
VU Research Portal

Expressing Security Policies for Distributed Objects Applications

Popescu, B.C.; Crispo, B.; Tanenbaum, A.S.

published in
Proc. 11th Int'l Workshop on Security Protocols
2003

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Popescu, B. C., Crispo, B., & Tanenbaum, A. S. (2003). Expressing Security Policies for Distributed Objects
Applications. In Proc. 11th Int'l Workshop on Security Protocols Springer Verlag.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303689856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/6a3e4a3c-3fb1-4b18-a031-81dd28aeae67


Expressing security policies for distributed

objects applications

Bogdan C. Popescu, Bruno Crispo, Andrew S. Tanenbaum,

Maas Zeeman

Vrije Universiteit, Amsterdam

{bpopescu,crispo,ast,mmzeeman}@cs.vu.nl

February 5, 2004

1 Introduction

In this paper we describe the design and implementation of a policy engine for
enforcing security policies for distributed object applications. We show how our
design can be integrated as part of the Globe [11] system - a middleware for
supporting wide-area replicated objects.

While extensive work has been done in the area of security policy languages
and policy engines, this paper makes two important contributions: first we
identify a number of security policy requirements that arise in the context of
replicated applications, more specifically, the need for policy mechanisms to
express different amounts of trust one wants to place into different replicas of
the same service. Second, we come up with a design that bridges the gap between
an abstract security policy description and the actual service implementation.
This is consistent to our goal to provide a policy engine at the middleware
level which would make it simpler for application developers to integrate the
policy engine with their applications. Traditional policy engines [2] work at a
more abstract level, which in theory makes them very versatile, but in practice
means that developers need to write rather complex translators (for passing
parameters and environment variables) in order to bridge the gap between the
engine and the application.

The rest of the paper is organized as follows: in Section 2 we give an overview
of the Globe system, which is the testbed for the policy engine we have devel-
oped. In Section 3 we describe the trust model for Globe applications; our policy
language is specifically designed to support this trust model. In the next three
sections we describe the policy language constructs, grouped into constructs for
supporting administrative policies, access control and method execution policies.
Finally, in Section 7 we give an overview of our implementation, in Section 8 we
examine related work, and in Section 9 we conclude.

1



2 An overview of Globe

Globe is a distributed system based on replicated shared objects. While the
idea of encapsulating functionality into objects is not new (systems like Corba
[1], Legion [5] or DCOM [4] rely on this paradigm), what makes Globe unique
is that objects not only can be used by a large numbers of users on different
machines through remote procedure calls, but also can be physically replicated
on many hosts at the same time to improve performance.

The central construct in the Globe architecture is the distributed shared ob-
ject (DSO). As shown in Figure 1 a DSO is built from a number of replicas that
reside in a single address space and communicate with replicas in other address
spaces. All the replicas that are part of a DSO work together to implement
the functionality of that DSO. A replica consists of the code for the application
(the code that implements the functionality of the DSO that replica is part of),
the part of the DSO state the replica stores, and the replication mechanism. A
replica can be hosted by any Globe-aware server connected to the Internet. To
be Globe-aware, a server needs to run a special daemon program - the Globe
object server that provides facilities for hosting, remote creation and destruc-
tion of replicas. We also provide a special Globe Location Service [10] where
DSO register the contact points for their replicas, so that their clients can easily
find them.

Local
Object

A3
A5

Network
Distributed object

Address space

A1 A2

A4

Figure 1: A Globe DSO replicated across four address spaces

In the context of a Globe, a client is an entity that uses a DSO by invok-
ing one of its public methods. Clients and replicas are assumed to operate in
different address spaces, thus, in order to use a DSO, the client first has to
find a replica part of that DSO, connect to it and then send a remote method
invocation request. At first, it may seem strange to also consider the clients of
an application (modeled as a DSO) as part of that application. However, as we
will see in Section 6, here this makes sense because in Globe the clients of a
DSO are also responsible with enforcing (part) of its security policy.

