View metadata, citation and similar papers at core.ac.uk brought to you by
provided by VU Research Portal

v U W UNIVERSITEIT
° AMSTERDAM

VU Research Portal

Controlling generate & test in any time
Coulon, C.; van Harmelen, F.A.H.; Karbach, W.; Voss, A.

published in
Proceedings of the German Workshop on Al (GWAI'92)

1993

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Coulon, C., van Harmelen, F. A. H., Karbach, W., & Voss, A. (1993). Controlling generate & test in any time. In
Proceedings of the German Workshop on Al (GWAI'92) (pp. 304-306). Springer-Verlag.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

https://core.ac.uk/display/303689833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/c67e8c04-9552-4a01-91c1-ebc40029f5ad

Controlling generate & test in any time

Carl-Helmut Coulon® and Frank van Harmelen® and Werner Karbach® and
Angi Vo

®German National Research Institute for Computer-Science (GMD)
P.O. Box 1316, D-5205 Sankt Augustin
®University of Amsterdam
Roeterstraat 15, NL-1018 WB Amsterdam
e-mail: avoss@gmdzi.gmd.de

Abstract. Most problem solvers have a one-dimensional stop criterion:
compute the correct and complete solution. Incremental algorithms can
be interrupted at any time, returning a result that is more accurate the
more time has been available. They allow the introduction of time as a
new dimension into stop criteria. We can now define a system’s utility in
terms of the quality of its results and the time required to produce them.
However, optimising utility introduces a new degree of complexity into
our systems. To cope with it, we would like to separate the performance
systern to be optimised from utility management.

Russell has proposed a cornpletely generic precompilation approach
which we show to be unsatisfactory for a generate & test problem solver,
Analysing this type of systems we present four different strategies, which
require different information and result in different behaviours. The strat-
egy most suitable to our application requires on-line information, and
hence had to be implemented by a meta-system rather than a precom-
piler. We conclude that universal utility managers are limited in power
and are often inferior to more specialised though still generic ones'.

1 Motivation

KBS must take time into account: Knowledge-based systems are often built
to cope with really hard problems. Although Al is famous for tackling NP-hard
problems, its systems usually do not consider the time that any benevolent user
may be ready to wait. They are designed and fine-tuned to achieve a fixed stop
criterion. For example, most diagnosis systerns stop when they reach a leaf in the
diagnosis hierarchy. However, if the problem space of such systems is equipped
with a notion of incomplete, approximate or partial solutions, the user might
sometimes prefer a quick, though approximate, solution.

! "he rescarch reported here was carried out in the course of the REFLECT project.
This project is partially funded by the Esprit Basic Research Programme ol the
Commission of the Suropean Communities as project number 3178. 'The partners
in this project are the University of Amsterdam (NL), the German National Re-
search Institute for Computer-Science GMD (D), the Netherlands Energy Research
IFoundation ECN (NL), and BSR Consulting(D).

111

Entering a new dimension of utility: Real time systems have recently
been defined to be systems whose utility gracefully decreases the shorter they are
run [2] {1]. They are based on incremental or interruptible anytime-algorithms
whose quality of the output increases over time. These are by no means rare
creatures. In principle, every loop is a candidate to be turned into an incremental
procedure. Incremental, interruptible, or anytime algorithms introduce a new
degree of freedom when defining system utility. Instead of concentrating on the
ultimate, most correct solution, we can try to obtain maximal quality within a
given time span, or try to reach a minimum quality as quickly as possible, or
combine both. Thus, the utility of a system becomes a function of time U(t).

Utility should be handled orthogonally: This new degree of freedom
must be used carefully, so as not to introduce a new dimension of complexity
into our systems. Ideally, a KBS should be designed as before, and utility opti-
misation should be handled by a separate component. Beside the utility function
to be achieved, such a utility manager needs certain information about the per-
formance of the underlying system. If all relevant information is available before
run time, a precompiler would do perfectly.

