
 
Fig. 17. Workflow pattern 7 - Synchronizing Merge 

 
The test example that was created on the basis of this pattern is shown in Figure 18. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18. Test example 7 - Synchronizing Merge 

 
As can be seen in Figure 18, in this last example both a conjunction in a component’s output 
data and a disjunction in a component’s input data occur. Furthermore, note that, when 
formalising this example in LEADSTO, the disjunction on the input side of C4 is modelled by 
defining three separate variants of C4: one with d4 as input, one with d5 as input, and one with 
d4 and d5 as input. 

 
C1 

 d2∧d3  d1 

 
C2 

 d4  d2 

 
C3 

 d5  d3 

System input: d1 
 
System output: d6 

 
C4 

 d6  d4∨d5 
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To compare the coordination approaches described in Section 5 against these patterns, a number 
of simulation experiments have been performed. In these experiments, the focus was on three 
approaches in particular: Maes’  Behavior networks, Selfridge’s Pandemonium, and the Voting 
Mechanism. These approaches were chosen for two reasons. First, because they are among the 
most popular and well-known approaches in the literature on coordination. Second, because 
together they more or less cover the area of different coordination approaches: the Behavior 
networks use a rather ‘global’  strategy (i.e., the different agents have information about all other 
agents in the system), whereas the Voting Mechanism and (especially) the Pandemonium use a 
‘ local’  strategy (i.e., the agents involved only have information about themselves or their direct 
neighbours). 
 
The three selected coordination approaches have been implemented in the LEADSTO 
simulation language. Finally, the implemented simulation models have been applied to the test 
examples. The simulation models for the Behavior networks, the Pandemonium, and the Voting 
Mechanism, are addressed, respectively, in Section 7, 8, and 9. 
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7 Behavior Networks Simulation 

7.1 Simulation Model 
The simulation model for Maes’ behavior networks is created based on the mathematical 
calculations as presented in Section 5.1. One difference is present which is the lowering of the 
threshold which is not performed within the simulation model, the highest executable 
component is simply selected. It can however easily be incorporated in the simulation model. 
The LEADSTO specification for the algorithm can be found in Appendix C1 and roughly 
corresponds to the order in which the formulas are presented in 5.1.2. The setting that have been 
used for φ, γ, and δ are 0.1, 0.3 and 0.5 respectively. The ontology used within the simulation 
model is shown in Table 1. Note that this does not specify the complete ontology within the 
LEADSTO specification, but does explain all the terms that will be shown in the traces in the 
next section. 
 

Table 1. Relations used within the behavior networks simulation model 

Relation Description 
input_from_state: TIME x COMPONENT x VALUE At the time point the component gets the value for 

activation through the state at that time point. 
input_from_goals: TIME x COMPONENT x  VALUE At the time point the component gets the value for 

activation through the goals that have been set. 
spreads_fw: COMPONENT x COMPONENT x TIME 
x VALUE 

At the specified time point the specified activation 
spreads forwards from the first component to the second 

spreads_bw: COMPONENT x COMPONENT x 
TIME x VALUE 

At the specified time point the specified activation 
spreads backwards from the first component to the 
second 

executable: TIME x COMPONENT This specifies that the component is executable at the 
particular time point. 

decay: TIME x COMPONENT x VALUE The component has the specified decay value at the 
particular time point. 

alpha: TIME x COMPONENT x VALUE The component has the specified alpha value at the 
particular time point. 

active: TIME x COMPONENT x VALUE This relationship specifies whether or not a component 
was active at a particular time point. In case VALUE is 
1 this is the case, in case of a 0 this is not the case. 

activated: COMPONENT The component is activated. 

 

7.2 Simulation Traces 
This section presents the simulation traces that have resulted from executing the algorithm on 
the examples as presented in Section 6. The calculations in the first trace will be explained in 
detail whereas for the remainder of the traces only the overall result of the calculations will be 
shown. 
 
Trace Example 1 – Sequence 
Figure 19 shows the simulation trace of the behavior network algorithm for the first example. 
The left side of the figure shows the states during the simulation whereas the right side shows a 
time line where a dark indicates the state being true and a light box the state being false. 
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current_time(1)
data((d|1))
goal((d|4))

alpha(0, (c|1), 0)
alpha(0, (c|2), 0)
alpha(0, (c|3), 0)

active(0, (c|1), 0)
active(0, (c|2), 0)
active(0, (c|3), 0)

executable(1, (c|1))
input_from_state(1, (c|2), 0)
input_from_state(1, (c|3), 0)
input_from_goals(1, (c|1), 0)
input_from_goals(1, (c|2), 0)

input_from_goals(1, (c|3), 0.3)
input_from_state(1, (c|1), 0.1)

decay(1, (c|3), 0.3)
decay(1, (c|1), 0.1)

decay(1, (c|2), 0)
alpha(1, (c|1), 0.25)

alpha(1, (c|2), 0)
alpha(1, (c|3), 0.75)

active(1, (c|1), 1)
active(1, (c|2), 0)
active(1, (c|3), 0)

data((d|2))
current_time(2)

executable(2, (c|1))
executable(2, (c|2))

input_from_state(2, (c|3), 0)
input_from_goals(2, (c|1), 0)
input_from_goals(2, (c|2), 0)

input_from_goals(2, (c|3), 0.3)
input_from_state(2, (c|2), 0.1)

spreads_bw((c|3), (c|2), 2, 0.75)
input_from_state(2, (c|1), 0.1)

decay(2, (c|1), 0.1)
decay(2, (c|2), 0.85)
decay(2, (c|3), 1.05)
alpha(2, (c|1), 0.05)

alpha(2, (c|2), 0.425)
alpha(2, (c|3), 0.525)

active(2, (c|1), 0)
time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 

Fig. 19. Trace resulting from running the behavior networks algorithm on example 1 
 (continued on next page) 
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active(2, (c|2), 1)
active(2, (c|3), 0)

data((d|3))
current_time(3)

executable(3, (c|1))
executable(3, (c|2))
executable(3, (c|3))

input_from_goals(3, (c|1), 0)
input_from_goals(3, (c|2), 0)

input_from_goals(3, (c|3), 0.3)
input_from_state(3, (c|3), 0.1)
input_from_state(3, (c|2), 0.1)
input_from_state(3, (c|1), 0.1)

decay(3, (c|1), 0.15)
decay(3, (c|2), 0.1)

decay(3, (c|3), 0.925)
alpha(3, (c|1), 0.12766)

alpha(3, (c|2), 0.0851064)
alpha(3, (c|3), 0.787234)

active(3, (c|1), 0)
active(3, (c|2), 0)
active(3, (c|3), 1)

data((d|4))
time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Fig. 19 (contd). Trace resulting from running the behavior networks algorithm on example 1 

 
Initially, the data present is set to d1: 

data(d|1) 
Furthermore, the goal is set to d4 for this particular scenario: 

goal(d|4) 
Before executing the algorithm several initial values are set to enable a proper functioning of 
the algorithm. First of all, the alpha value of the component currently present in the system are 
set to 0 for the time point before the current time point (i.e. time point 0): 

alpha(0, c|1, 0) 
alpha(0, c|2, 0) 
alpha(0, c|3, 0) 

Furthermore, the components’ activity at time point 0 is set to 0 as well: 
active(0, c|1, 0) 
active(0, c|2, 0) 
active(0, c|3, 0) 

Now the algorithm is executed. First of all, it is determined that only component C1 is 
executable give the current data available: 

executable(1, c|1) 
Calculations are performed to determine the activity within the different component. To enable 
this calculations several intermediate steps are taken. First of all, the input from the current state 
is calculated (i.e. given the current data available what is the activation caused for the different 
components). Since component C1 is the only component that has its preconditions fulfilled, it 
is the only component to have activation from this source: 

input_from_state(1, c|1, 0.1) 
Another intermediate step is the input from the goals. Since only C3 has a goal as an output, 
this component it the only one to receive activation through this source: 

input_from_goals(1, c|3, 0.3) 
Due to the fact that the previous alpha value is 0, no activation is spread around the network, so 
the decay can be calculated for the three components present in the system by simply summing 
up the input from the goals and state per component: 

decay(1, c|1, 0.1) 
decay(1, c|2, 0) 
decay(1, c|3, 0.3) 

Calculating the alpha value entails normalizing these numbers. The maximum activation is set 
to 1 in this example, resulting in the following alpha values: 

alpha(1, c|1, 0.25) 
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alpha(1, c|2, 0) 
alpha(1, c|3, 0.75) 

As a result, component C1 is activated as this is the executable component with the highest 
alpha value: 

active(1, c|1, 1) 
active(1, c|2, 0) 
active(1, c|3, 0) 

Due to the activity of component C1 its output data is generated, which shows in the trace by 
means of the presence of data d2: 

data(d|2) 
A new round of the algorithm is performed, both components C1 and C2 are now derived to be 
executable as the data is assumed to remain present permanently. The input from the goals 
remains the same as these have not changed. The input from state however changes due to the 
additional data d2 being present, resulting in an input from state for component C2 as well: 

input_from_state(2, c|2, 0.1) 
Since C3 was not active at the previous time point, its activation spreads back through the 
network, resulting in a backwards spread from C3 to C2: 

spreads_bw(c|3, c|2, 2, 0.75) 
Calculation of the decay can now be performed: 

decay(2, c|1, 0.1) 
decay(2, c|2, 0.85) 
decay(2, c|3, 1.05) 

Normalisation takes place and eventually C2 is selected, resulting in data d3 being present. In 
the last cycle, C3 is selected with by far the highest alpha value, resulting in the overall goal 
being reached: 

data(d|4) 

 
Trace Example 2 – Parallel Split 
Similar to the trace described in the section above, Figure 20 shows the trace of the behavior 
networks algorithm in the parallel split case. There are however more possible outcomes for the 
trace which can all be generated by the algorithm.  
 

data((d|1))
alpha(0, (c|1), 0)
alpha(0, (c|2), 0)
alpha(0, (c|3), 0)

executable(1, (c|1))
alpha(1, (c|1), 0.142857)
alpha(1, (c|2), 0.428571)
alpha(1, (c|3), 0.428571)

activated((c|1))
data((d|2))
data((d|3))

executable(2, (c|1))
executable(2, (c|2))
executable(2, (c|3))

alpha(2, (c|1), 0.0569106)
alpha(2, (c|2), 0.471545)
alpha(2, (c|3), 0.471545)

activated((c|2))
data((d|4))

executable(3, (c|1))
executable(3, (c|2))
executable(3, (c|3))

alpha(3, (c|1), 0.109846)
alpha(3, (c|2), 0.280023)
alpha(3, (c|3), 0.610131)

activated((c|3))
data((d|5))

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Fig. 20. Trace resulting from running the behavior networks algorithm on example 2 
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Figure 21 shows another possible outcome of the algorithm; this variation in outcome is 
established through a random selector in case the evaluation value of the different components 
is the same. Figure 21 shows that first of all, component C1 is activated as this is the only 
executable component at the start. Data d2 and d3 are both generated and now a conflict arises: 
Both C2 and C3 have the same evaluation value, which is logical: They both have their input 
data available and contribute evenly to the overall goal. A random choice is made, in the case of 
Figure 20 component C2 is selected first after which component C3 is selected. Figure 21 
shows however that the different order can be generated as well (C2 after C3). At this point, the 
algorithm does no support parallel execution, but this can easily be incorporated if wanted. 
 

data((d|1))
alpha(0, (c|1), 0)
alpha(0, (c|2), 0)
alpha(0, (c|3), 0)

executable(1, (c|1))
alpha(1, (c|1), 0.142857)
alpha(1, (c|2), 0.428571)
alpha(1, (c|3), 0.428571)

activated((c|1))
data((d|2))
data((d|3))

executable(2, (c|1))
executable(2, (c|2))
executable(2, (c|3))

alpha(2, (c|1), 0.0569106)
alpha(2, (c|2), 0.471545)
alpha(2, (c|3), 0.471545)

activated((c|3))
data((d|5))

executable(3, (c|1))
executable(3, (c|2))
executable(3, (c|3))

alpha(3, (c|1), 0.109846)
alpha(3, (c|2), 0.610131)
alpha(3, (c|3), 0.280023)

activated((c|2))
data((d|4))

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Fig. 21. Another trace resulting from running the behavior networks algorithm on example 2 
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Trace Example 3 – Synchronization 
Figure 22 shows and example of a trace for patterns 3, in this particular trace the activation 
sequence is C1-C2-C3. The trace is specified in the same fashion as before, and will therefore 
not be explained in detail. 
 

 
Fig. 22. Trace resulting from running the behavior networks algorithm on example 3 

 

data((d|1))
current_time(1)

active(0, (c|1), 0)
active(0, (c|2), 0)
active(0, (c|3), 0)
alpha(0, (c|1), 0)
alpha(0, (c|2), 0)
alpha(0, (c|3), 0)

executable(1, (c|1))
executable(1, (c|2))

decay(1, (c|2), 0.05)
decay(1, (c|1), 0.05)
decay(1, (c|3), 0.3)

alpha(1, (c|1), 0.125)
alpha(1, (c|2), 0.125)
alpha(1, (c|3), 0.75)

active(1, (c|1), 1)
active(1, (c|2), 0)
active(1, (c|3), 0)

activated((c|1))
data((d|2))

current_time(2)
executable(2, (c|1))
executable(2, (c|2))

decay(2, (c|1), 0.05)
decay(2, (c|2), 0.925)

decay(2, (c|3), 1.12083)
alpha(2, (c|1), 0.0238569)
alpha(2, (c|2), 0.441352)
alpha(2, (c|3), 0.534791)

active(2, (c|1), 0)
active(2, (c|2), 1)
active(2, (c|3), 0)

activated((c|2))
data((d|3))

current_time(3)
executable(3, (c|1))
executable(3, (c|2))
executable(3, (c|3))

decay(3, (c|1), 0.0738569)
decay(3, (c|2), 0.05)

decay(3, (c|3), 0.934791)
alpha(3, (c|1), 0.0697653)

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15alpha(3, (c|2), 0.04723)
alpha(3, (c|3), 0.883005)

active(3, (c|1), 0)
active(3, (c|2), 0)
active(3, (c|3), 1)

activated((c|3))

data((d|4))
time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Trace Example 4 – Exclusive Choice 
Figure 23 shows an example trace for the exclusive choice example. As can be seen, C1 is 
activated first, after which it generates output d3. Since only C3 can use this data, this 
component is selected and generates the goal data. 
 

data((d|1))
current_time(1)

active(0, (c|1), 0)
active(0, (c|2), 0)
active(0, (c|3), 0)
alpha(0, (c|1), 0)
alpha(0, (c|2), 0)
alpha(0, (c|3), 0)

executable(1, (c|1))
decay(1, (c|1), 0.1)

decay(1, (c|3), 0.15)
decay(1, (c|2), 0.15)
alpha(1, (c|1), 0.25)

alpha(1, (c|2), 0.375)
alpha(1, (c|3), 0.375)

active(1, (c|1), 1)
active(1, (c|2), 0)
active(1, (c|3), 0)

activated((c|1))
data((d|3))

current_time(2)
executable(2, (c|1))
executable(2, (c|3))

decay(2, (c|3), 0.625)
decay(2, (c|1), 0.475)

decay(2, (c|2), 0.608333)
alpha(2, (c|1), 0.278049)
alpha(2, (c|2), 0.356098)
alpha(2, (c|3), 0.365854)

active(2, (c|1), 0)
active(2, (c|2), 0)
active(2, (c|3), 1)

activated((c|3))
data((d|4))

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Fig. 23. Trace resulting from running the behavior networks algorithm on example 4 

 



 48

Trace Example 5 – Simple Merge 
An example result trace for example 5 using behavior networks is shown in Figure 24. Initially, 
date d1 is available in this trace, resulting in C1 being activated after which C3 is activated and 
the goal data is formed. 
 

data((d|1))
current_time(1)

active(0, (c|1), 0)
active(0, (c|2), 0)
active(0, (c|3), 0)
alpha(0, (c|1), 0)
alpha(0, (c|2), 0)
alpha(0, (c|3), 0)

executable(1, (c|1))
decay(1, (c|1), 0.1)

decay(1, (c|2), 0)
decay(1, (c|3), 0.3)
alpha(1, (c|1), 0.25)

alpha(1, (c|2), 0)
alpha(1, (c|3), 0.75)

active(1, (c|1), 1)
active(1, (c|2), 0)
active(1, (c|3), 0)

activated((c|1))
data((d|3))

current_time(2)
executable(2, (c|1))
executable(2, (c|3))
decay(2, (c|1), 0.1)

decay(2, (c|2), 0)
decay(2, (c|3), 1.15)
alpha(2, (c|1), 0.08)

alpha(2, (c|2), 0)
alpha(2, (c|3), 0.92)

active(2, (c|1), 0)
active(2, (c|2), 0)
active(2, (c|3), 1)

activated((c|3))
data((d|4))

current_time(3)
time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Fig. 24. Trace resulting from running the behavior networks algorithm on example 5 
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Trace Example 6 – Multi Choice 
In the multi choice scenario there are three components. In the trace shown in Figure 25 the 
algorithm first activates C1 after which C2 is activated. Finally, C3 is activated as well, as this 
is allowed by the pattern. This is not an efficient trace as the shortest path would either be C1 – 
C2 or C1 – C3, some fine-tuning of the parameters can however improve these situations. 
 

 
Fig. 25. Trace resulting from running the behavior networks algorithm on example 6 

 

data((d|1))
current_time(1)

active(0, (c|1), 0)
active(0, (c|2), 0)

active(0, (c|3), 0)
alpha(0, (c|1), 0)
alpha(0, (c|2), 0)
alpha(0, (c|3), 0)

executable(1, (c|1))
decay(1, (c|1), 0.1)
decay(1, (c|3), 0.3)

decay(1, (c|2), 0.3)
alpha(1, (c|1), 0.142857)
alpha(1, (c|2), 0.428571)
alpha(1, (c|3), 0.428571)

active(1, (c|2), 0)
active(1, (c|3), 0)

active(1, (c|1), 1)
activated((c|1))

data((d|2))
data((d|3))

current_time(2)
executable(2, (c|1))
executable(2, (c|2))

executable(2, (c|3))
decay(2, (c|1), 0.1)

decay(2, (c|2), 0.828571)
decay(2, (c|3), 0.828571)
alpha(2, (c|1), 0.0569106)

alpha(2, (c|2), 0.471545)

alpha(2, (c|3), 0.471545)
active(2, (c|1), 0)
active(2, (c|2), 1)
active(2, (c|3), 0)

activated((c|2))
data((d|4))

current_time(3)
executable(3, (c|1))
executable(3, (c|2))
executable(3, (c|3))

decay(3, (c|1), 0.156911)
decay(3, (c|2), 0.4)

decay(3, (c|3), 0.871545)

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15alpha(3, (c|1), 0.109846)
alpha(3, (c|2), 0.280023)
alpha(3, (c|3), 0.610131)

active(3, (c|1), 0)
active(3, (c|2), 0)
active(3, (c|3), 1)

activated((c|3))
data((d|5))

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Trace Example 7 – Synchronizing Merge 
An example trace for the synchronizing merge is shown in Figure 26. Note that the component 
C4 has been split up into three components: C4, C5 and C6: C4 takes as input d4 and generates 
d6; C5 uses d5 to generate d6, and finally, C6 takes d4 and d5 as input and generates d6. This 
has been done to minimise adaptation of the algorithm. The trace shows that the following 
sequence is taken: C1 – C2 – C3 – C4 whereas you would expect the algorithm to go for the 
optimal solution. Fine-tuning of the parameters could avoid these kind of inefficient traces.  
 