2



3 Trust Model

The cornerstone of the Globe trust model is that individual DSOs are fully
in charge with their security policies. This means a Globe object does not
need any external trust broker in order to run securely. Because DSOs can
be massively replicated across wide-area networks, we have chosen public key
cryptography as the basic cryptographic building block for implementing the
DSO trust hierarchy. The alternative, namely to use only shared secret keys,
has the disadvantage that we need to take special measures to reduce the number
of keys, for example, by using a Key Distribution Center. Although public keys
introduce their own scalability problems, such as those related to certificate
revocation, we have nevertheless decided to associate public/private key pairs
with all distinct Globe entities (DSOs, replicas, clients), believing that these are
more easy to deploy in a large-scale system.

We require that each DSO has a public/private key pair, which we term as
the object key. The object key acts as the ultimate source of trust for the
object, and any principal that has knowledge of the object’s private key can set
the security policy for that object (we term such a principal the object owner).
For a given DSO it is assumed that the object key is known by all entities (clients
and replicas) part of that DSO. This can be accomplished through the use of a
PKI or through some other out-of-band means.

We also associate a public/private key pair with every DSO replica and
client (we call this the replica key and the client key). Permissions are
then associated with these public keys. For example, in the case of a client,
we associate the client’s public key with the methods that client is allowed to
invoke. For replicas, an example of permission that can be associated with its
public key, is which of the DSO’s methods the replica is allowed to handle.

For a given DSO, the set of all permissions associated with all its clients and
replicas form the security policy for that DSO. Whenever two entities part
of the same DSO interact, they first need to authenticate each other, and then
check the DSO’s security policy to ensure their interaction follows that policy.
For example, when a client invokes a method on a replica, the replica needs to
check the security policy to ensure the client is allowed to invoke the method,
and the client needs to check the policy to ensure the replica is allowed to handle
it.

There are many ways this security policy can be expressed; for example,
one can envision a (very large) table storing the public keys of all clients and
replicas and listing the permissions associated with each of them. However, such
a solution clearly does not scale, since this table would have to be distributed
to all entities part of the DSO. Furthermore, updating such a highly replicated
table would be a daunting task.

The solution we have envisioned for Globe is inspired by the work done on
Role Based Access Control [8]. The idea is to group entities (clients, replicas)
with equivalent security properties into client/replica roles, and express a
DSO’s security policy based on these roles. The assumption is that the number
of roles is not very large and fairly static (for a given application, one does

3



not have to add a new class of clients every day); We also assume that the
set of permissions associated with a role does not change frequently. Based on
these assumptions, a security policy expressed in terms of such roles has two big
advantages: it is quite compact (because the number of roles is much smaller
than the number of entities that are mapped in these roles), and does not change
frequently. Thus, it is scalable to distribute this security policy to all entities
part of a DSO.

Besides this role-based policy description, we also need to provide the map-
ping of clients/replicas (identified through their public keys) to the roles they
have been assigned. This is accomplished through role certificates - digital
certificates that bind an entity public key to the role that entity has been as-
signed as part of the DSO’s security policy. Such role certificates are issued
by DSO entities (clients or replicas) that have been assigned administrative
privileges. For a given DSO, we define an administrative role as the set of
all administrative entities with equivalent security properties, which in this case
means that entities in the same administrative role are allowed to issue the same
types of role certificates. Each DSO is allowed to define its own administrative
hierarchy; however, the DSO’s owner will always be the root of such a hierarchy.

Once we introduce the client, replica and administrative roles, we can con-
ceptually divide a DSO policy expressed in terms of these roles in three parts:
the access control policy is mostly concerned with expressing permissions associ-
ated with client roles; the invocation policy is mostly concerned with expressing
permissions associated with replica roles. Finally, administrative policies deal
with describing how administrative roles are allowed to assign other roles. In
the following sections we will look at each of these policies in detail.

4 Expressing Administrative Policies

As we explained in the previous section, role certificates are issued by clients or
replicas that have been given administrative privileges as part of a given DSO.
Each DSO has at least one administrative entity - the object owner - which by
default has all the possible administrative privileges (it is allowed to delegate
every possible role in the DSO’s role hierarchy).