A utility manager for generate & test: Generate & test is a frequently
employed problem solving method in AL in diagnosis, hypotheses are generated
and tested; in search, successor states are generated and evaluated; in design,
solutions are proposed & revised; in planning plans are generated and tested by
execution. In this paper, we present the principles of generic utility management
for the class of generate & test problem solvers. We elaborate four strategies
of switching between generation and test in order to maximise the number of
solutions given a maximal time limit. The goal of this paper is nol to present
sophisticated strategies for controlling generate & test. In fact, with the possible
exception of the fourth strategy, the strategies we discuss are rather obvious. In-
stead, the goal of this paper is to present a method of comparing such strategies,
and to introduce the parameters that are involved in such comparisons.

A comparison to Russell and colleagues will round off the paper. Al-
though developed independently, their motivation on utility is very similar to
our’s. In {4] they propose a precompiler separating the algorithmic design of real-
time systems from optimising their utility. The latter task is automated based
on so-called performance profiles for the basic algorithms. Although we appre-
ciate their intention, we doubt the practicality of their assumptions. While they
derive the overall performance profile of a system from those of its basic algo-
nithms, we would like to specify the overall performance profile without having
to supply any profiles for the basic steps. Moreover, we have several potential
overall performance profiles, but cannot determine the right one statically, so
that precompilation is not suitable. In the meantime Russel’s & Zilberstein’s
system maintains several performace profiles and introduces a monitoring com-
ponent which switches between them at run-time?. But we still see the problem
of determining which profile to apply in a specific situation.

2 . .
Personal communication.

112

2 A utility function for generate & test

We consider a class of object systems that employ a generate & test problem
solving method to produce all possible solutions.

Definition of generate & test algorithms: The generate-phase of such algorithms
generates candidates for a full solution which are subsequently tested on their
correctness. The characteristics that candidates for full solutions must be gener-
ated excludes an algorithm as propose & refine from our analysis since it proposes
a paritial solution which is subsequently refined on the basis of the test results.

Importance of generale € test algorithms: Although generate & test algorithms
are among some of the oldest Al, and feature in every text book, they are in
general regarded as not very efficient. [t is true that non-heuristic generate & test
algorithms of the kind discussed in this paper do not scale up to very large search
spaces. Nevertheless, generate & test algorithms were the basis of such programs
as DENDRAL [3], one of the [ew successful early Al programs that were ever used
in practice. The crucial insight there was to first use a planning process that uses
constraint-satisfaction techniques to create lists of recommmended candidates.
The generate & test procedure than uses those lists so that it can explore only
a fairly limited set of candidates. This shows that even the [airly simple version
of non-heuristic generate & test that we study in this paper can be of interest
in full scale application systems.

Both generate and test are conceived as incremental algorithms that can be
called repeatedly in order to generate resp. test a next hypothesis. We thus have
the following data flow of the underlying system:

input => GENLERATE = hypotheses = TEST = solutiong

As a stop criterion we want to impose upon such systems a lower bound on
the number of solutions to be produced, and an upper bound on the time to be
spent:

stop(saol,t) = sol > solpnin Vt 2 ban (1)
with sol := number of solutions produced by the system
80l yim := minimum number of solutions desired
t := time needed by the system
tmex = Upper bound on the run-time of the systemn

The parameterised stop criterion specifies the minimally required quality of
the system output. Often, only one solution may be necessary (i.e. $0lpin = 1),
but sometimes the system does not have all knowledge, ¢.g. because it is too
difficult to represent. Then the human user may want to sec alternative solutions
to choose among using his additional knowledge, which may be too difficult to
represent in the system. We have also considered other stop criteria: simpler
ones such as stop(sol) := sol > $0lmin, and more complex ones that additionally

113

impose an upper limit on the number of solutions desired. Stop criterion (1 is a
moderately complex one, whose analysis is sufficiently interesting for the purpose
ofl this paper.

The stop criterion alone does not yet ensure the desired behavior. For in-
stance, in formula (1) the system might just wait until the given time has passed
(i.e. until ¢ > tmaz). The precise goal of the system is to reach the minimally
required quality as fast as possible within the given time. That means, we want

to minimise the time and maximise the number of solutions while observing the
stop criterion: .