 
Fig. 26. Trace resulting from running the behavior networks algorithm on example 7 

data((d|1))
alpha(0, (c|1), 0)
alpha(0, (c|2), 0)
alpha(0, (c|3), 0)
alpha(0, (c|4), 0)
alpha(0, (c|5), 0)
alpha(0, (c|6), 0)

executable(1, (c|1))
alpha(1, (c|1), 0.25)

alpha(1, (c|2), 0)
alpha(1, (c|3), 0)

alpha(1, (c|4), 0.25)
alpha(1, (c|5), 0.25)
alpha(1, (c|6), 0.25)

activated((c|1))
data((d|2))
data((d|3))

executable(2, (c|1))
executable(2, (c|2))
executable(2, (c|3))

alpha(2, (c|1), 0.0425532)
alpha(2, (c|2), 0.255319)
alpha(2, (c|3), 0.255319)
alpha(2, (c|4), 0.148936)
alpha(2, (c|5), 0.148936)
alpha(2, (c|6), 0.148936)

activated((c|2))
data((d|4))

executable(3, (c|1))
executable(3, (c|2))
executable(3, (c|3))
executable(3, (c|4))

alpha(3, (c|1), 0.0800239)
alpha(3, (c|2), 0.0561362)
alpha(3, (c|3), 0.366677)
alpha(3, (c|4), 0.167811)
alpha(3, (c|5), 0.163631)
alpha(3, (c|6), 0.165721)

activated((c|3))
data((d|5))

executable(4, (c|1))
executable(4, (c|2))
executable(4, (c|3))

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17executable(4, (c|4))
executable(4, (c|5))
executable(4, (c|6))

alpha(4, (c|1), 0.130139)
alpha(4, (c|2), 0.11287)

alpha(4, (c|3), 0.0722897)
alpha(4, (c|4), 0.229745)
alpha(4, (c|5), 0.226723)
alpha(4, (c|6), 0.228234)

activated((c|4))
data((d|6))

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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8 Pandemonium Simulation 

8.1 Simulation Model 
Generic Part 
The algorithm used for the Pandemonium is similar to the description in Section 5, but modified 
with some simplifying assumptions. In particular, the following procedure is assumed: at the 
beginning of the process, only the initial data is placed at the “shared repository” (see Section 
6). Whenever new data has been added to the repository, a new round starts in which all agents 
can shout. The idea is that, the more urgent an agent thinks it is for him to be activated, the 
louder it will shout. The agent that shouts loudest will be allowed to start reasoning. In case two 
agents shout with the exact same strength, then either the first agent, or the second agent, or 
both are activated (this decision is made randomly, with equal probabilities). When an agent is 
activated, this results in the agent adding its output data to the repository, and the start of a new 
round. 

The LEADSTO specification for the algorithm can be found in Appendix C2. To model this 
algorithm in LEADSTO, the following ontology is used (again, only the elements that are 
shown in the traces are mentioned): 

Table 2. Relations used within the pandemonium simulation model 

Relation Explanation 
data: DATA This specifies that a certain type of data is present in the 

repository. 
shout: COMPONENT x VALUE An agent shouts with a certain (real) value. 
active_component: COMPONENT An agent is activated. 

 
Specific Part 
To determine how loud they will shout, the agents make use of a shout function. For different 
variants of the Pandemonium model, different shout functions may be used. In the current 
model, each agent uses the following types of information in its shout function at time point t: 

• the amount of data it needs as input (represented by i1) 
• the amount of its input data that is available at t (represented by i2) 
• the amount of data it produces as output (represented by o1) 
• the amount of its output data that is already present at t (represented by o2) 
• the maximum amount of input data any agent may need (represented by max_i) 
• the maximum amount of output data any agent may produce 

(represented by max_o) 

Given these elements, the shout value (i.e., the strength with which an agent shouts, represented 
by sv) is modelled as follows: 
 

sv = (i2/i1)β1 * (1 - o2/o1)β2 * (i1/max_i)β3 * (o1/max_o)β4 
 
Here, β1, β2, β3, and β4 are real numbers between 1 and 1.5, indicating the importance of the 
corresponding factor. For example, β1=1.4, β2=1.3, β3=1.1, and β4=1.2. Thus, sv will be a 
value between 0 and 1. 
 
To illustrate the idea, consider example 3 above (the synchronization). Suppose that at a certain 
point in time the only data that is present at the repository is d1 and d2. Then, the following 
information would be available to agent C3: 

• i1 = 2 (because C3 needs d2 and d3 as input) 
• i2 = 1 (because only d2 is available as input) 
• o1 = 1 (because C3 produces d4 as output) 
• o2 = 0 (because d4 is not present as output) 
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• max_i = 2 (because no component needs more than 2 different data types) 
• max_o = 1 (because no component produces more than 1 different data types) 

 
As a result, the shout value sv of C3 will be: (1/2)β1 * (1 - 0/1)β2 * (2/2)β3 * (1/1)β4. 

8.2  Simulation Traces 
This section presents the simulation traces that have resulted from applying the pandemonium 
algorithm to the examples presented in Section 6. 
 
Trace Example 1 – Sequence 
Figure 27 shows the simulation trace of the pandemonium algorithm for example 1. 
 

data((d|1))
data((d|2))
data((d|3))
data((d|4))

shout((c|1), 0.0)
shout((c|1), 1.0)

shout((c|2), 0.0)
shout((c|2), 1.0)
shout((c|3), 0.0)
shout((c|3), 1.0)

active_component((c|1))
active_component((c|2))

active_component((c|3))
time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 

 
Fig. 27. Pandemonium trace 1. 
 
As can be seen in Figure 27, initially the only data that is present is d1: 

data((d|1)) 
Based on this data, every agent starts shouting. Agent C1 shouts loudest (with strength 1.0, 
whilst the others shout with strength 0.0): 

shout((c|1), 1.0) 
shout((c|2), 0.0) 
shout((c|3), 0.0) 

Thus, agent C1 is selected to become active: 
active_component((c|1)) 

As a result, agent C1 creates data d2, which is stored at the repository as well: 
data((d|2)) 

Again, every agent starts shouting. Agent C2 shouts loudest (with strength 1.0, whilst the others 
shout with strength 0.0): 

shout((c|1), 0.0) 
shout((c|2), 1.0) 
shout((c|3), 0.0) 

Next, agent C2 is selected to become active: 
active_component((c|2)) 

Next, agent C2 creates data d3, which is stored at the repository as well: 
data((d|3)) 

Again, every agent starts shouting. Agent C3 shouts loudest (with strength 1.0, whilst the others 
shout with strength 0.0): 

shout((c|1), 0.0) 
shout((c|2), 0.0) 
shout((c|3), 1.0) 

Next, agent C3 is selected to become active: 
active_component((c|3)) 

Eventually, agent C3 creates data d4, which is stored at the repository as well: 
data((d|4)) 

Since d4 is the goal data, at this point the process terminates. 
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Trace Example 2 – Parallel Split 
As already shown earlier, test example 2 contains a non-deterministic element. Therefore, 
applying the pandemonium algorithm to this pattern may result in different traces. In total, three 
different traces may be generated. These traces are shown in Figure 28, 29, and 30.  
 

data((d|1))
data((d|2))
data((d|3))
data((d|4))
data((d|5))

shout((c|1), 0.0)
shout((c|1), 1.0)
shout((c|2), 0.0)

shout((c|2), 0.435275)
shout((c|3), 0.0)

shout((c|3), 0.435275)

active_component((c|1))
active_component((c|2))
active_component((c|3))

time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 
 

Fig. 28. Pandemonium trace 2a. 
 
This trace shows a situation where the example components are activated in a sequence: first C1 
is activated, then C2 (based on a random choice), and then C3. 
 

data((d|1))
data((d|2))
data((d|3))
data((d|4))
data((d|5))

shout((c|1), 0.0)
shout((c|1), 1.0)
shout((c|2), 0.0)

shout((c|2), 0.435275)
shout((c|3), 0.0)

shout((c|3), 0.435275)

active_component((c|1))
active_component((c|2))
active_component((c|3))

time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 
 

Fig. 29. Pandemonium trace 2b. 
 
This trace shows another situation where the example components are activated in a sequence: 
here, first C1 is activated, then C3 (based on a random choice), and then C2. 
 

data((d|1))
data((d|2))
data((d|3))
data((d|4))
data((d|5))

shout((c|1), 0.0)
shout((c|1), 1.0)
shout((c|2), 0.0)

shout((c|2), 0.435275)
shout((c|3), 0.0)

shout((c|3), 0.435275)
active_component((c|1))
active_component((c|2))
active_component((c|3))

time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 
 

Fig. 30. Pandemonium trace 2c. 
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This trace shows the situation where two of the example components are activated in parallel: 
here, first C1 is activated, but then both C2 and C3 are activated simultaneously (again, based 
on a random choice). 
 
Like test example 2, most examples contain a non-deterministic element, thus may result in 
multiple different traces. To limit complexity, for the remaining patterns only one trace is 
shown. 
 
Trace Example 3 – Synchronization 
Figure 31 shows a simulation trace of the pandemonium algorithm for example 3. Here, first 
both C1 and C2 are activated, followed by C3. 
  

data((d|1))
data((d|2))
data((d|3))
data((d|4))

shout((c|1), 0.0)
shout((c|1), 0.466516)

shout((c|2), 0.0)
shout((c|2), 0.466516)

shout((c|3), 0.0)
shout((c|3), 1.0)

active_component((c|1))
active_component((c|2))
active_component((c|3))

time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 
 
Fig. 31. Pandemonium trace 3. 
 
Trace Example 4 – Exclusive Choice 
Figure 32 shows a simulation trace of the pandemonium algorithm for example 4. Here, first C1 
is activated, followed by C2. 
 

data((d|1))
data((d|2))
data((d|4))

shout((c|1), 0.0)
shout((c|1), 1.0)
shout((c|2), 0.0)
shout((c|2), 1.0)
shout((c|3), 0.0)

active_component((c|1))
active_component((c|2))

time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 
 
Fig. 32. Pandemonium trace 4. 
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Trace Example 5 – Simple Merge 
Figure 33 shows a simulation trace of the pandemonium algorithm for example 5. Here, first C1 
is activated, followed by C3. 
 

data((d|1))
data((d|3))
data((d|4))

shout((c|1), 0.0)
shout((c|1), 1.0)
shout((c|2), 0.0)
shout((c|3), 0.0)
shout((c|3), 1.0)

active_component((c|1))
active_component((c|3))

time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 
 
Fig. 33. Pandemonium trace 5. 
 
Trace Example 6 – Multi Choice 
Figure 34 shows a simulation trace of the pandemonium algorithm for example 6. Here, first C1 
is activated, followed by both C2 and C3. 
 

data((d|1))
data((d|2))
data((d|3))
data((d|4))
data((d|5))

shout((c|1), 0.0)
shout((c|1), 1.0)
shout((c|2), 0.0)

shout((c|2), 0.435275)
shout((c|3), 0.0)

shout((c|3), 0.435275)

active_component((c|1))
active_component((c|2))
active_component((c|3))

time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 
 
Fig. 34. Pandemonium trace 6. 
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Trace Example 7 – Simple Merge 
Figure 35 shows a simulation trace of the pandemonium algorithm for example 7. Here, first C1 
is activated, then both C2 and C3 are activated, and finally C6 (which is a specific variant of 
C4, see the description of the example) is activated. 
 

data((d|1))
data((d|2))
data((d|3))
data((d|4))
data((d|5))
data((d|6))

shout((c|1), 0.0)
shout((c|1), 0.466516)

shout((c|2), 0.0)

shout((c|2), 0.203063)
shout((c|3), 0.0)

shout((c|3), 0.203063)
shout((c|4), 0.0)

shout((c|4), 0.203063)
shout((c|5), 0.0)

shout((c|5), 0.203063)
shout((c|6), 0.0)

shout((c|6), 0.435275)
active_component((c|1))

active_component((c|2))
active_component((c|3))
active_component((c|6))

time 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 
 
Figure 35. Pandemonium trace 7. 
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9 Voting Simulation 

9.1 Simulation Model 
Generic Part 
The algorithm used for the Voting Mechanism is similar to the description in Section 5. The 
following procedure is assumed: at the beginning of the process, only the initial data is placed at 
the “shared repository” (see Section 6). Whenever new data has been added to the repository, a 
new round starts in which all agents can vote. The idea is that each agent can vote on only one 
agent (possibly on itself). After all agents have voted, the votes are counted, and the agent with 
most votes will be allowed to start reasoning. In case two agents have an equal amount of votes, 
then either the first agent, or the second agent, or both are activated (this decision is made 
randomly, with equal probabilities). When an agent is activated, this results in the agent adding 
its output data to the repository, and the start of a new round. 

The LEADSTO specification for the algorithm can be found in Appendix C3. To model this 
algorithm in LEADSTO, the following ontology is used (again, only the elements that are 
shown in the traces are mentioned): 

Table 3. Relations used within the voting simulation model 

Relation Explanation 
data: DATA This specifies that a certain type of data is present in the 

repository. 
vote_for: COMPONENT x COMPONENT An agent votes for a certain (other) agent. 
active_component: COMPONENT An agent is activated. 

 
Specific Part 
To determine on whom they will vote, the agents make use of a voting algorithm. For different 
variants of the Voting model, different voting algorithms may be used. In the current model, 
each agent follows the following algorithm: 
 

1. if my input is present, and my output is not, then I vote for myself 
2. if my input is not present, and this input is generated by one other agent, vote for that 

agent 
3. if my input is not present, and this input is generated by n>1 other agents, vote for one 

of those agents (at random) 
4. if my output is present, and this output is used by one other agent, vote for that agent 
5. if my output is present, and this output is used by n>1 other agents, vote for one of 

those agents (at random) 
6. if my output is present, and this output is used by no other agents (i.e., it is part of the 

goal data), do not vote 
 
Note that this algorithm assumes a local perspective of the agents. This means that each agent 
only has knowledge about itself and its direct neighbours. For example, each agent knows 
which other agents need the data that it produces as input, but does not know which data the 
other agents produce as output. 
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9.2 Simulation Traces 
This section presents the simulation traces that have resulted from applying the voting 
algorithm to the examples presented in Section 6. 
 
Trace Example 1 – Sequence 
Figure 36 shows the simulation trace of the voting algorithm for example 1. 
 

data((d|1))
data((d|2))
data((d|3))
data((d|4))

vote_for((c|1), (c|1))
vote_for((c|1), (c|2))
vote_for((c|2), (c|1))
vote_for((c|2), (c|2))
vote_for((c|2), (c|3))
vote_for((c|3), (c|2))
vote_for((c|3), (c|3))

active_component((c|1))
active_component((c|2))
active_component((c|3))

time 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 
 
Fig. 36. Voting trace 1. 
 
As can be seen in Figure 36, initially the only data that is present is d1: 

data((d|1)) 
Based on this data, every agent starts voting: 

vote_for((c|1), (c|1)) 
vote_for((c|2), (c|1)) 
vote_for((c|3), (c|2)) 

Agent C1 receives 2 votes, agent C2 receives one vote, and agent C3 receive no votes. Thus, 
agent C1 is selected to become active: 

active_component((c|1)) 
As a result, agent C1 creates data d2, which is stored at the repository as well: 

data((d|2)) 
Again, every agent starts voting: 

vote_for((c|1), (c|2)) 
vote_for((c|2), (c|2)) 
vote_for((c|3), (c|2)) 

Agent C2 receives all 3 votes and is thus selected to become active: 
active_component((c|2)) 

Next, agent C2 creates data d3, which is stored at the repository as well: 
data((d|3)) 

Again, every agent starts voting: 
vote_for((c|1), (c|2)) 
vote_for((c|2), (c|3)) 
vote_for((c|3), (c|3)) 

Agent C3 receives 2 votes, agent C2 receives one vote, and agent C1 receive no votes. Thus, 
agent C3 is selected to become active: 

active_component((c|3)) 
Eventually, agent C3 creates data d4, which is stored at the repository as well: 

data((d|4)) 
Since d4 is the goal data, at this point the process terminates. 
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Trace Example 2 – Parallel Split 
Figure 37 shows a simulation trace of the voting algorithm for example 2. Here, first C1 is 
activated, then C2, and then C3. 
 

data((d|1))
data((d|2))
data((d|3))
data((d|4))
data((d|5))

vote_for((c|1), (c|1))
vote_for((c|1), (c|2))
vote_for((c|1), (c|3))
vote_for((c|2), (c|1))
vote_for((c|2), (c|2))
vote_for((c|3), (c|1))
vote_for((c|3), (c|3))

active_component((c|1))
active_component((c|2))
active_component((c|3))

time 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 
 
Fig. 37. Voting trace 2. 
 
Trace Example 3 – Synchronization 
Figure 38 shows a simulation trace of the voting algorithm for example 3. Here, first C1 is 
activated, then C2, and then C3. 
 

data((d|1))
data((d|2))
data((d|3))
data((d|4))

vote_for((c|1), (c|1))
vote_for((c|1), (c|3))
vote_for((c|2), (c|2))
vote_for((c|2), (c|3))
vote_for((c|3), (c|1))
vote_for((c|3), (c|2))
vote_for((c|3), (c|3))

active_component((c|1))
active_component((c|2))
active_component((c|3))

time 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 
 
Fig. 38. Voting trace 3. 
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Trace Example 4 – Exclusive Choice 
Figure 39 shows a simulation trace of the voting algorithm for example 4. Here, first C1 is 
activated, followed by C3. 
 

data((d|1))
data((d|3))
data((d|4))

vote_for((c|1), (c|1))
vote_for((c|1), (c|3))
vote_for((c|3), (c|1))
vote_for((c|3), (c|3))

active_component((c|1))
active_component((c|3))

time 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 
 
Figure 39. Voting trace 4. 
 
Trace Example 5 – Simple Merge 
Figure 40 shows a simulation trace of the voting algorithm for example 5. Here, first C2 is 
activated, followed by C3. 
 

data((d|2))
data((d|3))
data((d|4))

vote_for((c|2), (c|2))
vote_for((c|2), (c|3))
vote_for((c|3), (c|1))
vote_for((c|3), (c|2))
vote_for((c|3), (c|3))

active_component((c|2))
active_component((c|3))

time 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 
 
Fig. 40. Voting trace 5. 
 
Trace Example 6 – Multi Choice 
Figure 41 shows a simulation trace of the voting algorithm for example 6. Here, first C1 is 
activated, followed by C3. 
 

data((d|1))
data((d|2))
data((d|3))
data((d|5))

vote_for((c|1), (c|1))
vote_for((c|1), (c|3))
vote_for((c|2), (c|1))
vote_for((c|2), (c|2))
vote_for((c|3), (c|1))
vote_for((c|3), (c|3))

active_component((c|1))
active_component((c|3))

time 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 
 
Fig. 41. Voting trace 6. 
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Trace Example 7 – Simple Merge 
Figure 42 shows a simulation trace of the voting algorithm for example 7. Here, first C1 is 
activated, then C3 is activated, then C2 is activated, and finally C6 (which is a specific variant 
of C4, see the description of the example) is activated. Note that the current version of the 
model contains a small bug: in some cases multiple votes are made by one agent. In Figure 42, 
this can be seen in the third voting round. Here, agent C3 votes for C5 and C6 at the same time. 
In a next version of the model this bug will be removed. 
 

data((d|1))
data((d|2))
data((d|3))
data((d|4))
data((d|5))
data((d|6))

vote_for((c|1), (c|1))
vote_for((c|1), (c|2))
vote_for((c|1), (c|3))
vote_for((c|2), (c|1))
vote_for((c|2), (c|2))
vote_for((c|2), (c|4))
vote_for((c|2), (c|6))
vote_for((c|3), (c|1))
vote_for((c|3), (c|3))
vote_for((c|3), (c|5))
vote_for((c|3), (c|6))
vote_for((c|4), (c|2))
vote_for((c|4), (c|4))
vote_for((c|5), (c|3))
vote_for((c|5), (c|5))
vote_for((c|6), (c|2))
vote_for((c|6), (c|3))
vote_for((c|6), (c|6))

active_component((c|1))
active_component((c|2))
active_component((c|3))
active_component((c|6))

time 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 
 
Fig. 42. Voting trace 7. 
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10 Simulation Evaluation 
This section addresses the evaluation of the performance for the different algorithms that have 
been simulated in Section 7, 8, and 9. This evaluation can be performed from multiple 
perspectives. First of all, the achievement of the goals that have been set for the system are an 
important evaluation criterion. Secondly, an element in the evaluation is the efficiency of the 
algorithm. Finally, patterns can be specified which occur in the component specifications used 
for the algorithms, and it can be checked whether the coordination mechanism can indeed 
identify these patterns within the component specifications. To enable automated checking of 
the results of the algorithms, a formal specification of the different properties is required. For 
this purpose, the TTL language as described in Section 4.2 is used to formalise the desired 
properties. After such a formal description has been obtained, the automated TTL checker can 
be used to see how well the algorithm performs. 

