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SUMMARY 
 

Biodiversity loss is a global threat to ecosystem function and human well-being. Environmental 

heterogeneity is a recognised driver of biodiversity under a niche-based view of available 

species habitats. As such, an increase in environmental heterogeneity is expected to promote 

species coexistence, persistence and diversification. Loss of environmental heterogeneity is 

therefore considered proximal evidence of biodiversity loss. At a landscape scale, this 

heterogeneity is defined as the degree of difference between landscape elements and is often 

described as landscape heterogeneity. Patterns of landscape heterogeneity are generated and 

maintained by the physical landscape template or abiotic environment (e.g. topography, 

geology and climate), upon which complex adaptive interactions between landscape pattern 

(structure and composition) and ecological processes (function) occur. Landscape pattern can 

therefore be described as the self-organising expression of landscape function which varies not 

only across space but also through time. Accordingly, observable variations in landscape pattern 

are conjectured to signify divergence in landscape function. This thesis explores this 

relationship further within the Kruger National Park (Kruger): a large (~ 20,000 km2), long-

established (proclaimed 1898) protected area in South Africa’s semi-arid savanna. Results 

therefore describe landscape heterogeneity, in terms of the abiotic and biotic components 

(environmental drivers) that generate and maintain landscape pattern in Kruger, to inform 

strategic biodiversity planning. Chapter 1 introduces the reader to landscape heterogeneity and 

its relevance to protected area management and biodiversity conservation. Chapter 2 begins by 

isolating the effects of ‘stationary’ landscape properties on environmental heterogeneity 

through their relationship with Landsat spectral variance. Results show this relationship is 

sensitive to season and rainfall with the effects of dynamic ecosystem processes dominating 

many areas. Thereafter, Chapters 3 and 4 examine in more detail the nature of selected dynamic 
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drivers in Kruger, namely rainfall and elephants. Results demonstrate the existence of long-

term spatiotemporal changes in both rainfall and elephant density and distribution patterns in 

Kruger from 1985-2015. Together these results feed into chapter 5, where a Structural Equation 

Model (SEM) is used to investigate the causal structure of landscape heterogeneity with stable 

landscape properties, rainfall, herbivory and fire. Results are presented as path coefficients and 

long-term driver dominance maps showing the magnitude and direction of the different cause 

and effect relationships between heterogeneity, the physical landscape template, rainfall, 

herbivory and fire return interval. Finally the nature of the environmental-heterogeneity theory 

is operationalised in Chapter 6 using R, Shiny and Leaflet to provide an interactive web 

interface for protected area managers to explore heterogeneity differences in context with park 

specific research questions. Chapter 7 concludes the thesis with a brief synthesis of results in 

context with current literature and highlights future research opportunities and possible 

directions. 
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1 
INTRODUCTION 

 

Biodiversity conservation is a global priority for the maintenance of healthy ecosystems and 

the services they provide. Despite international efforts, global predictions warn of widespread 

biodiversity declines in the near future (Tittensor et al. 2014). Large protected areas can act as 

strongholds of biodiversity, making their long-term maintenance a primary concern for 

biodiversity protection. They are also unique in that they can sustain relatively intact species 

assemblages, insulate vast wilderness areas from human influence and support numerous 

ecological processes essential for ecosystem integrity (Cantú-Salazar and Gaston 2010). The 

numerous pressures that threaten their existence are however ubiquitous and can include for 

example i) the expanding reach of human influence linked to growing population numbers, ii) 

unsustainable resource use, iii) climate change and iv) poor management strategies due to 

inadequate resources or holistic ecosystem knowledge (Cantú-Salazar and Gaston 2010). To 

help secure these valuable biodiversity estates, regionally specific biodiversity protection plans 

with functional measures of biodiversity trends are an important addition to both global and 

local conservation strategies (MEA 2005; Egoh et al. 2009; Thomsen et al. 2017). Much 

research has consequently been focused on the development of cost-effective, systematic and 

repeatable methods of mapping and monitoring biodiversity over large areas (e.g. Reyers and 

McGeoch 2007; Duro et al. 2007; Lengyel et al. 2008; Pettorelli et al. 2014). As a result, various 

indicators have been established to track the state and trends of biodiversity, especially over 

vast wilderness expanses of large protected areas (Han et al. 2014; Paganini et al. 2016; 

Walpole et al. 2017).  
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One such indicator, environmental or landscape heterogeneity, is the expression of complex, 

adaptive interactions between compositional, structural and functional dimensions of 

biodiversity, which manifest as patterns in the landscape (González-Megías et al. 2011; 

Tuanmu and Jetz 2015).   

 

LANDSCAPE HETEROGENEITY 

The terms environmental and landscape heterogeneity are used interchangeably here and across 

diverse urban, agricultural and natural environments to describe the degree of difference 

(heterogeneity) in the landscape (Kolasa et al. 1995; Fahrig et al. 2011; Stein et al. 2014; 

Dronova 2017). It is considered the self-organising expression of landscape function, which 

can be used to infer ecosystem health and detect ecosystem change (Wiens 2002; Chapin et al. 

2011). It has also been described as an important mechanism of biodiversity, species 

coexistence, population dynamics and diversification (MacArthur and Pianka 1966; Wiens 

2002; Seiferling et al. 2014; Tuanmu and Jetz 2015). The nature of the heterogeneity–

biodiversity relationship is however non-ubiquitous (Bar-Massada and Wood 2014), varying 

across scale (Stein et al. 2014), level of ecosystem modification (Seiferling et al. 2014), species 

geographic range (Katayama et al. 2014) and available habitat area (Fahrig 2013). Nonetheless, 

when such limitations are taken into account, landscape heterogeneity may be considered a 

universal driver of species richness (Stein et al. 2014 for a full summary). The theoretical basis 

for this philosophy is the Habitat-Heterogeneity Hypothesis, where species diversity is 

predicted to be positively correlated with habitat heterogeneity (MacArthur and Pianka 1966; 

González-Megías et al. 2011). From this perspective (i.e. an ecological niche), a wider range 

of landscape characteristics will result in different habitat types which will support a larger 

diversity of species (Chase 2011). As such, any loss in heterogeneity is thus expected to 

represent a proximal loss in biodiversity (Pickett 1998).  
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Landscape heterogeneity is, therefore, increasingly used an as indicator of biodiversity change 

(e.g. Hernández-Stefanonia et al. 2012; Duro et al. 2014).  

 

MEASURING LANDSCAPE HETEROGENEITY 

For ecologists, heterogeneity theory can be somewhat convoluted with terms like habitat, 

landscape, resource and environmental heterogeneity, diversity and variability being used 

interchangeably and in combination with expressions of spatial and/or temporal effects or 

differences (Stein et al. 2014). Consequently, there is a pronounced lag in the development of 

practical solutions for ‘real-world’ applications (Rocchini et al. 2015). The ability to monitor 

biodiversity over the vast wilderness landscapes in protected areas is sorely needed in the face 

of increased biodiversity pressures (SANParks 2006). How environmental heterogeneity is 

defined and measured remains a key question for today’s conservation agencies (Stein et al. 

2014; Jongman et al. 2017). For example, if a patch-mosaic approach is used, landscape 

complexity is reduced to discrete patches that may not physically or functionally occur in reality 

(Turner 1989; McGarigal et al. 2009). While this approach has proven successful in urban and 

agricultural landscapes (Fahrig et al. 2011), in natural ecosystems environmental gradients are 

arguably better able to reflect the continuous nature of environmental heterogeneity (Doebeli 

and Dieckmann 2003; Guisan and Thuiller 2005). Remote sensing offers a cost-effective, 

systematic and repeatable method of potentially mapping and monitoring this heterogeneity 

using spectral variation (e.g. González-Megías et al. 2011; Hernández-Stefanonia et al. 2012; 

Duro et al. 2014). Specifically, any object (or landscape element) on the earth’s surface reflects 

or emits energy which satellites measure across different wavelengths to produce a particular 

spectral response pattern (Hutson 2006; Short 2010). Different response patterns are thus digital 

representations of different landscape elements that make up a unique landscape.  
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Each unique landscape may be formed and reformed over paleontological time scales. For 

instance, first the underlying geology is dynamically altered by tectonics and macro-climate 

conditions, forming a variety of topographic elements (elevation, slope, aspect), which in turn 

influences micro-climate conditions (Fig. 1.1a). Together these influence the movement of 

water through the landscape and as a result the formation of soils (Fig. 1.1a). With a soil 

substrate in place, flora and fauna can establish and interact (Fig. 1.1 b+c). The scope of our 

study is confined here (~ 50 year time frame), where established vegetation communities 

influence how animal assemblages distribute themselves across the landscape, and in turn 

influence their surrounding landscape (Fig. 1.1). At any point disturbance, whether natural or 

anthropogenic, may further influence these processes (Fig. 1.1 d). These in turn may also alter 

landscape pattern and how it functions, forming a pattern and process feedback loop (Fig. 1.1 

e). In this way, ecosystems are characterised by compositional, structural and functional biotic 

and abiotic landscape elements that interact to form landscape pattern (Christensen 1997). 

Landscape heterogeneity is thus the term used to describe the variability of this pattern (Kolasa 

et al. 1995; Stein et al. 2014; Dronova 2017; Reynolds et al. 2017). Visible patterns of 

landscape heterogeneity are, therefore, both the cause and consequence of interacting physical 

landscape features (e.g. topography, geology, soils), abiotic (e.g. climate) and biotic (e.g. flora, 

fauna) components and different ecosystem processes (e.g. herbivory, fire) (Fig. 1.1) (Chapin 

et al. 2011). 
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Fig. 1.1: Landscape heterogeneity as a physical construct of the effects of interactions between 

physical abiotic and dynamic biotic processes (a through to e). The two images above represent 

a ‘real-world’ view and the raster interpretation thereof for ecologically modelling. 
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RESEARCH CHALLENGES 

While many of these abiotic and biotic elements (environmental drivers) have been studied in 

isolation, how they interact to generate and maintain landscape pattern remains an important 

research question (Levin 1992). A need exists for a more holistic understanding of the causes 

and consequences of spatiotemporal patterns of landscape heterogeneity to help disentangle 

complex ecological systems for protected area management. Commoner (1971) challenges this 

goal with his first law of ecology which states that in nature “everything is connected to 

everything else”. That is, there exists an elaborate network of interactions between all living 

organisms, populations, species, individual organisms and their environment (Commoner 

1971). Herein lies a universal challenge for protected area managers: How can the response of 

a specific component be explained without knowing how every other component, process 

and/or disturbance is connected? Without this knowledge one cannot know, for example, 

whether elephants respond to the legacy effects of fire in the landscape or if they actually cause 

fire regimes to be altered, or both (Dublin et al. 1990). The ability to separate the reciprocal 

cause and effects of key ecosystem drivers is recognised as a key missing element in the search 

for truly effective and holistic ecosystem management strategies (Levin 1992). This study is 

the first to disentangle the relative roles of key drivers in the growth or decay of heterogeneity 

over space and time in a large protected area, the Kruger National Park (Kruger) in South Africa 

(SA).  

 

STUDY AREA 

The Kruger National Park (Kruger) in South Africa (SA) is one of the few protected landscapes 

remaining where the true nature of heterogeneity and ecological response can be investigated 

(Pickett et al. 2003). Kruger is the largest of 19 parks managed by South African National Parks 

(SANParks).  
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It was officially proclaimed in 1926 under a strong protectionist philosophy that has evolved in 

response to political, socio-economic, intellectual and ethical changes in society (Carruthers 

1995). Nested within South Africa’s (SA) dominant savanna biome, Kruger covers an area of 

~ 20,000 km2 bordering Zimbabwe to the North and Mozambique to the East (Fig. 1.2). The 

area supports an impressive array of diversity with over 1980 plant, 856 animal and countless 

invertebrate species (SANParks 2017). Its underlying geology is dominated by granite, gneiss, 

schists, amphibolites, basalt and gabbro rock types (Schutte 1986; du Toit et al. 2003). 

 

 

Fig. 1.2: Kruger National Park (Kruger) situated in the north-eastern corner of South Africa 

between latitudes 22°19’40” S - 25°31’44” S and longitudes 30°53’18” E - 32°01’59”. The 

park is one of 19 National Parks run by South African National Parks (SANParks) and falling 

within the country’s dominant Savanna Biome. 
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The terrain undulates moderately from 100 to 500 MASL, with three higher-lying areas, namely 

the Shitshova range near Punda Maria in the north-west (650 MASL), Lebombo mountain range 

bordering Mozambique in the east (480 MASL) and Khandizwe, near Malelane in the south-west 

(840 MASL; Fig. 2.1). This gently undulating topography and considerable biophysical diversity 

accommodates an extensive river network, which gives rise to a highly patchy landscape with 

both open grasslands and dense woodlands (Venter et al. 2003). The area is classified as semi-

arid, falling within a climatic zone which extends over much of the central and north-eastern 

parts of SA (Rutherford and Westfall 1986; Trabucco and Zomer 2009). Climate is a major 

ecosystem driver in the park (Pickett et al. 2003; Venter et al. 2008). Decadal wet and dry 

rainfall cycles oscillate within a long-term annual mean of 350 mm in winter to 950 mm in 

summer (Gertenbach 1980).  Rainfall also generally increases from north to south and from east 

to west as altitudes rise closer to the Drakensburg escarpment (Venter et al. 2003). 

Temperatures are sub-tropical, ranging from 26.4 °C in summer (December - March) to 17.8 

°C in winter (June - August) making temperature less important as an ecosystem driver in 

Kruger (Zambatis 2006; Venter et al. 2008). 

 

RESEARCH OBJECTIVES AND APPROACH 

Savannas are inherently heterogeneous ecosystems driven by complex spatial interactions 

between rainfall, soil, disturbance and existing vegetation patterns (Groen et al. 2007). Due to 

its substantive size and long conservation history, Kruger is a model protected area ecosystem 

in which natural processes have generally been allowed to play themselves out (see du Toit et 

al. 2003 for a synthesis). It therefore presents a rare opportunity to investigate the mechanistic 

linkages between landscape heterogeneity, abiotic drivers, species biogeography and the effects 

of natural disturbances in the relative absence of unnatural anthropogenic impacts.  
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Using Kruger as a model ecosystem, this work strives to develop a more holistic understanding 

of the innate cause and effect relationships of large complex adaptive protected area 

ecosystems. To achieve this, each chapter is aimed at improving our understanding of key 

drivers of heterogeneity by establishing how landscape heterogeneity is driven by these key 

environmental components, both biotic and abiotic, using high resolution analyses, over a long 

time series and large spatial scale. The selection of key components is Kruger-specific but 

includes a variety of agents, substrates, controllers, and responders that can easily be applied to 

other areas (Pickett et al. 2003). The key environmental components selected and associated 

research objectives are targeted to identify links between long-term patterns of landscape 

heterogeneity and changing ecosystem processes in Kruger as follows: 

 

1. How does the UNDERLYING PHYSICAL LANDSCAPE TEMPLATE affect 

environmental heterogeneity and the detection thereof? 

2. As a dynamic ecosystem driver, what are the long-term (1981-2015) spatiotemporal 

patterns of RAINFALL? 

3. As dynamic ecosystem drivers, how do LARGE HERBIVORES (specifically 

elephants) respond to the long-term (1985-2012) spatiotemporal distribution of rainfall, 

fire and the availability of surface water?  

4. How do all of the above (herbivores, climate, landform) and fire interact to generate and 

maintain LANDSCAPE HETEROGENEITY?  

5. How can the heterogeneity-biodiversity theory be operationalised into a 

HETEROGENEITY TRACKER to help globalise biodiversity protection strategies 

in future? 

In answering the above questions, the first three chapters explore single or compound 

components, describing in detail their long-term spatiotemporal dynamics.  
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These outcomes are then collectively modelled in chapter 5 to derive a more holistic 

understanding of how these different ecosystem components fit together to form and maintain 

landscape heterogeneity.  

 

THESIS LAYOUT  

Overall the thesis is laid out to describe the cause and effect relationships between landscape 

heterogeneity, its underlying physical landscape template, rainfall, large herbivore distribution 

and density patterns, and fire return periods from 1985-2012. The methodological details of 

each are described in full under each chapter heading.  

Chapter 2 begins by investigating how much of the variability in the landscape 

(heterogeneity), as observed from remotely sensed images (Winter: 1984, 1991, 1998 and 

Summer: 1987, 1993, 2000), can be explained by stable landscape features using 

Geographically Weighted Regression (GWR) (Fig. 1.3). The amount of variation not 

adequately explained by the landscape template is posited to reflect the effects of more dynamic 

system processes like rainfall, herbivory or fire.  

Chapter 3 then describes the spatiotemporal patterns of Kruger’s rainfall in more detail, 

using General Additive Mixed Effects Models (GAMM) to produce monthly rainfall grids from 

July 1981 to June 2015 (Fig. 1.3). To this end, local rainfall measurements are modelled as a 

function of global gridded rainfall data, elevation and distance to the Ocean to produce 408 fine 

scale (1 km2) monthly rainfall surfaces (Fig. 1.3).  

Thereafter Chapter 4 investigates the spatiotemporal patterns of elephant populations in 

Kruger in relation to rainfall, fire and distance to water using Multiple Point Process Models 

(MPPM; Baddeley et al. 2015) and Breakpoint Analyses (BFAST; Verbesselt et al. 2010) from 

1985-2012 (Fig. 1.3).  
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Fig. 1.3: Chapter details structured in the context of a hypothetical construct of cause and effect 

relationships between environmental heterogeneity, the physical landscape template, rainfall, 

herbivory and disturbance in Kruger National Park. Solid lines represent simple (one-way) 

interactions and dashed lines indicate complex (two-way) interactions. 
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Specifically, the spatiotemporal dynamics of increasing elephant numbers are described in 

context with these ecological drivers to elucidate population level resource selection functions 

underlying elephant distribution and abundance patterns. 

Results and knowledge gained from chapters 2-4 are then integrated in Chapter 5 to describe 

the causal structure of landscape heterogeneity in Kruger using Structural Equation Models 

(SEM). Long-term (28 years) patterns of heterogeneity are thus assessed against the underlying 

physical landscape template, rainfall surfaces, herbivore densities and fire frequency to describe 

the magnitude and direction of effects and identify spatiotemporal patterns of driver dominance.  

Based on these findings, chapter 6 provides a globally interactive web interface, Heterogeneity 

Tracker Beta 1.0 (https://heterogeneity.shinyapps.io/globalheterogeneity), to enable protected 

area managers to explore heterogeneity in the context of their own park specific research 

questions.  
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2 

Quantifying spatiotemporal drivers of environmental heterogeneity in 

Kruger National Park, South Africa 
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ABSTRACT 

Environmental heterogeneity is considered an important mechanism of biodiversity, promoting 

species coexistence, persistence and diversification. How environmental heterogeneity is 

characterised by the compositional, structural and functional variation of biotic and abiotic 

components is a central conservation research theme. We explore how environmental 

heterogeneity relates to the underlying physical landscape template and how that relationship 

changes over space and time. We thereby examine how, in some areas, heterogeneity may be 

driven by dynamic ecological processes. We assess the ability of local Geographically 

Weighted Regression (GWR) models to map environmental heterogeneity through the 

relationship between Landsat spectral variance and stable physical landscape properties. We 

explore how the proportion of variability accounted for by this relationship varies spatially and 

temporally as a function of rainfall and season in Kruger National Park. The significance and 

direction of relationships varied over space and time and as a function of rainfall and season. 

Local adjusted coefficients of determination (R2) generally decreased in higher rainfall summer 

months. Maps of R2 reveal patterns of landscape complexity and the importance of dynamic 

factors relative to stable factors in explaining these patterns. Rainfall and seasonality are 

important drivers of environmental heterogeneity. GWR provides a spatial perspective to 

regression analysis, allowing us to map the relative influence of a physical landscape template 

on environmental heterogeneity. The spatial arrangement and magnitude of model agreement 

provide insight into the underlying processes driving heterogeneity. Resulting measures of 

Landscape complexity offer a novel approach to biodiversity research and monitoring 

prioritization. 
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2.1. INTRODUCTION 

Ecologists have debated for long the relationship between environmental heterogeneity and 

biodiversity (e.g. MacArthur and Pianka 1966; Wiens 2002; Seiferling et al. 2014), with the 

consensus being that environmental heterogeneity is an important driver of biodiversity 

maintenance and ecosystem health. For rapid assessment in biodiversity monitoring, many 

studies have, therefore, focussed on modelling relationships between landscape heterogeneity 

and species diversity (e.g. MacArthur and MacArthur 1961; Tews et al. 2004; Tamme et al. 

2010; Zhao et al. 2015). To this end, environmental heterogeneity is often considered equivalent 

to landscape heterogeneity in practice (Tscharntke et al. 2012). However, such practice 

inevitably reduces the realism of environmental complexity into discrete patches that may not 

physically or functionally occur in reality (Turner 1989; Cushman et al. 2010; Fahrig et al. 

2011). Although such a mosaic approach of discretizing environmental/landscape heterogeneity 

has been successful, especially in urban and agricultural landscapes, it falls short in natural 

ecosystems where the classification of these patches discounts important within-patch 

heterogeneity (McGarigal et al. 2009). 

Environmental gradients are considered as an alternative to this mosaic approach, one which 

arguably better reflects the continuous nature of environmental heterogeneity (Doebeli and 

Dieckmann 2003; Guisan and Thuiller 2005). Remote sensing offers a cost-effective, 

systematic and repeatable method of mapping and monitoring environmental heterogeneity as 

a continuous surface (e.g. González-Megías et al. 2011; Hernández-Stefanonia et al. 2012; 

Duro et al. 2014). The spectral response of satellite imagery is therefore often used to analyse 

ecosystem patterns and processes (Gould 2000; Wulder et al. 2004). Variations in this spectral 

response can originate from corresponding variations in the underlying properties of the 

physical landscape as well as from other biological features (Rocchini et al. 2013). Separating 
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out the different drivers of environmental heterogeneity from this spectral response however 

remains a challenge (Somers et al. 2011; Shi and Wang 2014).  

There is to date no definitive method to quantify environmental heterogeneity, as such, a 

robust environmental heterogeneity–biodiversity relationship remains elusive (Allouche et al. 

2012; Redon et al. 2014). Recent studies further suggest that the relationship itself is non-

ubiquitous (Bar-Massada and Wood 2014), varying across scale (Stein et al. 2014; Oldeland et 

al. 2010), level of ecosystem disturbance (Seiferling et al. 2014), species geographic range 

(Katayama et al. 2014) and available habitat area (Fahrig 2013). We expect this is due to 

environmental complexity and the contingency of identifying key drivers of environmental 

heterogeneity using conventional methods (Johnson 2007). Nevertheless, in the face of 

increasing concerns of global biodiversity loss (MEA 2005; Hooper et al. 2012) how 

environmental heterogeneity is defined and measured is a key question for today’s conservation 

agencies.  

While many studies have sought to develop cost-effective, systematic and repeatable 

methods of mapping and monitoring biodiversity (e.g. Reyers and McGeoch 2007; Duro et al. 

2007; Lengyel et al. 2008; Pettorelli et al. 2014b), few have explored the spatial and temporal 

variability of environmental heterogeneity itself. Using traditional global models, inherent 

spatial structures are often ignored and important information about how relationships between 

observed heterogeneity and physical landscape properties might change over space discounted 

(Guo et al. 2008; Matthews and Yang 2012). For instance, in the Kruger National Park (Kruger) 

in South Africa, we would expect to find highly variable relations between environmental 

heterogeneity and other spatially explicit drivers. Geographically Weighted Regression (GWR) 

is reportedly able to incorporate these local spatial relationships into a traditional regression 

framework (Fotheringham et al. 2002; Brunsdon et al. 2002).  
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We therefore anticipate GWRs application in Kruger to enable us to visualise the geographical 

variation of environmental heterogeneity and identify its key drivers across the park (Oliveira 

et al. 2014).  

In this paper, we assess the ability of local GWR models to map the relationship between 

Landsat spectral variance and stable physical landscape properties. We explore how this 

relationship changes over space and time and examine how in some areas heterogeneity patterns 

may be driven more noticeably by dynamic ecological processes. We used spectral variation as 

a proxy for environmental heterogeneity which depicts the variability of a spectral response 

across different wavelengths or bands of a Landsat satellite image (Short 2005). For stable 

physical landscape properties we used landscape features that do not change over ~50 years, 

such as elevation and geology. Based on our findings, we identify the proportion of spectral 

variability in the landscape, as seen from the multispectral Landsat satellite, explained by stable 

landscape properties. Thereafter, we examine the sensitivity of this relationship to changes in 

season and rainfall and explore how mapped model results change as a result. We test the degree 

to which these mapped results can explain local plant species richness patterns and provide 

insight into its application for protected area managers. 

 

2.2. METHODS 

2.2.1 Study Area 

KNP has considerable biophysical diversity and a long conservation history (du Toit et al. 

2003). It is one of the largest protected areas (PAs) in the world (~ two million ha), situated in 

the north-eastern corner of South Africa (Fig. 2.1). The park is dominated by gently undulating 

topography (150-840 MASL) underlying granite gneiss, schists, amphibolites, basalt and gabbros 

(Schutte 1986).  
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Fig. 2.1: Kruger National Park, situated in the north-eastern corner of South Africa between 

latitudes 22°19’40” S - 25°31’44” S and longitudes 30°53’18” E - 32°01’59” within the 

country’s dominant Savanna Biome. 
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Mountainous areas occur in the east, along the border of Mozambique (Lebombo Mountains), 

in the south-west (Malelane Mountains) and in the north-west (Soutspansberg Mountains) 

(Schutte 1986). Climate is a major ecosystem driver (Pickett et al. 2003; Venter et al. 2008) 

with decadal wet and dry rainfall cycles occurring within a long-term annual mean of 350 mm 

in winter to 950 mm in summer from north to south-west (Gertenbach 1980). Average 

temperatures range from 26.4 °C in summer (December - March) to 17.8 °C in winter (June - 

August) (Zambatis 2006). KNP falls within South Africa’s dominant savanna biome (Low and 

Rebelo 1996), an inherently heterogeneous ecosystem driven by complex spatial interactions 

between rainfall, soil, disturbance and existing vegetation patterns (Groen 2007). 