U(sol,t) == max{sTdistop(sol,t)} (2)

To analyze this function we will refine its parameters, computation time ¢
and solutions sol. In the most general case, the generate method may be invoked
several times, followed by some invocations of the test method, and these two
phases may be iterated a number of times. Additionally, switching between the
two methods may cost additional time to store respectively reinstall the current
state. The time spent is thus defined by:

n hgen,' htesti
— gen—test test—gen
b= Z(Z tge”ii + tswitchi + Z i‘ﬂstia‘ + stitchi) (3)

i=1 j=1 j=1
with
7 := the number of times the system switches {rom generate to test;
Rgen; := the number of hypotheses generated in the ith call to generate;
hiest := the number ol hypotheses tested in the ith call to test;
tgeny; := time to generate one hypothesis;
bresty; := time to test one hypothesis;
gen—iest = time to switch from generate to test;
tioe il = time to switch from test back to generate with LSt et = 0.

The number of solutions produced by the system corresponds to the sum
of the probabilities p;; of all tested hypotheses:

n hl.cal.i

sol = z Z Pij (4)

i=1 j=1

3' Analysis of four strategies for utility management

Simplifying assumptions. Belore we will discuss four different strategies for con-
trolling a generate & test system, we will introduce some assumptions that will
simplify equations (3) and (4). We will assume that all generated hypotheses are
tested (A1), that the times for switching from generation to test and vice versa

114

are constant and equal (A2), that the time to generate resp. test a hypothesis
are equal for all hypotheses (A3), and that solutions are distributed uniformly
among the hypotheses (A4).

(Al) V'L,l < i <n: hgeni = htcs“. = hi

: : — — Lswitel
(A2) Vil i Sn It = g0 = SO
(A3) Vig: tgens; = Lgen;trest; = biest
(A4) VYi,j5:py;=p

Justifying the assumplions Assumption (A1) no longer allows us to test only the
most promising hypotheses. This assumption is automatically fulfilled in domains
where all hypotheses must be tested, for instance because an exhaustive solution
is required, or because the best solution is required. In many domains, no easy
ranking of the hypotheses is possible, or more precisely: such ranking is often
considered to be part of the test phase of the system, rather than as a way to
control the behaviour of the overall cycle.

Assumption (A2), forces switching in both directions to be equally expensive
and constant for all cycles. It seems rather realistic to assume switching time
to be constant, since the switching cost is likely to be independent from the
particular hyptheses that have just been generated or tested. The assumption
that switching times in both directions are equal could easily be dropped, and
our model could be trivially extended to deal with different switching times in
both directions. We will however not present this extension in this paper since
it only complicates matters without offering any new insights.

Besides motivating the constant and equal values of the switching times,
we should also motivate why we consider switching time at all, in other words,
why would tsuiten, > 07 The value of fgyiees should be interpreted as the over-
head of starting a new series of generating or testing steps, and there are many
applications in which this overhead is indeed a considerable factor. In medical
or mechanical diagnosis forinstance, the generation of new hypotheses often in-
volves new measurements (on a patient or a device), and the overhead ol starting
a new series of observations (getting the patient in the lab, or halting and open-
ing the machine) is often high compared to the cost of making the observations
themselves.

Assumption (A3) states that generation and test times are equal for all hy-
potheses. This is an assumption that will hold in some domains and not in others.
In game playing for instance, the costs of generating new board positions and
evaluating them are indeed roughly independend from the particular board posi-
tion. In other domains however, the testing time in particular is likely to vary for
different hypotheses: the cost of testing solutions to a design problem may vary
significantly across different solutions, because inconsistencies with the design
constraints may show up immediately or only very late during the testing phase.

115

In such case, the parameter .05, should be regarded as the “average” cost of
testing a hypothesis.

Of all our assumptions, (A4) is the most restrictive. [t assumes that solutions
are uniformly distributed across the hypothesis space, and this will often not be
the case in realistic applications. In game playing for instance, the entire section
af the search space below a losing move will be devoid of solutions, making the
value of p in that section of the search space much lower then in other sections.
It is mainly because of this assumption that our model must be seen as a first
approximation of the behaviour of real systems, rather than as a model that
captures the precise behaviour of these systems.