10.1 Successfulness 
In the trace γ all goals g will eventually be derived: 
 
successful_algorithm(γγγγ:TRACE) ≡ 
∀t:TIME, d:DATA 
[state(γ, t) |= goal(d) � 
 ∃t2:TIME [t2 ≥ t ∧ state(γ, t2) |= data(d)]] 
 
The results of automatically checking the property against the traces that were generated in the 
simulation are shown in Table 4. A plus in the table indicates that the solution is found in all 
generated traces, a minus indicates that no solution is found in at least one of the generated 
traces. 
 

Table 4. Successfulness of the different algorithms on the examples 

Example Behavior Networks Pandemonium Voting 
Sequence + + + 
Parallel Split + + + 
Synchronization + + + 
Exclusive choice + + + 
Simple Merge + + + 
Multi Choice + + + 
Synchronizing merge + + + 

 
As can be seen, all algorithms eventually find the solution for the examples that have been used. 
More extensive testing is to be done to investigate under what circumstances the different 
algorithms fail to find the solution. 

10.2 Efficiency 
Efficiency can be viewed from multiple perspectives. First, one can look at the efficiency of the 
solution path found by the algorithm. It is for now assumed that each component takes an equal 
amount of time, and therefore the most efficient solution is simply the solution in which the 
least amount of components have been activated. Another way to describe efficiency can also 
be the efficiency of the algorithm itself, i.e. how much computation time does the algorithm 
need to generate a solution. 
 
The approach taken in this section is to check whether the shortest path is used to reach the 
goals that are set. For the formalization of this property, it is for now assumed that the length of 
the shortest path is known for the particular example being checked: 
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efficient_algorithm(γγγγ:TRACE, shortest_path:INTEGER) ≡≡≡≡ 
successful_algorithm(γ) ∧ 
component_activations(γ, shortest_path) 
 
To enable a definition of the amount of activations of a component, first the activation of one 
component is defined, including its interval: 
 
has_activation_interval(γγγγ:TRACE, c:COMPONENT, tb:TIME, te:TIME) ≡ 
tb < te ∧ 
state(γ,te) |≠ activated(c) 
[∀t tb≤t<te � state(γ,t) |= activated(c)] ∧ 
 ∃t1<tb  [∀t2 t1≤t2<tb � state(γ,t2) |≠ activated(c)] 
 
An example of a definition for a trace with one component activation is shown below.  
 
component_activations(γγγγ:TRACE, 1) ≡ 
∃c:COMPONENT, tb:TIME, te:TIME 
has_activation_interval(γ, c:COMPONENT, tb:TIME, te:TIME) ∧ 
[∀c2:COMPONENT, tb2:TIME, te2:TIME 
               [has_activation_interval(γ, c2:COMPONENT, tb2:TIME, te2:TIME) � 
                c = c2 ∧ tb = tb2 ∧ te = te2]] 

Table 5 shows the outcome of checking the property in the TTL Checker for the generated 
traces. Again, a plus indicates that in all generated traces the efficient solution was found, 
whereas a minus was put in the table in the other case. 
 

Table 5. Efficiency of the different algorithms on the examples 

Example Behavior Networks Pandemonium Voting 
Sequence + + + 
Parallel Split + + - 
Synchronization + + + 
Exclusive choice + + + 
Simple Merge + + + 
Multi Choice - - + 
Synchronizing merge - - - 

 
For the first five examples, both the behavior networks and the pandemonium always find the 
optimal path to the solution. For voting the optimal solution for the parallel split is not always 
found: apparently, there are situations when this approach is not efficient. An example of such a 
situation is the case that C1 and C2 have already been active, but C3 still has to be activated. In 
that case, C2 will not vote anymore, because its output data is part of the goal data (see the 
voting algorithm described in Section 9.1). Moreover, C3 will vote for itself, because its output 
data is not present yet. However, C1 could possibly vote for C2 (it does not know that C2 has 
already been active, because it has only local information). If this is the case, then C2 and C3 
will both receive one vote, and C1 will receive no votes. As a result, it is possible that C2 is 
again selected (by random choice) to be active, although it has already been activated. Clearly, 
this is a very inefficient move. This problem could be solved by allowing a more global 
perspective for the agents. 
 
For the multi choice and synchronizing merge, the behavior network fails to find the optimal 
solution in some cases. For the first, it activates both C2 and C3 whereas only one of the 
components is required to obtain the goal data. Adapting the parameters of the algorithm could 
prevent this from occurring. Furthermore, in the synchronizing merge case, both C2 and C3 are 
activated whereas C4 only needs one input to generate its output. 
 
Also the Pandemonium model is not always efficient for the multi choice and synchronizing 
merge. For the multi choice, this is the case because the model sometimes generates traces 
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where first C1 is activated, and then C2 and C3 are activated simultaneously. Although this 
solution is efficient in terms of activation rounds (i.e., only two rounds), it is not efficient in 
terms of component activations: three components are activated in total, where two activations 
would have been sufficient (i.e., C1 followed by C2, or C1 followed by C3). For the 
synchronizing merge, in some cases the same situation occurs as with the behavior network: 
sometimes both C2 and C3 are activated simultaneously, whilst only one of them is required. 
 
The Voting model however succeeds in always finding the efficient solution for the multi 
choice. Here, the aforementioned situation that both C2 and C3 are activated never occurs, 
because there is always one component that receives more votes than the others. However, like 
the other approaches, the Voting model is sometimes inefficient with respect to the 
synchronizing merge. Here, again the same situation occurs as with the behavior network and 
the pandemonium: sometimes both C2 and C3 are activated, where only one of them is 
necessary. 

10.3  Specifying and Checking Patterns 
As has been mentioned, patterns can be specified for component examples and it can be 
checked whether these patterns are indeed found by the different algorithms. For the examples 
used in this document the component specifications originate from workflow patterns and 
therefore the patterns to be found within the component examples are precisely the workflow 
patterns from which these examples have been derived. Specification of patterns can be done 
from two perspectives: (1) exhaustively summing up all possible outcomes; (2) specifying the 
constraints between activation intervals of different components. For the second approach the 
interval relations as identified by Allen (ref) are used and specified in TTL: 

 
before(b1:TIME, e1:TIME, b2:TIME, e2:TIME) ≡ e1 < b2 
meets(b1:TIME, e1:TIME, b2:TIME, e2:TIME) ≡ e1 = b2 
overlaps(b1:TIME, e1:TIME, b2:TIME, e2:TIME) ≡ b1 < b2 < e1 < e2 
equals(b1:TIME, e1:TIME, b2:TIME, e2:TIME) ≡ b1 = b2 ∧ e1 = e2 
starts(b1:TIME, e1:TIME, b2:TIME, e2:TIME) ≡ b1 = b2 ∧ e1 < e2 
finished_by(b1:TIME, e1:TIME, b2:TIME, e2:TIME) ≡ b1 < b2 ∧ e1 = e2 
contains(b1:TIME, e1:TIME, b2:TIME, e2:TIME) ≡ b1 < b2 ∧ e1 > e2 
 

Below, the workflow patterns that have been used (1-7) are specified using TTL expressions. 
First, all traces are summed up in an informal fashion and thereafter the TTL expressions 
specifying the constraints between the activation intervals of the different components are 
shown. 

Pattern 1 - Sequence 
Possible traces: 
ABC 
 
Activation interval constraints in TTL: 
∃bA,eA,bB,eB,bC,eC:TIME 
has_activation_interval(trace1, A, bA, eA) ∧ 
has_activation_interval(trace1, B, bB, eB) ∧ 
has_activation_interval(trace1, C, bC, eC) ∧ 
before(bA, eA, bB, eB) ∧ 
before(bB, eB, bC, eC) 
 
/* 
If desired, the following additional condition can be included to ensure that no other components are 
activated during the trace: 
∀c:COMPONENT ∀t1,t2:TIME 
   [has_activation_interval(trace1, c, t1, t2) � 
       [c=A ∧ t1=bA ∧ t2=eA] ∨ [c=B ∧ t1=bB ∧ t2=eB] ∨ [c=C ∧ t1=bC ∧ t2=eC]] 
*/ 
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Pattern 2 - Parallel Split 
Possible traces: 
A[BC] 
Note: [BC] means either simultaneously or in any order (= in theory, any of the possibilities 
before, meets, overlaps, equals, starts, finished_by, contains. However, in our current specifications 
(both Maes and Pandemonium) we do not handle parallelism. Thus, in the case of [BC] we will 
only generate the traces BC and CB). 
 
Activation interval constraints in TTL: 
∃bA,eA,bB,eB,bC,eC:TIME 
has_activation_interval(trace1, A, bA, eA) ∧ 
has_activation_interval(trace1, B, bB, eB) ∧ 
has_activation_interval(trace1, C, bC, eC) ∧ 
before(bA, eA, bB, eB) ∧ 
before(bA, eA, bC, eC) 

Pattern 3 – Synchronization 
Possible traces: 
[AB]C 
 
Activation interval constraints in TTL: 
∃bA,eA,bB,eB,bC,eC:TIME 
has_activation_interval(trace1, A, bA, eA) ∧ 
has_activation_interval(trace1, B, bB, eB) ∧ 
has_activation_interval(trace1, C, bC, eC) ∧ 
before(bA, eA, bC, eC) ∧ 
before(bB, eB, bC, eC) 

Pattern 4 - Exclusive Choice 
Possible traces: 
- AB 
- AC 
 
Activation interval constraints in TTL: 
[∃bA,eA,bB,eB:TIME 
has_activation_interval(trace1, A, bA, eA) ∧ 
has_activation_interval(trace1, B, bB, eB) ∧ 
before(bA, eA, bB, eB)] 
∨ 
[∃bA,eA,bC,eC:TIME 
has_activation_interval(trace1, A, bA, eA) ∧ 
has_activation_interval(trace1, C, bC, eC) ∧ 
before(bA, eA, bC, eC)] 

Pattern 5 - Simple Merge 
Possible traces: 
- AC 
- BC 
 
Activation interval constraints in TTL: 
[∃bA,eA,bC,eC:TIME 
has_activation_interval(trace1, A, bA, eA) ∧ 
has_activation_interval(trace1, C, bC, eC) ∧ 
before(bA, eA, bC, eC)] 
∨ 
[∃bB,eB,bC,eC:TIME 
has_activation_interval(trace1, B, bB, eB) ∧ 
has_activation_interval(trace1, C, bC, eC) ∧ 
before(bB, eB, bC, eC)] 
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Pattern 6 - Multi Choice 
Possible traces: 
- AB 
- AC 
- A[BC] 
 
Activation interval constraints in TTL: 
parallel_split ∨ exclusive_choice 

Pattern 7 - Synchronizing Merge 
Possible traces: 
- ABD 
- ACD 
- A[BC]D 
 
Activation interval constraints in TTL: 
[∃bA,eA,bB,eB,bD,eD:TIME 
has_activation_interval(trace1, A, bA, eA) ∧ 
has_activation_interval(trace1, B, bB, eB) ∧ 
has_activation_interval(trace1, D, bD, eD) ∧ 
before(bA, eA, bB, eB) ∧ 
before(bB, eB, bD, eD)] 
∨ 
[∃bA,eA,bC,eC,bD,eD:TIME 
has_activation_interval(trace1, A, bA, eA) ∧ 
has_activation_interval(trace1, C, bC, eC) ∧ 
has_activation_interval(trace1, D, bD, eD) ∧ 
before(bA, eA, bC, eC) ∧ 
before(bC, eC, bD, eD)] 
∨ 
[∃bA,eA,bB,eB,bC,eC,bD,eD:TIME 
has_activation_interval(trace1, A, bA, eA) ∧ 
has_activation_interval(trace1, B, bB, eB) ∧ 
has_activation_interval(trace1, C, bC, eC) ∧ 
has_activation_interval(trace1, D, bD, eD) ∧ 
before(bA, eA, bB, eB) ∧ 
before(bA, eA, bC, eC) ∧ 
before(bB, eB, bD, eD) ∧ 
before(bC, eC, bD, eD)] 

 
Table 6 shows whether the algorithms have indeed found the patterns (+) or whether there 
exists a trace in which the patterns was not found (-). 
 

Table 6. Patterns found by the different algorithms within the examples 

Example Behavior Networks Pandemonium Voting 
Sequence + + + 
Parallel Split + + +/-* 
Synchronization + + + 
Exclusive choice + + + 
Simple Merge + + + 
Multi Choice + + + 
Synchronizing merge + + + 

 
The behavior network, pandemonium, and voting algorithms always finds the patterns that have 
been identified. In the parallel split case the success of the voting algorithm however is 
debatable. The reason for this is that besides the expected patterns (A[BC]) also patterns such as 
A-B-B-C appear. According to personal communication with van der Aalst this is however not 
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a violation of the pattern. Following this perspective a trace satisfies a pattern when the 
components as prescribed by the patterns also occur being active in the trace in the specified 
sequence. It is however allowed for other components (either a different component or 
activation of the same component at another time point) to be active within the same trace. For 
checking the more strict version (i.e. exactly the prescribed sequence without other activation) 
the closed world assumption version of the property (see description of pattern 1 in this section) 
can be used. 

10.4  Comparison of Approaches 
To conclude, the voting, pandemonium and behavior network algorithms have been thoroughly 
evaluated with respect to a number of relevant performance indicators, namely successfulness, 
efficiency, and pattern checks. It turned out that all algorithms found the solution in all cases. 
However, none of the algorithms is always efficient for all patterns. Both the behavior network 
and pandemonium algorithm perform equally well; they succeed for the “simple” cases and 
sometimes fail to be efficient for the two complicated cases (i.e. multi choice and synchronizing 
merge). Surprisingly, the voting algorithm always finds the most efficient solution for one of 
the complicated cases, namely the multi choice. It does however fail in the rather trivial case of 
the parallel split. All algorithms also find the patterns specified for each of the component 
examples. All and all, when comparing the algorithms, the performance based on the criteria 
specified above is almost similar. The way in which they find the component activation 
sequences is however completely different. The behavior networks algorithm needs a global 
overview of the system: it needs to know for each component what data it needs as input and 
what data it generates as output. Such a global view might not always be available or might be 
inconvenient. On the other hand, for the pandemonium a completely local view is sufficient, 
each agent only needs information about its own input and output data. In between is the voting 
algorithm, which needs information about itself and its direct neighbours. When comparing the 
algorithms on required computation time, the behavior networks take far more computation 
time compared to the other approaches. This has two causes: first, due to the fact that all global 
information is used within the algorithm; it has a lot more information to take into 
consideration. Second, both for the voting and pandemonium algorithm the calculations per 
agent can be performed in parallel which can not be done in the behavior networks algorithm. 
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11 Discussion 
The work reported in this document has increased insight in the area of coordination of complex 
software systems in a number of respects. Moreover, based on the experiences during this 
project, a number of ideas for further steps to be undertaken have been developed.  

What has been found this far  
The following was gained by the work as reported. First, the following problems to obtain a 
coordination specification for a more complex component-based system were identified.  
 

• it can become large and intransparent.  
• it may suffer from overspecification, i.e., the dynamics of component activation may 

have to be prescribed in much more detail than actually needed 
• it may require quite an effort to acquire the control knowledge, i.e., find out how the 

control choices should be in all possibly occurring cases 
• its flexibility and adaptivity with respect to circumstances at runtime often is limited 

 
To address these problems, specific coordination approaches borrowed from other disciplines 
have been explored and found to be useful for the area of coordination of complex software 
systems. It turns out that, in the form as used (kept close to the original description in the 
literature), each of these approaches to coordination may have its value. At least the first three 
of the identified problems are addressed by such coordination approaches. 
 
Concerning differences between the considered coordination approaches, it can be concluded 
that an advantage of the pandemonium approach is its locality: for this algorithm, each 
component only needs information about its own input and output data, not about other data. 
The behavior networks algorithm and (to a certain extent) the voting algorithm do not have this 
advantage. In these algorithms, the components involved need to have more global information. 
This is a potential drawback, since global information may not always be (easily) available. 
 
For the chosen method to explore different coordination approaches, it has been found that the 
simulation approach is quite useful. Within a reasonable time a nontrivial number of  
approaches can be evaluated against a nontrivial number of cases: 3 x 7 = 21 combinations have 
been explored. Similarly, the analysis of simulation results based on automated support for the 
evaluation of properties in traces has turned out useful. 
 
Furthermore, workflow patterns turned out a useful source for cases to be explored, although 
their specification needs also to cover data flow aspects. It was not too difficult to add such data 
flow aspects. 

Possible further steps 
The work as reported has also led to a number of ideas for further research. First, while the 
specific coordination approaches borrowed from other disciplines were found to have value, no 
attempts have been made yet to come up with refinements, extensions or improvements of these 
approaches, or, inspired by these approaches, to design completely new approaches. It may well 
be possible to design approaches that perform still better. A number of possible extensions to 
take into account are the following: 
 
• Experimenting with more different parameter settings in the current coordination 

approaches (for example, changing the β values in the Pandemonium algorithm). 
• Actually changing the algorithms (for example, in the shout function of the Pandemonium 

algorithm, replace the ‘*’ operators by ‘+’, or enabling the voting algorithm to have more 
global information). 
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• Taking preferences for certain components into account. For example, suppose that two 
rather similar components are allowed to be activated, but only one of them is needed. In 
that case, it would be useful if there were a specific criterion by which one of them could 
be selected. An example of such a criterion is the quality of the component, or its 
expected execution time. 

• Allowing a dynamic environment, which requires updating of information. For example, 
the aspect that certain information loses its value after some time, because it is no longer 
up to date, is an interesting one. 

• Allowing the components to reason with partial data. For example, suppose that a 
component has d1 and d2 as its input data, but that only d1 is present. Then it would be 
useful if the component could already start reasoning with d1. 

• Adding loops to the test examples. This would place additional demands on the 
coordination approaches in the sense that they will have to deal with multiple activations 
of the same component. 

• Taking into account how recently a component has been active. This would be a useful 
addition in combination with the above issue of multiple activations. For example, in that 
case, it might be undesirable if components are activated twice in a row. 

 
Adding these kinds of elements will definitely pose further challenges for any coordination 
approach. 
 
Moreover, a special category of approaches that can be considered are adaptive control 
approaches. Such approaches do not need a prespecified coordination specification, but create 
one during processing. This option would solve the fourth issue mentioned above, and is an 
interesting area to investigate further.  
 
In addition, to specify a coordination approach, two distinctions might be useful to make: 
 

- the distinction between object information and processing, and coordination 
information and processing 

- the distinction between a coordination specification and a generic coordination 
algorithm that acts as an interpreter on the coordination specification  

 
The first distinction is an extension of the classical distinction between control (flow) and data 
(flow). The second distinction allows to separate a more declarative part of a coordination 
specification from the dynamics of its use. Such a coordination specification may involve 
declarative representation of properties of components such as the quality of a component, for 
example, its reliability, processing speed, and the uncertainty of its output. 
 
Another area that can be investigated further is compositionality of coordination specification. 
It is possible to proceed as follows. First, extend workflow patterns to software coordination 
patterns by adding data flow aspects (for example, specified in Petrinet style). Next, use these 
as building blocks to create an overall control specification, based on some principles of 
compositionality.  
 
Finally, still another area that can be investigated is verification and validation of a coordination 
specification. More specific evaluation criteria can be developed. For example, it can be 
automatically verified whether for each occurring system state, there is a next step that can be 
undertaken. Last but not least, after a more focused view has been developed on a coordination 
approach to be adopted, testing it for a real software system would be interesting. 
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Abstract. This paper presents the language and software environment LEADSTO that 
has been developed to model and simulate the dynamics of Multi-Agent Systems 
(MAS) in terms of both qualitative and quantitative concepts. The LEADSTO language 
is a declarative order-sorted temporal language, extended with quantitative means. Dy-
namics of MAS can be modelled by specifying the direct temporal dependencies be-
tween state properties in successive states. Based on the LEADSTO language, a soft-
ware environment was developed that performs simulations of LEADSTO specifica-
tions, generates simulation traces for further analysis, and constructs visual representa-
tions of traces. The approach proved its value in a number of projects within different 
domains of MAS research. 