 

2.2.2. Data analyses 

All analyses were carried out in R version 3.0.2 (R Core Team 2013), RStudio version 0.98.978 

(RStudio 2013) and GRASS GIS version 7.1.svn (GRASS 2014) in a step-wise manner: 1) 

Landsat spectral variation, 2) physical landscape variation, 3) GWR models, 4) interpretation 

of GWR model fit in terms of landscape complexity and how it relates to plant species richness. 

 

2.2.2.1. Landsat spectral variation 

Landsat imagery were available for the Skukuza region (path 168 - row 077, WRS2) from 

different sensors (MSS, TM, ETM+, OLI) since 1972. Six images, representing late season 

winter conditions (July or August months) and summer conditions (March or April months), 

were selected for years signifying long-term mean, below and above average rainfall periods. 

Representative years were selected using a three-year rolling mean of daily rainfall records from 

the Skukuza weather station and associated availability of cloud-free images (Fig. S2.1, in 

Appendix S2).  
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Final image dates represent winter and summer ‘windows’ into low (1991-07-30; 1993-04-14), 

average (1984-08-27; 1987-03-13) and high (1998-08-18; 2000-04-09) rainfall conditions. 

Inherent sources of error were dealt with as follows: digital numbers were converted into 

surface reflectance units using the US Geological Survey’s (USGS) on demand interface for 

the Earth Resources Observation and Science’s (EROS) Centre Science Processing 

Architecture (ESPA Ordering Interface 2013); each band (excluding band 6) was geometrically 

and radiometrically calibrated to the Standard Terrain Correction (1T) level (Irish 2000) with a 

UTM WSG84 36S projection using GRASS (2014).  

Before calculating spectral variation, a correlogram (Wright 2016) and local Moran’s I 

measure of spatial autocorrelation (Hijmans 2015) were calculated for bands 1-5 and 7, 

revealing a non-stationary covariance structure, typical of remote sensing data (Wulder and 

Boots 2000; Propastin 2009). That is, bands were found to be significantly collinear (Fig. S2.2 

in Appendix S2) and spatially autocorrelated (Table S2.1 in Appendix S2). We removed the first 

source of error (inter-band collinearity) by transforming individual bands into principle 

components (PC) using the i.pca function in GRASS (2014) interfaced through R (R Core Team 

2013). Spatial autocorrelation (i.e. intra-band collinearity) was addressed through the use of 

GWR (discussed later).  

Once individual bands were transformed into PCs, the resulting eigenvalues (or loadings; 

summarised in Table S2.2 in Appendix S2) explained the proportion of variance accounted for 

by each PC across the different years. For example, a high PC1 loading suggests a large 

percentage of the variation in the landscape can be measured using only the first principle axis 

(Ringnér 2008). Conversely, a low PC1 loading suggests one axis rotation is not enough to 

account for all the variability in the landscape. The structure of the data, and in our case the 

landscape, is therefore more complex.  
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Exploratory results indicate the proportion of variance accounted for by PC1, for example, is 

generally higher in winter and lower rainfall periods compared to summer and higher rainfall 

periods (Fig. S2.3 in Appendix S2). This suggests season and rainfall are potentially important 

drivers of environmental complexity. To better understand environmental/landscape 

heterogeneity (Rocchini and Neteler 2012), we further calculated the textural variance, entropy 

and uniformity (ASM, Angular Second Moment) for each PC (1-6) using r.texture within a 

three by three pixel moving-window neighbourhood, as well as Shannon’s, Simpson’s and 

Rényi’s Entropy diversity indices and Pielou’s Evenness index using r.diversity (See Rocchini 

et al. 2013 and the GRASS 2014 reference manual for details about index formulas). 

 

2.2.2.2. Physical landscape variation 

Environmental heterogeneity depicted by spectral variation is then regressed by the variability 

of stable physical landscape properties. These are underlying properties of the landscape 

template which do not change over ~ 50 years, namely elevation, slope, aspect, flow direction, 

watershed area, potential surface wetness index and soil form, depth and clay content (Fig. 2.2). 

Kruger’s slope and aspect were calculated from a 5 m Digital Elevation Model (DEM) (Van 

Niekerk 2012) using r.slope.aspect in GRASS (2014); flow direction, watershed area (sink) and 

a surface wetness index (TCI, Topographic Convergence Index) using r.terraflow (GRASS 

2014). Soil form, depth and clay content were extracted from the Mpumalanga Province Natural 

Resources dataset (Wessels et al. 2001). We selected an uncorrelated subset of explanatory 

variables using the Variance Inflation Factor (VIF), which excludes highly correlated variables 

through a stepwise procedure (Naimi 2015). Flow direction, which was negatively correlated 

with aspect (-0.63) and soil clay content, which was positively correlated with soil form (0.67), 

both had higher VIF values and were therefore removed along with watershed area (VIF = 3.1).  
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Fig. 2.2: Stable physical landscape elements that do not change over a 50 year period, forming 

Kruger National Park’s physical landscape template: a) elevation, b) slope, c) aspect, d) 

watershed area, e) potential surface wetness index and f) soil form, g) soil depth and h) soil clay 

content).  

 

After these variables were removed, final VIF scores were all below 1.5 (Fig. S2.4 in Appendix 

S2). We continue with our analysis using elevation, aspect, slope, TCI, soil form and soil depth 

as our explanatory variables. As with spectral variation, we express their variability in the 

landscape in terms of both textural features measured as variance, entropy and uniformity 

(r.texture) as well as the same diversity indices (r.diversity) of properties (Rocchini et al. 2013), 

within a three by three moving window area (GRASS 2014). 
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2.2.2.3. Geographically Weighted Regression (GWR) 

The relationships between the resulting measures of variance for spectral and physical 

landscape properties were estimated using GWR (Gollini et al. 2015) for different seasons and 

rainfall conditions. We included season and rainfall because they could potentially affect 

vegetation structure, the intensity of disturbance (e.g. fires) and the distribution of large fauna 

(Chirima et al. 2012; Smith et al. 2013). The optimal bandwidth for each model was determined 

using the Akaike Information Criterion (AIC) with an adaptive bisquare bandwidth setting 

(Gollini et al. 2015). We compared model fit of the different variance measures using AIC and 

selected the ‘best’ measure to explore relationships further. Thereafter, we examined how GWR 

model results vary across winter and summer months of representative low (1991-1993), 

average (1984-1987) and high (1998-2000) rainfall periods using a multiple comparison test 

after Kruskal-Wallis (Giraudoux 2015) as well as an Analysis of Variance model (ANOVA). 

We then calculated contrasts for factor interactions to explore how seasonal contrasts of GWR 

coefficients differ between rainfall groups (de Rosario-Martinez 2015). Resulting local adjusted 

coefficients of determination (R2) were mapped to highlight the spatial variability of model 

performance against season and rainfall, and spatial non-stationarity was tested using Leung’s 

F3 statistic (Leung et al. 2000). 

 

2.2.2.4. Interpretation of GWR results in terms of landscape complexity and plant species 

richness 

The proportion of total variation in spectral response explained by physical landscape properties 

is captured by the R2 from GWR and is a measure of model agreement. The remaining, 

unexplained proportion (1-R2) therefore represents spectral variation that cannot be explained 

by physical landscape properties alone.  
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There are many dynamic landscape properties that could help explain this remaining variation 

in the landscape, for example fire, vegetation dynamics, herbivore distribution and human 

footprint. However, detailed records of these properties are rarely available. As an alternative, 

we interpret 1-R2 as a measure of landscape complexity, distinguishing the level of influence 

of dynamic landscape processes and stochastic disturbance events, from the underlying physical 

landscape template.  

We tested this theory by examining the degree to which landscape complexity explained 

local plant species richness. Woody plant species data were obtained from the historical surveys 

of Venter (1990), recently described by Kiker et al. (2014). These data contain detailed surveys 

of woody vegetation cover and composition subset to our study area (n = 692 sites, totalling 

115 species). A species accumulation curve (SAC) was computed (Oksanen et al. 2015) using 

the random method to find mean SAC and the number of species for all sample sites in our 

study area. Relationships between resulting species richness per site and landscape complexity 

were assessed using, again, GWR. We summarised GWR results and examined how parameter 

estimates vary with season (winter and summer) and rainfall (low, average and high conditions). 

Moreover, we qualify the level of influence exerted by dynamic drivers compared to stable 

physical landscape properties by mapping the cumulated difference of landscape complexity. 

We do this by summing the difference of 1-R2 values from 1984 until 2000 across the surface 

of Kruger. Results are summarised as surface trend maps indicating areas in the Kruger where 

the degree of complexity fluctuates, and thus possibly biodiversity, with changing seasonal and 

rainfall conditions. All regressions were run on a sample (n = 2586) of the original raster data.  
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Fig. 2.3: Boxplots assessing the location, dispersion, and symmetry or skewness of spectral 

variation, as measured by different indices, across different seasons and rainfall conditions: a) 

Raw Principle Components (PC) of Landsat bands 1-5 and 7 (Kruskal-Wallis �� (K-W ��) = 

30081.27, df = 5, P-value < 0.0001); b) PC Textural variance (K-W �� = 11420.06, df = 5, P -

value < 0.0001; c) PC Textural entropy (K-W �� = 12332.45, df = 5, P -value < 0.0001; d) PC 

Textural uniformity (K-W �� = 12189.02, df = 5, P -value < 0.0001; e) PC Shannon’s diversity 

(K-W �� = 10276.83, df = 5, P -value < 0.0001); f) PC Simpson’s diversity (K-W �� = 

13792.39, df = 5, P -value < 0.0001); g) PC Rényi’s diversity (K-W �� = 11715.88, df = 5, P -

value < 0.0001; h) PC Pielou’s evenness (K-W �� = 1637.187, df = 5, P -value < 0.0001). Red 

brackets indicate differences which are not significant according to the Kruskal-Wallis rank 

sum test (Giraudoux 2015). All other differences are significant. 
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2.3. RESULTS 

2.3.1. Spectral and physical landscape variation 

Box-and-whisker diagrams illustrate the shape of variation in spectral response of Landsat PCs 

across seasons and a rainfall gradient (Fig. 2.3). In general, dispersion of PC values tends to 

increase with increasing rainfall in winter months but decreases as rainfall increases in summer 

months (Fig. 2.3a). Textural measures of randomness (entropy, Fig. 2.3c) and its converse, 

uniformity (ASM, Fig. 2.3d), showed similar seasonal patterns i.e. winter entropy increased 

while summer entropy decreased and winter uniformity decreased while summer uniformity 

increased as rainfall increased. Diversity clearly increased as rainfall increased across both 

winter and summer months (Kruskal-Wallis ��= 13792.39, df = 5, P < 0.0001; Fig. 2.3e-f-g). 

Variability of physical landscape properties (elevation, slope, aspect, flow direction, watershed 

area, potential surface wetness index and soil form, depth and clay content) are unchanged by 

year or season.  

 

2.3.2. Geographically Weighted Regression (GWR) 

Models with raw PC values representing spectral variation (response variables) and raw 

physical landscape properties (explanatory variables) were consistently better able to balance 

model fit and complexity than other indices, as indicated by the notably lower AIC scores (Fig. 

S2.5 in Appendix S2). Therefore, we only examined the local relationships between the linear 

combination of spectral PC values and uncorrelated stable physical landscape properties 

further.  

GWR results show that relationships between spectral variation and Kruger’s physical 

landscape template changed with season and rainfall and were spatially diverse (Table S2.3 in 

Appendix S2). Leung et al.’s (2000) F3 test for spatial non-stationarity shows elevation, surface 

wetness and soil form estimates vary significantly over the region for all years (Table 2.1). 
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While aspect, slope and soil depth appear constant in some years but significantly variable in 

others (Table 2.1). The proportion of spectral variance captured by physical landscape 

properties, as described by R2, also varied within and between years (Fig. 2.4). A multiple 

comparison test after Kruskal-Wallis (Giraudoux 2015) indicated season and rainfall class both 

had a significant effect on R2 values (Kruskal-Wallis �� = 11951.46, df = 5, P-value < 0.0001).  

On the surface, GWR results show model fit (R2) generally increased from low to high rainfall 

(β = 0.06, t(36420) = 34.184, P < 0.001) and from winter to summer (β = 0.05, t(36420) = 

28.573, P < 0.001). However, when adding an interaction effect between season and rainfall, 

this result was reversed for summer months. That is, R2 values were significantly lower in 

higher rainfall summer months compared to lower rainfall winter months (β = -0.17, t(36420) 

= -73.479, P < 0.001). A contrast interaction test (de Rosario-Martinez 2015) confirmed R2 

seasonal contrasts differed significantly between rainfall groups: i.e. summer R2 low to high 

rainfall contrasts were 0.17 less than those in winter months (β = -0.174373, df = 1, SS = 46.149, 

F = 5399.2, P < 0.0001). Similarly low rainfall R2 winter to summer contrasts were 0.26 less 

than those for high rainfall periods (β = -0.259394, df = 2, SS = 106.16, F = 6210.2, P < 0.0001). 

 

Table 2.1: Non-stationarity of coefficient estimates of physical landscape variables in GWR 

after Leung et al. (2000) (See Table S2.3 in Appendix S2 for full results). 

 

1991 1984 1998 1993 1987 2000 

Aspect < 0.0001 0.5250 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Elevation 0.0013 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Slope < 0.0001 0.0843 0.0319 < 0.0001 < 0.0001 0.0105 

Surface wetness (TCI) 0.0007 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Soil form 0.0730 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0032 

Soil depth 0.6962 0.0004 0.0479 0.1467 0.0008 < 0.0001 
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Fig. 2.4: GWR R2 values for winter and summer months of representative low (1991-1993), 

average (1984-1987) and high (1998-2000) rainfall periods. Maps show the spatial 

heterogeneity in the proportion of spectral variance accounted for by physical landscape 

properties with season and rainfall (Kruskal-Wallis �� = 11951.46, df = 5, P -value < 2.2e-16). 

ANOVA results show model fit (R2) generally increased from low to high rainfall (1 to 3; β = 

0.06, t(36420) = 34.184, P < 0.001) and from winter to summer (a to b; β = 0.05, t(36420) = 

28.573, P < 0.001).  R2 values were significantly lower in higher rainfall summer months (b3) 

compared to lower rainfall winter months (a1) (β = -0.17, t(36420) = -73.479, P < 0.001). A 

contrast interaction test (de Rosario-Martinez 2015) showed R2 seasonal contrasts differed 

significantly between rainfall groups: i.e. summer R2 low (b1) to high rainfall (b3) contrasts 

were 0.17 less than those in winter months (a1 and a3) (β = -0.174373, df = 1, SS= 46.149, 

F=5399.2, P < 0.0001). Similarly, low rainfall R2 winter (a1) to summer (b1) contrasts were 

0.26 less than those for high rainfall periods (a3 and b3) (β = -0.259394, df = 2, SS = 106.16, F 

= 6210.2, P < 0.0001 



32 | P a g e  
 

2.3.3. Interpretation of GWR results in terms of landscape complexity and plant species 

richness 

GWR R2 results mapped over the spatial extent of our study area (Fig. 2.4) illustrates the degree 

to which model agreement differed spatially across winter and summer months of representative 

low (1991-1993), average (1984-1987) and high (1998-2000) rainfall periods. We interpret its 

inverse, 1-R2 (model disagreement), as the level of complexity in the landscape. GWR results 

show a significant proportion of the variance in plant species richness can be explained by our 

measure of landscape complexity (R2 values ranged from 0.70 to 0.78) (Table 2.2).  

 

Table 2.2: GWR results of plant species richness modelled as a function of model fit (R2). The 

first (Q1), second (Med) and third (Q3) order quartiles show the local variability of landscape 

complexity coefficient estimates. The inter-quartile range (IQR) summarise the range where 

50% of all coefficient estimate values fall. Significance values (P) show 1987 (P < 0.0001), 

1991(P = 0.0319) and 1993 (P < 0.0001) are significant. Leung et al.’s (2000) F statistic (F3) 

tests the significance (Fp) of the effect of spatial non-stationarity for each year’s coefficients 

using the numerator (nDF) and denominator degrees of freedom (dDF). 

 

 

Q1 Med Q3 IQR p adjR2 AICc nNN F3 nDF dDF Fp 

1991 -39.66 -2.68 32.20 -7.46 0.0319 0.76 5413 18 5.29 246 561 < 0.0001 

1984 -37.30 -1.34 27.40 -9.90 0.1340 0.71 5517 21 6.40 224 579 < 0.0001 

1998 -34.11 -3.85 25.78 -8.33 0.8725 0.70 5558 18 2.18 210 558 < 0.0001 

1993 -9.42 2.45 36.28 26.86 < 0.0001 0.78 5433 14 3.70 118 519 < 0.0001 

1987 -11.45 0.35 15.97 4.52 < 0.0001 0.74 5475 18 3.38 251 549 < 0.0001 

2000 -29.54 6.43 76.91 47.37 0.1805 0.75 5433 18 4.73 172 564 < 0.0001 

Model settings: gwr.basic (Kernel function = bisquare; adaptive bandwidth = number of 

nearest neighbours (nNN); regression points = same locations as observations; distance metric 

= Euclidean distance metric) (Gollini et al. 2015). 
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These results showed significant improvement over GWRs of raw physical landscape properties 

and raw surface reflectance PC values, which only accounted for 62% and 57% of the variance 

in plant species richness respectively (Table S2.4 in Appendix S2). There was a significant 

increase in landscape complexity associated with species richness in the years closest to sample 

collection dates ~ 1989 (1987: R2 = 0.74, median β = -2.68, F(1,691) = 21.36, P < 0.0001; 1993: 

R2 = 0.78, median β = 2.45, F(1,691) = 18.07, P < 0.0001). In contrast, a less significant 

decrease in landscape complexity was associated with species richness in 1991(R2 = 0.76, 

median β = 0.35, F(1,691) = 4.623, P = 0.0319).  Although, 1989 and 1993 both showed positive 

relationships, 1991 showed a slightly negative one. We propose this result may be confounded 

by the severe drought Kruger experienced in 1991/1992 (Zambatis and Biggs 1995). A map of 

the residuals for 1993 illustrates the spatial variability of this relationship (Fig. 2.5a). 

Surface trend maps indicate areas in the Kruger that change in terms of this complexity with 

changing seasonal and rainfall conditions. Green areas on the map show regions in Kruger in 

which our measure of landscape complexity increased from 1984 to 2000 (Fig. 2.5b). While in 

red areas our measure of landscape complexity decreased and in yellow areas it remained 

relatively unchanged (Fig. 2.5b).  
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Fig. 2.5: a) A map of the ‘raw’ residuals (observed - fitted) for 1993 illustrating the spatial 

variability of the relationship of species richness with landscape complexity. Regionally there 

is a significant increase in landscape complexity is associated with species richness in 1993 (R2 

= 0.78, median β = 2.45, F(1,691) = 18.07, P < 0.0001). b) Total accumulated difference of 

landscape complexity (GWR 1-R2) across low (1991-1993), average (1984-1987) and high 

(1998-2000) rainfall periods. Shades of green indicate areas that increase in landscape 

complexity, shades of red decrease in landscape complexity and shades of yellow remain 

unchanged from 1984-2000. 
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2.4. DISCUSSION 

In their meta-analysis, Field et al. (2009) found environmental heterogeneity to be an important 

driver of species richness. Remotely sensed spectral heterogeneity is recommended by several 

authors (Duro et al. 2007; Rocchini et al. 2010; Nagendra et al. 2013; Pettorelli et al. 2014b) 

as a proxy for environmental heterogeneity and the consequent rapid assessment of biodiversity 

properties. It stands to reason that, a more diverse spectral response will represent a more 

diverse landscape in that spectral heterogeneity will reflect the associated variation of 

environmental properties in the landscape (Stein et al. 2014).  However, we expect this 

relationship will be dynamic, changing across different and interactive space-time scales. We 

demonstrated this using Fotheringham et al.’s (2002) GWR technique with Landsat surface 

reflectance and stable physical landscape properties. By allowing relationships to vary over 

space, we were able to account for spatial non-stationarity and visualise the resulting patterns 

(Brunsdon et al. 1996).  

Results showed that the relationship between spectral heterogeneity and stable physical 

landscape properties is sensitive to season and rainfall condition. We therefore stress the 

importance that remote sensing studies be accompanied by locally concurrent field sampling 

data. Moreover, we showed that textural measures of entropy increased with rainfall in winter 

but decreased with rainfall in summer. While, textural measures of uniformity (ASM) also 

showed an inverse pattern of decreasing ASM with increasing rainfall in winter and increasing 

ASM with increasing rainfall in summer. We suggest these results are representative of both 1) 

true structural diversity in the landscape and 2) the limitations of remotely sensed Landsat data: 

1) we expected structural diversity to increase with rainfall up to a threshold where vegetation 

cover, for example, would reach an asymptote thereby decreasing structural entropy and 

increasing structural uniformity. However, 2) we also recognise that this outcome may affect 

what is ‘visible’ to the Landsat’s passive sensor. Under dense and extensive cover conditions, 
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this satellite is less able to detect under-canopy variability in the landscape. Prospective studies 

may wish to explore the use of active sensors like Lidar in future.  

Regionally, spectral diversity increased with increasing rainfall across both winter and 

summer months. Intuitively these results represent the increase in environmental diversity as 

water availability becomes less limiting. This is corroborated by our findings that the proportion 

of satellite surface reflectance variance captured by a single PC axis rotation, for example, was 

generally higher in winter and during lower rainfall periods as compared to summer and during 

higher rainfall periods. Locally, raw PC values representing spectral variation and raw physical 

landscape properties were consistently better able to balance model fit and complexity than 

other textural or diversity measures. This is consistent with the findings of Warren et al. (2014), 

who found spectral diversity yielded reasonable estimates of plant species richness using a 

simple Pearson correlation to measure linear relationship strength. Our results add a spatial 

component which proved spatial non-stationarity was statistically significant and highlights the 

importance of using a geographical approach when analysing environmental data (Leung et al. 

2000; Brunsdon et al. 2002).  

This was made further evident by the clear differences in the proportion of spectral variation 

captured by relatively stable physical landscape properties over space and time. We found that 

increasing summer rainfall reduces the explanatory power of stable physical landscape 

properties on environmental heterogeneity (as measured by Landsat spectral variation). We 

postulate that this general reduction in the explanatory power of models fitted to data from 

summer periods, and periods of high rainfall versus winter and lower rainfall periods, is 

indicative of dynamic environmental processes not captured by physical landscape properties. 

These dynamic processes are driven by season and rainfall and include, for example fire, 

vegetation dynamics, herbivore distribution, and human development. Under higher rainfall 
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conditions vegetation activity, for instance, is increased and herbivore density and distribution 

patterns will change in response.  

We hypothesised that the proportion of spectral variation unexplained by the underlying 

physical landscape template is representative of the level of landscape complexity. We tested 

this theory against plant species richness data and found a strong, significant relationship 

between landscape complexity and species richness. These findings show that indeed other 

processes than physical landscape properties shape environmental heterogeneity and 

biodiversity over space and time. However, empirical knowledge of dynamic processes is often 

not available for protected area managers, and even if accessible, is rarely spatially explicit or 

temporally continuous. Nevertheless, such knowledge remains central to understanding the 

functioning of natural systems and their effectual management as protected areas. Our approach 

provides a starting point by mapping the relative importance of stable physical landscape 

properties compared to other dynamic processes for environmental heterogeneity. We showed 

how dynamic processes move across the landscape over time and suggest that biodiversity 

monitoring programmes be designed to capture this variability. For example, Kruger’s annual 

dry-season herbivore counts may be missing important changes in distribution patterns driven 

by seasonal changes in landscape complexity (Martin et al. 2015). 

The cumulative difference of these changes highlight areas where relatively little change in 

landscape complexity has taken place between seasons (winter-summer) and rainfall (low-

average-high) conditions and represent comparatively stable landscapes. While those where 

change in landscape complexity has been consistent, represent more dynamic landscapes. 

Visually it appears basalt dominated areas in the east are generally becoming more complex 

than their granitic counterparts in the west. This is consistent with the findings of Colgan et al. 

(2012) who showed above-ground biomass production on basalts was driven largely by 

herbivore-fire interactions rather than soil properties themselves. In other words, basaltic areas 
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appear to be driven by more dynamic processes. This may also be partially due to the subtle 

east-west rainfall gradient in the park. Nevertheless, armed with these landscape complexity 

maps, protected area managers will have a blueprint to start disentangling the role of major 

ecosystem drivers. For example, are highly complex and diversifying landscapes largely driven 

by herbivore dynamics, disturbance events or management action? Park monitoring and 

research planning can be stratified using these ‘blueprints’ to begin answering these and other 

questions related to landscape complexity.  

Cressie et al. (2009) and Lechner et al. (2012) stress the importance of accounting for 

uncertainty in the analysis of complex ecological data. We highlighted here the importance of 

accounting for spatial structure in ecological data analysis but did not assess the influence of 

resolution scale on analysis results. In future studies we hope to examine these results against 

different pixel and moving-window sizes. How these results relate to intra-annual dynamics of 

land surface phenology in Kruger, is another interesting question for the future (Garonna et al. 

2014). 