At first, it may seem strange to have both clients and replicas as administra-
tors for an object, since one would usually associate a human with such a role.
Administrative replicas come in handy when we deal with massively replicated
DSOs. For such DSOs, a highly dynamic pattern in client requests can be better
handled by creating new replicas on the fly, in places where most of the client
requests come from. In such a scenario, one client administrator can start a
number of administrative replicas, and issue administrative certificates granting
them the right to issue replica certificates. These administrative replicas could
in turn monitor client requests and create regular replicas in places where they
can better handle these requests.

The only type of privileges that can be associated to administrative roles
is the right to delegate other roles. Thus, an administrative role can be fully

4



described by listing all the roles it can delegate. An intuitive way to see a
DSO’s role hierarchy is as a directed graph, with each role corresponding to a
node; in such a graph, an edge from node A to node B, implies that role A is
an administrative role, and it has the right to delegate role B under the DSO’s
security policy. Based on what we discussed so far, such a graph needs to have
the following properties:

• it has exactly one node of in-degree 0; this is the object owner role, which
is implicitly assigned to the principal that has access to the DSO’s private
key.

• all nodes corresponding to administrative roles (except for the object
owner role) have non-zero in-degrees and out-degrees (because an admin-
istrative role should be able to delegate at least one role).

• all nodes corresponding to client or replica roles must have a zero out-
degree (because they should not be able to delegate any roles).

In addition to this, we would like our role hierarchy to be monotonic, namely
a role with less privileges should never be able to issue a role with more priv-
ileges. This can be accomplished by enforcing the following extra rules on the
role graph:

• the graph should not have any cycles of length greater than one edge. By
allowing one-edge cycles we allow administrative roles to replicate them-
selves.

• the set of zero out-degree children of any node is a subset of the set of
zero out-degree children of its parent. This ensures that no administrative
entity can get more privileges in issuing client/replica roles by delegating
itself to a lower administrative role.

Designing a role graph with the above properties is in fact equivalent to
describing the DSO’s administrative policy. For Globe DSOs this is done by the
object owner who needs to describe the graph in a policy language. One way of
un-ambiguously describing a directed graph is by describing all its edges; this
can be done using a language construct of the type:

RoleA canDelegate RoleB

Here, RoleA and RoleB are role names. A DSO’s administrative policy is then
fully described by a set of such statements. A policy interpreter can then process
all these statements and construct the role graph. The graph is first checked to
follow the monotonicity properties. After that, all nodes with non-zero in- and
out-degrees are interpreted as administrative roles. All the other ones (except
for the object owner role) are interpreted as either client or replica roles. How we
distinguish between these two, we will describe in the following sections. Once
the DSO’s administrative policy has been designed and checked for monotonic-
ity, it needs be securely distributed to all DSO’s entities. This policy is then

5



used to verify the role certificate chains that DSO entities exchange when they
authenticate each other. A certificate chain is considered valid if the signature
chaining is correct and the role delegation described by the chain follows a path
in the role graph. Thus, each DSO entity needs to be provided with a policy
engine, which, after initialized with the DSO’s administrative policy can answer
queries of the type:

isValidChain(certChain).

where certChain is a chain of digital certificates corresponding to a sequence
of DSO entities (clients and replicas) delegating DSO roles to each other. The
isValidChain() query returns True if the sequence of roles in certChain cor-
responds to a valid root path in the DSO’s role graph (this means the chain
starts with a certificate signed with the DSO’s key, and for each certificate, the
role in the certificate canDelegate the role in the next certificate in the chain)
and False otherwise.

5 Expressing Access Control Policies

Besides administrative privileges, a DSO entity can also have method invocation
privileges; such privileges describe which of the DSO’s methods that entity is
allowed to invoke. Method invocation privileges are not restricted only to the
DSO’s clients, replicas can also invoke methods on each other; a good example
of this is replicas of a DSO that implements a master/slave replication strategy:
whenever the DSO’s state changes, the master replica invokes a special method
Invalidate() on all slave replicas. In order to get the new state, the slaves then
invoke StateUpdate() on the master. Thus, the master replica role needs to have
invocation privileges on the Invalidate() method, while the slave replica role
needs invocation privileges on the StateUpdate() method. However, the slave
replica role should not be allowed to invoke Invalidate(), otherwise, a malicious
slave would be able to propagate state changes (it is assumed the master is more
trustworthy in this case).