Applying the assumptions Al-A3 simplify equation (3) for the time required by
the system to make n iterations as follows3:

L=

n
i

(hi ' (t’geﬂ + t’L&'s‘f-)) + - Lsun’.tch (5)
1 .

We will now define different strategies for the generate & test algorithm by
giving different definitions for the numbers h; in this equation. They will lead to
a different switching behavior between the generate and test phases. We will first
concentrate on the time required to met the fist condition of the stop criterion
(sol > solmin) and in section 5 compare the number of solutions if ¢ £ £pax iS
reached first.

The first part of the stop criterion requires that we compute at least solyin
solutions. This implies that the expected number of iterations between generate
and test that are to be made in order to achieve the stop criterion is the lowest
number n such that

n
solmin <P) (6)
i=1

3.1 Strategy 1 - directly generate the right number of hypotheses

If we assume we know the probability p of a generated hypothesis to pass the test,
we can estimate how many hypotheses we will need to obtain sol,,:, solutions
in the first iteration, namely ﬂ;‘—‘ﬂ hypotheses. There will be no need to switch
back:

(S1) hy = [2%mia] implying = 1.

3 This formula is not entirely correct since it assumes a last switch back from test to
generation. To obtain the correct times for the strategies, half of fsu4cn should be
subtracted in the time formulae given below. But we preferred to keep our formulae
more readable, and the constant does not affect our comparison of the strategies.

116

This means that the expected time needed to compute solm;n solutions will
be:

I--901m1'n.

] . (tgcn + tl,c.sl,) + ['smttch. (7)

Lsolymen =

This strategy is optimal since both the number of hypotheses generated and
the number of switches is minimal. To implement the strategy, only h; must be
computed, which can be done statically. The major problem with this strategy
is of course that the probability p of a generated solution to pass the test is often

not known.
3.2 Strategy 2 - eager generation:

This strategy exhaustively generates all possible hypotheses in the first call to
generate (hy), and then tests all of them. It, too, does not switch back. I we
write hgy for the number of all possible hypotheses and solyy; for the number of
all possible solutions, this strategy is defined by:

(S2) hy = hoy = (5—”;““] implying n = 1.
The [ormula for the runtime of the system is:

sola“

bsolyin = [] : (tgcn + ttesL) + Lswiteh (8)

The number of switches is minimal, but usually too many hypotheses are
generated, since soly; > solgn, causing 52 to be more expensive than S1.
Therefore, S2 can be recommended only when switching costs are very high,
and solgy & $0lmin, S0 that not too many unnecessary hypotheses are generated,
The advantage is that we need not have to know p. Notice that this strategy
assumes that kg is finite (since otherwise the first phase of the algorithm never
terminates).

3.3 Strategy 3 - lazy generation:
The third strategy generates hypotheses one by one and directly tests each:
(S3) Vi: hi = 1 implying n = [#2min]
The expected time to compute soly:, hypotheses is:

SOlmm
P

This strategy will not generate unnecessary hypotheses, but abounds in
switches. It can be recommended only when switching time is low. If {ywitching =
0 its behavior is equal to S1 and hence optimal.

§ al‘rnin.

tsolm.;,. = { -I) (Lgcn + {'Lesl) + [T’] *Lswitch (())

17

3.4 Strategy 4 - generate the number of missing solutions:

The fourth strategy always generates as many hypotheses as there are solutions
still missing:

(84) Vi : hi = soimin - S()L,;..]

where sol; is the total number of solutions found after completing the ith itera-
tion and solp = 0. '

Applying (A1) and (A4) to (4) gives sol; = [p-3_,_, hx)] which leads to (1 -
p)* " tsolmin as an approximation for h;, with which we can derive the following
approximation for the expected run time:

80lmin

bsolmin R . (1 - (1 - P)n) : (tge'n. + trest) + 1 bswiteh (10)
Again no superfluous hypotheses are generated. S4 will always behave at least
as good as S3 because in comparing (10) and (9) we see that (1 — (1 —p)*) < 1,
and n < $0lmin < $8min To implement S4 we have to compute the numbers A;
dynamically, whereas these numbers could be computed statically for S1-S3.