 

2.5. CONCLUSION 

Despite the fact that ecological components and processes in the environment have an 

underlying spatial structure that is locally heterogeneous, ecological regression models often 

employ ‘global’ techniques which assume relationships are constant over space. Using GWR 

models that account for spatial variation and dependencies, we were able to provide local detail 

on where and when physical landscape properties drive environmental heterogeneity and how 

this relationship changes spatially with rainfall and season. We conclude that GWR is 

particularly valuable for ecological studies as emergent patterns are often influenced by 

processes interacting at different spatial as well as temporal scales (Hewitt et al. 2007). 
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The spatial arrangement and magnitude of model disagreement is proposed here as a measure 

of landscape complexity.  Areas where environmental heterogeneity is not explained by stable 

physical landscape properties are, instead, driven by unknown complex dynamic processes. 

Unfortunately, empirical data for these dynamic processes is not always available under limited 

park management resources. However, even if resources were not limiting, drivers are often 

unknown in the face of environmental complexity. Maps of landscape complexity can therefore 

be an effective tool for targeting monitoring and prioritization of research to further our 

understanding of the drivers of environmental heterogeneity and biodiversity.  
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ABSTRACT  

As an important bottom-up driver of ecosystem processes, rainfall is intrinsically linked to the 

dynamics of vegetation and species distributions through its effects on soil moisture content 

and surface water availability. Rainfall effects are thus spatially and temporally specific to 

different environmental role-players. Knowledge of its spatiotemporal pattern is therefore 

essential to understanding natural ecosystem flux and potential climate change effects. Climate 

change poses a serious threat to protected areas in particular, as they are often isolated in 

fragmented landscapes and confined within hard park boundaries. In consequence, a species’ 

natural movement response to resulting climate induced niche shifts is often obstructed. Long-

term, accurate and consistent climate monitoring data are therefore important resources for 

managers in large protected areas like the Kruger National Park (Kruger). In this paper we 

model local rainfall measurements as a function of global rainfall surfaces, elevation and 

distance to the Ocean using a Generalised Additive Mixed Effects Model to produce fine scale 

(1 km2) monthly rainfall surfaces from July 1981 to June 2015. Results show a clear seasonal 

cycle nested within an oscillating multi-decadal trend. Most noticeably, seasonality is shifting 

both temporally and spatially as rainfall moves outside of the typical dry/wet periods and areas. 

In addition, high rainfall seasons are generally receiving more rainfall while low rainfall seasons 

are receiving less. North-western regions of the park are experiencing more extreme annual 

rainfall differences, while far northern and southern regions show greater seasonality changes. 

The well described north-south and east-west rainfall gradient is still visible but the spatial 

complexity of this pattern is more pronounced than expected. Taken together, we show that 

Kruger’s spatiotemporal rainfall patterns are changing significantly in the short to medium 

term. The resulting raster dataset is made freely available to promote holistic ecosystem studies 

and support longer-term climate change research (http://dataknp.sanparks.org/sanparks/ 

metacat/judithk.111609.2/sanparks).  
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3.1. INTRODUCTION 

Rainfall plays a central role in a myriad of natural processes, including river health, the 

transportation of nutrients (Strauch 2013), soil moisture (Berry and Kulmatiski 2017), 

vegetation dynamics (Ekblom et al. 2012), fire regimes (Archibald et al. 2009), animal 

movement and distribution patterns (Seydack et al. 2012), and landscape heterogeneity 

(MacFadyen et al. 2016). Within protected areas these processes function together to safeguard 

ecosystem integrity, helping to ensure the survival of places like the Kruger National Park 

(Kruger) as strongholds of biological diversity, socio-economic wealth and protectorates of 

natural resources and other ecosystem services (SCBD 2008). The spatiotemporal patterns of 

rainfall are thus an important variable to include in any ecological study, especially in the face 

of current climate change predictions (Hitz and Smith 2004; Chapin et al. 2011). The 

Intergovernmental Panel on Climate Change’s (IPCC’s) recent projections warn of severe 

declines in renewable surface and ground water resources for the sub-tropics (IPCC 2014). 

South Africa (SA) in particular is projected to become progressively hotter and drier (DEA, 

2013), raising serious concerns for local protected area management agencies to respond (van 

Wilgen et al. 2016). These concerns stem from protected areas being especially vulnerable to 

the effects of climate change because they are often isolated in fragmented or bounded 

landscapes where species movement response is restricted (Hannah et al. 2007). Subtle changes 

to species (floral and/or faunal) composition and distribution dynamics in these natural systems 

can therefore act as early warning indicators of climate change effects (Garcia et al. 2014).  

Ecosystem level research, practiced at the scale of a protected area, can then be an important 

addition to global climate monitoring efforts if channelled through Long Term Ecological 

Research networks (Knapp et al. 2012). This type of research is often focussed around 

elucidating cause-and-effect relationships amongst various components of the ecosystem to 

anticipate potential state changes that may compromise system integrity (Pienaar 1977).  
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To do this effectively, reliable data on bottom-up substrates (e.g. topography, climate, geology, 

soils and vegetation) and top-down agents (e.g. fire and herbivory) are needed to discern 

undesirable change from natural ecosystem dynamics (Pickett et al. 2003; Venter et al. 2003). 

The need for robust, well documented and continuous long-term climate data is therefore crucial 

(Kemp et al. 2012). Long-term datasets make it possible, for example, to quantify the effects 

of past extreme climatic events on ecosystem dynamics (e.g. vegetation patterns) to provide 

insights into the potential effects of varying climatic conditions in the future.  

A large number of global climatological datasets have become available in recent years and 

are increasingly easy to access and use (see examples in Table S3.1 in Appendix S3). They are 

however modelled predictions of real-world climate, inherent with statistical bias and 

uncertainty (Muñoz et al. 2011; Kearney et al. 2014; Stoklosa et al. 2015). Moreover, the coarse 

resolutions at which these data are generated (e.g. 5 km CHIRPS; Table S3.1 in Appendix S3) 

are often not suitable for finer scale ecological research (Kearney et al. 2014). To overcome 

these limitations a number of bias correction (Haerter et al. 2015) and spatial interpolation 

methods have been developed (Wagner et al. 2012). Most common amongst these, especially 

for data sparse regions like Africa, is the use of ground-based measurements and environmental 

covariates to augment globally modelled climate surfaces (Plouffe et al. 2015; Verdin et al. 

2016). The importance of local long-term climate networks therefore needs to be more firmly 

recognised (van Wilgen et al. 2016). Since the effects of rainfall on ecosystem dynamics play 

out at different spatiotemporal scales local finer scale data will remain irreplaceable sources of 

information for both regional and global scale ecosystems research (Williams et al. 2007; Odiyo 

et al. 2015, MacFadyen et al. 2016). We illustrate this by providing a comprehensive analysis 

of regional (~ 20,000 km2), short to medium-term patterns and trends of local rainfall in Kruger 

from 1981 to 2015.  
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Although countless studies conducted in Kruger cite the importance of climate, specifically 

rainfall, many are restricted to using park-wide averages or nearest station estimates (Owen-

Smith and Ogutu 2003; Smit et al. 2013a; Trollope et al. 2014). We expect the dynamics of 

Kruger’s rainfall are more complex, varying at different spatiotemporal scales that are 

undetectable when using simple regional averages. As a consequence, the spatiotemporal range 

of potential rainfall effects could also be more dynamic and further reaching than previously 

studied. We try to answer some of these questions by i) assessing the temporal trends and spatial 

patterns of rainfall in Kruger over the last 34 years, ii) identify significant changes to the spatial 

rainfall patterns, and ultimately iii) make the resulting spatiotemporal regression surface 

products freely available for future research.  

 

3.2. METHODOLOGY 

3.2.1. Study Area 

Some of the world’s largest protected areas are found in African savannas (IUCN, UNEP-

WCMC, 2016). Large protected areas in these savannas, like Kruger, are important for the 

preservation of large scale intact environments and the conservation of diverse wildlife 

assemblages and extensive wilderness qualities (Cantú-Salazar and Gaston 2010). South Africa 

(SA) has a highly variable climate and pronounced rainfall seasonality, driven predominantly 

by sea surface temperatures, the effects of the El Niño Southern Oscillation (ENSO) - both its 

warm (El Niño) and cool (La Niña) phases and the Inter Tropical Convergence Zone (ITCZ) 

(Philippon et al. 2014; Dedekind et al. 2016; Favre et al. 2016). The displacement of ITCZ to 

the south of the equator during the austral summer produces the South Indian Convergence 

Zone which restricts most of SA to a summer rainfall region (Dedekind et al. 2016).  Kruger 

falls within a semi-arid zone which spans much of the central and north-eastern parts of SA 

(Rutherford and Westfall 1986; Trabucco and Zomer 2009).   
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On average, 84% of Kruger’s total annual rainfall is concentrated between the summer months 

of November and April (Zambatis 2003). Regionally, the area is split into two distinct climatic 

zones: Northern Arid Bushveld with 300-500 mm annual rainfall and Lowveld Bushveld with 

500-700 mm annual rainfall, roughly north and south of the Olifants River respectively (Fig. 

3.1; SAWS 1986). Locally the terrain is moderately undulating (100 to 500 MASL) with three 

higher-lying areas, namely the Shitshova range near Punda Maria in the north-west (650 MASL), 

Lebombo mountain range bordering Mozambique in the east (480 MASL) and Khandizwe, near 

Malelane in the south-west (840 MASL; Fig. 3.1). Here updrafts associated with higher elevation 

increase rainfall and with it soil leaching, thereby producing sandier more nutrient poor soils. 

For the rest of Kruger, rainfall is generally accepted to increase from north to south and from 

east to west as altitudes increase closer to the Drakensburg escarpment (See Venter et al. 2003 

for a full account of local climate).  

 

3.2.2. Data 

3.2.2.1. Local climate station records 

Kruger has a long history of weather and rainfall monitoring, started by early naturalists in 1903 

(Zambatis, 2003). Park rangers were later responsible for recording in situ rainfall 

measurements from 1920, which were augmented with six formal weather stations erected in 

partnership with the South African Weather Services (SAWS) in 1961 (Joubert, 2007). These 

stations included Skukuza, Pretoriuskop, Satara, Letaba, Shingwedzi and Punda Maria (Fig. 

3.1).  
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Fig. 3.1: General climatic zones of the Kruger National Park. Inset: Kruger National Park is 

situated in the north-east corner of South Africa between latitudes -25.5289°S to -22.3279°S 

and longitudes 30.8884°E to 32.0332°E. Long-term rainfall monitoring stations include: PAF- 

Pafuri Section; PAP- Pafuri Police; PUN- Punda Maria; VLA- Vlakeplaas; SHI- Shingwedzi; 

SHA- Shangoni; WOO- Woodlands; MOO- Mooiplaas; MAH- Mahangeni; PHA- 

Phalaborawa; LET- Letaba; OLT- Olifants; HOU- Houtboschrand; KFI- Kingfisherspruit; 

NWA- Nwanetsi; TSH- Thokwane; SKZ- Skukuza; PRE- Pretoiuskop; OSA- Lower Sabie; 

STO- Stolznek; MAL- Malelane; KRO- Crocodile Bridge. 
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More stations were gradually added, culminating in 43 recording stations located across the 

park and providing a good representative sample of Kruger’s different climatic zones, habitats 

and geographic range (Fig. 3.1). Apart from a number of sanctioned station closures over the 

years, missing data records threaten to compromise the quality and reliability of Kruger’s 

climate station data. From the original 43 stations in Kruger we filtered for those stations with 

<10% missing daily rainfall records, resulting in 23 stations with a reliable data collection 

history from 1981-2015 (Fig. 3.1). We obtained additional rainfall records for 39 stations 

outside of Kruger, within 100 km of the boundary, with a similar rate of <10% missing daily 

records (SAWS 2012). Another 12 stations from Kruger and 47 from SAWS, containing >10% 

but <20% missing values, were combined for cross-validation. In total we collated daily rainfall 

records from July 1981 to June 2015 for 62 rain gauges for model training and 59 rain gauges 

for model validation (total n=121). Rainfall records were reclassified into rainfall years (01 July 

to 30 June) rather than calendar years to capture a full dry and wet season per rain year i.e. in 

Kruger rainfall is generally restricted to December, January and February months, with little 

falling in June or July (Fig. S3.1 in Appendix S3). 

 

3.2.2.2. Covariates: CHIRPS, DEM and DIOC 

Daily and monthly CHIRPS GeoTIFF data were downloaded for the period July 1981 to June 

2015 from the Climate Hazards Group (GHCN) data portal (Funk et al. 2015). CHIRPS is a 

gridded global rainfall surface product, which combines local station data with satellite rainfall 

estimates to produce a moderate resolution (~ 5 km), long-term precipitation dataset (Funk et 

al. 2015). Being a global product, Kruger’s rain gauges are poorly represented in the GHCN’s 

network of climate stations i.e. only three stations inside Kruger’s boundary and another two 

SAWS stations within 2 km of the park boundary are represented in GHCN (Menne et al. 2012). 

Resulting daily (n=12418) and monthly (n=408) CHIRPS GeoTIFFs were then stacked and the 
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CHIRPS rainfall values extracted for each climate station locality (Hijmans, 2015). Ground 

elevation values were also extracted from a 5m Digital Elevation Model (DEM) (Van Niekerk, 

2012) for the same 62 sites and the straight-line distance to the Indian Ocean coastline (DIOC) 

calculated. DEM and DIOC were included here because the combined effects of elevation and 

distance to the warm Agulhas current are expected to increase rainfall. More specifically, as the 

warm inland air meets the cooler sea air and the orographic effect of topography forces this air 

upwards, moisture condenses forming rain (Aalto et al. 2013). 

 

3.2.3. Statistical analyses 

3.2.3.1. General rainfall trends 

Mean annual rainfall (MAR) summaries from 1910 to 2015 were extracted from Kruger’s 

rainfall records, from which the long-term annual mean (541 mm) was calculated, along with a 

three-year moving average. These summaries were derived from a variable number of stations 

across Kruger for different years, for example MAR in 1910 was calculated using 1 station 

while 2015 comprised 22 stations. A continuous Morlet Wavelet Transform of mean monthly 

rainfall from July 1981 to June 2015 was then preformed to identify temporal frequency and 

variance patterns in Kruger’s rainfall (Chan 2000). Wavelet analysis is an established tool for 

climate research because of its ability to decompose non-stationary signals, like rainfall, into 

time-frequency representations using the wavelet power spectrum (de Jongh et al. 2006; Unal 

et al. 2012). The spectrum depicts the relative strengths (variance on z-axis) of rainfall 

frequencies (months on y-axis) smoothed across time steps (years on x-axis) to deliver a contour 

image illustrating rainfall periodicities (Chan 2000). 
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3.2.3.2. Spatiotemporal regression surfaces 

Missing daily rainfall records were first filled using a nonparametric imputation procedure with 

random forests (Stekhoven, 2013). In this way missing values from our 62 stations were filled 

using a random forest model with the observed daily rainfall measurements and related CHIRPS 

records (see Stekhoven and Buehlmann 2012 for full methodological detail). This process 

yields an ‘out-of-bag’ error estimate, for which our data had a 0.001% error rate expressed as a 

normalized root mean squared error (NRMSE) of rainfall in millimetres. The filled data series 

was subsequently summed by year and month (year-month) to produce monthly summaries 

(n=12) for each station (n=62) and year (n=34). A full 1 km2 spatiotemporal grid (raster) was 

then generated over Kruger for 12 months by 34 years (n=408) and the associated monthly 

CHIRPS, DEM and DIOC values extracted. Our response variable (rainfall) was therefore 

known at some dispersed localities (n=62) across the study area for the study period (n=408) 

while our explanatory variables (CHIRPS, DEM and DIOC) were known over the full 

spatiotemporal domain (Kilibarda et al. 2014). A correlation matrix confirmed no serious 

problems of collinearity between covariates that could cause overinflated standard errors (Fig. 

S3.2 in Appendix S3). Importantly however, CHIRPS, DEM and DIOC are all spatial covariates 

and therefore may be collinear because of their geographic position, thus making them 

inherently spatially autocorrelated (see latitude and longitude entries in Fig. S3.2 in Appendix 

S3). We accounted for both spatial and temporal autocorrelation by including a nested rational 

quadratic correlation structure (corRatio) which captured the dependence between observations 

close in space (u) and nested in time (t) (Hefley et al. 2017). Rainfall and thus its relationship 

with our covariates are also expected to be non-stationary.  
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Fig. 3.2: Long-term patterns of a) annual and b) monthly rainfall (mm) of Kruger climate 

records: a) Deviation of rainfall from long-term annual mean for the past 105 years. X-axis 

labels represent climatic years (e.g. 1910 = July 1910 to June 1911). Weak to very strong El 

Niño years are marked with vertical bars below the zero line while weak to strong La Niña 

years are marked with vertical blue bars extending above the zero line according to Huang et 

al. (2017). b) Continuous Morlet Wavelet Transform of monthly mean rainfall from July 1981 

to June 2015. The top panel shows rainfall (mm) over time with a smoothed spline (trend) over 

20 years (f = 0.5; nyrs = 20). The bottom panel shows a filled contour plot of the continuous 

wavelet transform. Colours represent the power (Power2) of the signal in regions of interest. 

Dark colours depict more dominant cycles or concentrated powers compared to lighter colours. 

Any information falling inside the hatched region is outside the “cone of influence” and should 

be ignored (Bunn et al. 2016).  
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We accounted for this non-stationarity using a General Additive Mixed Effects Model 

(GAMM) which allows the relationship of our measured rainfall and CHIRPS to change 

smoothly across continuous levels of DEM and DIOC (spatially) and time (seasonally and 

annually).  In this way our measured rainfall response is explained by its non-linear relationship 

with CHIRPS, DEM and DIOC over space, seasonal cycle (within year) and longer term trend 

(between years), including both fixed and random effects (Zuur et al. 2009). 

 

������� = � + ��(�ℎ������) + ��(����) + ��(�����) + ��(���ℎ�) + ��(�����)

+ ��(�����, ���ℎ�) + ��(�ℎ������, ����) + ��(�ℎ������, ������)
+ ��(�ℎ������, �����) + ��(�ℎ������, ���ℎ�) + ���  

[1] 

 

Specifically, we used different Cubic Regression Spline (CRS) smoothing bases to estimate 

rain (rainfall in mm) at location u (u = 1 to 62) and time t (t = 1 to 408). Firstly, a standard CRS 

[f1] was used for chirps (CHIRPS), dem (DEM) and dioc (DIOC). A cyclic CRS [f2] was then 

used for mnth (month) with 12 pre-assigned knots, and again a standard CRS [f3] for year 

(rainfall year) with 34 pre-assigned knots. The random effects caused by interactions between 

variables were estimated using tensor product interaction terms, namely [f4] for year and mnth 

with CRS and cyclic CRS smoothers respectively; [f5] for chirps, dem and dioc with Gaussian 

process (kriging model) smoothers which account for the non-linear effect DEM and DIOC 

have on the contribution of CHIRPS to the fitted rainfall response; and finally [f6] for chirps, 

year and mnth with a thin plate regression spline, cyclic CRS and CRS smoothers to account 

for seasonal cycles and longer term trends. ε represents i.i.d random variables expressed as N(0, 

σ2Λ) with Λ describing the residual autocorrelation nested within time t and location u using 

corRatio (Wood 2006).  
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A variety of model structures were tested until ultimately the model with the lowest Akaike 

Information Criterion (AIC) was selected as the best predictor of Kruger’s spatiotemporal 

rainfall patterns (Zuur et al. 2009). Described above [1], predictions generated from this model 

were based on the full 1 km2 spatiotemporal grid of covariates for Kruger. Cross-validation of 

results was performed using a Pearson's product-moment correlation of predicted monthly 

rainfall surface values with ground measurements from 59 stations held back for model 

validation. The Root Mean Squared Error (RMSE) is also reported, providing a good overall 

measure of model performance (Aalto et al. 2013). Final outputs were saved as 408 interpolated 

1 km2 surface grids describing Kruger’s monthly rainfall patterns from 1981-2015. All analyses 

were conducted using statistical software R (version 3.1.3; R Core Team 2016), and associated 

R packages referenced in the text. 

 

3.2.3.3. Spatiotemporal variations in rainfall 

We described the seasonal (within-year) and longer term (between years) trends in the resulting 

rainfall surface layers using another GAMM with spline interactions. Specifically, the within 

year seasonal effect (t1= 1 to 12 months) of our predicted monthly rainfall was allowed to vary 

smoothly with a between year trend effect (t2= 1 to 34 years) over space (u) (Wood 2006, Zuur 

et al. 2009; Van Rij et al. 2015) as follows:  

 

�������� = � + ��(���ℎ�) + ��(�����) + ��(���ℎ�, �����) + ��(��, ��)

+ ��(��, ��, ���ℎ�) + ��(��, ��, �����) + ��� 
[2] 

 

Where ����� is the GAMM [1] estimated measurement of rainfall at location u (latitude y and 

longitude x) and time t. The seasonal cycle mnth and overall trend year were modelled as f1, a 

cyclic CRS and f2, a standard CRS with 12 and 34 knots. f3, the tensor interaction thereof was 
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included to reflect how rainfall responds to different combinations of month and year in 

comparison to the overall trend and seasonal cycle in f1 and f2 (Wood, 2006). A thin plate CRS 

f4, of the x, y coordinates at location u, was also included to examine the distribution of monthly 

rainfall across Kruger’s landscape. The amount by which this pattern differs over time was 

analysed using f5, a tensor interaction of x, y coordinates at location u with mnth and year at 

time t. 

 

3.3. RESULTS 

3.3.1. General rainfall trends 

As expected, Kruger’s rainfall patterns are cyclical in nature, varying seasonally from winter to 

summer and oscillating between wet and dry cycles (Fig. 3.2). Upon inspection of annual 

rainfall deviations from long-term means for the past 105 years, wet and dry cycles appear to 

occur about every 5 years (Fig. 3.2a). From Fig. 3.2a it appears these high and low rainfall 

periods generally match La Niña and El Niño years (see Fig. S3.3 in Appendix S3 for Kruger’s 

MAR in relation to ENSO events). Patterns become clearer with a continuous Morlet Wavelet 

Transform of mean monthly rainfall from July 1981 to June 2015 (Fig. 3.2b). Results show the 

most significant pattern persists at an inter-annual scale of 10-16 months (Fig. 3.2b). Short term 

noise dominates monthly scale patterns with high rainfall years blurring wet and dry season 

extents. For example, the extreme rainfall year 1999/2000, during which Kruger experienced 

severe flooding, shows significantly concentrated power (darker shades) regions already from 

the third month through to the twentieth (Fig. 3.2b). With the occurrence of less extreme rainfall 

events over the last 10 years, inter-annual rainfall patterns are clearer. However, the power band 

between 10-16 months does appear to be widening slightly, suggesting seasonality may be 

shifting.  
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Fig. 3.3: Results of GAMM, illustrating the varying magnitudes of the contribution (effect) of 

different covariates to the fitted rainfall response, centred on zero where appropriate (dotted 

line). Solid lines represent the estimated smoothing for a) CHIRPS; b) rainfall month (season) 

and c) year (long-term trend); d) elevation; and e) distance to the Indian Ocean coastline. The 

influence of elevation; distance to the coastline; season and year, on the contribution of CHIRPS 

to the fitted rainfall response are displayed in panels g); h); i); and f) respectively. Shaded areas 

depict the 95% point-wise confidence bands. The different shades depict these confidence 

bands for selected f) years 86/87/88/91/92/95/96/99/00/05; g) DEM values 

200/300/400/500/600/700/800/1000/1200/1500 MASL; h) months 1989-8/9/10/11/12 and 1990-

1/2/3/4/5/6 and; i) distances to the coast 100/120/140/160/180/ 250/300/350/380/400 km. 
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A significant 4-5 year cycle (48-60 months) persists from 1997/1998 until 2001/2002 along 

with a 12-15 year cycle (144-176 months) from about 1998/1999 until 2005/2006. The 12-15 

year cycle is however outside of the wavelet plot’s “cone of influence” and therefore requires 

more data to interpret correctly (Fig. 3.2b ; Bunn et al. 2016). The spline smoothed trend line 

suggests no clear long term trend is visible from 1981 to 2015 (Fig. 3.2b). 

 

3.3.2. Spatiotemporal regression surfaces 

Model selection was based on AIC ranks, where the model with the lowest AIC was considered 

the best model of Kruger’s rainfall (See [1] for selected GAMM equation and Fig. S3.4 in 

Appendix S3 for model diagnostics). The non-linear trend of time and space with CHIRPS, 

DEM and DIOC and a temporally nested spatial autocorrelation structure explained 73% of the 

deviance (R2) in Kruger’s monthly rainfall (Table S3.2 in Appendix S3). The contribution of 

CHIRPS, DEM and DIOC were significantly non-linear (P < 0.001) with all estimated degrees 

of freedom (edf) > 8.0, thus precluding the use of standard linear regression techniques (Zuur 

et al. 2009; Table S3.2 in Appendix S3). The smoothed seasonal and longer term trend effects 

were also significant (P < 0.001; Table S3.2 in Appendix S3). CHIRPS was strongly positively 

related to measured rainfall (Fig. 3.3a), while the effects of DEM were more significant at 

higher altitudes falling outside of Kruger’s altitudinal range of 200 – 840 MASL (Fig. 3.3d). DIOC 

elicited an unclear effect on rainfall (Fig. 3.3e) but its interaction effect on CHIRPS’ 

contribution to rainfall response was significant (P = 0.005; Fig. 3.3h), as was that of DEM (P 

< 0.001; Fig. 3.3g). In other words, the relationship of CHIRPS with station measured rainfall 

varied significantly as a function of elevation and distance to the coastline.  
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Fig. 3.4: Examples of monthly rainfall surfaces predicted from GAMM results on a full 1 km2 

spatiotemporal grid of covariates. Panel a) shows rainfall patterns of drought conditions during 

rain-year 1991 (i.e. July 1991 to June 1992); b) shows rainfall patterns of abundant rain 

conditions during rain-year 1999 (i.e. July 1999 to June 2000; See Animation S3.1 in Appendix 

S3 for full animation of results). 
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A strong seasonal cycle was clearly visible (Fig. 3.3b) with a more variable longer term trend 

showing decadal fluctuations in rainfall response (Fig. 3.3c). The non-linear effects of CHIRPS 

also varied significantly with season (P = 0.025; Fig. 3.3f) and year (P < 0.001; Fig. 3.3i). 