A method invocation privilege can be expressed through a policy statement
as the following:

Role canInvoke Method underConditions Conditions

here, Role is a non-administrative role previously declared in a canDelegate
statement; Method is the name of one of the DSO’s methods; Conditions is a
boolean expression that puts constraints on the way the Method can be invoked
by Role; the terms that can appear in Conditions are the following:

• the parameters passed to this method; in this way, Conditions can impose
certain parameter ranges for Role invoking Method.

• external functions; these have to be separately defined so the policy engine
knows how to invoke them; such external functions can impose constraints

6



on the way Role can invoke Method based on things like the object’s state,
the resources available on the system running the replica, time of the day,
or the location where the request originates. The only requirement here
is that such external functions are synchronous - this ensures the policy
engine cannot be blocked on an external function.

• additional attributes (expressed as name-value pairs and always inter-
preted as strings) present either in the certificate chain associated with
the caller, or in other certificates provided by the caller.

A DSO’s access control policy can then be fully described through a set
of such canInvoke statements. Again it is the object owner that designs this
access control policy and is responsible with securely passing it to all DSO repli-
cas (only replicas need to do access control checks, since clients can only invoke
methods, they cannot execute them). Each DSO replica then stores this policy
in its policy engine, and whenever receives a request from an (already authen-
ticated) client, it checks the request against the policy through the following
query:

isAllowed(Role, Method, Parameters)

where Role is the role the client has authenticated with, Method is the method
invoked by the client and Parameters represent the actual parameters. The
isAllowed() query then returns either True if there is a canInvoke state-
ment that allows the invocation of Method with the given parameters by Role,
considering all external conditions that may apply, or False otherwise.

6 Expressing Method Execution Policies

The last type of privileges that can be associated with a DSO entity are method
execution privileges. The need for expressing such types of privileges is a direct
consequence of the fact that Globe DSOs can be replicated over hosts of various
degree of trustworthiness. In such a setting, it makes sense for the owner of a
DSO to restrict the execution of the most security sensitive operations to the
replicas that run on the most trustworthy servers (at least from from the owner’s
perspective). The owner does this by indicating to clients which replicas can
be contacted for each type of method invocation. This type of “reverse access
control” can also be seen as a way to label quality of service and/or trust level
of replicas to clients.

While the task of enforcing the access control policy relies with the replicas,
it is clients that enforce this method execution policy. It is assumed that a client
that has been allowed to invoke a method under the DSO’s access control policy
has all the interest to ensure that invocation is sent to a replica that is allowed
to execute it under the DSO’s method execution policy.

A method execution privilege can be expressed through a policy statement
as the following:

7



RoleExpr canExecute Method underConditions Conditions

Here, RoleExpr is an expression of the form:

<RoleExpr>:: <PrimaryTarget> | <RoleExpr> "&&" <SecondaryTarget>;

<PrimaryTarget>:: <RoleGroup>;

<RoleGroup>:: <Role> || "Traceable(" <Role> ")" ||

<PositiveInteger> "*" <Role> ||

<PositiveInteger> "* Traceable(" <Name> ")";

<SecondaryTarget>:: <RoleGroup> ||

<PositiveInteger> "\%" <Role>;

Such an expression is used to describes a group of replicas in possibly dif-
ferent roles, and the way these replicas need to be contacted by a client that
wants to invoke Method on the DSO. The reason why more than one replica
may need to be contacted when invoking a method is Byzantine fault tolerance;
here we envision three basic techniques that can be used to achieve such Byzan-
tine fault tolerance for a DSO consisting of many replicas of various degrees of
trustworthiness:

• replicated invocation: the same method is invoked on a number of (less
trusted) replicas. The result is accepted only when a certain number of
them agree on the return value. Thus, in order to make a client accept an
incorrect result, a number of malicious replicas would have to collude.

• traceable results: a (less trusted) replica executing a method has to sign
(with its private key) the invocation request and the return value. The
client can then forward this traceable request-result pair to a more trust-
worthy replica that may audit the result (by executing the method again
and comparing the result). Thus, less trusted replicas acting maliciously
can be traced and eventually excluded from the DSO.

