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Abstract

Using the active replication strategy to replicate
objects introduces some problems when the objects
invoke methods of other objects. In addition to de-
scribing what these problems are we present a pos-
sible solution. The objects we are interested in are
massively replicated objects with replicas distributed
over a large geographical area.

1 Introduction

In object-oriented distributed systems objects are
often replicated to improve reliability or increase per-
formance. One popular replication strategy is active
replication, in which all replicas of an object carry out
the method invoked by a client. This strategy intro-
duces some conceptual and practical problems when
actively replicated objects start invoking methods of
other objects.

In this paper we will present a number of prob-
lems related to actively replicated objects acting as
clients and invoking other objects’ methods. The ob-
jects we consider may have a very high replication de-
gree and their replicas may be distributed over a large
geographical area. This means that communication
between replicas is slow. Due to the potentially large
number of objects in the system, communication is
also considered expensive, especially communicating
with groups of machines. We will not only present the
problems, but also a possible solution.

System Model and Assumptions

We assume that objects use active replication as
part of the state machine approach to making them
fault-tolerant [1]. The machines on which they are lo-
cated are assumed to suffer only from fail-stop type
failures. Method invocation is synchronous, so a

client (object) can invoke only one method at a time.
It invokes methods on (other) distributed objects by
doing an invocation on a proxy of the object that is
present in the client’s address space. This proxy will
distribute the invocation to (a subset of) the replicas
of the called object, which will carry out the call.

In case of a state-modifying operation (which we
will call a write or write-type operation from now on),
the invocation is forwarded to all replicas of the ob-
ject. In case of a non-state modifying operation (a
read or read type operation) the invocation is for-
warded to just one replica. Note that the latter already
is an optimization to straightforward active replica-
tion. Special care will have to be taken to ensure
that these read-type operations are also made fault-
tolerant. Write-type operations modify only the state
variables of the object; we assume they have no other
(side) effects. Since we are using a state machine ap-
proach, write-type operations are carried out by each
replica in the same global order.

The proxy of the object was installed in the client’s
address space as part of a process called binding. Part
of this binding process is the selection of one replica
to which the read-type operations will be directed.
There may be several selection criteria, but for now
we assume that it will be proximity to the client’s ma-
chine. The proxy is said to be “connected to” this
replica. For our discussion we will assume that all
binding has been done.

We currently consider only the case in which one
object calls one other object. So there is one single,
but replicated client calling one single, but replicated
(server) object. It is our intention to extend our so-
lution to handle multiple, different clients invoking
methods on the same object at the same time.



2 Problems

There are four major problems that need to be
solved in order to make method invocations between
actively replicated object work correctly and effi-
ciently.

2.1 Problem 1: Duplicate Invocations

When trying to make objects fault tolerant the
invocation of methods of other objects also has to
be made fault tolerant. The way fault tolerance is
achieved with active replication is doing things mul-
tiple times. That is why, in principle, each opera-
tion is carried out at each of the object’s replicas.
If this operation involves calling another object this
will naturally be done multiple times. Each individ-
ual replica makes the invocation on the object to call.
The invocation can thus be made to withstand n 1
(node-)failures, where n is the replication degree of
the caller. However, there is one major drawback. If
the operation is not idempotent this repeated invoca-
tion of the other object’s method will corrupt the state
of this other object. As a result replicas will get dif-
ferent answers to the same request which also causes
problems, this time at the calling side.

2.2 Problem 2: Large Number of Re-
quests

If the fault-tolerance degree of the calling object is
high, there will be many invocations per conceptual
call. Each of the replicas of the calling object will
have called the proxy of the destination object in its
address space. Suppose that the method invoked is a
write-type operation. Active replication dictates that
all state-modifying operations should be sent to all
replicas. Therefore each of the called proxies would
forward the (reification of the) invocation to the repli-
cas of the called object. The result of which would
be that each replica would receive the invocation n
times, possibly causing the machine it is on to crash.
Furthermore, the excessive amount of network traffic
(n times m messages, where m is the number of repli-
cas of the called object) would lead to congestion and
other problems in the network.

