
VU Research Portal

Replicated invocation in wide-area systems

Bakker, A.; van Steen, M.; Tanenbaum, A.S.

published in
Proc. Eighth ACM SIGOPS European Workshop, Sintra, Portugal, Sept. 1998.
1998

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Bakker, A., van Steen, M., & Tanenbaum, A. S. (1998). Replicated invocation in wide-area systems. In Proc.
Eighth ACM SIGOPS European Workshop, Sintra, Portugal, Sept. 1998.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 27. May. 2021

https://research.vu.nl/en/publications/9f2ed647-65c6-434b-85a0-dcd2592b3dda

Replicated Invocations in Wide-Area Systems

Arno Bakker Maarten van Steen Andrew S. Tanenbaum
arno,steen,ast @cs.vu.nl

1 Introduction

In many object-oriented distributed systems a client invokes a method of a distributed object through a call on a local
proxy of that object. If a client is replicated, such a call may possibly be done by several of its replicas. Consequently,
what is conceptually a single method invocation may result in several identical calls on the same object. Such an
invocation is said to be replicated, the individual calls are referred to as the copies of the invocation.

The problems associated with replicated invocations are well known [3][4]. However, existing solutions depend
on global coordination, or, for example, assume group communication is fast and efficient, so that they can be applied
only in local-area networks.

In this paper we present the problems associated with replicated invocations in the context of wide-area systems
and present a new solution to these problems. Our solution allows massively and widely replicated objects to efficiently
call other massively and widely replicated objects using replicated invocations. Our solution is scalable in the sense
that it uses local communication whenever possible, requires no complete knowledge of group memberships and puts
only a small load on replicas of the called object.

For the moment we limit ourselves to a single replicated object making replicated invocations on a single replicated
object. We assume that both calling and called object use active replication [6]. Nodes in the system are assumed to
be fail-stop. Only state-modifying operations (write methods) are carried out by all replicas. Read methods are sent to
a single (nearby) replica. For this purpose each proxy is (implicitly) connected to the nearest replica of the object it
represents. Write methods modify only the (volatile) state variables of the object; we assume they have no other side
effects. Write methods are guaranteed to be carried out by each replica in the same global order.

The remainder of the paper is organized as follows. Section 2 describes the problems introduces by replicated
invocations in a wide-area context. Section 3 gives an overview of our solution as it would operate in the absence of
node failures. Section 4 describes the fault tolerance of the solution. Section 5 discusses related work and we finish by
presenting conclusions and future work.

2 Problem Description

There are three major problems associated with replicated invocations.

Problem 1: Potential State Corruption If a request is not recognized as a copy of a previous invocation the associ-
ated method may be carried out more than once. If the method is nonidempotent the state of the called object will be
corrupted.

Problem 2: Returning the Same Answer A single conceptual method invocation has a single conceptual answer.
Therefore, each copy of a method invocation should return the same answer. If copies are considered separate invoca-
tions, different copies of the same invocation can return different results.

To illustrate this point, consider a replicated object A with a write method MA that successively invokes two methods
of a replicated object B, MBread and MBwrite. Assume that the copies of the MBread invocation are not recognized as
copies. The MBwrite invocation is sent to all replicas of B. Due to variable delays in the network, it may now happen

Postal address: Arno Bakker, Department of Mathematics and Computer Sciences, Vrije Universiteit, De Boelelaan 1081a, 1081 HV, Amster-
dam, The Netherlands.

1 B1

pB3

C pB

2 B22

B

A

3A

1

3

A

pB

3
pA

21

Distributed Object A Distributed Object B

*

2

2 3

3

4

4

4

5

5

Figure 1: A client C invokes a write method on a distributed object A which, in turn, invokes a write
method of a distributed object B. Dotted boxes represent processes. Solid boxes represent object bound-
aries. The asterisk indicates that replica A1 is primary caller.

that some of the copies of the MBread are delivered to a replica of B before it carried out the write and others after it
carried out the write. Consequently, different copies of the MBread may be carried out on different versions of the state.

Even if copies are recognized, returning the same answer is hard to implement in an efficient and scalable manner.
The time between the start of a replicated invocation and its completion can be considerable. Keeping answers to
(potentially large numbers of) unfinished invocations for long periods of time is expensive, as is determining if an
answer can be removed from the history.