• double-checking: the client first invokes the method on a less trusted
replica, and then may double-check the result with a more trustworthy
replica. However, in order to avoid overloading the trusted replica, the
double-checking is done statistically (for each request there’s only a small
probability that request will be double-checked).

For example, the expression 3 ∗Role1 + 2 ∗Role2 specifies that 3 replicas in
role Role1 and 2 replicas in role Role2 have to agree on the result of invoking
Method before the client accepts the result. As another example, the expression
Traceable(Role1) + 5%Role2 specifies that Method can be invoked on a replica
in role Role1, which has to sign the result; furthermore, the result should be
double-checked with a replica in role Role2 with a probability of 0.05.

It is important to understand that such mechanisms for achieving Byzan-
tine fault tolerance work only with methods that are idempotent (invoking them
multiple times has the same effect as invoking them once). It is the DSO owner’s

8



responsibility to ensure that only such idempotent methods are marked as “mul-
tiple invocation” in the DSO security policy file.

The other elements in the canExecute statement have the same meaning
as in the canInvoke statement: Method is the name of one of the DSO’s
methods while Conditions is a boolean expression that puts constraints on the
way the Method can be executed by RoleExpr; again, conditions can be placed
on parameter values (only certain ranges allowed), possibly time of invocation.

A DSO’s method execution policy can then be fully described through a set
of such canExecute statements. Again, it is the object owner that designs this
policy and is responsible with securely passing it to all DSO clients and replicas
(remember from the previous section that both clients and replicas can invoke
the DSO’s methods). Each DSO entity then stores this policy in its policy
engine, and consults it before issuing a method invocation request by making
the following query:

whoCanDoIt(Method, Parameters)

where Method is the method to be invoked and Parameters represent the
actual parameters. The policy engine then searches through all the canExecute
statements in the policy and stops whenever it finds one that matches Method,
and for which the Parameters value satisfy the withConditions part of the
statement. It then returns the RoleExpr from the selected statement. The
entity that does the invocation then needs to locate replicas in the roles described
in RoleExpr and send the method invocation request to each of them.

7 Implementation Overview

We have implemented a policy engine based on the design outlined in the pre-
vious sections; the idea is to integrate this engine with the Globe middleware.

The policy engine has two separate parts. One part deals with certificate
chain validation, the other part with the security checks needed for DSO method
invocation.

The certificate chain validation engine has a generic core which is based on
the semantic model of trust management engines (TME) defined in [12]. This
generic core is an implementation of the proof-check method. The core can
be used for any trust management system which can be expressed with the
semantic model. This approach allows easy experimentation with new kinds of
certificate languages, and new ways to delegate authorizations to principals.

An overall policy constructed by the DSO owner defines the role-hierarchy,
and permissions. The implemented trust management system uses the role-
hierarchy to check that principals only delegate lower or the same role to other
principals.

The other part of the policy engine is responsible with interpreting the isAl-
lowed and canExecute statements related to method invocation and method
execution.

9



Permissions contain a condition expressions, which allows the DSO owner
to express restrictions on the actual parameters passed to a DSO. The syntax
of the condition language is based on the syntax of Java expressions. To be
usable for sound access restrictions the expression language uses a very strict
static type checking algorithm, which makes sure that the evaluation of the
conditions can never get stuck due to illicitly typed expressions.

The expression language has 6 base types, like: int, long, float, double, char,

boolean, and string. When conditions are placed on DSO method parameters
declared as complex Java classes, the class-name needs to be declared as a
new foreign type and the beginning of the policy file. These foreign types can
only be compared using the =, and 6= operators. When the foreign class also
implements the Jave Comparable interface the <, >, ≥, and ≤ operators can
be used directly. To give the policy writer even more control over values of
foreign types it is also possible to define regular Java functions operating on
such values. The strict static type checking algorithm makes sure that these
function can only be called with parameters of exactly the same types as used
in the definitions. This makes the invocation of the methods safe, because it
does not allow one to pass parameters constructed from sub-classes not known
at the time when the policy was written.

8 Related Work

In this section we compare our solution with a number of other trust/certificate
management systems: KeyNote [2], RTML [7], XACL [6], X.509 [9] and PGP
[3].