Predicted rainfall surfaces, using GAMM [1] and the full 1 km2 spatiotemporal grid of 

associated covariates, showed visible spatiotemporal changes to seasonal and annual rainfall 

(Fig. 3.4; see Animation S3.1 in Appendix S3 for full animated results). Cross-validation of 

these regression surfaces against 59 model training stations (n=7645) confirmed predictions 

were accurate overall (R2 = 0.78, t = 107.5, df = 7643, P < 0.001) with an RMSE error of 19.99 

mm per year. The R2 and RMSE did however vary over time, with higher rainfall years 

generally exhibiting smaller R2 variations and greater RMSE variations (Fig. S3.5 in Appendix 

S3). 

 

3.3.3. Spatiotemporal variations in rainfall 

There exists a clear seasonal cycle (P < 0.001, edf: 10; Fig. 3.5a) with strong evidence of longer 

term patterns that vary significantly over 10 and 20 year cycles, making it difficult to interpret 

a general overall trend (P < 0.001, edf = 9; Fig. 3.5b). The interaction of rainfall year and month 

was significant (P < 0.001; edf = 90) and showed patterns of extreme rainfall conditions (Fig. 

3.5c). In fact taking a ruler to Fig. 3.5c, beginning between August (8) and September (9), one 

could almost draw a perfect diagonal of high rainfall period moving later in the season until 

about April (4) 2007. Periods with earlier rainfall appear in sync with documented La Niña 

events while the El Niño link to lower rainfall periods is less clear (Fig. 3.5c and Fig. S3.3 in 

Appendix S3).  
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Fig. 3.5: Visualisation of GAMM results indicating the a) seasonal cycle of low (below dotted 

line) and high (above dotted line) rainfall months; b) Long-term trend in rainfall with oscillating 

high and low rainfall periods; c) contour plot of the partial nonlinear interactions of rainfall year 

and month showing the amount by which the fitted monthly rainfall is adjusted from the overall 

trend and seasonal cycle for any combination of month and year. Strong El Niño years are 

marked with _ below the year label and strong La Niña years with ¯ above year on the x-axis; 

d) perspective plot of the interaction effect of longitude (x) and latitude (y) on rainfall response; 

e) partial contour plots of latitude (south to north) and longitude (west to east) tensor product 

interaction terms showing the amount by which the fitted monthly rainfall is adjusted from the 

overall trend and seasonal cycle from south to north (i, iii) and west to east (ii, iv). 
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Rainfall response also differed significantly (P < 0.001, edf = 29) across space, with the effect 

of location (x, y) being significantly non-linear (Table S3.3 in Appendix S3) as rainfall varied 

from North to South and West to East (Fig. 3.5d). Rainfall was highest in the far South-West 

and lowest in the mid North-Western parts of Kruger (Fig. 3.5d). These patterns however 

changed annually and seasonally (Fig. 3.5e). Distinct periods of high rainfall were visibly more 

pronounced in the South compared to the North (Fig. 3.5e-i and iii). Similarly, higher rainfall 

periods were more pronounced in the West compared to those experienced in the East (Fig. 

3.5e-ii and iv) (see Table S3.3 in Appendix S3 for a full description of model results). These 

results suggest more localised or regional changes may dominate Kruger’s rainfall dynamics 

than previously studied. 

 

3.4. DISCUSSION 

A recent assessment by the IPCC rated Africa as having a “high and significant” risk of climate-

change, and thus should expect severe water resource constraints in the near future (IPCC, 

2014). This desiccation is further supported by Chen and Chen (2013) and Rubel et al. (2017) 

in their reassessments of Köppen’s (1930) global climate classification for the period 1901 to 

2010, which shows much of Kruger becoming drier. Adding to these results we found a more 

noticeable spatiotemporal change in the short to medium-term seasonal cycles of low-high 

rainfall, rather than a clear increasing or decreasing trend. Our findings are supported by a recent 

larger scale assessment of climate change across all South African National Parks (SANParks) 

by van Wilgen et al. (2016), who found increased rainfall variability in parks to the East. 

Similarly, they found no significant annual trend in Kruger’s rainfall but suggest an increase in 

seasonality with longer dry periods (van Wilgen et al. 2016).  At a finer scale we found this 

shift to be spatiotemporally dynamic.  
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Fig. 3.5c illustrates the seasonal shifts in rainfall patterns as they are affected by strong La Niña 

events. Philippon et al. (2014) found similar patterns for Southern Africa as vegetation 

greenness (NDVI) was dampened during El Niño and increased during La Niña events. Fig. 

3.5d shows the distribution of rainfall across the Park from West (e.g. Pretoriouskop) to East 

(Mozambique border) and from South (e.g. Malelane) to North (e.g. Pafuri). As described by 

Gertenbach (1980) and Zambatis (2003), the more southern latitudes generally receive higher 

rainfall, as do the more western longitudes. However, Fig. 3.5d suggests this spatial pattern is 

clearly more complex than can be adequately accounted for by regional averaging of the past. 

Moreover, these spatial patterns are also continually changing with both high and low rainfall 

periods lengthening or shortening, and/or shifting outside of recognised wet/dry season 

windows over the short to medium term (Fig. 3.5e).  For example, the Northern latitudes have 

gone through extreme wet, dry, wet cycles in comparison to the South from 1981 to 2015 (Fig. 

3.5e-i). This pattern is mirrored in the Western longitudes (Fig. 3.5e-ii), suggesting the far 

North-West of Kruger is undergoing significant spatiotemporal rainfall changes over the short 

to medium term. 

A strong seasonal shift is also apparent in the west, where October (early season) rainfall is 

generally increasing while June (mid-dry season) is decreasing (Fig. 3.5e-iv). Similarly, in the 

far north and south of Kruger, summer rainfall is generally increasing while winter rainfall is 

decreasing (Fig. 3.5e-iii). In contrast, Kruger and Nxumalo (2017) analysed the historical 

rainfall trends in SA from 1921-2015 and found no significant trends in seasonal rainfall totals 

for our area. They did however find a significant downward trend in total annual rainfall for the 

Northern and Southern regions of Kruger, although this signal was not significant for individual 

stations in the area (Kruger and Nxumalo 2017). Our results suggest that these linear averages 

conceal seasonal and spatial rainfall trends at the local level in Kruger. If wetter seasons and 

areas are becoming wetter while drier seasons and areas are becoming drier, as seen in Figs. 
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3.5c; 3.5e-i; 3.5e-ii; 3.5e-ii and 3.5e-iv, park-wide averages would indeed obscure these 

changes. Taken together these shifts in extremes could lead to an increased risk of droughts or 

floods (Pohl et al. 2017), like the floods experienced in Kruger in 2000 and 2012 (Knight and 

Evans 2017).  

Though these spatiotemporal changes may obscure broad scale trends (e.g. Kruger and 

Nxumalo 2017; van Wilgen et al. 2016), they will continue to have significant effects on 

ecosystem processes like species population dynamics and fire. As a result, they should form 

an important component for management planning.  For example, in understanding these 

spatiotemporal dynamics, park management can better explore the effects of different climate 

change forecast scenarios, by examining the environmental response to past extreme climatic 

events. The severe drought of 1991/1992 for example had significant effects on woody and 

herbaceous plant species composition and consequently predator-prey dynamics, as well as a 

negative effect on river geomorphic diversity (Heritage and van Niekerk 1995; Viljoen 1995; 

Zambatis and Biggs 1995). Similarly, the large Sabie River flood in February 2000 changed 

river geomorphology and associated riparian vegetation and species distribution patterns 

(Parsons et al. 2006). Future studies might consider including the new high-resolution (1 km2) 

global cloud cover product described by Wilson and Jetz (2016). This new dataset combines 

Moderate Resolution Imaging Spectroradiometer (MODIS) imagery from 2000-2014 to derive 

long-term cloud-cover dynamics aimed at improving spatial autocorrelation errors, typical of 

interpolated climate data, towards a better spatiotemporal understanding of global biodiversity 

and ecosystem properties (Wilson and Jetz 2016). 

Rainfall is indisputably a significant driver of numerous bottom-up and top-down drivers of 

biodiversity in protected areas (Garcia et al. 2014). It is strongly associated with vegetation 

dynamics and thus ungulate population dynamics (Owen-Smith and Ogutu 2003; Dunham et 

al. 2004), predator densities and demography (Celesia et al. 2010) and disease outbreaks (e.g. 
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malaria, Colón-González et al. 2016). Reductions in rainfall can have severe implications for 

the provision and management of artificial water, which in itself may prove to have far-reaching 

impacts (Smit 2013). In light of the landscape scale changes we found, research and monitoring 

in Kruger will need to become more spatiotemporally dynamic with climate considered more 

as a multiscale driver than a general stratification template.  

 

3.5. CONCLUSION 

In Kruger, the importance of rainfall monitoring was stressed as far back as 1901, which is 

reflected in the current research objectives describing rainfall as a major factor effecting 

biodiversity (SANParks 2008). Despite its obvious importance, funds for inventorying and 

long-term monitoring are increasingly restricted as focus shifts to other conservation priorities 

(e.g. anti-poaching). Amplified by the ‘publish-or-perish’ mentality and the need for rapid data 

collection and analysis, the time-cost-benefit of maintaining long-term in situ monitoring 

programs continues to wax and wane (Sarewitz 2016). However as we have shown, local rain 

gauge observations in combination with satellite derived rainfall estimates, can both 

supplement global products for local finer scales studies as well as potentially improve the 

accuracies of global assessments. To support these initiatives, we provide our data as an open 

source gridded rainfall surface dataset for Kruger from 1981-2015 to encourage the 

development of a better understanding of rainfall-driven system response patterns 

(http://dataknp.sanparks.org/sanparks/metacat/judithk.111609.2/sanparks). 

In light of projected climate change impacts, protected areas in particular may become 

increasingly susceptible as hard park boundaries act as physical barriers to animals seeking to 

move in response to bioclimatic range shifts. Without adaptive conservation strategies and 

climate-change conscious spatial planning, these systems may ultimately transform into 

undesirable states as a consequence of altered species dynamics. Since the effects of altered 
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climatic conditions will be landscape and species specific, studies of local climate change 

patterns need to be spatiotemporally explicit. Rainfall for example, will act as a driver of change 

at multiple scales and should be assessed as such when used to make management decisions. 
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ABSTRACT 

Aim: African elephants are ecosystem engineers. As such their long-term patterns of distribution 

and abundance (i.e. space-use intensity) will influence ecosystem structure and function. We 

elucidate these patterns by analysing the spatiotemporal dynamics of an increasing elephant 

population in relation to key ecological drivers: rainfall, distance to major rivers and time since last 

fire. In doing so, we unveil population level resource selection functions underlying elephant space-

use intensity, and identify significant changes to long-term patterns of density and group-type (bull 

vs. herd) probabilities. 

Location: Kruger National Park, South Africa 

Methods: Using almost three decades of census records (1985-2012), we applied Multiple Point 

Process Models to assess the influence of rainfall, rivers and fire in shaping elephant space-use. In 

addition, significant changes in long-term patterns of elephant density and group-type were 

identified using kernel density estimates and the spatially-varying probabilities of encountering bull 

vs. herd groups. 

Results: Bull and herd groups are no longer clearly segregated and available empty-space has 

become limited. Bull and herd elephants have dichotomous resource selection functions, in that 

bulls concentrate in areas receiving lower rainfall but more frequent fires while herds concentrate 

in higher rainfall areas experiencing less frequent fires. Both bull and herd groups concentrate closer 

to major rivers, emphasizing rivers as important spatial drivers. Overall, densities increased most 

significantly closer to rivers and in areas experiencing fewer fires. Fire was also a strong agent of 

group-type change, as the probability of finding bulls, contrary to herds, significantly increased as 

fire return periods shortened.  

Main conclusions: Elephant distribution and abundance patterns have homogenised in response to 

increased space limitations, with group-specific, fire-driven patterns emerging in the distribution of 

bull and herd groups. These results can be used to manage elephant space-use through establishing 

possible refuge areas and developing empirical elephant-impact research in future.  
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4.1. INTRODUCTION 

African elephants (Loxodonta africana) are ecosystem engineers that alter and create habitats 

as they select for preferred resources in the landscape (Pringle 2008; Ripple et al. 2015). Their 

role in shaping the structure and function of habitats is therefore a central research theme for 

Southern African states where elephant populations are thriving (Kerley et al. 2008; IUCN 

2015). The disparity between states in terms of elephant conservation management is however 

very broad, even in the face of heightened concerns over increased elephant poaching and 

illegal trade (Wittemyer et al. 2014; IUCN 2015; IUCN 2016; MIKE 2016).  For example, as 

Central Africa fights to protect elephants from extinction, protected areas in Southern Africa 

struggle to balance the conservation of this iconic species against their potentially damaging 

effects to the environment and other species (Kerley et al. 2008). The Kruger National Park 

(Kruger) in South Africa is one such protected area, with elephant numbers rising from ~10 

animals in 1905 to over 17 000 in 2015 (Ferreira et al. 2017). As these numbers continue to 

grow, questions persist about the effects of high elephant densities on integrated biodiversity 

outcomes (Ferreira et al. 2012; Ferreira et al. 2017). Key concerns include changes to 

vegetation structure, associated species diversity and distribution patterns, system processes 

such as fire regimes, and the exacerbation of potential human-animal conflicts (Kerley et al. 

2008; Scholes and Mennel 2008; SANParks 2008; Ferreira et al. 2012; Rutina and Moe 2014). 

Understanding the long-term distribution dynamics of elephants is a fundamental component 

for elephant conservation management strategies that aim to address these concerns.   

Over the years studies conducted on Kruger’s elephants have helped develop much of 

today’s general understanding of elephant distribution dynamics and their role in the ecosystem 

(e.g. van Aarde et al. 1999; Grainger et al. 2005; Codron et al. 2006; de Knegt et al. 2011; 

Asner and Levick 2012). Despite this cache of knowledge, Kruger’s new elephant management 

plan (Ferreira et al. 2012) distinguishes gaps in our understanding of the population level 
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drivers of elephant distribution and abundance patterns. Ferreira et al. (2012) strongly recognise 

the complexity of elephant conservation and call for biogeographical research into possible 

mechanisms and drivers of elephant distribution and abundance in Kruger. Dubbed space-use 

intensity, the patterns of elephant distribution and abundance are described as an expression of 

an elephant’s response to key resources, as well as anthropogenic and natural disturbance events 

(de Knegt et al. 2011). Moreover, elephant foraging behaviour and associated distribution 

patterns are known to be sexually dimorphic (Stokke and du Toit 2002; Smit et al. 2007; de 

Knegt et al. 2011). This simply means bull and mixed herd groups will use space differently as 

a result of different social or habitat cues (Ruckstuhl 2007). Elephant bull and herd groups are 

therefore expected to have varied responses to the spatial arrangement of key resources, 

disturbances in the landscape and the relative positions of other elephant groups.  

Establishing key landscape drivers of the dimorphism (bull vs. herd) in elephant space-use 

intensity is important for developing resource selection functions that may guide future 

management actions (Ferreira et al. 2012; MacFadyen et al. 2013). In Kruger, key drivers may 

include rainfall variability (Birkett et al. 2012), surface water availability (Chamaillé-Jammes 

et al. 2007; Loarie et al. 2009), vegetation phenology (Young et al. 2009), topography and 

landscape heterogeneity (Grainger et al. 2005; Murwira and Skidmore 2005). Significant 

disturbance events may include elephant culling operations between 1966 and 1994 (Whyte 

2001), the erection of more than 400 artificial water points from 1946 until 1995 (Smit 2013) 

and fire (Smit et al. 2013b, van Wilgen et al. 2014). Using a biogeographical approach, we 

study broad scale distribution and abundance patterns of elephants in Kruger from 1985-2012, 

in relation to the patterns of possible drivers. We posit that in distinguishing significant changes 

to these long-term patterns, we may determine where elephant impacts to shared habitats and 

associated species may potentially be most significant (Grainger et al. 2005; Valeix et al. 2011).  

Ultimately this should help focus research into the more empirical effects of high elephant 
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densities in confined areas. Our overall aim is therefore to examine the long-term changes to 

sexually dimorphic gradients of elephant space-use and identify underlying resource selection 

functions. Using almost three decades of elephant population data we investigate how the 

densities of bull versus mixed herd groups relate to changes in various environmental 

conditions, namely rainfall, distance to major rivers and fire frequency or return intervals. The 

influence of rainfall, rivers and fire in shaping elephant space-use is assessed using a Multiple 

Point Process Model (MPPM; Baddeley et al. 2015). Together with MPPM, we also diagnosed 

significant changes in long-term elephant distribution and abundance and group-type 

dominance patterns using kernel density estimates and the spatially-varying probabilities of 

encountering bull vs. herd groups. Specifically, we investigated i) what spatial processes govern 

the assembly of elephant bull versus elephant herd animals (elephant resource selection 

function), while controlling for density increase over time; ii) significant changes to long-term 

elephant distribution and abundance patterns (regardless of group-type) and; iii) significant 

changes to long-term elephant group-type distribution patterns (spatial probabilities of 

encountering bull versus herd elephants in the landscape).  

 

4.2. MATERIAL AND METHODS 

4.2.1. Study area 

Kruger is South Africa’s largest protected area (~ 20,000 km2), located in the North-East of the 

country, bordering Zimbabwe and Mozambique. Falling within the savanna biome, Kruger is 

bounded by the Limpopo River in the North and the Crocodile River in the South. The area 

receives summer rainfall (long-term mean of 542 mm) which generally decreases from south 

to north and slightly increases from east to west (Gertenbach 1980). Temperatures are sub-

tropical, ranging from 26.4 °C in summer (December - March) to 17.8 °C in winter (June - 

August) (Zambatis 2006). Historical elephant records begin with approximately 10 animals 
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recorded in 1905 (Pienaar et al. 1966), followed by an exponential increase in numbers from 

1977 to 2015 (Fig. 4.1a) culminating in over 17 000 animals (Ferreira et al. 2017). 

 

4.2.2. Data collation 

4.2.2.1. Elephant records 

Elephant population data have been collected annually in Kruger since 1962 (Pienaar et al. 

1966), using aerial census techniques described in full by Whyte (2001) and later by Ferreira et 

al. (2017). In summary, helicopter counts were conducted annually between July and August 

for the whole park. Importantly, all results reported here are therefore representative of the 

winter distribution and abundance patterns of elephants in Kruger. We recognize that these 

patterns will vary seasonally (Codron et al. 2006; van Aarde et al. 2008), but since elephants 

utilise woody plants more heavily in these drier winter months (Codron et al. 2006; Thomas et 

al. 2008) data from this time period may be more relevant to understanding elephant impacts 

in future. We collated these census records from 1985 to 2012 (SANParks 2016) as point 

localities (x, y) georeferenced to Universal Transverse Mercator (UTM) zone 36 South, World 

Geodetic System 1984 (WGS84). Each point is characterized by the census year, elephant group 

type (bulls or mixed herd) and total number of elephants in each group (Fig. 4.1b and Animation 

S4.1 in Appendix S4). The resulting dataset represents mark-weighted localities of bull and 

mixed herd groups from 1985-2012 (group points n = 35117, individual animals n = 276306, 

years n = 28). From these we created a hierarchical data frame (hyperframe) containing 28 

separate point pattern data frames for each year marked by group type and weighted by the total 

number of animals in each group (functions 1 – 3 in Table S4.1 in Appendix S4; Baddeley et al. 

2015). 
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Fig. 4.1: Elephant populations in the Kruger National Park (KNP) from 1985-2012. Panel (a): 

Elephant population growth from 1905 to 2012 (solid line), with numbers of animals culled or 

translocated from 1966-2003, and carcasses recorded by the Convention on International Trade 

in Endangered Species of Wild Fauna and Flora (CITES) programme for Monitoring the Illegal 

Killing of Elephants (MIKE) from 2002-2015 (dashed lines; CITES 2016). Grey dotted lines 

with [] markers represent MIKE records of all elephant carcasses for Southern Africa, while 

those marked with [] represent MIKE records of illegally killed elephants in Southern Africa 

(MIKE 2016). The equation in grey-text on the top-right shows the exponential trend for 

increasing elephant numbers from 1977-2015 (y = 6093.9e0.0308x; R2 = 0.9211). Years marked 

in blue on the y-axis, represent the moratorium on large-scale culling operations (1995), and 

the start of KNP’s artificial water-point closure program (1997; Whyte 2001; SANParks 2016). 

Panel (b): Elephant population maps for selected years in KNP: 1985, 1994, 2003 and 2012 

(see Animation S1 for all years). 
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All point patterns and subsequent covariates were rescaled from UTM meters to kilometres to 

avoid singularity errors and simplify the interpretation of graphs (function 4 in Table S4.1 in 

Appendix S4). While our aim was to explain the natural variability in winter distribution and 

abundance patterns of elephants, we accept that some variability may in part be due to 

measurement error or sampling variation (Baddeley et al. 2015). However, we assume these 

effects to be negligible since the census methodology has remained unchanged since 1985 and 

considering elephants are highly mobile animals any small locational errors will be of little 

consequence.  

 

4.2.2.2. Rainfall and distance to rivers 

Rivers and rainfall are known to influence elephant movement and distribution response at 

different scales (Grainger et al. 2005; Chamaillé-Jammes et al. 2007; de Knegt et al. 2009).We 

therefore selected distance to all major rivers and annual rainfall as key spatial covariates of 

Kruger’s elephant distribution and abundance patterns (Fig. 4.2a). Annual precipitation data 

(CHIRPS) were collated from the Climate Hazards Group data portal for the period 1983-2012 

(Funk et al. 2015), these data were processed and stored as array entries in the hyperframe 

already containing the individual marked point patterns (functions 17, 19, 18 and 23 in Table 

S4.1 in Appendix S4). A three-year moving mean was then calculated for each year to capture 

the influence of not only the current but the preceding three years rainfall on vegetation 

resources and ultimately elephant distribution patterns (Birkett et al. 2012; Garstang et al. 

2014). We used a three-year moving average to represent potentially longer term rainfall effects 

since we did not expect the winter distribution and abundance patterns of elephants to respond 

strongly to rainfall received in only a single preceding summer season.  
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Fig. 4.2: Long-term mean annual rainfall and fire return intervals with major rivers in the 

Kruger National Park. Panel (a) Mean annual rainfall after Zambatis (2003) and Panel (b) Fire 

return intervals after Smit et al. (2013b) displayed in increments of standard deviation in the 

number of years since the last fire. 

 



77 | P a g e  
 

Our distance to rivers covariate was created using all major rivers (i.e. third order and higher), 

which are more likely to hold permanent water and support riparian vegetation favoured by 

elephants (Cullum and Rogers 2011). These rivers were imported as a data frame of spatial 

lines and converted into line segment patterns ultimately forming a distance to major rivers 

surface which was added as a function class to our hyperframe (functions 24, 10 and 11 in Table 

S4.1 in Appendix S4). 

 

4.2.2.3. Fire return interval 

The synergistic relationship between elephants and fire is well documented, i.e. fire stimulates 

elephant foraging activities while intensive browsing by elephants followed by fires can 

increase tree mortality rates (Dublin et al. McGlade, 1990; Shannon et al. 2011). In African 

savannas, the separate and compound effects of elephants and fire can therefore alter habitat 

composition and structure to the point where an ecosystem state may change, for example from 

a woodland to a grassland state (Dublin 1990; Asner et al. 2015; Levick et al. 2015). Fire return 

interval was therefore added to test whether longer or shorter fire return intervals had any effect 

on the point patterns of elephants in Kruger. Return intervals were calculated from Kruger’s 

burn-scar geodatabase, which has polygon records of known fires from 1941 until the present 

(see Smit et al. 2013b and Govender et al. 2012). We overlaid all burn scar polygons from 

1941-2012 and converted the resulting polygon attributes to a binary rasterstack (0 = no burn; 

1= burn) (functions 20 and 17 in Table S4.1 in Appendix S4). A moving fire return table was 

computed by iteratively counting the intervals between fires for each pixel from 1941-2012 

(Fig. 4.2b; Smit et al. 2013b). The fire return intervals were then added to the hyperframe of 

elephant point patterns as annual pixel image objects (functions 3 and 23 in Table S4.1 in 

Appendix S4).  
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4.2.3. Analysis 

4.2.3.1. Elephant point patterns 

Prior to running any regression analyses we tested whether the data violated standard statistical 

assumptions of homogeneity and stationarity. Furthermore, a Monte Carlo test of spatial 

segregation, an inhomogeneous empty-space function and a standardised form of the 

inhomogeneous cross-type L function, with border correction and a random labelling 

simulation expression was used to determine whether bulls and herd groups be treated 

differently in proceeding models (functions 8 and 9 in Table S4.1 in Appendix S4). 