Problem 3: Large Number of Messages If the calling object is actively replicated, each of the calling object’s
replicas makes the call on the local proxy. If the method invoked is a write method and the called object is actively
replicated, the invocation is forwarded to all its replicas. Given that the calling and called object can both have a large
replication degree, this could result in an excessive number of request and reply messages.

3 A New Solution

In this section we give an overview of our solution as it would operate in the absence of node failures.
We have made the following assumptions designing this solution:

1. Communication is atomic and reliable: when a node sends a message it will be delivered to all its destinations.
2. There are no network partitions.
3. Proxies are able to use local knowledge to determine which version of the state a read method should use.
4. Replicas are deterministic, that is, invoking the same method on replicas with the same version of the state

returns the same result.
5. All clients are bound to the object they will call, that is, they have a local proxy for that object.

Furthermore, we assume that the sets of replicas do not change during the invocations.

3.1 Overview of Failure-Free Operation

3.1.1 Request Phase of the Replicated Invocation

Figure 1 depicts the request phase of a replicated invocation by a distributed object A on a distributed object B. Both A
and B are assumed to be actively replicated. The replicated invocation of B’s method is the result of the execution of
one of A’s write methods.

1 B1

pB3

C pB

pB2 B22

B

A

3A

1A

3

7
pA

8

Distributed Object A Distributed Object B

69

7

7

6

6

8

8

Figure 2: The results of the chain of method invocations started by client C are returned. Again, dotted
boxes represent processes and solid boxes represent object boundaries. See Figure 1.

A’s write method is invoked by client C through a call on the local proxy of A (pA) (arrow 1 in Figure 1). The local
proxy multicasts the invocation request to the replicas of A (arrow 2). In this message it designates one of the replicas
as primary caller. When the message is delivered, the replicas of A record if they were named primary caller and start
to execute the write method. Part of the execution of object A’s write method is invoking one of the write methods of
object B. The replicas of A invoke this method through a call on a local proxy of B (arrow 3). This call carries extra
information, notably a call ID and a flag, indicating whether or not this replica of A was named primary caller in the
request message. Each replica of A assigns the same call ID to the call.

The proxy of B that is invoked with the primary-caller flag turned on (pB1) sends two messages: one invocation
request to all replicas of B (arrow 4), and one so-called “hush” message to the other proxies of B used by object A
(pB2 and pB3) (arrow 5 in Figure 1). The “hush” message contains the call ID of the invocation and results of previous
replicated invocations by object A1. These results are taken from a local answer log in which each proxy of B records
the answers to previous replicated invocations by A, either received directly from a replica of B or sent by another
proxy of B in an earlier “hush” message.

The proxies of B that were invoked with the primary-caller flag off check their answer log to see if they already
received the answer to this write-method invocation on B. If so, they return it to the replica of A, as described in the
next section. Otherwise, the proxies of B block and wait for the “hush” message. When it is received, they block again
and wait until they receive the result of the write-method invocation from the replicas of B.

3.1.2 Reply Phase of the Replicated Invocation

Each of the replicas of B carries out the write method as soon as the invocation request (arrow 4 in Figure 1) is delivered.
When the replica is finished it returns the result2 of the method invocation to a subset of the proxies of B (arrow 6 in
Figure 2).

The proxies of B record the result in their answer log. If the proxies were waiting for the result of this invocation
they return it to their callers, the replicas of A (arrow 7). The replicas of A continue the execution of A’s write method.
When finished, the replica of A that was named primary caller in the request message immediately returns the result of
the write-method invocation on A to the proxy pA (arrow 8). All other replicas of A return the result to pA only if they
have not seen any new invocations coming from that proxy for a long time.

Finally, the proxy pA returns the result to client C (arrow 9 in Figure 2).

1It contains the result of the last write-method invocation by object A and the results of any subsequent replicated read-method invocations by
that object.

2A write method is a normal method therefore it may also return a result.

3.2 Replicated Invocation of a Read Method

Assume the method invoked by distributed object A was a read method of distributed object B instead of a write
method. In that case, the local proxies of B first consult their answer log to check if they already received the result of
this invocation. If not, each proxy sends an invocation request to what it considers the nearest replica of B.