4 Comparison of the strategies when reaching
sol > sol,.;, first

S1 has optimal run-time, but requires knowledge of p, which is usually not
available. It requires no additional computation during the execution of the
generate & test algorithm.

S2 guarantees that n = 1, and is therefore good {or {suitch > (tgen +Liest). The
extra costs of S2 are limited if solay = solnin. S2 does not require p, and
involves no additional computations.

S3 is the opposite of S2. S3 switches many times, and is therelore only good for
tewiteh K (tgen + Liest) (S3 is in fact optimal if £gyien = 0). Again, as with
52, 83 requires neither p nor any additional computation.

S4 is a compromise strategy: it makes more switches than S2 but less than S3,
it generates more hypotheses than S3 but less than S2, and its run-time
is more than S1 but less than S3. However, S4 is the only strategy which
requires an additional, though simple computation of h; as soly, — soli—1.

Thus, the choice of strategy depends on p and on the ratios {syitch : (tgen +

tiest) and solgy @ 50lmin. We have an optimal strategy only if p is known,

5 Comparison of the strategies when reaching t < t,,.,.
first

So far, we have compared the strategies S1-S4 on the basis of their overall run-
time, There is, however, another dimension along which we can compare them,

118

namely on the basis. of how uniformly they compute their solutions over time.
This is important because the stop criterion (1) says that the system will stop
when tmax has been reached, which may be before sol,,;n solutions have been
computed (if tmaz < tsot,.,) In general, we will not know this inequality in
advance, since tyo1,,, depends on p which may not be known. Because of this,
it becomes important that the composite behavior produced by the strategy is
interruptible [4]. Below we will investigate this propery for each of the strategies
S1-S4. We will do this on the basis of the graphs in figure 1, which indicate for
each strategy how the computation of solutions proceeds over time. For each of
these strategies, we will establish the number of solutions produced per time-
unit, in other words: sol;/time.

_ S2
S1 solau-
80lmin
t
sol; sol;
H i P 1
time — tlolm - time — t“{““
S3 S4
8 Otm.'n salmin
t
sol; sol;
T — T " —
time teolmin time Liolmin

Fig. 1. Distribution of solutions over time for S1-4

51, S2 will not produce any solutions for a long time, and then suddenly pro-
duce all solutions at once, namely after the first (and final) call to test. This
means that sol;/time = 0 for a long time, and then jumps to solmin 8t
Laol,.;, fOr S1 and to solgy at tsar, for S2.

S3 produces solutions incrementally, and at a constant rate, namely on the
average 1 solution per 1/p iterations. Thus, the value of sol;/time is constant

119

over time, at p/(tgen + tiest + tswitch.)v

S4 also produces its solutions incrementally, but in ever decreasing chunks: at
each iteration, nothing happens for h; - (tgen + Liest) + Lswitcn time units, and
then h;-p solutions are produced. Thus, the number of solutions per time is a
step function with a decreasing angle, namely p-(£gen +biest + (bswiten/hi)) 71,
and with ever decreasing steps both horizontally, namely h; - (tgen + Liest) +
tswitch, and vertically, namely h;-p). This step [unction can be approximated
by a function asymptotically approaching solin.

We are now in a position to compare the different strategies with respect to
their production of solutions over time.

S1 is a strategy with minimal run-time, but is not interruptible: if it gets in-
terrupted because tmaz < tsol we get no solutions at all. Thus, S1 is a
high-risk/high-pay strategy.

S2 is not interruptible either. It takes longer than S1, but ensures that no switch-
ing back is required. We get no solutions when it is interrupted.

S3 on the other hand is an anytime algorithm, which will have produced some
solutions when it gets interrupted prematurely. However, this is at the price
of making many switches. Thus, S3 is low-risk/low-pay.