 

4.2.3.2. Elephant resource selection 

We first investigated the spatial processes that may govern the assembly of elephant bull versus 

mixed herds in winter using the aforementioned spatial covariates: rainfall, distances to major 

rivers and fire return interval (i.e. higher/longer return intervals = fewer fires). To evaluate the 

influence of key resources, while still accounting for unknown random variability, we used a 

mixed-effects point process model for multiple point patterns (MPPM). MPPMs are similar in 

structure and output to generalized linear models. The key difference however is that the 

response variable is a series of point patterns of which the intensity is a function of different 

covariates (Baddeley et al. 2015). This means our response variable is essentially the spatial 

distribution of elephant densities from 1985-2012. Time since 1985 was included to control for 

the confounding effects increased densities would have on detecting general elephant resource 

selection functions. Distance to rivers, rainfall and fire return interval were included as fixed 

effects representing observable spatial covariates that may account for known variability in our 

point patterns (Baddeley et al. 2015). However, we also acknowledge the existence of random 

effects that are unobserved and will likely produce random or unknown variability in our point 

pattern processes (Baddeley et al. 2015). We therefore included census year as a random 
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variable to represent those unknown annual effects not accounted for by our covariates. Our 

mixed-effects point process model (function 12 in Table S4.1 in Appendix S4) was then fitted 

simultaneously to all point patterns using the following formula: 

 

λ(u)n = exp(β0 + mbhβ1S(u)n + mbhβ2R(u)n + mbhβ3F(u)n + mbhβ4Y(u)n + αn)   [1] 

 

 

where λ(u)n is the elephant point pattern (or space-use) intensity function for each year n (1985-

2012), β0 is the intercept, β1; β2; β3 and β4 are coefficients to be estimated, and S(u); R(u); F(u) 

and Y(u) are the effects of surface rainfall as a three-year moving average, distance to rivers, 

fire return interval and number of years from the start of the data record (1985) at location u 

and year n respectively. These fixed effects were conditioned upon elephant group type, i.e. 

points classified as bull mb or mixed herd mh elephant groups. Random effects αn were included 

to account for unknown variability amongst years within each group type. With the above 

model specifications, the intensity of elephant space-use [λ(u)n] was thus allowed to vary as a 

function of the average amount of rainfall received in the preceding 3 years (i.e. the three-year 

moving average), distance to major rivers, fire return interval and number of years since 1985, 

for each year. The response was also allowed to vary annually by group type (bull versus herd).  

Due to the large sample size (n = 35117 group points, df = 276306 total animals and denDf 

= 1596369 residual degrees of freedom i.e. the denominator estimated during MPPM using 

standard kernel density estimation techniques) it is important to consider the potential for the 

“p-value problem” to affect our MPPM results (Lin et al. 2013). Results are therefore 

interpreted in the context of the magnitude of the effect size rather than significance alone (Lin 

et al. 2013). Consequently, effect size was calculated using the above formula [1], where the 

intercept value β0 represents the estimated logarithmic intensity of elephants per km2 [λ(u)n] 

excluding all covariate effects (i.e. if covariate values were zero). The standard deviation is the 
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deviation of λ(u)n caused by annual random effects [αn]. The coefficient values β1-4 are thus the 

logarithmic factor by which λ(u)n would increase or decrease should the covariate value 

increase or decrease by one unit. Model validation was performed using an analysis of deviance 

(ANOVA) for MPPM and a residual K-function (i.e. goodness-of-fit test) to access model 

accuracy according to Baddeley et al. (2015) (functions 13 and 14 in Table S4.1 in Appendix 

S4).  

  

4.2.3.3. Elephant space-use intensity change 

Changes to long-term elephant distribution and abundance patterns in Kruger from 1985-2012 

were estimated as follows: (a) Elephant density was first calculated using a kernel smoothed 

intensity function for each point pattern (n=28) with a 5 km bandwidth (σ) and Diggle’s edge 

correction (function 16 in Table S4.1 in Appendix S4). We chose 5 km as a bandwidth as this 

represents half the distance an elephant would be expected to travel in a day (de Knegt et al. 

2011). Diggle’s edge correction was used to minimise the bias of the park boundary edge effect 

in our analysis (Baddeley et al. 2015). (b) Significant changes to these long-term density 

patterns were then identified using the kernel density estimates, which were stacked and 

indexed by time to detect significant Breaks in the Seasonality and Trend (BFAST) of elephant 

density (functions 17, 21, 22 and 24 in Table S4.1 in Appendix S4; Verbesselt et al. 2010; 

DeVries et al. 2015). BFAST is a time-series change detection method originally developed for 

remotely sensed time series products (Verbesselt et al. 2012). Changes to Kruger’s elephant 

density patterns were thus assessed by comparing historical (1985-1997) and current patterns 

(1998-2012) using the function bfmSpatial (function 25 Table S4.1 in Appendix S4; Dutrieux 

et al. 2014). Historical and current subsets were simply chosen as the half-way mark in our data 

record history (i.e. 1997/1998). Changes detected were then mapped to illustrate areas 

experiencing significantly higher or lower densities of elephants in the past 14 years (1998-
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2012) compared to the previous 14 years (1985-1997). (c) The areal proportions of grouped 

distance to rivers (11 discrete distance classes) and fire return period classes (9 discrete classes) 

were then calculated for different magnitude categories of density change from (b) and the 

relative proportions of these significant changes analysed (function 20 in Table S4.1 in 

Appendix S4). The effects of distance to major rivers and fire frequency on the magnitude of 

change in overall elephant density were then assessed using a Pearson's chi-squared test of 

independence (function 26 in Table S4.1 in Appendix S4).  

 

4.2.3.4. Elephant group-type distribution change 

Changes in distribution patterns of elephant bull groups vs elephant herd groups were estimated 

in a similar three-step process described above. However, instead of elephant density (2.3.2.a), 

group-type probabilities were calculated for each year as the (a) spatially-varying probabilities 

of encountering bull versus herd groups, which were mapped using a relative risk function 

(function 15 in Table S1; De Lucca et al. 2013; Baddeley et al. 2015). In this way the probability 

of encountering a specific group type (i.e. bull or herd) was computed using a smoothing 

bandwidth (σ2) of 5 km and Diggle’s edge correction function as described above (Baddeley et 

al. 2015). 

All analyses were carried out in R version 3.3.1 (R Core Team, 2016) with all R packages 

and functions used, and references thereof, described in Table S1. Larger computations were 

performed using the Rhasatsha High Performance Computing system at Stellenbosch 

University (Rhasatsha HPC 2016).  
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4.3. RESULTS 

4.3.1. Elephant point patterns 

A Monte Carlo test confirmed our initial hypothesis of significant sexual segregation: point 

clustering (Ripley's Inhomogeneous K-function) differed each year by group-type (T= 0.3354, 

P < 0.05; Baddeley et al. 2015; function 5 and 6 in Table S4.1 in Appendix S4). Results of the 

border-corrected inhomogeneous empty-space function similarly showed highly variable 

clustering distances across years (function 7 in Table S4.1 and Fig. S4.1 in Appendix S4). That 

is, elephants were significantly clustered (P < 0.05) in earlier years with observed empty-space 

distances below the theoretical curve of random distribution. More recent years (e.g. 2009-

2012) however, showed no significant evidence of clustering (Fig. S4.1 in Appendix S4), which 

can possibly be attributed to the increased elephant density. The cross-type L function further 

illustrates how the level of this segregation has changed between years (Fig. S4.2 in Appendix 

S4), leading us to differentiate sexes in the proceeding model.  

 

4.3.2. Elephant resource selection 

Controlling for density increase over time, bull and mixed herd elephant groups differed in their 

response to rainfall and fire but responded similarly to the effects of increased distance to rivers 

(Table 4.1). Both bull and mixed herds concentrated closer to major rivers, although this effect 

was stronger in herd groups (33% less animals 1 km further from rivers) compared to bulls 

(11% less animals 1 km further from rivers). Bull densities were significantly lower in areas 

receiving higher rainfall (26% less bulls in areas with 100 mm more rain) while herd densities 

in such areas did not change from the mean (Table 4.1). Bull densities were also lower in areas 

experiencing longer fire return intervals (3% less bulls with a 5 year fire return interval) while 

herd densities were significantly higher in areas experiencing fewer fires (10% more herds with 

a 5 year fire return interval). As expected the densities of both groups have significantly 
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increased over time, with the difference of 10 years resulting in 7% more bulls and 39% more 

herd elephants (Table 4.1). Random annual effects accounted for 7.8% of the remaining 

variability in elephant herd and bull densities from 1985-2012. Although model fit did fluctuate 

from year to year, these differences were not significant indicating good model fit for bulls, χ2 

= 24830, df = 24775, P = 0.401 and herds, χ2 = 23673, df = 23618, P = 0.399 overall. 

 

Table 4.1: Results of the mixed-effects multiple point process model. Linking herd and bull 

group intensity of space-use to environmental variables. The intercept value represents the 

linear predictor or the estimated logarithmic intensity of elephants per km2 excluding covariate 

effects (i.e. if covariate values were zero). The standard deviation (StdDev) represents the 

deviation of the linear predictor caused by annual random effects. The coefficient values 

represent the logarithmic factor by which this linear predictor would increase/decrease should 

the covariate value increase/decrease by 1.0.  

 

Random effects [Formula: ~1 | year]        

StdDev: 0.022      

Relative StdDev: 7.76      

Fixed effects 
 Value Std.Error t-value p-value Effect 

(Intercept) -1.264 0.050 -25.16 <0.001  

3yr moving rainfall - Bulls -0.003 0.000 -25.81 <0.001 -26% +100 

Distance to rivers - Bulls -0.119 0.015 -7.73 <0.001 -11% +1 

Moving fire intervals - Bulls -0.006 0.002 -2.71 0.007 -3% +5 

No. of years since 1985 - Bulls 0.007 0.003 2.58 0.016 +7% +10 

3yr moving rainfall - Herd 0.003 0.000 39.40 <0.001 0% +100 

Distance to rivers - Herd -0.281 0.018 -15.76 <0.001 -33% +1 

Moving fire intervals - Herd 0.025 0.002 10.59 <0.001 +10% +5 

No. of years since 1985 - Herd 0.026 0.002 12.44 <0.001 +39% +10 

ANOVA         
 

Effect: +100 mm rainfall  |  +1 km from major river  |  +5 years to fire return interval  |  +10 years from record start 1985 
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4.3.3. Elephant space-use intensity change 

The increasing trend in elephant densities is spatially variable (Animation S4.2 in Appendix S4). 

The location and timing of significant changes (P < 0.05) to elephant density from 1998-2012 

compared to 1985-1997 is likewise spatiotemporally dynamic (Fig. 4.3). The strongest increase 

in density occurred in 2003 (Fig. 4.3a), which was a below average rainfall year that 

consequently also experienced relatively few fires (i.e. 1000 km2 burned vs long-term average 

of ~ 3000 km2; Fig. S4.3 in Appendix S4). The overall magnitude and direction of these changes, 

shown in Fig. 4.3b, illustrate those areas experiencing significant decreases to long-term 

elephant density patterns in lighter shades of blue; and those experiencing significant increases 

in darker shades of red on the map. Areal proportions of the above density changes, classified 

within zones of different fire frequencies and distances to river classes, revealed varied 

relationships (Fig. 4.4; Fig. S4.4 in Appendix S4). Fire was identified as a significant agent of 

density change, χ² (16, 27) = 73.501, p < 0.0001 (Fig. 4.4a). More specifically, areas 

experiencing higher fire frequencies (intervals of ≤ 2 years between fires depicted by darker 

shades of red in Fig. 4.4a) were generally associated with decreased elephant densities, more 

so than would be expected by chance (Fig. 4.4a; Fig. S4.4a in Appendix S4). In contrast, areas 

experiencing intermediate to low fire frequencies (intervals of ≥ 5 years between fires depicted 

by lighter shades of red in Fig. 4.4a) were associated with increased densities (Fig. 4.4a; Fig. 

S4.4a in Appendix S4). Areas undergoing significant increases in elephant densities were found 

overwhelmingly closer to rivers, χ² (20, 33) = 29.834, p = 0.073 (Fig. 4.4b; darker shades of 

blue). Looking at this in more detail, the largest increases occurred closer to rivers (< 2 km), 

while the largest decreases happened further than > 5 km away from major rivers (Fig. S4.4b 

in Appendix S4).  
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Fig. 4.3: Results of Breaks for Additive Seasonal and Trend (BFAST) (Verbesselt et al. 2010) 

analysis, showing the location and timing of significant change to elephant density patterns 

across Kruger from 1985-2012 (BFAST, P < 0.05). Panel a) shows the timing of the most 

significant changes (breakpoints) with NS representing no significant change. Panel b) shows 

the magnitude and direction of (positive-darker red or negative-lighter blue) change.  



86 | P a g e  
 

 

 

Fig. 4.4: Pearson residuals plots from chi-squared test of independence showing the relation 

between fire return periods, distance to major rivers and significant changes to elephant density 

and group-type probability during the period 1998-2012 compared to the period 1985-1997. 

The y-axis represents the standardised difference between the observed and expected values of 

elephant densities. Negative and positive values therefore depict greater decreases or increases 

than would be expected by chance. The different panels show a) the significant effect of fire as 

an agent of density change; b) the marginally significant effect distance to major rivers have on 

density change. Although, areas undergoing significant increases were overwhelmingly closer 

to rivers (darker blues); c) the significant effect of fire as an agent of group-type probability 

change, with shorter fire return intervals (darker reds) dominating those areas showing an 

increase in the probability of encountering bull elephants; d) the significant effect distance to 

major rivers has on group-type probability change with bull elephants increasing closer to rivers 

(darker blues), and herd elephants generally increasing further from major rivers (lighter blues). 
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4.3.4. Elephant group-type distribution change 

Both bull and mixed herd elephant groups showed clear changes to their long-term patterns of 

distribution over time (Animation S4.3 in Appendix S4). Herd dominated areas have expanded 

in comparison to bull dominated areas (Fig. 4.5). The probability of encountering herd elephants 

has generally increased north of the Olifants River, except for small pockets south of the 

Shingwedzi River and into the Punda Maria sandveld where the probability of encountering a 

bull group has significantly (P < 0.05) increased instead (Fig. 4.5). Bull elephants also showed 

a significant (P < 0.05) increase in occurrence probability in the Pretoriuskop area. Similarly, 

the areal proportions of the above significant changes to long-term group-type probabilities 

showed fire was a significant agent of change, χ² (16, 27) = 134.52, p < 0.0001 (Fig. 4.4c). In 

general the probability of encountering bull elephants increased in areas with higher fire 

frequencies (darker shades of red in Fig. 4.4c; Fig. S4.4c in Appendix S4). Herd elephants 

appeared to do the same but at intermediate frequencies of fires (lighter shades of red in Fig. 

4.4c; Fig. S4.4c in Appendix S4). Group-type probabilities also shifted significantly in relation 

to major river systems, χ² (20, 33) = 46.069, p < 0.001 (Fig. 4.4d). That is, areas experiencing 

a significant increase in the probability of encountering bull groups were clearly closer to rivers 

(darker shades of blue in Fig. 4.4d), whereas those experiencing a significant increase in herd 

groups were generally found further from major rivers (lighter shades of blue in Fig. 4.4d). 

There also appears to be a general increasing trend in the probability of finding herd elephants 

further away from rivers compared to bull elephants (Fig. 4.4d; Fig. S4.4d in Appendix S4). 

That is, the probability of encountering herds > 3 km from major rivers (lighter shades of blue 

in Fig. 4.4d) has increased more than can be explained by chance. 
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Fig. 4.5: Significant change in spatially-varying probabilities of bulls versus mixed herd 

elephant groups in the period 1985-2012 (BFAST, P < 0.05). Darker blue areas on the map 

represent those areas that are becoming increasing bull dominated. Darker red areas represent 

those areas that are becoming increasingly dominated by mixed herd groups. 
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4.4. DISCUSSION 

4.4.1. Elephant point patterns 

Ferreira et al. (2017) report an exponential increase in elephant numbers since 1995 while also 

suggesting that Kruger’s elephant growth rate may be slowing in response to less intensive 

elephant management practises implemented after 1994. From a biogeographic perspective 

however, our results show Kruger’s elephant distribution patterns have homogenised with a 

clear decrease in available empty-space from 2000 (Fig. S4.1 in Appendix S4). In addition, 

while bull and mixed herd groups were initially significantly segregated, this pattern changed 

from 2006 onwards (Fig. S4.2 in Appendix S4). As a result, groups are no longer showing 

significant levels of segregation and little clustering behaviour from distances > 4 km (Fig. S4.2 

in Appendix S4). Since Shannon et al. (2008) describe this type of segregation as a natural 

behavioural response to social stimuli (e.g. breeding) and/or different habitat requirements of 

male vs. female body sizes, we suggest the implications of this change may be far-reaching. 

We argue that bull and mixed herd groups are being forced into closer proximity as empty-

space constricts, and may no longer be able to select for preferred resources and maintain a 

more natural heterogeneous distribution pattern as prescribed by Ferreira et al. (2012). 

Anthropogenic factors like Kruger’s perimeter fence may also have exacerbated this 

homogenization effect. Grant et al. (2008) for example, outline how fences can affect elephant 

ecology and population dynamics by restricting natural movement functions triggered by 

ecosystem cues. In this way, increasing populations may place more pressure on shared habitats 

and resources that may ultimately compromise other cohort species (Owen-Smith et al. 2006). 

This concept is supported by numerous cross-country (e.g. Loarie et al. 2009) and local scale 

studies (e.g. Vanak et al. 2010), and thus requires careful consideration by managers.  
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4.4.2. Elephant resource selection 

Recognising the need for a holistic landscape management approach to elephant conservation 

in Kruger, Ferreira et al. (2017) call for a deeper understanding of the spatiotemporal response 

of elephants to resource heterogeneity. Using point pattern analysis our study reveals divergent 

resource selection functions for bull vs. mixed-herd groups. Both bull and herd elephants were 

found in higher concentrations closer to rivers (Table 4.1), a response driven by an elephant’s 

preference for natural water sources and optimal foraging of riparian vegetation (Gaylard 2015). 

However, the stronger response of herds to river distance suggests they may be more dependent 

on riverine habitats (Stokke and du Toit 2002) for shelter (Smit et al. 2007) and potentially to 

fulfil browse requirements during the dry season (Shannon et al. 2013). This effect is less 

apparent in bulls as they roam over larger areas (Stokke and du Toit 2002) and will reportedly 

switch their diets to grass earlier in the season (Shannon et al. 2013).  

Coupled to this, we expected rainfall driven vegetation dynamics or ancillary increases to 

surface water availability to emerge as important drivers of elephant distribution and 

abundance, as has been suggested by Chamaillé-Jammes et al. (2007) and Loarie et al. (2009). 

However we found this relationship only held for bulls and not herds. We speculate this may 

be an artefact of the winter view of elephant distribution and abundance patterns derived from 

July/August census data. Elephants may therefore not be responding strongly to rainfall while 

in their dry-season winter home ranges. Unfortunately, data is not available for the summer 

distribution patterns of elephants in Kruger. Interestingly though, bulls had a strong negative 

response to rainfall, which could be explained by bull elephant’s dependence on artificial water 

sources described by Smit et al. (2007) and later by Gaylard (2015).  

Fire return period also influenced elephant distribution patterns, as mixed herds selected for 

areas with lengthier fire return intervals, whereas bulls selected areas with shorter fire return 

intervals, albeit less clearly (Table 4.1). Bulls, being more dependent on grass during the winter 
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months (Smit et al. 2007; Shannon et al. 2013), may respond to more frequent fires as they 

improve grass quality (Trollope 1996). This supports a cause and effect synergy between fires 

and elephants as seen by Dublin et al. (1990) and others (Shannon et al. 2011). In an outdoor 

laboratory like Kruger however, it is difficult to discern the directionality of cause and response, 

i.e. whether fire is driving elephant distribution and abundance (cause) or if the distribution and 

abundance of elephants is forming and/or maintaining fire regimes (effect) or both (Asner et al. 

2015; Levick et al. 2015). In other words, are higher fire frequencies changing elephant space-

use intensity or are changing elephant distribution and abundance patterns shifting fire 

frequencies as they alter tree-grass dynamics? Dublin et al.’s (1990) work in the Serengeti 

highlighted both elephants and fire as mechanisms of multiple stable states in their ecosystem. 

In their study, fire was identified as the catalyst of vegetation change from woodland to 

grassland but that elephants were the maintenance agents of this state change (Dublin et al. 

1990). In Kruger, decision makers can use the resource selection functions presented here to 

glimpse potential future elephant distribution and abundance scenarios under different climate 

change projections, available surface water changes and/or fire regime shifts. Results may also 

be used to guide management decisions surrounding possible space-use manipulation 

experiments described by Ferreira et al. (2012). 

 

4.4.3. Elephant space-use intensity change 

Long-term distribution and abundance patterns of elephants in Kruger have without question 

changed from 1985-2012 (Fig. 4.3b). Areas identified as significantly increasing or decreasing 

in densities are however spatiotemporally dynamic (Fig. 4.3a). Significant changes were 

strongly associated with distance to rivers, with the majority of marked increases happening < 

1km from major rivers (Fig. S4.4b in Appendix S4). This could suggest that density dependant 

changes are being felt more strongly than suggested by Ferreira et al. (2017).  
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Fire is also a potentially significant agent of change, where the magnitude of density increase 

appears to shrink as fire return intervals shorten (Fig. S4.4a in Appendix S4). This may however 

be an artefact of elephants increasing in riparian areas, which are inherently less likely to burn 

and therefore have low fire frequencies. Nevertheless, drawing on Fig. 4.3b managers may be 

able to identify possible ‘impact hotspots’ and focus research into the more empirical effects of 

increased elephant densities, like changes to vegetation structure and associated species 

diversity, and potential ecosystem regime shifts (Kerley et al. 2008; Scholes and Mennel 2008; 

Ferreira et al. 2012). 

 

4.4 Elephant group-type distribution change 

Considering that over this same period (1985-2012) the probability of encountering bull vs. 

mixed herd groups also changed noticeably, suggests evidence of more pervasive density-

dependent effects. From Fig. 4.5, one can see herd groups moving north of the Olifants River 

while bulls shift further south. In synchrony, bull groups are now also occupying areas closer 

to rivers as herds expand outwards into the uplands (Fig. 4.4d; Fig. 4.5). This strongly confirms 

the hypothesis that as elephant numbers grow, empty-space becomes more limiting and 

elephants are forced to move into previously unoccupied areas. Added to this, the probability 

of encountering bull groups is shifting into areas with shorter fire return intervals, while herd 

groups do so at more intermediate fire frequencies (Fig. 4.4c). Since bull elephants generally 

cause more damage to larger tree species (Guy 1976; O’Connor et al. 2007) and coupled with 

the impacts of fires, we can only speculate as to the long-term effects these shifts in bull 

dominance may have on the ecosystem as elephant numbers continue to grow. For example, 

have elephants and fire acted together to change the system significantly enough to detect 

changes in elephant distribution patterns, and are these changes in response to changing fire 

frequencies driven by increasing elephant densities? If this is the case, these interacting effects 



93 | P a g e  
 

may result in similar state-changes as were seen by Dublin et al. (1990) in the Serengeti. Further 

exploration of our results may also help disentangle drivers of tree mortality in Kruger. That is, 

does tree mortality occur in response to elephant-fire interactions (Shannon et al. 2011; van 

Wilgen et al. 2014) or does fire act alone to accelerate tree loss in elephant populated areas 

(Levick et al. 2015)? Either way, tree loss may be more intrinsically linked to changes in 

elephant space-use intensity than originally expected. A deeper understanding of Fig. 4.5 and 

the recently bull-dominated areas identified therein, may also help stratify research to answer 

the question whether these areas are in fact loosing large trees at a faster rate. 

 

4.4.5. Limitations 

The entwined nature of the causes and effects phenomena, which is ubiquitous throughout the 

field of ecology, makes identifying primary drivers or mechanisms almost impossible, 

especially with simple regression techniques (MacFadyen et al. 2016). Future studies may wish 

to employ techniques like Structural Equation Models (SEM) to help tease apart cause and 

effect relationships affecting elephant distribution and abundance. The ability to include 

interaction terms into MPPM’s in future, would also allow us to interrogate how these resource 

selection functions change with increasing densities. Furthermore, the roles played by rivers in 

elephant distribution patterns could also be explored further by perhaps classifying rivers into 

functional classes, i.e. source of water versus riparian vegetation resource, and by including 

artificial waterholes into the analysis.  

 

4.5. CONCLUSION 

The challenge going forward lies in digesting these insights into a guiding principle for 

management action and the prioritisation of finer scale research into the cascading effects of 

different elephant space-use intensities. Recognising the challenges Southern African protected 
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areas face to produce practical management solutions for healthy and growing elephant 

populations, this work aimed to fill some of the biogeographical gaps on what drives the 

population-level distribution and abundance patterns of elephant in Kruger. Ideally, this work 

should help guide experimental management action strategies, which aim to alter elephant 

density and distribution patterns by manipulating artificial water sources (opening/closing 

windmills), into areas experiencing fewer fires and those further from rivers (Smit and Ferreira 

2010; Ferreira et al. 2012). Ultimately, we encouraged SANParks to use the spatiotemporal 

results herein to focus research into the more empirical effects of high elephant densities and 

perhaps establishing possible refuge areas.   
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ABSTRACT 

Protected areas (PA) are strongholds of biodiversity in an epoch of global biodiversity loss. 