This invocation request contains the version number of the state on which the read should be carried out. The
replica of B receiving the request checks if it still has this version of the state. If so, it carries out the method and
subsequently sends the result back to the proxy of B. Otherwise, it sends a message saying the method was not carried
out because the desired version of the state was no longer available.

In the former case the proxy records the result in its answer log and returns the result to the replica of A. In the
latter case the proxy queries the other proxies of B used by A for the result, or uses the result sent in a subsequent
“hush” message and returns it to the replica of A.

3.3 Discussion

Preventing State Corruption Write-method invocations are sent to the replicas of the called object (B) only once
and can therefore be executed only once, given our assumptions. The call IDs are necessary for two reasons. First,
the copies of a replicated invocation need to be identified as copies, so we are able to return the same result to each of
them. Second, due to node failures, there may be multiple proxies of B multicasting a write, as discussed in Section
4.2.1.

Returning the Same Answer Call IDs ensure that copies of replicated method invocations are recognized as such.
State-version numbers, multicasting previous results (in the “hush” messages), and a global order on writes3 ensure
that all proxies indeed return the same result. Note that this solution has the advantage that a write-method invocation
can be delivered to a replica of B even if this replica has not seen all copies of previous read-method invocations. The
responsibility for providing answers to these requests is shifted to the proxies of B used by object A. This has the
additional advantage that the replicas do not have to allocate resources for this task. This shifting of responsibility
from server-side to client-side was already suggested by Cooper [2].

Large Number of Messages Distributing the invocation of a write method of object B takes two messages: one
invocation request sent to all replicas and one message containing previous answers to the proxies of B used by object
A (the “hush” message). They are both multicast to a potentially large and wide-spread group. This is expensive but
one might be able to efficiently combine the two multicasts into one. Since object A depends on object B, it makes
sense to install replicas of A and B close together. Consequently, the proxies of B used by A and the replicas of B will
be relatively close together. Therefore, the two messages will be multicast to the same parts of the network, making it
efficient to combine them into one. The amount of request-related traffic could therefore be relatively small.

The amount of reply-related traffic is also relatively small. Each replica of B replies only to a subset of the proxies
of B (arrow 6 in Figure 14), in particular to those proxies of B that consider this replica the nearest replica of B. This
means that the reply traffic will be local. The proximity of the proxies to the replica also makes maintaining the set of
proxies to reply to relatively easy.

Except for a proxy knowing its nearest replica (and vice versa), our solution requires little explicit knowledge about
group membership. We coordinate actions by assigning primary callers, not by election based on global knowledge of
a complete and ordered list of group members. The lower-level multicast service used requires complete knowledge
about the group membership, of course.

4 Fault-Tolerance of the Solution

In this section we show that our solution to the problems associated with replicated invocations is fault tolerant. A
node can host multiple processes. When a node fails, all processes on it are assumed to fail as well. A process can fail
independently from other processes on the same node. A process is assumed to fail as a whole, that is, if a process fails
all replicas and/or proxies present in that process also fail.

3Since we currently only consider a single replicated object calling another single replicated object, creating a global order is simple. We are
investigating the effects of having multiple replicated clients calling a single object. See Section 6.

4In this case the subsets are all singleton sets.

4.1 Problems Caused by Process Failures

The failure of a process may or may not affect our solution depending on when the failure occurs. In particular, it
depends on whether a process fails before or after sending the required messages. There are five different message
types, named after their labels in Figures 1 and 2.

Type 2: A method invocation sent by a proxy of A to one (read method) or all (write method) replicas of A.
Type 4: A method invocation sent by a proxy of B to one (read method) or all (write method) replicas of B.
Type 5: A “hush” message sent by a proxy of B to all other proxies of B used by A (sent as part of a write on B).
Type 6: A reply sent by a replica of B to a subset of the proxies of B used by A.
Type 8: A reply sent by the replicas of A to the proxy of A.

In the next sections we investigate the effects of these messages not being sent due to a crash of the sending process.
Recall that invocations of write methods are sent to all replicas of an object A, but the invocation of a read method is
sent to only one replica of A. As a consequence, when object A, in turn, invokes a read method of an object B as part
of the execution of one of A’s write methods, the read-method invocation will have n copies since the write method of
A will be carried out by all n replicas of A.