1   Introduction 

Two important phases in the development of Multi-Agent Systems are the Design phase and 
the Implementation phase. In principle, the result of the Design phase is a high-level descrip-
tion (a model) of the system to be developed which, when encoded in some programming 
language, solves a particular problem. To this end, the problem is decomposed into modules, 
of which the functions and interfaces are specified in detail [10]. Then, the result of the De-
sign phase, the (technical) specification, can serve as a starting point for the Implementation 
phase. However, an important problem is the validation of this specification: can it be proven 
that the specification shows the expected behaviour (e.g. as described by requirements) be-
fore it is actually implemented? Especially when the specification is given in terms of abstract 
high-level concepts this is a non-trivial task. 

To contribute to the validation of Multi-Agent System specifications, this paper introduces 
the language and software environment LEADSTO. LEADSTO can be used to model the 
dynamics of systems to be designed, on the basis of highly abstract process descriptions. If 
those dynamics are modelled correctly, the LEADSTO software environment can use them 
for simulation of the desired behaviour of the system. Although such simulations are no for-
mal proof, they can contribute to an informal validation of the specification: by performing a 
number of simulations, it can be tested whether the behaviour of the specification is satisfac-
tory. Therefore, LEADSTO may be an important tool to bridge the gap between the Design 
and the Implementation phase. 

A      Leadsto paper 
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Generally, in simulations various formats are used to specify basic mechanisms or causal 
relations within a process, see e.g., [1], [5], [9]. Depending on the domain of application such 
basic mechanisms need to be formulated quantitatively or qualitatively. Usually, within a 
given application explicit boundaries can be given in which the mechanisms take effect. For 
example, “from the time of planting an avocado pit, it takes 4 to 6 weeks for a shoot to ap-
pear”.  

As mentioned above, in order to simulate a system to be designed, it is important to model 
its dynamics. When considering current approaches to modelling dynamics, the following 
two classes can be identified: logic-oriented modelling approaches, and mathematical model-
ling approaches, usually based on difference or differential equations. Logic-oriented ap-
proaches are good for expressing qualitative relations, but less suitable for working with 
quantitative relationships. Mathematical modelling approaches (e.g., Dynamical Systems 
Theory [9]), are good for the quantitative relations, but expressing conceptual, qualitative 
relationships is very difficult. In this article, the LEADSTO language (and software environ-
ment) is proposed as a language combining the specification of qualitative and quantitative 
relations.  

In Section 2, the LEADSTO language is introduced. Section 3 provides examples from ex-
isting case studies in which LEADSTO has been applied. Section 4 describes the tools that 
support the LEADSTO modelling environment in detail. In particular, the LEADSTO Prop-
erty Editor and the LEADSTO Simulation Tool are discussed. Section 5 compares the ap-
proach to related modelling approaches, and Section 6 is a conclusion. 

2   Modelling Dynamics in LEADSTO 

Dynamics can be modelled in different forms. Based on the area within Mathematics called 
calculus, the Dynamical Systems Theory (DST) [9] advocates to model dynamics by continu-
ous state variables and changes of their values over time, which is also assumed continuous. 
In particular, systems of differential or difference equations are used. This may work well in 
applications where the world states can be modelled in a quantitative manner by real-valued 
state variables and the world’s dynamics shows continuous changes in these state variables 
that can be modelled by mathematical relationships between real-valued variables.   

Not for all applications dynamics can be modelled in a quantitative manner as required for 
DST. Sometimes qualitative changes form an essential aspect of the dynamics of a process. 
For example, to model the dynamics of reasoning processes in Intelligent Agents usually a 
quantitative approach will not work. In such processes states are characterised by qualitative 
state properties, and changes by transitions between such states. For such applications often 
qualitative, discrete modelling approaches are advocated, such as variants of modal temporal 
logic; e.g., [6]. However, using such non-quantitative methods, the more precise timing rela-
tions are lost too.  

For the approach used in this paper, it was decided to consider time as continuous, de-
scribed by real values, but to allow both quantitative and qualitative state properties. The 
approach subsumes approaches based on simulation of differential or difference equations, 
and discrete qualitative modelling approaches, but also combines them. For example, it is 
possible to model the exact (real-valued) time interval for which some qualitative property 
holds. Moreover, the relationships between states over time are described by either logical or 
mathematical means, or a combination thereof. This is explained below in more detail. 

Dynamics is considered as evolution of states over time. The notion of state as used here is 
characterised on the basis of an ontology defining a set of properties that do or do not hold at 
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a certain point in time. For a given (order-sorted predicate logic) ontology Ont, the proposi-
tional language signature consisting of all state ground atoms (or atomic state properties) 
based on Ont is denoted by APROP(Ont). The state properties based on a certain ontology Ont are 
formalised by the propositions that can be made (using conjunction, negation, disjunction, 
implication) from the ground atoms. A state S is an indication of which atomic state proper-
ties are true and which are false, i.e., a mapping S: APROP(Ont) → {true, false}.  

To specify simulation models a temporal language has been developed. This language (the 
LEADSTO language) enables one to model direct temporal dependencies between two state 
properties in successive states, also called dynamic properties. A specification of dynamic 
properties in LEADSTO format has as advantages that it is executable and that it can often 
easily be depicted graphically. The format is defined as follows. Let α and β be state proper-
ties of the form ‘conjunction of atoms or negations of atoms’, and e, f, g, h non-negative real 
numbers. In the LEADSTO language the notation α →→e, f, g, h β (also see Figure 1), means: 
 

If state property α holds for a certain time interval with duration g, then  after some delay 
(between e and f) state property β will hold for a certain time interval of length h. 

 

α
β

t1

e

g h

t2

time

f
t0  

Fig. 1. The timing relationships 

An example dynamic property that uses the LEADSTO format defined above is the fol-
lowing: “observes(agent_A, food_present) →→ 2, 3, 1, 1.5  belief(agent_A, food_present)”. Informally, 
this example expresses the fact that, if agent A observes that food is present during 1 time 
unit, then after a delay between 2 and 3 time units, agent A will believe that food is present 
during 1.5 time units. In addition, within the LEADSTO language it is possible to use sorts, 
variables over sorts, real numbers, and mathematical operations, such as in “has_value(x, v) →→ 

e, f, g, h  has_value(x, v*0.25)”. 
Next, a trace or trajectory γ over a state ontology Ont is a time-indexed sequence of states 

over Ont (where the time frame is formalised by the real numbers). A LEADSTO expression α 

→→e, f, g, h β, holds for a trace γ if: 
 

∀t1: [∀t  [t1–g ≤ t < t1  �  α  holds in γ at time t ]  �  ∃d  [e ≤ d ≤ f  &   ∀t'  [t1+d ≤  t' <  t1+d+h  �   β holds in γ at time t' ] 
 

An important use of the LEADSTO language is as a specification language for simulation 
models. As indicated above, on the one hand LEADSTO expressions can be considered as 
logical expressions with a declarative, temporal semantics, showing what it means that they 
hold in a given trace. On the other hand they can be used to specify basic mechanisms of a 
process and to generate traces, similar to Executable Temporal Logic (cf. [1]).  

Finally, the LEADSTO format can be graphically depicted in a causal graph-like format, 
such as in Figure 2. Here, state properties are indicated by circles and LEADSTO relation-
ships by arrows. An arc denotes a conjunction between state properties. Agents are indicated 
by dotted boxes. Circles that are depicted within an agent denote its internal (mental) state 
properties. Circles that are depicted on the left or right border of an agent denote, respec-
tively, its input and output state properties, and circles that are depicted outside an agent 
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denote state properties of the external world. Notice that this simple form leaves out the tim-
ing parameters e, f, g, h. A more detailed form can be obtained by placing the timing parame-
ters in the picture as labels for the arrows. For more details about the LEADSTO language, 
see Section 4. 

 
 
 
  
 
 
 
 
 
 

Fig. 2. Example of a graphical representation of two LEADSTO properties 

3   Applications 

The LEADSTO environment has been applied in a number of research projects in different 
domains. In this section, an example LEADSTO specification is given for a specific domain: 
a Multi-Agent System for ant behaviour, adopted from [3]. The world in which the ants live 
is described by a labeled graph as depicted in Figure 3. Locations are indicated by A, B,…, 
and edges by E1, E2,… The ants move from location to location via edges; while passing an 
edge, pheromones are dropped. The objective of the ants is to find food and bring this back to 
their nest. In this example there is only one nest (at location A) and one food source (at loca-
tion F). 

 
 
 
 
 
 
 

Fig. 3. An ants world 

In [3], the dynamics of this system are formalised in LEADSTO, and some simulations are 
shown for different situations. A number of LEADSTO expressions that have been used for 
the simulation are shown in Box 1. For the complete specification, see [3]. 

In Figure 4 an example of a resulting simulation trace is shown. The upper part of the fig-
ure shows qualitative information; the lower part shows quantitative information. Time is on 
the horizontal axis. In the upper part, the state properties are on the vertical axis. Here, a dark 
box on top of the line indicates that the property is true during that time period, and a lighter 
box below the line indicates that the property is false. For example, the state property 
to_be_performed(ant2, pick_up_food) is true from time point 20 to 21. Because of space limita-
tions, only a selection of important state properties was depicted. In the lower part, different 
instantiations of state property pheromones_at_E1(X) are shown, with different (real) values for 
X. For example, from time point 1 to 7 the amount of pheromones on E1 is 0.0. 
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Box 1. Example LEADSTO specification 

Although this picture provides a very simple example (involving only three ants), it dem-
onstrates the power of LEADSTO to combine (real-valued) quantitative concepts with (con-
ceptual) qualitative concepts.  

 

 
 

Fig. 4. Example simulation trace 

Thus, Figure 4 shows an easy to read (important for the communication with the domain 
expert), compact, and executable representation of an informal model for ant behaviour. 

LP5 (Selection of Edge) 

This property models (part of) the edge selection mechanism of the ants. It expresses that, when an ant a ob-

serves that it is at location l coming from edge e0, and there are two other edges connected to that location, then 

the ant goes to the edge with the highest amount of pheromones. Formalisation: 
observes(a, is_at_location_from(l, e0)) and neighbours(l, 3) and connected_to_via(l, l1, e1) and observes(a, pheromones_at(e1, i1)) 

and connected_to_via(l, l2, e2) and observes(a, pheromones_at(e2, i2)) and e0 ≠ e1 and e0 ≠ e2 and e1 ≠ e2 and i1 > i2  →→0,0,1,1  

to_be_performed(a, go_to_edge_from_to(e1, l1)) 
 

LP9 (Dropping of Pheromones) 

This property expresses that, if an ant observes that it is at an edge e from a location l to a location l1, then it 

will drop pheromones at this edge e. Formalisation: 

observes(a, is_at_edge_from_to(e, l, l1))   →→0,0,1,1  to_be_performed(a, drop_pheromones_at_edge_from(e, l)) 
 

LP13 (Increment of Pheromones) 

This property models (part of) the increment of the number of pheromones at an edge as a result of ants drop-

ping pheromones. It expresses that, if an ant drops pheromones at edge e, and no other ants drop pheromones at 

this edge, then the new number of pheromones at e becomes i*decay+incr. Here, i is the old number of phero-

mones, decay is the decay factor, and incr is the amount of pheromones dropped. Formalisation: 
to_be_performed(a1, drop_pheromones_at_edge_from(e, l1)) and ∀l2 not to_be_performed(a2, drop_pheromones_at_edge_from(e, 

l2)) and ∀l3 not to_be_performed(a3, drop_pheromones_at_edge_from(e, l3)) and a1 ≠ a2 and a1 ≠ a3 and a2 ≠ a3 and phero-

mones_at(e, i)  →→0,0,1,1  pheromones_at(e, i*decay+incr) 
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Moreover, the example demonstrates the power of conceptual modelling based on highly 
abstract process descriptions. In less than 3 pages of code, the global dynamics of ant behav-
iour are so well defined that the specification actually runs. The specification took only a 
couple of days to construct, making the LEADSTO approach valuable for proof-of-concept 
simulations, thus important for Agent-Oriented Software Engineering. 

Finally, note that the ant example does not fully exploit the power of to use real-valued 
time parameters (in fact, most of the rules use the values 0,0,1,1 for the parameters e, f, g, h, 
see Box 1). Nevertheless, in a number of other domains the use of real-valued time parame-
ters turned out to be beneficial, since it allows for more realistic simulations of dynamic 
processes. An example domain where this was the case, is the domain of adaptive agents 
based on classical conditioning, see [2]. 

4   Tools 

In this section, the LEADSTO software environment is presented. Basically, this environment 
consists of two programs: the Property Editor (a graphical editor for constructing and editing 
LEADSTO specifications) and the Simulation Tool (for performing simulations of 
LEADSTO specifications, generating data-files containing traces for further analysis, and 
showing traces). Apart from the LEADSTO language constructs introduced in Section 2 the 
LEADSTO software has a number of other language constructs. Section 4.1 discusses some 
details. Next, Section 4.2 introduces the Property Editor and Section 4.3 deals with the Simu-
lation Tool. Section 4.4 describes the algorithm used to generate simulations. Finally, Section 
4.5 provides some implementation details and discusses possible improvements for the fu-
ture. 

4.1 Details of the LEADSTO language 

There are various representations of LEADSTO specifications. A graphical representation is 
shown in Section 4.2 when discussing the Editor. In this section all language constructs are 
discussed using a formal representation, based on the way specifications are stored.  

 

Variables. The language uses typed variables in various constructs. A variable is represented 
as <Var-Name>:<Sort>. 

 

Sorts. Sorts may be defined as a set of instances that may be specified: sortdef(<Sort-Name>, 

[<Term>,…]). There are also built-in sorts such as integer, real, and ranges of integers repre-
sented as for example between(2,10). 

 

Atoms. Atoms may be terms built up from names with argument lists where each argument 
must be a term or a variable, for example: belief(x:AGENT, food_present). 

 

LEADSTO rules. LEADSTO rules are introduced in Section 2. They are represented as: 
leadsto([<Vars>,] <Antecedent-Formula>, <Consequent-Formula>,  <Delay>, where 
<Delay> := efgh(<E-Range>,<F-Range>, <G-Range>,<H-Range>))1 
<Vars>  := “[“ <Variable>,... “]” 

For example, α →→0, 0, 1, 1 β is represented as leadsto(alfa, beta, efgh(0,0,1,1)). Variables occur-
ring in LEADSTO rules must be explicitly declared as <Variable> entries. 
Formulae. LEADSTO rules contain formulae. The current implementation allows conjunc-
tions and universal quantification over typed variables. Some variables are global, encom-

                                                           
1 The reason for grouping the delay is to make it easier to use delay constants. 
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passing the whole rule. Other - local - variables are part of universal quantification of some 
conjunction. The first kind of variables may be of infinite types. Currently, local variables 
must be of finite types.  Some of these restrictions – such as on not allowing disjunction – 
will be removed in a next version. This will have no effect on the performance of the algo-
rithm discussed in Section 4.4, but will make the details of the algorithm more complex. 
Other restrictions with respect to variables of infinite type will remain.  

 

Time/Range. Time and Range values occurring in LEADSTO rules and interval constructs 
may be any number or expression evaluating to a number. 

 

Constants. Constants may be defined using the following construct: constant(<Name>, 

<Value>). A constant(C1, a(1)) entry in a specification will lead to C1 being substituted by a(1) 
everywhere in the specification. 

 

Intervals. During simulation, some atom values will be derived from LEADSTO rules. Oth-
ers are not defined by rules but represent constant values of atoms over a certain time range. 
They are expressed as: interval([<Vars>,]<Range>,<LiteralConjunction>). Periodically reoccurring 
constant values are represented as: periodic([<Vars>,]<Range>,<Period>,<LiteralConjunction>), 
where 

 

<Range> := range(<Start-Time>,<End-Time>) 
<Vars>  := “[“ <Variable>,... “]” 
<Period> : an expression or constant or variable representing a number.  
<LiteralConjunction> := <Literal> { and <Literal> }* 
<Literal> := <Atom> | not <Atom> 
 

For example, an entry interval([X:between(1,2)], range(10,20), a(X)) makes a(1) and a(2) true in the 
time range (10,20). Likewise, an entry periodic(P, range(0,1), 10) makes P true in time ranges 
(0,1), (10,11), (20,21), and so on. 

 

Simulation Range. The time range over which the simulation must be run is expressed by 
means of the constructs start_time(<Time>) and end_time(<Time>). 

 

Visualisation of Traces. The construct display(<Tag-Name>, <Property>) is used to specify 
details of how to display the traces. The <Tag-Name> argument makes it possible to define 
multiple views of a trace. The active view may be specified from within the User Interface of 
the Simulation Tool. A number of properties may be specified, for showing or hiding certain 
atoms, for sorting atoms, for grouping atoms into a graph, and so on.  

4.2   Property Editor 

The Property Editor provides a user-friendly way of building and editing LEADSTO specifi-
cations. It was designed in particular for laymen and students. The tool has been used suc-
cessfully by students with no computer science background and by users with little computer 
experience. By means of graphical manipulation and filling in of forms a LEADSTO specifi-
cation may be constructed. The end result is a saved LEADSTO specification file, containing 
entries discussed in section 4.1. Figure 5 gives an example of how LEADSTO specifications 
are presented and may be edited with the Property Editor. This screenshot corresponds to 
(part of) the specification given in Box 1. 
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Fig. 5. The LEADSTO Property Editor 

4.3   Simulation Tool 

Figure 6 gives an overview of the Simulation Tool and its interaction with the LEADSTO 
Property Editor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 6. Simulation Tool Architecture 
 
The bold rectangular borders define the separate tools. The lines with arrows represent data 
transport; the dashed arrows represent control. The Property Editor is used to generate and 
store LEADSTO specification files. The Simulation Tool loads these specification files. The 
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overall control of the Simulation Tool is handled by the Control-GUI component. The Simu-
lation Tool can perform the following activities: 

 

• Loading LEADSTO specifications, performing a simulation and displaying the result. 
• Loading and displaying existing traces (without performing simulation). 
• Adjusting the visualisation of traces. 
 

Loading and simulating a LEADSTO specification is handled in four steps: 
 

1. The Specification Loader loads the specification. 
2. The Intermediate Code Generator initialises the trace situation with values defined by 

interval and periodic entries in the specification. The LEADSTO rules are preprocessed: 
constants are substituted, universal quantifications are expanded and the rules are par-
tially compiled into Prolog calls. 

3. The actual simulation is performed by the Runtime System. This is the part that con-
tains the algorithm, discussed in the next section. 

4. At the end of a simulation the result is stored internally by the Internal Trace Storage 
component. The result can be saved as a trace file containing the evolution over time 
of truth values of all atoms occurring in the simulation, and will be visualised by the 
Trace Visualisation GUI. In principle, traces are three-valued, using the truth values 
true, false, and unknown. Saved trace files can be inspected later by the simulation tool 
and can be used by other tools, e.g., for automated analysis. 

 

Note that visualisation of traces is integrated into the Simulation Tool through the Trace 
Visualisation GUI component. It is possible to select what atoms must be shown and in what 
order (sorting) etc. Figure 4 is an example of the visualisation of the result of a simulation.  

4.4   Simulation Engine Algorithm 

In this section a sketch of the simulation algorithm is given. The core of the semantics is 
determined by the LEADSTO rules, for example leadsto(alpha,beta, efgh(e, f, g, h)) or (in the 
notation of Section 2)  α →→e, f, g, h β. The state properties α, β are internally normalised. Cur-
rently, only state properties that can be simplified to conjunctions of literals are allowed.  

 

Restrictions on delays 
The parameters g and h are time intervals, they must be >= 0. The algorithm allows only 
causal rules, e,f >= 0. Allowing e,f < 0 would lead to non-causal behaviour (any trace situa-
tion could have an effect arbitrarily in the past) and an awkward simulation algorithm. The 
causal nature of the semantics of LEADSTO rules results in a straightforward algorithm: at 
each time point, a bound part of the past of the trace (the maximum of all g values of all 
rules) determines the values of a bound range of the future trace (the maximum of f + h over 
all LEADSTO rules). 