Ecosystem complexity makes managing large PAs and identifying key environmental drivers 

and responders difficult. This is in part because ecological systems express themselves in 

complex adaptive ways, with multifarious physical and stochastic components interacting to 

both form landscape patterns and influence ecosystem processes at different scales. The 

resulting mosaic of landscape heterogeneity is a product of this complexity, making it an 

important global biodiversity indicator. The role of heterogeneity as a determinant of species 

richness is generally accepted, however its relationship with the structural and functional 

components of biodiversity are less understood. Here we describe how landscape heterogeneity 

responds to and/or influences interactions between selected drivers in a large African Savanna, 

the Kruger National Park. Using Piecewise Structural Equation Modelling we examine the local 

scale (1 km2) roles of the underlying physical landscape template, rainfall, herbivore densities, 

and fire in the formation of regional scale (8 km2) variability of 28-year normalized difference 

vegetation index observations, as a proxy for landscape heterogeneity. The emergent 

spatiotemporal patterns of driver dominance are dynamic, varying in effect size across the 

landscape and over time. Higher rainfall and greater landform diversity generally increase 

heterogeneity, while higher elephant densities and less frequent fires reduce heterogeneity and 

drive landscape homogenization. Under climate change projections of reduced rainfall, our 

results foretell of potentially significant declines in heterogeneity - densification of buffalo herd 

structures - lengthening of fire return periods - and continued homogenisation of elephant 

distribution and abundance patterns. In the face of global environmental change, the key to 

effective and holistic ecosystem conservation may lie in our ability to describe changes to the 

casual structure of heterogeneity and the environmental drivers that generate and maintain its 

pattern. 
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5.1. INTRODUCTION 

Conserving biodiversity in dynamic ecosystems is a challenge facing protected area managers 

worldwide (Mittermeier et al. 2003; Brooks et al. 2006). Despite global efforts, negative 

impacts on biodiversity continue to trigger warnings that predict widespread biodiversity 

declines (Tittensor et al. 2014). Measuring biodiversity loss is however no easy task, especially 

in the face of pervasive ecosystem change and inherent complexity. Landscape pattern is the 

self-organizing expression of interactions between different evolutionary and ecological 

processes and mechanisms (Wiens 2002; Chapin et al. 2011). The resulting mosaic of landscape 

heterogeneity could therefore be the key to understanding changes to biodiversity when 

described in terms of the mechanisms that generate and maintain its derivative pattern (Levin 

1992). This means being able to predict or quantify causality in lieu of simply describing the 

correlation of a mechanism with an observed pattern (Levin 1992; Grace et al. 2015). 

Importantly, the scale at which these phenomena are investigated will influence pattern 

detection and thus also control what mechanisms emerge as important (Levin 1992). At the 

regional-local scale, landscape heterogeneity is known to play an important role in healthy 

ecosystem functioning and is already considered a primary indicator of biodiversity 

(Christensen 1997; Parrot 2010; MacFadyen et al. 2016). Due to the complexity of 

heterogeneity theory in ecology however, there is a lag in the development of practical solutions 

for monitoring (Stein et al. 2014).  

Kolasa and Rollo (1991) descriptively coined the phrase, “the heterogeneity of 

heterogeneity”, in which stochastic and systemic aspects of heterogeneity are discriminated. 

Pickett et al. (2003) developed this idea further into a heterogeneity framework by which the 

causes of, and responses to, heterogeneity could be understood. Their (Pickett et al. 2003) 

framework describes heterogeneity as the outcome of factor-driven interactions between 

different key components namely, agents; substrates; controllers; and responders. In Protected 
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Areas (PAs) for example, herbivores will act as agents of herbivory to create, maintain, and/or 

transform the vegetation substrate at density-dependent levels of intensity. This in turn will be 

controlled by rainfall driven patterns of herbivore distribution to which fire frequencies will 

also respond (Fig. 5.1). The outcomes of these interactions frame the basis of biodiversity 

formation, maintenance and flux linked to many global, regional and local conservation 

objectives. In a complex system like a large PA, components can however also be 

multiplicitous, acting as both agents and/or controllers and manifesting as both substrates 

and/or responders (Pickett et al. 2003). This is the puzzle beclouding the development of 

standardized implementation strategies for global heterogeneity monitoring (Gergel and Turner 

2002). 

 

Fig. 5.1: Hypothetical construct of the cause and effect relationships between landscape 

heterogeneity, the physical landscape template, rainfall, herbivory and disturbance in Kruger 

National Park. Solid lines represent simple (one-way) interactions and dashed lines complex 

(two-way) interactions. 
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Nonetheless, substantial progress has been made towards real-world applications for large-scale 

biodiversity studies thanks to advancements in remote sensing and the growing base of open 

source resources (e.g. Rocchini et al. 2016; He et al. 2015; Petrou et al. 2015; Lausch et al. 

2016). For example, at the global scale the Group on Earth Observations Biodiversity 

Observation Network (GEO BON) provide a set of key indicators of biodiversity change 

(Pereira et al. 2013). These indicators or Essential Biodiversity Variables (EBVs) are made up 

of biological measurements, characteristic of different aspects of biodiversity and are used to 

assess system-level biodiversity trends (Brummitt et al. 2016; Proença et al. 2016).  Many of 

the EBVs are derived from space-borne sensors using new techniques in remote sensing to 

detect, assess and predict biodiversity change (Lausch et al. 2016, Paganini et al. 2016). In a 

large PA like the Kruger National Park (Kruger), which spans almost 20,000 km2, remote 

sensing techniques offer novel approaches to landscape wide biodiversity assessment (e.g. Duro 

et al. 2007; MacFadyen et al. 2016). Recognized theories like the spectral diversity hypothesis 

are central to these advancements, where higher levels of spectral diversity, recorded by satellite 

sensors, can be indicative of a wider variety of environmental characteristics (Palmer et al. 

2002; Rocchini et al. 2016; MacFadyen et al. 2016). From the perspective of the ecological 

niche theory, a wider range of these characteristics will result in different habitat types which 

will support a larger diversity of species (Chase 2011). Similarly, the variability in the 

phenology of vegetation, as measured by the Normalized Difference Vegetation Index (NDVI), 

can inform our understanding of resource driven animal population dynamics and associated 

environmental variability (e.g. Wessels et al. 2006; Xie et al. 2008; Hasan et al. 2011; Pettorelli 

et al. 2011; Pettorelli et al. 2014). Remote sensing is therefore an ideal tool for biodiversity 

assessment in large protected areas since it is capable of measuring heterogeneity at multiple 

scales and over long continuous time periods (Pettorelli et al. 2014).  
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In Kruger some early attempts were made to quantify heterogeneity loss using long-term 

monitoring data (Margules et al. 2003; SANParks 2006; MacFadyen 2010). The limitations of 

these studies were the lack of spatiotemporal methods to recognize ecosystem dynamics and 

the ability to discern undesirable change from natural ecosystem flux (Biggs and Rogers 2003; 

Parrish et al. 2003; Scholes and Kruger 2011). The ability to detect this difference can of course 

be difficult when healthy ecosystems are adaptive, dynamic networks of environmental 

components interacting at various structural, spatial and temporal scales (Parrot 2010). Change 

is also an inevitable outcome of these interactions, raising three questions, where and when 

does this change manifest as landscape pattern and/or ecosystem process, and when should it 

be considered a negative or positive ecosystem result? To answer these questions, PA managers 

must first be able to measure change and identify the drivers behind a specific change while 

separating out their reciprocal causes and effects (Cardinale et al. 2006). A major obstacle to 

this type of holistic ecosystem approach is a lack of understanding of the causal structure of 

landscape heterogeneity. This requires insights into the directionality of the cause and effect 

interactions within and between different mechanisms that shape heterogeneity (Gergel and 

Turner 2002; Lefcheck and Duffy 2015). The objective of this paper is thus to examine the 

complex array of physical and stochastic components in a PA landscape, where these 

components interact to both form physical features and influence system processes. In doing 

so, we examine the magnitude and directionality of the cause and effect relationships of selected 

drivers on landscape heterogeneity in Kruger using the long-term variability of NDVI as a proxy 

for heterogeneity from 1985 to 2012 (Vermote et al. 2014). Selected drivers include different 

topographical characteristics, geological classes and soil properties that make up Kruger’s 

physical landscape template or landform (Wessels et al. 2006). Herbivory and landscape 

disturbance, namely grazing (buffalo) and browsing (elephant) herbivore densities and fire 

frequency, are included as mechanisms of Kruger’s heterogeneity response (Asner et al. 2015; 
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Levick et al. 2015). In turn we expect these mechanisms will also be influenced by climate, 

specifically rainfall, in that rainfall will drive NDVI and ultimately herbivore densities, 

associated herbivory and fire frequency (Zambatis 2003; Vermote et al. 2014).  

In order to describe the causal links between landscape heterogeneity and the underlying 

physical landscape template, herbivore density, fire and rainfall, inferences about causal 

structures need to be made. For this purpose and in place of standard regression techniques, 

which are ineffective at differentiating causal links in natural systems, we use Structural 

Equation Modelling (SEM) (Schumacker and Lomax 2016; Shipley 2016). First, we designed 

a conceptual framework for heterogeneity in Kruger, containing a selection of interacting 

biological and environmental components and processes of interest (Fig. 5.1). This framework 

is used to posit the direction and magnitude of the different effects the selected drivers have on 

heterogeneity using a ‘Piecewise’ method of SEM (pSEM) (Schumacker and Lomax 2016, 

Grace et al. 2012; Lefcheck 2016). Using Kruger as a model system, we ultimately dissect the 

causality of landscape heterogeneity to demonstrate how dominant forces in an ecosystem can 

be identified to aid management and conservation planning in the face of change. 

 

5.2. MATERIALS AND METHODS  

5.2.1. Study area 

Kruger is a model protected area ecosystem, covering  ~ 20,000 km2 of the Savanna biome in 

South Africa (SA) between latitudes -22.328°S; -25.529°S and longitudes 30.888°E; 32.033°E 

(MacFadyen et al. 2016). Officially proclaimed in 1926 under a strong protectionist philosophy, 

the PA has been managed for conservation for almost a century (Carruthers 1995) and supports 

an impressive array of plant (1980), animal (856) and invertebrate species (SANParks 2017). 

Kruger’s gently undulating topography accommodates an extensive river network, which also 

gives rise to a highly patchy landscape with both open grasslands and dense woodlands (Venter 
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et al. 2003). It is recognized as one of the few protected landscapes remaining where ‘natural’ 

ecological response can be investigated in the absence of human impacts (Pickett et al. 2003).  

 

5.2.2. Data 

5.2.2.1. Landscape heterogeneity 

Resource driven animal population dynamics and associated environmental variability are 

attuned to the dynamics of biophysical vegetation properties, as measured by NDVI (Pettorelli 

et al. 2011; Pettorelli et al. 2014). Monthly maximum composites of NDVI were thus obtained 

from version 3 of the Global Inventory Modeling and Mapping Studies’ (GIMMS) NDVI3g 

dataset (Pinzon and Tucker 2014; Detsch 2016). NDVI3g is an 8 km resolution dataset, derived 

from the National Oceanic and Atmospheric Administration’s (NOAA) AVHRR, providing 

reliable long-term (1981 to 2014) records of vegetation greenness (Vermote et al. 2014; 

Marshall et al. 2016). A Coefficient of Variation (CV) of maximum monthly NDVI composites 

was calculated, at the pixel level for each year, to produce 28 layers describing the long-term 

regional-scale (8 km2) dynamics of annual vegetation greenness across Kruger from 1985 to 

2012 (Vermote et al. 2014; Marshall et al. 2016; Hijmans, 2016).  

 

5.2.2.2. Physical landscape template (Landform) 

A mosaic of underlying geophysical attributes provide a template on which pattern and 

processes interact (MacFadyen et al. 2016; Levick and Rogers 2011). This physical landscape 

template, which forms a stable (at the timescale of this study) platform for ecosystem role-

players, will vary locally with i) topography, ii) geology, and iii) soil properties.  

i) Topography: Various terrain characteristics were derived from a 30m elevation data 

provided by the Shuttle Radar Topography Mission (SRTM; USGS 2014). In addition to 
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elevation; slope; and aspect, a Topographic Position Index (TPI); and a Terrain 

Ruggedness Index (TRI) were calculated from SRTM (Hijmans 2016).  

ii) Geology: Geological data for South Africa (SA) was obtained from the Council of 

Geoscience, SA at 1:1 000 000m scale (Council for Geoscience 2016). These data 

describe SA’s geological forms, lithostratigraphic units and principle rock types after 

Vegter (1995).  

iii) Soils: Different soil property grids were downloaded from the World Soil Information’s 

(ISRIC) online database SoilGrids at 250 m pixel resolution (Hengl et al. 2017). Layers 

selected from this dataset included absolute depth to bedrock; soil texture classifications 

for depths 0 m to 2 m; a soil drainage classification according to the United Nations Food 

and Agriculture Organization’s (FAO) guidelines for profile description; and a soil 

form/taxonomy classification according to the World Reference Base system (Hengl et 

al. 2017). 

The pixel-wise (1 km2) relative variability of the above properties was then derived from the 

subsequent raster-stack using CV to represent overall physical landscape variability across 

Kruger (Hijmans et al. 2016; R Core Team 2016; Leutner and Horning 2016). 

 

5.2.2.3. Dynamic components: Climate, fire and herbivores 

i) Climate – Rainfall surfaces: Modelled 1 km2 resolution monthly rainfall grids, derived 

from in situ rainfall measurements, environmental covariates and the Climate Hazards 

Infrared Precipitation with Stations (CHIRPS) global climate surfaces (Funk et al. 2015), 

were downloaded from the SANParks data repository (see MacFadyen et al. 2018 for 

detailed description of data). Monthly rainfall surfaces were collated and summed by 

rainfall year (i.e. July year 1 to June year 2) to produce 1 km2 annual rainfall grids from 

1985 to 2012 for Kruger (MacFadyen et al. 2018).  
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ii) Fire – Disturbance: Annual cumulative fire return intervals were calculated from binary 

burn scar data (0 = no burn; 1= burn) captured by SANParks from 1941 to 2012 

(Govender et al. 2012). The pixel-wide cumulative intervals between fires were then 

counted (Smit et al. 2013b; MacFadyen et al. in Review). Results thus describe the 1 km2 

annual cumulative fire return intervals for Kruger from 1941 to 2012 (72 years). 

iii) Herbivores – Species population dynamics: Lastly, density estimates of elephant 

(browser) and buffalo (bulk grazer) were calculated from annual SANParks winter 

(July/August) helicopter census counts (Whyte 2001; MacFadyen et al. in Review). Data 

were converted into point patterns and the kernel smoothed intensities calculated annually 

for each species using a 5 km smoothing bandwidth (sigma2) and Diggle’s edge correction 

(Baddeley et al. 2015; MacFadyen et al. in Review). Results describe 1 km2 mega-

herbivore distribution and density trends in Kruger from 1985-2012.  

 

5.2.3. Statistical analyses 

5.2.3.1. Causal structure of landscape heterogeneity 

The causal structure of landscape heterogeneity in Kruger, and the environmental variables 

described above, are explored using pSEM (piecewiseSEM package R; Lefcheck 2016). pSEM 

is particularly well suited to ecological studies in that it has the added ability to deal with non-

independence and non-linearity in data, a chronic condition of environmental data (Lefcheck 

2016). pSEM was used here specifically to help discern complex multivariate relationships 

from different observational data that are known to be non-normally distributed, exposed to 

random effects and have observations in close proximity (over geographic distance and/or time) 

that are significantly correlated (Lefcheck and Duffy 2015). A preliminary thesis of possible 

cause and effect relationships between selected environmental drivers of heterogeneity pattern 

in Kruger is illustrated in Fig. 5.1. Pixel values of the selected drivers, namely heterogeneity of 
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the underlying physical landscape template; annual rainfall; herbivory (as represented by the 

long-term distributions and densities of bulk grazing buffalo and browsing elephants); and the 

annual cumulative fire return periods, were feed into the pSEM. Model optimization was done 

using Fisher’s C statistic after Shipley (2016). Results express landscape heterogeneity, as 

measured by NDVI variability, as the macroscale pattern (8 km2) formed by the effects of these 

local scale (1 km2) processes or drivers. Results further illustrate the degree to which herbivores 

and fire, for example, cause or simply respond to landscape heterogeneity (Eisenhauer et al. 

2015).  

 

5.2.3.2. Spatiotemporal dynamics of driver dominance 

pSEM path coefficients were standardized by the mean and extracted into a table of coefficients. 

Using these coefficient values, the magnitude of the effect each variable exerted on 

heterogeneity was calculated per pixel per year. The maximum value across all years was 

determined and the dominant driver identified. Pixels were then classified as being driven 

primarily by the physical template, rainfall, fire return interval, elephant or buffalo activities 

according to which variable occurred most frequently as the dominant driver for that pixel from 

1985 to 2012.  

 

5.3. RESULTS 

5.3.1. Response and explanatory variables 

Annual monthly variability of NDVI varied considerably from year to year, with extreme low 

and high rainfall years generally experiencing greater variability (Fig. 5.2). The surface 

distribution of rainfall also varied from year to year (Fig. 5.3) with roughly 5-yearly fluctuations 

of wet and dry cycles as described by MacFadyen et al. (2018). The physical landscape template 

varied more within the fertile basaltic regions of the East compared to their granitic counterparts 
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in the West (Fig. 5.4). Animated maps of buffalo and elephant kernel density estimates from 

annual census totals in Kruger showed a general increasing trend in the densities of animals as 

well as obvious distribution changes from 1985 to 2012 (see Animation S5.1 in Appendix S5). 

The return intervals for fires also varied across Kruger, with fires returning most frequently (i.e. 

smallest return interval) to those areas in the South-West along the Western boundary fence and 

less frequently (i.e. largest return interval) to those along major rivers (Fig. 5.4; see Animation 

S5.2 in Appendix S5 for annual burnt area maps). 
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Fig. 5.2: Levelplot of the 8 km2 annual monthly variability (coefficient of variation) of 

Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation 

Index (NDVI) values from 1984-2012. Figures in top-right corners represent mean-annual 

rainfall values for each year. 
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Fig. 5.3: Surface distribution of rainfall above and below the long-term mean for Kruger 

National Park from 1985 to 2012. Figures in the top-right corners represent mean-annual 

rainfall values for each year. 
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Fig. 5.4: Variability of physical landscape properties and fire return intervals in Kruger 

National Park. Left panel) Variability of physical landscape properties, geology, soils, terrain 

and distance to major rivers, displayed as coefficients of variation (CV). Class breaks in the 

legend above are CV quantiles. Right panel) Mean fire return intervals for Kruger National Park 

from 1941-2012 (See Animation S5.2 in Appendix S5 for annual burnt areas maps). 
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5.3.2. Causal structure of landscape heterogeneity 

Based on tests of directed separation, we failed to reject the hypothesized causal structure 

(Fisher’s C χ2 = 0.30, df = 2, p = 0.863, n = 145124, AIC = 100.335, K = 50) and thus feel 

confident in drawing inferences from the pSEM presented (Fig. 5.5; Table 5.1). In addition, the 

embedded component models explained much of the variability of the different conditional 

response variables namely, fire return interval (R2 = 0.76); elephant density (R2 = 0.40); 

heterogeneity (R2 = 0.34) and buffalo density (R2 = 0.20).  

In order of effect size seen in Fig. 5.5 and Table 5.1, rainfall most distinctly increased 

heterogeneity (β = 2.782, p < 0.001) followed by increased variability in the physical landscape 

template (β = 0.746, p < 0.001). Higher elephant densities significantly reduced landscape 

heterogeneity (β = -0.585, p < 0.001) while lower heterogeneity values caused a less 

pronounced reduction in elephant density (β = -0.374, p < 0.001). More frequent fires enhanced 

heterogeneity (β = -0.314, p < 0.001) whereas more heterogeneous landscapes lengthened fire 

return periods albeit weakly (β = 0.021, p = 0.001). Higher buffalo densities decreased 

heterogeneity (β = -0.298, p < 0.001) while they also selected for landscapes with lower levels 

of heterogeneity in almost equal measure (β = -0.276, p < 0.001). Overall Kruger’s landscape 

heterogeneity has moderately increased over time (β = 0. 514, p < 0.001). 
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Fig. 5.5: Results of piecewise Structural Equation Model (pSEM) of the cause and effect 

relationships between landscape heterogeneity, the physical landscape template, rainfall, 

herbivory and disturbance in Kruger National Park (Fisher’s C χ2 = 0.3, df = 2, p = 0.863, n = 

145124, AIC = 100.335, K = 50). Red pathways indicate negative path coefficients. Blue 

pathways represent positive path coefficients. Thicker lines represent larger effects (positive or 

negative). Non-significant pathways are removed for clarity (See Table 5.1 for all path 

coefficients).  
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Table 5.1: Path coefficients and goodness-of-fit statistics from a piecewise Structural Equation 

Model (pSEM) of the cause and effect relationships between environmental heterogeneity 

(HET), the physical landscape template (PHY-CV), rainfall (RAIN), herbivory i.e. buffalo 

(BUF-DEN) and (ELE-DEN) densities and disturbance i.e. fire return interval (FIRE-RI) in 

Kruger National Park (Fisher’s C χ2 = 0.30, df = 2, P = 0.863, n = 145124, AIC = 100.335, K = 

50). The conditional R2 (fixed and random effects) are reported in the response column along 

with the marginal [R2] (fixed effects only) in brackets.  

 

response predictor 
estimate 
(unitless) 

std-error 
(unitless) 

--> effect = response 

FIRE-RI 
R2 = 0.76 
[0.003] 

PHY-CV -0.347*** 0.081  PHY  FIRE 

RAIN 0.182*** 0.007  RAIN  FIRE  

ELE-DEN 0.083*** 0.008  ELE  FIRE  

BUF-DEN -0.026** 0.009  BUF  FIRE 

HET 0.021** 0.007  HET  FIRE 

ELE-DEN 
R2 = 0.40 
[0.16] 

YEAR 4.782*** 0.035  TIME  ELE  

BUF-DEN 1.556*** 0.028  BUF  ELE  

FIRE-RI 0.831*** 0.043  FIRE  ELE 

PHY-CV -0.655*** 0.052  PHY  ELE  

HET -0.374*** 0.021  HET  ELE 

BUF-DEN 
R2 = 0.20 
[0.05] 

ELE-DEN 1.298*** 0.024  ELE  BUF 

YEAR 1.096*** 0.040  TIME  BUF  

FIRE-RI -0.497*** 0.041  FIRE  BUF 

PHY-CV 0.334*** 0.039  PHY  BUF 

RAIN -0.328*** 0.020  RAIN  BUF  

HET -0.276*** 0.020  HET  BUF 

HET 
R2 = 0.34 
[0.09] 

RAIN 2.782*** 0.024  RAIN  HET 

PHY-CV 0.746*** 0.059  PHY  HET  

ELE-DEN -0.585*** 0.030  ELE  HET 

YEAR 0.514*** 0.039  TIME  HET 

FIRE-RI -0.314*** 0.046  FIRE  HET 

BUF-DEN -0.298*** 0.032  BUF  HET  

Significance levels: *** p < 0.001, ** p < 0.01 

 

The model further revealed different cause-effect relationships between the physical landscape, 

herbivores and fire frequencies. Specifically, a more variable landscape template shortened fire 

return intervals (more frequent fires; β = -0.347, p < 0.001) while more rainfall lengthened 

return intervals (less frequent fires; β = 0.182, p < 0.001). In general both elephant (β = 4.782, 

p < 0.001) and to a lesser degree buffalo (β = 1.096, p < 0.001) densities increased significantly 
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over time. Fewer fires (longer return intervals/low fire frequency) however elicited a density 

decrease response from buffalo (β = -0.497, p < 0.001) and an even stronger density increase 

response from elephants (β = 0.831, p < 0.001). In return fire return intervals were significantly 

shortened by higher buffalo densities (β = -0.026, p = 0.002) and lengthened by higher elephants 

densities (β = 0.083, p < 0.001), although these effects were substantially weaker (Fig. 5.5). 

Buffalo responded positively to more variability in the underlying landscape template (β = 

0.334, p < 0.001) whereas elephants had a stronger negative response to this variability (β = -

0.655, p < 0.001). Buffalo densities also decreased with increasing rainfall (β = -0.328, p < 

0.001) whereas rainfall had no significant effect on elephant density. 

 

5.3.3. Spatiotemporal dynamics of driver dominance 

The variability of driver dominance over heterogeneity change in Kruger from 1985-2012 was 

spatiotemporally dynamic (see Animation S5.3 in Appendix S5 for annual driver dominance 

maps). However, on average heterogeneity is largely affected by rainfall (30%) and physical 

landscape variability (27%), followed by fire frequency (22%) and elephant density (17%), and 

to a lesser degree buffalo density (3%) (Fig. 5.6). Rainfall appears to dominate as a driver of 

heterogeneity in the Southern Granites (Fig. 5.6). While physical landscape variation dominates 

the Western Basalts often in coalition with fire (Fig. 5.6). Similarly, elephants and fire appear 

to act together as dominant drivers of heterogeneity in the Northern Granites (Fig. 5.6), while 

buffalo dominate isolated Granitic patches in the Phalaborwa area along the Olifants and Letaba 

Rivers (Fig. 5.6). 
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Fig. 5.6: Spatiotemporal arrangement of significant drivers of heterogeneity in the Kruger 

National Park. The map and percent values in its legend represent the area a specific driver 

dominated overall (See Animation S5.3 in Appendox S5 for time series animation). 
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5.4. DISCUSSION 

Landscape heterogeneity in Kruger, as measured by the annual monthly variability of NDVI, is 

strongly driven by rainfall, variations in the physical landscape template, elephant density and 

fire. This aligns well with the results of Sankaran et al. (2005) who correspondingly found 

rainfall, herbivory and fire to be key drivers of tree-grass dynamics across African savannas but 

at a continental scale. At a local scale (Kruger), higher rainfall elicited a strong positive 

response from heterogeneity as did a more diverse underlying physical landscape template. In 

contrast, heterogeneity significantly decreased in areas with longer fire return intervals (less 

frequent fires). Fundamentally this supports the hypothesis of Parr and Andersen (2006) who 

describe fire as an agent of biodiversity formation and maintenance. Conversely more 

heterogeneous landscapes generally experienced fewer fires, which we expect may also be a 

product of the patch mosaic burning model. That is, mosaic burning allows fire to move freely 

through the landscape, burning at varied levels of intensity as a function of different barriers 

(e.g. rivers or roads), fuel content, soil moisture conditions and/or topographic features in the 

landscape (Duncan et al. 2015). Heterogeneous environments would typically have a greater 

diversity of such barriers and/or physical landscape features, thus resulting in the more patchy 

fire history or longer return intervals. Smit et al. (2013b) correspondingly found granitic areas 

and those closer to rivers less prone to fire. Heterogeneity responded to higher elephant 

densities with a significant decrease, even though as ecosystem engineers they are often credited 

to enhance landscape heterogeneity (Pringle 2008). Using pSEM we were able to distinguish a 

stronger negative response of heterogeneity to increased elephant density from the weaker 

negative response of elephants to heterogeneity in the landscape. If a standard regression model 

had been run instead of pSEM, we would be less able to distinguish this cause and effect, or 

answer the question whether elephants are selecting for areas with less heterogeneity or are they 

actually causing a reduction in heterogeneity. Guldemond and van Aarde (2008) and others 
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(Loarie et al. 2009; Vanak et al. 2010) have suggested the presence of fences may further 

compound negative effects of elephants on savanna vegetation by altering movement patterns 

and resulting densities. Our results suggest that at their current densities and within a confined 

space like Kruger, elephants are having a potentially large scale homogenizing effect on the 

landscape.  