2.3 Problem 3: Large Number of
Replies

A fault-tolerant object which uses straightforward
active replication will also send redundant replies.
Each replica will send the answer to the proxies
that requested it by forwarding the invocation to this
replica. Since all proxies will have requested the an-
swer from all replicas (see above) we will have m
times n reply messages, again leading to congestion
and possibly machine crashes. Note that in our model

this problem occurs only with write-type operations.
Reads are sent only to the replica to which the proxy
is connected and receive their reply in a normal single
request/single reply fashion.

2.4 Problem 4: Returning The Same An-
swer

Since each of the invocations is just an instance of
one and the same conceptual call, all these duplicate
requests should return the same answer. But due to
delays and differences in machine speed there may be
a long time between the delivery of the first and the
delivery of the last invocation to the called object. If
there are other invocations that are concurrent with
this call, returning the same answer may become a
problem.

Consider the example shown in Figure 1. When
the client invokes method on A, the write call
will be distributed to all replicas. Each of the repli-
cas will execute the method and, as a consequence,
call , a read-type operation on B. The time at
which each replica makes the call on B depends on
the transmission time of the original write on A and
the speed of the machine the replica runs on. Assume
that the machines hosting A1 and A2 are far apart, or
that A2 runs on a slow machine.

Reads are processed by the replica to which pB1 is
connected (in this case the nearest replica), so A1 will
get the answer to the read fairly quickly, allowing it
to continue. A1 subsequently calls method of
B. This write has to be distributed to all replicas of B
and the proxy pB1 takes care of that. Due to delays
and machine-speed differences, the write on B might
arrive at B2 before the previous read call ( )
done by pB2 (as part of A2’s execution of the
call).

If the write is done without further consideration,
pB2 might get a different result to its call than
pB1 did before him. Since the requests are instances
of the same conceptual call, they should have gotten
the same answer.

3 A Possible Solution

In this section we will present a possible solution
to the problems described. We do not claim that this
is the only or most optimal solution, but we are confi-
dent that it will work well in a large-scale distributed
system and intend to verify this by running experi-
ments on ASCI’s distributed supercomputer.

In the design of this solution we have made several
assumptions:

Communication is atomic and reliable: when a
node sends a message it will be delivered to all
its destinations.

There are no network partitions.
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Figure 1: Intra-object concurrency. The code executed is shown on the right.

Replicas are deterministic, that is, invoking the
same method on replicas with the same version
of the state returns the same result.

Proxies have sufficient resources to store all in-
formation we intend to store on them.

When storing information at a proxy we will ex-
plicitly take into account the amount of data stored,
so this latter assumption is no passport for letting us
store massive amounts of information at each proxy.
It just allows us to keep the presentation of the solu-
tion more focussed.

3.1 Solving Problem 1: Call IDs

The first thing to realize is that duplicate invocation
problem is caused by the inability of the called object
to recognize duplicate invocations as one conceptual
method invocation. In systems without actively repli-
cated objects there is always a one-to-one correspon-
dence between a method invocation at the implemen-
tation level and a method invocation at the conceptual
level. In systems with actively replicated objects this
one-to-one correspondence no longer exists. Active
replication causes a conceptual method invocation to
be implemented as multiple redundant invocations.

One solution to this problem therefore is restor-
ing this one-to-one correspondence between concep-
tual and implementation-level invocation. This solu-
tion was chosen by Mazouni et al. [2]. Each replica
is connected to an encapsulator which intercepts all
the invocations done by the replica. All encapsulators
belong to the same communication group and have
knowledge of the group membership. This allows
them to deterministically elect one of them as coor-
dinator based on local knowledge. This coordinator
then does the actual invocation on a proxy of the ob-
ject to call.