 

Outline of the algorithm 
First all interval and periodic entries are handled by setting the ranges of atoms according to 
their definition. Next, for the algorithm a time variable HandledTime is introduced: all 
LEADSTO rules with antecedent range up to HandledTime have fired. The idea is to propagate 
HandledTime until HandledTime >= EndTime2 via the following steps: 

 

1. At a certain HandledTime, a value for NextTime is calculated. This will be the first 
time in the future after HandledTime that firing of a LEADSTO rule with its g-interval 
(see Figure 1) extending past HandledTime may have effect in the form of some conse-

                                                           
2 EndTime is the time up to which the simulation should be run. 
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quent atom set. The time increment will be at least as big as the minimum of e + h over 
all LEADSTO rules. 

2. An (optional) Closed World Assumption is performed for all selected atoms in the 
range (HandledTime, NextTime), i.e., all unknown atoms in this range are made false. 

3. All LEADSTO rules are applied for which the range of the antecedent ends before or 
overlaps with NextTime. 

4. Set HandledTime := NextTime 
5. Continue with step 1 until HandledTime >= EndTime 

4.5   Implementation Details 

The complexity of the current algorithm is proportional to the number of LEADSTO rules in 
the specification, to the number of incremental time steps of the algorithm (which is at most 
equal to the length of the simulation divided by the minimum of e + h over all LEADSTO 
rules) and (at most) to the number of matching antecedent atoms per LEADSTO rule (limited 
by the number of atoms set during the simulation). A number of optimizations already im-
prove the performance, such as only considering antecedent atoms that have matching values 
in the  (HandledTime, NextTime) time range and not considering LEADSTO rules that have 
been tested to not fire until some time in the future. 

The software was written in SWI-Prolog/XPCE, and consists of approximately 20000 
lines of code.  The approach for the design and implementation has been to first focus on a 
complete implementation that is easily adaptable, with acceptable performance for the current 
users. For an impression of the performance: the simulation of Section 3 took two seconds on 
a regular Personal Computer. More complex LEADSTO simulations have been created that 
take about half an hour to run. For example: one simulation with 170 LEADSTO rules, 2000 
time steps, with 15000 atoms set, took 45 minutes. 

There is room for further performance improvement of the algorithm. One possible im-
provement is to increase the time increment NextTime – HandledTime introduced in the algo-
rithm above. Global analysis of dependency of LEADSTO rules should improve the perform-
ance, for instance by trying to eliminate simple rules with small values of their e + h parame-
ters. Furthermore, the LEADSTO language is being extended with constructs for probabilistic 
rules, and with constructs for systematically generating traces of LEADSTO specifications 
for a range of parameters.  

5   Related Work 

In the literature, a number of modelling approaches exist that have similarities to the ap-
proach discussed in this paper. Firstly, there is the family of approaches based on differential 
or difference equations (see, e.g., [9]). In these approaches, to simulate processes by mathe-
matical means, difference equations are used, for example, of the form: ∆x  =  f(x) ∆t   or    x(t + 

∆t) =  x(t) + f(x(t)) ∆t. This can be modelled in the LEADSTO language as follows (where d is 
∆t): has_value(x, v)  →→d, d, d, d  has_value(x, v+f(v)*d). This shows how the LEADSTO modelling 
language subsumes modelling approaches based on difference equations. In addition to those 
approaches the LEADSTO language allows to express qualitative and logical aspects. 

Another modelling approach, Executable Temporal Logic [1], is based on temporal logic 
formulae of the form ϕ & χ � ψ, where ϕ is a past formula, χ a present formula and ψ a 
future formula. In comparison to this format, the LEADSTO format is more expressive in the 
sense that it allows order-sorted logic for state properties, and allows one to express quantita-
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tive aspects. Moreover, the explicitly expressed timing parameters go beyond Executable 
Temporal Logic. On the other hand, within Executable Temporal Logic it is allowed to refer 
to different past states at different points in time, and thus to model more complex relation-
ships over time. For the LEADSTO language the choice has been made to model only the 
basic mechanisms of a process (e.g., the direct causal relations), like in modelling approaches 
based on difference equations, and not to model the more complex mechanisms.  

The Duration Calculus [11] is a modal logic for describing and reasoning about the real-
time behaviour of dynamic systems, where states change over time and are represented by 
functions from time (reals) to the Boolean values (0 and 1). It is an extension of Interval 
Temporal Logic [7], but with continuous time, and uses integrated durations of states as in-
terval temporal variables. Assuming finite variability of state functions (i.e., between any two 
time points only a finite number of state changes occurs), the axioms and rules of Duration 
Calculus constitute a complete logic (relative to Interval Temporal Logic). A number of in-
teresting tools have been created around (subsets of) Duration Calculus, see, e.g., [8] for 
information on model checking duration calculus formulae. Duration Calculus itself is not 
directly used for creating executable models, but environments for executable code exist 
(e.g., PLC automata, see [4]) for which a semantics is given in Duration Calculus. 

Another family of modelling approaches based on causal relations is the class of qualita-
tive reasoning techniques (see, e.g., [5]). The main idea of these approaches is to represent 
quantitative knowledge in terms of abstract, qualitative concepts. Like the LEADSTO lan-
guage, qualitative reasoning can be used to perform simulation. A difference with LEADSTO 
is that it is a purely qualitative approach, and that it is less expressive with respect to tempo-
ral and quantitative aspects. 

6   Conclusion 

This article presents the language and software environment LEADSTO that has been devel-
oped to model and simulate the dynamics of Multi-Agent Systems on the basis of highly 
abstract process descriptions. If those dynamics are modelled correctly, the LEADSTO soft-
ware environment can use them for simulation of the desired behaviour of the system. Al-
though such simulations are no formal proof, they can contribute to an informal validation of 
the specification: by performing a number of simulations, it can be tested whether the behav-
iour of the specification is satisfactory. Therefore, LEADSTO may be an important tool to 
bridge the gap between the Design and the Implementation phase. 

Within LEADSTO, dynamics can be modelled in terms of both qualitative and quantitative 
concepts. It is, for example, possible to model differential and difference equations, and to 
combine those with discrete qualitative modelling approaches. Existing languages are either 
not accompanied by a software environment that allows simulation of the model, or do not 
allow the combination of both qualitative and quantitative concepts.  

The language LEADSTO is a declarative order-sorted temporal language extended with 
quantitative notions (like integer, and real). Time is considered linear, continuous, described 
by real values. Dynamics can be modelled in LEADSTO as evolution of states over time, i.e., 
by modelling the direct temporal dependencies between state properties in successive states. 
The use of durations in these temporal properties facilitates the modelling of such temporal 
dependencies. In principle, accurately modelling the dynamics of processes may require the 
use of a dense notion of time, instead of the more practiced variants of discrete time. The 
problem in a dense time frame of having an infinite number of time points between any two 
time points is tackled in LEADSTO by the assumption of “Finite Variability” (see Section 5 
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and, e.g., [11]). Furthermore, main advantages of the LEADSTO language are that it is ex-
ecutable and allows for graphical representation.   

The software environment LEADSTO was developed especially for the language. It fea-
tures a dedicated Property Editor that proved its value for laymen, students and expert users. 
The core component is the Simulation Tool that performs simulations of LEADSTO specifi-
cations, generates simulation traces for further analysis, and visualises the traces. 

The approach proved its value in a number of research projects in different domains. It has 
been used to analyse and simulate behavioural dynamics of agents in cognitive science (e.g., 
human reasoning, creation of consciousness, diagnosis of eating disorders), biology (e.g., cell 
decision processes, the dynamics of the heart), social science (e.g., organisation dynamics, 
incident management), and artificial intelligence (e.g., design processes, ant colony behav-
iour). LEADSTO is so rich that it can be used to model phenomena from diverse perspec-
tives. It has, for example, been used to model cognitive processes from a psychological/BDI 
perspective and from a physical/neurological perspective. For more publications about these 
applications, the reader is referred to the authors’ homepages. 
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Abstract. Within many domains, among which biological and cognitive areas, multiple 
interacting processes occur with dynamics that are hard to handle. Current approaches 
to analyse the dynamics of such processes, often based on differential equations, are not 
always successful. As an alternative to differential equations, this paper presents the 
predicate logical Temporal Trace Language (TTL) for the formal specification and 
analysis of dynamic properties. This language supports the specification of both quali-
tative and quantitative aspects, and therefore subsumes specification languages based 
on differential equations. A special software environment has been developed for TTL, 
featuring both a Property Editor for building and editing TTL properties and a Check-
ing Tool that enables the formal verification of properties against a set of traces. TTL 
has a number of advantages, among which a high expressivity and the possibility to de-
fine sublanguages for simulation and verification of entailment relations. TTL proved 
its value in a number of projects within different domains. 

1   Introduction 

Within many domains, among which biological and cognitive areas, multiple interacting 
processes occur with dynamics that are hard to handle. Modelling the dynamics of such proc-
esses poses real challenges for biologists and cognitive scientists. Currently, within the areas 
mentioned, differential equations are among the techniques most often used to address this 
challenge, with limited success. For example, in the area of intracellular processes, hundreds 
or more reaction parameters (for which reliable values are rarely available) are needed to 
model the processes in question (Teusink et al., 2000). Thus, describing these processes in 
terms of differential equations can seriously compromise the feasibility of the model. Like-
wise, in the area of Cognitive Science it is advocated to take the Dynamical Systems Theory 
(DST, see e.g., Port and Gelder, 1995), which is also based on differential equations, as a 
point of departure. Many convincing examples have illustrated the usefulness of DST; how-
ever, they often only address lower-level cognitive processes such as sensory or motor proc-
essing. Areas for which a quantitative approach based on DST offers less are the dynamics of 
higher-level processes with mainly a qualitative character, such as reasoning, complex task 
performance, and certain capabilities of language processing. 

B     TTL paper 
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As illustrated by these examples, within several disciplines it is felt that more abstract 
modelling techniques are required to cope with the complexity. This paper introduces the 
Temporal Trace Language (TTL) as such an abstract technique for the analysis of dynamic 
properties within complex domains.  

In Section 2, some desiderata are put forward for a suitable approach for modelling com-
plex dynamic processes, resulting in a novel perspective for the development of such an ap-
proach, based on the idea of checking dynamic properties on practically given sets of traces. 
Next, in Section 3, the basic concepts of the TTL language are introduced. In Section 4 it is 
shown how TTL can be used to express different kinds of dynamic properties. In Section 5, it 
is shown how dynamic properties that are expressed in related languages can be translated 
into TTL. Section 6 describes the tools that support the TTL modelling environment in detail. 
In particular, the TTL Property Editor and the TTL Checker Tool are discussed. Section 7 is 
a conclusion. 

2   Perspective of this paper 

As can be seen in the discussion about the different areas as given above, the demands for 
dynamic modelling approaches suitable for these areas are nontrivial. Such desiderata for 
modelling languages include: 

 

(1) modelling at the right level of abstraction 
(2) expressivity for logical relationships 
(3) expressivity for quantitative relationships 
(4) both discrete and continuous modelling 
(5) difference and differential equations should be subsumed 
(6) expressivity for dynamic properties of varying complexity, for example including 

adaptivity 
 

Moreover, analysis techniques that would be desirable concern both the generation and 
formalisation of simulated and empirical trajectories or traces, as well as analysis of complex 
dynamic properties of such traces and relationships between such properties. Such desiderata 
for analysis techniques include: 

 

(a) generating traces by simulation based on quantitative, continuous variables 
(b) generating traces by simulation based on qualitative, logical notions 
(c) formalisation of simulated or empirical traces 
(d) analysis of properties of simulated traces 
(e) analysis of properties of empirical traces 
(f) analysis of relationships between (e.g., global and local) properties of traces 
 

Taken together, the desiderata gathered above are not easy to fulfill. Sometimes they may 
even be considered mutually exclusive. On the one hand, high expressivity is desired, but on 
the other hand feasible analysis techniques are demanded. To make automated support for 
these analyses feasible, often the strategy is followed to limit the expressivity of the model-
ling language, thereby compromising on the first list of desiderata. For example, the expres-
sivity is limited to difference and differential equations as in DST (excluding logical relation-
ships, compromising at least (2)), or to propositional modal temporal logics (excluding nu-
merical relationships, compromising at least (3), (5), (6)). In the former case calculus can be 
exploited to do simulation and analysis (Port and van Gelder, 1995), fulfilling (a) and (c) but 
not (b), (d), (e) and (f). In the latter case, for example, simulation can be based on a specific 
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Lov : TTL 

Lex : LEADSTO 

Lan : temporal logic 

Lov 

 c, d, e 

 1, 2, 3, 4, 5, 6 

Lex 

 a, b 

 1, 2, 3, 4, 5 

Lan 
 f 

 1, 2 

executable format (e.g., executable temporal logic (Barringer et al, 1996), fulfilling (b) and 
(c) but not (a), (d), (e) and (f)) and model checking techniques can be exploited for analysis 
of relationships between dynamic properties, fulfilling (d) to (f), e.g., (Clarke et al., 2000; 
Manna and Pnueli, 1995; Stirling, 2001).  
 Within the literature on analysis of properties (verification), much emphasis is put on 
computation of entailment relations. This essentially means checking properties on the set of 
all theoretically possible traces of a process. To make that feasible, expressivity of the lan-
guage for these properties has to be sacrificed to a large extent. However, checking properties 
on a practically given set of traces (instead of all theoretically possible ones) is computation-
ally much cheaper, and therefore the language for these properties can be more expressive. 
Such a set can consist of one or a number of traces, obtained empirically or by simulation. By 
limiting the desiderata by giving up (f), but still keeping (c) to (e), a much more expressive 
language for properties can be dealt with; the sorted predicate logic temporal trace language 
TTL described in this paper is an example of this.  

 For simulation it is essential to have limitations to the language. Therefore, an executable 
language can be defined as a sublanguage of the overall language for analysis. Moreover, 
also analysis languages that allow analysis in the sense of (f) can be embedded in the overall 
language. Thus the picture shown in Figure 1 is obtained. At the top there is an expressive 
overall language, in our case TTL, which fulfills all of the desiderata for modelling lan-
guages, i.e., (1) to (6). Concerning the desiderata for analysis techniques, it fulfills (c) to (e), 
but sacrifices (a), (b) and (f). In addition, a sublanguage can be defined for execution (fulfill-
ing (1) to (5) and (a) and (b)), and a sublanguage can be defined for analysis of relationships 
between properties in the sense of (f), thereby also fulfilling (1) and (2)1. For the case of 
TTL, one of the executable sublanguages that already exist is the LEADSTO language, cf. 
(Bosse et al., 2005b). Moreover, for the sublanguage for analysis one could think of any 
standard temporal logic, such as LTL or CTL, see, e.g., (Benthem, 1983; Goldblatt, 1992). 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Embedding relationships between languages 

Having the language for simulation and the languages for analysis within one subsuming 
language provides the possibility to have a declarative specification of a simulation model, 
and thus to involve a simulation model in logical analyses. 

                                                           
1In principle, such languages could also fulfill (6), but only to a certain extent. See Section 5.3 for an 

elaborate discussion. 
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3   Basic Concepts 

To describe dynamics, the notion of state is important. Dynamics will be described in the 
next section as evolution of states over time. The notion of state as used here is characterised 
on the basis of an ontology defining a set of physical and/or mental (state) properties (follow-
ing, among others, (Kim, 1998)) that do or do not hold at a certain point in time. These prop-
erties are often called state properties to distinguish them from dynamic properties that relate 
different states over time. A specific state is characterised by dividing the set of state proper-
ties into those that hold, and those that do not hold in the state. Examples of state properties 
are ‘the agent is hungry’, ‘the agent has pain’, ‘the agent's body temperature is 37.5° C’, or 
‘the environmental temperature is 7° C’. Real value assignments to variables are also consid-
ered as possible state property descriptions. For example, in a DST approach based on vari-
ables x1, x2, x3, x4, that are related by differential equations over time, value assignments such 
as  

 

x1   ← 0.06 
x2  ← 1.84 
x3   ← 3.36 
x4   ← - 0.27  

 

are considered state descriptions. State properties are described by ontologies that define the 
concepts used. 

3.1 Ontologies and State Properties 

To formalise state property descriptions, ontologies are specified in a (many-sorted) first 
order logical format: an ontology is specified as a finite set of sorts, constants within these 
sorts, and relations and functions over these sorts (sometimes also called a signature). The 
example state properties mentioned above then can be defined by nullary predicates (or 
proposition symbols) such as hungry, or pain, or by using n-ary predicates (with n�1) like 
has_temperature(body, 37.5), has_temperature(environment, 7), or has_value (x1, 0.06).  

For a given ontology Ont, the propositional language signature consisting of all state 
ground atoms based on Ont is denoted by At(Ont). The state properties based on a certain 
ontology Ont are formalised by the propositions that can be made (using conjunction, nega-
tion, disjunction, implication) from the ground atoms and constitute the set SPROP(Ont). 

In many domains, it is desirable to distinguish different agents that are involved in the 
process under analysis. Moreover, it is often useful to distinguish between the internal, exter-
nal, input, and output state properties of these agents. To this end, the following different 
types of ontologies are introduced:  

 

• IntOnt(A): to express internal state properties of the agent A  
• InOnt(A): to express state properties of the input of agent A 

• OutOnt(A)): to express state properties of the output of the agent, and  
• ExtOnt(A): to express state properties of the external world (for A) 
 

For example, the state property pain may belong to IntOnt(A), whereas 
has_temperature(environment, 7), may belong to ExtOnt(A). The agent input ontology InOnt(A) 

defines properties for perception, the agent output ontology OutOnt(A) properties that indicate 
initiations of actions of A within the external world. The combination of InOnt(A) and Ou-

tOnt(A) is the agent interaction ontology, defined by InteractionOnt(A) = InOnt(A) ∪ OutOnt(A). 
The overall ontology for A is assumed to be the union of all ontologies mentioned above:  
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OvOnt(A) = InOnt(A) ∪ IntOnt(A) ∪ OutOnt(A) ∪ ExtOnt(A). 
 

As yet no distinction between physical and mental internal state properties is made; the for-
mal framework introduced in subsequent sections does not assume such a distinction. If no 
confusion is expected about the agent to which ontologies refer, the reference to A is some-
times left out. 

3.2 Different Types of States 

a)  A state for a given ontology Ont is an assignment of truth-values {true, false} to the set of 
ground atoms At(Ont). The set of all possible states for an ontology Ont is denoted by 
STATES(Ont). In particular, STATES(OvOnt) denotes the set of all possible overall states. For 
the agent STATES(IntOnt) is the set of all of its possible internal states. Moreover, 
STATES(InteractionOnt) denotes the set of all interaction states. 

 

b)  The standard satisfaction relation |== between states and state properties is used: S |== p 
means that property p holds in state S. Here |== is a predicate symbol in the language, usually 
used in infix notation, which is comparable to the Holds-predicate in situation calculus. For a 
property p expressed in Ont, the set of states over Ont in which p holds (i.e., the S with S |== p) 
is denoted by STATES(Ont, p). 

 

c)  For a state S over ontology Ont with sub-ontology Ont’, a restriction of S to Ont’ can be 
made, denoted by S|Ont’; this restriction is the member of STATES(Ont’) defined by S|Ont'(a) = 

S(a) if  a ∈ At(Ont'). For example, if S is an overall state, i.e., a member of STATES(OvOnt), then 
the restriction of S to the internal atoms, S|IntOnt is an internal state, i.e., a member of 
STATES(IntOnt). The restriction operator serves as a form of projection of a combined state 
onto one of its parts. 

4   Expressing Dynamic Properties 

To describe the (internal and external) dynamics of an agent, explicit reference is made to 
time. Dynamic properties can be formulated that relate a state at one point in time to a state at 
another point in time.  Some examples of dynamic properties of a certain agent are shown 
below, using an informal (natural language) notation. 
 A simple example is the following dynamic property specification for belief creation 
based on observation:  

 

Observational belief creation 
‘At any point in time t1 if the agent observes at t1 that it is raining, then there exists a point in time t2 after t1 such 
that at t2 the agent believes that it is raining’.  

 

An example of another type is trust monotonicity; this dynamic property specification about 
the dynamics of trust over time involves the comparison of two histories: 

 

Trust monotonicity 
‘For any two possible histories, the better the agent’s experiences with public transportation, the higher the agent’s 
trust in public transportation’. 

 

These examples were kept simple; they are just meant as illustrations. No attempt was made 
to make them as realistic as possible. As will be explained below, TTL can be used to express 
such dynamic properties, and other, more sophisticated ones, in a formal manner. First, in 
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Section 4.1 the notion of trace is defined more explicitly. Next, in Section 4.2 it is shown in 
detail how dynamic properties can be expressed formally in TTL.  