We expect the effect of fire on vegetation structure may also be responsible for different 

herbivore density and distribution patterns. For example, higher buffalo densities were found 

in areas with shorter fire return intervals whereas higher elephant densities were found in areas 

experiencing fewer fires. Grazers like buffalo, favor open grassland areas maintained by high 

fire frequencies, whereas browsing elephants occur in higher densities in less fire prone areas 

like those along rivers and more wooded areas (MacFadyen et al. in Review; Skinner and 

Chimimba 2005). In return, fire return intervals were significantly shortened by higher buffalo 

densities and lengthen by higher elephants densities, although these effects were considerably 

weaker (Fig. 5.5). The higher grazing pressure of buffalo may therefore be responsible for 

maintaining fire-prone grassland states as suggested by Ripple et al. (2015) when they described 

globally under recognized ecosystem effects of large herbivores. In contrast, higher elephant 

densities may reduce fire frequencies as they have been shown to alter tree-grass dynamics and 

stimulate woody shrub encroachment in many woodland areas of northern Botswana (Fullman 

and Bunting 2014; Teren 2016). Rainfall is also known to influence animal behavior in Kruger, 

with herbivores dispersing more in wetter seasons compared to dry seasons, as they are no 

longer forced to concentrate around limited food and water resources (Chirima et al. 2012). We 

found this pattern in buffalo, as densities decreased with increasing rainfall, but not for 

elephants. We expect buffalo may be responding to an increase in surface water availability, as 

well as a grass biomass production response to increased rainfall rather than a direct density 

response. Elephants however showed no significant response to rainfall, a result supported by 
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MacFadyen et al. (in Review) who found herd elephant densities did not change significantly 

from the mean under higher rainfall conditions.  

The role played by different drivers of heterogeneity change in Kruger from 1985-2012 is 

spatiotemporally variable (Fig. 5.6; Animation S5.3 in Appendix S5). Rainfall tends to dominate 

the Southern Basalts and patches in the Far North described by MacFadyen et al. (2018) as 

extreme-high rainfall areas. Fire is a key driver throughout the park, although elephants and fire 

also appear to have a strong synergistic relationship in that elephants (green in Fig. 5.6) are 

often associated with fire driven areas (pink in Fig. 5.6). The combination of these two drivers 

affects almost 40% of Kruger’s surface area. While the underlying physical landscape, as a 

driver of heterogeneity, only dominates 27% of Kruger. We believe the diverse range of drivers, 

responders and consequent processes interact with Kruger’s physical landscape template to 

produce a highly dynamic system (Munyati and Ratshibvumo 2010; Smit et al. 2013b). This is 

supported by MacFadyen et al. (2016), who showed the proportion of environmental 

heterogeneity explained by stable physical landscape properties in Kruger is spatiotemporally 

dynamic.  

It is however important to also consider the dynamic nature of heterogeneity, which clearly 

fluctuates from year to year as seen in Fig. 5.2. We illustrate this using an animation (Animation 

S5.3 in Appendix S5) of the spatiotemporal variability of drivers in terms of those that 

dominated from 1985 to 2012. How these drivers have moved or changed in the landscape and 

how they interact remains an interesting question, one which could perhaps be answered with 

time series analysis and the inclusion of latent variables into pSEM functionality in future. 

Likewise, the inclusion of new higher resolution datasets into this framework may also provide 

more local detail for adaptive park management. For example, the 5 km2 Leaf Area Index and 

Fraction of Absorbed Photosynthetically Active Radiation product (AVH15C1) available from 

NOAA’s National Centers for Environmental Information, Climate Data Record from 1981 to 
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the present (Claverie et al. 2014; Claverie et al. 2016). New solutions for measuring diversity 

using remotely sensed imagery, like Rao’s quadratic entropy (Q), could also be explored further 

to investigate potential pattern and process links (Rocchini et al. 2017). Until then future 

scenario can also be mapped using the results presented here, for example, should the effects 

of climate change result in 200 mm less rainfall per year, i) heterogeneity will decrease; ii) 

buffalo with cluster into larger herds; iii) and fire return periods will lengthen iv) while elephant 

distribution and abundance patterns will remain largely unchanged (Fig. 5.5). 

In conclusion, we stress that while it may be difficult to separate system drivers and their 

reciprocal cause and effects from complex interacting ecosystem processes, pSEM produces 

compelling results for holistic biodiversity conservation. Coupled with remotely sensed NDVI 

data, the cause and effect relationships of drivers known to be either direct or indirect 

mechanisms of ecosystem change can now be quantified. Reciprocal cause and effect 

relationships clearly exist, although the significance of one will often overshadow the other 

over the long-term. For example, climate change predictions of decreased rainfall across 

African savannas (DEA 2013; IPCC 2014) may directly affect only 30% of Kruger’s PA 

landscape (Fig. 5.6) but its compound effects on fire frequencies and herbivore distribution and 

abundance patterns will stimulate a domino effect that could shift ecosystem states and have 

long-term, ecosystem wide consequences. Globally, these results therefore add to efforts to 

discern ecosystem structure and functioning and assess conservation outcomes by quantifying 

heterogeneity and visualizing its causal relationships with key environmental drivers. Locally, 

these results provide insight into the role, and magnitude of each driver’s impact on Kruger 

ecosystem properties and functioning to help gain an understanding of heterogeneity and the 

dynamic drivers thereof. Protected areas managers may as a result be able to critically review, 

and where necessary adapt, policies and plans. For Kruger these results may cultivate a better 

understanding of i) rainfall as a dynamic driver of heterogeneity, which can help steer national 
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park planning and land reclamation policies based on projected climate change impacts; ii) how 

fire interacts with rainfall and herbivory to affect heterogeneity, which can now support current 

and future fire management policies; and iii) the importance of large mammal management 

plans that acknowledge and offer mitigation strategies for the spatial and temporal impacts of 

herbivore distribution and density patterns on heterogeneity. Conclusively, our analysis has 

shown that heterogeneity is formed and maintained by different interacting ecosystem 

processes. Incorporating heterogeneity into the EBV may therefore also provide interesting 

insights into global biodiversity dynamics specifically for protected areas. 
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ABSTRACT 

Biodiversity conservation is an accelerating global concern driving a need for international 

biodiversity protection strategies. Globalised initiatives will however need spatial information 

that is interactive and easily accessible to collaborators across continents and conservation 

agencies. To facilitate this we explore the graphical and statistical power of R, combined with 

the web-sharing ability of Shiny and mapping capabilities of Leaflet, to illustrate the 

effectiveness of such an approach for global biodiversity planning and protected areas 

management. Specifically, we develop an interactive interface to evaluate biodiversity features 

using an index of landscape heterogeneity and dissimilarity. In Protected Area (PA) landscapes, 

increased heterogeneity is often indicative of an accompanying increase in habitat diversity, 

resulting in greater species diversity and improved ecosystem resilience. Underlying this 

heterogeneity is an environmental template made up of a mosaic of different topographies, 

climates, geologies, soil types, and vegetation variables. These variables interact to create, 

maintain and influence available habitats and the range of species assemblages they can support. 

How these patterns differ across PAs is summarised across global subregions (n = 19) to explore 

potential gaps in existing delineations of biodiversity hotspots. Central, South and East Asian 

PAs were ranked highest in overall heterogeneity, despite the fact they represent a relative low 

proportion of the worlds recognised biodiversity hotspots (3-6%). Northern European and 

Central American PAs were also identified as being environmentally diverse. Using these 

results we begin to operationalise the heterogeneity-biodiversity theory with a Heterogeneity 

Tracker App (https://heterogeneity.shinyapps.io/globalheterogeneity) to explore underlying 

environmental drivers of global landscape heterogeneity patterns. Heterogeneity Tracker Beta 

1.0 provides a method of exploring these patterns at different scales across ~ 8 000 PAs 

globally.  
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6.1. INTRODUCTION 

Biodiversity conservation is a global priority for the maintenance of ecosystem health and the 

protection of ecosystem services (Egoh et al. 2009; Hooper et al. 2012). In response to 

accelerated declines in the global biodiversity estate, the Conference of the Parties (COP) of 

the Convention on Biological Diversity (CBD) introduced 20 Aichi Biodiversity Targets in a 

revised Strategic Plan for Biodiversity 2011-2020 (CBD 2010; UNEP-WCMC and IUCN 

2016). The targets aim to track the state and trends of biodiversity through the use of global, 

national and regional indicators (Han et al. 2014). A number of these indicators are described 

in the Group on Earth Observations Biodiversity Observation Network’s (GEOBON) list of 

Essential Biodiversity Variables (EBV; Mace and Baillie 2007; Pereira et al. 2013; Brummitt 

et al. 2016). Each EBV class contains a set of candidate variables derived from either in-situ 

monitoring or remote sensing measurements that gauge the effectiveness of implementation 

strategies and assess progress (Pereira et al. 2013).  

Absent from this list is landscape heterogeneity, despite its recognised links to biodiversity 

outcomes (Stein et al. 2014; Tuanmu and Jetz 2015; MacFadyen et al. 2016). The ability to 

describe and visualise the patterns of the constituent parts of landscape heterogeneity is 

however well positioned to become an important support tool for biodiversity conservation in 

large PAs (Levin 1992). Large PAs in particular play an important role in the long-term 

maintenance of biodiversity, including the generation and sustention of its compositional, 

structural and functional forms (Cantú-Salazar and Gaston 2010). Such areas also afford 

ecologists the opportunity to develop and test different ecological theories by exploring models 

across natural-degraded gradients upon highly heterogeneous physical and functional 

templates. This underlying template is comprised of a mosaic of different topographies, 
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climates, geologies, soil and vegetation types and conditions which interact to create, maintain 

and influence landscape heterogeneity and its dependant species (MacFadyen et al. 2016).  

The development of practical tools to quantify, monitor and track heterogeneity can therefore 

be of particular importance to conservation managers (Levin 1992). This need is echoed in the 

2005 Millennium Ecosystem Assessment (MEA 2005) and 2014 Global Biodiversity Outlook 

4 (CBD 2014) reports for globalised biodiversity protection strategies. Globalised conservation 

initiatives require data and knowledge sharing agreements, which are interactive and easily 

accessible to collaborators across continents. Han et al. (2014) recognised this need and 

developed the Biodiversity Indicators Dashboard using disaggregated global data to “track 

progress toward the Aichi Targets, support national monitoring and reporting, and inform 

outcome-based policy-making for the protection of natural resources” (Han et al. 2014). Taking 

Han et al.’s (2014) approach a step further, we explore the graphical and statistical power of R 

(R Core Team 2016) combined with the web-sharing ability of Shiny (Beeley 2013; Chang et 

al. 2015) and mapping capabilities of Leaflet (Cheng and Xie 2016), to develop an application 

(App) that can support collaborative and interactive exploration of heterogeneity in protected 

areas across the world. Heterogeneity Tracker Beta 1.0 is presented here as an open access 

spatial tool to demonstrate the ability of these technologies to serve large scale information for 

collaborative conservation management and research. The interactive interface allows users to 

visualise indices of global landscape variability as different map layers and interrogate 

consequent results. This Beta 1.0 release is a proof of concept, analysis and visualisation tool 

to begin understanding the role heterogeneity may play in global biodiversity conservation 

strategies. We conclude with a discussion of possible version shortcomings and highlight plans 

for future developments to ultimately produce a practical, implementable, tool for PA 

managers. 
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6.2. MATERIALS AND METHODS 

6.2.1. Building Heterogeneity Tracker Beta 1.0 

All analyses were carried out in R version 3.3.1 (R Core Team, 2016). All raster processing 

and analyses were done using R’s {raster} package (Hijmans 2016) unless otherwise stated.  

Shiny R package version 1.0.0 (Chang et al. 2015) and Leaflet version 1.0.1 (Cheng and Xie 

2016) were used to compile a web interface to interactively explore and visualise landscape 

heterogeneity using freely available global data sources. The Shiny framework was used to 

provide a graphical user interface for the interactive Leaflet map, with additional R functions 

driving statistical analysis and plot generation (Beeley 2013). Three separate map tile layers, 

provided by ESRI (WorldStreetMap; NatGeoWorldMap; WorldImagery), were embedded into 

the App, allowing users to zoom in and out with scalable cartographic detail (Karambelkar 

2017). The ability to add user defined shapefiles from a local directory was also added to afford 

users the opportunity to explore results in the context of their own studies. The Heterogeneity 

Tracker App and associated R code was then served online using the free version of 

shinyapps.io (2017). The free plan is however limited to only one application instance and one 

worker process (shinyapps.io team 2017). This means only one user at a time may fully utilize 

the App and that multiple concurrent users may result in a system reloaded or refresh request. 

Starter, basic, standard and professional plans are also available to purchase. For example, the 

basic plan would allow “unlimited applications, 500 active hours, multiple workers processes 

and the ability to add additional instances to keep the App responsive as more people use them” 

(shinyapps.io team 2017). See the shinyapps.io user guide for detailed setting descriptions 

(shinyapps.io team 2017). 
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6.2.2. Data Input  

To define the earth’s physical landscape template we needed global spatial information to 

describe the underlying mosaic of different topographies, geologies, soils, vegetation (types and 

conditions) and climates, across all terrestrial protected areas. These components interact to 

create, maintain and influence landscape heterogeneity and its associated suite of dependant 

species (MacFadyen et al. 2016). Thus, the patterns generated by the unique combination of 

these components are expected to provide some insight into the diversity of environmental 

conditions and, by proxy, biodiversity. Global data sources incorporated here include: 

 

6.2.2.1. Protected areas 

The World Database on Protected Areas (WDPA) is an open source global spatial database of 

marine and terrestrial protected areas, with associated regional, national and international 

details on IUCN classifications, designations and management plan standings (UNEP-WCMC 

2016). All terrestrial protected areas greater than 200 km2 (n = 7927) were extracted from the 

WDPA (UNEP-WCMC 2016) and used to create a mask for further analyses.  

 

6.2.2.2. Topography 

The Global Multi-resolution Terrain Elevation Data (GMTED) is an enhanced elevation model 

produced by the U.S. Geological Survey (USGS) and the National Geospatial-Intelligence 

Agency (NGA) specifically for global and continental scale applications (Danielson and Gesch 

2011). The 1 km2 resolution version of this product was downloaded and resampled to 5 km2 

using a nearest neighbour assignment (Hijmans 2016). A Topographic Roughness Index (TRI) 

was then calculated (Evans 2016) from GMTED and the results reclassified into seven 

categories of terrain surface ruggedness, as described by Riley et al. (1999).  
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6.2.2.3. Geology 

A new spatial representation of global lithology and geology (GLiM), developed by Hartmann 

and Moosdorf (2012), was downloaded as a polygon shapefile indicating the distribution of 15 

different rock types across the Earth’s surface. These were later converted into a global 5 km2 

grid, classified into dominant rock types (Hijmans 2016). 

 

6.2.2.4. Soil Properties: Depth to bedrock and soil form 

The International Soil Reference and Information Centre (ISRIC) administers an online 

database  of soil properties (SoilGrids) derived from machine learning algorithms using global 

soil profile data and environmental covariates (Hengl et al. 2014). The absolute depth to 

bedrock (in cm) and the predicted soil class according to the World Reference Base for soils 

and the U.S. Department of Agriculture key to soil taxonomy (Hengl et al. 2014) were 

downloaded as 1 km2 grids and then resampled to 5 km2 (Hijmans 2016). 

 

6.2.2.5. Land Cover 

The Food and Agriculture Organization of the United Nations (FAO) produced a harmonized 

Global Land Cover product (GLC-SHARE) based on national, regional and global land cover 

datasets (Latham et al. 2014). The 1 km2 GLC-SHARE grids were downloaded, stacked and 

assigned a dominant ‘natural’ (excluding artificial surfaces and croplands) landcover class per 

pixel. That is, the maximum percentage cover value per pixel was identified from categories: 

grassland; tree covered areas; shrub covered areas; herbaceous vegetation, aquatic or regularly 

flooded areas; mangroves; sparse vegetation; bare soil; snow and glaciers and; inland water 

bodies (FAO 2014). The resulting dominant natural landcover layer was then resampled to 5 

km2 (Hijmans 2016). 
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6.2.2.6. Climate: Temperature and rainfall 

Bioclimatic variables representing the long-term seasonality (i.e. annual range) of temperature 

(bio4) and precipitation (bio15) were downloaded from the global climate dataset WorldClim 

version 1.4 as ± 5 km2 grids (Hijmans et al. 2005). These variables characterise the long-term 

inter-annual variability of temperature and rainfall in units of standard deviation*100 and 

coefficients of variation respectively (Hijmans et al. 2005).  

 

6.2.2.7. Vegetation phenology  

Satellite derived Normalised Difference Vegetation Indexes (NDVI) provide estimates of 

vegetation biomass and vigour by measuring vegetation ‘greenness’ (Marshall et al. 2016). 

Long-term global NDVI datasets are therefore often used to study vegetation dynamics and 

examine resource variability (Wessels et al. 2006; Marshall et al. 2016). Monthly maximum 

composites of NDVI were downloaded from the Global Inventory Modelling and Mapping 

Studies’ (GIMMS) dataset version 3 (NDVI3g; Detsch 2016). The inter-annual standard 

deviation (SD) of NDVI was then calculated at the pixel level for each year (n = 33), resulting 

in a rasterStack with 33 layers distinguishing NDVI variability (Hijmans 2016). The long-term 

mean of this inter-annual variability of NDVI was then calculated to smooth out any 

confounding climate change effects. 

 

6.2.2.8. Globally recognised biodiversity hotspots  

Global biodiversity hotspots represent those areas which support a significant number of unique 

or endemic species (Noss et al. 2015). Each of the 36 biodiversity hotspots, as defined by 

Meyers et al. (2000), are nested within an outer limit zone, which acts as a buffer to potential 

impacts from adjacent land uses (Myers et al. 2000). Forest landscapes form a large portion of 

these biodiversity hotspots and are considered some of the most biologically diverse landscapes 
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(Potapov et al. 2008). The boundaries of ‘intact’ forest landscapes are therefore of special 

interest for conservation planning as they include all forest expanses not yet significantly 

fragmented by human activity (Potapov et al. 2008). The boundaries of these areas (biodiversity 

hotspots and intact forests) were downloaded as polygon shapefiles and used as overlays for 

comparing results. 

 

6.2.3. Analysis of Environmental Heterogeneity and Dissimilarity  

For each layer, all values falling outside of protected areas were masked (assigned as NA) from 

further analyses. A heterogeneity index was then determined for each layer using a Grey Level 

Co-occurrence Matrix (GLCM), which computes the anisotropic distribution of co-occurring 

values in a 3 x 3 pixel moving window (Lu and Batistella 2005).  

 

��,� = V�,� ∑ ��,�
���
�,���⁄           [1] 

 

Where Vi,j is the value in the cell with row i and column j of the moving window and N is the 

total number unique values in each layer. In this way the matrix is normalised to approximate 

the probability tables of how often a pixel value of 1, for example, occurs either horizontally 

(0°), vertically (90°), or diagonally adjacent (45°, 135°) to a value other than 1 (Zvoleff 2016). 

The dissimilarity of GLCM was then calculated as follows:  

 

� = � ��,�  (� − �)
���

�,���
         [2] 

 

Where Pi,j is given above [1] and dissimilarity D increases linearly as (i – j) increases. Larger D 

values therefore depict pixels highly dissimilar to their neighbours in all four directions (Zvoleff 

2016). In this way dissimilarity was estimated for topographic roughness (TRI), geology 
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(GEO), bedrock depth (RDEP), soil type (SOIL), landcover type (LNDC) and long-term mean 

variability of temperature (TEMP), rainfall (RAIN) and vegetation ‘greenness’(NDVI).  The 

area-weighted mean of each dissimilarity estimate was then calculated for all protected areas 

(n = 7927) and compared across continents and subregions (ISO 3166-1 2006) using Kruskal-

Wallis rank sum tests and box plots (R Core Team 2016). An overall heterogeneity index was 

derived from the sum of all component dissimilarities and presented as different choropleth or 

thematic maps by continent (Sarkar and Andrews 2016; Tennekes 2017).   

 

6.3. RESULTS 

6.3.1. Heterogeneity Tracker Beta 1.0: Structural and functional outline 

The resulting Global Heterogeneity Tracker for Protected Areas App is available from 

https://heterogeneity.shinyapps.io/globalheterogeneity/. Fig. 6.1 describes the five different tab 

items and their associated functions: 

 

 Introduction: Provides a brief outline to the rationale behind the development of the 

Heterogeneity Tracker App along with a world map displaying all PAs as points. The user 

can select from three possible background map layers namely streets, NatGeo or satellite 

imagery, as well as add their own shapefile (point, line or polygon) to the map. Numbers 

represent the number of PAs nested behind a particular point at a particular scale. A left-

mouse click on one of these numbered points will zoom the user closer to those PAs 

within the boundary area indicated by the pop-up blue polygon. Numbers will change as 

one zooms closer to the centre-point of a particular PA, leaving a green marker with pop-

up labels giving the PA’s name.  
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 Custom analysis: Allows users to run the analyses, described in 6.2.3 of the methods 

section above, for a PA of their choice. When no PA is selected, the boxplot below depicts 

the distribution of PA size across world regions. Users may zoom directly into the map 

and select a PA (green marker), or select a country from the drop-down list provided and 

then choose from the filtered list of PAs for that country. Once a PA is selected, the 

boxplot will update to display the dissimilarities of the various environmental variables. 

Users can also add their own shapefile (point, line or polygon) layers to the map by 

browsing to their selected .shp, .shx and .dbf files. In addition, a layer control menu will 

appear on the top-right of the map allowing the user to turn the different base and/or result 

layers on or off. Specifics of these results are summarised in section 6.3.2 below. 

 

 

Fig. 6.1: Composite screen view of Heterogeneity Tracker Beta 1.0 structure and functionality, 

designed using a Shiny framework with embedded Leaflet maps and various summary and 

graphing functions. Available from https://heterogeneity.shinyapps.io/globalheterogeneity/. 
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 Continental summary: Summarises the results of the different environmental 

dissimilarity weights for PAs across continents, as described in methods section 6.2.3. 

The user may select the desired environmental variable from the drop-down list to change 

the associated thematic map and boxplot. Specifics of these results are summarised in 

section 6.3.2 below. 

 Data citations: Includes the references and online repositories for all global data, referred 

to in methods section 6.2.2, used in the development of the Heterogeneity Tracker App. 

All data are open access or used within specific restrictions described by relevant use 

agreements. 

 Acknowledgements: Acknowledges the contributions of financial institutions and 

individuals who provided data or other support for the development of the Beta 1.0 release 

of Heterogeneity Tracker.  

  

6.3.2. Environmental Heterogeneity and Dissimilarity 

Dissimilarity weights of the environmental layers, namely TRI; GEO; RDEP; SOIL; LNDC; 

TEMP; RAIN and NDVI varied significantly (P < 0.0001) within PAs between world 

subregions (Fig. 6.2). The sum of all dissimilarities represents the overall heterogeneity score 

for a particular PA. The distribution of these scores across world subregions is illustrated in 

Fig. 6.3.  

On average, Southern Asia and parts of South America have the highest levels of 

environmental dissimilarities (i.e. highly heterogeneous) across their PAs, while Middle Africa 

and Australia had the lowest. This may be an artefact of the large number of PAs designated in 

similar environments, for example, forests in South America or arid regions in Australia. 