With large numbers of replicas per object and pos-
sible node failures, having complete and up-to-date

knowledge about membership at each replica site in
a wide-area system is no longer feasible. This makes
electing a coordinator much more difficult, since the
replicas have to explicitly achieve consensus.

We chose to simply let each duplicate invocation
carry a call ID, identifying it as an duplicate of one
single conceptual call. However, called objects will
now have to explicitly allow their methods to be called
by means of duplicate invocations, identifiable as du-
plicates by their call ID. In our opinion the advantages
of this solution in a wide-area system fully compen-
sate for this limitation.

We are still working on the exact details of how
each of the invocations can be labeled with the same
call ID.

3.2 Solving Problem 2: Forward Once

When an actively replicated object A invokes a
write-type method of another object B, each of the
replicas of A will invoke this method on a proxy of
B. If B also happens to be actively replicated each of
these proxies forwards (multicasts) the reification of
this invocation to the replicas of B. The problem we
solved in the previous section is that the replicas of B
will not carry out the operation more than once, be-
cause duplicate invocation requests are recognizable
by their call ID. What we have not solved are the
problems caused by the potentially large amount of
network traffic.

What is required by the active replication strategy
of B is that each of its replicas receives one copy of
the invocation. One possible solution is, given the re-
liable communication assumption, to let one of the
proxies forward the call to the group of replicas. But
that would reduce the fault tolerance of A’s invoca-
tion to one. Therefore we would also have to make
sure that if that proxy failed to forward the call, the
others would take over.

Another solution would be to let each proxy send
only to a subset of the replica group. That will require



some administration to make sure that all replicas will
receive a copy of the invocation. Maintaining such an
administration in a wide-area environment with node
failures is not an easy task, we therefore chose the
former solution.

Detecting Proxy Failure The first question to an-
swer is: how do the other proxies detect the failure
of the designated forwarder? Instead of relying on a
separate failure detection system, we let the others de-
tect failure by detecting the not-forwarding of the call
message. This requires that the designated forwarder
also forwards the call to the group of proxies work-
ing for the calling object (A). The proxies that are not
forwarding the call set a timer and if they do not re-
ceive the call message before the timer expires, they
will forward it themselves.

The exact values of the timers will, of course, have
great impact on the performance of the system when
node failures occur. If the timers all expire at the same
time and there is no message, we may have n proxies
forwarding the call. If the timers are set too high the
performance of the system will be bad in case of fail-
ures.

For optimal performance the timers would be set
such that the proxy closest to the designated forwarder
would time-out as soon as it is clear that no forward-
ing was done. To best handle subsequent failures, the
proxy closest to this proxy would set its timer such,
that if the designated forwarder did not forward and
the next proxy in line did not forward, it would time-
out at the earliest possible time and do the forwarding.
It is clear that calculating these ideal values for all
proxies requires some knowledge about relative posi-
tion of the members of the proxy group1. Since this
group can have a very large membership, it is impos-
sible to have this information available at each proxy.
This means that the calculation cannot be done lo-
cally.

So calculating the optimal values does not seem
to be an option. The question is how much deviat-
ing from the optimal timer values affects the perfor-
mance and how we could calculate semi-optimal val-
ues which will yield good performance in the majority
of cases. This is still a topic of research.

Choosing a Designated Forwarder The second
problem to solve is choosing the one proxy that is to
forward the call (the designated forwarder). The eas-
iest way is having the client object assign one. Elect-
ing one is out of the question, because that would re-
quire achieving consensus over a wide-area network.

How does the client object choose the first proxy?
Recall that we are dealing with a write operation on

1Although we have not shown it here, it also requires knowledge
about the position of the replica which is used by each proxy to
handle the reads it receives.

the calling object which, in turn, invokes a write oper-
ation on another object by means of multiple invoca-
tions. When the write operation on the calling object
is distributed to its replicas, the proxy forwarding the
request names one of the replicas in the message. An
obvious candidate would be the replica that it is con-
nected to, since that will probably be in the vicinity.
When the forwarded write request arrives at a replica,
it checks to see if it is the one who was named in the
message and records this fact. If the replica, in the ex-
ecution of the write method, has to call other objects
it will check if it was named in the original message,
and if so, make the invocation on the proxy of the ob-
ject to call. The invocation not only carries a call ID
(which it has to since it is part of a replicated invo-
cation) but also a bit indicating that the proxy called
is the one that should forward the invocation to the
replicas of the called object2.