However, when the read method of B is invoked as part of the execution of one of A’s read methods, the invocation
has only one copy since the read method of A is being carried out by only one replica of A. We call this latter invocation
a nonreplicated or normal read-method invocation. Only invocations of read methods can be nonreplicated. We assume
that read methods of an object cannot call write methods of other objects.

4.1.1 Type 2 Message Not Sent Due to Process Failure

When the process containing client C and proxy pA fails before sending the method invocation to the replicas of A (see
Figure 1), the replica(s) of A will, of course, not carry out the read or write method. But since client C failed along
with the process, no further action is necessary.

4.1.2 Type 4 Message Not Sent Due to Process Failure

Type 4 messages can be divided into three subtypes:

4i. a nonreplicated invocation of a read method of B.
4ii. a replicated invocation of a read method of B.

4iii. a (replicated) invocation of a write method of B.

A nonreplicated invocation of a read method is always part of a chain of read-method invocations, in case of
Figure 1 MAread MBread . Therefore, if the process hosting the single proxy of B that was invoked (proxy pB1 in
Figure 1) fails before sending the Type 4i message, there is a problem. The caller at the start of the chain of invocations
(in this case pA) will not get an answer. We call this problem F1.

A replicated invocation of a read method of B has more than one copy. Since reads require only a unicast message
to a single nearby replica, we let all proxies of B invoked by A send a request message to what each proxy considers
the nearest replica of B. Therefore, if a process hosting one of the proxies fails and the Type 4ii message is not sent,
there will be other proxies sending the same request to a replica of B. Therefore the read method will be carried out
and a result will be delivered to a replica of A.

A replicated invocation of a write method of B also has multiple copies, but since a write requires a multicast to
the whole replica group of B we let only one proxy of B (the one invoked with the primary-caller flag turned on) send
the Type 4iii message. If the process hosting this proxy crashes before sending the message, the write on B will not be
carried out and object A will never receive an answer. We call this problem F2.

4.1.3 Type 5 Message Not Sent Due to Process Failure

A Type 5 message is one of the mechanisms we introduced to make our solution tolerant to process failures. We discuss
the effects of its loss in Section 4.2.2 when we discuss the solution to problem F2.

4.1.4 Type 6 Message Not Sent Due to Process Failure

Type 6 messages can be divided into three subtypes:

6i. result of a nonreplicated invocation of a read method of B (i.e., the reply to a Type 4i message).
6ii. result of a replicated invocation of a read method of B (i.e., the reply to a Type 4ii message).

6iii. result of a (replicated) invocation of a write method of B (i.e., the reply to a Type 4iii message).

If the reply to a nonreplicated read-method invocation on B is not sent, the process hosting the replica of B that was
asked to carry out the method failed (that would be the process containing replica B1 in Figure 2). This means that the
proxy of B that sent the request (pB1) will not receive the result of this invocation. We call this problem F3.

When a Type 6ii message is not sent because a process hosting a replica of B failed, there are still other replicas of
B that send the reply to their invoking proxies. As long as one copy of a Type 6ii message is sent, object A will get an
answer. However, it is important that all proxies of B used by A receive a copy of a Type 6ii message to preserve the
fault tolerance of object A. We will call this problem F4.

Type 6iii messages suffer from the same problem.

4.1.5 Type 8 Message Not Sent Due to Process Failure

Type 8 messages can be divided into two subtypes:

8i. result of a read-method invocation on A.
8ii. result of write-method invocation of A.

Both types of messages carry results from method invocations sent in Type 2 messages.
If the process containing the replica of A that is considered the nearest replica of A by proxy pA fails before sending

the result of the read, proxy pA will not get an answer. This problem is equivalent to F1. In both cases the proxy pA
does not get the results of an invocation of a read method.

Messages of Type 8ii have natural redundancy (see Figure 2), therefore not sending such a message does not pose
a problem.

4.2 Solutions to the Problems Caused by Process Failures

4.2.1 Problem F1: Proxy of A does not receive results of a nonreplicated read-method invocation

The synchronous5 nature of method invocations ensures there are no successive write operations. Therefore, if the
replica of A failed before returning an answer, pA can resend the method invocation to a different replica of A, since
there is no risk of the read being carried out on a newer version of the state. However, this other replica may not have
the latest version of the state. Proxy pA therefore puts the version number of the state on which the read should be
carried out in the invocation message. The read is queued until the prior write-method invocations have been carried
out.