4.1 Time Frame and Trace 

a) A fixed time frame T is assumed which is linearly ordered. Depending on the application, it 
may be dense (e.g., the real numbers), or discrete (e.g., the set of integers or natural numbers 
or a finite initial segment of the natural numbers), or any other form, as long as it has a linear 
ordering.  

 

b)  A  trace  γ  over an ontology  Ont  and time frame T  is a time-indexed set of states  
 

  γ t (t ∈ T)  
 

in  STATES(Ont), i.e., a mapping  
 

  γ : T → STATES(Ont).  
 

For the specification of dynamic properties, these definitions work fine. However, for some 
specific operations (such as verification), a dense time frame may cause problems, since it 
consists of an infinite number of time points. Therefore, in such cases finite variability of 
state functions is assumed (i.e., between any two time points only a finite number of state 
changes occurs). This is discussed in more detail in Section 6. 
 Traces can be visualised, for example as in Figure 2. Here, the time frame is depicted on 
the horizontal axis. The different predicates of the ontology are shown on the vertical axis. A 
dark box on top of the line indicates that the predicate is true during that time period, and a 
lighter box below the line indicates that it is false. Thus, in the example of Figure 2, predicate1 
is true during the whole trace, predicate2 is true from time point 2.5 to time point 4.25, and 
predicate3 is true from time point 2 to 3 and from time point 8 to 10. 
 The set of all traces over ontology Ont is denoted by TRACES(Ont) , i.e., TRACES(Ont) = 

STATES(Ont)T. 
 

 

Figure 2. Example visualisation of a trace 

c) A temporal domain description W is a given set of traces over the overall ontology, i.e.,  
 

  W ⊆ TRACES(OvOnt).  
 

This set represents all possible developments over time (respecting the world's laws) of the 
part of the world considered in the application domain. 
 Different traces with respect to an agent A can refer to different experiments with A in-
volving different worlds, or different events generated in the world. For human beings one 
can think of a set of experiments in cognitive science, in which different experiments are not 
assumed to influence the behaviour of the agent. For software agents, it is possible to even 
erase the complete history (complete reset) and then activate the agent in a new world setting. 

 

d)  Given a trace γ over the overall ontology OvOnt, the input state of an agent A at time point 
t, i.e., γt |InOnt(A), is also denoted by 

 

  state(γ, t, input(A)). 
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Analogously, state(γ, t, output(A)) denotes the output state of the agent at time point t, state(γ, t, 

internal(A)) denotes the internal state, and state(γ, t, external(A)) denotes the external world state. 
If no confusion is expected about the particular agent, the reference to A can be left out, e.g., 
as in state(γ, t, input). Moreover, the overall state of a system (agent and environment) at a 
certain moment, is denoted by state(γ, t). 

4.2 Dynamic Properties 

To express dynamic properties in a precise manner, it is needed to make explicit references to 
time points and traces. Comparable to the approach in situation calculus, TTL is built on 
atoms referring to, e.g., traces, time and state properties. For example, ‘in the output state of 
A in trace γ at time t property p holds’ is formalised by 

 

  state(γ, t, output(A)) |== p.  
 

Throughout the remainder of this paper, these kinds of atoms will be referred to as Holds 
atoms. Based on such Holds atoms, Dynamic Properties can be built using the usual logical 
connectives and quantification (for example, over traces, time and state properties). For ex-
ample, the following dynamic properties can be expressed: 

 

Observational belief creation 
‘In any trace, if at any point in time t1 the agent  A observes that it is raining, then there exists a point in time t2 
after t1 such that at t2 in the trace the agent  A believes that it is raining’.  

 

In formalised form: 
 

∀γ ∈ W  ∀t1 

[ state(γ, t1, input(A)) |== observation_result(itsraining)   

 � ∃t2 ≥ t1  state(γ, t2, internal(A)) |== belief(itsraining)    ] 
 

Trust monotonicity 
‘For any two traces γ1 and γ2, if at each time point t the agent A’s experience with public transportation in γ2 at t is 
at least as good as A’s experience with public transportation in γ1 at t, then in trace γ2 at each point in time t, the 
A’s trust is at least as high as A’s trust at t in trace γ1’.  

 

In formalised form: 
 

∀γ1, γ2 ∈ W   

[∀t  [ state(γ1, t, input(A)) |== has_value(experience, v1) &  

        state(γ2, t,  input(A)) |== has_value(experience, v2)  �  v1≤ v2    ] 

� 

∀t  [ state(γ1, t, internal(A)) |== has_value(trust, w1) &  

       state(γ2, t,  internal(A)) |== has_value(trust, w2)  �  w1≤ w2    ] ] 
 

Instead of the term Dynamic Property, sometimes the term TTL Formula is used within this 
paper. This is especially the case in Section 6, where the focus is on the technical aspects of 
the language. 

5   Relation to other Languages 

In this section, TTL will be compared with a number of existing related languages. In Section 
5.1 it is shown how differential equations can be modelled in TTL. In Section 5.2 it is shown 
how executable properties expressed in LEADSTO can be translated into TTL, and in Sec-
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tion 5.3 it is shown how properties expressed in standard Linear Temporal Logic (LTL) can 
be translated into TTL.  

5.1 Expressing Difference and Differential Equations in TTL 

As mentioned in the Introduction, especially in cognitive domains complex continuous rela-
tionships over time can be encountered. These relationships are often modelled semantically 
by differential equations, usually assumed to belong to the Dynamical Systems approach 
(DST), put forward, e.g., in (Port and Van Gelder, 1995). The question may arise whether or 
not such modelling techniques can be expressed in the Temporal Trace Language TTL. In 
this section it is shown how modelling techniques used in the dynamical systems approach, 
such as difference and differential equations, can be represented in TTL. First the discrete 
case is considered. An example of an application is the study of the use of logistic and other 
difference equations to model growth (and in particular growth spurts) of various cognitive 
phenomena, e.g., the growth of a child’s lexicon between 10 and 17 months, cf. (Geert, 
1995). The logistic difference equation used is: 

 

L(n+1) = L(n) (1 + r - r L(n)/K) 
 

Here r is the growth rate and K the carrying capacity. This equation can be expressed in our 
temporal trace language on the basis of a discrete time frame (e.g., the natural numbers) in a 
straightforward manner: 

 

∀γ ∈ W  ∀t   
 state(γ , t, internal) |== has_value(L, v)       �      
 state(γ , t+1, internal) |== has_value(L, v (1 + r - rv/K)) 

 

The traces γ satisfying the above dynamic property are the solutions of the difference equa-
tion. Another illustration is the dynamical model for decision-making presented in (Town-
send and Busemeyer, 1995). The core of their decision model for the dynamics of the prefer-
ence P for an action is based on the differential equation 

 

dP(t)/dt = -s P(t)  + c V(t) 
 

where s and c are constants and V is a given evaluation function. One straightforward option 
is to use a discrete time frame and model a discretised version of this differential equation 
along the lines discussed above. However, it is also possible to use the dense time frame of 
the real numbers, and to express the differential equation directly. To this end, the following 
relation is introduced, expressing that x = dy/dt: 

 

is_diff_of(γ, x, y)  :  
  ∀t,w  ∀ε>0 ∃δ>0 ∀t',v,v' 
    0 < dist(t',t) < δ  &  state(γ , t, internal) |== has_value(x, w)      

&  state(γ , t, internal) |== has_value(y, v)  
&  state(γ , t', internal) |== has_value(y, v')  
�     dist((v'-v)/(t'-t),w) < ε 

 

where dist(u,v) is defined as the absolute value of the difference, i.e. u-v if this is � 0, and v-u 
otherwise. Using this, the differential equation can be expressed by: 

 

is_diff_of(γ , - s P  + c V, P) 
 

The traces γ for which this statement is true are (or include) solutions for the differential 
equation.  
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Models consisting of combinations of difference or differential equations can be ex-
pressed in a similar manner. This shows how modelling constructs often used in DST can be 
expressed in TTL. 

5.2 Expressing Executable Properties in TTL 

As mentioned in Section 2, executable languages can be defined as sublanguages of TTL. An 
example of such a language, which was specifically designed for the simulation of dynamic 
processes in terms of both qualitative and quantitative concepts, is the LEADSTO language, 
cf. (Bosse et al., 2005b). Below, it is shown how dynamic properties expressed in LEADSTO 
can be translated to TTL. 

The LEADSTO language enables one to model direct temporal dependencies between 
two state properties in states at different points in time. A specification of dynamic properties 
in LEADSTO format has as advantages that it is executable and that it can often easily be 
depicted graphically. The format of LEADSTO is defined as follows. Let α and β be state 
properties of the form ‘conjunction of atoms or negations of atoms’, and e, f, g, h non-negative 
real numbers. In the LEADSTO language the notation α →→e, f, g, h β, means: 

 

If state property α holds for a certain time interval with duration g, then  after some delay 
(between e and f) state property β will hold for a certain time interval of length h. 

 

In terms of TTL, the fact that the above statement holds for a trace γ can be expressed as 
follows: 

 

∀t1[∀t  [t1–g ≤ t < t1  �  state(γ, t) |== α ] � ∃d  [e ≤ d ≤ f  &  ∀t'  [t1+d ≤  t' <  t1+d+h  �  state(γ, t’) |== β ] 

5.3 Expressing Standard Temporal Logics in TTL 

As mentioned in Section 2, besides executable languages also languages often used for the 
verification of entailment relations can be defined as sublanguages of TTL. Examples of such 
languages are LTL and CTL, see, e.g., (Benthem, 1983; Goldblatt, 1992). In this section, it is 
briefly shown how dynamic properties expressed as formulae in standard temporal logics can 
be translated to TTL; in particular, this will be illustrated for the case of LTL. The general 
idea is that this can be done in a rather straightforward manner by replacing the temporal 
operators of LTL by quantifiers over time. For example, consider the following LTL formula: 

 

G(observation_result(itsraining) → F(belief(itsraining))) 
 

where the temporal operator G means ‘for all later time points’, and F ‘for some later time 
point’. The first operator can be translated into a universal quantifier, whereas the second one 
can be translated into an existential quantifier. Using TTL, this formula then can be ex-
pressed, for example, as follows: 

 

∀t1 [ state(γ, t1) |== observation_result(itsraining) � ∃t2 ≥ t1 state(γ, t2) |== belief(itsraining) ] 
 However, note that the translation is not bi-directional, i.e., it is not always possible to 
translate TTL expressions into LTL expressions. An example of a TTL expression that can-
not be translated to LTL is the property ‘Trust Monotonicity’ expressed in Section 4.2. This 
property cannot be expressed in LTL since it involves the comparison of two different traces 
(γ1 and γ2 in this case). This shows that for example LTL can be considered a proper sublan-
guage of TTL, i.e., a sublanguage not equal to TTL. Similar observations can be made for 
other well-known temporal logics such as CTL. 
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 To conclude, it was shown above that languages such as DST, LEADSTO and LTL can 
be seen as sublanguages of the specification language TTL. Note that this does not imply that 
all operations that can be done using these languages (e.g., solving differential equations 
specified in DST, or performing simulation based on LEADSTO) can be performed using 
TTL tools. Each language has its own tools to perform specific operations. The tools that 
were specifically implemented for TTL will be introduced in the next section. 

6   Tools 

The TTL language and its supporting software environment have been applied in a number of 
research projects in different domains. In general, the research goal in these projects was to 
analyse the behavioural dynamics of agents in different domains. In most of them the focus 
was on cognitive processes, such as human reasoning, the creation of consciousness, and 
design tasks. TTL was used to formalise dynamic properties of these processes at a high level 
of abstraction. Next, such dynamic properties (represented as TTL formulae) were automati-
cally checked against simulated or empirical traces. This section presents the software envi-
ronment that was built to support the process of specification and automated verification of 
dynamic properties. Basically, this software environment consists of two closely integrated 
tools: the Property Editor and the Checker Tool. To explain how these tools work, Section 
6.1 describes more details of the TTL language from an implementation perspective. Next, 
Section 6.2 describes the actual operation of the tools. Finally, Section 6.3 discusses some 
implementation details of the Checker Tool. 

6.1 Details of the TTL language 

The previous sections introduced the TTL language in a somewhat informal way. However, 
the TTL software requires a strict representation. For instance, the implementation requires 
all variables in a TTL formula to be explicitly typed by specifying which sort they belong to. 
In this section, the TTL language is described in detail. 

To enter TTL formulae in the correct format, the TTL Property Editor provides a graphi-
cal interface. The user fills in templates and builds up formulae by selecting building blocks 
from a menu. TTL specifications may also be supplied as plain text. The following defini-
tions are used: 

 

• A TTL specification consists of a number of user-defined property definitions and 
sort definitions.  A property definition consists of a header (someprop(v1:s1, v2:s2), 

property name and formal arguments) and a body. The body is a TTL formula. 
• A TTL formula is assembled from basic TTL formulae by conjunction, (Formula1 and 

Formula2), disjunction (Formula1 or Formula2), negation (not Formula), implication and 
quantification (forall ([v1:s1, v2:s2], Formula), exists ([v1:s1, v2:s2 < term2], Formula) ). 

• Basic TTL formulae are user-defined properties, Holds atoms, predefined mathe-
matical properties (e.g. term1 = term2, term1 > term2) and built-in properties. The se-
mantics of a user-defined property occurring in some TTL formula is one of substi-
tution, not some kind of logic programming (recursion of properties is not allowed). 

• Holds atoms are introduced in Section 4.2, e.g. state(trace1, t, output(ew)) |== a1 ∧ a2 . 
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• Built-in properties are complex properties encoded into the implementation lan-
guage. 

• TTL formula elements contain terms at various places: as restrictions on range vari-
ables, as actual parameter values in sub properties, within Holds atoms, and so on. 
Terms are “Prolog terms” (e.g., fn(t1,t2) , n1,  t1 + t3, 1.3). Variables in terms are rep-
resented as X:sort1. Terms that are mathematical operations are evaluated, so the op-
erands must be of an appropriate type. The functions begin(i:interval), end(i:interval), in-

terval(t:time) and time(i:interval) introduced later are also terms that will be evaluated 
and substituted by their values. 

 

For expressing more complex functions, the following building blocks are defined: 
 

• case(Formula, Then, Else) where Formula is a TTL formula :  
f(case(Formula, Then, Else)) is equivalent to Formula and f(Then) or not Formula and 
f(Else). 

• sum([v1:s1, v2:s2,..vn:sn], Term) where Term is a function of v1,..,vn: The sum of apply-
ing all tuples (v1,..vn) to Term. 

• product(([v1:s1, v2:s2,..vn:sn], Term) where Term is a function of v1,..,vn: The product of 
applying all tuples (v1,..vn) to Term. 

 

Furthermore, the language has a number of built-in sorts for integer, real and range of in-
tegers (sorts integer, real, between(i1:integer,i2:integer)). Sorts may be defined by enumerating 
their elements. There are predefined sorts for the set of all states (sort STATE) and the set of 
all loaded traces (sort TRACE, the temporal domain description set W introduced in Section 
4.1). 

TTL formulae usually contain variables referring to time, specifically to time for a state 
property. In case a dense time frame is used, this may cause problems for the verification 
process, because an infinite number of time points must be considered. To deal with this 
problem, in the TTL tools finite variability of state functions is assumed. This assumption 
states that between any two time points only a finite number of state changes occurs. Thus, 
when a property is checked against a set of traces, the software determines time-intervals 
during which all atoms occurring in the property are constant in all traces. A built-in sort 
interval enumerates these disjoint time intervals. Values of this sort are ordered. A number of 
primitives are introduced to translate between interval values and time values: 

 

• begin(i:interval) refers to the first time point of interval i. 
• end(i:interval) refers to the last time point of interval i. 
• interval(t:time) refers to the interval in which time point t occurs. 
• time(i:interval) refers to a time point that occurs in interval i. 
 

For an example in which one of these primitives is used, see the following Holds atom:  
 

state(γ:TRACE, time(i:interval), internal) |== a.   
 Moreover, libraries of predefined properties and functions are available, some generic, 
others for specific application domains. 

6.2 Operation 

As mentioned earlier, the TTL software environment comprises two closely integrated tools: 
the Property Editor and the Checker Tool. The Property Editor provides a user-friendly way 
of building and editing properties in the TTL language. It was designed in particular for less 
experienced users. By means of graphical manipulation and filling in of forms a TTL specifi-
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cation may be constructed (see Figure 3 for an impression). The Checker Tool can be used to 
check automatically whether a TTL formula holds for a set of traces. Operation of the tools 
involves three separate actions: 

 

1. Loading, editing, and saving a set of TTL properties and user-defined sorts with the 
Property Editor (shown in Figure 3). 

2. Activating the Trace Manager (not shown in Figure 3): loading and inspecting traces 
that will be checked and that will constitute the set of traces, the elements of sort 
TRACE (see section 6.1). Sources of traces can be both results of simulations such as 
output from the LEADSTO simulation software (see Bosse et al., 2005b) and em-
pirical traces. 

3. Selecting a menu entry “Check Property” while the cursor points to a property. The 
property is compiled (see Section 6.3 for details) and checked, and the result is pre-
sented to the user.   

 

 

Figure 3. The TTL Checker with Trace Loader 

In addition to the above, the TTL Checker has facilities for systematically loading traces and 
checking properties without user interaction. The software runs on Windows, Solaris and 
Linux platforms.  

6.3 Implementation Details of the Checker 

This section describes the algorithm used by the Checker Tool in detail. Fist, a number of 
introductory remarks are made: 

 

• The Checker Tool was built specifically for the process of checking TTL formulae 
against traces. Here, a trace consists of a finite number of state atoms, changing a finite 
number of times. This has the following consequences: 
 

o Using intervals instead of (continuous) time in TTL formulae will improve per-
formance of the checking process (by simplifying quantification over time). 
Nevertheless, both options are possible. 
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o Other quantification variables will often refer to arguments of state atoms.  
There are a finite number of such state atoms. Iterating over values occurring in 
the traces will often be faster than iterating over all possible values of some 
variable. 

 

• Checking may involve iteration over many values. Therefore, efficient coding is impor-
tant. Compiling the formula that needs to be checked into code in the implementation 
language will improve performance (compared to interpretation). 

• Checking may involve frequent access to values of state atoms. For acceptable perform-
ance, it is important to assure efficient access to state atoms specific to the formula that is 
checked. 
 

The implementation is in Prolog (SWI-Prolog, the graphical user interface uses XPCE).  A 
query to check some TTL formula against all loaded traces is compiled into a Prolog clause, 
which will succeed if the formula holds. The compilation proceeds as follows: 

 

1. Fast access to state atoms is ensured: all atoms occurring in state properties within 
the TTL formula are gathered. Then, the set of all traces is analysed to determine the 
time intervals where all those atoms are constant. An index is built for fast access to 
all those atom values. 

2. The TTL formula is compiled into Prolog: the formula is translated by mapping con-
junction, disjunction and negation onto Prolog equivalents and by transforming uni-
versal quantification into existential quantification. For every variable occurring in 
the property, information about whether it is bound is maintained.  If the first occur-
rence of some variable in a conjunction is in a Holds atom, then this variable be-
comes bound by code that binds the variable to successive matching Holds atoms; in 
a following element of the conjunction, the value may be used in expressions and 
evaluations in other members of the conjunction. If a variable is not bound by such 
an occurrence, but should be bound (because it appears in some mathematical opera-
tion or comparison), the variable must be bound by generating binding code to bind 
the variable to successive elements of the variable sort. If the sort is infinite, an error 
message is generated. 

 

The specific optimizations discussed above make it possible to check realistic dynamic 
properties with reasonable performance. For an impression of the performance: checking the 
simply property ‘Observational belief creation’ (see Section 4.2) against a single trace takes 
less than a second on a regular Personal Computer. Checking more complex properties may 
take longer. For example, a property involving 8 different time points (taken from Bosse et 
al., 2005a) took about three minutes to check. 