3.3 Solving Problem 3: Proxy Group

To avoid problem 2 we chose to let just one proxy
forward write operations to the replica group. As a re-
sult the replicas see only the invocation request from
one proxy. This was our intention but the side-effect
is that replicas no longer automatically know who to
send the answer to. While there was only one sender,
there are a lot of receivers interested in the answer,
in particular all proxies that have or will receive the
write invocation from their user.

One idea is to let all proxies of a particular client
join a multicast group and sending the answer to that
group (a solution which avoids application-level ad-
ministration) and use the same scheme that was used
to solve the number-of-requests problem to solve this
number-of-replies problem. Assigning a designated
replier is not as easy, however.

We therefore chose another solution. Remember
that each proxy is connected to a particular replica
which it uses to get answers to read-type operations.
Each of those replicas could keep track of which prox-
ies are connected to it. If it received a request for
a write-type operation, it would execute the method
and send the reply only to those proxies that are con-
nected to it. In this way, the answer to a write-type
operation will be delivered to all interested proxies,
but with less system-wide communication.

Proxies connected to a replica will, by assumption,
be relatively close to that replica, making communica-
tion and maintenance of the administration of which
proxies connected to it not extremely difficult or ex-
pensive.

2Note that in principle this bit just means “you go first”. If
the called object were not actively replicated, but used a primary-
backup type of scheme, this first proxy should try to deliver the
message to the primary.



Replica Failure However, if a replica fails, its con-
nected proxies should still get the answer, or else they
will be blocked forever. Not only write-type opera-
tions suffer from this problem. Remember that read-
type operations are forwarded only to one replica, the
replica the proxy is connected to. If it fails the proxy
cannot get the answer to its client’s read.

The obvious solution in both cases would be to ask
another replica, since it is its job to provide answers to
proxies. However, this could slow down the progress
of other replicas as they would have to delay any sub-
sequent operations until, in the extreme case, all the
proxies used by a particular client had received the
answer. This is obviously not acceptable.

We can solve the problem of making replicated
read and replicated write operations fault tolerant. By
using the mechanisms which we also use to solve
problem 4 we can ensure that proxies will get an an-
swer without stalling other replicas. Making normal
(nonreplicated) reads fault tolerant introduces some
new problems and is still a topic of research.

Proxy Failures One other issue is the effect of
proxy failure. The crash of a proxy pBx most likely
also implies the crash of its user, replica Ax, since they
are in the same address space and it is reasonable to
assume that an address space crashes as a whole. The
replica to which proxy pBx was connected (replica
Bx) needs to detect the failure of proxies and update its
administration of how to reach its connected proxies.
If proxies are relatively close-by, as we have assumed,
this will not be such a problem.

3.4 Solving Problem 4: Shifting Respon-
sibility

The problem of returning the same answer to all
proxies can be solved in a number of different ways.
Note that given time, the call will arrive at
B2, after which we are allowed to execute . In
principle, all that is required is that B2 knows about
the operations still underway so it will postpone the
write.

However, waiting for a (very) long time is gener-
ally not acceptable. Faster solutions can be devised
if we start making more use of the proxies used by
A. Instead of delaying write operations at the repli-
cas because there are still duplicates of previous read
requests underway, we could make sure that the prox-
ies are able to answer the read requests without any
further help from the replicas. By partly freeing the
replicas from their normal responsibility of provid-
ing answers, they could be allowed to proceed more
quickly. This shifting of responsibility from server-
side to client-side was already suggested by Cooper
[3].