The KeyNote system [2] provides a simple language for describing and im-
plementing security policies, and digitally signed credentials. KeyNote unifies
the notion of a security policy with that of a credential. This idea is powerful,
and allows for sophisticated setups. The drawback of this solution is that it is
not possible to just look at the policy to audit the security setup.

KeyNote is more general than the policy language we propose, so it should be
possible to express any Globe policy in KeyNote. However, our policy language
makes it very easy to express policy constructs related to byzantine fault toler-
ance and replicated invocation and auditing, which become more complicated
with Keynote. Another difference is that we allow tight integration between the
policy engine and the secured application. Our policy language also has the pos-
sibility to define and call foreign methods from the application. This allows an
application programmer to make policy decisions based on application specific
values, something which is not possible with KeyNote.

The Role-based Trust-management Markup Language (RTML [7]) has much
in common with our solution. It is also role based, and is embedded in a
programming language. Just like our solution, the credentials and the policies
are encoded in XML. The main difference between our solution and RTML
is that we do not allow arbitrary language constructions in credentials. Our
credentials can only contain constructs which deal with the delegation of roles,

10



making them simpler. RTML also does not support a tight integration between
the security system, and the application.

The XML Access Control Language (XACL see [6]) has a completely differ-
ent goal as our system. XACL was designed to create access policies for XML
documents, while our system was designed to create policies for a distributed
object system.

Pretty Good Privacy (PGP [3]) and X.509 [9] are well known certificate
management systems. Both of them focus entirely on authentication, while our
solution focuses on authorization. X.509 certificates bind so called Distinguished
Names (DN) to public keys, while PGP certificates bind e-mail addresses to
public keys. On the other hand, for the solution we propose, we bind roles to
public keys associated with DSO entities. The main difference in this approach
is that all possible roles are known in advance. This is not the case for DNs,
and e-mail addresses. Both systems focus only on the authentication problem,
and leave the authorization problem entirely to the application programmer.

9 Conclusion

In this paper we have described the design and implementation of a policy
engine for enforcing security policies for distributed object applications. In
our design, we explicitly take into account object replication, which introduces
specific requirements, such as the need for policy mechanisms to express different
levels of trust one wants to put on different object replicas. Another distinctive
feature of our approach is the aim to provide our policy engine at the middleware
level; as a result, our policy language has features that bring it closer to an
actual programming language (Java), which should make easier to integrate it
with applications.

References

[1] The Common Object Request Broker: Architecture and Specification.
www.omg.org, Oct 2000. Document Formal.

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The KeyNote
Trust-Management System, Version 2. RFC 2704, September 1999.

[3] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer. OpenPGP Message
Format. RFC 2440, November 1998.

[4] G. Eddon and H. Eddon. Inside Distibuted COM. Microsoft Press, Red-
mond, WA, 1998.

[5] A. Grimsaw and W. Wulf. Legion - a view from 50000 feet. In Fifth

IEEE Int’l Symp. on High Performance Distr. Computing. IEEE Computer
Society Press, Aug 1996.

11



[6] M. Kudo and S. Hada. XML Document Security based on Provisional
Authorization. In Proc. 7th ACM Conf. on Comp. and Comm. Security,
November 2000.

[7] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based
trust management framework. In Proc. IEEE Symposium on Security and

Privacy, Oakland, May 2002.

[8] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-Based Access
Control Models. IEEE Computer, 29(2):38–48, Febr. 1996.

[9] I. T. Union. Open Systems Interconnection - The Directory: Public-Key
and Attribute Certificate Frameworks, March 2000.

[10] M. van Steen, F. Hauck, P. Homburg, and A. Tanenbaum. Locating Ob-
jects in Wide-Area Systems. IEEE Communications Mag., pages 104–109,
January 1998.

[11] M. van Steen, P. Homburg, and A. Tanenbaum. Globe: A Wide-Area
Distributed System. IEEE Concurrency, pages 70–78, January-March 1999.

[12] S. Weeks. Understanding Trust Management Systems. In Proc. IEEE

Symp. on Security and Privacy, pages 94–105, May 2001.

12