7   Conclusion 

Within many domains, among which biological and cognitive areas, multiple interacting 
processes occur with dynamics that are hard to handle. Current approaches to analyse the 
dynamics of such processes are often based on differential equations. However, for a number 
of applications these approaches have serious limitations. For example, in Biology, ap-
proaches based on differential equations have problems in tackling more large-scale cellular 
systems. Moreover, within Cognitive Science, such approaches are not particularly suitable to 
model higher-level processes with mainly a qualitative character, such as reasoning and com-
plex task performance. 
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 To deal with these limitations, this paper presents the predicate logical Temporal Trace 
Language (TTL) for the formal specification and analysis of dynamic properties. Although 
the language has a logical foundation, it supports the specification of both qualitative and 
quantitative aspects, and subsumes specification languages based on differential equations.  
 To support the formal specification and analysis of dynamic properties, a special software 
environment has been developed for TTL. This environment features both a dedicated Prop-
erty Editor for building and editing TTL properties and a Checking Tool that enables the 
formal verification of properties against a set of traces, for example obtained from experi-
ments or simulation. Although this form of checking is not as exhaustive as model checking 
(which essentially means checking properties on the set of all theoretically possible traces), in 
return, this makes it possible to specify more expressive properties. Furthermore, more spe-
cialised languages can be defined as a sublanguage of TTL. First, for the purpose of simula-
tion, the executable language LEADSTO has been developed (Bosse et al., 2005b). Second, 
for the verification of entailment relations, standard temporal languages such as LTL and 
CTL (see, e.g., (Benthem, 1983; Goldblatt, 1992)) can be defined as sublanguages of TTL. 
 As mentioned above, TTL has a high expressive power. For example, the possibility of 
explicit reference to time points and time durations enables modelling of the dynamics of 
continuous real-time phenomena, such as sensory and neural activity patterns in relation to 
mental properties, cf. (Port and van Gelder, 1995). Also difference and differential equations 
can be expressed. These features go beyond the expressive power available in standard linear 
or branching time temporal logics.  

 Furthermore, the possibility to quantify over traces allows for specification of more com-
plex adaptive behaviours. As within most temporal logics, reactiveness and pro-activeness 
properties can be specified. In addition, in our language also properties involving different 
types of adaptive behaviour can be expressed. An example of such a property is ‘exercise 
improves skill’, which is a relative property in the sense that it involves the comparison of 
two alternatives for the history. Another property of this type is trust monotony: ‘the better 
the experiences with something or someone, the higher the trust’. 

 The possibility to define restrictions to local languages for parts of a system or the world 
is also an important feature. For example, the distinction between internal, external and input 
and output languages is crucial, and is supported by the language TTL, which also entails the 
possibility to quantify over system parts; this allows for specification of system modification 
over time. 
 Finally, since state properties are used as first class citizens in the temporal trace lan-
guage, it is possible to explicitly refer to them, and to quantify over them, enabling the speci-
fication of what are sometimes called second-order properties, which are used in part of the 
philosophical literature (e.g., Kim, 1998) to express functional roles related to mental proper-
ties or states. 
 The approach discussed in this paper follows the standard view on calculus (based on 
epsilon-delta definitions). Recently, in (Gamboa and Kaufmann, 2001) an alternative ap-
proach, following the non-standard view (based on infinitesimals) has been presented for the 
integration of calculus within a logical (and theorem proving) framework. It may be the case, 
as claimed by some researchers, that for computational purposes the non-standard view has 
advantages. This will be an issue for further research. 

To conclude, the approach proved its value in a number of research projects in different 
domains. It has been used to analyse behavioural dynamics of agents in cognitive science 
(e.g., human reasoning, creation of consciousness, diagnosis of eating disorders), biology 
(e.g., cell decision processes, the dynamics of the heart), social science (e.g., organisation 
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dynamics including organisational change, incident management), and artificial intelligence 
(e.g., design processes, ant colony behaviour). For more publications about these applica-
tions, the reader is referred to the authors’ homepages. 
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C LEADSTO Specifications  

C1 LEADSTO Specification of Behavior Networks 
cwa(_)

leadsto
V: D : integer
A: data((d|D))
C: data((d|D))
EFGH: efgh(0, 0, 0.1, 0.1)

CONSTANT phi=0.1

CONSTANT gamma=0.3

CONSTANT delta=0.5

CONSTANT threshold_decrease_factor=0.1

interval
R: range(0, 1)
F and

init
current_time(1)

leadsto
V: C : integer
V: I : integer
A: and

init
component_input_number((c|C), I)

C: and
alpha(0, (c|C), 0)
active(0, (c|C), 0)

EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: T : integer
V: C : integer
V: V : real
A: alpha(T, (c|C), V)
C: alpha(T, (c|C), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: T : integer
V: C : integer
V: I : integer
A: active(T, (c|C), I)
C: active(T, (c|C), I)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: T : integer
A: and

current_time(T)
not

time_change(T)
C: current_time(T)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: T : integer
V: D1 : integer
V: D2 : integer
A: and

time_change(T)
number_of_goals(2)
goal((d|D1))
goal((d|D2))
D1 \= D2
not

data((d|D1))
C: current_time(T+1)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: T : integer
V: D1 : integer
A: and

time_change(T)
number_of_goals(1)
goal((d|D1))
not

data((d|D1))
C: current_time(T+1)
EFGH: efgh(0, 0, 0.1, 0.1)  

 



 102

leadsto
V: C1 : integer
V: C2 : integer
V: D : integer
A: and

component_output((c|C1), (d|D))
component_input((c|C2), (d|D))
C1 \= C2

C: successor_link((c|C1), (c|C2))
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C1 : integer
V: C2 : integer
A: successor_link((c|C1), (c|C2))
C: predecessor_link((c|C2), (c|C1))
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C1 : integer
V: C2 : integer
V: D : integer
A: and

component_removes_data((c|C1), (d|D))
component_input((c|C2), (d|D))
C1 \= C2

C: conflictor_link((c|C1), (c|C2))
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: T : integer
A: and

data((d|D))
current_time(T)

C: determine_M(T, (d|D), (c|1), 0)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: T : integer
V: C : integer
A: and

component_input((c|C), (d|D))
not

data((d|D))
current_time(T)

C: determine_M(T, (d|D), (c|1), 0)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: T : integer
A: and

goal((d|D))
current_time(T)

C: determine_A(T, (d|D), (c|1), 0)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: T : integer
V: C : integer
A: and

component_input((c|C), (d|D))
not

data((d|D))
current_time(T)

C: determine_A(T, (d|D), (c|1), 0)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C : integer
V: I : integer
V: T : integer
A: and

current_time(T)
component_input_number((c|C), I)
I > 0

C: determine_input_from_state(T, (d|1), (c|C), 0)
EFGH: efgh(0, 0, 0.1, 0.1)  
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leadsto
V: C : integer
V: I : integer
V: T : integer
A: and

current_time(T)
component_input_number((c|C), I)
I = 0

C: input_from_state(T, (c|C), 0)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C : integer
V: I : integer
V: T : integer
A: and

current_time(T)
component_output_number((c|C), I)
I > 0

C: determine_input_from_goals(T, (d|1), (c|C), 0)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C : integer
V: I : integer
V: T : integer
A: and

current_time(T)
component_output_number((c|C), I)
I = 0

C: input_from_goals(T, (c|C), 0)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: C : integer
V: V : integer
V: A : integer
V: T : integer
A: and

current_time(T)
determine_A(T, (d|D), (c|C), V)
number_of_components(A)
C <= A
component_output((c|C), (d|D))

C: determine_A(T, (d|D), (c|C+1), V+1)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: C : integer
V: V : integer
V: A : integer
V: T : integer
A: and

current_time(T)
determine_A(T, (d|D), (c|C), V)
number_of_components(A)
C <= A
not

component_output((c|C), (d|D))
C: determine_A(T, (d|D), (c|C+1), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: C : integer
V: V : integer
V: A : integer
V: T : integer
A: and

current_time(T)
determine_A(T, (d|D), (c|C), V)
number_of_components(A)
C = A+1

C: 'A'(T, (d|D), V)
EFGH: efgh(0, 0, 0.1, 0.1)  
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leadsto
V: D : integer
V: C : integer
V: V : integer
V: A : integer
V: T : integer
A: and

current_time(T)
determine_M(T, (d|D), (c|C), V)
number_of_components(A)
C <= A
component_input((c|C), (d|D))

C: determine_M(T, (d|D), (c|C+1), V+1)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: C : integer
V: V : integer
V: A : integer
V: T : integer
A: and

current_time(T)
determine_M(T, (d|D), (c|C), V)
number_of_components(A)
C <= A
not

component_input((c|C), (d|D))
C: determine_M(T, (d|D), (c|C+1), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: C : integer
V: V : integer
V: A : integer
V: T : integer
A: and

current_time(T)
determine_M(T, (d|D), (c|C), V)
number_of_components(A)
C = A+1

C: 'M'(T, (d|D), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: N : integer
V: V : real
V: C : integer
V: O : integer
V: A : integer
V: T : integer
A: and

current_time(T)
determine_input_from_goals(T, (d|D), (c|C), V)
amount_of_data(N)
D <= N
goal((d|D))
component_output((c|C), (d|D))
'A'(T, (d|D), A)
component_output_number((c|C), O)

C: determine_input_from_goals(T, (d|D+1), (c|C), V+gamma* (1/A)* (1/O))
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: N : integer
V: V : real
V: C : integer
V: T : integer
A: and

current_time(T)
determine_input_from_goals(T, (d|D), (c|C), V)
amount_of_data(N)
D <= N
goal((d|D))
not

component_output((c|C), (d|D))
C: determine_input_from_goals(T, (d|D+1), (c|C), V)
EFGH: efgh(0, 0, 0.1, 0.1)  
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leadsto
V: D : integer
V: V : real
V: C : integer
V: A : integer
V: T : integer
A: and

current_time(T)
determine_input_from_goals(T, (d|D), (c|C), V)
amount_of_data(A)
D <= A
not

goal((d|D))
C: determine_input_from_goals(T, (d|D+1), (c|C), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: V : real
V: C : integer
V: A : integer
V: T : integer
A: and

current_time(T)
determine_input_from_goals(T, (d|D), (c|C), V)
amount_of_data(A)
D = A+1

C: input_from_goals(T, (c|C), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: M : integer
V: V : real
V: C : integer
V: I : integer
V: A : integer
V: T : integer
A: and

current_time(T)
determine_input_from_state(T, (d|D), (c|C), V)
amount_of_data(A)
D <= A
data((d|D))
component_input((c|C), (d|D))
'M'(T, (d|D), M)
component_input_number((c|C), I)

C: determine_input_from_state(T, (d|D+1), (c|C), V+phi* (1/M)* (1/I))
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: V : real
V: C : integer
V: A : integer
V: T : integer
A: and

current_time(T)
determine_input_from_state(T, (d|D), (c|C), V)
amount_of_data(A)
D <= A
data((d|D))
not

component_input((c|C), (d|D))
C: determine_input_from_state(T, (d|D+1), (c|C), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: V : real
V: C : integer
V: A : integer
V: T : integer
A: and

current_time(T)
determine_input_from_state(T, (d|D), (c|C), V)
amount_of_data(A)
D <= A
not

data((d|D))
C: determine_input_from_state(T, (d|D+1), (c|C), V)
EFGH: efgh(0, 0, 0.1, 0.1)  
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leadsto
V: D : integer
V: V : real
V: C : integer
V: A : integer
V: T : integer
A: and

current_time(T)
determine_input_from_state(T, (d|D), (c|C), V)
amount_of_data(A)
D = A+1

C: input_from_state(T, (c|C), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C : integer
V: I : integer
V: T : integer
A: and

current_time(T)
component_input_number((c|C), I)

C: determine_executable(T, (c|C), (d|1), 0)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C : integer
V: D : integer
V: I : integer
V: A : integer
V: T : integer
A: and

current_time(T)
determine_executable(T, (c|C), (d|D), I)
amount_of_data(A)
D <= A
data((d|D))
component_input((c|C), (d|D))

C: determine_executable(T, (c|C), (d|D+1), I+1)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C : integer
V: D : integer
V: I : integer
V: A : integer
V: T : integer
A: and

current_time(T)
determine_executable(T, (c|C), (d|D), I)
amount_of_data(A)
D <= A
not

data((d|D))
C: determine_executable(T, (c|C), (d|D+1), I)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C : integer
V: D : integer
V: I : integer
V: A : integer
V: T : integer
A: and

current_time(T)
determine_executable(T, (c|C), (d|D), I)
amount_of_data(A)
D <= A
not

component_input((c|C), (d|D))
C: determine_executable(T, (c|C), (d|D+1), I)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C : integer
V: D : integer
V: I : integer
V: A : integer
V: N : integer
V: T : integer
A: and

current_time(T)
determine_executable(T, (c|C), (d|D), I)
amount_of_data(A)
D = A+1
component_input_number((c|C), N)
N = I

C: executable(T, (c|C))
EFGH: efgh(0, 0, 0.1, 0.1)  
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leadsto
V: C : integer
V: D : integer
V: I : integer
V: A : integer
V: N : integer
V: T : integer
A: and

current_time(T)
determine_exacutable(T, (c|C), (d|D), I)
amount_of_data(A)
D = A+1
component_input_number((c|C), N)
I < N

C: not
executable(T, (c|C))

EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: N : integer
V: V : real
V: C1 : integer
V: C2 : integer
V: A : integer
V: AL : real
V: T : integer
V: O : integer
A: and

current_time(T)
determine_spreads_bw(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)
D <= N
not

data((d|D))
component_input((c|C1), (d|D))
component_output((c|C2), (d|D))
'A'(T, (d|D), A)
alpha(T-1, (c|C1), AL)
component_output_number((c|C2), O)

C: determine_spreads_bw(T, (d|D+1), (c|C1), (c|C2), V+AL* (1/A* (1/O)))
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: N : integer
V: V : real
V: C1 : integer
V: C2 : integer
V: T : integer
A: and

current_time(T)
determine_spreads_bw(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)
D <= N
not

data((d|D))
not

component_input((c|C1), (d|D))
C: determine_spreads_bw(T, (d|D+1), (c|C1), (c|C2), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: N : integer
V: V : real
V: C1 : integer
V: C2 : integer
V: T : integer
A: and

current_time(T)
determine_spreads_bw(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)
D <= N
not

data((d|D))
not

component_output((c|C2), (d|D))
C: determine_spreads_bw(T, (d|D+1), (c|C1), (c|C2), V)
EFGH: efgh(0, 0, 0.1, 0.1)  
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leadsto
V: D : integer
V: N : integer
V: V : real
V: C1 : integer
V: C2 : integer
V: T : integer
A: and

current_time(T)
determine_spreads_bw(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)
D <= N
data((d|D))

C: determine_spreads_bw(T, (d|D+1), (c|C1), (c|C2), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: N : integer
V: V : real
V: C1 : integer
V: C2 : integer
V: T : integer
A: and

current_time(T)
determine_spreads_bw(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)
D = N+1

C: spreads_backwards(T, (c|C1), (c|C2), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C1 : integer
V: C2 : integer
V: D1 : integer
V: D2 : integer
V: T : integer
A: and

current_time(T)
component_input((c|C1), (d|D1))
component_input((c|C2), (d|D2))

C: determine_spreads_bw(T, (d|1), (c|C1), (c|C2), 0)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: N : integer
V: V : real
V: C1 : integer
V: C2 : integer
V: M : integer
V: AL : real
V: T : integer
V: I : integer
A: and

current_time(T)
determine_spreads_fw(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)
D <= N
not

data((d|D))
component_output((c|C1), (d|D))
component_input((c|C2), (d|D))
'M'(T, (d|D), M)
alpha(T-1, (c|C1), AL)
component_input_number((c|C2), I)

C: determine_spreads_fw(T, (d|D+1), (c|C1), (c|C2), V+AL* (phi/gamma* (1/M)* (1/I)))
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: N : integer
V: V : real
V: C1 : integer
V: C2 : integer
V: T : integer
A: and

current_time(T)
determine_spreads_fw(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)
D <= N
not

data((d|D))
not

component_output((c|C1), (d|D))
C: determine_spreads_fw(T, (d|D+1), (c|C1), (c|C2), V)
EFGH: efgh(0, 0, 0.1, 0.1)  
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leadsto
V: D : integer
V: N : integer
V: V : real
V: C1 : integer
V: C2 : integer
V: T : integer
A: and

current_time(T)
determine_spreads_fw(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)
D <= N
not

data((d|D))
not

component_input((c|C2), (d|D))
C: determine_spreads_fw(T, (d|D+1), (c|C1), (c|C2), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: N : integer
V: V : real
V: C1 : integer
V: C2 : integer
V: T : integer
A: and

current_time(T)
determine_spreads_fw(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)
D <= N
data((d|D))

C: determine_spreads_fw(T, (d|D+1), (c|C1), (c|C2), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: D : integer
V: N : integer
V: V : real
V: C1 : integer
V: C2 : integer
V: T : integer
A: and

current_time(T)
determine_spreads_fw(T, (d|D), (c|C1), (c|C2), V)
amount_of_data(N)
D = N+1

C: spreads_forwards(T, (c|C1), (c|C2), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C1 : integer
V: C2 : integer
V: D1 : integer
V: D2 : integer
V: T : integer
A: and

current_time(T)
component_input((c|C1), (d|D1))
component_input((c|C2), (d|D2))

C: determine_spreads_fw(T, (d|1), (c|C1), (c|C2), 0)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C1 : integer
V: C2 : integer
V: T : integer
V: V : real
A: and

current_time(T)
spreads_forwards(T, (c|C1), (c|C2), V)
executable(T, (c|C1))

C: spreads_fw((c|C1), (c|C2), T, V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C1 : integer
V: C2 : integer
V: T : integer
V: V : real
A: and

current_time(T)
spreads_forwards(T, (c|C1), (c|C2), V)
not

executable(T, (c|C1))
C: spreads_fw((c|C1), (c|C2), T, 0)
EFGH: efgh(0, 0, 0.1, 0.1)  
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leadsto
V: C1 : integer
V: C2 : integer
V: V : real
V: T : integer
A: and

current_time(T)
spreads_backwards(T, (c|C1), (c|C2), V)
not

executable(T, (c|C1))
C: spreads_bw((c|C1), (c|C2), T, V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C1 : integer
V: C2 : integer
V: T : integer
V: V : real
A: and

current_time(T)
spreads_backwards(T, (c|C1), (c|C2), V)
executable(T, (c|C1))

C: spreads_bw((c|C1), (c|C2), T, 0)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C1 : integer
V: C2 : integer
V: T : integer
V: S : real
V: N : integer
V: V : real
A: and

sum_spreads_fw((c|C1), (c|C2), T, S)
number_of_components(N)
C1 <= N
spreads_fw((c|C1), (c|C2), T, V)

C: sum_spreads_fw((c|C1+1), (c|C2), T, S+V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C1 : integer
V: C2 : integer
V: T : integer
V: S : real
V: N : integer
A: and

sum_spreads_fw((c|C1), (c|C2), T, S)
number_of_components(N)
C1 = N+1

C: sum_spreads_fw((c|C2), T, S)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C1 : integer
V: C2 : integer
V: T : integer
V: S : real
V: N : integer
V: V : real
A: and

sum_spreads_bw((c|C1), (c|C2), T, S)
number_of_components(N)
C1 <= N
spreads_bw((c|C1), (c|C2), T, V)

C: sum_spreads_bw((c|C1+1), (c|C2), T, S+V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C1 : integer
V: C2 : integer
V: T : integer
V: S : real
V: N : integer
A: and

sum_spreads_bw((c|C1), (c|C2), T, S)
number_of_components(N)
C1 <= N
not

predecessor_link((c|C1), (c|C2))
C: sum_spreads_bw((c|C1+1), (c|C2), T, S)
EFGH: efgh(0, 0, 0.1, 0.1)  
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leadsto
V: C1 : integer
V: C2 : integer
V: T : integer
V: S : real
V: N : integer
A: and

sum_spreads_bw((c|C1), (c|C2), T, S)
number_of_components(N)
C1 = N+1

C: sum_spreads_bw((c|C2), T, S)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: T : integer
V: C : integer
V: I : integer
A: and

current_time(T)
component_input_number((c|C), I)

C: and
sum_spreads_bw((c|1), (c|C), T, 0)
sum_spreads_fw((c|1), (c|C), T, 0)

EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: T : integer
V: C : integer
V: A : real
V: AC : real
V: V1 : real
V: V2 : real
V: V3 : real
V: V4 : real
A: and

current_time(T)
alpha(T-1, (c|C), A)
active(T-1, (c|C), AC)
input_from_state(T, (c|C), V1)
input_from_goals(T, (c|C), V2)
sum_spreads_bw((c|C), T, V3)
sum_spreads_fw((c|C), T, V4)

C: decay(T, (c|C), A* (1-AC)+V1+V2+V3+V4)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: T : integer
V: C : integer
V: V : real
A: and

current_time(T)
decay(T, (c|C), V)

C: sum_decay(T, (c|1), 0)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: T : integer
V: C : integer
V: V : real
V: N : integer
V: D : real
A: and

sum_decay(T, (c|C), V)
current_time(T)
number_of_components(N)
C <= N
decay(T, (c|C), D)

C: sum_decay(T, (c|C+1), V+D)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: T : integer
V: C : integer
V: V : real
V: N : integer
A: and

sum_decay(T, (c|C), V)
current_time(T)
number_of_components(N)
C = N+1

C: sum_decay(T, V)
EFGH: efgh(0, 0, 0.1, 0.1)  
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leadsto
V: T : integer
V: C : integer
V: S : real
V: D : real
A: and

sum_decay(T, S)
decay(T, (c|C), D)

C: and
alpha(T, (c|C), D/S)
determine_highest_alpha(T, (c|1), (c|0), 0)

EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: T : integer
V: C : integer
V: B : integer
V: V : real
V: N : integer
A: and

current_time(T)
determine_highest_alpha(T, (c|C), (c|B), V)
number_of_components(N)
C <= N
not

executable(T, (c|C))
C: determine_highest_alpha(T, (c|C+1), (c|B), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: T : integer
V: C : integer
V: B : integer
V: V : real
V: N : integer
V: A : real
A: and

current_time(T)
determine_highest_alpha(T, (c|C), (c|B), V)
number_of_components(N)
C <= N
alpha(T, (c|C), A)
executable(T, (c|C))
A < V

C: determine_highest_alpha(T, (c|C+1), (c|B), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: T : integer
V: C : integer
V: B : integer
V: V : real
V: N : integer
V: A : real
A: and

current_time(T)
determine_highest_alpha(T, (c|C), (c|B), V)
number_of_components(N)
C <= N
executable(T, (c|C))
alpha(T, (c|C), A)
A = V

C: and
yes
PXOR

Prob 0.5
determine_highest_alpha(T, (c|C+1), (c|C), A)

OTHERWISE
determine_highest_alpha(T, (c|C+1), (c|B), A)

EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: T : integer
V: C : integer
V: B : integer
V: V : real
V: N : integer
V: A : real
A: and

current_time(T)
determine_highest_alpha(T, (c|C), (c|B), V)
number_of_components(N)
C <= N
executable(T, (c|C))
alpha(T, (c|C), A)
A > V

C: determine_highest_alpha(T, (c|C+1), (c|C), A)
EFGH: efgh(0, 0, 0.1, 0.1)  
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leadsto
V: T : integer
V: C : integer
V: B : integer
V: V : real
V: N : integer
A: and

current_time(T)
determine_highest_alpha(T, (c|C), (c|B), V)
number_of_components(N)
C = N+1

C: highest_alpha(T, (c|B), V)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: T : integer
V: B : integer
V: V : real
A: and

current_time(T)
highest_alpha(T, (c|B), V)
B = 0

C: selection_failed_at_time(T)
EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: T : integer
V: B : integer
V: V : real
A: and

current_time(T)
highest_alpha(T, (c|B), V)
not

highest_alpha(T, (c|C), V)
B \= 0

C: and
active(T, (c|B), 1)
activated((c|B))

EFGH: efgh(0, 0, 0.1, 0.1)

leadsto
V: C : integer
A: activated((c|C))
C: deactivated((c|C))
EFGH: efgh(1, 1, 0.1, 0.1)

leadsto
V: T : integer
V: B : integer
V: V : real
V: C : integer
V: V2 : real
A: and

current_time(T)
highest_alpha(T, (c|B), V)
B \= 0
alpha(T, (c|C), V2)
B \= C

C: active(T, (c|C), 0)
EFGH: efgh(0, 0, 0.1, 0.1)

OTHER :  display(_, sort_atoms_time_global)

OTHER :  display(_, show_atoms(data((_|_))))

OTHER :  display(_, show_atoms(active(_, _, _)))

OTHER :  display(_, show_atoms(activated(_|_)))

OTHER :  display(_, show_atoms(deactivated(_|_)))

OTHER :  display(_, show_atoms(decay(_, _, _)))

OTHER :  display(_, show_atoms(alpha(_, _, _)))

OTHER :  display(_, show_atoms(executable(_, _)))

OTHER :  display(_, show_atoms(sum_spread_bw(_, _, _)))

OTHER :  display(_, show_atoms(sum_spread_bw(_, _, _)))

OTHER :  display(_, show_atoms(sum_spread_fw(_, _, _)))

OTHER :  display(_, show_atoms(current_time(_)))  
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C2 LEADSTO Specification of Pandemonium 
end_time(40)

CONSTANT end=40

leadsto
V: D1 : between(1, data)
V: D2 : between(1, data)
A: initial_data((d|D1)xor (d|D2))
C: and

new_data
PXOR

Prob 0.5
data((d|D1))

OTHERWISE
data((d|D2))

EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
A: component_output((c|C), (d|D1)xor (d|D2))
C: and

dummy
PXOR

Prob 0.5
component_output((c|C), (d|D1))

OTHERWISE
component_output((c|C), (d|D2))

EFGH: efgh(0, 0, 1, end)

leadsto
V: C : between(1, components)
V: D : between(1, data)
A: and

new_data
not

data((d|D))
component_input_number((c|C), 1)
component_input((c|C), (d|D))

C: component_input_present((c|C), 0)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D : between(1, data)
A: and

new_data
data((d|D))
component_input_number((c|C), 1)
component_input((c|C), (d|D))

C: component_input_present((c|C), 1)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
A: and

new_data
not

data((d|D1))
not

data((d|D2))
component_input_number((c|C), 2)
component_input((c|C), (d|D1))
component_input((c|C), (d|D2))
D1 \= D2

C: component_input_present((c|C), 0)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
A: and

new_data
data((d|D1))
not

data((d|D2))
component_input_number((c|C), 2)
component_input((c|C), (d|D1))
component_input((c|C), (d|D2))
D1 \= D2

C: component_input_present((c|C), 1)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
A: and

new_data
data((d|D1))
data((d|D2))
component_input_number((c|C), 2)
component_input((c|C), (d|D1))
component_input((c|C), (d|D2))
D1 \= D2

C: component_input_present((c|C), 2)
EFGH: efgh(0, 0, 1, 1)  
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leadsto
V: C : between(1, components)
V: D : between(1, data)
A: and

new_data
not

data((d|D))
component_output_number((c|C), 1)
component_output((c|C), (d|D))

C: component_output_present((c|C), 0)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D : between(1, data)
A: and

new_data
data((d|D))
component_output_number((c|C), 1)
component_output((c|C), (d|D))

C: component_output_present((c|C), 1)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
A: and

new_data
not

data((d|D1))
not

data((d|D2))
component_output_number((c|C), 2)
component_output((c|C), (d|D1))
component_output((c|C), (d|D2))
D1 \= D2

C: component_output_present((c|C), 0)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
A: and

new_data
data((d|D1))
not

data((d|D2))
component_output_number((c|C), 2)
component_output((c|C), (d|D1))
component_output((c|C), (d|D2))
D1 \= D2

C: component_output_present((c|C), 1)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
A: and

new_data
data((d|D1))
data((d|D2))
component_output_number((c|C), 2)
component_output((c|C), (d|D1))
component_output((c|C), (d|D2))
D1 \= D2

C: component_output_present((c|C), 2)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: i : integer
A: and

component_input_number((c|C), i)
component_input_present((c|C), i)

C: component_allowed((c|C))
EFGH: efgh(3, 3, 1, 1)

leadsto
V: C : between(1, components)
V: i1 : integer
V: i2 : integer
V: o1 : integer
V: o2 : integer
A: and

component_input_number((c|C), i1)
component_input_present((c|C), i2)
component_output_number((c|C), o1)
component_output_present((c|C), o2)
not

termination
C: shout((c|C), (i2/i1) 1̂.4* (1-o2/o1) 1̂.3* (i1/max_input) 1̂.1* (o1/max_output) 1̂.2)
EFGH: efgh(0, 0, 1, 1)  
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leadsto
V: C1 : between(1, components)
V: C2 : between(1, components)
V: x1 : real
V: x2 : real
A: and

shout((c|C1), x1)
shout((c|C2), x2)
x1 >= x2

C: weak_better_than((c|C1), (c|C2))
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C1 : between(1, components)
V: C2 : between(1, components)
V: x1 : real
V: x2 : real
A: and

shout((c|C1), x1)
shout((c|C2), x2)
x1 > x2

C: strong_better_than((c|C1), (c|C2))
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C1 : between(1, components)
V: x1 : real
A: shout((c|C1), x1)
C: strong_better_than((c|C1), (c|C1))
EFGH: efgh(0, 0, 1, 1)

leadsto
V: X : between(1, components)
A: forall

V: Y : between(1, components)
weak_better_than((c|X), (c|Y))

C: possible_component((c|X))
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C1 : between(1, components)
V: C2 : between(1, components)
A: and

possible_component((c|C1))
possible_component((c|C2))
C1 > C2

C: and
dummy
PXOR

Prob 0.33
active_component((c|C1))

Prob 0.33
active_component((c|C2))

OTHERWISE
and

active_component((c|C1))
active_component((c|C2))

EFGH: efgh(0, 0, 1, 1)

leadsto
V: X : between(1, components)
A: forall

V: Y : between(1, components)
strong_better_than((c|X), (c|Y))

C: active_component((c|X))
EFGH: efgh(1, 1, 1, 1)

leadsto
V: C : between(1, components)
V: D : between(1, data)
A: and

active_component((c|C))
component_allowed((c|C))
component_output((c|C), (d|D))

C: and
data((d|D))
new_data

EFGH: efgh(0, 0, 1, 1)

leadsto
V: D : between(1, data)
A: data((d|D))
C: data((d|D))
EFGH: efgh(0, 0, 1, 1)

leadsto
V: D : between(1, data)
A: and

data((d|D))
goal_data((d|D))

C: termination
EFGH: efgh(0, 0, 1, 1)

leadsto
V: D1 : between(1, data)
V: D2 : between(1, data)
A: and

data((d|D1))
data((d|D2))
goal_data(and((d|D1), (d|D2)))

C: termination
EFGH: efgh(0, 0, 1, 1)  
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C3 LEADSTO Specification of Voting 
end_time(end)

CONSTANT end=70

leadsto
V: D1 : between(1, data)
V: D2 : between(1, data)
A: initial_data((d|D1)xor (d|D2))
C: and

new_data
PXOR

Prob 0.5
data((d|D1))

OTHERWISE
data((d|D2))

EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
A: component_output((c|C), (d|D1)xor (d|D2))
C: and

dummy
PXOR

Prob 0.5
component_output((c|C), (d|D1))

OTHERWISE
component_output((c|C), (d|D2))

EFGH: efgh(0, 0, 1, end)

leadsto
V: C : between(1, components)
V: D : between(1, data)
A: and

new_data
not

data((d|D))
component_input_number((c|C), 1)
component_input((c|C), (d|D))

C: component_input_present((c|C), 0)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D : between(1, data)
A: and

new_data
data((d|D))
component_input_number((c|C), 1)
component_input((c|C), (d|D))

C: component_input_present((c|C), 1)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
A: and

new_data
not

data((d|D1))
not

data((d|D2))
component_input_number((c|C), 2)
component_input((c|C), (d|D1))
component_input((c|C), (d|D2))
D1 \= D2

C: component_input_present((c|C), 0)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
A: and

new_data
data((d|D1))
not

data((d|D2))
component_input_number((c|C), 2)
component_input((c|C), (d|D1))
component_input((c|C), (d|D2))
D1 \= D2

C: component_input_present((c|C), 1)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
A: and

new_data
data((d|D1))
data((d|D2))
component_input_number((c|C), 2)
component_input((c|C), (d|D1))
component_input((c|C), (d|D2))
D1 \= D2

C: component_input_present((c|C), 2)
EFGH: efgh(0, 0, 1, 1)  
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leadsto
V: C : between(1, components)
V: D : between(1, data)
A: and

new_data
not

data((d|D))
component_output_number((c|C), 1)
component_output((c|C), (d|D))

C: component_output_present((c|C), 0)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D : between(1, data)
A: and

new_data
data((d|D))
component_output_number((c|C), 1)
component_output((c|C), (d|D))

C: component_output_present((c|C), 1)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
A: and

new_data
not

data((d|D1))
not

data((d|D2))
component_output_number((c|C), 2)
component_output((c|C), (d|D1))
component_output((c|C), (d|D2))
D1 \= D2

C: component_output_present((c|C), 0)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
A: and

new_data
data((d|D1))
not

data((d|D2))
component_output_number((c|C), 2)
component_output((c|C), (d|D1))
component_output((c|C), (d|D2))
D1 \= D2

C: component_output_present((c|C), 1)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
A: and

new_data
data((d|D1))
data((d|D2))
component_output_number((c|C), 2)
component_output((c|C), (d|D1))
component_output((c|C), (d|D2))
D1 \= D2

C: component_output_present((c|C), 2)
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C : between(1, components)
V: i : integer
A: and

component_input_number((c|C), i)
component_input_present((c|C), i)

C: component_allowed((c|C))
EFGH: efgh(components+4, components+4, 1, 1)

leadsto
V: C : between(1, components)
V: i1 : integer
V: i2 : integer
V: o1 : integer
V: o2 : integer
A: and

component_input_number((c|C), i1)
component_input_present((c|C), i2)
component_output_number((c|C), o1)
component_output_present((c|C), o2)
i1 = i2
o1 > o2
not

termination
C: vote_for((c|C), (c|C))
EFGH: efgh(0, 0, 1, 1)  
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leadsto
V: C1 : between(1, components)
V: C2 : between(1, components)
V: D : between(1, data)
V: i1 : integer
V: i2 : integer
V: o1 : integer
V: o2 : integer
A: and

component_input_number((c|C1), i1)
component_input_present((c|C1), i2)
component_output_number((c|C1), o1)
component_output_present((c|C1), o2)
i1-i2 = 1
not

data((d|D))
component_input((c|C1), (d|D))
component_output((c|C2), (d|D))
not

termination
C: vote_for((c|C1), (c|C2))
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C1 : between(1, components)
V: C2 : between(1, components)
V: C3 : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
V: i1 : integer
V: i2 : integer
V: o1 : integer
V: o2 : integer
A: and

component_input_number((c|C1), i1)
component_input_present((c|C1), i2)
component_output_number((c|C1), o1)
component_output_present((c|C1), o2)
i1-i2 = 2
not

data((d|D1))
component_input((c|C1), (d|D1))
component_output((c|C2), (d|D1))
not

data((d|D2))
component_input((c|C1), (d|D2))
component_output((c|C3), (d|D2))
D1 > D2
not

termination
C: and

dummy
PXOR

Prob 0.5
vote_for((c|C1), (c|C2))

OTHERWISE
vote_for((c|C1), (c|C3))

EFGH: efgh(0, 0, 1, 1)

leadsto
V: C1 : between(1, components)
V: C2 : between(1, components)
V: D : between(1, data)
V: i1 : integer
V: i2 : integer
V: o1 : integer
V: o2 : integer
A: and

component_input_number((c|C1), i1)
component_input_present((c|C1), i2)
component_output_number((c|C1), o1)
component_output_present((c|C1), o2)
i1 = i2
o1 = o2
o1 = 1
component_output((c|C1), (d|D))
component_input((c|C2), (d|D))
not

termination
C: vote_for((c|C1), (c|C2))
EFGH: efgh(0, 0, 1, 1)  
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leadsto
V: C1 : between(1, components)
V: C2 : between(1, components)
V: C3 : between(1, components)
V: D1 : between(1, data)
V: D2 : between(1, data)
V: i1 : integer
V: i2 : integer
V: o1 : integer
V: o2 : integer
A: and

component_input_number((c|C1), i1)
component_input_present((c|C1), i2)
component_output_number((c|C1), o1)
component_output_present((c|C1), o2)
i1 = i2
o1 = o2
o1 = 2
component_output((c|C1), (d|D1))
component_input((c|C2), (d|D1))
component_output((c|C1), (d|D2))
component_input((c|C3), (d|D2))
D1 > D2
not

termination
C: and

dummy
PXOR

Prob 0.5
vote_for((c|C1), (c|C2))

OTHERWISE
vote_for((c|C1), (c|C3))

EFGH: efgh(0, 0, 1, 1)

leadsto
V: C1 : between(1, components)
V: C2 : between(1, components)
A: and

vote_for((c|C1), (c|C2))
not

count_for(components+1)
C: vote_for((c|C1), (c|C2))
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C1 : between(1, components)
V: C2 : between(1, components)
A: and

vote_for((c|C1), (c|C2))
not

counting_started
C: and

forall
V: C : between(1, components)
votes((c|C), 0)

count_for(1)
counting_started

EFGH: efgh(0, 0, 1, 1)

leadsto
V: C1 : between(1, components)
V: C2 : between(1, components)
V: V : between(0, components)
A: and

counting_started
count_for(C1)
vote_for((c|C1), (c|C2))
votes((c|C2), V)

C: and
counting_started
count_for(C1+1)
votes((c|C2), V+1)

EFGH: efgh(0, 0, 1, 1)

leadsto
V: C1 : between(1, components)
V: C2 : between(1, components)
V: V : between(0, components)
A: and

counting_started
count_for(C1)
not

vote_for((c|C1), (c|C2))
votes((c|C2), V)

C: and
counting_started
count_for(C1+1)
votes((c|C2), V)

EFGH: efgh(0, 0, 1, 1)  
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leadsto
V: C1 : between(1, components)
V: C2 : between(1, components)
V: x1 : between(0, components)
V: x2 : between(0, components)
A: and

count_for(components+1)
votes((c|C1), x1)
votes((c|C2), x2)
x1 >= x2

C: weak_better_than((c|C1), (c|C2))
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C1 : between(1, components)
V: C2 : between(1, components)
V: x1 : between(0, components)
V: x2 : between(0, components)
A: and

count_for(components+1)
votes((c|C1), x1)
votes((c|C2), x2)
x1 > x2

C: strong_better_than((c|C1), (c|C2))
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C1 : between(1, components)
V: x1 : between(0, components)
A: and

count_for(components+1)
votes((c|C1), x1)

C: strong_better_than((c|C1), (c|C1))
EFGH: efgh(0, 0, 1, 1)

leadsto
V: X : between(1, components)
A: forall

V: Y : between(1, components)
weak_better_than((c|X), (c|Y))

C: possible_component((c|X))
EFGH: efgh(0, 0, 1, 1)

leadsto
V: C1 : between(1, components)
V: C2 : between(1, components)
A: and

possible_component((c|C1))
possible_component((c|C2))
C1 > C2

C: and
dummy
PXOR

Prob 0.33
active_component((c|C1))

Prob 0.33
active_component((c|C2))

OTHERWISE
and

active_component((c|C1))
active_component((c|C2))

EFGH: efgh(0, 0, 1, 1)

leadsto
V: X : between(1, components)
A: forall

V: Y : between(1, components)
strong_better_than((c|X), (c|Y))

C: active_component((c|X))
EFGH: efgh(1, 1, 1, 1)

leadsto
V: C : between(1, components)
V: D : between(1, data)
A: and

active_component((c|C))
component_allowed((c|C))
component_output((c|C), (d|D))

C: and
data((d|D))
new_data

EFGH: efgh(0, 0, 1, 1)

leadsto
V: D : between(1, data)
A: data((d|D))
C: data((d|D))
EFGH: efgh(0, 0, 1, 1)

leadsto
V: D : between(1, data)
A: and

data((d|D))
goal_data((d|D))

C: termination
EFGH: efgh(0, 0, 1, 1)  
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leadsto
V: D1 : between(1, data)
V: D2 : between(1, data)
A: and

data((d|D1))
data((d|D2))
goal_data(and((d|D1), (d|D2)))

C: termination
EFGH: efgh(0, 0, 1, 1)  

 
 