Pushing Answers to Proxies When a proxy is des-
ignated to forward a write operation to the replicas,
it adds to this write message all the answers to pre-
vious replicated read requests received since the last
write operation. Each answer is labeled with the call
ID of the replicated read to which it is the answer.
Recall that the write message is also forwarded to the
proxy group as part of the solution to problem 2. Each
proxy will therefore receive the responses to all re-
quests that it will be asked to answer. It is likely that
it will already have seen and answered—by forward-
ing the request to its connected replica and returning
its response— part of these requests by the time it re-
ceives the write message. The proxies will store the
answers to requests they have not seen yet and discard
the rest. This approach has the advantage that there is
no superfluous processing and communication at the
replicas.

It can be shown that it is sufficient to send the an-
swers to previous replicated read requests received
since the last write operation. Basically the write acts
as some sort of barrier, making sure that proxies will
not ask replicas for answers to previous reads. We
have also worked out what to do when the set of an-
swers grows large and it is no longer feasible to store
it at the forwarding proxy.

Sending all answers is not the only option. An-
other solution is to install a copy of the state at each
proxy as it was before the write. Each proxy would be
able to compute the answers from that, given the code
of the object’s methods. In effect, this would mean
turning a proxy into a (temporary) replica. Since the
state can be large this will not work in general, but
it may provide an alternative for keeping all answers
around. If the set of answers becomes too large to
remember, the proxy can decide to discard the old an-
swers and send a copy of the state along instead.

4 Related Work

The most extensive work on solving the problems
introduced by actively replicated clients was done
by Mazouni et al. [2][4] at the Swiss Federal Insti-
tute of Technology. They solve the duplicate invoca-
tion problem by adding a meta-layer of encapsulators
which ensures that only one real invocation is done on
the object.

For sending just a single reply to a client they use
the same mechanism. When a replica returns an an-
swer, this reply is intercepted by the replica’s encap-
sulator. The encapsulator who is coordinator returns
the answer to a proxy of the client in its address space.
This proxy multicasts the answer to all client replicas.
Because they send the result of an invocation to all the
client’s replicas at once they do not have problems re-
turning the same answer (Problem 4).

While their solution for reducing network traffic is



similar to ours, their solution is less suitable for mas-
sively replicated objects with widely distributed repli-
cas, because it requires the election of a coordinator.

The DistView toolkit [5] uses a solution very sim-
ilar to that of Mazouni et al., designed for widely
distributed objects, but it also depends on complete
group membership knowledge. In a proposal by Isis
Distributed Systems Inc. to extend the Object Re-
quest Broker concept with support for object groups
[6], replicas coordinate to make sure the server object
is invoked only once. How this coordination is done
is not made explicit. The proposal also does not ad-
dress the problem of returning the same answer. This
latter problem is recognized, in a somewhat different
form, by Mark Little [7], but his solution (reaching
agreement) is not suitable for wide-area systems.

Cooper [8][3] was one of the first to describe the
duplicate invocation problem caused by actively repli-
cated clients. His fault-tolerant remote procedure call
mechanism is targeted towards local area networks
and is meant to use the efficient multicast facilities
provided by these networks.

5 Conclusions

We presented four major problems that need to be
solved to allow actively replicated objects to call other
(actively replicated) objects from their methods. (1)
The duplicate invocation of an object’s methods can
corrupt its state and the (replicated) state of the call-
ing object. The amount of requests (2) and replies (3)
generated by a massively replicated object can cause
serious problems in the network and prevents the sys-
tem from scaling to large numbers of fault-tolerant
objects. (4) Due to the geographical distribution of
replicas there may be multiple operations working on
the same object, even with a single client, resulting in
complex concurrency problems.

The solution we presented might solve all these
problems very efficiently. However, there are still a
number of open issues which require further research.
The administration of call IDs, the effects of semi-
optimal timer values on the performance of a repli-
cated invocation when nodes in the system fail and
making nonreplicated reads fault tolerant.
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