S4 is a compromise strategy. In the beginning, it looks like S1 and later on more
like S3. This gradual change in behavior from a high-pay/high risk strategy
to a low-pay/low-risk one makes sense, since the chance of running into tmax
increases with time,

min)

6 Problems with Russell’s approach

In [4] the authors presented an approach for utility management by composing
elementary anytime algorithms. To cite from their paper: “...the user simply
specifies how the total real-time system is built by composing and sequencing
simpler elements, and the compiler generates and inserts code for resource sub-
division and scheduling given only the PPs of the most primitive routines”®.
The time allocated to the primitive routines are pre-compiled from the utility
function U*(t) of the composite system which is determined by the individual
PPs U;(t) of the basic components.

How can we accomplish our utility function and strategies in this framework?
First of all, we have to compose the generate & test method from the generate,
switch and test steps: (LOOP generate switch test switch).

Next we have to define utility in terms of the PPs for the basic steps. However,
it turns out that we cannot corne up with a unique PP for the generate and the
test steps because they are highly dependent on the input, in particular on the
probability p of hypotheses being solutions, which cannot be estimated statically
in every application. Figure 2 shows the bands of potential PPs of the basic
inference steps. This is why we doubt Russel and Zilberstein’s basic assumption

* PP is short for performance profile.

120

that the input can be partitioned into classes whose elements have the same
PP (p. 213 in [4]). However, if we know the probability p, their approach would
indeed lead to the optimal strategy S1.

To cope with the missing information in our application, we chose the fourth
strategy which allows us to replace p by information gathered on-line. We im-
plemented it by a meta-system, since a precompiler as suggested by Russell and
Zilberstein would not have done.

Ggen (t) » ‘ Qswitch (t) Gteat (t) -

=y

t t
Fig. 2. Performance profiles for generate, switch & test

The main difference, however, between Russel’s & Zilberstein’s approach and
ours is that they will always produce a single time schedule, while in our ap-
proach, choosing another strategy will result in different performance profiles of
the compound system as depicted in figure 1. Moreover, to use their terminol-
ogy, our strategies S1 and S2 result in contract algorithms, which must know
the available time in advance, while S3 and S4 yield interruptible algorithms
which produce meaningful results whenever they are interrupted and without
being told when they will get interrupted. Their approach results in contract al-
gorithms which then have to be transformed to interruptible ones slowing them
down by factor 4 at most®. Our strategies S3 and S4 do not suffer from a slow-
down. ;

Since our strategies depend on the information available, and differ in the
overall performance profiles, in the risk vs. pay ratio, and in the interruptability
of the composite system, our approach is much more flexible. This however, is
at the cost of being specialised to generate & test methods.

7 Conclusion

For the class of generate & test methods we defined a utility function that in-
volves a lower bound on the number of solutions and an upper bound on the
time to be spent. We analyzed four different strategies and compared them with
respect to the information needed, their temporal behaviors and their interrrupt-
ability. Our results should be easy to carry over to simpler or more complex
utility functions.

5 In the meantime, they have developed compiiat.ion methods for a loop which directly
lead to interruptible algorithms.

121

References

1.

2.

T. Dean and M. Boddy. An analysis of time-dependent planning problems. In Pro-
ceedings of the 7th National Conference on Artificial Intelligence, volume 1, pages
49 - 54, San Mateo, 1988. Morgan Kaufmann.

.J. Horvitz. Reasoning about beliefs and actions under computational resource
constraints. In L.N. Kanal, T.S. Levitt, and J.F. Lemmer, editors, Uncertainly in
Artificial Intelligence 3, pages 301-324. Elsevier, Amsterdam, 1987.

R.K. Lindsay, B.G. Buchanan, E.A. Feigenbaum, and J. Lederberg, editors. Ap-
plications of Artificial Intelligence for Organic Chemistry: The DENDRAL Project.
McGraw-Hill, New York, 1980.

8.J. Russell and S. Zilberstein. Composing real-time systems. In Proceedings of the
12th International Joint Conference on Arlificial Intelligence, Sydney, Australia,
volume 1, pages 212 - 217, San Mateo, 1991. Morgan Kaufmann.