4.2.2 Problem F2: Primary proxy of B fails before sending write-method invocation

The basic solution to F2 is to exploit the redundancy of the replicated invocation. The proxy of B that was invoked with
the primary-caller flag turned on (pB1 in Figure 1), multicasts the invocation of the write method of B immediately.
The other proxies of B used by A set a timer and wait. If the timer expires before receiving the “hush” message, the
proxies multicast the method invocation. If they do receive the “hush” message in time they will regard this as proof
that the primary proxy did not fail and successfully sent the method invocation to all replicas of B. More on timers in
Section 4.2.6.

To prevent large amounts of network traffic when the primary proxy fails, the “hush” mechanism should be applied
recursively. The first non-primary proxy of B that times out and multicasts the method invocation also sends a “hush”
message to the remaining proxies of B. A similar solution, but without timers was presented by Jalote in [4]. It is
obvious that multiple proxies of B may be multicasting the invocation. The call ID present on all copies of a replicated
invocation (to ensure that all copies of a replicated invocation return the same answer) is used by replicas of B to filter
out copies of invocations already carried out. See Section 4.2.5.

5We do not consider asynchronous method invocations in this paper.

4.2.3 Problem F3: Replica of B fails before returning results of a nonreplicated read

Problem F3 is very similar to problem F1 and therefore the same arguments apply and the same solution can be used.
Due to the synchronous nature of method invocations proxy pB1 can, after detecting the failure of the nearby replica,
resend the read-method invocation to another replica of B. The version number of the state on which the read should
be carried out should, of course, be included in the invocation message.

4.2.4 Problem F4: Some replies to a replicated read or write not sent

When a replica of B fails during a replicated read (i.e., Type 6ii message is not sent) the proxy of B that considered
it the nearest replica of B will have to find another nearest replica. The proxy might or might not be able to redo the
read on the new nearest replica, because successive writes on the object forwarded by another proxy of B may have
changed the state of this replica. In that case, the proxy queries its neighbouring proxies for the result of this invocation
(using, for example, a scoped multicast). This action is concurrent with subsequent write-method invocations by A
(which might clear a proxy’s answer log), but the querying proxy can always fall back on the previous read results in
the “hush” message that is sent as part of the subsequent write (see Section 3.1.1).

Redoing a write is, of course, impossible. Therefore the proxy of B has to query its neighbouring proxies. To allow
it to fall back on a subsequent “hush” message, “hush” messages carry the results of the last write done by object A.

4.2.5 Call IDs

Call IDs as passed by the replicas of A to the proxies of B are monotonically increasing. This makes filtering out copies
easy. If the copy has a call ID less or equal than the last call ID processed and the operation invoked is a write, the
copy is discarded. If it is an copy of a replicated read we check if we still have the version of the state that is required
and act accordingly.

The state machine approach requires a total order on writes, which means that a replica, given two writes, should
be able to determine which write should be carried out first. And more importantly, if there are other writes which
should go first. Having monotonically increasing call IDs is not sufficient, therefore the proxies of B include the call
ID of the last write done by A in the write request to the replicas of B.

4.2.6 Timers

For optimal performance during failures, the proxy of B closest to the primary should take over as soon as it is clear
that the primary did not multicast the write-method invocation. If this proxy, in turn, fails, the proxy closest to it
should take over, and so on. Setting the timer values for optimal performance therefore requires detailed knowledge
about transmission times between nodes to be available at each proxy. This is not feasible for large numbers of widely
distributed proxies (i.e., a massively and widely replicated object A). We therefore adopt a very simple solution: proxies
choose large random values for their timers.