Moreover, South America as a subregion had surprisingly low levels of dissimilarities 

considering the high levels of biodiversity known to occur in its Amazonian rain forests. 
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Fig. 6.2: Distribution of dissimilarity (diss) weights of environmental layers, topography (TRI); 

geology (GEO); depth to bedrock (RDEP); soil type (SOIL); landcover type (LNDC) and the 

mean inter-annual variability of long-term temperature (TEMP); rainfall (RAIN) and vegetation 

greenness (NDVI), in protected areas between world subregions. Letters and associated colours 

in each plot represent a summary of similarities and differences between subregions based on 

TukeyHSD results (Graves et al. 2015). Common characters identify subregions that are not 

significantly different (P < 0.05). Abbreviations: N-North; M-Middle; S-South; E-East; W-

West; C-Central; AUS-Australia; NZ-New Zealand. 
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We posit that while rainforests themselves are species rich (Myers et al. 2000), the underlying 

environmental variables may not necessarily be highly dissimilar across PAs. That is, the 

majority (74%) of areas protected across South America are classified as Tropical Moist Broad-

leaf Forests (UNEP-WCMC 2016; Sayre et al. 2014) with intrinsically similar geology, climate 

and vegetation greenness. This suggests the simple summation of all component dissimilarities 

produces a skewed view of heterogeneity as an indicator for biodiversity. However these 

preliminary results do also suggest potentially significant gaps in existing delineations of 

biodiversity hotspots. For example, Central, South and East Asian PAs were ranked highest in 

overall heterogeneity although they represent relative low percentages of Myers et al. (2000) 

biodiversity hotspots (3-6%). Similarly, Northern European and Central American PAs were 

also identified as being environmentally diverse. From a PA point of view, diversity clearly 

varies across substrates (Fig. 6.2) and between global subregions (Fig. 6.3), future revisions 

should investigate the use of weighted sums, with certain ecosystem types weighing higher than 

others (e.g. forests versus deserts or tundra). Of course other component dissimilarities could 

also be included to better reflect the complexity of landscape heterogeneity and its composite 

relationship with biodiversity. These and other future developments are discussed in more detail 

below.  
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Fig. 6.3: Distribution of overall heterogeneity scores derived from the sum of all environmental 

dissimilarity weights, normalised by the total area of protected areas for each subregion. Top 

panel: Map shows results summarised by country overlaid by biodiversity hotspots (Myers et 

al. 2000) and intact forest landscapes (Potapov et al. 2008). Bottom panel: Boxplot illustrating 

how heterogeneity scores differ significantly across world subregions (Kruskal-Wallis χ2 = 

1312.7, df = 19, P < 0.0001). Blue (BIO) and green (FOR) values indicate the percent of the 

global biodiversity hotspots and intact forest landscapes falling within each subregion 

respectively. Abbreviations: BIO-Biodiversity Hotspots (Myers et al. 2000); FOR-Intact 

Forests (Potapov et al. 2008); N-North; M-Middle; S-South; E-East; W-West; C-Central; AUS-

Australia; NZ-New Zealand. 
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6.4. DISCUSSION 

Heterogeneity Tracker Beta 1.0 illustrates how being able to interrogate results at multiple 

scales can give researchers and managers unique perspectives to help effect sound management 

decisions. In this way the user can interact with results, zooming in and out and panning across 

areas of interest in lieu of trying to interpret a static map or broad regional summaries. Regional 

summaries can also sometimes be misleading as we saw in our Fig 6.3 results for South 

America. In this case when PA heterogeneity scores were averaged across large subregions, 

much of the small-scale details were smoothed out and lost in the summarised outputs. This is 

a common challenge when presenting global or large-scale results (Sievert 2017). However, 

advancements in data sharing and interactive data visualisations are fast resolving these 

problems with JavaScript graphing libraries like plotly.js and interfacing packages like R’s 

plotly (Sievert et al. 2016). In future we hope to add more of plotly’s web visualisation functions 

to our App. In the meantime, the user has the freedom to interpret patterns of heterogeneity in 

a specific area in more/less detail in the context of a particular management question. Repeating 

this type of analysis at a national scale could assist the development of regional conservation 

strategies and support park expansion plans.  

Future releases of the App will explore for example i) the inclusion of ecologically 

meaningful weights for different landcover types, ecosystem classes or specific PAs; ii) 

expanding the list of environmental variables or biodiversity proxies to include variables such 

as vegetation structure [e.g. MODIS continuous vegetation field (NASA LP DAAC 2017) or 

the new 1 km2 Worldclim datasets (Fick and Hijmans 2017)]; iii) provide the ability to access 

user-defined datasets, either from a local directory or online with OPeNDAP (Garcia et al. 

2009), or PA specific data e.g. Kruger National Park (MacFadyen et al. submitted); iv) the 

ability to intersect user-input species locality or diversity data with heterogeneity results to 

begin developing a universal understanding of the heterogeneity-biodiversity relationship 
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(Stein et al. 2014; Schluter and Pennell 2017); and v) expand its application to include different 

climate change models, enabling easy visualisation of potential scenarios in comparison with 

current patterns (MacFadyen et al. 2018).  

 

6.5. CONCLUSION 

Due to technological advancements in the worldwide web, social media and data sharing 

platforms, global communication networks have become collaborative highways along which 

researchers can share ideas and interact. The data sharing opportunities facilitated through these 

networks provide a platform for protected area research to become more multi-scale, interactive 

and adaptive. As big data becomes more freely available, the effective communication of results 

will grow into a more visual and interactive arena. The freedom to interrogate graphs, plots and 

maps will no longer fall solely with statistician and Geographic Information Science (GIS) 

specialists but to conservation managers and decision makers. Our global Heterogeneity 

Tracker App provides an example of how R, Shiny and Leaflet can be integrated to make 

valuable knowledge relevant to a broader audience while still maintaining its local scale 

application. Since Heterogeneity Tracker was developed using only open source software (R, 

Shiny, Leaflet) and data, the possibilities for improvement and expansion are manifold.  
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7 
SYNTHESIS 
 

The thesis aimed to differentiate the cause and effect relationships between landscape 

heterogeneity and its key environmental drivers and/or responders. The environmental 

components selected were chosen based on their expected links with long-term patterns of 

landscape heterogeneity and changing ecosystem processes in Kruger between 1985 and 2012. 

They included the underlying physical landscape template (landform), rainfall, large herbivore 

distribution and density patterns, and fire return periods. This chapter provides a synthesis of 

the research findings, summarised by initial research questions (by chapter) and more broadly 

(general synthesis): 

1. How does the UNDERLYING PHYSICAL LANDSCAPE TEMPLATE affect 

environmental heterogeneity and the detection thereof? 

2. As a dynamic ecosystem driver, what are the long-term (1981-2015) spatiotemporal 

patterns of RAINFALL? 

3. As dynamic ecosystem drivers, how do LARGE HERBIVORES (specifically 

elephants) respond to the long-term (1985-2012) spatiotemporal distribution of rainfall, 

fire and the availability of surface water?  

4. How do all of the above (herbivores, climate, landform) and fire interact to generate and 

maintain LANDSCAPE HETEROGENEITY?  

5. How can the heterogeneity-biodiversity theory be operationalised into a 

HETEROGENEITY TRACKER to help globalise biodiversity protection strategies 

in future? 
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MAIN FINDINGS BY CHAPTER 

Underlying influence of the physical landscape 

The underlying influence of the physical landscape (landform) on environmental heterogeneity 

is spatiotemporally dynamic, with rainfall and season driving the strength and directionality of 

effects. In general, the explanatory power of landform decreased from summer to winter and 

from high to low rainfall conditions. These results and the spatial arrangement of model 

disagreement (Fig. 2.3) suggested more dynamic agents, not explained by landform alone, were 

playing an important role in shaping Kruger’s environmental heterogeneity. The new measure 

of Landscape complexity, based on the spatial arrangement of model disagreement (1-R2), 

produced compelling evidence of spatiotemporal variability in driver dominance and was 

strongly related to plant species richness. Even within broad rainfall classes (image selection 

based on low-average-high rainfall conditions), rainfall emerged as a significant driver of 

heterogeneity. This prompted a finer scale investigation into the long-term spatiotemporal 

patterns of Kruger’s rainfall in chapter 3.  

 

Spatiotemporal patterns of rainfall 

Although Kruger has a long history of climate data collection, no gridded rainfall datasets were 

available. Consequently, these were generated in chapter 3 using local rainfall measurements 

modelled against CHIRPS, elevation and distance to the Ocean to produce 1 km2 monthly 

gridded rainfall surfaces from July 1981 to June 2015 (http://dataknp.sanparks.org/sanparks/ 

metacat/judithk.111609.2/sanparks). The resulting spatiotemporal trends showed Kruger’s 

rainfall is shifting both spatially and temporally as dry/wet seasons move outside of historical 

ranges and archetypal extremes (Fig. 3.5). These changes may indicate early-onset effects of 

climate change, which should help guide adaptive conservation strategies and climate-change 

conscious spatial planning. For example, the development or corridor systems and land 
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expansion plans may give species the fundamental ability to move in response to climate 

induced niche shifts when necessary. Moreover, the knowledge gained in this chapter and the 

precept that rainfall is intrinsically linked to vegetation and species distributions dynamics, 

pressed the need for deeper insights into rainfall effects on different environmental role-players, 

like large herbivores. Understanding the spatiotemporal dynamics of Kruger’s largest 

herbivores (elephants) therefore became an important next step in developing a truly holistic 

understanding of landscape heterogeneity and cognate ecosystem dynamics.  

 

Spatiotemporal dynamics of elephants 

Results from chapter 4 showed Kruger’s patterns of elephant group-type (bulls vs. herds) 

dimorphism, distribution and abundance have shifted in response to increasing space limitations 

and possible elephant-fire induced regime shifts. Specifically, bull and herd groups are no 

longer clearly segregated and available empty-space has become limited. Despite this, bull and 

herd elephants have dichotomous resource selection functions, in that bulls concentrate in areas 

receiving lower rainfall but more frequent fires while herds concentrate in higher rainfall areas 

experiencing less frequent fires. However, both bull and herd groups concentrate closer to major 

rivers, emphasizing rivers as important spatial drivers. Overall, densities increased most 

significantly closer to rivers and in areas experiencing fewer fires. Fire was also identified as a 

strong agent of group-type change, as the probability of finding bulls, instead of herds, 

significantly increased as fire return periods shortened. Recognising the challenges Southern 

African protected areas face to produce practical management solutions for healthy and growing 

elephant populations, this work aimed to fill some of the biogeographical gaps on what drives 

the population-level distribution and abundance patterns of elephant in Kruger. Ideally, this 

work should help guide experimental management action strategies, which aim to alter elephant 

density and distribution patterns by manipulating artificial water sources (opening/closing 
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windmills), into areas experiencing fewer fires and those further from rivers (Smit and Ferreira 

2010; Ferreira et al. 2012). The challenge identified following this chapter, was how to tease 

apart synergistic relationships (like elephants and fire) in the presence of other environmental 

factors like rainfall, vegetation dynamics and topography. This boils down to the “correlation 

does not equal causation” argument, which prompted the inclusion of chapter 5. 

 

The causal structure of landscape heterogeneity 

Chapter 5 thus attempted to evaluate the roles played by different ecosystem components to 

define the causal structure of landscape heterogeneity. Using piecewise Structural Equation 

Modelling, results uncovered a spatiotemporally dynamic interplay between different 

heterogeneity drivers (Fig. 5.6). In general, landscape heterogeneity was enhanced by landform 

variability and increased rainfall. Landscapes were, in contrast, homogenised by higher 

elephant densities and less frequent fires. The long-term patterns of driver dominance also 

varied both spatially and temporally, with landform, rainfall, herbivory and fire fluctuating in 

their effect size (Animation S5.3). On average however, rainfall was spatially dominant, with 

fire frequency governing the formation and maintenance of landscape heterogeneity in higher 

rainfall areas while elephants dominated the lower rainfall granitic areas (Fig. 5.6). This chapter 

culminates in an understanding that ecosystems express themselves in complex adaptive ways, 

with multifarious physical and stochastic components interacting to both form landscape 

patterns and influence ecosystem processes at different scales. The ability to describe the 

resulting patchwork of landscape heterogeneity in terms of its environmental drivers is key to 

effective ecosystem conservation. Based on the results of Chapter 5, I caution against managing 

for ‘benchmark states’ (e.g. historical snapshots of ‘pristine’ conditions), under which any 

ecosystem change is labelled ‘undesirable’. Instead healthy ecosystems are complex and 

adaptive (Christensen 1997; SCBD 2004; Parrot 2010) and should be managed as such. 
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Managing for change avoids disrupting natural system dynamics by allowing landscapes to 

continue evolving as they are shaped by varying types and magnitudes of natural disturbances, 

such as herbivory, wildfire, drought and flooding (Parminter and Daigle 1997). Conclusions 

arrived at here propose that it is not change itself but the homogeneity of the change that should 

raise concern for conservationists. The maintenance of heterogeneity and the endurance of 

related spatiotemporal dynamics should therefore be prioritised. 

 

Heterogeneity Tracker Beta 1.0  

The development of Heterogeneity Tracker Beta 1.0 was realised in chapter 6 

(https://heterogeneity.shinyapps.io/globalheterogeneity). The App attempted to operationalise 

the heterogeneity-biodiversity theory by exploring patterns of underlying environmental 

heterogeneity at a global scale across > 8000 protected areas. Heterogeneity Tracker provides 

a method of exploring global results at different scales using the graphical and statistical power 

of R, combined with the web-sharing ability of Shiny and mapping capabilities of Leaflet. The 

interactive interface is to be developed further into a practical tool for protected area managers 

to evaluate biodiversity features using an index of landscape heterogeneity and dissimilarity in 

future. 

 

RESULTS IN SYNTHESIS 

The results across the chapters demonstrate that in large savanna protected areas, the 

interactions of physical landscape properties, rainfall, herbivores and fire produce complex 

spatiotemporal patterns and alter processes that form and maintain landscape heterogeneity 

(Groen 2007; Folke et al. 2004; Bond and Midgley 2012). This emphasizes the importance of 

designing spatially explicit management strategies that take a holistic view of protected area 

ecosystems for biodiversity protection (Tscharntke et al. 2012; Brambilla et al. 2017). In Kruger 
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for example, climate change projections of decreased rainfall (DEA 2013; IPCC 2014) may 

manifest and affect 30% of the protected area’s landscape (Fig. 5.6). However, “everything is 

connected” (Commoner 1971) and thus the compound effects reduced rainfall will have on fire 

frequencies and herbivore distribution and abundance patterns cannot be discounted (Fig. 5.6). 

Alarmingly, chapter 3’s assessment of the short to medium term (35 years) changes to Kruger’s 

rainfall patterns already shows evidence of spatiotemporal rainfall shifts in seasonality and 

extremes. This means that SANParks will need to consider climate change scenarios for future 

conservation and land acquisition planning (Ackerly et al. 2010).  

Results further present strong evidence that Kruger’s elephant density and distribution 

patterns are homogenising as available empty space rapidly declines. Moreover, there are also 

clear shifts in historical patterns of elephant distribution and abundance and relative likelihoods 

of elephant male versus female occupancies. Considering the spatial distribution of organisms 

in protected landscapes is largely in response to resource availability and the spatial 

heterogeneity thereof (Murwira 2003), Kruger is already experiencing significant landscape 

changes since 1985. Coupled to this, the synergistic relationship of elephants and fire (Shannon 

et al. 2011, Pringle et al. 2015) illustrated in Fig. 4.4 and Fig. 5.6, suggests tree-grass dynamics 

may also be affected as a result of these reciprocal cause and effects (Fullman and Bunting 

2014; Teren 2016). This was confirmed in chapter 5, where pSEM results uncovered a strong 

positive response of elephants to fire and a weaker positive response of fire to elephants (Fig. 

5.5). This confirms that fire is driving elephant distribution and abundance more so than 

elephants are altering fire regimes. This does not discount the results of chapter 4, in that bulls 

may have localised effects on fire frequencies. Ultimately Kruger will need to develop and 

refine spatially explicit elephant management strategies that are cognisant of the spatiotemporal 

dynamics of water and fire in the landscape (Ferreira et al. 2012). These may include strategies 

that will disperse resources like water, and disturbances like fire, differently across the 
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landscape (Smit and Ferreira 2010; Shannon et al. 2011; van Wilgen et al. 2014; Hilbers et al. 

2015). In a summary report to park management, I encouraged SANParks to use the 

spatiotemporal results presented to focus research into the more empirical effects of high 

elephant densities and perhaps develop the concept of refuge in more detail. The resource 

selection functions presented here can also be used to glimpse potential future elephant 

distribution and abundance scenarios under different climate change projections, available 

surface water changes and/or fire regime shifts.  

In combination with the results from chapter 5, using the methods developed and results 

presented here, any conservation agency may delve into the causal structure of landscape 

heterogeneity in their specific area of interest. In Kruger, for example, understanding that a 

decrease in landscape heterogeneity is indicative of system change (whether that be less rainfall 

/ more elephants / more buffalo / less fire; Fig. 5.5) will allow managers to focus field 

monitoring and decipher agents of change. Future scenarios can also be mapped this way, for 

example, should the effects of climate change result in 200 mm less rainfall per year, i) 

heterogeneity will decrease; ii) buffalo with cluster into large herds; iii) and fire return periods 

will lengthen iv) while elephant distribution and abundance patterns will remain largely 

unchanged (Fig. 5.5). 

 

METHODILOGICAL ADVANCES AND LIMITATIONS 

To assess drivers of landscape heterogeneity, this thesis combined and analysed extensive 

datasets, with spatially explicit time series data spanning 28 years (annual elephant distribution 

records: 1985-2012), 72 years (annual fire records: 1941-2012), and 408 months (monthly 

rainfall records: 1981-2012) over an area of ~ 20,000 km2.  The use of such extensive datasets 

is not yet commonplace in ecology, but with recent advances in parallel computing and 

availability of High Performance Computing facilities, this may change as their use becomes 
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more widely publicised in this age of information sharing and ‘big data’ era (Hampton et al. 

2013; LaDeau et al. 2017).  By using these extensive spatiotemporal datasets, this thesis has 

been able to test the efficacy of different spatiotemporal methods to understand the nature and 

relationships of various ecosystem components and their interactions.   Such data are invaluable 

in their ability to use ‘repeated measures’ to distinguish hard-and-fast long-term patterns and 

trends in the place of single snapshots, as demonstrated throughout the different chapters. 

However, dealing with vast quantities of complicated spatiotemporal data requires novel 

applications of interdisciplinary and sometimes heterodox methods to understand patterns and 

trends in the presence of computational and natural ecosystem complexity.  

Many of the methods applied here moved beyond the state of the art, in search of techniques 

that could be applied in an ‘outdoor laboratory’ setting where complex adaptive feedback loops 

abound. Unlike controlled laboratory experiments, in ecology and accompanying ‘outdoor 

labs’, all variables cannot always be held constant or explicitly accounted for. The methods 

explored and the results presented here expand on the laws of Commoner (1971) and Tobler 

(1970) to suggest that in ecology, “everything is in fact related to everything else but relative 

to spatiotemporal proximity”. Until recently however, ecology papers rarely applied explicit 

spatiotemporal techniques, partly because of data resource limitations and limited capacity to 

run complex models. Or perhaps regression models have become emblematic of ecological 

studies because if all you have is a hammer everything looks like a nail? I sympathise with this 

challenge facing fellow ecologists, having tested many more methods than presented here in 

search of techniques that could i) deal with such vast quantities of data; ii) account for inherent 

multicollinearity; iii) account for spatiotemporal autocorrelation; iv) identify long-term 

spatiotemporal patterns and trends v) and expound the complication of correlation vs. causation.  

Chapter 2 began by applying Geographically Weighted Regression (GWR), perhaps because 

it looks like a ‘hammer’ but allows relationships (and β coefficients) to vary over space 
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(Brunsdon et al. 1996; Fotheringham et al. 2002). It has typically been used as an exploratory 

technique (Bivand and Yu 2015) but shows promise for both spatial and potentially temporal 

applications. General Additive Mixed Effects Models (GAMM) were later explored in chapter 

3 since they allow relationships to change smoothly across continuous levels of covariates 

(spatial) over time (temporal). In this way a response variable can be explained by its non-linear 

relationship with covariates over space and time, including both fixed and random effects (Zuur 

et al. 2009). In ecology, where almost nothing is linear, it is surprising these techniques are not 

more mainstream. In the same chapter, spatiotemporal regression kriging was initially explored 

as a geostatistical means to interpolate or predict a response variable between and/or beyond 

measured geographic locations and observation intervals (Gräler et al. 2016). It was specifically 

chosen become of its ability to analyse the spatial-temporal correlation structure of a continuous 

variable, like rainfall, in relation to explanatory covariates, like CHIRPS and elevation (Liu et 

al. 2016). The methodologies are still actively being developed and refined and should offer 

some exciting new avenues for spatiotemporal research in the new future.  

Breaks in Seasonality and Trend (BFAST), which is typically used in remote sensing studies 

to detect change in time series products like NDVI (Verbesselt et al. 2012), was uniquely 

applied to elephants in chapter 4 to identify long-term distribution and abundance pattern 

changes. Exploring the application of different methods from other fields requires lateral 

thinking but will ensure science and management continues to be adaptive. In the same chapter, 

a relative risk assessment was applied to elephant groups to estimate the spatially-varying 

probabilities of finding bull vs. herd groups (Baddeley et al. 2015). Until now this technique 

was traditionally only used in epidemiological studies to identify the relative risk of disease 

spread using infected vs. non-infected patient reports (Lucca et al. 2013; Baddeley et al. 2015), 

but we showed that it can be successfully used to identify changes in the demographics of 

species distribution and abundance patterns.  
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The application of piecewise Structural Equation Modelling (SEM) was arguably the most 

exciting new methodology tested here. The notorious inability to separate cause and effect in 

ecology can potentially be overcome by using SEM. The piecewise version of SEM (pSEM) 

further allows mixed-effects and different correlation structures to be included in these models. 

However, the inclusion of latent variables into pSEM’s capabilities in future would vastly help 

improve our understanding of the complexity behind causal structures in the ecosystem. 

Specifically, the ability to represent landscape heterogeneity as an ecosystem construct rather 

than a directly observable landscape feature would be a major step forward. 

There remain a few caveats to be addressed in future as software and technologies advance 

and research theories evolve. Firstly, chapters 2 and 5 used Landsat spectral variation and long-

term monthly variability of AVHRR NDVI respectively as a proxy for heterogeneity. Landsat 

imagery was initially selected because of its higher spatial and longer temporal resolutions (80-

30 m spatial resolution; 1972-present). However the processing requirements necessary to 

calibrate five different scenes, across potentially seven sensors, at least twice a year (winter and 

summer), over the whole park for a 35 year period proved too intensive. In contrast, the lower 

resolution AVHRR imagery (~ 1-8 km spatial resolution; 1979-present) covered Kruger in one 

scene and provided a continuous time series of pre-calibrated, cleaned data from 1981 to 2015 

making it more appropriate for long-term large-scale monitoring. Unfortunately however, this 

means the resulting map of complexity (Fig. 2.5) is not directly comparable with that of the 

dominant driver map (Fig. 5.6). Notwithstanding this discrepancy, the concept of using model 

disagreement to map landscape complexity is a compelling one that should be explored further.  

Additional research opportunities lie in exploring alternative, or complementary, proxies of 

remotely sensed landscape heterogeneity to infer ecosystem complexity. Likewise the temporal 

dynamics of heterogeneity is an increasingly important area for future research to assess and 

predict biodiversity and ecosystem response to environmental change. Environmental change, 
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using landscape heterogeneity as an indicator of interest, can thus also potentially be evaluated 

between hypothesised limits of acceptable change to identify areas that are on a trajectory to 

exceed predetermined limits of acceptable homogenisation or change, thereby warning 

managers of possible state changes in the system. Further development of the Heterogeneity 

Tracker App is hoped to encourage further research into the development of a universal 

understanding of the heterogeneity-biodiversity relationship (Stein et al. 2014; Schluter and 

Pennell 2017). 

 

IMPLICATIONS AND OUTLOOK 

Each chapter of this thesis makes its own independent contribution to conservation science and 

ecosystem understanding in the different fields of landscape ecology, climate modelling, 

species biogeography, holistic ecosystem modelling and computer programming for interactive 

data visualisation. Taken together these results encapsulate a deeper understanding of 

ecosystem structure and function for the management of complex adaptive systems like large 

protected areas. At the outset of this thesis, the role of heterogeneity as a determinant of species 

richness (biodiversity-composition) was generally accepted (see Stein et al. 2014 for a 

synthesis). However, there was still much debate over its application to the structural and 

functional components of biodiversity (Schluter and Pennell 2017). Iterating through each 

chapter, the roles of the different key ecosystem drivers namely, landform, rainfall, large 

herbivores and fire, were unpacked and linked back to landscape heterogeneity. In this way, its 

application to the compositional, structural and functional dimensions of biodiversity was 

articulated. In essence landscape heterogeneity is the expression of stable ecosystem properties 

(e.g. landform) and dynamic ecosystem features (e.g. climate) and role players (e.g. fauna) 

interacting to maintain ecosystem processes. In an African savanna, these include landform 

(topography, geology, and soil), rainfall, large herbivores and fire. Therefore, if heterogeneity 
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is considered a proxy for biodiversity, under a biodiversity conservation paradigm, reductions 

in heterogeneity should at the very least sound alarm bells.  

The work presented here attests to the natural complexity of ecosystem dynamics, which 

dictates change to be part of all healthy, functioning ecosystems but which also introduces 

uncertainty. The non-linear interactions among the different components across chapters points 

to the inherent uncertainty and unpredictability of ecosystems and the need for an adaptive 

management approach to decision making (Allen et al. 2011). However, in recognising that 

ecosystem management involves understanding complex systems to be able to apply 

intervention strategies to problems that are often unstructured, open ended, multidimensional, 

systemic and potentially without a definitive solution, suggests ecosystem management is more 

likely a ‘wicked problem’ (DeFries and Nagendra 2017). In the business world, this is called a 

VUCA environment where the predictability of action outcomes and understanding or system 

knowledge interact to form different levels of Volatility, Uncertainty, Complexity and 

Ambiguity (Mack and Khare 2016). Results from this thesis have helped reduce the uncertainty 

around selected ecosystem drivers while uncovering more complexity in their interactions. To 

apply this knowledge globally, emphasis should be placed on understanding and maintaining 

the spatiotemporal dynamics of heterogeneity as an important conservation goal (Sinclair and 

Byrom 2006). Locally, SANParks managers should use the results herein to critically review, 

and where necessary adapt, policies and plans while cultivating a better understanding of, for 

example i) rainfall as a dynamic driver of heterogeneity, which can help steer national park 

planning and land reclamation policies based on projected climate change impacts; ii) how fire 

interacts with rainfall and herbivory to affect heterogeneity, which can support current and 

future fire management policies and strategies; and iii) the importance of large mammal 

management plans that acknowledge and offer mitigation strategies for the spatial and temporal 

impacts of herbivore distribution and abundance patterns on heterogeneity. Sharing this 
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knowledge, through interactive data visualisation will come out of the exciting and ongoing 

developments in the fields of knowledge exploration and information sharing (i.e. worldwide 

web, social media and data clearinghouses). These type of developments will provide the scope 

for truly globalised conservation initiatives that are more interactive and collaborative in future 

(Han et al. 2014; Scholes et al. 2017). Ideally, Heterogeneity Tracker may provide a platform 

for this, allowing protected area research to become more multi-scale, interactive and adaptive 

in the near future.  
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