5 Related Work

In the GARF system [5] the problems associated with replicated invocations are solved as follows. Incarnations of
the replicated invocation are intercepted by a meta layer, which elects one invoking replica coordinator. To elect a
coordinator it must have full knowledge about the group membership. This coordinator makes the actual invocation
on the other object. A symmetric approach is used for returning the result: the coordinator of the called object returns
the result to a local proxy of the calling object, which multicasts it to the calling object’s replicas. Maintaining
complete knowledge about group membership at each node is not feasible in wide-area systems. Furthermore, using
group communication for invoking and returning the results of both read and write methods is inefficient. The Hot
Replication algorithm [1] is similar to that used in GARF, but does not use a symmetric approach. The results of reads
and writes are multicast to the calling object’s replicas by the coordinator of the calling object instead of a proxy.

The DistView toolkit [7] uses a solution also very similar to that of GARF, explicitly designed for widely distributed
objects. It is also similar to our solution in that each replica of the calling object calls the other object. This is only
exploited if calling and called object are replicated on the same set of nodes. In all other cases method invocations
and results are multicast by fixed coordinators, whose election is also based on having complete group membership
knowledge at each node.

In Jalote’s solution [4] a request or reply is sent to both the replicas of the called object and the proxies of the called
object used by the caller. This prevents unnecessary request and reply messages, because the proxies will not multicast
the request themselves if they already received it from another proxy. The same holds for replicas and replies. An
advantage of this approach is that node failures are transparent to the invocation algorithm. Jalote’s solution is targeted
towards broadcast local-area networks and will not work correctly in networks with highly variable delays, but the
basic ideas are very useful (see Section 4.2.2).

6 Conclusions and Future Work

If a distributed object that is actively replicated invokes methods of another distributed object, each replica of the client
object will make the call, resulting in what we have called a replicated invocation. In this paper we presented the three
problems associated with replicated invocations in the context of wide-area systems, where distributed objects may
have many and widely distributed replicas. Replicated invocations can cause state corruption, both in the called object
(executing a nonidempotent method multiple times) and in the calling object (returning different answers to different
replicas of the caller), and can result in large numbers of request and reply messages.

We presented a novel solution to these problems for a single actively replicated object invoking another single
actively replicated object. This solution is efficient and scalable in the sense that (1) it uses nearby replicas and local
communication whenever possible, (2) requires no complete knowledge about group membership and (3) reduces the
load on replicas by removing part of their responsibility. We have also shown that this solution can tolerate process
failures. We will substantiate the efficiency and scalability claims by simulations and experiments on our wide-area
test bed.

At the moment our solution is limited to a single replicated client. In the future we will extend our solution to one
in which multiple clients can invoke methods of the same object using replicated invocations. Furthermore, we have
to look into the issues related to the introduction of new replicas of calling and called object. We are also interested in
solving the problems of replicated invocations for objects with weaker consistency models.

References

[1] BEEDUBAIL, G., KARMARKAR, A., GURIJALA, A., MARTI, W., AND POOCH, U. Fault Tolerant Objects in
Distributed Systems Using Hot Replication. Tech. Rep. TR95-023, Department of Computer Science, Texas A&M
University, USA, Apr. 1995. Revised version of this paper appears in Proceedings of the Fifteenth International
Phoenix Conference on Computers and Communications (IPCCC), Phoenix, AZ, March 1996.

[2] COOPER, E. Replicated Distributed Programs. PhD thesis, Dept. Computer Science, University of California at
Berkeley, Apr. 1985. (Technical Report CSD-85-231).

[3] COOPER, E. Replicated Procedure Call. ACM Operating Systems Review 20, 1 (Jan. 1986), 44–56.

[4] JALOTE, P. Resilient Objects in Broadcast Networks. IEEE Transactions on Software Engineering 15, 1 (Jan.
1989), 68–72.

[5] MAZOUNI, K., GARBINATO, B., AND GUERRAOUI, R. Filtering Duplicated Invocations Using Symmetric Prox-
ies. In Proc. of the Fourth IEEE International Workshop on Object Orientation in Operating Systems (IWOOOS)
(Lund, Sweden, Aug. 1995).

[6] SCHNEIDER, F. Implementing Fault-Tolerant Services Using the State Machine Approach. ACM Computing
Surveys 22, 4 (Dec. 1990), 299–319.

[7] WU, G. A., AND PRAKASH, A. Distributed Object Replication Support for Collaborative Systems. Tech. Rep.
CSE-TR-276-96, Dept. Electrical Engineering and Computer Science, University of Michigan, Ann Harbor, MI,
USA, 1996.

